Filomat 33:19 (2019), 6459–6468 https://doi.org/10.2298/FIL1919459W

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The Outer Inverse $f_{T,S}^{(2)}$ of a Homomorphism of Right *R*–Modules

Zhou Wang^a

^a School of Mathematics, Southeast University, Nanjing 210096, P. R. China

Abstract. In this paper, we introduce the definition of the generalized inverse $f_{T,S}^{(2)}$, which is an outer inverse of the homomorphism f of right R-modules with prescribed image T and kernel S. Some basic properties of the generalized inverse $f_{T,S}^{(2)}$ are presented. It is shown that the Drazin inverse, the group inverse and the Moore-Penrose inverse, if they exist, are all the generalized inverse $f_{T,S}^{(2)}$. In addition, we give necessary and sufficient conditions for the existence of the generalized inverse $f_{T,S}^{(2)}$.

1. Introduction

Let *A* be a matrix over the field of complex number. It is well known [3,12] that the group inverse, the Drazin inverse and the Moore-Penrose inverse of *A* are all the generalized inverse $A_{T,S}^{(2)}$, where *T*, *S* are the range and null space of the outer inverse of *A*, respectively. In 1998, Wei presents an explicit expression for the generalized inverse $A_{T,S}^{(2)}$, and establishes the characterization and representation theorem (see [15]).

In 2005, Yu and Wang [13] introduce the definition of the generalized inverse $A_{T,S}^{(2)}$ of a matrix A over a commutative ring R. They also give an explicit expression for $A_{T,S}^{(2)}$ over integral domain. In addition, it is shown that over integral domain, the Drazin inverse, the group inverse and the Moore-Penrose inverse are all $A_{T,S}^{(2)}$. Furthermore, they extend the notion of the generalized inverse $A_{T,S}^{(2)}$ to the matrix A over an associative ring [14]. It is obtained that the Drazin inverse, the group inverse and the Moore-Penrose inverse, if they exist, are all the generalized inverse $A_{T,S}^{(2)}$. They also give necessary and sufficient conditions for the existence of the generalized inverse $A_{T,S}^{(1,2)}$ and some explicit expressions for $A_{T,S}^{(1,2)}$.

From the view of homomorphisms, a matrix over the field of complex number can be regarded as a homomorphism (or a linear transformation) of finite dimensional vector spaces, and a matrix over a commutative (noncommutative) ring is corresponding exactly to a homomorphism of finitely generated

Keywords. the generalized inverse $f_{T,S}^{(2)}$; the *R*-homomorphism; Drazin inverse; group inverse; Moore-Penrose inverse Received: 19 July 2019; Accepted: 25 December 2019

Communicated by Dijana Mosić

²⁰¹⁰ Mathematics Subject Classification. Primary 16D10, 15A09; Secondary 16S50, 16U99

Research supported by the NNSF of China (No. 10971024)

Email address: zhouwang@seu.edu.cn (Zhou Wang)

free modules. Hence, one naturally wants to know whether the free modules could be generalized to arbitrary modules over an associative ring.

Throughout this paper, *R* denotes an associative ring with unity, and *M*, *N* denote right *R*–modules. If *S* is an *R*-submodule of *M* then we write $S \le M$. We denote an *R*–homomorphism from *M* to *N* by $f \in \text{Hom}_R(M, N)$. Im(*f*) and Ker(*f*) stand for the image and the kernel of *f*, respectively. Standard facts in ring and module theory used without mention in the text can be found in [1].

An *R*-homomorphism $f \in \text{Hom}_R(M, N)$ is said to be *von Neumman regular* if there exists $g \in \text{Hom}_R(N, M)$ such that f = fgf. In this case, *g* is called a {1}-*inverse* (or *inner inverse*) of *f* and denoted by $f^{(1)}$. Moreover, we recall that *g* is a {2}-*inverse* (or *outer inverse*) of *f* if g = gfg, and denoted by $f^{(2)}$. It is well known that {1}-invertible property implies {2}-invertible property, i.e., {1}-invertible property={1,2}-invertible property.

An endomorphism $f \in \text{End}_R(M)$ is said to be *Drazin invertible* if for some positive integer *k* there exists an endomorphism *g* such that

(*i*)
$$g = gfg$$
, (*ii*) $f^{k} = f^{k+1}g$ and (*iii*) $fg = gf$.

If *g* exists then it is unique and is called the *Drazin inverse* of *f* and denoted by f^{D} . If *k* is the smallest positive integer such that *g* and *f* satisfy (*i*), (*ii*) and (*iii*), then it is called the *Drazin index* and denoted by Ind(*f*). If *k* = 1 then *g* is called the *group inverse* of *f* and denoted by f^{\sharp} .

Let * be an involution on the *R*-homomorphisms. Recall that $f \in \text{Hom}_R(M, N)$ is said to be *Moore-Penrose invertible* if there is a homomorphism $g \in \text{Hom}_R(N, M)$ such that

$$f = fgf$$
, $g = gfg$, $(fg)^* = fg$ and $(gf)^* = gf$.

Here *g* is called the *Moore-Penrose inverse* of *f* and denoted by f^{\dagger} .

More generally, an *R*-homomorphism of modules is regarded as a morphism in the category of modules, which is an additive category. The Moore-Penrose inverses and other generalized inverses of a morphism in an additive category are studied by many authors (see [4,6,9-11]).

Our goal in this paper is to extend the generalized inverse $A_{T,S}^{(2)}$ of a matrix A to $f_{T,S}^{(2)}$ of an R-homomorphism $f \in \operatorname{Hom}_R(M, N)$, which is {2}-inverse of f with prescribed image T and kernel S. In Section 2, we establish the definition of the generalized inverse $f_{T,S}^{(2)}$, and give some explicit expressions for $f_{T,S}^{(2)}$ by a projection or group inverses. In addition, we also show that the Drazin inverse f^D , the group inverse f^{\ddagger} and the Moore-Penrose inverse f^{\dagger} , if they exist, are all the generalized inverse $f_{T,S}^{(2)}$. In Section 3 we investigate necessary and sufficient conditions for the existence of the generalized inverse $f_{T,S}^{(1,2)}$. For any $h \in \operatorname{Hom}_R(N, M)$, we obtain some equivalent conditions for the existence of $f_{\operatorname{Im}(h),\operatorname{Ker}(h)}^{(1,2)}$. This paper is motivated by the interesting results of Yu and Wang [13,14], and some different methods are used in the proof of our main results.

2. The generalized inverse $f_{T,S}^{(2)}$ of a homomorphism of right *R*-modules

We begin this section from the following result.

Lemma 2.1. Let $f \in Hom_R(M, N)$ and let $T \leq M$, $S \leq N$. Then the following are equivalent. (1) There exists $g \in Hom_R(N, M)$ such that gfg = g, Im(g) = T and Ker(g) = S. (2) $f(T) \oplus S = N$ and $Ker(f) \cap T = \{0\}$. **Proof.** (1) \Rightarrow (2). Let $s \in f(T) \cap S$. Then there exists $n \in N$ such that $s = fg(n) \in S$. From S = Ker(g), it follows that g(n) = gfg(n) = g(s) = 0. Then s = fg(n) = 0. This shows that $f(T) \cap S = \{0\}$. Take $n \in N$. Then $g(n) \in T$, and $(1 - fg)(n) \in S$ since g = gfg and Ker(g) = S. Thus, we get

$$n = fg(n) + (1 - fg)(n) \in f(T) + S.$$

This shows that $f(T) \oplus S = N$. Let $t \in \text{Ker}(f) \cap T$. Then there exists $n \in N$ such that t = g(n) and f(t) = 0. So we get t = g(n) = gfg(n) = gf(t) = 0, as required.

(2) \Rightarrow (1). Define

$$q: N \to M, n = f(t) + s \mapsto t$$
, where $t \in T, s \in S$.

We show first that *g* is well defined. In fact, assume that f(t) + s = 0. Since $N = f(T) \oplus S$, we have s = f(t) = 0. This implies that $t \in \text{Ker}(f) \cap T = \{0\}$, i.e., t = 0. Next, it is sufficient to prove

$$Im(g) = T$$
, $Ker(g) = S$ and $gfg = g$

By the definition of g, we get $\text{Im}(g) \subseteq T$. Let $t \in T$. Then gf(t) = t. This shows that $t \in \text{Im}(g)$, and so Im(g) = T. Let $n \in \text{Ker}(g)$. From (2), we have n = f(t) + s for some $t \in T$, $s \in S$. Then t = g(n) = 0. Thus, $n = s \in S$, i.e., $\text{Ker}(g) \subseteq S$. Let $s \in S$. Then g(s) = g(f(0) + s) = 0, and so $s \in \text{Ker}(g)$. This implies Ker(g) = S. For any $n \in N$, we may calculate directly

$$gfg(n) = gfg(f(t) + s) = gf(t) = t = g(f(t) + s) = g(n).$$

Hence, gfg = g. \Box

The following result should be well known, but we can not find it somewhere.

Lemma 2.2. Let $f \in Hom_R(M, N)$. Then the following hold. (1) $P_H f = f$ if and only if $Im(f) \leq H$, where $N = H \oplus K$, $P_H : N \to N$, $h + k \mapsto h$. (2) $fP_{H'} = f$ if and only if $K' \leq Ker(f)$, where $M = H' \oplus K'$, $P_{H'} : M \to M$, $h' + k' \mapsto h'$.

Proof. (1). The implication follows from $\text{Im}(f) = \text{Im}(P_H f) \subseteq H$. For any $m \in M$, we have f(m) = h + k for some $h \in H$, $k \in K$. Note that $\text{Im}(f) \leq H$. Then $k = f(m) - h \in H \cap K = \{0\}$ since $N = H \oplus K$. This implies that f(m) = h, and so

$$P_H f(m) = P_H(h) = h = f(m).$$

Thus, $P_H f = f$.

(2). Let $k' \in K'$. Then $f(k') = fP_{H'}(k') = f(0) = 0$, as required. Conversely, for any $m \in M$, it follows that m = h' + k' for some $h' \in H'$, $k' \in K'$ from $M = H' \oplus K'$. Then

$$fP_{H'}(m) = f(h') = f(h' + k') = f(m),$$

which shows $fP_{H'} = f$. \Box

Let $M = H \oplus K$. Define $P_H : M \to M$; $h + k \mapsto h$. Then $P_H^2 = P_H$. Conversely, suppose $p^2 = p \in \text{End}_R(M)$. Then $M = \text{Im}(p) \oplus \text{Im}(1 - p) := H \oplus K$, which implies $p = P_H$.

Proposition 2.3. *If the conditions of Lemma 2.1 are satisfied, then q is unique.*

Proof. Assume that g_1 and g_2 satisfy the conditions of Lemma 2.1. Then we have $\text{Im}(g_1) = T = \text{Im}(g_2) = \text{Im}(g_2fg_2) \subseteq \text{Im}(g_2f)$. Set $H = \text{Im}(g_2f)$. Since $g_2fg_2 = g_2$, we get $\text{Im}(g_1) \leq H$ and $M = H \oplus \text{Im}(1 - g_2f)$. Note that $(g_2f)^2 = g_2f$. Then $P_H = g_2f$, and so we obtain that $g_1 = P_Hg_1 = (g_2f)g_1$ by Lemma 2.2(1). Since $g_1 = g_1fg_1$, we have $\text{Im}(1 - fg_1) \subseteq \text{Ker}(g_1) = S = \text{Ker}(g_2)$. Take $H' = \text{Im}(fg_1)$ and $K' = \text{Im}(1 - fg_1)$. Then $K' \leq \text{Ker}(g_2)$ and $M = H' \oplus K'$ with $P_{H'} = fg_1$. This implies $g_2 = g_2(fg_1)$ by Lemma 2.2(2). Thus, we get $g_1 = g_2$. \Box

A homomorphism $g \in \text{Hom}_R(N, M)$ is called **the generalized inverse**, which is an outer inverse of the homomorphism $f \in \text{Hom}_R(M, N)$ with prescribed image *T* and kernel *S* if it satisfies the equivalent conditions in Lemma 2.1, and is denoted by $f_{T,S}^{(2)}$.

Proposition 2.4. Let $f \in Hom_R(M, N)$ have the generalized inverse $f_{T,S}^{(2)}$ (say g). Set $N = f(T) \oplus S$, T = Im(g) and S = Ker(g). Define $f|_T : T \to f(T)$. Then $f|_T$ is an isomorphism, and

$$g = (f|_T)^{-1} P_{f(T)},$$

where $P_{f(T)} : N \to N, f(t) + s \mapsto f(t)$.

Proof. It is clear that $f|_T$ is epimorphic. We show only that $f|_T$ is monomorphic. Let f(t) = 0 for $t \in T$. Then there exists $n \in N$ such that t = g(n). Set n = f(t') + s, where $t' \in T$, $s \in S$. Then t' = g(n') for some $n' \in N$ since T = Im(g). Thus, we have

$$0 = f(t) = f(g(n)) = fgf(t') = fg(n') = f(t').$$

This implies that t = g(n) = g(f(t') + s) = g(s) = 0, as required. Next, it is sufficient to prove $f_{TS}^{(2)} = (f|_T)^{-1}P_{f(T)}$.

$$(f|_{T})^{-1}P_{f(T)}f(f|_{T})^{-1}P_{f(T)} = (f|_{T})^{-1}P_{f(T)}^{2} = (f|_{T})^{-1}P_{f(T)},$$

$$\operatorname{Im}((f|_{T})^{-1}P_{f(T)}) = (f|_{T})^{-1}f(T) = T,$$

$$\operatorname{Ker}((f|_{T})^{-1}P_{f(T)}) = \operatorname{Ker}(P_{f(T)}) = S.$$

So the proof is completed. \Box

Corollary 2.5. Let $f \in Hom_R(M, N)$. If the generalized inverse $f_{T,S}^{(2)}$ exists, then (1) $f_{T,S}^{(2)}fh = h$ if and only if $Im(h) \leq T$, where $h : X \to M$. (2) $hff_{T,S}^{(2)} = h$ if and only if $S \leq Ker(h)$, where $h : N \to Y$.

Proof. (1). Set $g = f_{T,S}^{(2)}$. Then the implication follows from

$$\operatorname{Im}(h) = \operatorname{Im}(gfh) \subseteq \operatorname{Im}(g) = T.$$

For any $x \in X$, say t = h(x). Note that $\text{Im}(h) \leq T$. Then there exists $n \in N$ such that t = g(n). By g = gfg, we check easily that

$$qfh(x) = qf(t) = qfq(n) = q(n) = h(x).$$

So we get qfh = h.

(2). Let $s \in S = \text{Ker}(g)$. Then fh(s) = hfg(s) = 0, i.e., $s \in \text{Ker}(h)$, as required. Conversely, for any $n \in N$, say n = f(t) + s for some $t \in T$, $s \in S$. From Im(g) = T, there exists $n' \in N$ such that t = q(n'). Thus, we have

$$hfg(n) = hfgf(t) = hfgfg(n') = hfg(n') = hf(t).$$

On the other hand, $S \leq \text{Ker}(h)$ implies hf(t) = h(f(t) + s) = h(n), so one obtains hfg(n) = h(n). The proof is completed. \Box

The following result is well known (also see [1, 3.6]).

Lemma 2.6. (The Factor Theorem) Let g, $h : N \to T$ be two R-homomorphisms. If h is an epimorphism with $Ker(h) \leq Ker(g)$, then there exists unique homomorphism $\omega : T \to T$ such that $g = \omega h$.

Theorem 2.7. Let $f \in Hom_R(M, N)$ and $f_{T,S}^{(2)}$ exists (say g). If $h : N \to M$ satisfies Im(h) = T, Ker(h) = S, then there exists an isomorphism $\omega : M \to M$ such that $g = \omega h$.

Proof. Note that Im(g) = T = Im(h). Then g, h reduce two epimorphisms \tilde{g} , \tilde{h} from N to T. Moreover, Ker(g) = S = Ker(h) implies $\text{Ker}(\tilde{g}) = \text{Ker}(\tilde{h})$. By Lemma 2.6, there exist $\tilde{\omega}$, $\tilde{\nu} \in \text{End}_R(T)$ such that $\tilde{g} = \tilde{\omega}\tilde{h}$ and $\tilde{h} = \tilde{\nu}\tilde{g}$. Thus, we have $\tilde{g} = \tilde{\omega}\tilde{\nu}\tilde{g}$ and $\tilde{h} = \tilde{\nu}\tilde{\omega}\tilde{h}$. Since both \tilde{g} and \tilde{h} are epimorphic, we get $\tilde{\omega}\tilde{\nu} = 1_T$, $\tilde{\nu}\tilde{\omega} = 1_T$, $\tilde{\iota}e_i$, $\tilde{\omega}$ is an isomorphism. Note that T = Im(g) is a direct summand of M since gfg = g, say $M = T \oplus X$. Define $\omega : M \to M$; $m = t + x \mapsto \tilde{\omega}(t) + x$. It is easy to check that ω is an isomorphism and $g = \omega h$, as desired. \Box

Corollary 2.8. Let $f \in Hom_R(M, N)$ and $f_{T,S}^{(2)}$ exists. If $h : N \to M$ satisfies Im(h) = T, Ker(h) = S, then there exists an isomorphism $\omega : M \to M$ such that

$$\omega h f h = h$$
 and $h f \omega h = h$.

Proof. Set $g = f_{T,S}^{(2)}$. By Corollary 2.5, we have gfh = h and hfg = h. From Theorem 2.7, there exists an isomorphism $\omega \in \text{End}_R(M)$ such that $g = \omega h$. Thus, we get

$$\omega hfh = gfh = h$$
 and $hf\omega h = hf\omega h = h$.

The proof is completed. \Box

The following lemma is duo to Armendariz, Fisher and Snider [2, Proposition 2.3] (also see [7]).

Lemma 2.9. Let α be an endomorphism of right *R*-module *M*. Then the following are equivalent.

(1) The endomorphism α is strongly regular.

(2) There exists a direct decomposition $M = Im(\alpha) \oplus Ker(\alpha)$.

(2) The endomorphism α is group invertible.

Theorem 2.10. Let $f \in Hom_R(M, N)$, $T \leq M$, $S \leq N$. Suppose that $f_{T,S}^{(2)}$ exists. If there is $h \in Hom_R(N, M)$ such that Im(h) = T and Ker(h) = S, then both fh and hf are group invertible. Furthermore,

$$f_{T,S}^{(2)} = h(fh)^{\sharp} = (hf)^{\sharp}h$$

Proof. We prove firstly that *fh* is group invertible. By Lemma 2.9, it is sufficient to show that

$$N = \operatorname{Im}(fh) \oplus \operatorname{Ker}(fh).$$

Note that Im(fh) = fIm(h) = f(T) and $S = Ker(h) \subseteq Ker(fh)$. For any $n \in Ker(fh)$, by Lemma 2.1(2), we have

$$h(n) \in \operatorname{Ker}(f) \cap \operatorname{Im}(h) = \operatorname{Ker}(f) \cap T = \{0\}.$$

This shows that $n \in \text{Ker}(h)$, and so

$$\operatorname{Ker}(fh) = \operatorname{Ker}(h) = S.$$

Thus, by Lemma 2.1(1), we have

$$N = f(T) \oplus S = \operatorname{Im}(fh) \oplus \operatorname{Ker}(fh).$$

Next, for any $m \in \text{Im}(h)$, there exists $n \in N$ such that m = h(n). Then

 $f(m) = fh(n) = (fh)(fh)^{\sharp}(fh)(n) \in \operatorname{Im}((fh)(fh)^{\sharp}),$

i.e., $f(m) = (fh)(fh)^{\sharp}(n')$ for some $n' \in N$. Thus, we get

$$m - h(fh)^{\sharp}(n') \in \operatorname{Ker}(f) \cap T = \{0\},$$

and so

$$m = h(fh)^{\mathfrak{p}}(n') \in \operatorname{Im}(h(fh)^{\mathfrak{p}}).$$

This shows that

 $\operatorname{Im}(h(fh)^{\sharp}) = \operatorname{Im}(h) = T.$

Note that Ker(fh) = Ker(h) = S. Then it is necessary to check that

 $\operatorname{Ker}(h(fh)^{\sharp}) = \operatorname{Ker}(fh).$

Let fh(n) = 0. Then

 $fh(fh)^{\sharp}(n) = (fh)^{\sharp}fh(n) = 0.$

This implies that

$$(fh)^{\sharp}(n) \in \operatorname{Ker}(f) \cap T = \{0\},\$$

and so $n \in \text{Ker}(h(fh)^{\sharp})$. Thus, we have $\text{Ker}(fh) \subseteq \text{Ker}(h(fh)^{\sharp})$. Note that

h

 $fh = (fh)^2 (fh)^{\sharp} = (fhf)(h(fh)^{\sharp}).$

Then

$$\operatorname{Ker}(h(fh)^{\sharp}) \subseteq \operatorname{Ker}(fh).$$

This shows that $\operatorname{Ker}(h(fh)^{\sharp}) = \operatorname{Ker}(fh)$, and so $\operatorname{Ker}(h(fh)^{\sharp}) = S$. Note that

$$(h(fh)^{\sharp})f(h(fh)^{\sharp}) = h(fh)^{\sharp}(fh)(fh)^{\sharp} = h(fh)^{\sharp}.$$

Thus, this shows that $f_{T,S}^{(2)} = h(fh)^{\sharp}$. Set $g = f_{T,S}^{(2)}$. By Theorem 2.7, we have $g = \omega h$ for some automorphism of *M*. It follows that

$$\operatorname{Im}(hf) \subseteq \operatorname{Im}(h) = \operatorname{Im}(hfg) \subseteq \operatorname{Im}(hf)$$

from Corollary 2.5(2). This implies that

$$\operatorname{Im}(hf) = \operatorname{Im}(h) = T = \operatorname{Im}(g) = \operatorname{Im}(gf)$$

since gfg = g. Note that

$$\operatorname{Ker}(hf) = \operatorname{Ker}(\omega hf) = \operatorname{Ker}(gf) = \operatorname{Im}(1 - gf),$$

and so we have

$$M = \operatorname{Im}(gf) \oplus \operatorname{Im}(1 - gf) = \operatorname{Im}(hf) \oplus \operatorname{Ker}(hf).$$

It follows that hf is group invertible from Lemma 2.9. Moreover, we can check that $f_{T,S}^{(2)} = (hf)^{\sharp}h$. \Box

In the next result, we will show that for an arbitrary homomorphism f of right *R*-modules, Drazin inverse f^{D} , group inverse f^{\ddagger} and Moore-Penrose inverse f^{\dagger} , if they exist, are all the generalized inverse $f_{T,S}^{(2)}$.

Theorem 2.11. Let M, N be right R-modules. (1) Let $f \in End_R(M)$. If f^D exists with Ind(f) = k, then $f^D = f_{Im(f^k),Ker(f^k)}^{(2)}$. (2) Let $f \in End_R(M)$. If f^{\sharp} exists, then $f^{\sharp} = f_{Im(f),Ker(f)}^{(2)}$. (3) Let $f \in Hom_R(M, N)$. If f^{\dagger} exists with an involution * on homomorphisms of modules, then $f^{\dagger} = f_{Im(f^*),Ker(f)}^{(2)}$.

6464

Proof. (1). Since $f^D f f^D = f^D$, by Lemma 2.1(1), it is sufficient to show that

 $\operatorname{Im}(f^D) = \operatorname{Im}(f^k)$ and $\operatorname{Ker}(f^D) = \operatorname{Ker}(f^k)$.

Note that $ff^D = f^D f$ and $f^k = f^D f^{k+1}$. Then

$$\operatorname{Im}(f^{D}) = \operatorname{Im}(f^{D}ff^{D}) = \operatorname{Im}((f^{D}f)^{k}f^{D}) = \operatorname{Im}(f^{k}(f^{D})^{k+1}) \subseteq \operatorname{Im}(f^{k}),$$

and

$$\operatorname{Im}(f^k) = \operatorname{Im}(f^D f^{k+1}) \subseteq \operatorname{Im}(f^D).$$

It follows that $\operatorname{Im}(f^D) = \operatorname{Im}(f^k)$. Since $f^k = f^{k+1}f^D$ and $f^D = f^Dff^D = f^D(ff^D)^k = (f^D)^{k+1}f^k$, this implies that $\operatorname{Ker}(f^D) = \operatorname{Ker}(f^k)$. Thus, we have $f^D = f^{(2)}_{\operatorname{Im}(f^k)}$. Ker (f^k) .

(2). Take k = 1 in (1).

(3). Note that $f^{\dagger}ff^{\dagger} = f^{\dagger}$. By Lemma 2.1(1), it is only necessary to check that

$$\operatorname{Im}(f^{\dagger}) = \operatorname{Im}(f^{\ast}) \text{ and } \operatorname{Ker}(f^{\dagger}) = \operatorname{Ker}(f^{\ast}).$$

Since $f \in f^{\{1,2\}}$ and $f^* \in (f^*)^{\{1,2\}}$, we can get easily that

$$\operatorname{Im}(f^{\dagger}) = \operatorname{Im}(f^{\dagger}f) = \operatorname{Im}((f^{\dagger}f)^{*}) = \operatorname{Im}(f^{*}(f^{\dagger})^{*}) = \operatorname{Im}(f^{*}),$$

and

$$\operatorname{Ker}(f^{\dagger}) = \operatorname{Ker}(ff^{\dagger}) = \operatorname{Ker}((ff^{\dagger})^{*}) = \operatorname{Ker}((f^{\dagger})^{*}f^{*}) = \operatorname{Ker}(f^{*})$$

The proof is completed. \Box

3. The generalized inverse $f_{T,S}^{(1,2)}$ of a homomorphism of right *R*-modules

If the generalized inverse $f_{T,S}^{(2)}$ satisfies $f f_{T,S}^{(2)} f = f$, then it is called the generalized inverse which is a $\{1, 2\}$ -inverse of a homomorphism f of modules with prescribed image T and kernel S, and is denoted by $f_{T,S}^{(1,2)}$.

Theorem 3.1. Let $f \in Hom_R(M, N)$ and let $T \leq M$, $S \leq N$. Then the following are equivalent. (1) $f(T) \oplus S = N$, $Im(f) \cap S = 0$ and $Ker(f) \cap T = \{0\}$. (2) There exists some $g \in Hom_R(N, M)$ such that

$$fgf = f$$
, $gfg = g$, $Im(g) = T$ and $Ker(g) = S$

(3) $Im(f) \oplus S = N$ and $Ker(f) \oplus T = M$.

Proof. (1) \Rightarrow (2). From $f(T) \oplus S = N$ and Ker $(f) \cap T = 0$, we get that $g = f_{T,S}^{(2)}$ exists and that Im(g) = T, Ker(g) = S by Lemma 2.1. We only need to show that fgf = f. Note that gfg = g. Then we have gfgf = gf, which implies

$$\operatorname{Im}(fgf - f) \subseteq \operatorname{Im}(f) \cap \operatorname{Ker}(g) = \operatorname{Im}(f) \cap S = \{0\}.$$

So fgf = f, as required.

(2) \Rightarrow (3). From Im(g) = T, we have f(T) = Im(fg). Note that fgf = f implying Im(fg) = Im(f). Then f(T) = Im(f). By (2), we know $g = f_{T,S}^{(2)}$. Hence, $N = f(T) \oplus S = \text{Im}(f) \oplus S$. Next, f = fgf implies that Ker(f) = Im($I_M - gf$). From Im(g) = T, we have

$$M = \operatorname{Im}(I_M - gf) + \operatorname{Im}(g) = \operatorname{Ker}(f) + T.$$

6465

Hence, it follows from $\text{Ker}(f) \cap T = \{0\}$.

(3) \Rightarrow (1). It is clear that Im(f) \cap $S = \{0\}$ and Ker(f) \cap $T = \{0\}$. To obtain $f(T) \oplus S = N$, it is sufficient to show f(T) = Im(f). For any $n \in \text{Im}(f)$, we have n = f(m) for some $m \in M$. Since Ker(f) $\oplus T = M$, we can say $m = m_1 + m_2$ where $m_1 \in \text{Ker}(f)$, $m_2 \in T$. Thus, we get

$$n = f(m) = f(m_1) + f(m_2) = f(m_2) \in f(T),$$

and so $\text{Im}(f) \subseteq f(T)$. Clearly, $f(T) \subseteq \text{Im}(f)$. Hence, f(T) = Im(f). \Box

Theorem 3.2. Let $f \in Hom_R(M, N)$ and let $T \leq M$, $S \leq N$. (1) If Ker(f) + T = M, then f(T) = Im(f). (2) If $f(T) \oplus S = N$, then

$$f(T) = Im(f)$$
 if and only if $Im(f) \cap S = \{0\}$.

Proof. (1) follows easily from the observation that

$$f(M) = f(\operatorname{Ker}(f) + T) \subseteq f(\operatorname{Ker}(f)) + f(T) = f(T).$$

(2). Suppose that $\text{Im}(f) \cap S = \{0\}$. Obviously, we have $f(T) \subseteq \text{Im}(f)$. For any $x \in \text{Im}(f)$, $x = x_1 + x_2$, where $x_1 \in f(T)$, $x_2 \in S$. From $f(T) \subseteq \text{Im}(f)$, $x_1 \in \text{Im}(f)$. Thus, $x_2 = x - x_1 \in \text{Im}(f) \cap S = \{0\}$. Therefore, we get $x_2 = 0$ and then $x = x_1 \in f(T)$. Hence $\text{Im}(f) \subseteq f(T)$. Conversely, assume that f(T) = Im(f). From $f(T) \oplus S = N$, we have $\text{Im}(f) \cap S = f(T) \cap S = \{0\}$. \Box

Lemma 3.3. (Jacobson Lemma) Let $a, b \in R$. Then 1 - ab is invertible if and only if 1 - ba is invertible.

Let $S = \text{End}(_RN)$ and $T = \text{End}(_RM)$. The following lemma is duo to Puystjens and Hartwig [8, Corollary 1.]. We will give a proof for the sake of completeness.

Lemma 3.4. Suppose $f \in Hom_R(M, N)$ is regular, and let $f = ff^{(1)}f$. Then the following are equivalent for any $h \in Hom_R(N, M)$.

(1) $u = fhff^{(1)} + I_N - ff^{(1)}$ is invertible in S. (2) $v = f^{(1)}fhf + I_M - f^{(1)}f$ is invertible in T. (3) Sfhf = Sf and fhfT = fT.

Proof. (1) \Leftrightarrow (2). Note that $u = I_N - (f - fhf)f^{(1)}$ and $v = I_M - f^{(1)}(f - fhf)$. Then, by Lemma 3.3, u is invertible in S if and only if v is invertible in T.

(1) (and (2)) \Rightarrow (3). It follows that uf = fhf = fv from (1) and (2). Note that u and v are both invertible. Then it implies that Sfhf = Sf and fhfT = fT.

(3) \Rightarrow (1). Suppose that xfhf = f = fhfy for some $x \in S$, $y \in T$. Take $\alpha = fyf^{(1)} + I_N - ff^{(1)}$ and $\beta = xff^{(1)} + I_N - ff^{(1)}$. Then we can directly calculate that $u\alpha = \beta u = I_N$, as required. \Box

Theorem 3.5. Let $f \in Hom_R(M, N)$, $h \in Hom_R(N, M)$. Then the following are equivalent. (1) f is regular, $u = fhff^{(1)} + I_N - ff^{(1)}$ is invertible in S and $Ker(f) \cap Im(h) = \{0\}$. (2) f is regular, $v = f^{(1)}fhf + I_M - f^{(1)}f$ is invertible in T and $Ker(f) \cap Im(h) = \{0\}$. (3) $f_{Im(h),Ker(h)}^{(1,2)}$ exists.

Proof. (1) \Leftrightarrow (2) is clear from Lemma 3.4.

(1) (and (2)) \Rightarrow (3). From (1) and (2), we can check easily that uf = fhf = fv and $fv^{-1} = u^{-1}f$. Set $\varphi = fv^{-2}h$. Then we have

$$\begin{split} \varphi(fh) &= fv^{-2}hfh = u^{-2}fhfh = u^{-1}fh = fv^{-1}h = fhfv^{-2}h = (fh)\varphi, \\ \varphi(fh)\varphi &= u^{-1}fhfv^{-2}h = fv^{-2}h = \varphi, \end{split}$$

and

$$(fh)\varphi(fh) = fhfv^{-1}h = fh.$$

This shows that *fh* is group invertible and $\varphi = (fh)^{\sharp}$. Set $g = h(fh)^{\sharp}$. It is easy to check that

$$gfg = h(fh)^{\sharp} fh(fh)^{\sharp} = h(fh)^{\sharp} = g,$$

and

$$fgf = fhfv^{-2}hf = u^{-1}fhf = f.$$

Next, it is sufficient to show that Im(g) = Im(h) and Ker(g) = Ker(h). Since $fh = (fh)^2(fh)^{\sharp} = fhfg$, we get f(h - hfg) = 0. This implies that

$$\operatorname{Im}(h - hfg) \subseteq \operatorname{Ker}(f) \cap \operatorname{Im}(h) = \{0\},$$

and so

$$h = hfg = hfh(fh)^{\sharp} = h(fh)^{\sharp}fh = qfh.$$

Note that

$$g = h(fh)^{\sharp} = h((fh)^{\sharp})^2 fh.$$

Then we can obtain that Im(g) = Im(h) and Ker(g) = Ker(h). Thus, it follows that $f_{Im(h),Ker(h)}^{(1,2)}$ exists and $g = f_{Im(h),Ker(h)}^{(1,2)}$.

(3) \Rightarrow (1). Suppose $f_{Im(h),Ker(h)}^{(1,2)}$ exists and say $g = f_{Im(h),Ker(h)}^{(1,2)}$. By Theorem 2.10, we have $g = h(fh)^{\sharp}$. Take $S = \text{End}(_RN)$ and $T = \text{End}(_RM)$. Note that

$$Sfhf \subseteq Sf = Sfgf = Sfh(fh)^{\sharp}f = S(fh)^{\sharp}fhf \subseteq Sfhf.$$

Then Sfhf = Sf. It is easy to see

$$fhfT \subseteq fT \subseteq fgfgfT = fh(fh)^{\sharp}fh(fh)^{\sharp}fT = (fhf)h((fh)^{\sharp})^2 fT \subseteq fhfT$$

so we get fhfT = fT. By Lemma 3.4, *u* is invertible in *S*.

Theorem 3.6. Let M, N be right R-modules.

(1) If $f \in End_R(M)$, then $f_{Im(f),Ker(f)}^{(1,2)}$ exists if and only if f^{\sharp} exists. Moreover, $f^{\sharp} = f_{Im(f),Ker(f)}^{(1,2)}$. (2) If $f \in Hom_R(M, N)$ and * is an involution on the homomorphisms of modules, then $f_{Im(f^*),Ker(f^*)}^{(1,2)}$ exists if and only if f^{\dagger} exists. Moreover, $f^{\dagger} = f_{Im(f^*),Ker(f^*)}^{(1,2)}$

Proof. (1). By Theorem 2.11, it is sufficient to show that the existence of $f_{Im(f),Ker(f)}^{(1,2)}$ implies existence of f^{\ddagger} . Then, by Theorem 2.10, $f_{Im(f),Ker(f)}^{(1,2)} = f(f^2)^{\ddagger} = (f^2)^{\ddagger} f$, and so $ff_{Im(f),Ker(f)}^{(1,2)} = f_{Im(f),Ker(f)}^{(1,2)} f$. Hence, $f_{Im(f),Ker(f)}^{(1,2)}$ is the group inverse of f.

(2). To show that existence of $f_{Im(f^*),Ker(f^*)}^{(1,2)}$ implies existence of f^{\dagger} , take $h = f^*$ as in Theorem 2.10. Then $f_{Im(f^*),Ker(f^*)}^{(1,2)} = f^*(ff^*)^{\sharp} = (ff^*)^{\sharp} f^*$. This implies that

$$(ff_{Im(f^*),Ker(f^*)}^{(1,2)})^* = ff_{Im(f^*),Ker(f^*)}^{(1,2)} \text{ and } (f_{Im(f^*),Ker(f^*)}^{(1,2)}f)^* = f_{Im(f^*),Ker(f^*)}^{(1,2)}f$$

Hence $f_{Im(f^*),Ker(f^*)}^{(1,2)}$ is the Moore-Penrose inverse of *f*. Conversely, it follows from Theorem 2.11.

Acknowledgments. The authors are grateful to the referees and Shen Guan for their very useful and detailed comments and suggestions which greatly improve the presentation.

6467

References

- [1] F. W. Anderson, K. R. Fuller, Rings and categories of modules (2nd edition), Springer-Verlag, Berlin, New York, Heidelberg, 2004.
- [2] E. P. Armendariz, J. W. Fisher, R. L. Snider, On injective and surjective endomorphisms of finitely generated modules, Comm. Algebra 6 (1978) 659-672.
- A. Ben-Israel, T. N. E. Greville, Generalized inverses: Theory and applications (2nd edition), Springer-Verlag, New York Heidel-[3] berg Berlin, 2003.
- [4] D. L. Davis, D. W. Robinson, Generalized inverses of morphisms, Linear Algebra Appl. 5 (1972) 319-328.
- [5] M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Monthly 65 (1958) 506-514.
- [6] J. M. Miao, D. W. Robinson, Group and Moore-Penrose inverses of regular morphisms with kernel and cokernel, Linear Algebra Appl. 110 (1988) 263-270.
- [7] W. K. Nicholson, Strongly clean rings and Fitting's lemma, Comm. Algebra 27 (1999) 3583-3592.
- [8] R. Puystjen, R. E. Hartwig, The group inverse of a companion matrix, Linear Multilinear Algebra 43 (1997) 137-150. R. Puystjens, D.W. Robinson, The Moore-Penrose inverse of a morphism in additive category, Comm. Algebra 12(3) (1984) [9] 287-299.
- [10] D. W. Robinson, R. Puystjens, Generalized inverses of morphisms with kernels, Linear Algebra Appl. 96 (1987) 65-85.
- [11] H. You, J. L. Chen, Generalized inverses of a sum of morphisms, Linear Algebra Appl. 338 (2001) 261-273.
- [12] G. R. Wang, Y. M. Wei, S. Qiao, Generalized inverses: Theory and computations, Science Press, Beijing/New York, 2004.
- [13] Y. M. Yu, G. R. Wang, The generalized inverse $A_{T,S}^{(2)}$ over commutative rings, Linear Multilinear Algebra 53 (2005) 293-302. [14] Y. M. Yu, G. R. Wang, The generalized inverse $A_{T,S}^{(2)}$ of a matrix over an associative ring, J. Aust. Math. Soc. 83 (2007) 423-437.
- [15] Y. M. Wei, A characterization and representation of the generalized inverse $A_{T,S}^{(2)}$ and its applications, Linear Algebra Appl. 280 (1998) 97-96.