On Group Invertibility in Rings

Nadica Mihajlovića ${ }^{\text {a }}$, Dragan S. Djordjević ${ }^{\text {b }}$
${ }^{a}$ University of Priština temporarilly settled in Kosovska Mitrovica, Faculty of Technical Sciences, Kneza Miloša 7, 38220 Kosovska Mitrovica, Serbia
${ }^{b}$ University of Niš, Faculty of Sciences and Mathematics, Višegradska 33, 18000 Niš, Serbia

Abstract

We prove some results for the group inverse of elements in a unital ring. Thus, some results from (C. Deng, Electronic J. Linear Algebra 31 (2016)) are extended to more general settings.

1. Introduction

Let R be a ring with the unit 1 . We use R^{-1} and R^{\bullet}, respectively, to denote the set of all idempotents of R.
We use the following convention on 2×2 matrices induced by projections in rings. Let $x \in R$ and $p, q \in R^{\bullet}$. Then

$$
x=p x q+p x(1-q)+(1-p) x q+(1-p) x(1-q) \equiv\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)_{p, q}
$$

with

$$
x_{11}=p x q, x_{12}=p x(1-q), x_{21}=(1-p) x q, x_{22}=(1-p) x(1-q) .
$$

We use $R^{\#}$ and R^{D}, R^{d}, respectively, to denote the set of all group invertible and Drazin invertible elements in R (see for example [2]). If $a \in R^{D}$, then a^{D} is the Drazin invrse of a. If ind $(a) \leq 1$, then $a^{D}=a^{\#}$ reduces to the group inverse of a. It is well-known that ind $(a)=0$ if and only if $a \in R^{-1}$ and in this case $a^{D}=a^{-1}$.

In this paper we extend some operator results from [1] to elements of an arbitrary ring with unit.
If $M \subset R$, then

$$
M^{\circ}=\{x \in R: M x=\{0\}\} \quad \text { and }{ }^{\circ} M=\{x \in R: x M=\{0\}\}
$$

We prove the following auxilliary results.
Lemma 1.1. Let R be a ring with identity, $t \in R$ and $p \in R^{\bullet}$. Then the following hold:
(1) $p t=t$ if and only if $t R \subset p R$;
(2) $t p=t$ if and only if $t^{0} \supset p^{0}$.

[^0]Proof. (1) Let $p t=t$, and $t r \in t R$ for some $r \in R$. Then $t r=p t r \in p R$, so $t R \subset p R$
On the other hand, let $t R \subset p R$. Since $t \in t R$, we have $t \in p R$, so $t=p r$ for some $r \in R$. Then $p t=p p r=p r=t$.
(2) Let $t p=t$ and $x \in p^{0}$. Then $p x=0, t p x=0, t x=0$ and $x \in t^{0}$. Hence, $t^{0} \supset p^{0}$.

On the other hand, let $t^{0} \supset p^{0}$. Since $1 \in R$, we get $1-p \in p^{0}$ and $1-p \in t^{0}$. Now, $t(1-p)=0$ implies $t=t p$.

If $t \in R^{d}$, then $t^{\pi}=1-t t^{d}$ is the spectral idempotent of t. If R is a Banach algebra, then p can be obtained by the functional calculus.

Similarity in rings is defined in a standard way. Two elements $t, b \in R$ are similar, in the notation $t \sim b$, if there exists some invertible $s \in R$ such that $t=s^{-1} b s$.

Lemma 1.2. Let $a, b \in R$.
If $b a$ is group invertible, then $a b$ is Drazin invertible with ind $(a b) \leq 2$ and $(a b)^{D}=a\left[(b a)^{\sharp}\right]^{2} b$.
If both $a b$ and ba are group invertible then $(a b)^{\sharp}=a\left[(b a)^{\sharp}\right]^{2} b,(a b)^{\sharp} a=a(b a)^{\sharp}$ and $b(a b)^{\sharp}=(b a)^{\sharp} b$.
Proof. Let $x=a\left[(b a)^{\sharp}\right]^{2} b$. Clearly,

$$
\begin{gathered}
x a b x=a\left[(b a)^{\sharp}\right]^{2} b a b a\left[(b a)^{\sharp}\right]^{2} b=a(b a)^{\sharp}(b a)^{\sharp} b=a\left[(b a)^{\sharp}\right]^{2} b=x, \\
a b x=a b a\left[(b a)^{\sharp}\right]^{2} b=a(b a)^{\sharp} b, \\
x a b=a\left[(b a)^{\sharp}\right]^{2} b a b=a(b a)^{\sharp} b,
\end{gathered}
$$

$$
(a b)^{3} x=(a b)^{3} a\left[(b a)^{\sharp}\right]^{2} b=(a b)^{2} a(b a)^{\sharp} b=a b a b=(a b)^{2} .
$$

Hence, $x=(a b)^{D}$ and ind $(a b) \leq 2$.
Moreover, if $a b$ and $b a$ are group invertible, then

$$
\begin{gathered}
(a b)^{\sharp}=(a b)^{D}=a\left[(b a)^{\sharp}\right]^{2} b, \\
\left(a b^{\sharp} a\right)=a\left[(b a)^{\sharp}\right]^{2} b a=a\left(b a^{\sharp}\right), \\
b(a b)^{\sharp}=b a\left[(b a)^{\sharp}\right]^{2} b=(b a)^{\sharp} b .
\end{gathered}
$$

2. Main results

In this section we prove main results of this paper.
Theorem 2.1. Let R be a ring, $x \in R, p \in R^{\bullet}$, and

$$
x=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)_{p, p}
$$

The following assertions hold:
(i) Assume that d^{\sharp} exists (resp., a^{\sharp} exists). Then x^{\sharp} exists if and only if a^{\sharp} exists (resp., d^{\sharp} exists) and $a^{\pi} b d^{\pi}=0$.
(ii) Assume a^{\sharp} and d^{\sharp} exists. Then x^{\sharp} exists if and only if $a^{\pi} b d^{\pi}=0$. In this case,

$$
x^{\sharp}=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)_{p, p}^{\sharp}=\left(\begin{array}{cc}
a^{\sharp} & y \\
0 & d^{\sharp}
\end{array}\right)_{p, p},
$$

where

$$
y=\left(a^{\sharp}\right)^{2} b d^{\pi}+a^{\pi} b\left(d^{\sharp}\right)^{2}-a^{\sharp} b d^{\sharp} .
$$

Proof. Part (1)
\Longrightarrow : Assume that x^{\sharp} and d^{\sharp} exist. For

$$
x=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)_{p, p}
$$

take

$$
x_{1}=\left(\begin{array}{cc}
y & z \\
0 & d^{\sharp}
\end{array}\right)_{p, p}
$$

Hence,

$$
\begin{aligned}
x x_{1} x & =\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\left(\begin{array}{cc}
y & z \\
0 & d^{\sharp}
\end{array}\right)\left(\begin{array}{cc}
a & b \\
0 & d
\end{array}\right)=\left(\begin{array}{cc}
a y & a z+b d^{\sharp} \\
0 & d d^{\sharp}
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \\
& =\left(\begin{array}{cc}
a y a & a y b+a z d+b d^{\sharp} d \\
0 & d d^{\sharp} d
\end{array}\right) .
\end{aligned}
$$

We have $x x_{1} x=x$ if and only if

$$
\left(\begin{array}{cc}
a y a & a y b+a z d+b d^{\sharp} d \\
0 & d d^{\sharp} d
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) .
$$

So, $a y a=a$. Moreovever,

$$
\begin{aligned}
x_{1} x x_{1} & =\left(\begin{array}{cc}
y & z \\
0 & d^{\sharp}
\end{array}\right)\left(\begin{array}{cc}
a & b \\
0 & d
\end{array}\right)\left(\begin{array}{cc}
y & z \\
0 & d^{\sharp}
\end{array}\right)=\left(\begin{array}{cc}
y a & y b+z d \\
0 & d^{\sharp} d
\end{array}\right)\left(\begin{array}{cc}
y & z \\
0 & d^{\sharp}
\end{array}\right) \\
& =\left(\begin{array}{cc}
y a y & y a z+y b d^{\sharp}+z d d^{\sharp} \\
0 & d^{\sharp} d d^{\sharp}
\end{array}\right)
\end{aligned}
$$

We have $x_{1} x x_{1}=x_{1}$ if and only if

$$
\left(\begin{array}{cc}
y a y & y a z+y b d^{\sharp}+z d d^{\sharp} \\
0 & d^{\sharp} d d^{\sharp}
\end{array}\right)=\left(\begin{array}{cc}
y & z \\
0 & d^{\sharp}
\end{array}\right) .
$$

Hence, yay $=y$. We also calculate

$$
x x_{1}=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\left(\begin{array}{cc}
y & z \\
0 & d^{\sharp}
\end{array}\right)=\left(\begin{array}{cc}
a y & a z+b d^{\sharp} \\
0 & d d^{\sharp}
\end{array}\right),
$$

and

$$
x_{1} x=\left(\begin{array}{cc}
y & z \\
0 & d^{\sharp}
\end{array}\right)\left(\begin{array}{cc}
a & b \\
0 & d
\end{array}\right)=\left(\begin{array}{cc}
y a & y b+z d \\
0 & d^{\sharp} d
\end{array}\right) .
$$

We have $x x_{1}=x_{1} x$ if and only if

$$
\left(\begin{array}{cc}
a y & a z+b d^{\sharp} \\
0 & d d^{\sharp}
\end{array}\right)=\left(\begin{array}{cc}
y a & y b+z d \\
0 & d^{\sharp} d
\end{array}\right) .
$$

Hence, $a y=y a$. Since $a y a=a, y a y=y$ and $a y=y a$, we obtain $y=a^{\sharp}$.
Notice that by now we have:

$$
a y b+a z d+b d^{\sharp} d=b, \quad y a z+y b d^{\sharp}+z d d^{\sharp}=z, \quad a z+b d^{\sharp}=y b+z d .
$$

We get

$$
\begin{gathered}
a(y b+z d)=b-b d^{\sharp} d, \quad a\left(a z+b d^{\sharp}\right)=b-b d^{\sharp} d, \\
a^{\sharp} a a z+a^{\sharp} a b d^{\sharp}=a^{\sharp} b-a^{\sharp} b d^{\sharp} d, \quad a z+a^{\sharp} a b d^{\sharp}=a^{\sharp} b-a^{\sharp} b d^{\sharp} d, \\
a\left(a z+b d^{\sharp}\right)=a a^{\sharp} b-a a^{\sharp} b d^{\sharp} d, \quad b-b d^{\sharp} d=a a^{\sharp} b-a a^{\sharp} b d^{\sharp} d .
\end{gathered}
$$

The last equality is equivalent to $a^{\pi} b d^{\pi}=0$.
$\Longleftarrow:$ Assume that both a^{\sharp} and d^{\sharp} exists and $a^{\pi} b d^{\pi}=0$. Let

$$
x=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right), \quad z=\left(\begin{array}{cc}
a^{\sharp} & y \\
0 & d^{\sharp}
\end{array}\right) .
$$

Then

$$
\begin{aligned}
x z x & =\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\left(\begin{array}{cc}
a^{\sharp} & y \\
0 & d^{\sharp}
\end{array}\right)\left(\begin{array}{cc}
a & b \\
0 & d
\end{array}\right)=\left(\begin{array}{cc}
a a^{\sharp} & a y+b d^{\sharp} \\
0 & d d^{\sharp}
\end{array}\right)\left(\begin{array}{cc}
a & b \\
0 & d
\end{array}\right) \\
& =\left(\begin{array}{cc}
a a^{\sharp} a & a a^{\sharp} b+a y d+b d^{\sharp} d \\
0 & d d^{\sharp} d
\end{array}\right)=\left(\begin{array}{cc}
a & a a^{\sharp} b+a y d+b d^{\sharp} d \\
0 & d
\end{array}\right) .
\end{aligned}
$$

We have $x z x=x$ if and only if

$$
\left(\begin{array}{cc}
a & a a^{\sharp} b+a y d+b d^{\sharp} d \\
0 & d
\end{array}\right)=\left(\begin{array}{cc}
a & b \\
0 & d
\end{array}\right),
$$

i.e.

$$
\begin{equation*}
a a^{\sharp} b+a y d+b d^{\sharp} d=b . \tag{1}
\end{equation*}
$$

We also have

$$
\begin{aligned}
z x z & =\left(\begin{array}{cc}
a^{\sharp} & y \\
0 & d^{\sharp}
\end{array}\right)\left(\begin{array}{cc}
a & b \\
0 & d
\end{array}\right)\left(\begin{array}{cc}
a^{\sharp} & y \\
0 & d^{\sharp}
\end{array}\right)=\left(\begin{array}{cc}
a^{\sharp} a & a^{\sharp} b+y d \\
0 & d^{\sharp} d
\end{array}\right)\left(\begin{array}{cc}
a^{\sharp} & y \\
0 & d^{\sharp}
\end{array}\right) \\
& =\left(\begin{array}{cc}
a^{\sharp} a a^{\sharp} & a^{\sharp} a y+a^{\sharp} b d^{\sharp}+y d d^{\sharp} \\
0 & d^{\sharp} d d^{\sharp}
\end{array}\right)=\left(\begin{array}{cc}
a^{\sharp} & a^{\sharp} a y+a^{\sharp} b d^{\sharp}+y d d^{\sharp} \\
0 & d^{\sharp}
\end{array}\right),
\end{aligned}
$$

We conclude $z x z=z$ if and only if

$$
\left(\begin{array}{cc}
a^{\sharp} & a^{\sharp} a y+a^{\sharp} b d^{\sharp}+y d d^{\sharp} \\
0 & d^{\sharp}
\end{array}\right)=\left(\begin{array}{cc}
a^{\sharp} & y \\
0 & d^{\sharp}
\end{array}\right),
$$

i.e.

$$
\begin{equation*}
a^{\sharp} a y+a^{\sharp} b d^{\sharp}+y d d^{\sharp}=y . \tag{2}
\end{equation*}
$$

Notice that

$$
x z=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\left(\begin{array}{cc}
a^{\sharp} & y \\
0 & d^{\sharp}
\end{array}\right)=\left(\begin{array}{cc}
a a^{\sharp} & a y+b d^{\sharp} \\
0 & d d^{\sharp}
\end{array}\right),
$$

and

$$
z x=\left(\begin{array}{cc}
a^{\sharp} & y \\
0 & d^{\sharp}
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)=\left(\begin{array}{cc}
a^{\sharp} a & a^{\sharp} b+y d \\
0 & d^{\sharp} d
\end{array}\right) .
$$

We have $x z=z x$ if and only if

$$
\left(\begin{array}{cc}
a a^{\sharp} & a y+b d^{\sharp} \\
0 & d d^{\sharp}
\end{array}\right)=\left(\begin{array}{cc}
a^{\sharp} a & a^{\sharp} b+y d \\
0 & d^{\sharp} d
\end{array}\right),
$$

i.e.

$$
\begin{equation*}
a y+b d^{\sharp}=a^{\sharp} b+y d . \tag{3}
\end{equation*}
$$

Since $a^{\pi} b d^{\pi}=0$, we obtain

$$
\begin{align*}
& \left(1-a a^{\sharp}\right) b\left(1-d d^{\sharp}\right)=0, \\
& \left(b-a a^{\sharp} b\right)\left(1-d d^{\sharp}\right)=0, \tag{4}\\
& b-b d d^{\sharp}-a a^{\sharp} b+a a^{\sharp} b d d^{\sharp}=0, \\
& b=a a^{\sharp} b+b d d^{\sharp}-a a^{\sharp} b d d^{\sharp}
\end{align*}
$$

Multiplying the equality (2) by a from the left side and by d from the right side, we get

$$
\begin{aligned}
& a a^{\sharp} a y d+a a^{\sharp} b d^{\sharp} d+a y d d^{\sharp} d=a y d, \quad a y d+a a^{\sharp} b d^{\sharp} d+a y d=a y d, \\
& a y d=-a a^{\sharp} b d^{\sharp} d .
\end{aligned}
$$

Now, equality (1) becomes

$$
a a^{\sharp} b-a a^{\sharp} b d^{\sharp} d+b d^{\sharp} d=b .
$$

In the same way, multiplying equality (1) by a^{\sharp} from the left side and by d^{\sharp} from the right side, we get

$$
\begin{aligned}
& a^{\sharp} a a^{\sharp} b d^{\sharp}+a^{\sharp} a y d d^{\sharp}+a^{\sharp} b d^{\sharp} d d^{\sharp}=a^{\sharp} b d^{\sharp}, \\
& a^{\sharp} b d^{\sharp}+a^{\sharp} a y d d^{\sharp}+a^{\sharp} b d^{\sharp}=a^{\sharp} b d^{\sharp}, \quad a^{\sharp} b d^{\sharp}=-a^{\sharp} a y d d^{\sharp} .
\end{aligned}
$$

Now, equality (2) becomes

$$
a^{\sharp} a y-a^{\sharp} a y d d^{\sharp}+y d d^{\sharp}=y .
$$

Similarly, multiplying equality (3) by a^{\sharp} from the left side, we get

$$
a^{\sharp} a y+a^{\sharp} b d^{\sharp}=\left(a^{\sharp}\right)^{2} b+a^{\sharp} y d .
$$

The last equality and equality (2) give

$$
\begin{equation*}
\left(a^{\sharp}\right)^{2} b+a^{\sharp} y d+y d d^{\sharp}=y . \tag{5}
\end{equation*}
$$

Now, we have $a y+b d^{\sharp}=a^{\sharp} b+y d$ (which is (3)), so we get

$$
\begin{aligned}
& a \cdot(2)+(1) \cdot d^{\sharp}=a y+b d^{\sharp}=a^{\sharp} b+y d=a^{\sharp} \cdot(1)+(2) \cdot d \\
& =a\left(a^{\sharp} a y+a^{\sharp} b d^{\sharp}+y d d^{\sharp}\right)+\left(a a^{\sharp} b+a y d+b d^{\sharp} d\right) d^{\sharp} \\
& =a^{\sharp}\left(a a^{\sharp}+a y d+b d^{\sharp} d\right)+\left(a^{\sharp} a y+a^{\sharp} b d^{\sharp}+y d d^{\sharp}\right) d, \\
& a a^{\sharp} a y+a a^{\sharp} b d^{\sharp}+a y d d^{\sharp}+a a^{\sharp} b d^{\sharp}+a y d d^{\sharp}+b d^{\sharp} d d^{\sharp} \\
& \quad=a^{\sharp} a a^{\sharp} b+a^{\sharp} a y d+a^{\sharp} b d^{\sharp} d+a^{\sharp} a y d+a^{\sharp} b d^{\sharp} d+y d d^{\sharp} d,
\end{aligned}
$$

and

$$
a y+2 a y d d^{\sharp}+2 a a^{\sharp} b d^{\sharp}+b d^{\sharp}=a^{\sharp} b+2 a^{\sharp} a y d+2 a^{\sharp} b d^{\sharp} d+y d .
$$

From equality (3) we get

$$
\begin{gathered}
2 a a^{\sharp} b d^{\sharp}+2 a y d d^{\sharp}=2 a^{\sharp} a y d+2 a^{\sharp} b d^{\sharp} d, \quad 2 a a^{\sharp}\left(b d^{\sharp}-y d\right)=2\left(a^{\sharp} b-a y\right) d d^{\sharp}, \\
2 a a^{\sharp}\left(a^{\sharp} b-a y\right)=2\left(a^{\sharp} b-a y\right) d d^{\sharp}, \quad 2 a^{\sharp} b-2 a y=2\left(b d^{\sharp}-y d\right) d d^{\sharp},
\end{gathered}
$$

$$
2 a^{\sharp} b-2 a y=2 b d^{\sharp}-2 y d, \quad a^{\sharp} b+y d=b d^{\sharp}+a y .
$$

Multiplying equality (3) by a^{\sharp} from the left side, we get

$$
a^{\sharp} a y+a^{\sharp} b d^{\sharp}=\left(a^{\sharp}\right)^{2} b+a^{\sharp} y d,
$$

and from (2) we get

$$
y-y d d^{\sharp}=a^{\sharp} a y+a^{\sharp} b d^{\sharp}, \quad y-y d d^{\sharp}=\left(a^{\sharp}\right)^{2} b+a^{\sharp} y d, \quad y=\left(a^{\sharp}\right)^{2} b+a^{\sharp} y d+y d d^{\sharp} .
$$

Multiplying the last equality by $\left(1-d d^{\sharp}\right)$ from the right side, we get

$$
\begin{gathered}
y\left(1-d d^{\sharp}\right)=\left(a^{\sharp}\right)^{2} b\left(1-d d^{\sharp}\right)+a^{\sharp} y d\left(1-d d^{\sharp}\right)+y d d^{\sharp}\left(1-d d^{\sharp}\right), \\
y-y d d^{\sharp}=\left(a^{\sharp}\right)^{2} b d^{\pi}+a^{\sharp} y\left(d-d d d^{\sharp}\right)+y\left(d d^{\sharp}-d d^{\sharp} d d^{\sharp}\right), \\
y-y d d^{\sharp}=\left(a^{\sharp}\right)^{2} b d^{\pi}, \quad y=\left(a^{\sharp}\right)^{2} b d^{\pi}+y d d^{\sharp} .
\end{gathered}
$$

Now, multiplying equality (3) by d^{\sharp} from the right side we obtain

$$
a y d^{\sharp}+b\left(d^{\sharp}\right)^{2}=a^{\sharp} b d^{\sharp}+y d d^{\sharp},
$$

From equality (2) we get

$$
\begin{gathered}
a^{\sharp} b d^{\sharp}+y d d^{\sharp}=y-a^{\sharp} a y, \quad a y d^{\sharp}+b\left(d^{\sharp}\right)^{2}=y-a^{\sharp} a y, \\
y=a y d^{\sharp}+b\left(d^{\sharp}\right)^{2}+a^{\sharp} a y .
\end{gathered}
$$

Multiplying the last equality by $\left(1-a a^{\sharp}\right)$ from the left side, we get

$$
\begin{gathered}
\left(1-a a^{\sharp}\right) y=\left(1-a a^{\sharp}\right) a y d^{\sharp}+\left(1-a a^{\sharp}\right) b\left(d^{\sharp}\right)^{2}+\left(1-a a^{\sharp}\right) a^{\sharp} a y, \\
a^{\pi} y=\left(a-a a^{\sharp} a\right) y d^{\sharp}+a^{\pi} b\left(d^{\sharp}\right)^{2}+\left(a^{\sharp} a-a a^{\sharp} a^{\sharp} a\right) y, \\
a^{\pi} y=a^{\pi} b\left(d^{\sharp}\right)^{2}, \quad\left(1-a a^{\sharp}\right) y=a^{\pi} b\left(d^{\sharp}\right)^{2}, \quad y-a a^{\sharp} y=a^{\pi} b\left(d^{\sharp}\right)^{2},
\end{gathered}
$$

$$
\begin{equation*}
y=a^{\pi} b\left(d^{\sharp}\right)^{2}+a a^{\sharp} y . \tag{6}
\end{equation*}
$$

Since $\left(a^{\sharp}\right)^{2} b+a^{\sharp} y d+y d d^{\sharp}=y$, we obtain

$$
\begin{aligned}
& \left(a^{\sharp}\right)^{2} b+a^{\sharp} y d=y\left(1-d d^{\sharp}\right), \\
& \left(a^{\sharp}\right)^{2} b\left(1-d d^{\sharp}\right)+a^{\sharp} y d\left(1-d d^{\sharp}\right)=y\left(1-d d^{\sharp}\right)\left(1-d d^{\sharp}\right), \\
& \left(a^{\sharp}\right)^{2} b d^{\pi}=y\left(1-d d^{\sharp}\right),
\end{aligned}
$$

$$
\begin{equation*}
y=\left(a^{\sharp}\right)^{2} b d^{\pi}+y d d^{\sharp} . \tag{7}
\end{equation*}
$$

From (6) and (7) we get

$$
\begin{aligned}
& y=a^{\pi} b\left(d^{\sharp}\right)^{2}+a a^{\sharp}\left[\left(a^{\sharp}\right)^{2} b d^{\pi}+y d d^{\sharp}\right], \quad y=a^{\pi} b\left(d^{\sharp}\right)^{2}+\left(a^{\sharp}\right)^{2} b d^{\pi}+a a^{\sharp} y d d^{\sharp}, \\
& y=a^{\pi} b\left(d^{\sharp}\right)^{2}+\left(a^{\sharp}\right)^{2} b d^{\pi}-a^{\sharp} b d^{\sharp} .
\end{aligned}
$$

Part (2)
$\Longleftarrow:$ Assume that both a^{\sharp} and d^{\sharp} exist and $a^{\pi} b d^{\pi}=0$. Thus x^{\sharp} exists. Let

$$
z=\left(\begin{array}{cc}
a^{\sharp} & y \\
0 & d^{\sharp}
\end{array}\right),
$$

where $y=\left(a^{\sharp}\right)^{2} b d^{\pi}+a^{\pi} b\left(d^{\sharp}\right)^{2}-a^{\sharp} b d^{\sharp}$. We have

$$
\begin{aligned}
x z x & =\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\left(\begin{array}{cc}
a^{\sharp} & y \\
0 & d^{\sharp}
\end{array}\right)\left(\begin{array}{cc}
a & b \\
0 & d
\end{array}\right)=\left(\begin{array}{cc}
a a^{\sharp} & a y+b d^{\sharp} \\
0 & d d^{\sharp}
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \\
& =\left(\begin{array}{cc}
a a^{\sharp} a & a a^{\sharp} b+a y d+b d^{\sharp} d \\
0 & d d^{\sharp} d
\end{array}\right)=\left(\begin{array}{cc}
a & a a^{\sharp} b+a y d+b d^{\sharp} d \\
0 & d
\end{array}\right) .
\end{aligned}
$$

We have $x z x=x$ if and only if

$$
\left(\begin{array}{cc}
a & a a^{\sharp} b+a y d+b d^{\sharp} d \\
0 & d
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)
$$

i.e. $a a^{\sharp} b+a y d+b d^{\sharp} d=b$. We compute as follows

$$
\begin{aligned}
& a a^{\sharp} b+a y d+b d^{\sharp} d=a a^{\sharp} b+a\left[\left(a^{\sharp}\right)^{2} b d^{\pi}+a^{\pi} b\left(d^{\sharp}\right)^{2}-a^{\sharp} b d^{\sharp}\right] d+b d d^{\sharp} \\
& =a a^{\sharp} b+a^{\sharp} b\left(1-d d^{\sharp}\right) d+a\left(1-a a^{\sharp}\right) b\left(d^{\sharp}\right)^{2} d-a a^{\sharp} b d^{\sharp} d+b d^{\sharp} d \\
& =a a^{\sharp} b-a a^{\sharp} b d^{\sharp} d+b d^{\sharp} d .
\end{aligned}
$$

Now, from $\left(1-a a^{\sharp}\right) b\left(1-d d^{\sharp}\right)=0$ we get

$$
b-b d d^{\sharp}-a a^{\sharp} b+a a^{\sharp} b d d^{\sharp}=0,
$$

i.e.

$$
a a^{\sharp} b+b d d^{\sharp}-a a^{\sharp} b d d^{\sharp}=b .
$$

Therefore, $x z x=x$.
We have

$$
\begin{aligned}
z x z & =\left(\begin{array}{cc}
a^{\sharp} & y \\
0 & d^{\sharp}
\end{array}\right)\left(\begin{array}{cc}
a & b \\
0 & d
\end{array}\right)\left(\begin{array}{cc}
a^{\sharp} & y \\
0 & d^{\sharp}
\end{array}\right)=\left(\begin{array}{cc}
a^{\sharp} a & a^{\sharp} b+y d \\
0 & \left.d^{\sharp} d\right)
\end{array}\right)\left(\begin{array}{cc}
a^{\sharp} & y \\
0 & d^{\sharp}
\end{array}\right) \\
& =\left(\begin{array}{cc}
a^{\sharp} a a^{\sharp} & a^{\sharp} a y \sharp+a^{\sharp} b d^{\sharp}+y d d^{\sharp} \\
0 & d^{\sharp} d d^{\sharp}
\end{array}\right)=\left(\begin{array}{cc}
a^{\sharp} & a^{\sharp} a y+a^{\sharp} b d^{\sharp}+y d d^{\sharp} \\
0 & d^{\sharp}
\end{array}\right) .
\end{aligned}
$$

Hnce, $z x z=z$ if and only if

$$
\left(\begin{array}{cc}
a^{\sharp} & a^{\sharp} a y+a^{\sharp} b d^{\sharp}+y d d^{\sharp} \\
0 & d^{\sharp}
\end{array}\right)=\left(\begin{array}{cc}
a^{\sharp} & y \\
0 & d^{\sharp}
\end{array}\right),
$$

i.e. $a^{\sharp} a y+a^{\sharp} b d^{\sharp}+y d d^{\sharp}=y$. We compute as follows:

$$
\begin{aligned}
& a^{\sharp} a\left[\left(a^{\sharp}\right)^{2} b d^{\pi}+a^{\pi} b\left(d^{\sharp}\right)^{2}-a^{\sharp} b d^{\sharp}\right]+a^{\sharp} b d^{\sharp}+\left[\left(a^{\sharp}\right)^{2} b d^{\pi}+a^{\pi} b\left(d^{\sharp}\right)^{2}-a^{\sharp} b d^{\sharp}\right] d d^{\sharp} \\
& =\left(a^{\sharp}\right)^{2} b d^{\pi}+a^{\pi} b\left(d^{\sharp}\right)^{2}-a^{\sharp} b d^{\sharp},\left(a^{\sharp}\right)^{2} b d^{\pi}+a^{\sharp} a\left(1-a a^{\sharp}\right) b\left(d^{\sharp}\right)^{2}-a^{\sharp} b d^{\sharp}+a^{\sharp} b d^{\sharp} \\
& +\left(a^{\sharp}\right)^{2} b\left(1-d d^{\sharp}\right) d d^{\sharp}+a^{\pi} b\left(d^{\sharp}\right)^{2}-a^{\sharp} b d^{\sharp}=y,
\end{aligned}
$$

and $\left(a^{\sharp}\right)^{2} b d^{\pi}+a^{\pi} b\left(d^{\sharp}\right)^{2}-a^{\sharp} b d^{\sharp}=y$. Therefore, $z x z=z$.
We have

$$
\begin{aligned}
& x z=\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)\left(\begin{array}{cc}
a^{\sharp} & y \\
0 & d^{\sharp}
\end{array}\right)=\left(\begin{array}{cc}
a a^{\sharp} & a y+b d^{\sharp} \\
0 & d d^{\sharp}
\end{array}\right), \\
& z x=\left(\begin{array}{cc}
a^{\sharp} & y \\
0 & d^{\sharp}
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)=\left(\begin{array}{cc}
a^{\sharp} a & a^{\sharp} b+y d \\
0 & d^{\sharp} d
\end{array}\right) .
\end{aligned}
$$

Now, $x z=z x$ if and only if

$$
\left(\begin{array}{cc}
a a^{\sharp} & a y+b d^{\sharp} \\
0 & d d^{\sharp}
\end{array}\right)=\left(\begin{array}{cc}
a^{\sharp} a & a^{\sharp} b+y d \\
0 & d^{\sharp} d
\end{array}\right),
$$

i.e. $a y+b d^{\sharp}=a^{\sharp} b+y d$. We compute as follows:

$$
\begin{aligned}
& a y+b d^{\sharp}=a\left[\left(a^{\sharp}\right)^{2} b d^{\pi}+a^{\pi} b\left(d^{\sharp}\right)^{2}-a^{\sharp} b d^{\sharp}\right]+b d^{\sharp} \\
& =a^{\sharp} b d^{\pi}+a\left(1-a a^{\sharp}\right) b\left(d^{\sharp}\right)^{2}-a a^{\sharp} b d^{\sharp}+b d^{\sharp} \\
& =a^{\sharp} b d^{\pi}-a a^{\sharp} b d^{\sharp}+b d^{\sharp}=a^{\sharp} b\left(1-d d^{\sharp}\right)-a a^{\sharp} b d^{\sharp}+b d^{\sharp} \\
& =a^{\sharp} b-a^{\sharp} b d d^{\sharp}-a a^{\sharp} b d^{\sharp}+b d^{\sharp} \\
& =a^{\sharp} b\left(1-d d^{\sharp}\right)+b d^{\sharp}\left(1-a a^{\sharp}\right)=a^{\sharp} b d^{\pi}+b d^{\sharp} a^{\pi},
\end{aligned}
$$

and

$$
\begin{aligned}
& a^{\sharp} b+y d=a^{\sharp} b+\left[\left(a^{\sharp}\right)^{2} b d^{\pi}+a^{\pi} b\left(d^{\sharp}\right)^{2}-a^{\sharp} b d^{\sharp}\right] d \\
& =a^{\sharp} b+\left(a^{\sharp}\right)^{2} b\left(1-d d^{\sharp}\right) d+a^{\pi} b d^{\sharp}-a^{\sharp} b d^{\sharp} d \\
& =a^{\sharp} b+\left(1-a a^{\sharp}\right) b d^{\sharp}-a^{\sharp} b d^{\sharp} d \\
& =a^{\sharp} b+b d^{\sharp}-a a^{\sharp} b d^{\sharp}-a^{\sharp} b d^{\sharp} d \\
& =a^{\sharp} b\left(1-d^{\sharp} d\right)+\left(1-a a^{\sharp}\right) b d^{\sharp}=a^{\sharp} b d^{\pi}+a^{\pi} b d^{\sharp} .
\end{aligned}
$$

Therefore, $x z=z x$ and

$$
x^{\sharp}=z=\left(\begin{array}{cc}
a^{\sharp} & y \\
0 & d^{\sharp}
\end{array}\right),
$$

where $y=\left(a^{\sharp}\right)^{2} b d^{\pi}+a^{\pi} b\left(d^{\sharp}\right)^{2}-a^{\sharp} b d^{\sharp}$.
\Longrightarrow : Assume that $a^{\sharp}, d^{\sharp}, x^{\sharp}$ exists. Then the result follows from the part (1).
Theorem 2.2. Let $a, b \in R$. If any two of the following hold, then the remaining one also holds:
(1) (ab) ${ }^{\sharp}$ exists;
(2) $(b a)^{\sharp}$ exists;
(3) $a b \sim b a$.

Proof. (1), (1) \Rightarrow (3): Let $a b$ and $b a$ be group invertible, $p=(a b)^{\pi}=1-a b(a b)^{\sharp}$ and $q=(b a)^{\pi}=\left(1-b a(b a)^{\sharp}\right)$. Then $a b, b a, a$ and b have matrix forms

$$
\begin{array}{ll}
a b=\left(\begin{array}{cc}
x_{11} & 0 \\
0 & 0
\end{array}\right)_{1-p, 1-p}, & b a=\left(\begin{array}{cc}
y_{11} & 0 \\
0 & 0
\end{array}\right)_{1-q, 1-q}, \\
a=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)_{1-p, 1-q}, & b=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)_{1-q, 1-p} .
\end{array}
$$

Since $q=1-b a(b a)^{\sharp}=1-b(a b)^{\sharp} a\left(\right.$ by Lemma 2.3), $a q=a-a b(a b)^{\sharp} a=p a$, i.e.

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)_{1-p, 1-q}\left(\begin{array}{cc}
0 & 0 \\
0 & 1-q
\end{array}\right)_{1-q, 1-q}=\left(\begin{array}{cc}
0 & 0 \\
0 & 1-p
\end{array}\right)_{1-p, 1-p}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)_{1-p, 1-q}
$$

we get

$$
\left(\begin{array}{ll}
0 & a_{12} \\
0 & a_{22}
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
a_{21} & a_{22}
\end{array}\right)
$$

Hence, $a_{12}=0, a_{21}=0$ and

$$
a=\left(\begin{array}{cc}
a_{11} & 0 \\
0 & a_{22}
\end{array}\right)
$$

Similarly, $q b=b p$, which implies that $b_{12}=0, b_{21}=0$ and

$$
b=\left(\begin{array}{cc}
b_{11} & 0 \\
0 & b_{22}
\end{array}\right)
$$

Now,

$$
a b=\left(\begin{array}{cc}
a_{11} b_{11} & 0 \\
0 & a_{22} b_{22}
\end{array}\right)
$$

and

$$
b a=\left(\begin{array}{cc}
b_{11} a_{11} & 0 \\
0 & b_{22} a_{22}
\end{array}\right)
$$

Thus, $x_{11}=a_{11} b_{11}$ and $y_{11}=b_{11} a_{11}$ are invertible, $a_{22} b_{22}=0$ and $b_{22} a_{22}=0$, i.e.

$$
(a b)^{\sharp}=\left(\begin{array}{cc}
\left(a_{11} b_{11}\right)^{-1} & 0 \\
0 & 0
\end{array}\right), \quad(b a)^{\sharp}=\left(\begin{array}{cc}
\left(b_{11} a_{11}\right)^{-1} & 0 \\
0 & 0
\end{array}\right) .
$$

Since $a_{11} b_{11}$ and $b_{11} a_{11}$ are invertible, we see that b_{11} is invertible.
Let

$$
s=\left(\begin{array}{cc}
b_{11} & 0 \\
0 & 1-p
\end{array}\right)_{1-q, 1-p}
$$

Then $s a b=b a s$, i.e. $a b \sim b a$.
The implications $(1),(3) \Rightarrow(2)$ and $(2),(3) \Rightarrow(1)$ are obvious.
Theorem 2.3. Let $a, b, a b \in R$ be group invertible. Then $(a b)^{\sharp}=b^{\sharp} a^{\sharp}$ if and only if $\left(1-a^{\pi}\right) b a^{\pi}=0, b^{\sharp}\left(1-a^{\pi}\right)=(a b)^{\sharp} a$.
In addition, if $a, b, b a^{\pi}$ are group invertible, then the following are equivalent:
(1) $(a b)^{\sharp}=b^{\sharp} a^{\sharp}$;
(2) $(b a)^{\sharp}=a^{\sharp} b^{\sharp}$;
(3) $a=\left(\begin{array}{cc}a_{11} & 0 \\ 0 & 0\end{array}\right)_{1-p, 1-p}, b=\left(\begin{array}{cc}b_{11} & 0 \\ 0 & b_{22}\end{array}\right)_{1-p, 1-p}$ and $b_{11}^{\sharp}=\left(a_{11} b_{11}\right)^{\sharp} a_{11}$, with respect to the decomposition $1=p+(1-p)$, where $p=1-a a^{\sharp}$ and a_{11} is invertible;
(4) $a=\left(\begin{array}{cc}a_{11} & 0 \\ 0 & 0\end{array}\right)_{1-p, 1-p},\left(\begin{array}{cc}b_{11} & 0 \\ 0 & b_{22}\end{array}\right)_{1-p, 1-p}$ and $b_{11}^{\sharp}=a_{11}\left(b_{11} a_{11}\right)^{\#}$, with respect to the decomposition $1=$ $p+(1-p)$, where $p=1-a a^{\sharp}$ and a_{11} is invertible.

Proof. Part one.
\Rightarrow Since a and b are group invertible, a, a^{\sharp}, b and b^{\sharp} have the forms:

$$
a=\left(\begin{array}{cc}
a_{11} & 0 \\
0 & 0
\end{array}\right)_{1-p, 1-p}, a^{\sharp}=c, \quad b=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)_{1-p, 1-p}, \quad b^{\sharp}=\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)_{1-p, 1-p},
$$

respectively. Since

$$
a b=\left(\begin{array}{cc}
a_{11} b_{11} & a_{11} b_{12} \\
0 & 0
\end{array}\right)_{1-p, 1-p}
$$

is group invertible, we get

$$
\left(1-a_{11} b_{11}\left(a_{11} b_{11}\right)^{\sharp}\right) a_{11} b_{12}=0
$$

and

$$
(a b)^{\sharp}=\left(\begin{array}{cc}
\left(a_{11} b_{11}\right)^{\sharp} & {\left[\left(a_{11} b_{11}\right)^{\sharp}\right]^{2} a_{11} b_{12}} \\
0 & 0
\end{array}\right)
$$

From $a b^{\sharp}=b^{\sharp} a^{\sharp}$ we get

$$
\left(\begin{array}{cc}
\left(a_{11} b_{11}\right)^{\#} & {\left[\left(a_{11} b_{11}\right)^{\sharp}\right]^{2} a_{11} b_{12}} \\
0 & 0
\end{array}\right)=c .
$$

It follows that $c_{21}=0, c_{11} a_{11}^{-1}=\left(a_{11} b_{11}\right)^{\sharp}$, so $c_{11}=\left(a_{11} b_{11}\right)^{\sharp} a_{11}$, and $\left[\left(a_{11} b_{11}\right)^{\sharp}\right]^{2} a_{11} b_{12}=0$.

So, $b_{12}=a_{11}^{-1} a_{11} b_{12}=a_{11}^{-1}\left[a_{11} b_{11}\left(a_{11} b_{11}\right)^{\sharp} a_{11} b_{12}\right]=a_{11}^{-1}\left(a_{11} b_{11}\right)^{2}\left[\left(a_{11} b_{11}\right)^{\sharp}\right]^{2} a_{11} b_{12}=0$. Note that $a^{\pi}=1-a a^{\sharp}=$ $\left(\begin{array}{ll}0 & 0 \\ 0 & p\end{array}\right)_{1-p, 1-p}$. We get $\left(1-a^{\pi}\right) b a^{\pi}=\left(\begin{array}{cc}0 & b_{12} \\ 0 & 0\end{array}\right)_{1-p, 1-p}=0, b^{\sharp}\left(1-a^{\pi}\right)=\left(\begin{array}{cc}\left(a_{11} b_{11}\right)^{\sharp} a_{11} & 0 \\ 0 & 0\end{array}\right)_{1-p, 1-p}=(a b)^{\sharp} a$.
\Leftarrow On the other hand, if $\left(1-a^{\pi}\right) b a^{\pi}=0$, then $b_{12}=0$ and $(a b)^{\sharp}=\left(\begin{array}{cc}\left(a_{11} b_{11}\right)^{\#} & 0 \\ 0 & 0\end{array}\right)$. If $b^{\sharp}\left(1-a^{\pi}\right)=(a b)^{\sharp} a$, then $c_{11}=\left(a_{11} b_{11}\right)^{\sharp} a_{11}$ i $c_{21}=0$. Hence, $(a b)^{\sharp}=b^{\sharp} a^{\sharp}$.

Part two.
Now, assume that $a, b, a b, b a^{\pi}$ are group invertible.
$(1) \Rightarrow(3)$: Note that $(a b)^{\sharp}=b^{\sharp} a^{\sharp}$ if and only if $a, a^{\sharp}, b, b^{\sharp}$ have the forms:
$a=\left(\begin{array}{cc}a_{11} & 0 \\ 0 & 0\end{array}\right), a^{\sharp}=\left(\begin{array}{cc}a_{11}^{-1} & 0 \\ 0 & 0\end{array}\right), b=\left(\begin{array}{cc}b_{11} & 0 \\ b_{21} & b_{22}\end{array}\right), b^{\sharp}=\left(\begin{array}{cc}\left(a_{11} b_{11}\right)^{\sharp} a_{11} & c_{12} \\ 0 & c_{22}\end{array}\right)$, respectively. Since $b a^{\pi}$ is group invertible, b_{22} is group invertible, and hence b_{11} is group invertible, $b_{22}^{\pi} b_{21} b_{11}^{\pi}=0$ and
$b^{\sharp}=\left(\begin{array}{cc}b_{11} & 0 \\ b_{21} & b_{22}\end{array}\right)^{\sharp}=\left(\begin{array}{cc}b_{11}^{\sharp} & 0 \\ y & b_{22}^{\sharp}\end{array}\right)=\left(\begin{array}{cc}\left(a_{11} b_{11}\right)^{\sharp} a_{11} & c_{12} \\ 0 & c_{22}\end{array}\right)$ where $y=b_{22}^{\pi} b_{21}\left(b_{11}^{\sharp}\right)^{2}+\left(b_{22}^{\sharp}\right)^{2} b_{21} b_{11}^{\pi}-b_{22}^{\sharp} b_{21} b_{11}^{\sharp}$. It follows that $b_{11}^{\sharp}=\left(a_{11} b_{11}\right)^{\sharp} a_{11}$ and $y=0$.

Now, we have $b_{22} y b_{11}^{\pi}=0, b_{22} b_{22}^{\sharp} b_{21} b_{11}^{\pi} 0, b_{21} b_{11}^{\pi}=0, b_{22}^{\pi} y b_{11}^{2}=0$. Hence, $b_{22}^{\pi} b_{21} b_{11}^{\sharp} b_{11}=0$, so $b_{22}^{\pi} b_{21}=0$, $b_{22} y b_{11}=0, b_{22} b_{22}^{\sharp} b_{21} b_{11}^{\sharp} b_{11}=0, b_{22} b_{22}^{\sharp} b_{21} b_{11}^{\sharp} b_{11}=0$. Hence, $b_{21}=0$ and $b=\left(\begin{array}{cc}b_{11} & 0 \\ 0 & b_{22}\end{array}\right)$.
$(3) \Rightarrow(1)$: It is clear.
$(2) \Leftrightarrow(4)$: This is similar to the proof $(1) \Leftrightarrow$ (3).

References

[1] C. Deng, On the group invertibility of operators, Electronic J. Linear Algebra 31 (2016), 492-510.
[2] D. S. Djordjević, V. Rakočević, Lectures on gerenalized inverses, University of Niš, Faculty of Sciences and Mathematics, 2009.

[^0]: 2010 Mathematics Subject Classification. Primary 16B99; Secondary 47A05, 15A09.
 Keywords. Group inverse; matrices over a ring.
 Received: 06 November 2018; Accepted: 07 December 2018
 Communicated by Dijana Mosić
 The second autor is supported by the Ministry of Education, Science and Technological developmet of Republic of Serbia, grant no. 174007.

 Email addresses: nadica.milenkovic@pr.ac.rs (Nadica Mihajlović), dragandjordjevic70@gmail.com (Dragan S. Djordjević)

