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Abstract. A ring extension R ⊂ S is said to be FIP if it has only finitely many intermediate rings between
R and S. The main purpose of this paper is to characterize the FIP property for a ring extension, where
R is not (necessarily) an integral domain and S may not be an integral domain. Precisely, we establish a
generalization of the classical Primitive Element Theorem for an arbitrary ring extension. Also, various
sufficient and necessary conditions are given for a ring extension to have or not to have FIP, where S = R[α]
with α a nilpotent element of S.

1. Introduction

All rings considered below are commutative and unital; all inclusions of rings are unital. For a ring
R, we frequently use Spec(R) (respectively, Max(R)) to denote the set of all prime (respectively, maximal)
ideals of R. If R ⊂ S is an extension of rings, we will denote by [R,S] the set of all R-subalebras of S (that is,
the set of rings T such that R ⊆ T ⊆ S), by (R : S) = {x ∈ R : xS ⊆ R} the conductor of R in S. In particular, if
[R,S] = {R,S}, we say that R ⊂ S is a minimal extension [6,9]. Recall from [1] that a ring extension R ⊂ S is
said to have (or to satisfy) FIP (for the ”finitely many intermediate algebras property”) if [R,S] is finite. The
initial work on the FIP property in [1] was motivated in part by a desire to generalize the Primitive Element
Theorem, a classical result in field theory: If K ⊂ L is a finite-dimensional field extension, L = K[α] for some
element α ∈ L if and only if [K,L] is finite. One example of a FIP extension would be any minimal ring
extension , and whenever that condition holds, then S = R[x] for each x ∈ S\R. The key connection between
the above ideas is that if a ring extension R ⊂ S has FIP, then any maximal chain R = R0 ⊂ R1 ⊂ . . . ⊂ Rn = S
is finite and results from juxtaposing n minimal extensions Ri ⊂ Ri+1, 0 ≤ i ≤ n − 1. The FIP property was
introduced and studied in [1] and, along with various related properties, has been treated in many other
papers [2–5, 8–11]. In particular, Section 3 of [1] was devoted to the study of ring extension R ⊂ S satisfying
FIP when R is a field. That work culminated in [1, Theorem 3.8] which gave a generalization of the Primitive
Element Theorem. Later, Dobbs et al. in [2] completed this study in the case where R is replaced by an
arbitrary Artinian reduced ring (cf. [2, Theorem III.2] and [2, Theorem III.5]). The present paper heavily
relies on [1] and [2]; we will freely use the characterizations of the FIP extensions that were given there.
The plan of this article is as follows: Section 2 was central to the work in [1, Section 3] and that led to the
above-mentioned generalizations of the classical Primitive Element. The main result is the following: Let
R be an infinite ring all of whose residue class fields are infinite and let R ⊂ S be an extension such that S/C

2010 Mathematics Subject Classification. Primary 13B02; Secondary 13A15, 13B21, 13B25, 13E05, 13E10
Keywords. FIP property, ring extension, intermediate ring, minimal ring extension, integral, nilpotent element
Received: 12 August 2018; Accepted: 11 December 2019
Communicated by Dragan S. Djordjević
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is a reduced ring, where C = (R : S). Then R ⊂ S has FIP if and only if R/C is an Artinian ring and S = R[α]
for some α ∈ S where α is algebraic over R. (Recall that a ring is said to be reduced if it has no nonzero
nilpotent elements). As a consequence, we recover the result obtained by Anderson et al. in [1, Lemma 3.5].

Section 3 studies when FIP holds for ring extensions R ⊂ S such that S = R[α], where α is a nilpotent
element. We establish some necessary and sufficient conditions for which a ring extension of this form has
FIP. The first of these appears in Theorem 3.4 which states: Let R be a reduced ring and assume that S = R[α]
where α is a nilpotent element of S. Suppose that R/(R : S) is an infinite ring. Then R ⊂ S is a minimal
extension if and only if (R : S) ∈Max(R) and α2

∈ (R : S). Also, we obtain a characterization of [R,S] which
satisfies FIP, in term of finite maximal chains. We present the following result in Theorem 3.5: If S = R[α]
where α ∈ S satisfies α2 = 0, then R ⊂ S has FIP if and only if there exists a finite maximal chain from R to
S. As consequence of this result, we establish that if S = R[α] where α2 = 0 and (R : S) is a maximal ideal
of R or R has only finitely many ideals, then R ⊂ S has FIP. Another context for which we find a complete
answer is given in Theorem 3.9: If R is a infinite domain and S = R[α, β], where α2 = β2 = 0. Then R ⊂ S has
FIP if and only if there exists a finite maximal chain from R to S and either S = R[α] or S = R[β].
Finally, any unexplained terminology is standard as in [12] and [13].

2. A generalized Primitive Element Theorem

Consider a ring extension R ⊂ S that has FIP. Recall from [1, Proposition 2.2 (a), (b)] that S must be
a finite-type R-algebra and algebraic over R. Moreover, in case R contains an infinite field, we have that
S = R[α] for some α ∈ S that is algebraic over R (cf. [1, Corollary 3.2] and [1, Lemma 3.5]). Our primary
interest in this section is to complete this study, we generalize the last cited results.

Proposition 2.1. Let R ⊂ S be an extension of rings such that:

(i) R/C is a finite ring, where C = (R : S);

(ii) S = R[α] for some α ∈ S.

Then R ⊂ S has FIP if and only if α is integral over R.

Proof. For the ”only if” part, since R/C is a finite ring, we have dim(R/C) = 0 (the Krull dimension of R/C).
Moreover, as R ⊂ S has FIP, then so is R/C ⊂ S/C [2, Proposition II.4]. It follows from [1,Proposition 3.4 (b)]
that S/C is integral over R/C. Whence, S is integral over R, in particular α is integral over R. Conversely, we
assume that α is integral over R, then S/C = (R/C)[α] where α = α+ C ∈ S/C is integral over R/C. Thus, S/C
is a finitely generated R/C-module and since R/C is a finite ring, hence S/C is also finite. Then, R/C ⊂ S/C
has FIP. This prove that R ⊂ S has FIP.

Corollary 2.2. If S = Z[α] where α ∈ S is integral over Z, then Z ⊂ S has FIP if and only if (Z : S) , 0.

Proof. Suppose thatZ ⊂ S has FIP and assume, by way of contradiction, that (Z : S) = 0. Since S is a finitely
generated Z-module and each non unit of Z is a non-zero-divisor of Z, then [3, Theorem 2.1] ensures that
there exists a infinite chain of intermediate rings between Z and S. This contradicts the fact that Z ⊂ S has
FIP. Conversely, it suffice to notice that since (Z : S) , 0, then Z/(Z : S) is finite. Hence, the result follows
from Proposition 2.1.

To prove our main result, Theorem 2.4, we need the following lemma.

Lemma 2.3. Let R ⊂ S be an extension of rings. Denote C = (R : S). If R ⊂ S has FIP, then R/C is a reduced ring if
and only if C is the intersection of finitely many maximal ideals of R.
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Proof. It is clear that if C is the intersection of finitely many maximal ideals of R, then R/C is a finite direct
sum of fields. Thus R/C is a reduced ring. Conversely, because R ⊂ S has FIP, hence R ⊂ S has FCP (in
the sense of [4]). It follows from [4, Theorem 4.2] that R/C is a Artinian ring. Since R/C is a reduced
Artinian ring, Wedderburn-Artin Theory (cf. [13, Theorem 3, page 209]) expresses R/C uniquely as the
internal direct product of finitely many fields Ki, that is, R/C = K1 × . . .×Kn. Let Max(R/C) = {N1, . . . ,Nn} =
{M1/C, . . . ,Mn/C}, where Mi ∈ Max(R) and C ⊆ Mi for each i = 1, . . . ,n. As N1 ∩ . . . ∩ Nn = 0, then
(M1/C) ∩ . . . ∩ (Mn/C) = (M1 ∩ . . . ∩Mn)/C = 0. Thus C = M1 ∩ . . . ∩Mn.

Theorem 2.4 below provides a generalization of the Primitive Element Theorem.

Theorem 2.4. Let R be an infinite ring all of whose residue class fields are infinite. Let R ⊂ S be an extension such
that S/C is a reduced ring, where C = (R : S). Then R ⊂ S has FIP if and only if R/C is an Artinian ring and
S = R[α] for some α ∈ S where α is algebraic over R.

Proof. Notice by [2, Proposition II.4] that R ⊂ S has FIP if and only if R/C ⊂ S/C has FIP. For the “only
if” part, since S/C is a reduced ring, then R/C is also a reduced ring. It follows from Lemma 2.3 that
C =
⋂n

i=1 Mi, where Mi ∈ Max(R) for each i. By the Chinese Remainder Theorem, R/C = K1 × . . . × Kn such
that Ki is a infinite field for each i, and hence R/C is an Artinian ring. It remains to prove that S = R[α]
for some α ∈ S. By virtue of [4, Proposition 3.7 (d)], we can identify S/C with S1 × . . . × Sn such that
Ki ⊆ Si and R/C ⊂ S/C satisfies FIP if and only if Ki ⊂ Si satisfies FIP for each i. Notice that since S/C
is a reduced ring, then so is Si. Then, we conclude form [1, Lemma 3.5] that R/C ⊂ S/C satisfies FIP if
and only if Si = Ki[βi] where βi ∈ Si for each i. Denote β = (β1, β2, . . . , βn), then it is easy to verify that
K1[β1] × . . . × Kn[βn] � (K1 × . . . × Kn)[(β1, . . . , βn)] = R/C[β]. Therefore, R/C ⊂ S/C satisfies FIP if and only if
S/C = R/C[β], where β is algebraic over R/C. This implies that R ⊂ S satisfies FIP if and only if S = R[α] for
some α ∈ S which is algebraic over R and satisfies α = α + C = β.

For the “if” part, assume that S = R[α] for some α ∈ S where α is algebraic over R and R/C is an Artinian
ring. Since, in addition, R/C is reduced, hence Wedderburn-Artin Theory (cf. [13, Theorem 3, page 209])
expresses R/C uniquely as the internal direct product of finitely many fields Ki, that is, R/C = K1 × . . .×Kn.
Again [4, Proposition 3.7 (d)], the ring S/C can be uniquely expressed as a product of rings S1 × . . . Sn where
Ki ⊆ Si for each i ∈ {1, . . . ,n}. Moreover, since S/C = R/C[α] where α = α + C, hence reasoning as in the
proof of the “only if” part, we deduce that Si = Ki[βi] where α = (β1, . . . , βn) and βi is algebraic over Ki.
Hence, if Ki is a finite field, then Si is a finite Ki-vector space. Then, Si is finite and so Ki ⊆ Si has FIP. Now, if
Ki is infinite field, then [1, Lemma 3.5] ensures that Ki ⊆ Si has FIP. By globalization, we deduce that Ki ⊆ Si
has FIP for each i ∈ {1, . . . ,n}. Then, R/C ⊆ S/C has FIP [4, Proposition 3.7 (d)]. Finally, according to [2,
Proposition II.4], we conclude that R ⊂ S has FIP, which completes the proof.

In view of Theorem 2.4, the “if” implication is valid, for if R/C is an Artinian ring. The following example
will show that the hypothesis “R/C is an Artinian ring” cannot be omitted in the above theorem .

Example 2.5. Let R be an infinite-dimensional valuation domain with a height 1 prime ideal P. Pick α ∈ P where
α , 0 and set S = q f (R) the quotient field of R. It is clear that C = (R : S) = 0, and hence R/C � R is not Artinian.
Also S/C � S is a reduced ring. On the other hand, [12, Theorem 19] ensures that S = R[α−1]. But R ⊂ S does not
have FIP since {Rp, p ∈ Spec(R)} is an infinite set of intermediate rings between R and q f (R).

Corollary 2.6. ([1, Lemma 3.5]) Let R be an infinite field, and let R ⊂ S be an extension such that S is a reduced
ring. Then R ⊂ S has FIP if and only if S = R[α] for some α ∈ S such that α is algebraic over R.

Proof. Since R is quasi-local with maximal ideal 0, then R/0 � R is infinite. Moreover, as (R : S) = 0, hence
S/(R : S) � S is a reduced ring. Therefore, the conclusion follows readily from Theorem 2.4.

3. When the generator is a nilpotent element

Consider a ring extension R ⊂ S. In view of the central role that nilpotent elements have played in
the study of the FIP property for a ring extension (cf. [1, Theorem 3.8] and Section IV of [2]), we devote
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this section to completing this study and to investigating when R ⊂ S has FIP where S = R[α] with α is a
nilpotent element of S. We begin with two results giving useful sufficient conditions for FIP to fail.

Proposition 3.1. Let R ⊂ S be a ring extension such that S = R[α] where α is a nilpotent element of S. If
(R : S) ∈ Spec(R) \Max(R), then R ⊂ S does not have FIP.

Proof. Since (R : S) ∈ Spec(R) \ Max(R), then R/(R : S) is a integral domain (not a field), and we have
S/(R : S) = (R/(R : S))[α] where α = α + (R : S). We prove that (0 : α) = {r ∈ R/(R : S)|r.α = 0} = 0. Let
r ∈ R/(R : S) such that r.α = 0, hence rα = 0. It follows that rα ∈ (R : S). As (R : S) is a prime ideal of R
and α < (R : S), we conclude that r ∈ (R : S). This implies that r = 0, and so (0 : α) = 0. According to [2,
Proposition IV.1], we have that R/(R : S) ⊂ S/(R : S) does not have FIP, and so is R ⊂ S.

The following result is a generalization of [2, Proposition IV.1].

Corollary 3.2. Let R be an integral domain that is not a field, and R ⊂ S such that S = R[α] where α is a nilpotent
element of S. If (R : S) = 0, then R ⊂ S does not have FIP.

Proposition 3.3. Let R ⊂ S be an extension such that S = R[α] where α is a nilpotent element of S. Denote
C = (R : S). If C ∈Max(R), then R ⊂ S has FIP if and only if R/C is finite or R/C is an infinite field and α3

∈ C.

Proof. Notice by [2, Proposition II.4] that R ⊂ S has FIP if and only if R/C ⊂ S/C has FIP. We have
S/C = R/C[α] where α = α + C. If R/C is finite, then S/C is also finite since S/C is a R/C-vector space. Thus
R/C ⊂ S/C has FIP, and so is R ⊂ S. Now, if R/C is a infinite field, then [1, Lemma 3.6 (b)] ensures that
R/C ⊂ S/C has FIP if and only if α3 = 0, that is, R ⊂ S has FIP if and only if α3

∈ C.

The following result is a characterization of minimal extensions where S is the form R[α] for some nilpotent
element α ∈ S.

Theorem 3.4. Let R be a reduced ring and let S = R[α] where α is a nilpotent element of S. Suppose that R/(R : S)
is a infinite ring. Then R ⊂ S is a minimal extension if and only if (R : S) ∈Max(R) and α2

∈ (R : S).

Proof. If R ⊂ S is a minimal (integral) extension, then C = (R : S) ∈ Max(R) and from Proposition 3.3 we
have α3

∈ C. It follows that R/C is a infinite field and S/C = R/C[α] where α = α + C, and so α3 = 0.
Hence, the proof of [1, Lemma 3.6 (b)] shows that [R/C,S/C] = {R/C,R/C[α2],S/C = R/C[α]}. Moreover,
R/C ⊂ S/C is a minimal extension since R ⊂ S is a minimal extension, we conclude that either R/C = R/C[α2]
or R/C[α2] = R/C[α]. Then, either R = R[α2] or R[α2] = R[α]. Suppose that R[α2] = R[α] and let n(≥ 2)
be the index of nilpotency for α. Hence, α = r0 + r1α2 + r2α4 + . . . + rn−1α2(n−1), for some r0, r1 . . . , rn−1 ∈ R.
Thus, r0 = α − (r1α2 + r2α4 + . . . + rn−1α2(n−1)) is a nilpotent element, and so r0 = 0 since R is reduced.
This implies that α = α(r1α + r2α3 + . . . + rn−1α2n−3), hence (r1α + r2α3 + . . . + rnα2n−3) = 1, a contradiction
since (r1α + r2α3 + . . . + rnα2n−3) is a nilpotent element. Therefore, R = R[α2], and hence α2

∈ R. Now, we
prove that α2

∈ C. Let x ∈ S, then x = a0 + a1α + a2α2 + . . . + an−1αn−1 for some a0, a1, . . . , an−1 ∈ R. Hence,
α2x = a0α2 +a1α3 +a2α5 + . . .+an−1αn+1. Notice that any power of α is a product of a power of α2 and a power
of α3. As α2, α3

∈ R, it follows that α2x ∈ R, and hence α2
∈ C. Conversely, since α2

∈ C, then S/C = R/C[α]
where α2 = 0. As, in addition, R/C is a infinite field since C is a maximal ideal of R, then the end of the
proof of [1, Lemma 3.6 (b)] ensures that R/C ⊂ S/C is a minimal extension, this implies that R ⊂ S is also a
minimal extension [9, Corollary 1.4].

We are now in position to give a characterization of [R,S] which satisfies FIP, in term of finite maximal
chains.

Theorem 3.5. If R ⊂ S is an extension of rings such that S = R[α] where α2 = 0, then the following conditions are
equivalent:

(i) R ⊂ S has FIP;

(ii) There exists a finite maximal chain from R to S.
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Proof. (i)⇒ (ii) The result is clear since the condition ”R ⊂ S has FIP”, implies that any maximal chain from
R to S is finite.

(ii) ⇒ (i) Since S = R + Rα, therefore [7, Proposition 4.12] gives a bijection between [R,S] and the set
of ideals of R containing C = (R : S). On the other hand, by assumption, there is a finite maximal chain
R = R0 ⊂ R1 ⊂ . . . ⊂ Rn = S in [R,S]. For each i = 0, . . . ,n − 1, denote Ci = (Ri : Ri+1) and mi = Ci ∩ R. Since
Ri ⊂ Ri+1 is both minimal and integral, hence Ci ∈ Max(Ri) and so mi ∈ Max(R) [6, Thorme 2.2]. Moreover,
it is clear that C ⊆ Ci for each i, thus C ⊆

⋂n−1
i=0 mi. By iteration, we get

(
n−1∏
i=0

mi)Rn ⊆ (
n−2∏
i=0

mi)Rn−1 ⊆ . . . ⊆ m0R1 ⊆ R.

Then,
∏n−1

i=0 mi ⊆ C ⊆
⋂n−1

i=0 mi. Hence, the mi are precisely the uniquely ideals of R containing C. Therefore,
|[R,S]| = |{mi | i = 0, . . . ,n − 1}|, this prove that R ⊂ S has FIP.

The proof of Theorem 3.5 established the following result.

Proposition 3.6. Let R ⊂ S be a ring extension such that S = R[α] where α2 = 0. If (R : S) is a maximal ideal
of R or R has only finitely many ideals, then R ⊂ S has FIP. Moreover, R ⊂ S is a minimal extension if and only if
(R : S) ∈Max(R).

Remark 3.7. If S = R[α] where α is a nilpotent element of S of index n , 2, then Theorem 3.5 does not follow
in general. For instance, let R be any infinite field K of characteristic 2 and take S = K[X]/(X4) = K[x] where
x = X + (X4) and x4 = 0. Then, {1, x, x2, x3

} is a K-vector space basis of S. As dimK(S) < ∞, then any maximal chain
of intermediate rings between K and S is finite, while the failure to satisfy FIP can be seen by applying [1, Lemma
3.6(a)].

We next give the following lemma which be used often later. Lemma 3.8 provides a generalization of [1,
Lemma 2.6 (c)].

Lemma 3.8. Let R ⊂ S be an extension. If R is infinite domain and R ⊂ S has FIP, then S does not contain two
nilpotent elements of index 2 which are algebraically independent over R.

Proof. If the assertion fails, S contains two nilpotent elements α and β of index 2 which are algebraically
independent over R. We consider two cases:

Case.1. αβ = 0, then {1, α, β} is a basis of R[α, β] as a finitely generated R-module. For each r ∈ R,
consider Tr = {a + bα + rbβ : a, b ∈ R}. It is clear that R ⊆ Tr ⊆ S for each r. Moreover, since α and β are
nilpotent elements of index 2, on easy verifies that each Tr is a ring. Also, Tr , Tr′ for each r , r′. Indeed,
if Tr = Tr′ then α + rβ = a0 + b0α + r′b0β for some a0, b0 ∈ R. Since {1, α, β} is a basis of R[α, β], it follows that
a0 = 0, b0 = 1 and r = b0r′. This yields that r = r′. Since R is infinite, {Tr, r ∈ R} is an infinite collection of
intermediate rings between R and S, contradicting that R ⊂ S has FIP.

Case.2. αβ , 0. First, suppose that αβ is algebraically independent with α and β over R, then {1, α, β, αβ}
is a basis of R[α, β] as a finitely generated R-module. For each r ∈ R, consider Tr = {a + bα + rbαβ : a, b ∈ R}.
Reasoning as in the first case, we show that {Tr, r ∈ R} describes an infinite family of rings, contradicting that
R ⊂ S has FIP. In the remaining case, αβ = r0α + r1β where r0, r1 ∈ R. Let r ∈ R, consider Tr = {a + rbα + rcβ :
a, b, c ∈ R such that b , c}. Then, Tr is intermediate ring between R and S. Moreover, Tr , Tr′ for each r , r′.
Indeed, if rα + rβ = a0 + r′b0α + r′c0β for some a0, b0, c0 ∈ R where b0 , c0. Since {1, α, β} is a basis of R[α, β]
as a finitely generated R-module, then a0 = 0 and r = r′b0 = r′c0. Because R is integral domain, it follows
that b0 = c0, the desired contradiction. Therefore, {Tr, r ∈ R} is an infinite collection of intermediate rings
between R and S, contradicting that R ⊂ S has FIP.

Again, by combining Lemma 3.8 and Theorem 3.5, we obtain directly another characterization of [R,S]
which satisfies FIP where S = R[α, β] and α2 = β2 = 0:
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Theorem 3.9. Let R ⊂ S be an extension such that R is infinite domain and S = R[α, β], where α2 = β2 = 0. Then
R ⊂ S has FIP if and only if there exists a finite maximal chain from R to S and either S = R[α] or S = R[β].

We close this section by the following proposition.

Proposition 3.10. Let R = R1 × . . . × Rn be a finite product of rings and let R ⊂ S be a ring extension. Using [2,
Lemma III.3], identify S with S1 × . . . × Sn. For each i ∈ {1 . . . ,n}, consider the following three conditions (which
depend on i):

1. Ri is finite and Si is a finitely generated Ri-module;
2. Ri is infinite ring all of whose residue class fields are infinite, Si/Ci is a reduced ring where Ci = (Ri : Si), Ri/Ci

is Artinian and Si = Ri[αi] for some αi ∈ Si which is algebraic over Ri.
3. Ri is infinite, (Ri : Si) ∈Max(Ri) and Si = Ri[αi] for some αi ∈ Si which satisfies α3

i ∈ (Ri : Si).

If for each i ∈ {1, . . . ,n}, at least one of the conditions (1), (2), (3) holds, then R ⊂ S has FIP.

Proof. Combine [2, Proposition III.4 (a)] with [4, Proposition 5.1], Theorem 2.4 and Proposition 3.3 .
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