Filomat 33:19 (2019), 6213–6218 https://doi.org/10.2298/FIL1919213B



Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

# A Note on the FIP Property for Extensions of Commutative Rings

## Mabrouk Ben Nasr<sup>a</sup>, Nabil Zeidi<sup>a</sup>

<sup>a</sup>Faculty of Sciences, Department of Mathematics, Sfax University. B.P. 1171. 3000 Sfax, Tunisia

**Abstract.** A ring extension  $R \subset S$  is said to be FIP if it has only finitely many intermediate rings between R and S. The main purpose of this paper is to characterize the FIP property for a ring extension, where R is not (necessarily) an integral domain and S may not be an integral domain. Precisely, we establish a generalization of the classical Primitive Element Theorem for an arbitrary ring extension. Also, various sufficient and necessary conditions are given for a ring extension to have or not to have FIP, where  $S = R[\alpha]$  with  $\alpha$  a nilpotent element of S.

## 1. Introduction

All rings considered below are commutative and unital; all inclusions of rings are unital. For a ring R, we frequently use Spec(R) (respectively, Max(R)) to denote the set of all prime (respectively, maximal) ideals of R. If  $R \subset S$  is an extension of rings, we will denote by [R, S] the set of all R-subalebras of S (that is, the set of rings T such that  $R \subseteq T \subseteq S$ , by  $(R:S) = \{x \in R : xS \subseteq R\}$  the conductor of R in S. In particular, if  $[R, S] = \{R, S\}$ , we say that  $R \subset S$  is a minimal extension [6,9]. Recall from [1] that a ring extension  $R \subset S$  is said to have (or to satisfy) FIP (for the "finitely many intermediate algebras property") if [R, S] is finite. The initial work on the FIP property in [1] was motivated in part by a desire to generalize the Primitive Element Theorem, a classical result in field theory: If  $K \subset L$  is a finite-dimensional field extension,  $L = K[\alpha]$  for some element  $\alpha \in L$  if and only if [K, L] is finite. One example of a FIP extension would be any minimal ring extension , and whenever that condition holds, then S = R[x] for each  $x \in S \setminus R$ . The key connection between the above ideas is that if a ring extension  $R \subset S$  has FIP, then any maximal chain  $R = R_0 \subset R_1 \subset ... \subset R_n = S$ is finite and results from juxtaposing n minimal extensions  $R_i \subset R_{i+1}$ ,  $0 \le i \le n-1$ . The FIP property was introduced and studied in [1] and, along with various related properties, has been treated in many other papers [2–5, 8–11]. In particular, Section 3 of [1] was devoted to the study of ring extension  $R \subset S$  satisfying FIP when R is a field. That work culminated in [1, Theorem 3.8] which gave a generalization of the Primitive Element Theorem. Later, Dobbs et al. in [2] completed this study in the case where R is replaced by an arbitrary Artinian reduced ring (cf. [2, Theorem III.2] and [2, Theorem III.5]). The present paper heavily relies on [1] and [2]; we will freely use the characterizations of the FIP extensions that were given there. The plan of this article is as follows: Section 2 was central to the work in [1, Section 3] and that led to the above-mentioned generalizations of the classical Primitive Element. The main result is the following: Let *R* be an infinite ring all of whose residue class fields are infinite and let  $R \subset S$  be an extension such that S/C

<sup>2010</sup> Mathematics Subject Classification. Primary 13B02; Secondary 13A15, 13B21, 13B25, 13E05, 13E10

Keywords. FIP property, ring extension, intermediate ring, minimal ring extension, integral, nilpotent element

Received: 12 August 2018; Accepted: 11 December 2019

Communicated by Dragan S. Djordjević

*Email addresses:* mabrouk\_bennasr@yahoo.fr (Mabrouk Ben Nasr), zeidi.nabil@gmail.com; zeidi\_nabil@yahoo.com (Nabil Zeidi)

is a reduced ring, where C = (R : S). Then  $R \subset S$  has FIP if and only if R/C is an Artinian ring and  $S = R[\alpha]$  for some  $\alpha \in S$  where  $\alpha$  is algebraic over R. (Recall that a ring is said to be reduced if it has no nonzero nilpotent elements). As a consequence, we recover the result obtained by Anderson et al. in [1, Lemma 3.5].

Section 3 studies when FIP holds for ring extensions  $R \,\subset S$  such that  $S = R[\alpha]$ , where  $\alpha$  is a nilpotent element. We establish some necessary and sufficient conditions for which a ring extension of this form has FIP. The first of these appears in Theorem 3.4 which states: Let R be a reduced ring and assume that  $S = R[\alpha]$  where  $\alpha$  is a nilpotent element of S. Suppose that R/(R : S) is an infinite ring. Then  $R \subset S$  is a minimal extension if and only if  $(R : S) \in Max(R)$  and  $\alpha^2 \in (R : S)$ . Also, we obtain a characterization of [R, S] which satisfies FIP, in term of finite maximal chains. We present the following result in Theorem 3.5: If  $S = R[\alpha]$  where  $\alpha \in S$  satisfies  $\alpha^2 = 0$ , then  $R \subset S$  has FIP if and only if there exists a finite maximal chain from R to S. As consequence of this result, we establish that if  $S = R[\alpha]$  where  $\alpha^2 = 0$  and (R : S) is a maximal ideal of R or R has only finitely many ideals, then  $R \subset S$  has FIP. Another context for which we find a complete answer is given in Theorem 3.9: If R is a infinite domain and  $S = R[\alpha, \beta]$ , where  $\alpha^2 = \beta^2 = 0$ . Then  $R \subset S$  has FIP if and only if there exists a finite maximal ideal of R or R has only finitely many ideals, then  $R \subset S$  has FIP. Another context for which we find a complete answer is given in Theorem 3.9: If R is a infinite domain and  $S = R[\alpha, \beta]$ , where  $\alpha^2 = \beta^2 = 0$ . Then  $R \subset S$  has FIP if and only if there exists a finite maximal chain from R to S and either  $S = R[\alpha]$  or  $S = R[\beta]$ . Finally, any unexplained terminology is standard as in [12] and [13].

### 2. A generalized Primitive Element Theorem

Consider a ring extension  $R \subset S$  that has FIP. Recall from [1, Proposition 2.2 (a), (b)] that *S* must be a finite-type *R*-algebra and algebraic over *R*. Moreover, in case *R* contains an infinite field, we have that  $S = R[\alpha]$  for some  $\alpha \in S$  that is algebraic over *R* (cf. [1, Corollary 3.2] and [1, Lemma 3.5]). Our primary interest in this section is to complete this study, we generalize the last cited results.

**Proposition 2.1.** *Let*  $R \subset S$  *be an extension of rings such that:* 

- (*i*) R/C is a finite ring, where C = (R : S);
- (*ii*)  $S = R[\alpha]$  for some  $\alpha \in S$ .

*Then*  $R \subset S$  *has FIP if and only if*  $\alpha$  *is integral over* R*.* 

*Proof.* For the "only if" part, since R/C is a finite ring, we have dim(R/C) = 0 (the Krull dimension of R/C). Moreover, as  $R \subset S$  has FIP, then so is  $R/C \subset S/C$  [2, Proposition II.4]. It follows from [1,Proposition 3.4 (b)] that S/C is integral over R/C. Whence, S is integral over R, in particular  $\alpha$  is integral over R. Conversely, we assume that  $\alpha$  is integral over R, then  $S/C = (R/C)[\overline{\alpha}]$  where  $\overline{\alpha} = \alpha + C \in S/C$  is integral over R/C. Thus, S/C is a finitely generated R/C-module and since R/C is a finite ring, hence S/C is also finite. Then,  $R/C \subset S/C$  has FIP. This prove that  $R \subset S$  has FIP.

**Corollary 2.2.** If  $S = \mathbb{Z}[\alpha]$  where  $\alpha \in S$  is integral over  $\mathbb{Z}$ , then  $\mathbb{Z} \subset S$  has FIP if and only if  $(\mathbb{Z} : S) \neq 0$ .

*Proof.* Suppose that  $\mathbb{Z} \subset S$  has FIP and assume, by way of contradiction, that ( $\mathbb{Z} : S$ ) = 0. Since *S* is a finitely generated  $\mathbb{Z}$ -module and each non unit of  $\mathbb{Z}$  is a non-zero-divisor of  $\mathbb{Z}$ , then [3, Theorem 2.1] ensures that there exists a infinite chain of intermediate rings between  $\mathbb{Z}$  and *S*. This contradicts the fact that  $\mathbb{Z} \subset S$  has FIP. Conversely, it suffice to notice that since ( $\mathbb{Z} : S$ )  $\neq 0$ , then  $\mathbb{Z}/(\mathbb{Z} : S)$  is finite. Hence, the result follows from Proposition 2.1.  $\Box$ 

To prove our main result, Theorem 2.4, we need the following lemma.

**Lemma 2.3.** Let  $R \subset S$  be an extension of rings. Denote C = (R : S). If  $R \subset S$  has FIP, then R/C is a reduced ring if and only if C is the intersection of finitely many maximal ideals of R.

*Proof.* It is clear that if *C* is the intersection of finitely many maximal ideals of *R*, then *R*/*C* is a finite direct sum of fields. Thus *R*/*C* is a reduced ring. Conversely, because  $R \,\subset S$  has FIP, hence  $R \,\subset S$  has FCP (in the sense of [4]). It follows from [4, Theorem 4.2] that *R*/*C* is a Artinian ring. Since *R*/*C* is a reduced Artinian ring, Wedderburn-Artin Theory (cf. [13, Theorem 3, page 209]) expresses *R*/*C* uniquely as the internal direct product of finitely many fields  $K_i$ , that is,  $R/C = K_1 \times \ldots \times K_n$ . Let  $Max(R/C) = \{N_1, \ldots, N_n\} = \{M_1/C, \ldots, M_n/C\}$ , where  $M_i \in Max(R)$  and  $C \subseteq M_i$  for each  $i = 1, \ldots, n$ . As  $N_1 \cap \ldots \cap N_n = 0$ , then  $(M_1/C) \cap \ldots \cap (M_n/C) = (M_1 \cap \ldots \cap M_n)/C = 0$ . Thus  $C = M_1 \cap \ldots \cap M_n$ .

Theorem 2.4 below provides a generalization of the Primitive Element Theorem.

**Theorem 2.4.** Let R be an infinite ring all of whose residue class fields are infinite. Let  $R \subset S$  be an extension such that S/C is a reduced ring, where C = (R : S). Then  $R \subset S$  has FIP if and only if R/C is an Artinian ring and  $S = R[\alpha]$  for some  $\alpha \in S$  where  $\alpha$  is algebraic over R.

*Proof.* Notice by [2, Proposition II.4] that  $R \,\subset S$  has FIP if and only if  $R/C \,\subset S/C$  has FIP. For the "only if" part, since S/C is a reduced ring, then R/C is also a reduced ring. It follows from Lemma 2.3 that  $C = \bigcap_{i=1}^{n} M_i$ , where  $M_i \in Max(R)$  for each *i*. By the Chinese Remainder Theorem,  $R/C = K_1 \times \ldots \times K_n$  such that  $K_i$  is a infinite field for each *i*, and hence R/C is an Artinian ring. It remains to prove that  $S = R[\alpha]$  for some  $\alpha \in S$ . By virtue of [4, Proposition 3.7 (d)], we can identify S/C with  $S_1 \times \ldots \times S_n$  such that  $K_i \subseteq S_i$  and  $R/C \subset S/C$  satisfies FIP if and only if  $K_i \subset S_i$  satisfies FIP for each *i*. Notice that since S/C is a reduced ring, then so is  $S_i$ . Then, we conclude form [1, Lemma 3.5] that  $R/C \subset S/C$  satisfies FIP if and only if  $S_i = K_i[\beta_i]$  where  $\beta_i \in S_i$  for each *i*. Denote  $\beta = (\beta_1, \beta_2, \ldots, \beta_n)$ , then it is easy to verify that  $K_1[\beta_1] \times \ldots \times K_n[\beta_n] \cong (K_1 \times \ldots \times K_n)[(\beta_1, \ldots, \beta_n)] = R/C[\beta]$ . Therefore,  $R/C \subset S/C$  satisfies FIP if and only if  $S = R[\alpha]$  for some  $\alpha \in S$  which is algebraic over R/C. This implies that  $R \subset S$  satisfies FIP if and only if  $S = R[\alpha]$  for some  $\alpha \in S$  which is algebraic over R and satisfies  $\overline{\alpha} = \alpha + C = \beta$ .

For the "if" part, assume that  $S = R[\alpha]$  for some  $\alpha \in S$  where  $\alpha$  is algebraic over R and R/C is an Artinian ring. Since, in addition, R/C is reduced, hence Wedderburn-Artin Theory (cf. [13, Theorem 3, page 209]) expresses R/C uniquely as the internal direct product of finitely many fields  $K_i$ , that is,  $R/C = K_1 \times \ldots \times K_n$ . Again [4, Proposition 3.7 (d)], the ring S/C can be uniquely expressed as a product of rings  $S_1 \times \ldots \times S_n$  where  $K_i \subseteq S_i$  for each  $i \in \{1, \ldots, n\}$ . Moreover, since  $S/C = R/C[\overline{\alpha}]$  where  $\overline{\alpha} = \alpha + C$ , hence reasoning as in the proof of the "only if" part, we deduce that  $S_i = K_i[\beta_i]$  where  $\overline{\alpha} = (\beta_1, \ldots, \beta_n)$  and  $\beta_i$  is algebraic over  $K_i$ . Hence, if  $K_i$  is a finite field, then  $S_i$  is a finite  $K_i$ -vector space. Then,  $S_i$  is finite and so  $K_i \subseteq S_i$  has FIP. Now, if  $K_i$  is infinite field, then [1, Lemma 3.5] ensures that  $K_i \subseteq S_i$  has FIP. By globalization, we deduce that  $K_i \subseteq S_i$  has FIP for each  $i \in \{1, \ldots, n\}$ . Then,  $R/C \subseteq S/C$  has FIP [4, Proposition 3.7 (d)]. Finally, according to [2, Proposition II.4], we conclude that  $R \subset S$  has FIP, which completes the proof.  $\Box$ 

In view of Theorem 2.4, the "if" implication is valid, for if R/C is an Artinian ring. The following example will show that the hypothesis "R/C is an Artinian ring" cannot be omitted in the above theorem .

**Example 2.5.** Let *R* be an infinite-dimensional valuation domain with a height 1 prime ideal *P*. Pick  $\alpha \in P$  where  $\alpha \neq 0$  and set S = qf(R) the quotient field of *R*. It is clear that C = (R : S) = 0, and hence  $R/C \cong R$  is not Artinian. Also  $S/C \cong S$  is a reduced ring. On the other hand, [12, Theorem 19] ensures that  $S = R[\alpha^{-1}]$ . But  $R \subset S$  does not have FIP since  $\{R_p, p \in \text{Spec}(R)\}$  is an infinite set of intermediate rings between *R* and qf(R).

**Corollary 2.6.** ([1, Lemma 3.5]) Let R be an infinite field, and let  $R \subset S$  be an extension such that S is a reduced ring. Then  $R \subset S$  has FIP if and only if  $S = R[\alpha]$  for some  $\alpha \in S$  such that  $\alpha$  is algebraic over R.

*Proof.* Since *R* is quasi-local with maximal ideal 0, then  $R/0 \cong R$  is infinite. Moreover, as (R : S) = 0, hence  $S/(R : S) \cong S$  is a reduced ring. Therefore, the conclusion follows readily from Theorem 2.4.  $\Box$ 

#### 3. When the generator is a nilpotent element

Consider a ring extension  $R \subset S$ . In view of the central role that nilpotent elements have played in the study of the FIP property for a ring extension (cf. [1, Theorem 3.8] and Section IV of [2]), we devote

this section to completing this study and to investigating when  $R \subset S$  has FIP where  $S = R[\alpha]$  with  $\alpha$  is a nilpotent element of *S*. We begin with two results giving useful sufficient conditions for FIP to fail.

**Proposition 3.1.** Let  $R \subset S$  be a ring extension such that  $S = R[\alpha]$  where  $\alpha$  is a nilpotent element of S. If  $(R : S) \in \text{Spec}(R) \setminus \text{Max}(R)$ , then  $R \subset S$  does not have FIP.

*Proof.* Since  $(R : S) \in \text{Spec}(R) \setminus \text{Max}(R)$ , then R/(R : S) is a integral domain (not a field), and we have  $S/(R : S) = (R/(R : S))[\overline{\alpha}]$  where  $\overline{\alpha} = \alpha + (R : S)$ . We prove that  $(0 : \overline{\alpha}) = \{\overline{r} \in R/(R : S) | \overline{r}.\overline{\alpha} = 0\} = 0$ . Let  $\overline{r} \in R/(R : S)$  such that  $\overline{r}.\overline{\alpha} = 0$ , hence  $\overline{r\alpha} = 0$ . It follows that  $r\alpha \in (R : S)$ . As (R : S) is a prime ideal of R and  $\alpha \notin (R : S)$ , we conclude that  $r \in (R : S)$ . This implies that  $\overline{r} = 0$ , and so  $(0 : \overline{\alpha}) = 0$ . According to [2, Proposition IV.1], we have that  $R/(R : S) \subset S/(R : S)$  does not have FIP, and so is  $R \subset S$ .

The following result is a generalization of [2, Proposition IV.1].

**Corollary 3.2.** Let *R* be an integral domain that is not a field, and  $R \subset S$  such that  $S = R[\alpha]$  where  $\alpha$  is a nilpotent element of *S*. If (R : S) = 0, then  $R \subset S$  does not have FIP.

**Proposition 3.3.** Let  $R \subset S$  be an extension such that  $S = R[\alpha]$  where  $\alpha$  is a nilpotent element of S. Denote C = (R : S). If  $C \in Max(R)$ , then  $R \subset S$  has FIP if and only if R/C is finite or R/C is an infinite field and  $\alpha^3 \in C$ .

*Proof.* Notice by [2, Proposition II.4] that  $R \subset S$  has FIP if and only if  $R/C \subset S/C$  has FIP. We have  $S/C = R/C[\overline{\alpha}]$  where  $\overline{\alpha} = \alpha + C$ . If R/C is finite, then S/C is also finite since S/C is a R/C-vector space. Thus  $R/C \subset S/C$  has FIP, and so is  $R \subset S$ . Now, if R/C is a infinite field, then [1, Lemma 3.6 (b)] ensures that  $R/C \subset S/C$  has FIP if and only if  $\overline{\alpha}^3 = 0$ , that is,  $R \subset S$  has FIP if and only if  $\alpha^3 \in C$ .  $\Box$ 

The following result is a characterization of minimal extensions where *S* is the form  $R[\alpha]$  for some nilpotent element  $\alpha \in S$ .

**Theorem 3.4.** Let *R* be a reduced ring and let  $S = R[\alpha]$  where  $\alpha$  is a nilpotent element of *S*. Suppose that R/(R : S) is a infinite ring. Then  $R \subset S$  is a minimal extension if and only if  $(R : S) \in Max(R)$  and  $\alpha^2 \in (R : S)$ .

*Proof.* If *R* ⊂ *S* is a minimal (integral) extension, then *C* = (*R* : *S*) ∈ Max(*R*) and from Proposition 3.3 we have  $\alpha^3 \in C$ . It follows that *R*/*C* is a infinite field and *S*/*C* = *R*/*C*[ $\overline{\alpha}$ ] where  $\overline{\alpha} = \alpha + C$ , and so  $\overline{\alpha}^3 = 0$ . Hence, the proof of [1, Lemma 3.6 (b)] shows that [*R*/*C*, *S*/*C*] = {*R*/*C*, *R*/*C*[ $\overline{\alpha}^2$ ], *S*/*C* = *R*/*C*[ $\overline{\alpha}$ ]}. Moreover, *R*/*C* ⊂ *S*/*C* is a minimal extension since *R* ⊂ *S* is a minimal extension, we conclude that either *R*/*C* = *R*/*C*[ $\overline{\alpha}^2$ ] or *R*/*C*[ $\overline{\alpha}^2$ ] = *R*/*C*[ $\overline{\alpha}$ ]. Then, either *R* = *R*[ $\alpha^2$ ] or *R*[ $\alpha^2$ ] = *R*[ $\alpha$ ]. Suppose that *R*[ $\alpha^2$ ] = *R*[ $\alpha$ ] and let *n*(≥ 2) be the index of nilpotency for  $\alpha$ . Hence,  $\alpha = r_0 + r_1\alpha^2 + r_2\alpha^4 + \ldots + r_{n-1}\alpha^{2(n-1)}$ , for some  $r_0, r_1 \ldots, r_{n-1} \in R$ . Thus,  $r_0 = \alpha - (r_1\alpha^2 + r_2\alpha^4 + \ldots + r_{n-1}\alpha^{2(n-1)})$  is a nilpotent element, and so  $r_0 = 0$  since *R* is reduced. This implies that  $\alpha = \alpha(r_1\alpha + r_2\alpha^3 + \ldots + r_{n-1}\alpha^{2(n-1)})$ , hence ( $r_1\alpha + r_2\alpha^3 + \ldots + r_n\alpha^{2n-3}$ ) = 1, a contradiction since ( $r_1\alpha + r_2\alpha^3 + \ldots + r_n\alpha^{2n-3}$ ) is a nilpotent element. Therefore, *R* = *R*[ $\alpha^2$ ], and hence  $\alpha^2 \in R$ . Now, we prove that  $\alpha^2 \in C$ . Let  $x \in S$ , then  $x = a_0 + a_1\alpha + a_2\alpha^2 + \ldots + a_{n-1}\alpha^{n-1}$  for some  $a_0, a_1, \ldots, a_{n-1} \in R$ . Hence,  $\alpha^2 x = a_0\alpha^2 + a_1\alpha^3 + a_2\alpha^5 + \ldots + a_{n-1}\alpha^{n+1}$ . Notice that any power of  $\alpha$  is a product of a power of  $\alpha^2$  and a power of  $\alpha^3$ . As  $\alpha^2, \alpha^3 \in R$ , it follows that  $\alpha^2 x \in R$ , and hence  $\alpha^2 \in C$ . Conversely, since  $\alpha^2 \in C$ , then *S*/*C* = *R*/*C*[ $\overline{\alpha}$ ] where  $\overline{\alpha}^2 = 0$ . As, in addition, *R*/*C* is a infinite field since *C* is a maximal ideal of *R*, then the end of the proof of [1, Lemma 3.6 (b)] ensures that *R*/*C* ⊂ *S*/*C* is a minimal extension, this implies that *R* ⊂ *S* is also a minimal extension [9, Corollary 1.4].  $\Box$ 

We are now in position to give a characterization of [R, S] which satisfies FIP, in term of finite maximal chains.

**Theorem 3.5.** If  $R \subset S$  is an extension of rings such that  $S = R[\alpha]$  where  $\alpha^2 = 0$ , then the following conditions are equivalent:

- (*i*)  $R \subset S$  has FIP;
- (ii) There exists a finite maximal chain from R to S.

*Proof.* (*i*)  $\Rightarrow$  (*ii*) The result is clear since the condition " $R \subset S$  has FIP", implies that any maximal chain from R to S is finite.

 $(ii) \Rightarrow (i)$  Since  $S = R + R\alpha$ , therefore [7, Proposition 4.12] gives a bijection between [R, S] and the set of ideals of R containing C = (R : S). On the other hand, by assumption, there is a finite maximal chain  $R = R_0 \subset R_1 \subset ... \subset R_n = S$  in [R, S]. For each i = 0, ..., n - 1, denote  $C_i = (R_i : R_{i+1})$  and  $m_i = C_i \cap R$ . Since  $R_i \subset R_{i+1}$  is both minimal and integral, hence  $C_i \in Max(R_i)$  and so  $m_i \in Max(R)$  [6, Thorme 2.2]. Moreover, it is clear that  $C \subseteq C_i$  for each i, thus  $C \subseteq \bigcap_{i=0}^{n-1} m_i$ . By iteration, we get

$$(\prod_{i=0}^{n-1} m_i)R_n \subseteq (\prod_{i=0}^{n-2} m_i)R_{n-1} \subseteq \ldots \subseteq m_0R_1 \subseteq R.$$

Then,  $\prod_{i=0}^{n-1} m_i \subseteq C \subseteq \bigcap_{i=0}^{n-1} m_i$ . Hence, the  $m_i$  are precisely the uniquely ideals of R containing C. Therefore,  $|[R, S]| = |\{m_i \mid i = 0, ..., n-1\}|$ , this prove that  $R \subset S$  has FIP.  $\Box$ 

The proof of Theorem 3.5 established the following result.

**Proposition 3.6.** Let  $R \subset S$  be a ring extension such that  $S = R[\alpha]$  where  $\alpha^2 = 0$ . If (R : S) is a maximal ideal of R or R has only finitely many ideals, then  $R \subset S$  has FIP. Moreover,  $R \subset S$  is a minimal extension if and only if  $(R : S) \in Max(R)$ .

**Remark 3.7.** If  $S = R[\alpha]$  where  $\alpha$  is a nilpotent element of S of index  $n \neq 2$ , then Theorem 3.5 does not follow in general. For instance, let R be any infinite field K of characteristic 2 and take  $S = K[X]/(X^4) = K[x]$  where  $x = X + (X^4)$  and  $x^4 = 0$ . Then,  $\{1, x, x^2, x^3\}$  is a K-vector space basis of S. As  $\dim_K(S) < \infty$ , then any maximal chain of intermediate rings between K and S is finite, while the failure to satisfy FIP can be seen by applying [1, Lemma 3.6(a)].

We next give the following lemma which be used often later. Lemma 3.8 provides a generalization of [1, Lemma 2.6 (c)].

**Lemma 3.8.** Let  $R \subset S$  be an extension. If R is infinite domain and  $R \subset S$  has FIP, then S does not contain two nilpotent elements of index 2 which are algebraically independent over R.

*Proof.* If the assertion fails, *S* contains two nilpotent elements  $\alpha$  and  $\beta$  of index 2 which are algebraically independent over *R*. We consider two cases:

Case.1.  $\alpha\beta = 0$ , then  $\{1, \alpha, \beta\}$  is a basis of  $R[\alpha, \beta]$  as a finitely generated *R*-module. For each  $r \in R$ , consider  $T_r = \{a + b\alpha + rb\beta : a, b \in R\}$ . It is clear that  $R \subseteq T_r \subseteq S$  for each *r*. Moreover, since  $\alpha$  and  $\beta$  are nilpotent elements of index 2, on easy verifies that each  $T_r$  is a ring. Also,  $T_r \neq T_{r'}$  for each  $r \neq r'$ . Indeed, if  $T_r = T_{r'}$  then  $\alpha + r\beta = a_0 + b_0\alpha + r'b_0\beta$  for some  $a_0, b_0 \in R$ . Since  $\{1, \alpha, \beta\}$  is a basis of  $R[\alpha, \beta]$ , it follows that  $a_0 = 0, b_0 = 1$  and  $r = b_0r'$ . This yields that r = r'. Since *R* is infinite,  $\{T_r, r \in R\}$  is an infinite collection of intermediate rings between *R* and *S*, contradicting that  $R \subset S$  has FIP.

Case.2.  $\alpha\beta \neq 0$ . First, suppose that  $\alpha\beta$  is algebraically independent with  $\alpha$  and  $\beta$  over R, then  $\{1, \alpha, \beta, \alpha\beta\}$  is a basis of  $R[\alpha, \beta]$  as a finitely generated R-module. For each  $r \in R$ , consider  $T_r = \{a + b\alpha + rb\alpha\beta : a, b \in R\}$ . Reasoning as in the first case, we show that  $\{T_r, r \in R\}$  describes an infinite family of rings, contradicting that  $R \subset S$  has FIP. In the remaining case,  $\alpha\beta = r_0\alpha + r_1\beta$  where  $r_0, r_1 \in R$ . Let  $r \in R$ , consider  $T_r = \{a + rb\alpha + rc\beta : a, b, c \in R \text{ such that } b \neq c\}$ . Then,  $T_r$  is intermediate ring between R and S. Moreover,  $T_r \neq T_{r'}$  for each  $r \neq r'$ . Indeed, if  $r\alpha + r\beta = a_0 + r'b_0\alpha + r'c_0\beta$  for some  $a_0, b_0, c_0 \in R$  where  $b_0 \neq c_0$ . Since  $\{1, \alpha, \beta\}$  is a basis of  $R[\alpha, \beta]$  as a finitely generated R-module, then  $a_0 = 0$  and  $r = r'b_0 = r'c_0$ . Because R is integral domain, it follows that  $b_0 = c_0$ , the desired contradiction. Therefore,  $\{T_r, r \in R\}$  is an infinite collection of intermediate rings between R and S, contradicting that  $R \subset S$  has FIP.  $\Box$ 

Again, by combining Lemma 3.8 and Theorem 3.5, we obtain directly another characterization of [*R*, *S*] which satisfies FIP where  $S = R[\alpha, \beta]$  and  $\alpha^2 = \beta^2 = 0$ :

**Theorem 3.9.** Let  $R \subset S$  be an extension such that R is infinite domain and  $S = R[\alpha, \beta]$ , where  $\alpha^2 = \beta^2 = 0$ . Then  $R \subset S$  has FIP if and only if there exists a finite maximal chain from R to S and either  $S = R[\alpha]$  or  $S = R[\beta]$ .

We close this section by the following proposition.

**Proposition 3.10.** Let  $R = R_1 \times ... \times R_n$  be a finite product of rings and let  $R \subset S$  be a ring extension. Using [2, Lemma III.3], identify S with  $S_1 \times ... \times S_n$ . For each  $i \in \{1...,n\}$ , consider the following three conditions (which depend on i):

- 1.  $R_i$  is finite and  $S_i$  is a finitely generated  $R_i$ -module;
- 2.  $R_i$  is infinite ring all of whose residue class fields are infinite,  $S_i/C_i$  is a reduced ring where  $C_i = (R_i : S_i)$ ,  $R_i/C_i$  is Artinian and  $S_i = R_i[\alpha_i]$  for some  $\alpha_i \in S_i$  which is algebraic over  $R_i$ .
- 3.  $R_i$  is infinite,  $(R_i : S_i) \in Max(R_i)$  and  $S_i = R_i[\alpha_i]$  for some  $\alpha_i \in S_i$  which satisfies  $\alpha_i^3 \in (R_i : S_i)$ .

If for each  $i \in \{1, ..., n\}$ , at least one of the conditions (1), (2), (3) holds, then  $R \subset S$  has FIP.

*Proof.* Combine [2, Proposition III.4 (a)] with [4, Proposition 5.1], Theorem 2.4 and Proposition 3.3.  $\Box$ 

## References

- D.D. Anderson, D.E. Dobbs, B. Mullins, The primitive element theorem for commutative algebra, Houston J. Math. 25 (1999) 603–623; Corrigendum: Houston J. Math. 28 (2002) 217–219.
- [2] D.E. Dobbs, B. Mullins, G. Picavet and M. Picavet-L'Hermitte, On the FIP property for extensions of commutative rings, Comm. Algebra 33 (2005) 3091–3119.
- [3] D.E. DOBBS, B. MULLINS, G. PICAVET AND M. PICAVET-L'HERMITTE, On the maximal cardinality of chains of intermediate rings, Int. Electron. J.Algebra 5 (2009) 121134.
- [4] D.E.Dobbs, G.Picavet and M.Picavet-L'Hermitte, Characterizing the ring extensions that satisfy FIP or FCP, J.Algebra 371 (2012) 391–429.
- [5] D.E. Dobbs, G. Picavet and M. Picavet-L'Hermitte, Transfer results for the FIP and FCP properties of ring extensions, J. Algebra 43 (2015) 1279–1316.
- [6] D. Ferrand, J. P. Olivier, Homomorphismes minimaux d'anneaux, J. Algebra 16 (1970) 461-471.
- [7] M. S. Gilbert, Extensions of commutative rings with linearly ordered intermediate rings, Ph. D. dissertation, University of Tennessee, Knoxville, 1996.
- [8] R. Gilmer, Some finiteness conditions on the set of overrings of an integral domain, Proc. Amer. Math. Soc 131 (2002) 2337–2346.
  [9] G. Picavet and M. Picavet-L'Hermitte, About minimal morphisms, Multiplicative Ideal Theory in Commutative Algebra, Springer-Verlag, New York, 2006 pp.369–386.
- [10] G. Picavet and M. Picavet-L'Hermitte, FIP and FCP products of ring morphisms, Pales. J. Math., 5 (Spec1) (2016), 63–80.
- [11] A. Jaballah, Ring extensions with some finiteness conditions on the set of intermediate rings, Czechoslovak Math. J. 60 (135) (2010) 117–124.
- [12] I. Kaplansky, Commutative Rings, rev. edn. University of Chicago Press, Chicago, 1974.
- [13] O. Zariski and P. Samuel, Commutative Algebra, vol. I, Van Nostrand, Princeton, 1958.