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Abstract. In this paper, the notion of (L,M)-fuzzy topological-convex spaces is introduced and some
of its characterizations are obtained. Then the notion of (L,M)-fuzzy convex enclosed relation spaces is
introduced and its one-to-one correspondence with (L,M)-fuzzy convex space is studied. Based on this,
the notion of (L,M)-fuzzy topological-convex enclosed relation spaces is introduced and its categorical
isomorphism to (L,M)-fuzzy topological-convex spaces is discussed.

1. Introduction

By convex sets, we traditionally refer to convex sets in Euclidean spaces, where the property ‘convexity’
was originally inspired by some elementary geometric problems such as shapes of circles and character-
izations of polytopes. However, with the increasing fields that convexity involved and the expanding
scopes that convexity were applied, many complex convexity problems compelled people to engage in the
axiomatic research of convex sets. This leads to the theory of convex spaces, where an abstract convex
structure is a set-theoretic structure satisfying several axioms [22]. Its categorical properties has been stud-
ied recently [24]. Based on theories of topological spaces and convex spaces, topological-convex space has
been introduced and some of its characterizations have been studied [2].

Convex structure has been extended into fuzzy settings by many ways. Maruyama introduced L-convex
structure [7] whose characterizations and properties have been discussed [5, 6, 11, 12, 26, 29]. Actually, an
L-convex structure is a crisp family of L-fuzzy sets satisfying certain set of axioms that is similar to that
an abstract convex structure has. However, from a totally different point of view, Shi and Xiu introduced
M-fuzzifying convex structures [18]. Many subsequent studies have been done [23, 27, 28, 31–33]. Further,
Shi and Xiu introduced (L,M)-fuzzy convex structure which is a unified form of L-convex structure and
M-fuzzifying convex structure [19]. Based on this concept, many characterizations and related theories
have been discussed [11, 13, 20, 25, 30].

The aim of this paper is to introduce and characterize (L,M)-fuzzy topological-convex spaces. The
arrangement of this paper is as follows. In Section 2, we recall some basic concepts, denotations and
results. In Section 3, we define (L,M)-fuzzy topological-convex space and obtain some characterizations.

2010 Mathematics Subject Classification. Primary 54A40; Secondary 26A51
Keywords. (L,M)-fuzzy topological-convex space, (L,M)-fuzzy convex enclosed relation space, (L,M)-fuzzy topological-convex

enclosed relation space
Received: 02 October 2019; Revised: 11 December 2019; Accepted: 22 December 2019
Communicated by Ljubiša D.R. Kočinac
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In Section 4, we define (L,M)-fuzzy topological-convex enclosed relation space, by which we obtain a
characterization of (L,M)-fuzzy topological-convex spaces in a pointview of category aspect.

2. Preliminaries

In this paper, both L and M are completely distributive lattices, and M has an inverse involution ′. The
smallest element and the greatest element of L or M are respectively denoted by ⊥ and >.

An element a ∈ M is a prime, if b ∧ c ≤ a implies b ≤ a or c ≤ a for all b, c ∈ M. The set of all primes
in M\{>} is denoted by P(M). The set of all co-primes in M\{⊥} is J(M) = {a ∈ M : a′ ∈ P(M)}. A binary
relation ≺ on M is defined by: for all a, b ∈ M, a ≺ b if for all ϕ ⊆ M, b ≤

∨
ϕ implies some d ∈ ϕ such

that a ≤ d. Clearly, β(
∨

i∈I ai) =
⋃

i∈I β(ai) for all {ai}i∈I ⊆ M, where β(a) = {b : b ≺ a} for all a ∈ M. The
opposite relation ≺op of ≺ is defined by: b ≺op a if a′ ≺ b′. Clearly, α(

∧
i∈I ai) =

⋃
i∈I α(ai) for all {ai}i∈I ⊆ M,

where α(a) = {b : a ≺op b} for all a ∈ M. Also, a =
∨
β(a) =

∨
β∗(a) =

∧
α(a) =

∧
α∗(a) for all a ∈ M, where

β∗(a) = β(a) ∩ J(M) and α∗(a) = α(a) ∩ P(M). For p, q ∈M, p ≤ q iff a ≺ p implies a ≤ q for all a ∈ β∗(>) iff p � a
implies q � a for all a ∈ P(M) [18, 30].

X,Y are nonempty. 2X is the power set of X and 2X
f in is the set of all finite subsets of X. LX is the set

of all L-fuzzy sets on X, whose greatest (resp. smallest) element is > (resp. ⊥). An L-fuzzy set with the

constant value λ ∈ L is denoted by λ. A subset ϕ ⊆ LX is said to be up-directed, denoted by ϕ
dir
⊆ LX, if for

all Ai,A j ∈ ϕ there is Ak ∈ ϕ such that Ai,A j ≤ Ak. In this case, we denote
∨
ϕ by

∨dir ϕ. For any x ∈ X and
any λ ∈ L, the L-fuzzy set xλ ∈ LX is called an L-fuzzy point which is defined by xλ(x) = λ and xλ(y) = ⊥
for any y ∈ X\{x}. In particular, xλ is called a molecular in LX if λ ∈ J(L). The set of all moleculars in LX is
denoted by J(LX). For any A ∈ LX, we denote β(A) = {xλ ∈ LX : λ ∈ β(A(x))} and β∗(A) = β(A) ∩ J(LX) [15].
Further, for any A ∈ LX, we also denote F(A) = {F ∈ LX : ∃ϕ ∈ 2β

∗(A)
f in ,F =

∨
ϕ} [30]. In particular, F(>) is

written by F(LX). It is proved that (1) B ≤ A iff F(B) ⊆ F(A); (2) β∗(A) ⊆ F(A)
dir
⊆ LX and

∨
F(A) = A; (3)

F(
∨dir

i∈I Ai) =
⋃

i∈I F(Ai) [30].
Denotations not mentioned here can be seen in [15, 16, 30]. Next, we recall some definitions and results

of (L,M)-fuzzy closure structures, (L,M)-fuzzy topologies and (L,M)-fuzzy convex structures.

Definition 2.1. ([1, 16]) A mapping T : LX
→ M is called an (L,M)-fuzzy closure structure and the pair

(X,T ) is called an (L,M)-fuzzy closure space, if
(LMT1) T (⊥) = T (>) = >;
(LMT2) T (

∧
i∈I

Ai) ≥
∧
i∈I
T (Ai) for {Ai}i∈I⊆ LX.

Theorem 2.2. ([16]) The (L,M)-fuzzy closure operator clT : LX
→ MJ(LX) (briefly, cl) of an (L,M)-fuzzy closure

space (X,T ) is defined by:

∀A ∈ LX, xλ ∈ J(LX), cl(A)(xλ) =
∧

xλ�B≥A

[T (B)]′.

Then cl satisfies:
(LMCL0) cl(A)(xλ) =

∧
µ≺λ cl(A)(xµ);

(LMCL1) cl(⊥)(xλ) = ⊥;
(LMCL2) cl(A)(xλ) = > whenever xλ ≤ A;
(LMCL3) cl(A) ≤ cl(B) whenever A ≤ B;
(LMCL4) cl(A)(xλ) =

∧
xλ�B≥A

∨
yµ�B

cl(B)(yµ).

Conversely, if cl : LX
→MJ(LX) satisfies (LMCl1) –(LMCl4), then Tcl : LX

→M, defined by:

∀A ∈ LX, Tcl(A) =
∧

xλ�A

[cl(A)(xλ)]′,

is an (L,M)-fuzzy closure structure with clTcl = cl.
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If an operator cl satisfies (LMCL0)–(LMCL3), then (LMCL4) is equivalent to (LMCL4*) [15, 16].
(LMCL4*) cl(

∨
cl(A)[a])[a]⊆cl(A)[a] for all a∈M.

Definition 2.3. ([21]) An (L,M)-fuzzy closure structure T : LX
→ M is called an (L,M)-cotopology and the

pair (X,T ) is called an (L,M)-fuzzy cotopological space, if T further satisfies
(LMT3) T (A ∨ B) ≥ T (A) ∧ T (B) for A,B ∈ LX.

Theorem 2.4. ([15]) If (X,T ) is an (L,M)-fuzzy topological space, then clT : LX
→ MJ(LX) (briefly, cl) satisfies

(LMCL0)–(LMCL5), where
(LMCL5) cl(A ∨ B)(xλ) = cl(A)(xλ) ∨ cl(B)(xλ).
Conversely, if cl : LX

→MJ(LX) satisfies (LMCL1) –(LMCL5), then Tcl is an (L,M)-fuzzy topology.

Let (X,TX) and (Y,TY) be (L,M)-fuzzy topological spaces. A mapping f : X→ Y is called an (L,M)-fuzzy
continuous mapping, if clTX (A)(xλ) ≤ clTY ( f→L (A))( f→L (xλ)) for A ∈ LX and xλ ∈ J(LX) [15, 21].

Definition 2.5. ([19]) An (L,M)-fuzzy closure structure C : LX
→ M is called an (L,M)-fuzzy convex

structure and the pair (X,C) is called an (L,M)-fuzzy convex space, if C further satisfies

(LMC3) C(
∨dir

i∈I Ai) ≥
∧

i∈I C(Ai) for any up-directed set {Ai}i∈I
dir
⊆ LX.

Theorem 2.6. ([30]) The (L,M)-fuzzy closure operator of an (L,M)-fuzzy convex space (X,C) is also called the
(L,M)-fuzzy hull operator which is denoted by coC or co. It satisfies (LMCL0)–(LMCL4) and

(LMDF) co(A)(xλ) =
∧

µ∈β∗(λ)

∨
F∈F(A)

co(F)(xµ).

Conversely, for an operator co satisfying (LMCL1)–(LMCL4) and (LMDF), Cco : LX
→M, defined by:

∀A ∈ LX, Cco(A) =
∧

xλ�A

[co(A)(xλ)]′,

is an (L,M)-fuzzy convex structure with coCco = co.

Let (X,CX) and (Y,CY) be (L,M)-fuzzy convex spaces. A mapping f : X → Y is called an (L,M)-fuzzy
convexity preserving (briefly, (L,M)-fuzzy CP) mapping, if coCX (A)(xλ) ≤ coCY ( f→L (A))( f→L (xλ)) for A ∈ LX

and xλ ∈ J(LX) [19].

Definition 2.7. ([19]) Let (X,C) be an (L,M)-fuzzy convex space. A mapping B : LX
→ M is called an

(L,M)-fuzzy convex base of C, if

∀A ∈ LX, C(A) =
∨

∨dir
i∈I Ai=A

∧
i∈I

B(Ai).

If B is an (L,M)-fuzzy convex base of C, then C is denoted by CB. Any (L,M)-fuzzy closure structure T
is an (L,M)-fuzzy convex base [30].

Definition 2.8. ([20]) A binary relation E : LX
× LX

→ M is called an (L,M)-fuzzy topological enclosed
relation and the pair (X,E) is called an (L,M)-fuzzy topological enclosed ralation space, if

(LMTER1) E(⊥,⊥) = >;
(LMTER2) E(A,B) > ⊥ implies A ≤ B;
(LMTER3) E(A,

∧
i∈I Bi) =

∧
i∈I E(A,Bi);

(LMTER4) E(A,B) ≤
∨

C∈LX E(A,C) ∧ E(C,B);
(LMTER5) E(A ∨ B,C) = E(A,C) ∧ E(B,C).

Let (X,EX) and (Y,EY) be (L,M)-fuzzy topological enclosed relation spaces. A mapping f : X → Y is
called an (L,M)-fuzzy topological enclosed relation preserving (briefly, (L,M)-fuzzy TERP) mapping if

EY( f→(U),V) ≤ EX(U, f←L (V))

for any U ∈ LX and any V ∈ LY.
In [20], it is proved that there is a one-to-one correspondence between (L,M)-fuzzy topological enclosed

relations and (L,M)-fuzzy cotopologies.
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3. (L,M)-Fuzzy Topological-Convex Spaces

In [22], a topological-convex space consists a cotopology and a convex structure compatible with each
other. Based on such space, many combining properties such as continuities of convex hull operators, uni-
formities of convex spaces and topological-convex separations can be studied intensively. Thus topological-
convex is a key link in combining Topological Theory and Convex Theory.

Recall that if X is a set equipped with a cotopology T and a convex structure C, then the triple (X,T ,C)
is called a topological-convex space provided that T is compatible with C, that is, all polytopes are closed
(coC(F) ∈ T for any F ∈ 2X

f in) [22]. In this section, we extend this concept into (L,M)-fuzzy settings and
obtain some of its characterizations. Before this, we give a brief observation of topological-convex spaces.

Remark 3.1. Let X be a set equipped with a cotopologyT and a convex structure C. ThenT ∩C is a closure
structure whose closure operator is denoted by clT∩C.

(1) A cotopology T is compatible with a convex structure C iff coC(F) = clT∩C(F) for all F ∈ 2X
f in.

Indeed, the sufficiency is clear. For the necessity, if T is compatible with C, then coC(F) = clT (coC(F)) for
any F ∈ 2X

f in. Thus coC(F) ∈ T ∩ C showing that

coC(F) ⊆ clT∩C(F) ⊆ clT (coC(F)) = coC(F).

(2) In a convex space (X,C), a subset B ⊆ C is called a base if there is an up-directed subset B1 ⊆ B such
that A =

⋃
B for each A ∈ C. In addition, a subset B ⊆ C is a convex base of C iff B contains all polytopes

[22]. Thus, T is compatible with C iff C has a closed base (i.e., C has a convex base B ⊆ T ∩ C).

Based on Remark 3.1 and Definition 2.7, we present (L,M)-fuzzy topological-convex spaces as follows.

Definition 3.2. Let X be a set equipped with an (L,M)-fuzzy cotopology T and an (L,M)-fuzzy convex
structure C. The triple (X,T ,C) is called an (L,M)-fuzzy topological-convex space if T is compatible with
C. That is, C has an (L,M)-fuzzy convex base B : LX

→M such that B ≤ T ∧ C.

Let (X,TX,CX) and (Y,TY,TY) be (L,M)-fuzzy topological-convex spaces. A mapping f : X→ Y is called
an (L,M)-fuzzy topology-convexity structure preserving (or, (L,M)-fuzzy TCP) mapping, if f : (X,TX) →
(Y,TY) is an (L,M)-fuzzy continuous mapping and f : (X,CX)→ (Y,CY) is an (L,M)-fuzzy CP mapping.

The category of (L,M)-fuzzy topological-convex spaces and (L,M)-fuzzy TCP mappings is denoted by
(L,M)-TCS.

Clearly, an (L,M)-fuzzy cotopology T is compatible with an (L,M)-fuzzy convex structure C iff T ∧C is
an (L,M)-fuzzy convex base of C. Next, we characterize (L,M)-fuzzy topological-convex spaces.

Theorem 3.3. If X is equipped with an (L,M)-fuzzy cotopology T and an (L,M)-fuzzy convex structure C, then the
following conditions are equivalent:

(1) T is compatible with C;
(2) For any A ∈ LX and any xλ ∈ J(LX),

coC(A)(xλ) =
∧
µ≺λ

∨
G∈F(A)

∧
xµ�B≥G

[(T ∧ C)(B)]′;

(3) For any F ∈ F(LX) and any xλ ∈ J(LX),

coC(F)(xλ) =
∧
µ≺λ

∨
G∈F(F)

∧
xµ�B≥G

[(T ∧ C)(B)]′.

Proof. (1)⇒ (2). Let B ≤ T ∧ C be an (L,M)-fuzzy convex base of C. By (LMDF),

coC(A)(xλ) =
∧
µ≺λ

∨
G∈F(A)

∧
xµ�B≥G

[C(B)]′ ≤
∧
µ≺λ

∨
G∈F(A)

∧
xµ�B≥G

[(T ∧ C)(B)]′.



X.-Y. Wu, C.-Y. Liao / Filomat 33:19 (2019), 6435–6451 6439

Conversely, for G ∈ F(A), B ∈ LX, {Bi}i∈I
dir
⊆ LX with xµ � B ≥ A ≥ G and

∨dir
i∈I Bi = B, there is iG ∈ I such that

xµ � BiG ≥ G. Thus, by (LMCL0),

coC(A)(xλ) =
∧
µ≺λ

∧
xµ�B≥A

[C(B)]′

=
∧
µ≺λ

∨
G∈F(A)

∧
xµ�B≥A≥G

∧
∨dir

i∈I Bi=B

∨
i∈I

[B(Bi)]′

≥

∧
µ≺λ

∨
G∈F(A)

∧
xµ�B≥A≥G

∧
∨dir

i∈I Bi=B

[B(BiG )]′

≥

∧
µ≺λ

∨
G∈F(A)

∧
xµ�D≥G

[B(D)]′

≥

∧
µ≺λ

∨
G∈F(A)

∧
xµ�D≥G

[(T ∧ C)(D)]′.

(2)⇒ (3). Clear.
(3)⇒ (1). Let A ∈ LX. By (LMDF), we have

C(A) =
∧

xλ�A

[coC(A)(xλ)]′

=
∧

xλ�A

∨
µ≺λ

∧
F∈F(A)

[coC(F)(xµ)]′

=
∧

xλ�A

∨
µ≺λ

∧
F∈F(A)

∨
xµ�B≥F

(T ∧ C)(B)

≤

∧
xλ�A

[coCT∧C (A)(xλ)]′ = CT∧C(A).

On the other hand, by (LMC3), we have

CT∧C(A) =
∨

∨dir
i∈I Ai=A

∧
i∈I

(T ∧ C)(Bi) ≤
∨

∨dir
i∈I Ai=A

∧
i∈I

C(Bi) ≤ C(A).

Thus C(A) = CT∧C(A) showing that T ∧ C is an (L,M)-fuzzy convex base of C.

Corollary 3.4. An (L,M)-fuzzy cotopology T is compatible with an (L,M)-fuzzy convex structure C on X iff for
any A ∈ LX and any xλ ∈ J(LX), one of the following conditions holds:

(1) coC(A)(xλ) =
∧
µ≺λ

∨
G∈F(A)

clT∧C(G)(xµ);

(2) coC(F)(xλ) =
∧
µ≺λ

∨
G∈F(F)

clT∧C(G)(xµ).

Remark 3.5. (1) An (L, 2)-fuzzy topological-convex space is reduced to be an L-topological-convex space
[6]. That is, C has an L-convex base B such that B ⊆ T ∩ C, where a subset B ⊆ C is an L-convex base of
C, if there is an up-directed subset B1 ⊆ B such that A =

∨
B1 for any A ∈ C. In addition, T is compatible

with C iff coC(F) =
∨

G∈F(F) clT∧C(G) for any F ∈ F(LX).
(2) A (2,M)-fuzzy topological-convex space (X,T ,C) is called an M-fuzzifying topological-convex space

[23], where the M-fuzzifying cotopology T is compatible with the M-fuzzifying convex structure C. That
is, there is an M-fuzzifying convex base B : 2X

→M of C such that B ≤ T ∧C. Further, by Theorem 3.3 and
Corollary 3.4, (X,T ,C) is an M-fuzzifying topological-convex space iff for F ∈ 2X

f in and x ∈ X,

coC(F)(x) =
∧

x<B≥F

[(T ∧ C)(B)]′ = clT∧C(F)(x).
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(3) A (2, 2)-fuzzy topological-convex space is a topological-convex space [22].

Theorem 3.6. Let (X,T ) be an (L,M)-fuzzy cotopological space, and let CT : LX
→ M be the (L,M)-fuzzy convex

structure generated by T , that is,

∀A ∈ LX, CT (A) =
∨

∨dir
i∈I Bi=A

∧
i∈I

T (Bi).

Then T is compatible with CT .

Proof. We have (X,CT ) is an (L,M)-fuzzy convex space [30]. To prove that the desired result, let A ∈ LX and
xλ ∈ J(LX). Since CT ≥ T , we have coCT (A)(xλ) ≤ clT (A)(xλ).

Let G ∈ F(A) and µ ∈ β∗(λ). For all B ∈ LX and {Di}i∈I
dir
⊆ LX with xλ � B ≥ A and

∨
i∈I Di = B, there is

DG ∈ {Di}i∈I such that G ≤ DG. Thus

coCT (A)(xµ) =
∧

xµ�B≥A

∧
∨dir

i∈I Di=B

∨
i∈I

∨
yη�Di

clT (Di)(yη) ≥
∧

xµ�B≥A

∧
∨dir

i∈I Di=B

clT (DG)(xµ) ≥ clT (G)(xµ).

Hence coCT (A)(xµ) ≥
∨

G∈F(A) clT (G)(xµ) and

coCT (A)(xλ) ≥
∧
µ≺λ

∨
G∈F(A)

clT (G)(xµ) ≥
∧
µ≺λ

∨
G∈F(A)

coCT (G)(xµ) = coCT (A)(xλ).

From this result and T ≤ CT , we conclude that

coCT (A)(xλ) =
∧
µ≺λ

∨
G∈F(A)

∧
xµ�B≥G

[(T ∧ CT )(B)]′.

Therefore T is compatible with CT .

By Theorem 3.6, many mathematical structures induce (L,M)-fuzzy topological-convex spaces. We list
some of them as follows.

Example 3.7. Let (X, d) be an (L,M)-fuzzy metric space [17], where the (L,M)-fuzzy pseudo-quasi-metric
d : J(LX) × J(LX)→ [0,+∞)(M) satisfies: for xλ, yµ, zγ ∈ J(LX),

(LMd1) d(xλ, xλ)(0+) =
∨

t>0 d(xλ, xλ)(t) = ⊥;
(LMd2) d(xλ, yµ) = d(yµ, xλ);
(LMd3) d(xλ, zγ)(r + s) ≤ d(xλ, yµ)(r) ∨ d(yµ, zγ)(s) for all r, s > 0.
Let cld : LX

→MJ(LX) be defined by:

cld(A)(xλ) =
∧
r>0

∨
yµ≤A

[d(xλ, yµ)(r)]′,

for any A ∈ LX and any xλ ∈ J(LX). Then cld is an (L,M)-fuzzy closure operator inducing an (L,M)-fuzzy
topology Td [17]. Thus (X,Td,Cd) is an (L,M)-fuzzy topological-convex space, where Cd is the (L,M)-fuzzy
convex structure generated by Td.

Example 3.8. Let H(LX) be the family of all mappings d : LX
→ LX satisfying:

(1) A ≤ d(A) for A ∈ LX;
(2) d(

∨
i∈I Ai) =

∨
i∈I d(Ai) for {Ai}i∈I ⊆ LX.

The biggest element d> of H(LX) which is defined by: d>(⊥) = ⊥ and d>(A) = > for all A ∈ LX
\{⊥}. For

all d, e ∈ H(LX), we have d ∧ e, d ◦ e ∈ H(LX), where d ∧ e, d ◦ e : LX
→ LX are defined by:

(d ∧ e)(A) =
∨

xλ∈β∗(A)

d(xλ) ∧ e(xλ)
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and (d ◦ e)(A) = d(e(A)) for any A ∈ LX.
The mapping FU : H(LX) → M is called an (L,M)-fuzzy quasi-uniformity and (X,FU) is called an

(L,M)-fuzzy quasi-uniform space and [34], if
(FQU1) FU(d>) = >;
(FQU2) FU(d ∧ e) = FU(d) ∧ FU(d) for d, e ∈ H(LX);
(FQU3) FU(d) =

∨
e◦e≤d FU(e) for d ∈ H(LX).

Let TFU : LX
→M be defined by:

∀A ∈ LX, TFU(A) =
∧

xλ�∗A′

∨
xλ�d(A′)

FU(d),

Then TFU is an (L,M)-fuzzy topology [34]. So (X,TFU ,CFU) is an (L,M)-fuzzy topological convex space,
where CFU is the (L,M)-fuzzy convex structure generated by TFU .

Example 3.9. A mappingF : LX
→M is called an (L,M)-fuzzy filer on X and (X,F ) is called an (L,M)-fuzzy

filter space, if
(LMF1) F (⊥) = ⊥ and F (>) = >;
(LMF2) F (A ∧ B) = F (A) ∧ F (B) for A,B ∈ LX.
The family of all (L,M)-fuzzy filters on X is denoted byFLM(X). ForF ,G ∈ FLM, the orderF ≤ G implies

F (A) ≤ G(A) for all A ∈ LX.
For each xλ ∈ J(LX), define q̂(xλ) : LX

→M by:

∀A ∈ LX, q̂(xλ)(A) =

{
>, xλq̂A,
⊥, otherwise,

where xλq̂A means xλ � A′. Then q̂(xλ) is an (L,M)-fuzzy filter.
A mapping c : FLM(X) → MJ(LX) is called an (L,M)-fuzzy convergence structure and the pair (X, c) is

called an (L,M)-fuzzy convergence space, if
(LFC1) c(q̂(xλ))(xλ) = > for all xλ ∈ J(LX);
(LFC2) F ≤ G implies that c(F ) ≤ c(G) for all F ,G ∈ FLM(X).
Let Tc : LX

→M be defined by: for any A ∈ LX,

Tc(A) =
∧
xλ q̂A

∧
F ∈FLM(X)

[c(F )(xλ)→ F (A)].

Then Tc is an (L,M)-fuzzy topology [8]. Thus (X,Tc,Cc) is an (L,M)-fuzzy topological-convex space, where
Cc is the (L,M)-fuzzy convex structure generated by Tc.

Remark 3.10. (1) In (2) of Remark 3.5, we know that if X is a set equipped with an M-fuzzifying cotopology
T and an M-fuzzifying convex structure C, then the triple (X,T ,C) is an M-fuzzifying topological-convex
space iff

coC(F)(x) =
∧

x<B⊇F

[(T ∧ C)(B)]′ = clT∧C(F)(x)

for any F ∈ 2X
f in and any x ∈ X.

However, for an (L,M)-fuzzy cotopology T and an (L,M)-fuzzy convex structure C, the condition that

coC(F)(xλ) =
∧

xλ�B≥F

[(T ∧ C)(B)]′

is just a sufficiency for the compatibility of T and C. For example, let X = {x} and L = M = [0, 1]. Define a
mapping T : LX

→M by:

T (xr) =

{
1, r ∈ {0} ∪ [ 1

2 , 1],
0, r ∈ (0, 1

2 ).
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Then T is an (L,M)-fuzzy topology and (X,T ,CT ) is an (L,M)-fuzzy topological-convex space by Theorem
3.6. But it fails to satisfy the described condition.

In fact, x 1
2
∈ F(LX) and x 2

3
∈ J(LX). In addition, we have

coCT (x 1
2
)(x 2

3
) =

∧
x 2

3
�B≥x 1

2

∧
∨dir

i∈I Di=B

∨
i∈I

[T (Di)]′ ≤
∨

0<r< 1
2

[T (xr)]′ =
1
2

and clT (x 1
2
)(x 2

3
) =
∧

x 2
3
�B≥x 1

2

[(T ∧ C)(B)]′ = 1.

(2) By Theorem 3.6, an (L,M)-fuzzy cotopology induces an (L,M)-fuzzy topological-convex space. In
fact, in an (L,M)-fuzzy topological-convex space (X,T ,C),C needs not to be generated byT , that is,C , CT .
For example, let X = {x, y} and L = M = [0, 1]. Define two mappings T ,C : LX

→M by

C(A) =

{
1, A ∈ {0, 1, x 1

2
, y 1

2
},

0, otherwise;
and T (A) =

{
1, A ∈ {0, 1, x 1

2
, y 1

2
, 1

2 },

0, otherwise.

Then (X,T ,C) is an (L,M)-fuzzy topological-convex space with C , CT .
(3) For an (L,M)-fuzzy cotopology T on X, CT is an (L,M)-fuzzy Alexander topology. To prove this, it

is sufficient to prove that

∀{Ai}i∈I ⊆ LX, CT (
∨
i∈I

Ai) ≥
∧
i∈I

CT (Ai).

Let a ≺
∧

i∈I CT (Ai). Then for each i ∈ I, there is ϕi = {Di j} j∈Ji

dir
⊆ LX such that

∨
j∈Ji

Di j = Ai and

a ≤
∧

j∈Ji
T (Di j). Letψ =

⋃
i∈I ψi andϕ = {tφ : ψ ⊆ 2ψf in}, wheretφ stands for

∨
φwhenφ is finite. Thenϕ is

up-directed satisfying
∨

i∈I Ai =
∨
ϕ and T (tφ) ≥ a for each φ ∈ 2ψf in. Thus CT (

∨
i∈I Ai) ≥

∧
tφ∈ϕ T (tφ) ≥ a.

So
∧

i∈I CT (Ai) ≤ CT (
∨

i∈I Ai).
Hence CT is an (L,M)-fuzzy Alexander topology.
(4) In an (L,M)-fuzzy topological-convex space (X,T ,C), C needs not to be an (L,M)-fuzzy Alexander

topology. The example in (2) is of this type.

To obtain more characterizations of (L,M)-fuzzy topological-convex spaces, we construct a new (L,M)-
fuzzy topology by an (L,M)-fuzzy cotopology and an (L,M)-fuzzy convex structure as follows.

Lemma 3.11. Let X be a set equipped with an (L,M)-fuzzy cotopology T and an (L,M)-fuzzy convex structure C.
Define Tw : LX

→M by:

∀A ∈ LX, Tw(A) =
∨

∧
i∈I Bi=A

∧
i∈I

(T ∧ C)t(Bi),

where t stands for finite joins and (T ∧ C)t : LX
→M is defined by:

∀B ∈ LX, (T ∧ C)t(B) =
∨

ti∈IDi=B

∧
i∈I

(T ∧ C)(Di).

Then Tw is an (L,M)-fuzzy cotopology satisfying Tw ≤ T . In addition, Tw is the least (L,M)-fuzzy cotopology
containing T ∧ C.

Proof. We prove that Tw satisfies (LMT1)–(LMT3).
(LMT1). It is clear since Tw ≥ (T ∧ C)t ≥ T ∧ C.
(LMT2). Let {Ai}i∈I ⊆ LX and a ≺

∧
i∈I Tw(Ai). Then a ≺ Tw(Ai) for each i ∈ I. Thus, for each i ∈ I, there is

a family {Di j} j∈Ji ⊆ LX such that
∧

j∈Ji
Di j = Ai and

∧
j∈Ji

(T ∧ C)t(Di j) ≥ a. Note that
∧

i∈I Ai =
∧

i∈I
∧

j∈Ji
Di j.

We have

Tw(
∧
i∈I

Ai) ≥

∧
i∈I

∧
j∈Ji

(T ∧ C)t(Di j) ≥ a.
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Hence
∧

i∈I Tw(Ai) ≤ Tw(
∧

i∈I Ai).
(LMT3). Let A,B ∈ LX. We firstly prove that

(T ∧ C)t(A ∨ B) ≥ (T ∧ C)t(A) ∧ (T ∧ C)t(B).

Let a ≺ (T ∧C)t(A)∧ (T ∧C)t(B). Then there are finite subsets {Di}i∈I, {D j} j∈J ⊆ LX such that ti∈IDi = A,
t j∈JDi = B and (T ∧ C)(Di) ∧ (T ∧ C)(D j) ≥ a for any i ∈ I and any j ∈ J. Since t{Dk : k ∈ I ∪ J} = A ∨ B, we
have

(T ∧ C)t(A ∨ B) =
∨

tk∈KBk=A∨B

∧
k∈K

(T ∧ C)(Bk) ≥
∧

k∈I∪J

(T ∧ C)(Dk) ≥ a.

So (T ∧ C)t(A ∨ B) ≥ (T ∧ C)t(A) ∧ (T ∧ C)t(B).
To prove that Tw(A∨ B) ≥ Tw(A)∧Tw(B), let a ≺ Tw(A)∧Tw(B). Then there are {Di}i∈I, {D j} j∈J ⊆ LX such

that
∧

i∈I Di = A,
∧

j∈J D j = B,
∧

i∈I(T ∧ C)t(D j) ≥ a and
∧

j∈J(T ∧ C)t(D j) ≥ a. Let Di j = Di ∨D j for all i ∈ I
and j ∈ J. We have A ∨ B =

∧
i∈I, j∈J Di ∨D j =

∧
i∈I, j∈J Di j. Thus

Tw(A ∨ B) =
∨

∧
k∈K Hk=A∨B

∧
k∈K

(T ∧ C)t(Hk) ≥
∧

i∈I, j∈J

(T ∧ C)t(Di j) ≥ a.

Hence Tw(A ∨ B) ≥ Tw(A) ∧ Tw(B).
Therefore Tw is an (L,M)-fuzzy cotopology.
Let A ∈ LX. By (LMT3) and (LMT2), we have

Tw(A) =
∨

∧
i∈I Bi=A

∧
i∈I

∨
⊔

j∈Ji
Bi j=Bi

∧
j∈Ji

(T ∧ C)(Bi j) ≤
∨

∧
i∈I Bi=A

∧
i∈I

T (Bi) = T (A).

ThusTw ≤ T . Finally, ifD is an (L,M)-fuzzy cotopology on X containingT∧C, thenD(ti∈IBi) ≥
∧

i∈ID(Bi) ≥∧
i∈I(T ∧ C)(Bi) for any finite subset {Bi}i∈I ⊆ LX. HenceD ≥ (T ∧ C)t showing thatD ≥ Tw. Therefore Tw

is the least (L,M)-fuzzy cotopology containing T ∧ C.

Theorem 3.12. Let X be equipped with an (L,M)-fuzzy cotopology T and an (L,M)-fuzzy convex structure C. For
F ∈ F(LX) and a ∈M, we denote DF =

∨
ψ(F, a), where

FF(LX) = {H ∈ F(LX) : F ∈ F(H)}

and

ψ(F, a) =
⋂

H∈FF(LX)

coC(H)[a].

Then the following conditions are equivalent:
(1) T is compatible with C;
(2) Tw is compatible with C;
(3) clTw (DF)[a] ⊆ ψ(F, a);
(4) clT (DF)[a] ⊆ ψ(F, a).
(5) coC(F)(xλ) =

∧
µ≺λ

∨
G∈F(F)

∧
xµ�D≥G

∨
yη�D

[clT ∨ coC](D)(yη);

(6) coC(F)(xλ) =
∧
µ≺λ

∨
G∈F(F)

∧
xµ�D≥G

∨
yη�D

[clTw ∨ coC](D)(yη);

(7) clT∧C(DF)[a] ⊆ ψ(F, a);
(8) coC(F)(xλ) =

∧
µ≺λ

∨
G∈F(F)

[
∨

A∈LX
(clT (A)(xλ) ∧

∧
yµ≺A

coC(G)(yµ))].
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Proof. (1)⇒ (2). By Lemma 3.11 and Theorem 3.3, we have

coC(F)(xλ) ≤
∧
µ≺λ

∨
G∈F(F)

∧
xµ�B≥G

[(Tw ∧ C)(B)]′.

Conversely, let a ∈ β∗(>) with a � coC(F)(xλ). There is b ∈ β∗(a) such that b � coC(F)(xλ). Thus

b � coC(F)(xλ) =
∧
µ≺λ

∨
G∈F(F)

∧
xµ�B≥G

∨
yη�B

[clT ∨ coC](B)(yη).

Thus there is µ ≺ λ such that for all G ∈ F(F), there is xµ � BG ≥ G such that

[(T ∧ C)(BG)]′ =
∨

yη�BG

[clT ∨ coC](BG)(yη) � b.

Hence yη < clT (BG)[b] ∪ coC(BG)[b] for all yη � BG. Take E =
∨

coC(BG)[b]. Then E =
∨

clT (BG)[b] = BG � xµ. In
addition, by Tw ≤ T , we have∧

xµ�B≥G

[(Tw ∧ C)(B)]′ ≤
∧

xµ�B≥E

[(Tw ∧ C)(B)]′ ≤ [(T ∧ C)(BG)]′.

Thus b �
∧

xµ�B≥G[Tw(B) ∧ C(B)]′. From this result and b ∈ β∗(a), we conclude that

a �
∧
µ≺λ

∨
G∈F(F)

∧
xµ�B≥G

[(Tw ∧ C)(B)]′.

By arbitrariness of a ∈M, we have∧
µ≺λ

∨
G∈F(F)

∧
xµ�B≥G

[(Tw ∧ C)(B)]′ ≤ coC(F)(xλ).

Therefore Tw is compatible with C.
(2) ⇒ (3). If xλ < ψ(F, a), then there is H ∈ FF(LX) such that xλ < coC(H)[a]. Since F ∈ F(H), there is

R ∈ F(H) such that F ∈ F(R). Thus

a � coC(H)(xλ)

=
∧
µ≺λ

∨
G∈F(H)

clTw∧C(G)(xµ)

≥

∨
G∈F(H)

clTw∧C(G)(xλ)

=
∨

G∈F(H)

∧
xλ�B≥G

∨
yη�B

[clTw ∨ coC](B)(yη)

≥

∧
xλ�B≥R

∨
yη�B

[clTw ∨ coC](B)(yη).

Hence there is B ∈ LX such that xλ � B ≥ R and

a �
∨
yη�B

[clTw ∨ coC](B)(yη) = [(Tw ∧ C)(B)]′.

So yη < clTw (B)[a] ∪ coC(B)[a] for any yη � B. So∨
coC(B)[a] =

∨
clTw (B)[a] = B and DF ≤

∨
coC(R)[a] ≤

∨
coC(B)[a] = B.
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This implies that xλ � B ≥ DF and

clTw (DF)(xλ) =
∧

xλ�W≥DF

∧
∧

i∈I Hi=W

∨
i∈I

[(T ∧ C)t(Hi)]′ ≤ [(Tw ∧ C)(B)]′.

So xλ < clTw (DF)[a] and clTw (DF)[a] ⊆ ψ(F, a).
(3)⇒ (4). We have clTw ≥ clT by Tw ≤ T . So clT (DF)[a] ⊆ clTw (DF)[a] ⊆ ψ(F, a).
(4)⇒ (5). By (LMDF) and (LMCO4), we have

coC(F)(xλ) =
∧
µ≺λ

∨
G∈F(F)

∧
xµ�D≥G

∨
yη�D

coC(D)(yη) ≤
∧
µ≺λ

∨
G∈F(F)

∧
xµ�D≥G

∨
yη�D

[clT ∨ coC](D)(yη).

Conversely, suppose that

coC(F)(xλ) �
∧
µ≺λ

∨
G∈F(F)

∧
xµ�D≥G

∨
yη�D

[clT ∨ coC](D)(yη).

So there is a ∈ β∗(>) such that a � coC(F)(xλ) and

a ≺
∧
µ≺λ

∨
G∈F(F)

∧
xµ�D≥G

∨
yη�D

[clT ∨ coC](D)(yη).

Since xλ < coC(F)[a], there is µ0 ≺ λ with xµ0 < coC(F)[a] and xµ0 �
∨

coC(F)[a] by (LMCL0). Since

a ≺
∧
µ≺λ

∨
G∈F(F)

∧
xµ�D≥G

∨
yη�D

[clT ∨ coC](D)(yη),

there is G0 ∈ F(F) such that

a ≺
∧

xµ0�D≥G0

∨
yη�D

[clT ∨ coC](D)(yη).

Since xµ0 �
∨

coC(F)[a] ≥ DG0 ≥ G0, we have a ≺
∨

yη�DG0
[clT ∨ coC](DG0 )(yη). So there is yη � DG0

with a ≤ [clT ∨ coC](DG0 )(yη). Hence a ≤ clT (DG0 )(yη) or a ≤ coC(DG0 )(yη). If a ≤ clT (DG0 )(yη), then
yη ∈ clT (DG0 )[a] ⊆ ψ(Gµ0 , a). If a ≤ coC(DG0 )(yη), then

yη ∈ coC(DG0 )[a] ⊆

⋂
H∈FG0 (LX)

coC(
∨

coC(H)[a])[a] ⊆

⋂
H∈FG0 (LX)

coC(H)[a] = ψ(G0, a).

They imply yη ≤ DG0 which is a contradiction. Thus

coC(F)(xλ) ≥
∧
µ≺λ

∨
G∈F(F)

∧
xµ�D≥G

∨
yη�D

[clT ∨ coC](D)(yη).

(5)⇒ (1). We have

coC(F)(xλ) =
∧
µ≺λ

∨
G∈F(F)

∧
xµ�D≥G

∨
yη�D

[clT ∨ coC](D)(yη)] =
∧
µ≺λ

∨
G∈F(F)

∧
xλ�D≥F

[T (D) ∧ C(D)]′.

Therefore (X,T ,C) is an (L,M)-fuzzy topological-convex space.
(3)⇔ (6). Similar to (4)⇔ (5).
(1) ⇒ (7). Let xλ < ψ(F, a). Similar to (2) ⇒ (3), we can find some B ∈ LX such that xλ � B ≥ DF,

a � [(T ∧ C)(B)]′,
∨

coC(B)[a] =
∨

clT (B)[a] = B and

DF ≤
∨

coC(R)[a] ≤

∨
coC(B)[a] = B.

Thus clT∧C(D)(xλ) ≤ [(T ∧ C)(B)]′ � a. Hence xλ < clT∧C(D)[a]. Therefore clT∧C(DF)[a] ⊆ ψ(F, a).
(7)⇒ (3). Let F ∈ F(LX). Since T ∧ C ≤ Tw, we have clTw ≤ clT∧C. Thus

clTw (DF)[a] ⊆ clT∧C(DF)[a] ⊆ ψ(F, a).
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Therefore (3) holds.
(4)⇒ (8). By (LMDF), (LMCL2) and (LMCL0),

coC(F)(xλ) ≤
∧
µ≺λ

∨
G∈F(F)

[
∨

A∈LX

clT (A)(xµ) ∧
∧
yη≺A

coC(G)(yη)].

Conversely, suppose that

coC(F)(xλ) �
∧
µ≺λ

∨
G∈F(F)

[
∨

A∈LX

clT (A)(xµ) ∧
∧
yη≺A

coC(G)(yη)].

So there is a ∈ β∗(>) such that a � coC(F)(xλ) and

a ≺
∧
µ≺λ

∨
G∈F(F)

[
∨

A∈LX

clT (A)(xµ) ∧
∧
yη≺A

coC(G)(yη)].

By a � coC(F)(xλ), there is γ ≺ λ such that a � coC(F)(xγ). Further, there is Gγ ∈ F(F) such that

a ≺
∨

A∈LX

cl(A)(xγ) ∧
∧
yη≺A

co(Gγ)(yη).

Thus there is A ∈ LX such that a ≤ clT (A)(xγ) ∧
∧

yη≺A coC(Gγ)(yη). So

A =
∨
yη≺A

yη ≤
∨

coC(Gγ)[a] ≤

∨
ψ(Gγ, a) = DGγ .

Hence we obtain from (4) that

clT (A)[a] ⊆ clT (DGγ )[a] ⊆ ψ(Gγ, a) ⊆ coC(F)[a].

So xγ ∈ clT (A)[a] ⊆ coC(F)[a] which contradicts a � co(F)(xγ). So we conclude that

co(F)(xλ) ≥
∧
µ≺λ

∨
G∈F(F)

[
∨

A∈LX

clT (A)(xµ) ∧
∧
yη≺A

coC(G)(yη)].

(8) ⇒ (4). If xλ < ψ(F, a), then there is H ∈ FF(LX) such that xλ < coC(H)[a]. Since F ∈ F(H), there is
R ∈ F(H) such that F ∈ F(R). Thus

a � coC(H)(xλ)

=
∧
µ≺λ

∨
G∈F(H)

[
∨

A∈LX

clT (A)(xµ) ∧
∧
yη≺A

coC(G)(yη)]

≥ clT (DF)(xλ) ∧
∧

yη≺DF

coC(R)(yη).

This shows that a � cl(DF)(xλ) ∧
∧

yη≺DF
co(R)(yη). Further,

∧
yη≺DF

coC(R)(yη) ≥ a by ψ(F, a) ⊆ co(R)[a]. Thus
a � clT (DF)(xλ). Hence xλ < clT (DF)[a]. Therefore clT (DF)[a] ⊆ ψ(F, a).
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4. (L,M)-Fuzzy Topological-Convex Enclosed Relation Spaces

In this section, we define (L,M)-fuzzy topological-convex enclosed relation spaces, by which we char-
acterize (L,M)-fuzzy topological-convex spaces. Before this, we introduce the notion of (L,M)-fuzzy topo-
logical enclosed relation spaces as follows.

Definition 4.1. A binary relation R : LX
× LX

→ M is called an (L,M)-fuzzy convex enclosed relation and
the pair (X,R) is called an (L,M)-fuzzy convex enclosed relation space, if R satisfies

(LMCER1) R(⊥,⊥) = >;
(LMCER2) R(A,B) > ⊥ implies A ≤ B;
(LMCER3) R(A,

∧
i∈I Bi) =

∧
i∈I R(A,Bi);

(LMCER4) R(A,B)≤
∨

C∈LXR(A,C) ∧ R(C,B);
(LMCER5) R(

∨dir
i∈I Ai,B) =

∧
i∈I R(Ai,B).

Let (X,RX) and (Y,RY) be (L,M)-fuzzy convex enclosed relation spaces. A mapping f : X → Y is called
an (L,M)-fuzzy convex enclosed relation preserving (or, (L,M)-fuzzy CERP) mapping, if

RY( f→(U),V) ≤ RX(U, f←L (V))

for any U ∈ LX and any V ∈ LY.

Example 4.2. (1) Let X = {x} and L = M = [0, 1]. Define R1 : LX
× LX

→M by

R1(xs, xt) =


1, s = t = 0,
1
2 , s ≤ 1

2 ≤ t,
0, otherwise.

Then (X,R1) is an (L,M)-fuzzy convex enclosed relation space.
(2) Let X = {x, y} and L = M = [0, 1]. Define R2 : LX

× LX
→M by

R2(A,B) =


1, A = B = 0,
1
2 , z ∈ X,A ≤ z 1

2
≤ B,

0, otherwise.

Then (X,R2) is an (L,M)-fuzzy convex enclosed relation space.

Similar to the relations between (L,M)-fuzzy topological enclosed relations and (L,M)-fuzzy cotopolo-
gies discussed in [20], the following result shows that there is a one-to-one correspondence between
(L,M)-fuzzy convex enclosed relations and (L,M)-fuzzy convex structures.

Theorem 4.3. (1) Let (X,C) be an (L,M)-fuzzy convex space. Define RC : LX
× LX

→M by:

∀A,B ∈ LX, RC(A,B) =
∧
xλ�B

∨
xλ�C≥A

C(C).

Then RC is an (L,M)-fuzzy convex enclosed relation.
(2) Let (X,R) be an (L,M)-fuzzy convex enclosed relation space. Define CR : LX

→M by

∀A ∈ LX, CR(A) =
∧

xλ�A

∨
xλ�B

R(A,B).

Then CR is an (L,M)-fuzzy convex structure with RCR = R. Further, if (X,C) is an (L,M)-fuzzy convex space, then
CRC = C.

(4) If f : (X,CX) → (Y,CY) is an (L,M)-fuzzy CP mapping, then f : (X,RCX ) → (Y,RCY ) is an (L,M)-fuzzy
CERP mapping.

(5) If f : (X,RX)→ (Y,RY) is an (L,M)-fuzzy CERP mapping, then f : (X,CRX )→ (Y,CRY ) is an (L,M)-fuzzy
CP mapping.
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Definition 4.4. Let X be a set equipped with an (L,M)-fuzzy topological enclosed relation E and an (L,M)-
fuzzy convex enclosed relation R. The triple (X,E,R) is called an (L,M)-fuzzy topological-convex enclosed
relation space, if E is compatible with R, that is, for any F ∈ F(LX) and any B ∈ LX,

R(F,B) ≤
∧

G∈F(F)

∨
D∈LX

[R,E](G,D,B),

where [R,E](G,D,B) = R(G,D) ∧ R(D,D) ∧ E(D,D) ∧ E(D,B).

Let (X,EX,RX) and (Y,EY,RY) be (L,M)-fuzzy topological-convex enclosed relation spaces, a mapping
f : X → Y is called an (L,M)-fuzzy topological-convex enclosed relation preserving (or, (L,M)-fuzzy
TCERP) mapping, if f : (X,EX) → (Y,EY) is an (L,M)-fuzzy TERP mapping and f : (X,RX) → (Y,RY) is an
(L,M)-fuzzy CERP mapping.

The category of (L,M)-fuzzy topological-convex enclosed relation spaces and (L,M)-fuzzy topological-
convex enclosed relation preserving mappings is denoted by (L,M)-TCERS.

Example 4.5. (1) Let X = {x} and L = M = [0, 1]. Let R1 : LX
× LX

→ M be defined as in (1) of Example 4.2.
If E1 : LX

× LX
→ M is defined by E1 = R1, then (X,E1,R1) is an (L,M)-fuzzy topological-convex enclosed

relation space.
(2) Let X = {x, y} and L = M = [0, 1]. Let R2 : LX

× LX
→ M be defined as in (2) of Example 4.2. Define

E2 : LX
× LX

→M by

E2(A,B) =


1, A = B = 0,
1
2 , z ∈ X,A ≤ z 1

2
≤ B,

1
2 , A ≤ 1

2 ≤ B,
0, otherwise.

Then (X,E2,R2) is an (L,M)-fuzzy topological-convex enclosed relation space.

Next, we discuss relations between (L,M)-TCS and (L,M)-TCERS.

Theorem 4.6. For an (L,M)-fuzzy topological-convex enclosed relation space (X,E,R), the triple (X,TE,CR) is an
(L,M)-fuzzy topological-convex space.

Proof. Let F ∈ F(LX) and xλ ∈ J(LX). By (LMDF),

coCR (F)(xλ) ≤
∧
µ≺λ

∨
H∈F(F)

clTE∧CR (H)(xµ).

On the other hand, to prove that

coCR (F)(xλ) ≥
∧
µ≺λ

∨
H∈F(F)

clTE∧CR (H)(xµ),

it is sufficient to prove that for any µ ≺ λ,∧
G∈F(F)

[coCR (G)(xµ)]′ ≤
∧

H∈F(F)

[clTE∧CR (H)(xµ)]′.

Let µ ≺ λ and a ≺
∧

G∈F(F)[coCR (G)(xµ)]′. Then

a ≺ [coCR (G)(xµ)]′ =
∨
xµ�B

R(G,B)

for all G ∈ F(F). Thus there is BG ∈ LX such that xµ � BG and a ≺ R(G,BG). Hence

a ≺ R(G,BG) ≤
∧

H∈F(G)

∨
D∈LX

[R,E](H,D,BG).
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So, for each H ∈ F(G), there is DH ∈ LX such that a ≤ [R,E](H,DH,BG). This shows H ≤ DH ≤ BG and
xµ � DH. Hence

a ≤ E(DH,DH) ∧ R(DH,DH)

≤ [
∧

yγ�DG

∨
yγ�R

E(DH,R)] ∧ [
∧

zη�DH

∨
zη�T

E(DH,T)]

= TE(DH) ∧ CR(DH)

≤

∨
xµ�B≥H

[TE ∧ CR](B) = [clTE∧CR (H)(xµ)]′.

By arbitrariness of G ∈ F(F) and H ∈ F(G), we have

a ≤

∧
G∈F(F)

∧
H∈F(G)

[clTE∧CR (H)(xµ)]′

=
∧

H∈
⋃

G∈F(F) F(G)

[clTE∧CR (H)(xµ)]′

=
∧

H∈F(F)

[clTE∧CR (H)(xµ)]′.

By arbitrariness of a and G ∈ F(F), we conclude that

coCR (F)(xλ) ≥
∧
µ≺λ

∨
H∈F(F)

clTE∧CR (H)(xµ).

Therefore TE is compatible with CR.

Theorem 4.7. For an (L,M)-fuzzy topological-convex space (X,T ,C), the triple (X,ET ,RC) is an (L,M)-fuzzy
topological-convex enclosed relation space.

Proof. Let F ∈ F(LX) and xλ ∈ J(LX). We have

coC(F)(xλ) =
∧
µ≺λ

∨
G∈F(F)

clT∧C(G)(xµ).

Thus it is sufficient to verify that

RC(F,B) ≤
∧

G∈F(F)

∨
D∈LX

[RC,ET ](G,D,B).

Let r ∈ P(M) with RC(F,B) � r. Then there is s ∈ α∗(r) such that RC(F,B) � s. Further, there is t ∈ α∗(s)
such that RC(F,B) � t.

For convenience, we denote DG =
∨

clT∧C(G)[t′] for each G ∈ F(F). We have

RC(F,B) =
∧
xλ�B

∨
µ≺λ

∧
R∈F(F)

[coC(R)(xµ)]′ ≤
∧
xλ�B

∧
R∈F(F)

[coC(R)(xλ)]′.

So t′ � coC(G)(xλ) for all G ∈ F(F) and xλ � B.
Fix any G ∈ F(F). We say that DG ≤ B. Otherwise, there is xλ ≺ DG such that xλ � B. Thus

t′ ≤ clT∧C(G)(xλ). Since G ∈ F(F), there is R ∈ F(F) such that G ∈ F(R). Hence

coC(R)(xλ) =
∧
µ≺λ

∨
H∈F(R)

clT∧C(H)(xµ) ≥ clT∧C(G)(xλ) ≥ t′.

Hence xλ � B and t′ ≤ coC(R)(xλ). It is a contradiction. So G ≤ DG ≤ B.
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Further, we say that RC(DG,DG) � s. Otherwise, we have∧
xλ�DG

[coC(DG)(xλ)]′ = RC(DG,DG) ≤ s

which implies that

t ∈ α∗(s) ⊆

⋃
xλ�DG

α∗([coC(DG)(xλ)]′).

Thus t ∈ α∗([coC(DG)(xλ)]′) for some xλ � DG. Hence xλ ∈ clT∧C(DG)[t′] ⊆ clT∧C(G)[t′] by (LMCL4*). However,
this contradicts xλ � DG. Therefore we conclude that RC(G,DG) ≥ RC(DG,DG) � s.

Similarly, we have ET (DG,B) ≥ ET (DG,DG) � s. So [RC,ET ](G,DG,B) � s and∧
G∈F(F)

∨
D∈LX

[RC,ET ](G,D,B) � r.

By arbitrariness of r, we have

RC(F,B) ≤
∧

G∈F(F)

∨
D∈LX

[RC,ET ](G,D,B).

So (X,ET ,RC) is an (L,M)-fuzzy topological-convex enclosed relation space.

From Theorems 4.3, 4.6 and 4.7, we have the following results.

Theorem 4.8. (1) Let (X,TX,CX) and (Y,TY,CY) be (L,M)-fuzzy topological-convex spaces. If f : X → Y is an
(L,M)-fuzzy TCP mapping, then f : (X,ETX ,RCX )→ (Y,ETY ,RCY ) is an (L,M)-fuzzy TCER preserving mapping.

(2) Let (X,EX,RX) and (Y,EY,RY) be (L,M)-fuzzy topological-convex enclosed relation spaces. If f : X → Y is
an (L,M)-fuzzy TCER mapping, then f : (X,TEX ,CRX )→ (Y,TEY ,CRY ) is an (L,M)-fuzzy TCP mapping.

Corollary 4.9. (L,M)-TCS is isomorphic to (L,M)-TCERS.

5. Conclusions

The aim of this paper is to introduce and characterized (L,M)-fuzzy topological-convex spaces.
From Remarks 3.1, 3.5 and 3.10, we know that (L,M)-fuzzy topological-convex space is a unified form

of topological-convex space and L-topological-convex space and M-fuzzifying topological-convex space.
Further, each type of them can be defined by its corresponding convex bases. However, (L,M)-fuzzy
topological-convex space or L-topological-convex space has a more complex structure than topological-
convex space and M-fuzzifying topological-convex space. In fact, a topological-convex space (resp. an M-
fuzzifying topological-convex convex space) can be alternatively defined by relations between the closure
operator and the hull operator (resp. the M-fuzzifying closure operator and the M-fuzzifying hull operator).
That is, a cotopology (resp. an M-fuzzifying cotopology) T is compatible with a convex structure (resp. an
M-fuzzifying convex structure) C iff coC(F) = clT∩C(F) (resp. coC(F) = clT∧C(F)) for any F ∈ 2X

f in. But, the
compatibility of (L,M)-fuzzy topological-convex space or L-topological-convex space (X,T ,C) should be
defined by the condition that coC(F) =

∨
G∈F(LX) clT∧C(F) (other than coC(F) = clT∧C(F)) for any F ∈ F(LX).

As we can see, (L,M)-fuzzy convergence spaces are closely related to (L,M)-fuzzy topological spaces
and (L,M)-fuzzy convex spaces [3, 4, 9, 10, 14]. Similar to the compatibility between an (L,M)-fuzzy
cotopology and an (L,M)-fuzzy convex structure, it could be possible to discuss the compatibility between
an (L,M)-fuzzy convergence structure and an (L,M)-fuzzy convex structure. Further, it could be possible
to characterize (L,M)-fuzzy topological-convex spaces by such compatibility.

In Convex Theory, topological-convex spaces is a basic notion in combining Topology Theory and
Convex Theory. With such spaces, many combined properties can be investigated including continuities
of hull operators, compactness and uniformity of convex spaces. Thus this paper could be helpful in
discussing (L,M)-fuzzy topological-convex spaces in the future.
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