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Abstract. We prove some results for the group inverse of elements in a unital ring. Thus, some results
from (C. Deng, Electronic J. Linear Algebra 31 (2016)) are extended to more general settings.

1. Introduction

Let R be a ring with the unit 1. We use R−1 and R•, respectively, to denote the set of all idempotents of R.
We use the following convention on 2 × 2 matrices induced by projections in rings. Let x ∈ R and

p, q ∈ R•. Then

x = pxq + px(1 − q) + (1 − p)xq + (1 − p)x(1 − q) ≡
(
x11 x12
x21 x22

)
p,q
,

with
x11 = pxq, x12 = px(1 − q), x21 = (1 − p)xq, x22 = (1 − p)x(1 − q).

We use R# and RD,Rd, respectively, to denote the set of all group invertible and Drazin invertible elements
in R (see for example [2]). If a ∈ RD, then aD is the Drazin invrse of a. If ind(a) ≤ 1, then aD = a# reduces to
the group inverse of a. It is well-known that ind(a) = 0 if and only if a ∈ R−1 and in this case aD = a−1.

In this paper we extend some operator results from [1] to elements of an arbitrary ring with unit.
If M ⊂ R, then

M◦ = {x ∈ R : Mx = {0}} and ◦M = {x ∈ R : xM = {0}}.

We prove the following auxilliary results.

Lemma 1.1. Let R be a ring with identity, t ∈ R and p ∈ R•. Then the following hold:
(1) pt = t if and only if tR ⊂ pR;
(2) tp = t if and only if t0

⊃ p0.
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Proof. (1) Let pt = t, and tr ∈ tR for some r ∈ R. Then tr = ptr ∈ pR, so tR ⊂ pR
On the other hand, let tR ⊂ pR. Since t ∈ tR, we have t ∈ pR, so t = pr for some r ∈ R. Then

pt = ppr = pr = t.
(2) Let tp = t and x ∈ p0. Then px = 0, tpx = 0, tx = 0 and x ∈ t0. Hence, t0

⊃ p0.
On the other hand, let t0

⊃ p0. Since 1 ∈ R, we get 1 − p ∈ p0 and 1 − p ∈ t0. Now, t(1 − p) = 0 implies
t = tp.

If t ∈ Rd, then tπ = 1− ttd is the spectral idempotent of t. If R is a Banach algebra, then p can be obtained
by the functional calculus.

Similarity in rings is defined in a standard way. Two elements t, b ∈ R are similar, in the notation t ∼ b,
if there exists some invertible s ∈ R such that t = s−1bs.

Lemma 1.2. Let a, b ∈ R.
If ba is group invertible, then ab is Drazin invertible with ind(ab) ≤ 2 and (ab)D = a[(ba)]]2b.
If both ab and ba are group invertible then (ab)] = a[(ba)]]2b , (ab)]a = a(ba)] and b(ab)] = (ba)]b.

Proof. Let x = a[(ba)]]2b. Clearly,

xabx = a[(ba)]]2baba[(ba)]]2b = a(ba)](ba)]b = a[(ba)]]2b = x,

abx = aba[(ba)]]2b = a(ba)]b,

xab = a[(ba)]]2bab = a(ba)]b,

(ab)3x = (ab)3a[(ba)]]2b = (ab)2a(ba)]b = abab = (ab)2.

Hence, x = (ab)D and ind(ab) ≤ 2.
Moreover, if ab and ba are group invertible, then

(ab)] = (ab)D = a[(ba)]]2b,

(ab]a) = a[(ba)]]2ba = a(ba]),

b(ab)] = ba[(ba)]]2b = (ba)]b.

2. Main results

In this section we prove main results of this paper.

Theorem 2.1. Let R be a ring, x ∈ R, p ∈ R•, and

x =
(

a b
0 d

)
p,p
.

The following assertions hold:
(i) Assume that d] exists (resp., a] exists). Then x] exists if and only if a] exists (resp., d] exists) and aπbdπ = 0.
(ii) Assume a] and d] exists. Then x] exists if and only if aπbdπ = 0. In this case,

x] =
(

a b
0 d

)]
p,p
=

(
a] y
0 d]

)
p,p
,
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where
y = (a])2bdπ + aπb(d])2

− a]bd].

Proof. Part (1)
=⇒ : Assume that x] and d] exist. For

x =
(

a b
0 d

)
p,p

take

x1 =

(
y z
0 d]

)
p,p

Hence,

xx1x =
(

a b
0 d

) (
y z
0 d]

) (
a b
0 d

)
=

(
ay az + bd]

0 dd]

) (
a b
0 d

)
=

(
aya ayb + azd + bd]d
0 dd]d

)
.

We have xx1x = x if and only if (
aya ayb + azd + bd]d
0 dd]d

)
=

(
a b
0 d

)
.

So, aya = a. Moreovever,

x1xx1 =

(
y z
0 d]

) (
a b
0 d

) (
y z
0 d]

)
=

(
ya yb + zd
0 d]d

) (
y z
0 d]

)
=

(
yay yaz + ybd] + zdd]

0 d]dd]

)
We have x1xx1 = x1 if and only if (

yay yaz + ybd] + zdd]

0 d]dd]

)
=

(
y z
0 d]

)
.

Hence, yay = y. We also calculate

xx1 =

(
a b
0 d

) (
y z
0 d]

)
=

(
ay az + bd]

0 dd]

)
,

and

x1x =
(

y z
0 d]

) (
a b
0 d

)
=

(
ya yb + zd
0 d]d

)
.

We have xx1 = x1x if and only if (
ay az + bd]

0 dd]

)
=

(
ya yb + zd
0 d]d

)
.

Hence, ay = ya. Since aya = a, yay = y and ay = ya, we obtain y = a].
Notice that by now we have:

ayb + azd + bd]d = b, yaz + ybd] + zdd] = z, az + bd] = yb + zd.
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We get
a(yb + zd) = b − bd]d, a(az + bd]) = b − bd]d,

a]aaz + a]abd] = a]b − a]bd]d, az + a]abd] = a]b − a]bd]d,

a(az + bd]) = aa]b − aa]bd]d, b − bd]d = aa]b − aa]bd]d.

The last equality is equivalent to aπbdπ = 0.
⇐= : Assume that both a] and d] exists and aπbdπ = 0. Let

x =
(

a b
0 d

)
, z =

(
a] y
0 d]

)
.

Then

xzx =
(

a b
0 d

) (
a] y
0 d]

) (
a b
0 d

)
=

(
aa] ay + bd]

0 dd]

) (
a b
0 d

)
=

(
aa]a aa]b + ayd + bd]d

0 dd]d

)
=

(
a aa]b + ayd + bd]d
0 d

)
.

We have xzx = x if and only if (
a aa]b + ayd + bd]d
0 d

)
=

(
a b
0 d

)
,

i.e.

aa]b + ayd + bd]d = b. (1)

We also have

zxz =
(

a] y
0 d]

) (
a b
0 d

) (
a] y
0 d]

)
=

(
a]a a]b + yd
0 d]d

) (
a] y
0 d]

)
=

(
a]aa] a]ay + a]bd] + ydd]

0 d]dd]

)
=

(
a] a]ay + a]bd] + ydd]

0 d]

)
,

We conclude zxz = z if and only if(
a] a]ay + a]bd] + ydd]

0 d]

)
=

(
a] y
0 d]

)
,

i.e.

a]ay + a]bd] + ydd] = y. (2)

Notice that

xz =
(

a b
0 d

) (
a] y
0 d]

)
=

(
aa] ay + bd]

0 dd]

)
,

and

zx =
(

a] y
0 d]

) (
a b
0 d

)
=

(
a]a a]b + yd
0 d]d

)
.

We have xz = zx if and only if (
aa] ay + bd]

0 dd]

)
=

(
a]a a]b + yd
0 d]d

)
,
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i.e.

ay + bd] = a]b + yd. (3)

Since aπbdπ = 0, we obtain

(1 − aa])b(1 − dd]) = 0,

(b − aa]b)(1 − dd]) = 0,

b − bdd] − aa]b + aa]bdd] = 0,

b = aa]b + bdd] − aa]bdd]

(4)

Multiplying the equality (2) by a from the left side and by d from the right side, we get

aa]ayd + aa]bd]d + aydd]d = ayd, ayd + aa]bd]d + ayd = ayd,

ayd = −aa]bd]d.

Now, equality (1) becomes
aa]b − aa]bd]d + bd]d = b.

In the same way, multiplying equality (1) by a] from the left side and by d] from the right side, we get

a]aa]bd] + a]aydd] + a]bd]dd] = a]bd],

a]bd] + a]aydd] + a]bd] = a]bd], a]bd] = −a]aydd].

Now, equality (2) becomes
a]ay − a]aydd] + ydd] = y.

Similarly, multiplying equality (3) by a] from the left side, we get

a]ay + a]bd] = (a])2b + a]yd.

The last equality and equality (2) give

(a])2b + a]yd + ydd] = y. (5)

Now, we have ay + bd] = a]b + yd (which is (3)), so we get

a · (2) + (1) · d] = ay + bd] = a]b + yd = a] · (1) + (2) · d

= a(a]ay + a]bd] + ydd]) + (aa]b + ayd + bd]d)d]

= a](aa] + ayd + bd]d) + (a]ay + a]bd] + ydd])d,

aa]ay + aa]bd] + aydd] + aa]bd] + aydd] + bd]dd]

= a]aa]b + a]ayd + a]bd]d + a]ayd + a]bd]d + ydd]d,

and
ay + 2aydd] + 2aa]bd] + bd] = a]b + 2a]ayd + 2a]bd]d + yd.

From equality (3) we get

2aa]bd] + 2aydd] = 2a]ayd + 2a]bd]d, 2aa](bd] − yd) = 2(a]b − ay)dd],

2aa](a]b − ay) = 2(a]b − ay)dd], 2a]b − 2ay = 2(bd] − yd)dd],
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2a]b − 2ay = 2bd] − 2yd, a]b + yd = bd] + ay.

Multiplying equality (3) by a] from the left side, we get

a]ay + a]bd] = (a])2b + a]yd,

and from (2) we get

y − ydd] = a]ay + a]bd], y − ydd] = (a])2b + a]yd, y = (a])2b + a]yd + ydd].

Multiplying the last equality by (1 − dd]) from the right side, we get

y(1 − dd]) = (a])2b(1 − dd]) + a]yd(1 − dd]) + ydd](1 − dd]),

y − ydd] = (a])2bdπ + a]y(d − ddd]) + y(dd] − dd]dd]),

y − ydd] = (a])2bdπ, y = (a])2bdπ + ydd].

Now, multiplying equality (3) by d] from the right side we obtain

ayd] + b(d])2 = a]bd] + ydd],

From equality (2) we get

a]bd] + ydd] = y − a]ay, ayd] + b(d])2 = y − a]ay,

y = ayd] + b(d])2 + a]ay.

Multiplying the last equality by (1 − aa]) from the left side, we get

(1 − aa])y = (1 − aa])ayd] + (1 − aa])b(d])2 + (1 − aa])a]ay,

aπy = (a − aa]a)yd] + aπb(d])2 + (a]a − aa]a]a)y,

aπy = aπb(d])2, (1 − aa])y = aπb(d])2, y − aa]y = aπb(d])2,

y = aπb(d])2 + aa]y. (6)

Since (a])2b + a]yd + ydd] = y, we obtain

(a])2b + a]yd = y(1 − dd]),

(a])2b(1 − dd]) + a]yd(1 − dd]) = y(1 − dd])(1 − dd]),

(a])2bdπ = y(1 − dd]),

y = (a])2bdπ + ydd]. (7)

From (6) and (7) we get

y = aπb(d])2 + aa][(a])2bdπ + ydd]], y = aπb(d])2 + (a])2bdπ + aa]ydd],

y = aπb(d])2 + (a])2bdπ − a]bd].

Part (2)
⇐= : Assume that both a] and d] exist and aπbdπ = 0. Thus x] exists. Let

z =
(

a] y
0 d]

)
,
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where y = (a])2bdπ + aπb(d])2
− a]bd]. We have

xzx =
(

a b
0 d

) (
a] y
0 d]

) (
a b
0 d

)
=

(
aa] ay + bd]

0 dd]

) (
a b
0 d

)
=

(
aa]a aa]b + ayd + bd]d

0 dd]d

)
=

(
a aa]b + ayd + bd]d
0 d

)
.

We have xzx = x if and only if (
a aa]b + ayd + bd]d
0 d

)
=

(
a b
0 d

)
,

i.e. aa]b + ayd + bd]d = b. We compute as follows

aa]b + ayd + bd]d = aa]b + a[(a])2bdπ + aπb(d])2
− a]bd]]d + bdd]

= aa]b + a]b(1 − dd])d + a(1 − aa])b(d])2d − aa]bd]d + bd]d

= aa]b − aa]bd]d + bd]d.

Now, from (1 − aa])b(1 − dd]) = 0 we get

b − bdd] − aa]b + aa]bdd] = 0,

i.e.
aa]b + bdd] − aa]bdd] = b.

Therefore, xzx = x.
We have

zxz =
(

a] y
0 d]

) (
a b
0 d

) (
a] y
0 d]

)
=

(
a]a a]b + yd
0 d]d)

) (
a] y
0 d]

)
=

(
a]aa] a]ay] + a]bd] + ydd]

0 d]dd]

)
=

(
a] a]ay + a]bd] + ydd]

0 d]

)
.

Hnce, zxz = z if and only if (
a] a]ay + a]bd] + ydd]

0 d]

)
=

(
a] y
0 d]

)
,

i.e. a]ay + a]bd] + ydd] = y. We compute as follows:

a]a[(a])2bdπ + aπb(d])2
− a]bd]] + a]bd] + [(a])2bdπ + aπb(d])2

− a]bd]]dd]

= (a])2bdπ + aπb(d])2
− a]bd], (a])2bdπ + a]a(1 − aa])b(d])2

− a]bd] + a]bd]

+ (a])2b(1 − dd])dd] + aπb(d])2
− a]bd] = y,

and (a])2bdπ + aπb(d])2
− a]bd] = y. Therefore, zxz = z.

We have

xz =
(

a b
0 d

) (
a] y
0 d]

)
=

(
aa] ay + bd]

0 dd]

)
,

zx =
(

a] y
0 d]

) (
a b
0 d

)
=

(
a]a a]b + yd
0 d]d

)
.

Now, xz = zx if and only if (
aa] ay + bd]

0 dd]

)
=

(
a]a a]b + yd
0 d]d

)
,



N. Mihajlović, D. S. Djordjević / Filomat 33:19 (2019), 6141–6150 6148

i.e. ay + bd] = a]b + yd. We compute as follows:

ay + bd] = a[(a])2bdπ + aπb(d])2
− a]bd]] + bd]

= a]bdπ + a(1 − aa])b(d])2
− aa]bd] + bd]

= a]bdπ − aa]bd] + bd] = a]b(1 − dd]) − aa]bd] + bd]

= a]b − a]bdd] − aa]bd] + bd]

= a]b(1 − dd]) + bd](1 − aa]) = a]bdπ + bd]aπ,

and
a]b + yd = a]b + [(a])2bdπ + aπb(d])2

− a]bd]]d

= a]b + (a])2b(1 − dd])d + aπbd] − a]bd]d

= a]b + (1 − aa])bd] − a]bd]d

= a]b + bd] − aa]bd] − a]bd]d

= a]b(1 − d]d) + (1 − aa])bd] = a]bdπ + aπbd].

Therefore, xz = zx and

x] = z =
(

a] y
0 d]

)
,

where y = (a])2bdπ + aπb(d])2
− a]bd].

=⇒ : Assume that a], d], x] exists. Then the result follows from the part (1).

Theorem 2.2. Let a, b ∈ R. If any two of the following hold, then the remaining one also holds:
(1) (ab)] exists;
(2) (ba)] exists;
(3) ab ∼ ba.

Proof. (1), (1)⇒ (3): Let ab and ba be group invertible, p = (ab)π = 1 − ab(ab)] and q = (ba)π = (1 − ba(ba)]).
Then ab, ba, a and b have matrix forms

ab =
(

x11 0
0 0

)
1−p,1−p

, ba =
(

y11 0
0 0

)
1−q,1−q

,

a =
(

a11 a12
a21 a22

)
1−p,1−q

, b =
(

b11 b12
b21 b22

)
1−q,1−p

.

Since q = 1 − ba(ba)] = 1 − b(ab)]a (by Lemma 2.3), aq = a − ab(ab)]a = pa, i.e.(
a11 a12
a21 a22

)
1−p,1−q

(
0 0
0 1 − q

)
1−q,1−q

=

(
0 0
0 1 − p

)
1−p,1−p

(
a11 a12
a21 a22

)
1−p,1−q

we get (
0 a12
0 a22

)
=

(
0 0

a21 a22

)
Hence, a12 = 0, a21 = 0 and

a =
(

a11 0
0 a22

)
.

Similarly, qb = bp, which implies that b12 = 0, b21 = 0 and

b =
(

b11 0
0 b22

)
.
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Now,

ab =
(

a11b11 0
0 a22b22

)
and

ba =
(

b11a11 0
0 b22a22

)
.

Thus, x11 = a11b11 and y11 = b11a11 are invertible, a22b22 = 0 and b22a22 = 0, i.e.

(ab)] =
(

(a11b11)−1 0
0 0

)
, (ba)] =

(
(b11a11)−1 0

0 0

)
.

Since a11b11 and b11a11 are invertible, we see that b11 is invertible.
Let

s =
(
b11 0
0 1 − p

)
1−q,1−p

.

Then sab = bas, i.e. ab ∼ ba.
The implications (1),(3)⇒ (2) and (2),(3)⇒ (1) are obvious.

Theorem 2.3. Let a, b, ab ∈ R be group invertible. Then (ab)] = b]a] if and only if (1−aπ)baπ = 0, b](1−aπ) = (ab)]a.
In addition, if a, b, baπ are group invertible, then the following are equivalent:
(1) (ab)] = b]a];
(2) (ba)] = a]b];

(3) a =
(

a11 0
0 0

)
1−p,1−p

, b =
(

b11 0
0 b22

)
1−p,1−p

and b]11 = (a11b11)]a11, with respect to the decomposition

1 = p + (1 − p), where p = 1 − aa] and a11 is invertible;

(4) a =
(

a11 0
0 0

)
1−p,1−p

,

(
b11 0
0 b22

)
1−p,1−p

and b]11 = a11(b11a11)], with respect to the decomposition 1 =

p + (1 − p), where p = 1 − aa] and a11 is invertible.

Proof. Part one.
⇒ Since a and b are group invertible, a, a], b and b] have the forms:

a =
(

a11 0
0 0

)
1−p,1−p

, a] = c, b =
(

b11 b12
b21 b22

)
1−p,1−p

, b] =
(

c11 c12
c21 c22

)
1−p,1−p

,

respectively. Since

ab =
(

a11b11 a11b12
0 0

)
1−p,1−p

is group invertible, we get
(1 − a11b11(a11b11)])a11b12 = 0

and

(ab)] =
(

(a11b11)] [(a11b11)]]2a11b12
0 0

)
From ab] = b]a] we get (

(a11b11)] [(a11b11)]]2a11b12
0 0

)
= c.

It follows that c21 = 0, c11a−1
11 = (a11b11)], so c11 = (a11b11)]a11, and [(a11b11)]]2a11b12 = 0.
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So, b12 = a−1
11 a11b12 = a−1

11 [a11b11(a11b11)]a11b12] = a−1
11 (a11b11)2[(a11b11)]]2a11b12 = 0. Note that aπ = 1 − aa] =(

0 0
0 p

)
1−p,1−p

. We get (1 − aπ)baπ =
(

0 b12
0 0

)
1−p,1−p

= 0, b](1 − aπ) =
(

(a11b11)]a11 0
0 0

)
1−p,1−p

= (ab)]a.

⇐ On the other hand, if (1 − aπ)baπ = 0, then b12 = 0 and (ab)] =
(

(a11b11)] 0
0 0

)
. If b](1 − aπ) = (ab)]a,

then c11 = (a11b11)]a11 i c21 = 0. Hence, (ab)] = b]a].
Part two.
Now, assume that a, b, ab, baπ are group invertible.
(1)⇒ (3): Note that (ab)] = b]a] if and only if a, a], b, b] have the forms:

a =
(

a11 0
0 0

)
, a] =

(
a−1

11 0
0 0

)
, b =

(
b11 0
b21 b22

)
, b] =

(
(a11b11)]a11 c12

0 c22

)
, respectively. Since baπ is

group invertible, b22 is group invertible, and hence b11 is group invertible, bπ22b21bπ11 = 0 and

b] =
(

b11 0
b21 b22

)]
=

 b]11 0
y b]22

 = (
(a11b11)]a11 c12

0 c22

)
where y = bπ22b21(b]11)2 + (b]22)2b21bπ11 − b]22b21b]11. It

follows that b]11 = (a11b11)]a11 and y = 0.

Now, we have b22ybπ11 = 0, b22b]22b21bπ110, b21bπ11 = 0, bπ22yb2
11 = 0. Hence, bπ22b21b]11b11 = 0, so bπ22b21 = 0,

b22yb11 = 0, b22b]22b21b]11b11 = 0, b22b]22b21b]11b11 = 0. Hence, b21 = 0 and b =
(

b11 0
0 b22

)
.

(3)⇒ (1): It is clear.
(2)⇔ (4): This is similar to the proof (1)⇔ (3).

References

[1] C. Deng, On the group invertibility of operators, Electronic J. Linear Algebra 31 (2016), 492-510.
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