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Abstract. For a graph G, the graph R(G) of a graph G is the graph obtained by adding a new vertex for
each edge of G and joining each new vertex to both end vertices of the corresponding edge. Let I(G) be
the set of newly added vertices, i.e I(G) = V(R(G)) \ V(G). The generalized R-vertex corona of G and Hi for
i = 1, 2, ...,n, denoted by R(G) � ∧n

i=1Hi, is the graph obtained from R(G) and Hi by joining the i-th vertex
of V(G) to every vertex in Hi. The generalized R-edge corona of G and Hi for i = 1, 2, ...,m, denoted by
R(G)	∧m

i=1Hi, is the graph obtained from R(G) and Hi by joining the i-th vertex of I(G) to every vertex in Hi.
In this paper, we derive closed-form formulas for resistance distance and Kirchhoff index of R(G) � ∧n

i=1Hi

and R(G) 	 ∧m
i=1Hi whenever G and Hi are arbitrary graphs. These results generalize the existing results.

1. Introduction

All graphs considered in this paper are simple and undirected. The resistance distance between vertices
u and v of G was defined by Klein and Randić [9] to be the effective resistance between nodes u and v as
computed with Ohm’s law when all the edges of G are considered to be unit resistors. The Kirchhoff index
K f (G) was defined in [9] as K f (G) =

∑
u<v ruv(G), where ruv(G) denotes the resistance distance between u and

v in G. These novel parameters are in fact intrinsic to the graph theory and has some nice properties and
applications in chemistry. For the study of resistance distance and Kirchhoff index, one may be referred to
the recent works ([2], [4], [5], ), [7]-[25]) and the references therein.

Let G = (V(G),E(G)) be a graph with vertex set V(G) and edge set E(G). Let di be the degree of vertex i in
G and DG = dia1(d1, d2, · · · d|V(G)|) the diagonal matrix with all vertex degrees of G as its diagonal entries. For
a graph G, let AG and BG denote the adjacency matrix and vertex-edge incidence matrix of G, respectively.
The matrix LG = DG − AG is called the Laplacian matrix of G, where DG is the diagonal matrix of vertex
degrees of G. We use µ1(G) ≥ u2(G) ≥ · · · ≥ µn(G) = 0 to denote the eigenvalues of LG. For other undefined
notations and terminology from graph theory, the readers may refer to [6] and the references therein.

In [14], Lu et.al generalized the corona operation and defined the generalized R-vertex corona. For a
graph G, the graph R(G) of a graph G is the graph obtained by adding a new vertex for each edge of G and
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joining each new vertex to both end vertices of the corresponding edge. Let I(G) be the set of newly added
vertices, i.e I(G) = V(R(G)) \ V(G).

Definition 1.1([14]) The generalized R-vertex corona of G and Hi for i = 1, 2, ...,n, denoted by R(G) �
∧

n
i=1Hi, is the graph obtained from R(G) and Hi by joining the ith vertex of V(G) to every vertex in Hi.

Definition 1.2 The generalized R-edge corona of G and Hi for i = 1, 2, ...,m, denoted by R(G) 	 ∧m
i=1Hi, is

the graph obtained from R(G) and Hi by joining the ith vertex of I(G) to every vertex in Hi.
Bu et al. investigated resistance distance in subdivision-vertex join and subdivision-edge join of graphs

[2]. Liu et al. [12] gave the resistance distance and Kirchhoff index of R-vertex join and R-edge join of two
graphs. In [11], the resistance distance of subdivision-vertex and subdivision-edge corona are obtained.
Motivated by the results, in this paper we consider the generalization of the R-vertex corona and the R-edge
corona to the case of n(m) different graphs and we obtain the resistances distance and the Kirchhoff index
in terms of the corresponding parameters of the factors. These results generalize the existing results in [13].

2. Preliminaries

The {1}-inverse of M is a matrix X such that MXM = M. If M is singular, then it has infinite {1}- inverse
[1]. For a square matrix M, the group inverse of M, denoted by M#, is the unique matrix X such that
MXM = M, XMX = X and MX = XM. It is known that M# exists if and only if rank(M) = rank(M2) ([1],[3]).
If M is real symmetric, then M# exists and M# is a symmetric {1}- inverse of M. Actually, M# is equal to the
Moore-Penrose inverse of M since M is symmetric [3].

It is known that resistance distances in a connected graph G can be obtained from any {1}- inverse of G
([4]). We use M(1) to denote any {1}- inverse of a matrix M, and let (M)uv denote the (u, v)- entry of M.

Lemma 2.1 ([3]) Let G be a connected graph. Then

ruv(G) = (L(1)
G )uu + (L(1)

G )vv − (L(1)
G )uv − (L(1)

G )vu = (L#
G)uu + (L#

G)vv − 2(L#
G)uv.

Let 1n denotes the column vector of dimension n with all the entries equal one. We will often use 1 to
denote an all-ones column vector if the dimension can be read from the context.

Lemma 2.2 ([2]) For any graph G, we have L#
G1= 0.

Lemma 2.3 ([24]) Let

M =

(
A B
C D

)
be a nonsingular matrix. If A and D are nonsingular, then

M−1 =

(
A−1 + A−1BS−1CA−1

−A−1BS−1

−S−1CA−1 S−1

)
=

(
(A − BD−1C)−1

−A−1BS−1

−S−1CA−1 S−1

)
,

where S = D − CA−1B.
For a square matrix M, let tr(M) denote the trace of M.
Lemma 2.4 ([15]) Let G be a connected graph on n vertices. Then

K f (G) = ntr(L(1)
G ) − 1TL(1)

G 1 = ntr(L#
G).

Lemma 2.5([10]) Let G be a connected graph of order n with edge set E. Then∑
u<v,uv∈E

ruv(G) = n − 1.

For a vertex i of a graph G, let T(i) denote the set of all neighbors of i in G.
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Lemma 2.6([2]) Let G be a connected graph. For any i, j ∈ V(G),

ri j(G) = d−1
i (1 +

∑
k∈T(i)

rkj(G) − d−1
i

∑
k,l∈T(i)

rkl(G)).

Lemma 2.7 ([12]) Let G be a graph of order n. For any a, b > 0 satisfying b , a, we have

(LG + aIn −
a
b

jn×n)−1 = (LG + aIn)−1 +
1

a(b − n)
jn×n,

where jn×n denotes the n × n matrix with all entries equal to one.
Lemma 2.8 ([13]) Let

L =

(
A B
BT D

)
be a symmetric block matrix. If D is nonsingular, then

X =

(
H#

−H#BD−1

−D−1BTH# D−1 + D−1BTH#BD−1

)
is a symmetric {1}-inverse of L, where H = A − BD−1BT.

Lemma 2.9 ([9]) Let k be a cut-vertex of a graph, and let i and j be vertices occurring in different
components which arise upon deletion of k. Then ri j = rik + rkj.

3. The resistance distance and Kirchhoff index of R(G) � ∧n
i=1

Hi

In this section, we focus on determing the resistance distance and Kirchhoff index of generalized R-vertex
corona R(G) � ∧n

i=1Hi whenever G and Hi(i = 1, 2, ...,n) be an arbitrary graph.
Theorem 3.1 Let G be a connected graph with n vertices and m edges and let Hi be a graph with ti

vertices for i = 1, 2, ...,n. Then R(G) � ∧n
i=1Hi have the resistance distance and Kirchhoff index as follows:

(i) For any i, j ∈ V(G), we have

ri j(R(G) � ∧n
i=1Hi) =

2
3

(L#
G)ii +

2
3

(L#
G) j j −

4
3

(L#
G)i j =

2
3

ri j(G).

(ii) For any i, j ∈ V(Hk)(k = 1, 2, ...,n), we have

ri j(R(G) � ∧n
i=1Hi) = ((LHk + Itk )

−1)ii + ((LHk + Itk )
−1) j j − 2((LHk + Itk )

−1)i j.

(iii) For any i, j ∈ R(G), we have

ri j(R(G) � ∧n
i=1Hi) =

2
3

ri j(G).

(iv) For any i ∈ V(G), j ∈ V(Hk)(k = 1, 2, ...,n), we have

ri j(R(G) � ∧n
i=1Hi) = rik(R(G)) + rkj(Fk),

where Fk = Hk ∨ {v}, i.e, Fk is the graph obtained by adding new edges from an isolated vetrtex v to every
vertex of Hk.

(v) For any i ∈ V(Hk), j ∈ V(Hl), we have

ri j(R(G) � ∧n
i=1Hi) = rkl(R(G)) + rik(Fk) + r jl(Fl),

where Fk = Hk ∨ {v}, i.e, Fk is the graph obtained by adding new edges from an isolated vetrtex v to every
vertex of Hk.
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(vi) K f (R(G) � ∧n
i=1Hi)

= (n + 2m +

n∑
i=1

ti)

 2
3n

K f (G) +
m
2

+
1
2

tr(DGL#
G) −

n − 1
4

+

n∑
i=1

ti∑
j=1

1
µi(H j) + 1

+2tr(QTL#
GQ)

)
−

m
2

+
1
4
πTL#

Gπ + πTL#
Gδ +

n∑
i=1

ti + δTL#
Gδ

 ,
where Q equals (1), πT = (d1, d2, ..., dn), δT = (t1, t2, ..., tn).

Proof Let R(G) and DG be the incidence matrix and degree matrix of G. With a suitable labeling for
vertices of R(G) � ∧n

i=1Hi, the Laplacian matrix of R(G) � ∧n
i=1Hi can be written as follows:

LR(G)�∧n
i=1Hi =

 P + LG −R(G) −Q
−RT(G) 2Im 0
−QT 0 T

 ,
where

P =


d1 + t1 0 0 ... 0

0 d2 + t2 0 ... 0
0 0 ... ... 0
0 0 0 ... dn + tn

 , Q =


1T

t1
0 0 ... 0

0 1T
t2

0 ... 0
0 0 ... ... 0
0 0 0 ... 1T

tn

 , (1)

T =


LH1 + It1 0 0 ... 0

0 LH2 + It2 0 ... 0
0 0 ... ... 0
0 0 0 ... LHn + Itn

 .
First we begin with the computation of {1}-inverse of R(G) � ∧n

i=1Hi.
By Lemma 2.8, we have

H = LG + P −
(
−R(G) −Q

) ( 1
2 Im 0
0 T−1

) (
−RT(G)
−QT

)
= LG + P −

(
−

1
2 R(G) −QT−1

) ( −RT(G)
−QT

)

= LG + DG +


t1 0 0 ... 0
0 t2 0 ... 0
0 0 ... ... 0
0 0 0 ... tn

 − 1
2 (DG + AG) −


t1 0 0 ... 0
0 t2 0 ... 0
0 0 ... ... 0
0 0 0 ... tn


= 3

2 LG,

so H# = 2
3 L#

G.
According to Lemma 2.8, we calculate −H#BD−1 and −D−1BTH#.

−H#BD−1 = −
2
3 L#

G

(
−R(G) −Q

) ( 1
2 Im 0
0 T−1

)
= −

2
3 L#

G

(
−

1
2 R(G) −QT−1

)
=

(
1
3 L#

GR(G) 2
3 L#

GQ
)

and

−D−1BTH# = −(H#BD−1)T =

(
1
3 RT(G)L#

G
2
3 QTL#

G

)
.
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We are ready to compute the D−1BTH#BD−1.

D−1BTH#BD−1 =

(
1
2 Im 0
0 T−1

) (
−RT(G)
−QT

)
L#

G

(
−R(G) −Q

) ( 1
2 Im 0
0 T−1

)
=

(
1
4 RT(G)L#

GR(G) 1
2 RT(G)L#

GQ
1
2 QTL#

GR(G) QTL#
GQ

)
.

Based on Lemma 2.8, the following matrix

N =


2
3 L#

G
1
3 L#

GR(G) 2
3 L#

GQ
1
3 RT(G)L#

G
1
2 Im + 1

4 RT(G)L#
GR(G) 1

2 RT(G)L#
GQ

2
3 QTL#

G
1
2 QTL#

GR(G) T−1 + QTL#
GQ

 (2)

is a symmetric {1}- inverse of LR(G)�∧n
i=1Hi .

For any i, j ∈ V(G), by Lemma 2.1 and the Equation (2), we have

ri j(R(G) � ∧n
i=1Hi) =

2
3

(L#
G)ii +

2
3

(L#
G) j j −

4
3

(L#
G)i j =

2
3

ri j(G),

as stated in (i).
For any i, j ∈ V(Hk)(k = 1, 2, ...,n), by Lemma 2.1 and the Equation (2), we have

ri j(R(G) � ∧n
i=1Hi) = ((LHk + Itk )

−1)ii + ((LHk + Itk )
−1) j j − 2((LHk + Itk )

−1)i j,

as stated in (ii).
From the left side of above equation, we can obviously have

ri j(Fk) = ((LHk + Itl )
−1)ii + ((LHk + Itl )

−1) j j − 2((LHk + Itl )
−1)i j,

where Fk = Hk ∨ {v}, i.e, Fk is the graph obtained by adding new edges from an isolated vetrtex v to every
vertex of Hk.

For any i, j ∈ R(G), by Lemma 2.1 and the Equation (2), we have

ri j(R(G) � ∧n
i=1Hi) = ri j(R(G)).

By Lemma 3.1 in [7], ri j(R(G)) = 2
3 ri j(G), so ri j(R(G) � ∧n

i=1Hi) = 2
3 ri j(G), as stated in (iii).

For any i ∈ V(G), j ∈ V(Hk)(k = 1, 2, ...,n), since i and j belong to different components, then by Lemma
2.9, we have

ri j(R(G) � ∧n
i=1Hi) = rik(R(G)) + rkj(Fk),

as stated in (iv).
For any i ∈ V(Hk), j ∈ V(Hl), by Lemma 2.9, we have

ri j(R(G) � ∧n
i=1Hi) = rkl(R(G)) + rik(Fk) + r jl(Fl),

as stated in (v).
By Lemma 2.4, we have

K f (R(G) � ∧nHi
i=1 ) = (n + m +

n∑
i=1

ti)tr(N) − 1TN1T

= (n + m +

n∑
i=1

ti)
(2

3
tr(L#

G) + tr
(1

2
Im +

1
4

RT(G)L#
GR(G)

)
+

+tr(T−1 + QTL#
GQ)

)
− 1TN1T

= (n + m +

n∑
i=1

ti)

 2
3n

K f (G) +
m
2

+
1
4

∑
i< j,i, j∈E(G)

[(L#
G)ii + (L#

G) j j

+2(L#
G)i j] + tr

(
T−1 + QTL#

GQ
))
− 1TN1T.
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By Lemma 2.4, we get

K f (R(G) � ∧n
i=1Hi) = (n + m +

n∑
i=1

ti)

 2
3n

K f (G) +
m
2

+
1
4

∑
i< j,i, j∈E(G)

[2(L#
G)ii + 2(L#

G) j j

−ri j(G)] + tr
(
T−1 + QTL#

GQ
))
− 1TN1T

= (n + m +

n∑
i=1

ti)
( 2

3n
K f (G) +

m
2

+
1
2

tr(DGL#
G) −

n − 1
4

+tr
(
T−1 + QTL#

GQ
))
− 1TN1T.

Note that the eigenvalues of (L(Hi) + Iti ) (i = 1, 2, ...,n) are µ1(Hi) + 1, µ2(Hi) + 1, ..., µti (Hi) + 1. Then

tr(T−1) =

n∑
i=1

ti∑
j=1

1
µi(H j) + 1

. (3)

By Lemma 2.2, L#
G1= 0 and (1T

(
RT(G)L#

GQ
)

1)T = 1T
(
QTL#

GR(G)
)

1, then

1TN1 =
m
2

+
1
4

1T
(
RT(G)L#

GR(G)
)

1 + 1T
(
RT(G)L#

GQ
)

1

+1TT−11 + 1T
(
QTL#

GQ
)

1.

Note that R(G)1 = π, where πT = (d1, d2, ..., dn), then 1T
(
RT(G)L#

GR(G)
)

1 = πTL#
Gπ, so

1TN1 =
m
2

+
1
4
πTL#

Gπ + πTL#
GQ1 + 1TT−11 + 1T

(
QTL#

GQ
)

1. (4)

Let Ri = L(Hi) + Iti (i = 1, 2, ...,n), then

1TT−11T =
(

1T
t1

1T
t2
· · · 1T

tn

) 
R−1

1 0 0 ... 0
0 R−1

2 0 ... 0
0 0 ... ... 0
0 0 0 ... R−1

n




1t1

1t2

· · ·

1tn



=

n∑
i=1

1T
ti

(L(Hi) + Iti )
−11ti =

n∑
i=1

ti, (5)

and

1TQT =
(

1T
t1

1T
t2
· · · 1T

tn

) 
1t1 0 0 ... 0
0 1t2 0 ... 0
0 0 ... ... 0
0 0 0 ... 1tn


= (t1, t2, ..., tn) = δT. (6)

Plugging (3), (4), (5) and (6) into K f (R(G) � ∧n
i=1Hi), we obtain the required result in (vi).
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4. The resistance distance and Kirchhoff index of R(G) 	 ∧m
i=1

Hi

In this section, we focus on determing the resistance distance and Kirchhoff index of generalized R-edge
corona R(G) 	 ∧m

i=1Hi whenever G and Hi(i = 1, 2, ...,n) be an arbitrary graph.
Theorem 4.1 Let G be a connected graph with n vertices and m edges, Let Hi be a graph with ti vertices

for i = 1, 2, ...,m. Then R(G) 	 ∧m
i=1Hi have the resistance distance and Kirchhoff index as follows:

(i) For any i, j ∈ V(G), we have

ri j(R(G) 	 ∧m
i=1Hi) =

2
3

(L#
G)ii +

2
3

(L#
G) j j −

4
3

(L#
G)i j =

2
3

ri j(G).

(ii) For any i, j ∈ V(Hk)(k = 1, 2, ...,m), we have

ri j(R(G) 	 ∧m
i=1Hi) = (LHk + Itk −

1
2 + tk

jtk )
−1
ii + (LHk + Itk −

1
2 + tk

jtk )
−1
j j

−2(LH1 + Itk −
1

2 + tk
jtk )
−1
i j .

(iii) For any i, j ∈ R(G), we have

ri j(R(G) 	 ∧m
i=1Hi) =

2
3

ri j(G).

(iv) For any i ∈ V(G), j ∈ V(Hk)(k = 1, 2, ...,n), we have

ri j(R(G) 	 ∧m
i=1Hi) = rik(R(G)) + rkj(Fk),

where Fk = Hk ∨ {v}, i.e, Fk is the graph obtained by adding new edges from an isolated vetrtex v to every
vertex of Hk.

(v) For any i ∈ V(Hk), j ∈ V(Hl), we have

ri j(R(G) 	 ∧m
i=1Hi) = rkl(R(G)) + rik(Fk) + r jl(Fl),

where Fk = Hk ∨ {v}, i.e, Fk is the graph obtained by adding new edges from an isolated vetrtex v to every
vertex of Hk.

(vi) K f (R(G) 	 ∧m
i=1Hi)

= (n + 2m +

n∑
i=1

ti)

 2
3n

K f (G) +
m
2

+
1
3

tr(DGL#
G) −

n − 1
2

+

n∑
i=1

ti∑
j=1

1
µi(H j) + 1

+
2
3

tr(FTRT(G)L#
GR(G)F)

)
−

m
2

+
1
6
πTL#

Gπ +

m∑
i=1

ti +
2
3
πT(G)L#

GR(G)δ + πTL#
Gδ

+
1
2

m∑
i=1

ti(2 + ti) +
2
3
δTRT(G)L#

GR(G)δ

 ,
where F equals (7), πT = (d1, d2, ..., dn), δT = (t1, 0, ..., 0, t2, 0, ..., 0..., tm).

Proof Let R(G) and DG be the incidence matrix and degree matrix of G. With a suitable labeling for
vertices of R(G) 	 ∧m

i=1Hi, the Laplacian matrix of R(G) 	 ∧m
i=1Hi can be written as follows:

LR(G)	∧m
i=1Hi =

 LG + DG −R(G) 0
−RT(G) P −M

0 −MT Q

 ,
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where

P =


2 + t1 0 0 ... 0

0 2 + t2 0 ... 0
0 0 ... ... 0
0 0 0 ... 2 + tm


m×m

, M =


1T

t1
0 0 ... 0

0 1T
t2

0 ... 0
0 0 ... ... 0
0 0 0 ... 1T

tm


m×(t1+t2+···+tn)

,

Q =


LH1 + It1 0 0 ... 0

0 LH2 + It2 0 ... 0
0 0 ... ... 0
0 0 0 ... LHn + Itn

 .
Let A = LG + DG, B =

(
−R(G) 0

)
, BT =

(
−RT(G)

0

)
and D =

(
P −M
−MT Q

)
.

First, we will compute D−1. By Lemma 2.3, we have

S =


LH1 + It1 0 0 ... 0

0 LH2 + It2 0 ... 0
0 0 ... ... 0
0 0 0 ... LHm + Itm

 −


1t1 0 0 ... 0
0 1t2 0 ... 0
0 0 ... ... 0
0 0 0 ... 1tm


2 + t1 0 0 ... 0

0 2 + t2 0 ... 0
0 0 ... ... 0
0 0 0 ... 2 + tn


−1 

1T
t1

0 0 ... 0
0 1T

t2
0 ... 0

0 0 ... ... 0
0 0 0 ... 1T

tm

 .

S−1 =


(LH1 + It1 −

1
2+t1

jt1 )−1 0 0 ... 0
0 (LH2 + It2 −

1
2+t2

jt2 )−1 0 ... 0
0 0 ... ... 0
0 0 0 ... (LHm + Itm −

1
2+tm

jtm )−1

 .
According to Lemma 2.3, we have

P −MQ−1MT =


2 + t1 0 0 ... 0

0 2 + t2 0 ... 0
0 0 ... ... 0
0 0 0 ... 2 + tm

 −


1T
t1

0 0 ... 0
0 1T

t2
0 ... 0

0 0 ... ... 0
0 0 0 ... 1T

tm


(LH1 + It1 )−1 0 0 ... 0

0 (LH2 + It2 )−1 0 ... 0
0 0 ... ... 0
0 0 0 ... (LHm + Itm )−1




1t1 0 0 ... 0
0 1t2 0 ... 0
0 0 ... ... 0
0 0 0 ... 1tm


= 2Im,

so (P −MQ−1MT)−1 = 1
2 Im.

By Lemma 2.3, we have

−P−1MS−1 = −


1

2+t1
0 0 ... 0

0 1
2+t2

0 ... 0
0 0 ... ... 0
0 0 0 ... 1

2+tm




1T
t1

0 0 ... 0
0 1T

t2
0 ... 0

0 0 ... ... 0
0 0 0 ... 1T

tm


(LH1 + It1 −

1
2+t1

Jt1 )−1 0 0 ... 0
0 (LH2 + It2 −

1
2+t2

Jt2 )−1 0 ... 0
0 0 ... ... 0
0 0 0 ... (LHm + Itm −

1
2+tm

Jtm )−1
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= −


1
2 1T

t1
0 0 ... 0

0 1
2 1T

t2
0 ... 0

0 0 ... ... 0
0 0 0 ... 1

2 1T
tm

 = F, (7)

Similarly, −S−1MTP−1 = NT, so D−1 =

(
1
2 Im F
FT S−1

)
.

Next we begin with the computation of {1}-inverse of LR(G)	∧m
i=1Hi .

By Lemma 2.8, we have

H = LG + DG −
(

R(G) 0
) ( 1

2 Im F
FT T−1

) (
RT(G)

0

)
= LG + DG −

(
1
2 R(G) R(G)F

) ( RT(G)
0

)
= LG + DG −

1
2 (DG + AG)

= 3
2 LG,

so H# = 2
3 L#

G.
According to Lemma 2.8, we calculate −H#BD−1 and −D−1BTH#.

−H#BD−1 = −
2
3 L#

G

(
−R(G) 0

) ( 1
2 Im F
FT S−1

)
= −

2
3 L#

G

(
−

1
2 R(G) −R(G)F

)
=

(
1
3 L#

GR(G) 2
3 L#

GR(G)F
)

and

−D−1BTH# = −(H#BD−1)T =

(
1
3 RT(G)L#

G
2
3 FTRT(G)L#

G

)
.

We are ready to compute the D−1BTH#BD−1.

D−1BTH#BD−1 = 2
3

(
1
2 Im F
FT S−1

) (
−RT(G)

0

)
L#

G

(
−R(G) 0

) ( 1
2 Im F
FT S−1

)
=

(
1
6 RT(G)L#

GR(G) 1
3 RT(G)L#

GR(G)F
1
3 FTRTL#

GR(G) 2
3 FTRTL#

GR(G)F

)
.

Based on Lemma 2.3 and 2.8, the following matrix

N =


2
3 L#

G
1
3 L#

GR(G) 2
3 L#

GR(G)F
1
3 RT(G)L#

G
1
2 Im + 1

6 RT(G)L#
GR(G) F + 1

3 RT(G)L#
GR(G)F

2
3 FTRT(G)L#

G FT + 1
3 FTRT(G)L#

GR(G) S−1 + 2
3 FTRT(G)L#

GR(G)F

 (8)

is a symmetric {1}- inverse of LR(G)	∧m
i=1Hi .

For any i, j ∈ V(G), by Lemma 2.1 and the Equation (8), we have

ri j(R(G) 	 ∧m
i=1Hi) =

2
3

(L#
G)ii +

2
3

(L#
G) j j −

4
3

(L#
G)i j =

2
3

ri j(G),

as stated in (i).
For any i, j ∈ V(Hk)(k = 1, 2, ...,m), by Lemma 2.1 and the Equation (8), we have

ri j(R(G) 	 ∧m
i=1Hi) = (LHk + Itk −

1
2 + tk

jtk )
−1
ii + (LHk + Itk −

1
2 + tk

jtk )
−1
j j

−2(LH1 + Itk −
1

2 + tk
jtk )
−1
i j ,
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as stated in (ii).
From the left side of above equation, we can obviously have

ri j(Fk) = ((LHk + Itl )
−1)ii + ((LHk + Itl )

−1) j j − 2((LHk + Itl )
−1)i j,

where Fk = Hk ∨ {v}, i.e, Fk is the graph obtained by adding new edges from an isolated vetrtex v to every
vertex of Hk.

For any i, j ∈ R(G), by Lemma 2.1 and the Equation (8), we have

ri j(R(G) 	 ∧m
i=1Hi) = ri j(R(G)).

By Lemma 3.1 in [7], ri j(R(G)) = 2
3 ri j(G), so ri j(R(G) 	 ∧m

i=1Hi) = 2
3 ri j(G), as stated in (iii).

For any i ∈ V(G), j ∈ V(Hk)(k = 1, 2, ...,m), since i and j belong to different components, then by Lemma
2.9, we have

ri j(R(G) 	 ∧m
i=1Hi) = rik(R(G)) + rkj(Fk),

as stated in (iv).
For any i ∈ V(Hk), j ∈ V(Hl), by Lemma 2.9, we have

ri j(R(G) 	 ∧m
i=1Hi) = rkl(R(G)) + rik(Fk) + r jl(Fl),

as stated in (v).
By Lemma 2.4, we have

K f (R(G) 	 ∧m
i=1Hi) = (n + m +

m∑
i=1

ti)tr(N) − 1TN1

= (n + m +

m∑
i=1

ti)
(2

3
tr(L#

G) + tr
(1

2
Im +

1
6

RT(G)L#
GR(G)

)
+

+tr(S−1 +
2
3

FTRTL#
GR(G)F)

)
− 1TN1

= (n + m +

m∑
i=1

ti)

 2
3n

K f (G) +
m
2

+
1
6

∑
i< j,i, j∈E(G)

[(L#
G)ii + (L#

G) j j

+2(L#
G)i j] + tr

(
S−1 +

2
3

FTRT(G)L#
GR(G)F

))
− 1TN1.

By Lemma 2.5, we get

K f (R(G) 	 ∧m
i=1Hi) = (n + m +

m∑
i=1

ti)

 2
3n

K f (G) +
m
2

+
1
6

∑
i< j,i, j∈E(G)

[2(L#
G)ii + 2(L#

G) j j

−ri j(G)] + tr
(
S−1 +

2
3

FTR(G)TL#
GR(G)F

))
− 1TN1

= (n + m +

m∑
i=1

ti)
( 2

3n
K f (G) +

m
2

+
1
3

tr(DGL#
G) −

n − 1
6

+tr
(
S−1 +

2
3

FTR(G)TL#
GR(G)F

))
− 1TN1

Note that the eigenvalues of (LHi + Iti −
1

2+ti
jti ) (i = 1, 2, ...,m) are µ1(Hi) + 1, µ2(Hi) + 1, ..., µti (Hi) + 1. Then

tr(S−1) =

m∑
i=1

ti∑
j=1

1
µi(H j) + 1

. (9)
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By Lemma 2.2, L#
G1= 0 and (1T

(
RT(G)L#

GQ
)

1)T = 1T
(
QTL#

GR(G)
)

1, then

1TN1 =
m
2

+
1
6

1T
(
RT(G)L#

GR(G)
)

1 + 1TF1 + 1TFT1

+
2
3

1TRT(G)L#
GR(G)F1 + 1TS−11 +

2
3

1T
(
FTRT(G)L#

GR(G)F
)

1.

Note that R(G)1 = π, where πT = (d1, d2, ..., dn), then 1T
(
RT(G)L#

GR(G)
)

1 = πTL#
Gπ, so

1TN1 =
m
2

+
1
6
πTL#

Gπ + πTL#
GQ(G)1 + 1TT−11 + 1T

(
QTL#

GQ
)

1. (10)

Let Ri = LHi + Iti −
1

2+ti
jti (i = 1, 2, ...,m). Then

1TS−11T =
(

1T
t1

1T
t2
· · · 1T

tm

) 
R−1

1 0 0 ... 0
0 R−1

2 0 ... 0
0 0 ... ... 0
0 0 0 ... R−1

m




1t1

1t2

· · ·

1tm


=

m∑
i=1

1T
ti

(LHi + Iti −
1

2 + ti
jti )
−11ti =

1
2

m∑
i=1

ti(2 + ti), (11)

and

1TFT =
1
2

(
1T

t1
1T

t2
· · · 1T

tm

) 
1t1 0 0 ... 0
0 1t2 0 ... 0
0 0 ... ... 0
0 0 0 ... 1tm


=

1
2

(t1, 0, ..., 0, t2, 0, ..., 0..., tm) =
1
2
δT. (12)

Plugging (9), (10), (11) and (12) into K f (R(G) 	 ∧m
i=1Hi), we obtain the required result in (vi).

5. Conclusion

In this paper, using the Laplacian generalized inverse approach, we obtained the resistance distance
and Kirchhoff indices of R(G) � ∧n

i=1Hi and R(G) 	 ∧m
i=1Hi whenever G and Hi are arbitrary graph. These

results generalize the existing results in [13].
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