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On Mostar Index of Trees with Parameters
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Abstract. The Mostar index of a graph G is defined as the sum of absolute values of the differences
between nu and nv over all edges uv of G, where nu and nv are respectively, the number of vertices of G lying
closer to vertex u than to vertex v and the number of vertices of G lying closer to vertex v than to vertex
u. We identify those trees with minimum and/or maximum Mostar index in the families of trees of order n
with fixed parameters like the maximum degree, the diameter, number of pendent vertices by using graph
transformations that decrease or increase the Mostar index.

1. Introduction

All graphs considered in this paper are finite and simple. Let G be a connected graph on n vertices with
vertex set V(G) and edge set E(G). For v ∈ V(G), let NG(v) be the set of all neighbors of v in G. The degree
of v ∈ V(G), denoted by dG(v), is the cardinality of NG(v). A vertex is said to be pendent if its degree is one,
and an edge is said to be pendent if one end vertex is pendent. The graph formed from G by deleting a
vertex v ∈ V(G) (and its incident edges) is denoted by G − v. A connected graph with n vertices is a tree
if |E(G)| = n − 1. A caterpillar is a tree, the deletion of whose pendent vertices outside a diametral path
produces a path. A vertex having degree greater than two is called branch vertex. As usual, by Sn and
Pn we denote the star and path on n vertices, respectively. For e = uv ∈ E(G), let Nu(e|G) and Nv(e|G) be
respectively the set of vertices of G lying closer to vertex u than to vertex v and the set of vertices of G lying
closer to vertex v than to vertex u, i.e.,

Nu(e|G) = {x ∈ V(G) : dG(u, x) < dG(v, x)},
Nv(e|G) = {x ∈ V(G) : dG(v, x) < dG(u, x)}.

The numbers of vertices of Nu(e|G) and Nv(e|G) are denoted by nu(e|G) and nv(e|G), respectively.
Let G be a connected graph. The Szeged index of G, proposed by Gutman [9], is defined as

Sz(G) =
∑

e=uv∈E(G)

nu(e|G)nv(e|G).

Now the Szeged index and its variants have been studied extensively, see, e.g., [1–3, 5, 6, 8, 10, 15, 16, 23,
24, 27]. We mention that the Szeged index is a particular case of the modified Wiener index, defined as
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e=uv∈E(G)(nu(e|G)nv(e|G))λ for a nonzero real λ, see, e.g., [11, 25, 26]. If G is a tree, then Sz(G) coincides with

the Wiener index of G [22]. Actually, the Wiener index of a connected graph G is defined as the sum of
distances between all pairs of vertices, see, e.g., [4, 19]. To measure the peripherality in a graph (i.e., how
far a graph is from being distance-balanced [13, 17]), Doslić et al. [7] introduced a novel graph invariant,
named as Mostar index of a graph. For a connected graph G, the Mostar index of G is defined as

Mo(G) =
∑

e=uv∈E(G)

|nu(e|G) − nv(e|G)|.

Doslić et al. [7] studied the Mostar index of trees and unicyclic graphs, and showed how the Mostar index
can be efficiently computed for various classes of chemically interesting graphs using a variant of the cut
method proposed by Klavžar et al. [14]. In particular, they showed that among n-vertex trees, the star
Sn and path Pn are the unique ones with maximum and minimum Mostar index, respectively. Tepeh [20]
studied the Mostar index of bicyclic graphs. Hayat and Zhou [12] determined all the n-vertex cacti with
the largest Mostar index, and obtained a sharp upper bound for the Mostar index for cacti of order n with
k cycles, and characterize the extremal case.

In this note, we give some further properties of Mostar index of trees. We identify those trees with
minimum and/or maximum Mostar index in the families of trees of order n with fixed parameters like the
maximum degree, the diameter, number of pendent vertices using graph transformations that decrease or
increase the Mostar index.

2. Preliminaries

For simplicity, we set ψG(e) = |nu(e|G) − nv(e|G)| for a connected graph G with e = uv ∈ E(G).
Let G be a connected graph with a cut edge e = uv, and let G/e be the graph obtained from G by

contracting the edge e into a new vertex we such that it is adjacent to each vertex in NG(u) ∪ NG(v) \ {u, v}
and then attaching a pendent edge at we.

Lemma 2.1. [7] Let G be a connected graph with a cut edge e. If e is not a pendent edge, then Mo(G/e) > Mo(G).

A path v0 . . . vs in a graph G is a pendent path of length s (at v0) if dG(v0) ≥ 2, dG(vs) = 1, and if s ≥ 2,
dG(vi) = 2 for i = 1, . . . , s−1. Evidently, a pendent path of length one is a pendent edge. Let H be a nontrivial
connected graph with u ∈ V(H). For two nonnegative integers ` and m, let Hu;`,m be the graph obtained
from H by attaching two pendent paths of length ` and m, respectively at u. In particular, Hu;0,0 = H and
Hu;`,0 is obtained from H by attaching a pendent path of length `. From the proof of Theorem 5 in [7], we
have

Lemma 2.2. [7] Let H be a nontrivial connected graph with u ∈ V(H). If ` ≥ m ≥ 1, then Mo(Gu;`,m) >
Mo(Gu;`+1,m−1).

Let An(a, b) be the n-vertex tree obtained from a path by attaching a and b pendent vertices respectively
to the two terminal vertices, where n − a − b ≥ 2 and a ≥ b ≥ 0.

Lemma 2.3. Let a and b be positive integers with a ≥ b + 2. Then Mo(An(a − 1, b + 1)) < Mo(An(a, b)).

Proof. If a ≤ n
2 , then b + 1 < a ≤ n

2 , and otherwise, b + 1 < n− a < n
2 . Thus Mo(An(a, b)) > Mo(An(a− 1, b + 1)),

as Mo(An(a, b)) −Mo(An(a − 1, b + 1)) = |b + 1 − (n − b − 1)| − |a − (n − a)| > 0.

For a graph G with E1 ⊆ E(G), G − E1 denotes the graph with vertex set V(G) and edge set E(G) \ E1.
Similarly, if E2 ⊆ E(G), then G + E2 denotes the graph with vertex set V(G) and edge set E(G) ∪ E2, where
G is the complement of G. In particular, if E1 = {e} (E2 = { f }, respectively), then we write G − e (G + f ,
respectively) instead of G − {e} (G + { f }, respectively).
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Lemma 2.4. Let G be a tree with x, y ∈ V(G). Suppose that x1, . . . , xs and y1, . . . , yt are pendent vertices adjacent to
x and y respectively. Let x′ and y′ be respectively the neighbors of x and y in the path connecting x and y. Let

G′ = G − {xxi : i = 1, . . . , s} + {x′xi : i = 1, . . . , s},

G′′ = G − {yyi : i = 1, . . . , t} + {y′yi : i = 1, . . . , t}.

Then Mo(G) < max{Mo(G′),Mo(G′′)}.

Proof. Let e′ = xx′ and e′′ = yy′. Note that, if x and y are adjacent, then x′ = y and y′ = x. From the
constructions of G′ and G′′, we have ψG(e) = ψG′ (e) for all e ∈ G \ {e′}, and ψG(e) = ψG′′ (e) for all e ∈ G \ {e′′}.
Let nz( f ) = nz( f |G) where z ∈ {x, x′} if f = e′ and z ∈ {y, y′} if f = e′′. Then

Mo(G) −Mo(G′) = ψG(e′) − ψG′ (e′)
= |nx(e′) − nx′ (e′)| − |nx(e′) − s − (nx′ (e′) + s)|,

Mo(G) −Mo(G′′) = ψG(e′′) − ψG′′ (e′′)
= |ny(e′′) − ny′ (e′′)| − |ny(e′′) − t − (ny′ (e′′) + t)|.

Obviously, nx′ (e′) ≥ ny(e′′) and ny′ (e′′) ≥ nx(e′). If nx(e′) > nx′ (e′) and ny(e′′) > ny′ (e′′), then nx(e′) > nx′ (e′) ≥
ny(e′′) > ny′ (e′′) ≥ nx(e′), which is a contradiction. Thus we have either nx(e′) ≤ nx′ (e′) or ny(e′′) ≤ ny′ (e′′).
In the former case, Mo(G) −Mo(G′) = nx′ (e′) − nx(e′) − (nx′ (e′) − nx(e′) + 2s) = −2s < 0, and in the latter
case, Mo(G) − Mo(G′′) = ny′ (e′′) − ny(e′′) − (ny′ (e′′) − ny(e′′) + 2t) = −2t < 0. Thus, Mo(G) < Mo(G′) or
Mo(G) < Mo(G′′), as desired.

For integer k, let Pn,d,k be the tree obtained from the path Pd+1 = v0v1 . . . vd by attaching n− d− 1 pendent
edges at vk, where 1 ≤ k ≤ b d

2 c.
Let S(a1, . . . , ar) be the tree consisting of r pendent paths of lengths a1, . . . , ar respectively at a common

vertex u, where a1 ≥ · · · ≥ ar ≥ 1. If ai − a j = 0, 1 for any i and j with 1 ≤ i < j ≤ r, then we call S(a1, . . . , ar) a
balanced starlike tree and denoted by BSn,r.

3. Results

The maximum degree of a graph is the the maximum degree of its vertices.

Theorem 3.1. Among all trees of order n with maximum degree ∆, Pn,n−∆+1,1 is the unique tree with minimum
Mostar index, where 3 ≤ ∆ ≤ n − 2.

Proof. Let T be a tree of order n with maximum degree ∆ such that Mo(T) is as small as possible. We only
need to show that T � Pn,n−∆+1,1.

Choose a vertex v ∈ V(T) with degree ∆. Let NT(v) = {v1, . . . , v∆}. Let Ti be the component of T − v
containing vi, where i = 1, . . . ,∆. Suppose that for some i, Ti is not a path with one terminal vertex vi. Then
there is a vertex in Ti such that its degree in T is at least three. So there is a vertex w in Ti such that dT(v,w)
is as large as possible. That is to say, there are two pendent paths, say with lengths ` and m respectively at
w in T. Assume that ` ≥ m. So T � Gw;`,m, where G is the graph obtained from T by deleting the vertices of
degree two and one in the two pendent paths. By Lemma 2.2, we have Mo(T) = Mo(Gw;`,m) > Mo(Gw;`+1,m−1),
a contradiction. Therefore, for each i = 1, . . . ,∆, Ti is a path with one terminal vertex vi. So T consist of ∆
pendent paths at v. By Lemma 2.2, T � Pn,n−∆+1,1.

The diameter of a graph is the largest distance between any pair of vertices.

Theorem 3.2. Among all trees of order n with diameter d, Pn,d,b d
2 c

is the unique tree with maximum Mostar index,
where 3 ≤ d ≤ n − 2.
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Proof. Let T be a tree of order n with diameter d such that Mo(T) is as large as possible. We only need to
show that T � Pn,d,b d

2 c
.

Let P = v0 . . . vd be a diametric path of T. Suppose that T is not a caterpillar. Then there exist some vertex
say w outside P with dT(w) ≥ 2 such that wvi ∈ E(T) for some 1 ≤ i ≤ d − 1. Let N be the set of neighbour of
w except vi. Let T′ = T − {ws : s ∈ N} + {vis : s ∈ N}. It is obvious that T is a tree of order n with diameter d.
But by Lemma 2.1, Mo(T) < Mo(T′), a contradiction to the maximality of T. Thus, T is a caterpillar.

Next, we show that all pendent edges outside the path P are adjacent to a single vertex on the path P.
Otherwise, we may choose two vertices vi and v j (1 ≤ i < j ≤ d − 1) on the path P with degree at least three
in T. Let Q be the sub-path of P from vi to v j. By Lemma 2.4, we may find a tree of order n with diameter
d whose Mostar index is larger than Mo(T), which is a contradiction. Thus, all pendent edges outside the
path P are adjacent to a single vertex on the path P. That is, T � Pn,d,k for some k with 1 ≤ k ≤ b d

2 c. Then
n − (2k + 2) ≥ 0. Suppose that k < b d

2 c. Let T′ = Pn,d,k+1. As k − 1 < min{d − k,n − (d − k)} ≤ n
2 , we have

Mo(T) −Mo(T′) = ψT(vkvk+1) − ψT′ (vkvk+1) = |n − (d − k) − (d − k)| − |k + 1 − (n − k − 1)| < 0, implying that
Mo(T) < Mo(T′), a contradiction. Therefore, k = b d

2 c, i.e., T � Pn,d,b d
2 c

.

Next we consider the Mostar index of trees when the number of pendent vertices is fixed. We use the
techniques from [25].

Recall that a starlike tree is a tree with a unique vertex of degree at least three. For 3 ≤ r ≤ n−2, by BSn,r,
we denote the starlike tree of order n with maximum degree r such that the r pendent paths have almost
equal lengths, i.e., for any two pendent paths with length ` and s, |` − s| = 0, 1. Let n − 1 = rs + t, where
0 ≤ t ≤ r − 1. Then BSn,r consists of t pendent paths of length s + 1 and r − t pendent paths of length s at a
common vertex.

Theorem 3.3. Among all trees of order n with r pendent vertices, BSn,r is the unique tree with maximum Mostar
index, where 3 ≤ r ≤ n − 2.

Proof. Let T be a tree of order n with r pendent vertices such that Mo(T) is as large as possible.
Claim. T contains exactly one branch vertex.

Suppose on contrary that T contains at least two branch vertices. Obviously, we may choose two branch
vertices, say x and y, such that dT(x, y) is as small as possible. Let P be the path connecting x and y. If
dT(x, y) > 1, then each internal vertex of P is of degree 2. Let nx (ny, respectively) be the order of the
component of T − E(P) containing x (y, respectively). Assume that nx ≥ ny. Obviously, ny ≤

n
2 . Let z be the

neighbor of y in P and w be any other neighbor of y. Let nw = nw(yw|T). Let T′ = T− yw + zw. Obviously, T′

is a tree of order n with r pendent vertices. Note that ψT(e) = ψT′ (e) for e ∈ E(T) \ {zy, yw} = E(T′) \ {zy, zw}
and ψT(yw) = ψT′ (zw). Thus

Mo(T) −Mo(T′) = ψT(zw) − ψT′ (zw) = |ny − (n − ny)| − |(ny − nw) − n − (ny − nw)| < 0,

implying that Mo(T) < Mo(T′), a contradiction. This proves the claim.
By the claim, T consists of r some pendent paths at a common vertex. Let a1, . . . , ar be the lengths of

these pendent paths, where a1 ≥ · · · ≥ ar ≥ 1.
Suppose that ai − a j ≥ 2 for some pair of i and j with 1 ≤ i < j ≤ r. Let u be the vertex with maximum

degree r. Then T � Gu;ai,a j , where G is the graph obtained from T by deleting vertices of degree two or one
in two pendent paths with lengths ai and a j, respectively. Obviously, Gu;ai−1,a j+1 is a tree of order n with r
pendent vertices. By Lemma 2.2, Mo(T) < Mo(Gu;ai−1,a j+1), a contradiction. Therefore, ai − a j = 0, 1 for any i
and j with 1 ≤ i < j ≤ r. That is, T � BSn,r.

The matching number of a graph is the number of edges in a maximum matching (i.e., set of disjoint
edges with maximum number of edges). The domination number of a graph is the number of vertices
in a minimum dominating set (a set of vertices with minimum number of vertices such that every vertex
outside this set is adjacent to at least one member of the set).

For 1 ≤ m ≤ n
2 , let An,m be the tree consists of m− 1 pendent paths of length two and n− 2(m− 1) pendent

edges at a common vertex. Obviously, An,m = BSn,n−m for 1 ≤ m ≤ n
2 .
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Corollary 3.4. Among trees of order n with matching number s (domination number t, respectively), An,s (An,t,
respectively) is the unique tree with maximum Mostar index, where 1 ≤ s ≤ n

2 (1 ≤ t ≤ n
2 , respectively).

Proof. It is trivial if n = 2 as A2,1 = P2. Suppose that n ≥ 3. Let T be a tree of order n with matching number
s and domination number t. By König’s theorem, s is equal to the minimum cardinality of a covering of T.
As a covering of T is also a dominating set of T. So t ≤ s. Then n − s ≤ n − t. Denote by r the number of
pendent vertices of T. Note that r ≤ n − s ≤ n − t.

We claim that Mo(Bn,r) < Mo(Bn,r+1). This is clearly true if r = 2 as Bn,2 = Pn. Suppose that r ≥ 3. For
3 ≤ r ≤ n − 2, let u be the vertex of degree r in BSn,r and v a neighbor of u in a pendent path of length at
least two. By Lemma 2.1 or 2.2, we have Mo(Bn,r) < Mo(Bn,r/uv). Note that Bn,r/uv consists of r + 1 pendent
paths at a common vertex u. Now, by Lemma 2.2, Mo(Bn,r/uv) < Mo(BSn,r+1) if Bn,r/uv � BSn,r+1. It follows
that Mo(Bn,r) < Mo(Bn,r+1) for 2 ≤ r ≤ n − 2.

If T maximizes the Mostar index among trees of order n with matching number s, then, by Theorem 3.3
and the above claim, T � BSn,r with r = n − s, i.e., T � BSn,n−s = An,s.

If T maximizes the Mostar index among trees of order n with domination number t, then, by Theorem
3.3 and the above claim, T � BSn,r with r = n − t, i.e., T � BSn,n−t = An,t.

Theorem 3.5. Among trees of order n with r pendent vertices, An(d r
2 e, b

r
2 c) is the unique tree with minimum Mostar

index, where 3 ≤ r ≤ n − 2.

Proof. Let T be a tree of order n with r pendent vertices such that Mo(T) is as small as possible.
Claim. T has at most two branch vertices.

Suppose on contrary that T contains at least three branch vertices. Obviously, we may choose two branch
vertices, say x and y, such that dT(x, y) is as large as possible. Let P be the path connecting x and y. Let nx
(ny, respectively) be the order of the component of T − E(P) containing x (y, respectively). Obviously, some
internal vertex of P is a branch vertex of T. So we may choose branch vertices w and z in P such that both
dT(x,w) and dT(z, y) are as small as possible. Assume that nx + dT(x,w) ≥ ny + dT(z, y). Then ny + dT(z, y) ≤ n

2 .
Let s = dT(z, y) and let z0 . . . zs be the path from z to y, where z0 = z and zs = y. Let u1, . . .up be the neighbors
of z outside P in T, where p = dT(z) − 2. Let T′ = T − {zui : i = 1, . . . , p} + {yui : i = 1, . . . , p}. Evidently, T′ is
a tree of order n with r pendent vertices. Let n′z be the total number of vertices of the components of T − z
containing one of u1, . . . ,up. For i = 0, . . . , s, we have ny + s− i < min{ny + n′z + s− i,n− (ny + n′z + s− i)} ≤ n

2 ,
implying that ψT(zi−1zi) = |(ny + s− i)− (n− (ny + s− i))| > |ny + n′z + s− i− (n− (ny + n′z + s− i))| = ψT′ (zi−1zi).
Therefore, Mo(T) −Mo(T′) =

∑s
i=1(ψT(zi−1zi) − ψT′ (zi−1zi)) > 0, i.e., Mo(T) > Mo(T′), a contradiction. This

proves the claim.
By the claim, T has at most two branch vertices. If T has exactly one branch vertex, then T consists of

r pendent paths at a common vertex. By Lemma 2.2, T � An(r − 1, 1). By Lemma 2.3, we have r = 3 and
T � An(d r

2 e, b
r
2 c).

Suppose that T has exactly two branch vertices, say x and y. Let a = dT(x) − 1 and b = dT(y) − 1.
Obviously, a, b ≥ 2, and there are a pendent paths at x and b pendent paths at y. By Lemma 2.2, among the
a (b, respectively) pendent paths at x (y, respectively), all except one are of length one. As early, let P be the
path connecting x and y, and let nx (ny, respectively) be the order of the component of T − E(P) containing
x (y, respectively). Assume that nx ≥ ny. Then ny ≤

n
2 .

Suppose that there is a pendent path at y whose length is at least two. Let y0 . . . y` be this path, where
y0 = y. Let T′′ = T − {yv : v ∈ N} + {y1v : v ∈ N}, where N is the set of pendent neighbors of y. Obviously,
T′′ is a tree of order n with r pendent vertices. As ` < ny − 1 < n

2 , we have

Mo(T) −Mo(T′) = ψT(y0y1) − ψT′′ (y0y1) = |` − (n − `)| − |ny − 1 − (n − ny + 1)| > 0,

i.e., Mo(T) > Mo(T′′), a contradiction. Thus, all pendent paths at y are of length one.
Suppose that nx > n

2 and there is a pendent path at x whose length is at least two. Let P = z0 . . . zs, where
z0 = x and zs = y. Let u be a pendent neighbor of x. Let T∗ = T − xu + yu. Note that T∗ is a tree of order n
with r pendent vertices, and that

Mo(T) −Mo(T∗) = ψT(zs−1zs) − ψT∗ (z0z1) = |ny − (n − ny)| − |nx − 1 − (n − nx + 1)|.
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If nx > n+1
2 , i.e., nx ≥

n
2 + 1 then, as ny < n − nx + 1 ≤ n

2 , we have Mo(T) −Mo(T∗) > 0, i.e., Mo(T) > Mo(T′),
a contradiction. Thus, nx = n+1

2 and then ny = n+1
2 − r. If s ≥ 2, then ny < nx − 1 < n

2 , implying that
Mo(T) > Mo(T∗), also a contradiction. Therefore, we have s = 1, and then ny = nx − 1, implying that
Mo(T) = Mo(T∗). Now consider the tree T∗. Suppose that a ≥ 3. Then the order of the component of T∗ − xy
containing x is smaller than n

2 . By similar argument as above by deleting all pendent edges at x in T∗ and
adding the same number of pendent edges at the neighbor of x in the pendent path with length at least
two to get a tree T∗∗ of order n with r pendent vertices such that Mo(T∗) > Mo(T∗∗). Then Mo(T) > Mo(T∗∗),
a contradiction. Therefore, we are left with the case a = 2, and then T∗ � An(1, b + 1) with b + 2 = r ≥ 4.
By Lemma 2.3, Mo(T) = Mo(T∗) > Mo(An(d r

2 e, b
r
2 c)), a contradiction. Therefore, all pendent paths at x are of

length one (which follows by similar argument as above if nx ≤
n
2 ). Then T � An(a, b), where a + b = r and

a ≥ b ≥ 2. By Lemma 2.3, we have T � An(d r
2 e, b

r
2 c).
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