A Note on the FIP Property for Extensions of Commutative Rings

Mabrouk Ben Nasr ${ }^{\text {a }}$, Nabil Zeidi ${ }^{\text {a }}$
${ }^{a}$ Faculty of Sciences, Department of Mathematics, Sfax University. B.P. 1171. 3000 Sfax, Tunisia

Abstract

A ring extension $R \subset S$ is said to be FIP if it has only finitely many intermediate rings between R and S. The main purpose of this paper is to characterize the FIP property for a ring extension, where R is not (necessarily) an integral domain and S may not be an integral domain. Precisely, we establish a generalization of the classical Primitive Element Theorem for an arbitrary ring extension. Also, various sufficient and necessary conditions are given for a ring extension to have or not to have FIP, where $S=R[\alpha]$ with α a nilpotent element of S.

1. Introduction

All rings considered below are commutative and unital; all inclusions of rings are unital. For a ring R, we frequently use $\operatorname{Spec}(R)$ (respectively, $\operatorname{Max}(R)$) to denote the set of all prime (respectively, maximal) ideals of R. If $R \subset S$ is an extension of rings, we will denote by $[R, S]$ the set of all R-subalebras of S (that is, the set of rings T such that $R \subseteq T \subseteq S)$, by $(R: S)=\{x \in R: x S \subseteq R\}$ the conductor of R in S. In particular, if $[R, S]=\{R, S\}$, we say that $R \subset S$ is a minimal extension [6,9]. Recall from [1] that a ring extension $R \subset S$ is said to have (or to satisfy) FIP (for the "finitely many intermediate algebras property") if $[R, S]$ is finite. The initial work on the FIP property in [1] was motivated in part by a desire to generalize the Primitive Element Theorem, a classical result in field theory: If $K \subset L$ is a finite-dimensional field extension, $L=K[\alpha]$ for some element $\alpha \in L$ if and only if $[K, L]$ is finite. One example of a FIP extension would be any minimal ring extension, and whenever that condition holds, then $S=R[x]$ for each $x \in S \backslash R$. The key connection between the above ideas is that if a ring extension $R \subset S$ has FIP, then any maximal chain $R=R_{0} \subset R_{1} \subset \ldots \subset R_{n}=S$ is finite and results from juxtaposing n minimal extensions $R_{i} \subset R_{i+1}, 0 \leq i \leq n-1$. The FIP property was introduced and studied in [1] and, along with various related properties, has been treated in many other papers [2-5, 8-11]. In particular, Section 3 of [1] was devoted to the study of ring extension $R \subset S$ satisfying FIP when R is a field. That work culminated in [1, Theorem 3.8] which gave a generalization of the Primitive Element Theorem. Later, Dobbs et al. in [2] completed this study in the case where R is replaced by an arbitrary Artinian reduced ring (cf. [2, Theorem III.2] and [2, Theorem III.5]). The present paper heavily relies on [1] and [2]; we will freely use the characterizations of the FIP extensions that were given there. The plan of this article is as follows: Section 2 was central to the work in [1, Section 3] and that led to the above-mentioned generalizations of the classical Primitive Element. The main result is the following: Let R be an infinite ring all of whose residue class fields are infinite and let $R \subset S$ be an extension such that S / C

[^0]is a reduced ring, where $C=(R: S)$. Then $R \subset S$ has FIP if and only if R / C is an Artinian ring and $S=R[\alpha]$ for some $\alpha \in S$ where α is algebraic over R. (Recall that a ring is said to be reduced if it has no nonzero nilpotent elements). As a consequence, we recover the result obtained by Anderson et al. in [1, Lemma 3.5].

Section 3 studies when FIP holds for ring extensions $R \subset S$ such that $S=R[\alpha]$, where α is a nilpotent element. We establish some necessary and sufficient conditions for which a ring extension of this form has FIP. The first of these appears in Theorem 3.4 which states: Let R be a reduced ring and assume that $S=R[\alpha]$ where α is a nilpotent element of S. Suppose that $R /(R: S)$ is an infinite ring. Then $R \subset S$ is a minimal extension if and only if $(R: S) \in \operatorname{Max}(R)$ and $\alpha^{2} \in(R: S)$. Also, we obtain a characterization of $[R, S]$ which satisfies FIP, in term of finite maximal chains. We present the following result in Theorem 3.5: If $S=R[\alpha]$ where $\alpha \in S$ satisfies $\alpha^{2}=0$, then $R \subset S$ has FIP if and only if there exists a finite maximal chain from R to S. As consequence of this result, we establish that if $S=R[\alpha]$ where $\alpha^{2}=0$ and $(R: S)$ is a maximal ideal of R or R has only finitely many ideals, then $R \subset S$ has FIP. Another context for which we find a complete answer is given in Theorem 3.9: If R is a infinite domain and $S=R[\alpha, \beta]$, where $\alpha^{2}=\beta^{2}=0$. Then $R \subset S$ has FIP if and only if there exists a finite maximal chain from R to S and either $S=R[\alpha]$ or $S=R[\beta]$. Finally, any unexplained terminology is standard as in [12] and [13].

2. A generalized Primitive Element Theorem

Consider a ring extension $R \subset S$ that has FIP. Recall from [1, Proposition 2.2 (a), (b)] that S must be a finite-type R-algebra and algebraic over R. Moreover, in case R contains an infinite field, we have that $S=R[\alpha]$ for some $\alpha \in S$ that is algebraic over R (cf. [1, Corollary 3.2] and [1, Lemma 3.5]). Our primary interest in this section is to complete this study, we generalize the last cited results.

Proposition 2.1. Let $R \subset S$ be an extension of rings such that:
(i) R / C is a finite ring, where $C=(R: S)$;
(ii) $S=R[\alpha]$ for some $\alpha \in S$.

Then $R \subset S$ has FIP if and only if α is integral over R.
Proof. For the "only if" part, since R / C is a finite ring, we have $\operatorname{dim}(R / C)=0$ (the Krull dimension of R / C). Moreover, as $R \subset S$ has FIP, then so is $R / C \subset S / C$ [2, Proposition II.4]. It follows from [1,Proposition 3.4 (b)] that S / C is integral over R / C. Whence, S is integral over R, in particular α is integral over R. Conversely, we assume that α is integral over R, then $S / C=(R / C)[\bar{\alpha}]$ where $\bar{\alpha}=\alpha+C \in S / C$ is integral over R / C. Thus, S / C is a finitely generated R / C-module and since R / C is a finite ring, hence S / C is also finite. Then, $R / C \subset S / C$ has FIP. This prove that $R \subset S$ has FIP.

Corollary 2.2. If $S=\mathbb{Z}[\alpha]$ where $\alpha \in S$ is integral over \mathbb{Z}, then $\mathbb{Z} \subset S$ has FIP if and only if $(\mathbb{Z}: S) \neq 0$.
Proof. Suppose that $\mathbb{Z} \subset S$ has FIP and assume, by way of contradiction, that $(\mathbb{Z}: S)=0$. Since S is a finitely generated \mathbb{Z}-module and each non unit of \mathbb{Z} is a non-zero-divisor of \mathbb{Z}, then [3, Theorem 2.1] ensures that there exists a infinite chain of intermediate rings between \mathbb{Z} and S. This contradicts the fact that $\mathbb{Z} \subset S$ has FIP. Conversely, it suffice to notice that since $(\mathbb{Z}: S) \neq 0$, then $\mathbb{Z} /(\mathbb{Z}: S)$ is finite. Hence, the result follows from Proposition 2.1.

To prove our main result, Theorem 2.4, we need the following lemma.
Lemma 2.3. Let $R \subset S$ be an extension of rings. Denote $C=(R: S)$. If $R \subset S$ has FIP, then R / C is a reduced ring if and only if C is the intersection of finitely many maximal ideals of R.

Proof. It is clear that if C is the intersection of finitely many maximal ideals of R, then R / C is a finite direct sum of fields. Thus R / C is a reduced ring. Conversely, because $R \subset S$ has FIP, hence $R \subset S$ has FCP (in the sense of [4]). It follows from [4, Theorem 4.2] that R / C is a Artinian ring. Since R / C is a reduced Artinian ring, Wedderburn-Artin Theory (cf. [13, Theorem 3, page 209]) expresses R / C uniquely as the internal direct product of finitely many fields K_{i}, that is, $R / C=K_{1} \times \ldots \times K_{n}$. Let $\operatorname{Max}(R / C)=\left\{N_{1}, \ldots, N_{n}\right\}=$ $\left\{M_{1} / C, \ldots, M_{n} / C\right\}$, where $M_{i} \in \operatorname{Max}(R)$ and $C \subseteq M_{i}$ for each $i=1, \ldots, n$. As $N_{1} \cap \ldots \cap N_{n}=0$, then $\left(M_{1} / C\right) \cap \ldots \cap\left(M_{n} / C\right)=\left(M_{1} \cap \ldots \cap M_{n}\right) / C=0$. Thus $C=M_{1} \cap \ldots \cap M_{n}$.

Theorem 2.4 below provides a generalization of the Primitive Element Theorem.
Theorem 2.4. Let R be an infinite ring all of whose residue class fields are infinite. Let $R \subset S$ be an extension such that S / C is a reduced ring, where $C=(R: S)$. Then $R \subset S$ has FIP if and only if R / C is an Artinian ring and $S=R[\alpha]$ for some $\alpha \in S$ where α is algebraic over R.
Proof. Notice by [2, Proposition II.4] that $R \subset S$ has FIP if and only if $R / C \subset S / C$ has FIP. For the "only if" part, since S / C is a reduced ring, then R / C is also a reduced ring. It follows from Lemma 2.3 that $C=\bigcap_{i=1}^{n} M_{i}$, where $M_{i} \in \operatorname{Max}(R)$ for each i. By the Chinese Remainder Theorem, $R / C=K_{1} \times \ldots \times K_{n}$ such that K_{i} is a infinite field for each i, and hence R / C is an Artinian ring. It remains to prove that $S=R[\alpha]$ for some $\alpha \in S$. By virtue of [4, Proposition 3.7 (d)], we can identify S / C with $S_{1} \times \ldots \times S_{n}$ such that $K_{i} \subseteq S_{i}$ and $R / C \subset S / C$ satisfies FIP if and only if $K_{i} \subset S_{i}$ satisfies FIP for each i. Notice that since S / C is a reduced ring, then so is S_{i}. Then, we conclude form [1, Lemma 3.5] that $R / C \subset S / C$ satisfies FIP if and only if $S_{i}=K_{i}\left[\beta_{i}\right]$ where $\beta_{i} \in S_{i}$ for each i. Denote $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$, then it is easy to verify that $K_{1}\left[\beta_{1}\right] \times \ldots \times K_{n}\left[\beta_{n}\right] \cong\left(K_{1} \times \ldots \times K_{n}\right)\left[\left(\beta_{1}, \ldots, \beta_{n}\right)\right]=R / C[\beta]$. Therefore, $R / C \subset S / C$ satisfies FIP if and only if $S / C=R / C[\beta]$, where β is algebraic over R / C. This implies that $R \subset S$ satisfies FIP if and only if $S=R[\alpha]$ for some $\alpha \in S$ which is algebraic over R and satisfies $\bar{\alpha}=\alpha+C=\beta$.

For the "if" part, assume that $S=R[\alpha]$ for some $\alpha \in S$ where α is algebraic over R and R / C is an Artinian ring. Since, in addition, R / C is reduced, hence Wedderburn-Artin Theory (cf. [13, Theorem 3, page 209]) expresses R / C uniquely as the internal direct product of finitely many fields K_{i}, that is, $R / C=K_{1} \times \ldots \times K_{n}$. Again [4, Proposition 3.7 (d)], the ring S / C can be uniquely expressed as a product of rings $S_{1} \times \ldots S_{n}$ where $K_{i} \subseteq S_{i}$ for each $i \in\{1, \ldots, n\}$. Moreover, since $S / C=R / C[\bar{\alpha}]$ where $\bar{\alpha}=\alpha+C$, hence reasoning as in the proof of the "only if" part, we deduce that $S_{i}=K_{i}\left[\beta_{i}\right]$ where $\bar{\alpha}=\left(\beta_{1}, \ldots, \beta_{n}\right)$ and β_{i} is algebraic over K_{i}. Hence, if K_{i} is a finite field, then S_{i} is a finite K_{i}-vector space. Then, S_{i} is finite and so $K_{i} \subseteq S_{i}$ has FIP. Now, if K_{i} is infinite field, then [1, Lemma 3.5] ensures that $K_{i} \subseteq S_{i}$ has FIP. By globalization, we deduce that $K_{i} \subseteq S_{i}$ has FIP for each $i \in\{1, \ldots, n\}$. Then, $R / C \subseteq S / C$ has FIP [4, Proposition 3.7 (d)]. Finally, according to [2, Proposition II.4], we conclude that $R \subset S$ has FIP, which completes the proof.

In view of Theorem 2.4, the "if" implication is valid, for if R / C is an Artinian ring. The following example will show that the hypothesis " R / C is an Artinian ring" cannot be omitted in the above theorem .
Example 2.5. Let R be an infinite-dimensional valuation domain with a height 1 prime ideal P. Pick $\alpha \in P$ where $\alpha \neq 0$ and set $S=q f(R)$ the quotient field of R. It is clear that $C=(R: S)=0$, and hence $R / C \cong R$ is not Artinian. Also $S / C \cong S$ is a reduced ring. On the other hand, $\left[12\right.$, Theorem 19] ensures that $S=R\left[\alpha^{-1}\right]$. But $R \subset S$ does not have FIP since $\left\{R_{p}, p \in \operatorname{Spec}(R)\right\}$ is an infinite set of intermediate rings between R and $q f(R)$.

Corollary 2.6. ([1, Lemma 3.5]) Let R be an infinite field, and let $R \subset S$ be an extension such that S is a reduced ring. Then $R \subset S$ has FIP if and only if $S=R[\alpha]$ for some $\alpha \in S$ such that α is algebraic over R.

Proof. Since R is quasi-local with maximal ideal 0 , then $R / 0 \cong R$ is infinite. Moreover, as $(R: S)=0$, hence $S /(R: S) \cong S$ is a reduced ring. Therefore, the conclusion follows readily from Theorem 2.4.

3. When the generator is a nilpotent element

Consider a ring extension $R \subset S$. In view of the central role that nilpotent elements have played in the study of the FIP property for a ring extension (cf. [1, Theorem 3.8] and Section IV of [2]), we devote
this section to completing this study and to investigating when $R \subset S$ has FIP where $S=R[\alpha]$ with α is a nilpotent element of S. We begin with two results giving useful sufficient conditions for FIP to fail.

Proposition 3.1. Let $R \subset S$ be a ring extension such that $S=R[\alpha]$ where α is a nilpotent element of S. If $(R: S) \in \operatorname{Spec}(R) \backslash \operatorname{Max}(R)$, then $R \subset S$ does not have FIP.
Proof. Since $(R: S) \in \operatorname{Spec}(R) \backslash \operatorname{Max}(R)$, then $R /(R: S)$ is a integral domain (not a field), and we have $S /(R: S)=(R /(R: S))[\bar{\alpha}]$ where $\bar{\alpha}=\alpha+(R: S)$. We prove that $(0: \bar{\alpha})=\{\bar{r} \in R /(R: S) \mid \bar{r} \cdot \bar{\alpha}=0\}=0$. Let $\bar{r} \in R /(R: S)$ such that $\bar{r} \cdot \bar{\alpha}=0$, hence $\overline{r \alpha}=0$. It follows that $r \alpha \in(R: S)$. As $(R: S)$ is a prime ideal of R and $\alpha \notin(R: S)$, we conclude that $r \in(R: S)$. This implies that $\bar{r}=0$, and so $(0: \bar{\alpha})=0$. According to [2, Proposition IV.1], we have that $R /(R: S) \subset S /(R: S)$ does not have FIP, and so is $R \subset S$.

The following result is a generalization of [2, Proposition IV.1].
Corollary 3.2. Let R be an integral domain that is not a field, and $R \subset S$ such that $S=R[\alpha]$ where α is a nilpotent element of S. If $(R: S)=0$, then $R \subset S$ does not have FIP.

Proposition 3.3. Let $R \subset S$ be an extension such that $S=R[\alpha]$ where α is a nilpotent element of S. Denote $C=(R: S)$. If $C \in \operatorname{Max}(R)$, then $R \subset S$ has FIP if and only if R / C is finite or R / C is an infinite field and $\alpha^{3} \in C$.

Proof. Notice by [2, Proposition II.4] that $R \subset S$ has FIP if and only if $R / C \subset S / C$ has FIP. We have $S / C=R / C[\bar{\alpha}]$ where $\bar{\alpha}=\alpha+C$. If R / C is finite, then S / C is also finite since S / C is a R / C-vector space. Thus $R / C \subset S / C$ has FIP, and so is $R \subset S$. Now, if R / C is a infinite field, then [1, Lemma 3.6 (b)] ensures that $R / C \subset S / C$ has FIP if and only if $\bar{\alpha}^{3}=0$, that is, $R \subset S$ has FIP if and only if $\alpha^{3} \in C$.
The following result is a characterization of minimal extensions where S is the form $R[\alpha]$ for some nilpotent element $\alpha \in S$.

Theorem 3.4. Let R be a reduced ring and let $S=R[\alpha]$ where α is a nilpotent element of S. Suppose that $R /(R: S)$ is a infinite ring. Then $R \subset S$ is a minimal extension if and only if $(R: S) \in \operatorname{Max}(R)$ and $\alpha^{2} \in(R: S)$.

Proof. If $R \subset S$ is a minimal (integral) extension, then $C=(R: S) \in \operatorname{Max}(R)$ and from Proposition 3.3 we have $\alpha^{3} \in C$. It follows that R / C is a infinite field and $S / C=R / C[\bar{\alpha}]$ where $\bar{\alpha}=\alpha+C$, and so $\bar{\alpha}^{3}=0$. Hence, the proof of $\left[1\right.$, Lemma 3.6 (b)] shows that $[R / C, S / C]=\left\{R / C, R / C\left[\bar{\alpha}^{2}\right], S / C=R / C[\bar{\alpha}]\right\}$. Moreover, $R / C \subset S / C$ is a minimal extension since $R \subset S$ is a minimal extension, we conclude that either $R / C=R / C\left[\bar{\alpha}^{2}\right]$ or $R / C\left[\bar{\alpha}^{2}\right]=R / C[\bar{\alpha}]$. Then, either $R=R\left[\alpha^{2}\right]$ or $R\left[\alpha^{2}\right]=R[\alpha]$. Suppose that $R\left[\alpha^{2}\right]=R[\alpha]$ and let $n(\geq 2)$ be the index of nilpotency for α. Hence, $\alpha=r_{0}+r_{1} \alpha^{2}+r_{2} \alpha^{4}+\ldots+r_{n-1} \alpha^{2(n-1)}$, for some $r_{0}, r_{1} \ldots, r_{n-1} \in R$. Thus, $r_{0}=\alpha-\left(r_{1} \alpha^{2}+r_{2} \alpha^{4}+\ldots+r_{n-1} \alpha^{2(n-1)}\right)$ is a nilpotent element, and so $r_{0}=0$ since R is reduced. This implies that $\alpha=\alpha\left(r_{1} \alpha+r_{2} \alpha^{3}+\ldots+r_{n-1} \alpha^{2 n-3}\right)$, hence $\left(r_{1} \alpha+r_{2} \alpha^{3}+\ldots+r_{n} \alpha^{2 n-3}\right)=1$, a contradiction since $\left(r_{1} \alpha+r_{2} \alpha^{3}+\ldots+r_{n} \alpha^{2 n-3}\right)$ is a nilpotent element. Therefore, $R=R\left[\alpha^{2}\right]$, and hence $\alpha^{2} \in R$. Now, we prove that $\alpha^{2} \in C$. Let $x \in S$, then $x=a_{0}+a_{1} \alpha+a_{2} \alpha^{2}+\ldots+a_{n-1} \alpha^{n-1}$ for some $a_{0}, a_{1}, \ldots, a_{n-1} \in R$. Hence, $\alpha^{2} x=a_{0} \alpha^{2}+a_{1} \alpha^{3}+a_{2} \alpha^{5}+\ldots+a_{n-1} \alpha^{n+1}$. Notice that any power of α is a product of a power of α^{2} and a power of α^{3}. As $\alpha^{2}, \alpha^{3} \in R$, it follows that $\alpha^{2} x \in R$, and hence $\alpha^{2} \in C$. Conversely, since $\alpha^{2} \in C$, then $S / C=R / C[\bar{\alpha}]$ where $\bar{\alpha}^{2}=0$. As, in addition, R / C is a infinite field since C is a maximal ideal of R, then the end of the proof of [1, Lemma 3.6 (b)] ensures that $R / C \subset S / C$ is a minimal extension, this implies that $R \subset S$ is also a minimal extension [9, Corollary 1.4].

We are now in position to give a characterization of $[R, S]$ which satisfies FIP, in term of finite maximal chains.

Theorem 3.5. If $R \subset S$ is an extension of rings such that $S=R[\alpha]$ where $\alpha^{2}=0$, then the following conditions are equivalent:
(i) $R \subset S$ has FIP;
(ii) There exists a finite maximal chain from R to S.

Proof. (i) \Rightarrow (ii) The result is clear since the condition " $R \subset S$ has FIP", implies that any maximal chain from R to S is finite.
(ii) $\Rightarrow(i)$ Since $S=R+R \alpha$, therefore [7, Proposition 4.12] gives a bijection between $[R, S]$ and the set of ideals of R containing $C=(R: S)$. On the other hand, by assumption, there is a finite maximal chain $R=R_{0} \subset R_{1} \subset \ldots \subset R_{n}=S$ in $[R, S]$. For each $i=0, \ldots, n-1$, denote $C_{i}=\left(R_{i}: R_{i+1}\right)$ and $m_{i}=C_{i} \cap R$. Since $R_{i} \subset R_{i+1}$ is both minimal and integral, hence $C_{i} \in \operatorname{Max}\left(R_{i}\right)$ and so $m_{i} \in \operatorname{Max}(R)$ [6, Thorme 2.2]. Moreover, it is clear that $C \subseteq C_{i}$ for each i, thus $C \subseteq \bigcap_{i=0}^{n-1} m_{i}$. By iteration, we get

$$
\left(\prod_{i=0}^{n-1} m_{i}\right) R_{n} \subseteq\left(\prod_{i=0}^{n-2} m_{i}\right) R_{n-1} \subseteq \ldots \subseteq m_{0} R_{1} \subseteq R
$$

Then, $\prod_{i=0}^{n-1} m_{i} \subseteq C \subseteq \bigcap_{i=0}^{n-1} m_{i}$. Hence, the m_{i} are precisely the uniquely ideals of R containing C. Therefore, $|[R, S]|=\left|\left\{m_{i} \mid i=0, \ldots, n-1\right\}\right|$, this prove that $R \subset S$ has FIP.

The proof of Theorem 3.5 established the following result.
Proposition 3.6. Let $R \subset S$ be a ring extension such that $S=R[\alpha]$ where $\alpha^{2}=0$. If $(R: S)$ is a maximal ideal of R or R has only finitely many ideals, then $R \subset S$ has FIP. Moreover, $R \subset S$ is a minimal extension if and only if $(R: S) \in \operatorname{Max}(R)$.

Remark 3.7. If $S=R[\alpha]$ where α is a nilpotent element of S of index $n \neq 2$, then Theorem 3.5 does not follow in general. For instance, let R be any infinite field K of characteristic 2 and take $S=K[X] /\left(X^{4}\right)=K[x]$ where $x=X+\left(X^{4}\right)$ and $x^{4}=0$. Then, $\left\{1, x, x^{2}, x^{3}\right\}$ is a K-vector space basis of S. As $\operatorname{dim}_{K}(S)<\infty$, then any maximal chain of intermediate rings between K and S is finite, while the failure to satisfy FIP can be seen by applying [1, Lemma 3.6(a)].

We next give the following lemma which be used often later. Lemma 3.8 provides a generalization of [1, Lemma 2.6 (c)].

Lemma 3.8. Let $R \subset S$ be an extension. If R is infinite domain and $R \subset S$ has FIP, then S does not contain two nilpotent elements of index 2 which are algebraically independent over R.

Proof. If the assertion fails, S contains two nilpotent elements α and β of index 2 which are algebraically independent over R. We consider two cases:

Case.1. $\alpha \beta=0$, then $\{1, \alpha, \beta\}$ is a basis of $R[\alpha, \beta]$ as a finitely generated R-module. For each $r \in R$, consider $T_{r}=\{a+b \alpha+r b \beta: a, b \in R\}$. It is clear that $R \subseteq T_{r} \subseteq S$ for each r. Moreover, since α and β are nilpotent elements of index 2 , on easy verifies that each T_{r} is a ring. Also, $T_{r} \neq T_{r^{\prime}}$ for each $r \neq r^{\prime}$. Indeed, if $T_{r}=T_{r^{\prime}}$ then $\alpha+r \beta=a_{0}+b_{0} \alpha+r^{\prime} b_{0} \beta$ for some $a_{0}, b_{0} \in R$. Since $\{1, \alpha, \beta\}$ is a basis of $R[\alpha, \beta]$, it follows that $a_{0}=0, b_{0}=1$ and $r=b_{0} r^{\prime}$. This yields that $r=r^{\prime}$. Since R is infinite, $\left\{T_{r}, r \in R\right\}$ is an infinite collection of intermediate rings between R and S, contradicting that $R \subset S$ has FIP.

Case.2. $\alpha \beta \neq 0$. First, suppose that $\alpha \beta$ is algebraically independent with α and β over R, then $\{1, \alpha, \beta, \alpha \beta\}$ is a basis of $R[\alpha, \beta]$ as a finitely generated R-module. For each $r \in R$, consider $T_{r}=\{a+b \alpha+r b \alpha \beta: a, b \in R\}$. Reasoning as in the first case, we show that $\left\{T_{r}, r \in R\right\}$ describes an infinite family of rings, contradicting that $R \subset S$ has FIP. In the remaining case, $\alpha \beta=r_{0} \alpha+r_{1} \beta$ where $r_{0}, r_{1} \in R$. Let $r \in R$, consider $T_{r}=\{a+r b \alpha+r c \beta$: $a, b, c \in R$ such that $b \neq c\}$. Then, T_{r} is intermediate ring between R and S. Moreover, $T_{r} \neq T_{r^{\prime}}$ for each $r \neq r^{\prime}$. Indeed, if $r \alpha+r \beta=a_{0}+r^{\prime} b_{0} \alpha+r^{\prime} c_{0} \beta$ for some $a_{0}, b_{0}, c_{0} \in R$ where $b_{0} \neq c_{0}$. Since $\{1, \alpha, \beta\}$ is a basis of $R[\alpha, \beta]$ as a finitely generated R-module, then $a_{0}=0$ and $r=r^{\prime} b_{0}=r^{\prime} c_{0}$. Because R is integral domain, it follows that $b_{0}=c_{0}$, the desired contradiction. Therefore, $\left\{T_{r}, r \in R\right\}$ is an infinite collection of intermediate rings between R and S, contradicting that $R \subset S$ has FIP.

Again, by combining Lemma 3.8 and Theorem 3.5, we obtain directly another characterization of $[R, S]$ which satisfies FIP where $S=R[\alpha, \beta]$ and $\alpha^{2}=\beta^{2}=0$:

Theorem 3.9. Let $R \subset S$ be an extension such that R is infinite domain and $S=R[\alpha, \beta]$, where $\alpha^{2}=\beta^{2}=0$. Then $R \subset S$ has FIP if and only if there exists a finite maximal chain from R to S and either $S=R[\alpha]$ or $S=R[\beta]$.

We close this section by the following proposition.
Proposition 3.10. Let $R=R_{1} \times \ldots \times R_{n}$ be a finite product of rings and let $R \subset S$ be a ring extension. Using [2, Lemma III.3], identify S with $S_{1} \times \ldots \times S_{n}$. For each $i \in\{1 \ldots, n\}$, consider the following three conditions (which depend on i):

1. R_{i} is finite and S_{i} is a finitely generated R_{i}-module;
2. R_{i} is infinite ring all of whose residue class fields are infinite, S_{i} / C_{i} is a reduced ring where $C_{i}=\left(R_{i}: S_{i}\right), R_{i} / C_{i}$ is Artinian and $S_{i}=R_{i}\left[\alpha_{i}\right]$ for some $\alpha_{i} \in S_{i}$ which is algebraic over R_{i}.
3. R_{i} is infinite, $\left(R_{i}: S_{i}\right) \in \operatorname{Max}\left(R_{i}\right)$ and $S_{i}=R_{i}\left[\alpha_{i}\right]$ for some $\alpha_{i} \in S_{i}$ which satisfies $\alpha_{i}^{3} \in\left(R_{i}: S_{i}\right)$.

If for each $i \in\{1, \ldots, n\}$, at least one of the conditions (1), (2), (3) holds, then $R \subset S$ has FIP.
Proof. Combine [2, Proposition III. 4 (a)] with [4, Proposition 5.1], Theorem 2.4 and Proposition 3.3 .

References

[1] D.D. Anderson, D.E. Dobbs, B. Mullins, The primitive element theorem for commutative algebra, Houston J. Math. 25 (1999) 603-623; Corrigendum: Houston J. Math. 28 (2002) 217-219.
[2] D.E. Dobbs, B. Mullins, G. Picavet and M. Picavet-L'Hermitte, On the FIP property for extensions of commutative rings, Comm. Algebra 33 (2005) 3091-3119.
[3] D.E. Dobbs, B. Mullins, G. Picavet and M. Picavet-L'Hermitte, On the maximal cardinality of chains of intermediate rings, Int. Electron. J.Algebra 5 (2009) 121134.
[4] D.E.Dobbs, G.Picavet and M.Picavet-L'Hermitte, Characterizing the ring extensions that satisfy FIP or FCP, J.Algebra 371 (2012) 391-429.
[5] D.E. Dobbs, G. Picavet and M. Picavet-L'Hermitte, Transfer results for the FIP and FCP properties of ring extensions, J. Algebra 43 (2015) 1279-1316.
[6] D. Ferrand, J. P. Olivier, Homomorphismes minimaux d'anneaux, J. Algebra 16 (1970) 461-471.
[7] M. S. Gilbert, Extensions of commutative rings with linearly ordered intermediate rings, Ph. D. dissertation, University of Tennessee, Knoxville, 1996.
[8] R. Gilmer, Some finiteness conditions on the set of overrings of an integral domain, Proc. Amer. Math. Soc 131 (2002) $2337-2346$.
[9] G. Picavet and M. Picavet-L'Hermitte, About minimal morphisms, Multiplicative Ideal Theory in Commutative Algebra, Springer-Verlag, New York, 2006 pp.369-386.
[10] G. Picavet and M. Picavet-L'Hermitte, FIP and FCP products of ring morphisms, Pales. J. Math., 5 (Spec1) (2016), 63-80.
[11] A. Jaballah, Ring extensions with some finiteness conditions on the set of intermediate rings, Czechoslovak Math. J. 60 (135) (2010) 117-124.
[12] I. Kaplansky, Commutative Rings, rev. edn. University of Chicago Press, Chicago, 1974.
[13] O. Zariski and P. Samuel, Commutative Algebra, vol. I, Van Nostrand, Princeton, 1958.

[^0]: 2010 Mathematics Subject Classification. Primary 13B02; Secondary 13A15, 13B21, 13B25, 13E05, 13E10
 Keywords. FIP property, ring extension, intermediate ring, minimal ring extension, integral, nilpotent element
 Received: 12 August 2018; Accepted: 11 December 2019
 Communicated by Dragan S. Djordjević
 Email addresses: mabrouk_bennasr@yahoo.fr (Mabrouk Ben Nasr), zeidi.nabil@gmail.com; zeidi_nabil@yahoo.com (Nabil Zeidi)

