
Filomat 33:6 (2019), 1605–1617
https://doi.org/10.2298/FIL1906605D

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. A non-increasing sequence π = (d1, . . . , dn) of nonnegative integers is a graphic sequence if it is
realizable by a simple graph G on n vertices. In this case, G is referred to as a realization of π. Given a
graph H, a graphic sequence π is potentially H-graphic if π has a realization containing H as a subgraph.
Busch et al. (Graphs Combin., 30(2014)847–859) considered a degree sequence analogue to classical graph
Ramsey number as follows: for graphs G1 and G2, the potential-Ramsey number rpot(G1,G2) is the smallest
non-negative integer k such that for any k-term graphic sequence π, either π is potentially G1-graphic or
the complementary sequence π = (k − 1 − dk, . . . , k − 1 − d1) is potentially G2-graphic. They also gave a
lower bound on rpot(G,Kr+1) for a number of choices of G and determined the exact values for rpot(Kn,Kr+1),
rpot(Cn,Kr+1) and rpot(Pn,Kr+1). In this paper, we will extend the complete graph Kr+1 to the complete split
graph Sr,s = Kr ∨ Ks. Clearly, Sr,1 = Kr+1. We first give a lower bound on rpot(G,Sr,s) for a number of choices
of G, and then determine the exact values for rpot(Cn,Sr,s) and rpot(Pn,Sr,s).

1. Introduction

Graphs in this paper are finite, undirected and simple. Terms and notation not defined here are
from [1]. A non-increasing sequence π = (d1, . . . , dn) of nonnegative integers is a graphic sequence if it is
realizable by a (simple) graph G on n vertices. In this case, G is referred to as a realization of π, and we
write π = π(G). Two well known characterizations of graphic sequences were given by Havel and Hakimi
[10,9], and Erdős and Gallai [5]. Given a graph H, a graphic sequence π is potentially H-graphic if there
exists a realization of π containing H as a subgraph. The complementary sequence of π is denoted by
π = (d1, . . . , dk) = (k − 1 − dk, . . . , k − 1 − d1).

Degree sequence problems can be broadly classified into two types, first described as “forcible” problems
and “potential” problems by A.R. Rao in [12]. In a forcible degree sequence problem, a specified graph
property must exist in every realization of the degree sequence π, while in a potential degree sequence
problem, the desired property must be found in at least one realization of π. Results on forcible degree
sequences are often stated as traditional problems in extremal graph theory.

There are a number of degree sequence analogues to well known problems in extremal graph theory,
including potentially graphic sequence analogues of the Turán problem [6,7,8], the Erdős-Sós conjecture
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[14], Hadwiger’s conjecture [4,13] and the Sauer-Spencer theorem [3]. Motivated in part by this previous
work, Busch et al. [2] proposed a degree sequence analogue to classical graph Ramsey number. Given two
graphs G1 and G2 and a graphic sequence π, we write that π→ (G1,G2) if either π is potentially G1-graphic
or π is potentially G2-graphic. Busch et al. [2] defined the potential-Ramsey number of G1 and G2, denoted
rpot(G1,G2), to be the smallest non-negative integer k such that π→ (G1,G2) for any k-term graphic sequence
π. Busch et al. [2] first gave a lower bound on rpot(G,Kt) for a number of choices of G, and then determined
the exact values for rpot(Kn,Kt), rpot(Cn,Kt) and rpot(Pn,Kt), where Kn, Cn and Pn are the complete graph on n
vertices, the cycle on n vertices and the path on n vertices, respectively. The 1-dependence number of a graph
G, denoted α(1)(G), is the maximum order of an induced subgraph H of G with ∆(H) ≤ 1, where ∆(H) is the
maximum degree of H.

Theorem 1.1 [2] Let G be a graph of order n with no isolated vertices such that α(1)(G) ≤ n − 1 and let t ≥ 2.
Then rpot(G,Kt) ≥ max{2t + n − α(1)(G) − 2,n + t − 2}.

Theorem 1.2 [2] (1) If n ≥ t ≥ 3, then rpot(Kn,Kt) = 2n + t − 4 except when n = t = 3, in which case
rpot(K3,K3) = 6.

(2) If n ≥ 3 and t ≥ 2 with t ≤ b 2n
3 c, then rpot(Cn,Kt) = n + t − 2.

(3) If n ≥ 4 and t ≥ 3 with t ≥ b 2n
3 c + 1, then rpot(Cn,Kt) = 2t − 2 + d n

3 e.

(4) If n ≥ 6 and t ≥ 3, then rpot(Pn,Kt) =

{
n + t − 2, if t ≤ b 2n

3 c,
2t − 2 + b n

3 c, if t ≥ b 2n
3 c + 1.

We now extend the complete graph Kr+1 to Sr,s = Kr ∨ Ks, a complete split graph on r + s vertices, where
Ks is the complement of Ks and ∨ denotes join operation. Clearly, Sr,1 = Kr+1. Therefore, the complete split
graph Sr,s is an extension of the complete graph Kr+1. In this paper, we first give a lower bound on rpot(G,Sr,s)
for a number of choices of G (Theorem 1.3), and then determine the exact values of rpot(Cn,Sr,s) for n ≥ 3
and r, s ≥ 1 (Theorem 1.4–1.8) and rpot(Pn,Sr,s) for n ≥ 6 and r, s ≥ 1 (Theorem 1.9).

Theorem 1.3 Let G be a graph of order n with no isolated vertices such that α(1)(G) ≤ n− 1 and let r, s ≥ 1. Then
rpot(G,Sr,s) ≥ max{n + 2r + s − α(1)(G) +

−3+(−1)s−1

2 ,n + r + s − α(G) − 1,n + r − 1}, where α(G) is the independence
number of G.

Theorem 1.4 Let n ≥ 4, r ≥ 1 and s ≥ 1. If s ≤ b n
2 c and r + s ≤ b 2n

3 c, then rpot(Cn,Sr,s) = n + r − 1.
Theorem 1.5 Let n ≥ 4, r ≥ 1 and s ≥ 1. If s ≥ b n

2 c and r ≤ b 2n
3 c − b

n
2 c, then rpot(Cn,Sr,s) = d n

2 e + r + s − 1.
Theorem 1.6 Let n ≥ 4, r ≥ 1 and s ≥ 1, where s is odd, or let (n, r, s) = (4, 1, 4) or (5, 2, 2) or (4, 2, 2) or (6, 3, 2).

If s ≤ b n
2 c and r + s ≥ b 2n

3 c + 1 or if s ≥ b n
2 c and r ≥ b 2n

3 c − b
n
2 c + 1, then rpot(Cn,Sr,s) = d n

3 e + 2r + s − 1.
Theorem 1.7 Let n ≥ 4, r ≥ 1 and s ≥ 2, where s is even, and let (n, r, s) , (4, 1, 4), (5, 2, 2), (4, 2, 2) and (6, 3, 2).

If s ≤ b n
2 c and r + s ≥ b 2n

3 c + 1 or if s ≥ b n
2 c and r ≥ b 2n

3 c − b
n
2 c + 1, then rpot(Cn,Sr,s) = d n

3 e + 2r + s − 2.
Theorem 1.8 (1) rpot(C3,S1,2) = 5, rpot(C3,S1,3) = 6 and rpot(C3,S1,s) = s + 2 for s ≥ 4.
(2) If r ≥ 2 and s ≥ 1, where s is odd and (r, s) , (2, 1), then rpot(C3,Sr,s) = 2r + s.
(3) If r ≥ 2 and s ≥ 2, where s is even and (r, s) , (2, 2), then rpot(C3,Sr,s) = 2r + s − 1.
(4) rpot(C3,S2,1) = 6 and rpot(C3,S2,2) = 6.
Theorem 1.9 Let n ≥ 6, r ≥ 1 and s ≥ 1.
(1) If s ≤ d n

2 e − 1 and r + s ≤ d 2n
3 e +

−1+(−1)s

2 , then rpot(Pn,Sr,s) = n + r − 1.
(2) If s ≥ d n

2 e and r ≤ d 2n
3 e − d

n
2 e +

−1+(−1)s

2 , then rpot(Pn,Sr,s) = b n
2 c + r + s − 1.

(3) If s ≤ d n
2 e − 1 and r + s ≥ d 2n

3 e +
−1+(−1)s

2 + 1 or if s ≥ d n
2 e and r ≥ d 2n

3 e − d
n
2 e +

−1+(−1)s

2 + 1, then

rpot(Pn,Sr,s) = b n
3 c + 2r + s +

−3+(−1)s−1

2 .
It is easy to see that if s = 1, then Theorem 1.3 reduces to Theorem 1.1, Theorem 1.4 reduces to Theorem

1.2(2), Theorem 1.6 reduces to Theorem 1.2(3) and Theorem 1.9 reduces to Theorem 1.2(4).

2. Proofs of Theorem 1.3–1.9

We first prove Theorem 1.3.
Proof of Theorem 1.3. When s is odd, let ` = n− α(1)(G)− 1 and consider π = π(K` ∨ (r + s−1

2 )K2), where
pK2 denotes the disjoint union of p copies of K2. Clearly, π is unigraphic. Firstly, π is uniquely realized by
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(K2r+s−1 − (r + s−1
2 )K2) ∪ K` which contains no Sr,s, where ∪ denotes disjoint union and K2r+s−1 − (r + s−1

2 )K2

is the graph obtained from K2r+s−1 by deleting r + s−1
2 independent edges. Secondly, any copy of G lying in

the unique realization of π requires at least α(1)(G) + 1 vertices from the r + s−1
2 independent edges, which is

impossible as any such collection of vertices would necessarily induce a subgraph of G with order at least
α(1)(G) + 1 and maximum degree at most one. Hence π9 (G,Sr,s). Thus rpot(G,Sr,s) ≥ n + 2r + s− α(1)(G)− 1.
When s is even, let ` = n−α(1)(G)−1 and consider π = π(K`∨ (r+ s

2 −1)K2). Similarly, we can show that π9

(G,Sr,s). Thus rpot(G,Sr,s) ≥ n+2r+s−α(1)(G)−2. Therefore, we have rpot(G,Sr,s) ≥ n+2r+s−α(1)(G)+ −3+(−1)s−1

2
for any integer s ≥ 1.

In order to show that rpot(G,Sr,s) ≥ n+r+s−α(G)−1, we let ` = n−α(G)−1 and considerπ = π(K`∨Kr+s−1),
which is unigraphic. Firstly, π is uniquely realized by Kr+s−1 ∪ K` which contains no Sr,s. Secondly, any
copy of G lying in the unique realization of π requires at least α(G) + 1 vertices from the Kr+s−1, which is
impossible as any such collection of vertices would necessarily induce a subgraph of G with order at least
α(G) + 1 and maximum degree zero. Hence π9 (G,Sr,s). Thus rpot(G,Sr,s) ≥ n + r + s − α(G) − 1.

We now consider π = π(Kn−1 ∪ Kr−1), which is unigraphic. Clearly, π 9 (G,Sr,s). Thus, rpot(G,Sr,s) ≥
n + r − 1. �

In order to prove Theorem 1.4–1.9, we need some useful lemmas as follows. For a subgraph H of graph
G and a vertex v in G, NH(v) denotes those neighbors of v lying in H and we let dH(v) = |NH(v)|. Moreover,
for S ⊆ V(G), we denote NH(S) = ∪v∈SNH(v).

Lemma 2.1 [11] Let n ≥ 3 and π = (d1, . . . , dn) be a graphic sequence with d3 ≥ 2. Then π is potentially
C3-graphic if and only if π , (24), (25), where the symbol xy in a sequence stands for y consecutive terms x.

Lemma 2.2 [2] Let n ≥ 4, r, s ≥ 1, k = max{d n
3 e+2r+s+

−3+(−1)s−1

2 , d n
2 e+r+s−1,n+r−1} andπ = (d1, . . . , dk) be

a graphic sequence. Suppose that π has a realization G containing a cycle C = v0v1 · · · vm−1 with m ≥ n, and amongst
all such realizations let m be minimum. If m > n, then (1) C is induced; (2) dG(x) = 0 for each x ∈ V(G) \ V(C).

Lemma 2.3 Let n ≥ 4, r, s ≥ 1, k = max{d n
3 e+ 2r + s +

−3+(−1)s−1

2 , d n
2 e+ r + s− 1,n + r− 1} and π = (d1, . . . , dk)

be a graphic sequence. Let G be a realization of π containing a longest cycle C = v1v2 · · · vm with m ≤ n − 1 and
suppose that G has the maximum circumference amongst all realizations of π. Denote H = G \ V(C). Then

(1) [2] H is acyclic.
(2) [2] If ∆(H) ≥ 2, then the unique non-trivial component of H is a star H1. Moreover, if x ∈ V(H) is the center

of H1, then dH(x) = ∆(H), m is even and x is adjacent to either all odd index vertices or all even index vertices of C.
(3) If ∆(H) = 1, then NC(u) = NC(u′) for any two distinct vertices u,u′ ∈ V(H) with dH(u) = dH(u′) = 1.
(4) [2] If ∆(H) = 1, denote R = NC(u) and R+ = {vi+1|vi ∈ R}, where u ∈ V(H) with dH(u) = 1, then vi±1, vi±2 < R

for any vi ∈ R, R+ is an independent set of G, and xy < E(G) for any x ∈ R+ and y ∈ V(H) with dH(y) = 0.
(5) If ∆(H) = 1, then |NC(x) \ R| ≤ 1 for each x ∈ V(H) with dH(x) = 0.
(6) If ∆(H) = 1, R , ∅ and r + s ≤ |V(H)| ≤ 2r + s− 1, then π→ (Cn,Sr,s) or 2` − 2d s

2 e+ 2p + m− |R| ≤ 2r− 2.
(7) If ∆(H) ≤ 1 and H contains p isolated vertices with p ≥ r, then π→ (Cn,Sr,s).
Proof. (3) Let xx′ ∈ E(H). For vi ∈ V(C), if vix ∈ E(G) and vix′ < E(G), then exchange the edges xx′ and

vivi+1 for the nonedges vi+1x and vix′, we obtain a realization of π containing a cycle v1 · · · vixvi+1 · · · vmv1
of length m + 1, a contradiction. Hence, if vix ∈ E(G), then vix′ ∈ E(G). This implies that NC(x) ⊆ NC(x′).
Similarly, we have NC(x′) ⊆ NC(x). Thus NC(x) = NC(x′). For yy′ ∈ E(H) with yy′ , xx′, if vix ∈ E(G) and
viy < E(G), then exchange the edges xx′, yy′, vivi+1 for the nonedges vi+1x, x′y′, viy, we obtain a realization
of π containing a cycle v1 · · · vixvi+1 · · · vmv1 of length m + 1, a contradiction. Hence, if vix ∈ E(G), then
viy ∈ E(G). This implies that NC(x) ⊆ NC(y). Similarly, we have NC(y) ⊆ NC(x). Thus NC(x) = NC(y).
Therefore, NC(u) = NC(u′) for any two distinct vertices u,u′ ∈ V(H) with dH(u) = dH(u′) = 1.

(5) Assume v j, vk ∈ NC(x) \R with k ≥ j + 1 for x ∈ V(H) with dH(x) = 0. Let x1y1 ∈ E(H), if k− j = 1, then
π contains a cycle with length m + 1, a contradiction. If k − j ≥ 2, then exchange the edges x1y1, vkx, v jv j+1
for the nonedges vky1, v jx1, v j+1x, we obtain a realization of π which contains a cycle v1 · · · v jxv j+1 · · · v1 of
length m + 1, a contradiction.

(6) Note that |E(C\R)| ≥ m−2|R|. If m−2|R| ≥ `−b s
2 c, then we can use `−b s

2 c edges in C to breakout the `−b s
2 c

edges in H and create a realization of π in which there are at least r isolated vertices in H, implying that π is
potentially Sr,s-graphic. If m−2|R| ≤ `−b s

2 c−1, we can use the m−2|R| edges to breakout the m−2|R| edges in H
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and obtain a realization ofπ in which there are 2(m−2|R|)+p+(`−(m−2|R|)−d s
2 e) = `−d s

2 e+(m−2|R|)+p isolated
vertices in H. If `−d s

2 e+(m−2|R|)+p ≥ r, thenπ is potentially Sr,s-graphic. Assume `−d s
2 e+(m−2|R|)+p ≤ r−1.

On the other hand, by Lemma 2.3(4), then R+ along with the p isolates in H and `− d s
2 e vertices from `− d s

2 e

edges in H forms an independent set in G. If ` − d s
2 e + |R+

| + p = ` − d s
2 e + |R| + p ≥ r, then π is potentially

Sr,s-graphic. If ` − d s
2 e + |R| + p ≤ r − 1, then (` − d s

2 e + (m − 2|R|) + p) + (` − d s
2 e + |R| + p) ≤ 2r − 2, i.e.,

2` − 2d s
2 e + 2p + m − |R| ≤ 2r − 2.

(7) Clearly, |V(H)| = |G| − |V(C)| ≥ (n + r − 1) − (n − 1) = r. Let S be the set of r isolated vertices
in H. If |NC(S)| ≤ d n

2 e − 1, then |G| − |NC(S) ∪ S| ≥ (d n
2 e + r + s − 1) − (d n

2 e + r − 1) = s, implying that

G contains Sr,s, i.e., π is potentially Sr,s-graphic. If |NC(S)| ≤ d n
3 e + r +

−3+(−1)s−1

2 , then |G| − |NC(S) ∪ S| ≥

(d n
3 e+ 2r + s +

−3+(−1)s−1

2 )− (d n
3 e+ 2r +

−3+(−1)s−1

2 ) ≥ s, and so π is potentially Sr,s-graphic. Assume |NC(S)| ≥ d n
2 e

and |NC(S)| ≥ r + d n
3 e +

−3+(−1)s−1

2 + 1. By d n
2 e = b n−1

2 c + 1 ≥ bm
2 c + 1 and the maximum of m, there are two

consecutive vertices (say v1, v2) on C and x, x′ ∈ S (x , x′) so that v1x, v2x′ ∈ E(G), and hence r ≥ 2. By
r+d n

3 e+
−3+(−1)s−1

2 +1 ≥ r+1, there are y ∈ S and v, v′ ∈ V(C) (v , v′) so that vy, v′y ∈ E(G). Assume NC(x) = {v1}

and NC(x′) = {v2}. Then y , x, x′. If NC(y) ∩ {v1, v2} = ∅, then exchange the edges v1x, v2x′, vy, v′y for the
nonedges v1y, v2y, vx, v′x′, we obtain a realization of π containing a cycle v1yv2 · · · vmv1 of length m + 1, a
contradiction. If NC(y) ∩ {v1, v2} , ∅, without loss of generality, we let v = v1, then exchange the edges
v2x′, v′y for the nonedges v2y, v′x′, we obtain a realization of π containing a cycle v1yv2 · · · vmv1 of length
m + 1, a contradiction. Hence |NC(x)| ≥ 2 or |NC(x′)| ≥ 2. For v ∈ V(C) \ {v1}, if vx ∈ E(G) and vx′ < E(G),
then exchange the edges vx, v2x′ for the nonedges v2x, vx′, we obtain a realization of π containing a cycle
v1xv2 · · · vmv1 of length m + 1, a contradiction. Similarly, we have that for v ∈ V(C) \ {v2}, if vx′ ∈ E(G), then
vx ∈ E(G). So, we conclude that NC(x) \ {v1} = NC(x′) \ {v2}.

We claim that |NC(z)\(NC(x)∪{v2})| ≤ 1 for z ∈ V(S)\{x, x′}. To the contrary, let v, v′ ∈ NC(z)\(NC(x)∪{v2})
with v , v′. If NC(z)∩{v1, v2} = ∅, then exchange the edges vz, v′z, v1x, v2x′with the nonedges v1z, v2z, vx, v′x′,
we obtain a realization of π which contains a cycle v1zv2 · · · vmv1 of length m + 1, a contradiction. If
NC(z) ∩ {v1, v2} , ∅, without loss of generality, we let v1 ∈ NC(z), then exchange the edges v′z, v2x′ with
the nonedges v2z, v′x′, we obtain a realization of π which contains a cycle v1zv2 · · · vmv1 of length m + 1, a
contradiction.

Since |NC(S)| ≥ r + d n
3 e +

−3+(−1)s−1

2 + 1 and |V(S) \ {x, x′}| = r − 2, |NC(x)| = |NC(x′)| ≥ |NC(S)| − (r − 2) − 1 ≥

d
n
3 e+

−3+(−1)s−1

2 +2. If v3 ∈ NC(x) or vm ∈ NC(x), then G clearly contains a cycle of length m+1, a contradiction.
Hence v3, vm < NC(x). Let vp, vp+q ∈ NC(x) \ {v1} so that q is the minimum. Then 4 ≤ p ≤ p + q ≤ m − 1. If
q = 1, then G clearly contains a cycle of length m + 1, a contradiction. If q = 2, by NC(x) \ {v1} = NC(x′) \ {v2},
then vpxv1vm · · · vp+2x′v2v3 · · · vp−1vp is a cycle of length m + 1, a contradiction. Hence q ≥ 3. If n . 0(mod 3),
then d n

3 e ≤ |NC(x)| ≤ dm−4
3 e + 1 ≤ d n−2

3 e (by v2 < NC(x) and m ≤ n − 1), a contradiction. If n ≡ 0(mod 3) and
m ≤ n − 2, then d n

3 e ≤ |NC(x)| ≤ dm−4
3 e + 1 ≤ d n−3

3 e, a contradiction. Assume n ≡ 0(mod 3) and m = n − 1.
If s is odd, then d n

3 e + 1 ≤ |NC(x)| ≤ dm−4
3 e + 1 ≤ d n−2

3 e, a contradiction. Assume that s is even. If r ≥ 3, we
take z ∈ S \ {x, x′}. If |NC(z) \ (NC(x) ∪ {v2})| = 0, then |NC(x)| = |NC(x′)| ≥ |NC(S)| − (r − 3) − 1 ≥ d n

3 e + 1 and
d

n
3 e+1 ≤ |NC(x)| ≤ dm−4

3 e+1 ≤ d n−2
3 e, a contradiction. If |NC(z)\(NC(x)∪{v2})| = 1, let NC(z)\(NC(x)∪{v2}) = {v j},

where 3 ≤ j ≤ m, then NC(z) \ {v j} = NC(x) \ {v1} = NC(x′) \ {v2}. To the contrary, let v′ ∈ NC(x) \ {v1} and
v′ < NC(z), exchange the edges v′x, v2x′, v jz with the nonedges v′z, v2x, v jx′, we obtain a realization of π
containing a cycle v1xv2 · · · vmv1 of length m + 1, a contradiction. Thus d n

3 e ≤ |NC(x)| ≤ dm−5
3 e + 1 = d n−3

3 e

(by v2, v j < NC(x) and m = n − 1), a contradiction. Assume r = 2. If k ≥ d n
3 e + s + 3 and |NC(S)| ≤ d n

3 e + 1,
then |G| − |NC(S) ∪ S| ≥ (d n

3 e + s + 3) − (d n
3 e + 3) = s, and π is potentially S2,s-graphic. If k ≥ d n

3 e + s + 3 and
|NC(S)| ≥ d n

3 e + 2, then d n
3 e + 1 ≤ |NC(S)| − 1 = |NC(x)| ≤ dm−4

3 e + 1 ≤ d n−2
3 e, a contradiction. If k = d n

3 e + s + 2,
then n = 6,m = 5, s ≥ 4. Since |G| = k = s + 4 is even, there is z ∈ V(H) \ {x, x′} with dH(z) = 0. Note
that NC(x) = {v1, v4} and NC(x′) = {v2, v4} (by |NC(x)| = |NC(x′)| ≥ d 6

3 e = 2). If v3 ∈ NC(z), then v2 < NC(z),
exchange the edges v2x′, v3z with the nonedges v2z, v3x′, we obtain a realization of πwhich contains a cycle
v1v2v3x′v4v5v1 of length 6, a contradiction. Hence v3 < NC(z). Similarly, v5 < NC(z). Thus NC(z) ⊆ {v1, v4} or
NC(z) ⊆ {v2, v4}. Without loss of generality, we let NC(z) ⊆ {v1, v4}, then there are (s + 4) − 4 = s vertices in G
which are not adjacent to x and z, implying that π is potentially S2,s-graphic. �
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Lemma 2.4 [15] Let n ≥ r + 1 and π = (d1, . . . , dn) be a graphic sequence with dr ≥ r + s − 1 and dr+s ≥ r. If
di ≥ 2r + (s − 1) − i for i = 1, . . . , r + s − 1, then π is potentially Sr,s-graphic.

Proof of Theorem 1.4. By α(Cn) = b n
2 c and α(1)(Cn) = b 2n

3 c (see [2]), it is easy to get from Theorem 1.3
that rpot(Cn,Sr,s) ≥ n + r − 1.

Let π = (d1, . . . , dk) be a graphic sequence with k = n + r − 1. We now prove that π → (Cn,Sr,s). If no
realization of π contains a cycle, by Lemma 2.1, then d3 ≤ 1. Let G be a realization of π. Then |G| = n+ r−1 ≥
(b 2n

3 c+ d
n
3 e) + r− 1 ≥ d n

3 e+ 2r + s− 1 ≥ 2r + 2. Let v1, v2 ∈ V(G) so that dG(v1) = d1 and dG(v2) = d2. Then in G,
each vertex of V(G) \ {v1, v2} has degree at most one. By |V(G) \ {v1, v2}| ≥ 2r, we can choose an independent
set S ⊆ V(G)\{v1, v2} of G with |S| = r. Then |NG(S)| ≤ r. Since |G|−|S∪NG(S)| ≥ n−r−1 = b 2n

3 c+d
n
3 e−r−1 ≥ s,

it is easy to see that G contains Sr,s as a subgraph. In other words, π is potentially Sr,s-graphic.
Suppose that there is a realization G of π containing a cycle C = v0v1 · · · vm−1 with m ≥ n, and amongst

all such realizations let m be minimum. If m = n then we are done, so further assume that m ≥ n + 1. Then
C is induced by Lemma 2.2(1).

Assume first that m = n + 1. Then r ≥ 2. By Lemma 2.2(2), we have dG(x) = 0 for each vertex in
V(G) \ V(C), i.e., G = C ∪ Kr−2, where C = Cn+1. Then Kr−2 ∪ {v1, v3} is an independent set of size r in G. By
n ≥ 4, there are m − 5 = n − 4 = d n

3 e + b 2n
3 c − 4 ≥ d n

3 e + r + s − 4 ≥ s vertices which are not adjacent to each
vertex of Kr−2 ∪ {v1, v3} in G, implying that G contains Sr,s, i.e., π is potentially Sr,s-graphic.

Suppose that m = n + 2. Then r ≥ 3 and n ≥ 6. By Lemma 2.2(2), we have dG(x) = 0 for each vertex in
V(G) \V(C), i.e., G = C∪Kr−3, where C = Cn+2. Then Kr−3∪{v1, v3, v5} is an independent set of size r in G. By
r ≥ 3 and m ≥ 8, there are m − 7 = n − 5 = d n

3 e + b
2n
3 c − 5 ≥ d n

3 e + r + s − 5 ≥ s vertices which are not adjacent
to each vertex of Kr−3 ∪ {v1, v3, v5} in G, implying that G contains Sr,s, i.e., π is potentially Sr,s-graphic.

If m ≥ n + 3, then replace the induced Cm in G with a copy of Cm−3 ∪ C3, contradicting the choice of m.
Hence, we assume that every realization of π has circumference at most n − 1. Let G be a realization of π
containing a longest cycle C = v1v2 · · · vm with m ≤ n−1 and suppose that G has the maximum circumference
amongst all realizations of π. Let H = G \ V(C). Then |V(H)| = |G| − |V(C)| ≥ (n + r − 1) − (n − 1) = r.

Claim 1 ∆(H) ≤ 1.
Proof of Claim 1. To the contrary, we assume ∆(H) ≥ 2. By Lemma 2.3 (1) and (2), the unique non-trivial

component of H is a star H1. Moreover, if x ∈ V(H) is the center of H1, then dH(x) = ∆(H), m is even and x is
adjacent to either all odd index vertices or all even index vertices of C. Without loss of generality, vix ∈ E(G)
if and only if i is even. Let x′ be an neighbor of x in H. If x′ is adjacent to v2, then v1v2x′xv4 · · · vmv1 is a
cycle of length m + 1 in G, a contradiction. Hence x′ is not adjacent to v2. We now exchange the edges xx′

and v1v2 with the nondeges v1x and v2x′, and obtain a realization of π containing a cycle v1xv2v3 · · · vmv1 of
length m + 1, a contradiction. �

Claim 2 If ∆(H) = 0, then π→ (Cn,Sr,s).
Proof of Claim 2. Clearly, V(H) is an independent set of G. By Lemma 2.3(7), π→ (Cn,Sr,s). �
Claim 3 If ∆(H) = 1, then π→ (Cn,Sr,s).
Proof of Claim 3. Let H contain 2` ≥ 2 vertices with degree one and p isolated vertices. If p ≥ r, by

Lemma 2.3(7), then π→ (Cn,Sr,s). Assume p ≤ r − 1. By Lemma 2.3(3), NC(u) = NC(u′) for any two distinct
vertices u,u′ ∈ V(H) with dH(u) = dH(u′) = 1. Denote R = NC(u), where u ∈ V(H) with dH(u) = 1, and let
xiyi, 1 ≤ i ≤ ` be the (disjoint) edges in H.

Firstly, suppose that R = ∅. If |V(H)| ≥ 2r + s, then we can choose an independent set S of H with |S| = r.
Moreover, by |V(H)| − |S ∪NH(S)| ≥ 2r + s − 2r = s, π is potentially Sr,s-graphic. If r + s ≤ |V(H)| ≤ 2r + s − 1,
then m ≥ (n + r − 1) − (2r + s − 1) ≥ d n

3 e. For each i = 1, . . . ,min{`,m}, we exchange the edges xiyi, vivi+1 for
the nonedges vixi, vi+1yi to obtain at least r isolated vertices in H, implying that π is potentially Sr,s-graphic.
If |V(H)| ≤ r + s − 1, then m ≥ (n + r − 1) − (r + s − 1) ≥ d n

3 e + r. By Lemma 2.3(5), dC(x) = |NC(x)| ≤ 1 for each

x ∈ V(H) with dH(x) = 0. Thus by |V(H)|
2 ≤

b
2n
3 c−1

2 ≤ d
n
3 e+ r ≤ m, for each i = 1, . . . `,we can exchange the edges

xiyi, vivi+1 for the nonedges vixi, vi+1yi. Finally, we obtain a realization of π so that V(H) is an independent
set and dC(x) ≤ 1 for each x ∈ V(H). By |V(C)| ≤ n − 1 and |V(H)| ≥ r, we take S ⊆ V(H) with |S| = r. Clearly,
there are at least |G| − 2r = (n + r− 1)− 2r = n− r− 1 ≥ d n

3 e+ s− 1 ≥ s vertices which are not adjacent to each
vertex in S. This implies that π is potentially Sr,s-graphic.



J. Du, J. Yin / Filomat 33:6 (2019), 1605–1617 1610

Now assume that R , ∅. If |V(H)| ≥ 2r + s, then π is potentially Sr,s-graphic. Assume r + s ≤ |V(H)| ≤
2r + s − 1. By Lemma 2.3(6), we may assume 2` − 2d s

2 e + 2p + m − |R| ≤ 2r − 2. By 2` + p + m = n + r − 1 and
r + s ≤ b 2n

3 c, we have 0 ≥ 2`−2d s
2 e+ 2p + m− |R| − (2r−2) ≥ (n + r−1)− (2r−2)− (s + 1) + p− |R| ≥ d n

3 e+ p− |R|.
By Lemma 2.3(4), |R| ≤ bm

3 c ≤ b
n−1

3 c. This implies that d n
3 e + p ≤ b n−1

3 c, a contradiction.
If |V(H)| ≤ r + s − 1, then m ≥ d n

3 e + r. By Lemma 2.3(5), |NC(x) \ R| ≤ 1 for each x ∈ V(H) with

dH(x) = 0. Since p ≤ r − 1, we have ` ≥ d r−p
2 e. By m ≥ d n

3 e + r, |R| ≤ bm
3 c and d n

3 e ≥
b

2n
3 c

2 ≥
r
2 , then

m − 2|R| ≥ m − 2bm
3 c ≥ d

m
3 e ≥ d

d
n
3 e+r
3 e ≥ d

r
2 +r
3 e = d r

2 e, and hence we can use d r−p
2 e edges of C to breakout

d
r−p

2 e edges of H and obtain a realization of π in which H contains at least p + 2d r−p
2 e ≥ r isolated vertices.

Let S be the set of r isolated vertices in H. Clearly, |NC(S)| ≤ |R| + r ≤ bm
3 c + r ≤ d n

3 e + r − 1. Then
|G| − |S ∪NC(S)| ≥ (n + r − 1) − (d n

3 e + 2r − 1) ≥ s, and so π is potentially Sr,s-graphic. �
Proof of Theorem 1.5. By Theorem 1.3, rpot(Cn,Sr,s) ≥ d n

2 e + r + s − 1. Let π = (d1, . . . , dk) be a graphic
sequence with k = d n

2 e + r + s − 1. We now prove that π → (Cn,Sr,s). If no realization of π contains a
cycle, by Lemma 2.1, then d3 ≤ 1. Let G be a realization of π. By d n

2 e − r ≥ d n
2 e − (b 2n

3 c − b
n
2 c) = d n

3 e,
i.e., d n

2 e ≥ d
n
3 e + r, we have |G| = d n

2 e + r + s − 1 ≥ d n
3 e + 2r + s − 1 ≥ 2r + 2. Let v1, v2 ∈ V(G) so

that dG(v1) = d1 and dG(v2) = d2. Then in G, each vertex of V(G) \ {v1, v2} has degree at most one. By
|V(G) \ {v1, v2}| ≥ 2r, we can choose an independent set S ⊆ V(G) \ {v1, v2} of G with |S| = r. Then |NG(S)| ≤ r.
Since |G| − |S ∪ NG(S)| ≥ d n

2 e + s − r − 1 ≥ (d n
3 e + r) + s − r − 1 ≥ s, it is easy to see that G contains Sr,s as a

subgraph. In other words, π is potentially Sr,s-graphic.
Suppose that there is a realization G of π containing a cycle C = v0v1 · · · vm−1 with m ≥ n, and amongst

all such realizations let m be minimum. If m = n then we are done, so further assume that m ≥ n + 1. Then
C is induced by Lemma 2.2(1).

Firstly, assume m = n + 1. By Lemma 2.2(2), we have dG(x) = 0 for each vertex in V(G) \ V(C), i.e.,
G = C∪Kr+s−b n

2 c−2, where C = Cn+1. If r = 1, then n ≥ 5. Since there are |G| −3 = d n
2 e+ s−3 ≥ s vertices which

are not adjacent to v1 in G, π is potentially Sr,s-graphic. If r ≥ 2, then n ≥ 9. Since r + s − b n
2 c − 2 ≥ r − 2, we

have that {v1, v3} in C along with r− 2 vertices in Kr+s−b n
2 c−2 forms an independent set S with |S| = r in G and

there are |G| − (r + 3) = d n
2 e + s − 4 ≥ s vertices which are not adjacent to each vertex in S, implying that π is

potentially Sr,s-graphic.
If m = n + 2, by Lemma 2.2(2), we have dG(x) = 0 for each vertex in V(G) \ V(C), i.e., G = C ∪ Kr+s−b n

2 c−3,
where C = Cn+2. If r = 1, then n ≥ 5. Since there are |G| − 3 = d n

2 e + s − 3 ≥ s vertices which are not adjacent
to v1 in G, π is potentially Sr,s-graphic. If r = 2, then n ≥ 9. Since there are |G| − 5 = d n

2 e + s − 4 ≥ s vertices
which are not adjacent to v1 and v3 in G, π is potentially Sr,s-graphic. If r ≥ 3, then n ≥ 15, and hence
{v1, v3, v5} along with r − 3 vertices in Kr+s−b n

2 c−3 forms an independent set S with |S| = r in G and there are
|G| − (r + 4) = d n

2 e + r + s − 1 − (r + 4) = d n
2 e + s − 5 ≥ s vertices which are not adjacent to each vertex in S,

implying that π is potentially Sr,s-graphic.
If m ≥ n + 3, then replace the induced Cm in G with a copy of Cm−3 ∪ C3, contradicting the choice of m.

Hence, we assume that every realization of π has circumference at most n − 1. Let G be a realization of π
containing a longest cycle C = v1v2 · · · vm with m ≤ n−1 and suppose that G has the maximum circumference
amongst all realizations of π. Let H = G \ V(C). Then |V(H)| = |G| − |V(C)| ≥ (d n

2 e + r + s − 1) − (n − 1) =
r + s − b n

2 c ≥ r.
Claim 1 ∆(H) ≤ 1.
Proof of Claim 1. The proof is similar to that of Claim 1 of Theorem 1.4. �
Claim 2 If ∆(H) = 0, then π→ (Cn,Sr,s).
Proof of Claim 2. Clearly, V(H) is an independent set of G. By Lemma 2.3(7), π→ (Cn,Sr,s). �
Claim 3 If ∆(H) = 1, then π→ (Cn,Sr,s).
Proof of Claim 3. Let H contain 2` ≥ 2 vertices with degree one and p isolated vertices. If p ≥ r, by

Lemma 2.3(7), then π→ (Cn,Sr,s). Assume p ≤ r − 1. By Lemma 2.3(3), NC(u) = NC(u′) for any two distinct
vertices u,u′ ∈ V(H) with dH(u) = dH(u′) = 1. Denote R = NC(u), where u ∈ V(H) with dH(u) = 1, and let
xiyi, 1 ≤ i ≤ ` be the (disjoint) edges in H.

Firstly, suppose that R = ∅. If |V(H)| ≥ 2r + s, then we can choose an independent set S of H with |S| = r.
Moreover, by |V(H)| − |S ∪NH(S)| ≥ 2r + s − 2r = s, π is potentially Sr,s-graphic. If r + s ≤ |V(H)| ≤ 2r + s − 1,
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then m ≥ (d n
2 e+r+s−1)−(2r+s−1) ≥ d n

3 e. For each i = 1, . . . ,min{`,m}, we exchange the edges xiyi, vivi+1 for
the nonedges vixi, vi+1yi to obtain at least r isolated vertices in H, implying that π is potentially Sr,s-graphic.
If |V(H)| ≤ r + s− 1, then m ≥ (d n

2 e+ r + s− 1)− (r + s− 1) ≥ d n
3 e+ r ≥ d r

2 e. By Lemma 2.3(5), dC(x) = |NC(x)| ≤ 1
for each x ∈ V(H) with dH(x) = 0. For each i = 1, . . . ,min{`, d r

2 e},we can exchange the edges xiyi, vivi+1 for the
nonedges vixi, vi+1yi, and obtain a realization ofπ in which H contains at least r isolated vertices. Let S be the
set of r isolated vertices in H. Clearly, |NC(S)| ≤ r. Then |G|− |S∪NC(S)| ≥ (d n

2 e+ r+ s−1)−2r ≥ d n
3 e+ s−1 ≥ s,

and so π is potentially Sr,s-graphic.
Now assume that R , ∅. If |V(H)| ≥ 2r + s, then π is potentially Sr,s-graphic. Assume r + s ≤ |V(H)| ≤

2r+ s−1. By Lemma 2.3(6), we may assume 2`−2d s
2 e+2p+m−|R| ≤ 2r−2. By 2`+p+m = d n

2 e+ r+ s−1 and
d

n
2 e−r ≥ d n

3 e, we have 0 ≥ 2`−2d s
2 e+2p+m−|R|−(2r−2) ≥ (d n

2 e+r+s−1)−(2r−2)−(s+1)+p−|R| ≥ d n
3 e+p−|R|.

By Lemma 2.3(4), |R| ≤ bm
3 c ≤ b

n−1
3 c. Thus d n

3 e + p ≤ b n−1
3 c, a contradiction.

If |V(H)| ≤ r + s − 1, then m ≥ d n
3 e + r. By Lemma 2.3(5), |NC(x) \ R| ≤ 1 for each x ∈ V(H) with

dH(x) = 0. Since p ≤ r − 1, we have ` ≥ d r−p
2 e. By m ≥ d n

3 e + r, |R| ≤ bm
3 c and d n

3 e ≥
b

2n
3 c

2 ≥
r
2 , then

m − 2|R| ≥ m − 2bm
3 c ≥ d

m
3 e ≥ d

d
n
3 e+r
3 e ≥ d

r
2 +r
3 e = d r

2 e, and hence we can use d r−p
2 e edges of C to breakout

d
r−p

2 e edges of H and obtain a realization of π in which H contains at least p + 2d r−p
2 e ≥ r isolated vertices.

Let S be the set of r isolated vertices in H. Clearly, |NC(S)| ≤ |R| + r ≤ bm
3 c + r ≤ d n

3 e + r − 1. Then
|G| − |S ∪NC(S)| ≥ (d n

2 e + r + s − 1) − (d n
3 e + 2r − 1) ≥ s, and so π is potentially Sr,s-graphic. �

Proof of Theorem 1.6. Clearly, r ≥ b 2n
3 c − b

n
2 c + 1 and r + s ≥ b 2n

3 c + 1. By (26)9 (C4,S1,4), (C4,S2,2) and
(C5,S2,2), and (28)9 (C6,S3,2), we have rpot(Cn,Sr,s) ≥ d n

3 e+2r+s−1 for (n, r, s) = (4, 1, 4), (5, 2, 2), (4, 2, 2), (6, 3, 2).
Moreover, by Theorem 1.3, we also have rpot(Cn,Sr,s) ≥ d n

3 e + 2r + s − 1 when n ≥ 4, r ≥ 1, and s ≥ 1 is
odd. Let π = (d1, . . . , dk) be a graphic sequence with k = d n

3 e + 2r + s − 1. We now prove that π→ (Cn,Sr,s).
If no realization of π contains a cycle, by Lemma 2.1, then d3 ≤ 1. Let G be a realization of π. Then
|G| = d n

3 e + 2r + s − 1 ≥ 2r + 2. Let v1, v2 ∈ V(G) so that dG(v1) = d1 and dG(v2) = d2. Then in G, each
vertex of V(G) \ {v1, v2} has degree at most one. By |V(G) \ {v1, v2}| ≥ 2r, we can choose an independent set
S ⊆ V(G) \ {v1, v2} of G with |S| = r. Then |NG(S)| ≤ r. Since |G| − |S∪NG(S)| ≥ d n

3 e+ s− 1 ≥ s, π is potentially
Sr,s-graphic.

Suppose that there is a realization G of π containing a cycle C = v0v1 · · · vm−1 with m ≥ n, and amongst
all such realizations let m be minimum. If m = n then we are done, so further assume that m ≥ n + 1. Then
C is induced by Lemma 2.2(1).

Assume first that m = n + 1. By Lemma 2.2(2), we have dG(x) = 0 for each vertex in V(G) \ V(C), i.e.,
G = C ∪ K2r+s−b 2n

3 c−2, where C = Cn+1. Since 2r + s − b 2n
3 c − 2 ≥ r − 1, v1 in C along with r − 1 vertices in

K2r+s−b 2n
3 c−2 forms an independent set S with |S| = r in G and there are |G| − (r + 2) = d n

3 e+ r + s− 3 ≥ s vertices
which are not adjacent to each vertex in S, π is potentially Sr,s-graphic.

If m = n + 2, by Lemma 2.2(2), we have dG(x) = 0 for each vertex in V(G) \V(C), i.e., G = C∪K2r+s−b 2n
3 c−3,

where C = Cn+2. If r = 1, then there are |G| −3 = d n
3 e+ s−2 ≥ s vertices which are not adjacent to v1 in G, and

so π is potentially Sr,s-graphic. If r ≥ 2, then 2r + s−b 2n
3 c−3 ≥ r−2, and so {v1, v3} along with r−2 vertices in

K2r+s−b 2n
3 c−3 forms an independent set S with |S| = r in G and there are |G| − (r + 3) = d n

3 e+ 2r + s− 1− (r + 3) =

d
n
3 e + r + s − 4 ≥ s vertices which are not adjacent to each vertex of S, π is potentially Sr,s-graphic.

If m ≥ n + 3, then replace the induced Cm in G with a copy of Cm−3 ∪ C3, contradicting the choice of m.
Hence, we assume that every realization of π has circumference at most n − 1. Let G be a realization of π
containing a longest cycle C = v1v2 · · · vm with m ≤ n−1 and suppose that G has the maximum circumference
amongst all realizations of π. Let H = G \ V(C). Then |V(H)| = |G| − |V(C)| ≥ (d n

3 e + 2r + s − 1) − (n − 1) ≥ r.
Claim 1 ∆(H) ≤ 1.
Proof of Claim 1. The proof is similar to that of Claim 1 of Theorem 1.4. �
Claim 2 If ∆(H) = 0, then π→ (Cn,Sr,s).
Proof of Claim 2. Clearly, V(H) is an independent set of G. By Lemma 2.3(7), π→ (Cn,Sr,s). �
Claim 3 If ∆(H) = 1, then π→ (Cn,Sr,s).
Proof of Claim 3. Let H contain 2` ≥ 2 vertices with degree one and p isolated vertices. If p ≥ r, by

Lemma 2.3(7), then π→ (Cn,Sr,s). Assume p ≤ r − 1. By Lemma 2.3(3), NC(u) = NC(u′) for any two distinct
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vertices u,u′ ∈ V(H) with dH(u) = dH(u′) = 1. Denote R = NC(u), where u ∈ V(H) with dH(u) = 1, and let
xiyi, 1 ≤ i ≤ ` be the (disjoint) edges in H.

Firstly, suppose that R = ∅. If |V(H)| ≥ 2r + s, then we can choose an independent set S of H with |S| = r.
Moreover, by |V(H)| − |S ∪NH(S)| ≥ 2r + s − 2r = s, π is potentially Sr,s-graphic. If r + s ≤ |V(H)| ≤ 2r + s − 1,
then m ≥ (d n

3 e+ 2r + s− 1)− (2r + s− 1) ≥ d n
3 e and |V(H)| = d n

3 e+ 2r + s− 1−m. For each i = 1, . . . ,min{`,m},
we exchange the edges xiyi, vivi+1 for the nonedges vixi, vi+1yi, then let H contain 2`′ vertices with degree
one and p′ isolated vertices. If ` ≤ m, then `′ = 0, by |V(H)| ≥ r + s, we have π → (Cn,Sr,s). Assume
` ≥ m + 1. Then p′ ≥ 2m. If p′ ≥ r, by |V(H)| − r ≥ r + s − r = s, then π → (Cn,Sr,s). If p′ ≤ r − 1, by
`′ =

|V(H)|−p′

2 ≥
d

n
3 e+2r+s−1−m−p′

2 ≥
(2r−2p′)+p′−m

2 ≥ r − p′, then p′ isolated vertices in H along with r − p′ vertices
from r− p′ edges in H forms an independent set S with |S| = r in G. It follows from |NH(S)| = r− p′ ≤ r− 2m
and |V(H)|−|NH(S)∪S| ≥ (d n

3 e+2r+s−1−m)−(2r−2m) ≥ s thatπ is potentially Sr,s-graphic. If |V(H)| ≤ r+s−1,
then m ≥ (d n

3 e + 2r + s − 1) − (r + s − 1) ≥ d r
2 e. By Lemma 2.3(5), dC(x) = |NC(x)| ≤ 1 for each x ∈ V(H) with

dH(x) = 0. For each i = 1, . . . ,min{`, d r
2 e}, we can exchange the edges xiyi, vivi+1 for the nonedges vixi, vi+1yi,

and obtain a realization of π in which H contains at least r isolated vertices. Let S be the set of r isolated
vertices in H. Clearly, |NC(S)| ≤ r. Then |G| − |S ∪NC(S)| ≥ (d n

3 e + 2r + s − 1) − 2r ≥ s, and so π is potentially
Sr,s-graphic.

Now assume that R , ∅. If |V(H)| ≥ 2r + s, then π is potentially Sr,s-graphic. Assume r + s ≤ |V(H)| ≤
2r + s− 1. By Lemma 2.3(6), we may assume 2`− 2d s

2 e+ 2p + m− |R| ≤ 2r− 2. By 2`+ p + m = d n
3 e+ 2r + s− 1,

we have 0 ≥ 2` − 2d s
2 e + 2p + m − |R| − (2r − 2) ≥ (d n

3 e + 2r + s − 1) − (2r − 2) − (s + 1) + p − |R| ≥ d n
3 e + p − |R|.

By Lemma 2.3(4), |R| ≤ bm
3 c ≤ b

n−1
3 c. Thus d n

3 e + p ≤ b n−1
3 c, a contradiction.

If |V(H)| ≤ r + s− 1, then m ≥ d n
3 e+ r and r ≤ b 2n

3 c − 1. By Lemma 2.3(5), |NC(x) \R| ≤ 1 for each x ∈ V(H)

with dH(x) = 0. Since p ≤ r − 1, we have ` ≥ d r−p
2 e. By m ≥ d n

3 e + r, |R| ≤ bm
3 c and d n

3 e ≥
b

2n
3 c

2 ≥
r
2 , then

m − 2|R| ≥ m − 2bm
3 c ≥ d

m
3 e ≥ d

d
n
3 e+r
3 e ≥ d

r
2 +r
3 e = d r

2 e, and hence we can use d r−p
2 e edges of C to breakout

d
r−p

2 e edges of H and obtain a realization of π in which H contains at least p + 2d r−p
2 e ≥ r isolated vertices.

Let S be the set of r isolated vertices in H. Clearly, |NC(S)| ≤ |R| + r ≤ bm
3 c + r ≤ d n

3 e + r − 1. Then
|G| − |S ∪NC(S)| ≥ (d n

3 e + 2r + s − 1) − (d n
3 e + 2r − 1) ≥ s, and so π is potentially Sr,s-graphic. �

Proof of Theorem 1.7. Clearly, r ≥ b 2n
3 c − b

n
2 c + 1 and r + s ≥ b 2n

3 c + 1. From Theorem 1.3 we have
rpot(Cn,Sr,s) ≥ d n

3 e + 2r + s − 2. Let π = (d1, . . . , dk) be a graphic sequence with k = d n
3 e + 2r + s − 2. We now

prove that π → (Cn,Sr,s). If no realization of π contains a cycle, by Lemma 2.1, then d3 ≤ 1. Let G be a
realization of π. Then |G| = d n

3 e + 2r + s − 2 ≥ 2r + 2. Let v1, v2 ∈ V(G) so that dG(v1) = d1 and dG(v2) = d2.
Then in G, each vertex of V(G) \ {v1, v2} has degree at most one. By |V(G) \ {v1, v2}| ≥ 2r, we can choose an
independent set S ⊆ V(G) \ {v1, v2} of G with |S| = r. Then |NG(S)| ≤ r. Since |G| − |S∪NG(S)| ≥ d n

3 e+ s− 2 ≥ s,
π is potentially Sr,s-graphic.

Suppose that there is a realization G of π containing a cycle C = v0v1 · · · vm−1 with m ≥ n, and amongst
all such realizations let m be minimum. If m = n then we are done, so further assume that m ≥ n + 1. Then
C is induced by Lemma 2.2(1).

Assume first that m = n + 1. By Lemma 2.2(2), we have dG(x) = 0 for each vertex in V(G) \ V(C), i.e.,
G = C ∪ K2r+s−b 2n

3 c−3, where C = Cn+1. If r = 1, then n = 4, |V(C)| = 5 and |G| = s + 2 is even, implying that

|V(K2r+s−b 2n
3 c−3)| ≥ 1, and π is potentially S1,s-graphic. Assume r ≥ 2 and 4 ≤ n ≤ 6. If r + s ≥ b 2n

3 c + 2, then

2r + s − b 2n
3 c − 3 ≥ r − 1, and hence v1 in C along with r − 1 vertices in K2r+s−b 2n

3 c−3 forms an independent
set S with |S| = r in G and there are |G| − (r + 2) = (d n

3 e + 2r + s − 2) − (r + 2) = d n
3 e + r + s − 4 ≥ s vertices

which are not adjacent to each vertex in S, π is potentially Sr,s-graphic. If r ≥ 3, by r + s ≥ b 2n
3 c + 1, then

2r + s− b 2n
3 c − 3 ≥ r− 2, and hence {v1, v3} in C along with r− 2 vertices in K2r+s−b 2n

3 c−3 forms an independent
set S with |S| = r in G and there are |G| − (r + 3) = (d n

3 e+ 2r + s− 2)− (r + 3) = d n
3 e+ r + s− 5 ≥ s vertices which

are not adjacent to each vertex in S, π is potentially Sr,s-graphic. For the case of r = 2 and r + s = b 2n
3 c + 1,

if n = 4, then r + s = 3 and s = 1, a contradiction; if n = 5, then (n, r, s) = (5, 2, 2), a contradiction; if n = 6,
then r + s = 5 and s = 3, a contradiction. Assume r ≥ 2 and n ≥ 7. By 2r + s − b 2n

3 c − 3 ≥ r − 2, {v1, v3}

in C along with r − 2 vertices in K2r+s−b 2n
3 c−3 forms an independent set S with |S| = r in G and there are
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|G| − (r + 3) = (d n
3 e+ 2r + s− 2)− (r + 3) = d n

3 e+ r + s− 5 ≥ s vertices which are not adjacent to each vertex in
S, π is potentially Sr,s-graphic.

Suppose that m = n + 2. By Lemma 2.2(2), we have dG(x) = 0 for each vertex in V(G) \ V(C), i.e.,
G = C ∪ K2r+s−b 2n

3 c−4, where C = Cn+2. If r = 1, then n = 4, |V(C)| = 6 and |G| = s + 2. In this case,

if s = 4, then (n, r, s) = (4, 1, 4), a contradiction; if s ≥ 6, then |V(K2r+s−b 2n
3 c−4)| ≥ 1, and π is potentially

S1,s-graphic. Assume r ≥ 2 and 4 ≤ n ≤ 6. If r + s ≥ b 2n
3 c + 3, then 2r + s − b 2n

3 c − 4 ≥ r − 1, and hence
v1 in C along with r − 1 vertices in K2r+s−b 2n

3 c−4 forms an independent set S with |S| = r in G and there are
|G| − (r + 2) = (d n

3 e + 2r + s − 2) − (r + 2) = d n
3 e + r + s − 4 ≥ s vertices which are not adjacent to each vertex

in S, π is potentially Sr,s-graphic. If r + s = b 2n
3 c + 2 and r ≥ 3, then 2r + s − b 2n

3 c − 4 = r − 2, and hence
{v1, v3} in C along with r − 2 vertices in K2r+s−b 2n

3 c−4 forms an independent set S with |S| = r in G and there
are |G| − (r + 3) = (d n

3 e+ 2r + s− 2)− (r + 3) = d n
3 e+ r + s− 5 ≥ s vertices which are not adjacent to each vertex

in S, π is potentially Sr,s-graphic. For the case of r + s = b 2n
3 c + 2 and r = 2, if n = 4, then (n, r, s) = (4, 2, 2), a

contradiction; if n = 5, then r + s = 5 and s = 3, a contradiction; if n = 6, then r + s = 6, s = 4 and |G| = m = 8,
implying that G = C8 and π = (28). It is easy to see that π → (C6,S2,4). For the case of r + s = b 2n

3 c + 1, by
|G| = d n

3 e+ 2r + s− 2 ≥ m = n + 2, we have r ≥ 3 and r + s ≥ 5, implying that (n, r, s) = (6, 3, 2), a contradiction.
Assume r ≥ 2 and n ≥ 7. If r = 2, then there are |G| − 5 = (d n

3 e + s + 2) − 5 = d n
3 e + s − 3 ≥ s vertices which

are not adjacent to v1 and v3, π is potentially S2,s-graphic. If r ≥ 3, then 2r + s − b 2n
3 c − 4 ≥ r − 3, and hence

{v1, v3, v5} in C along with r− 3 vertices in K2r+s−b 2n
3 c−4 forms an independent set S with |S| = r in G and there

are |G| − (r + 4) = (d n
3 e+ 2r + s− 2)− (r + 4) = d n

3 e+ r + s− 6 ≥ s vertices which are not adjacent to each vertex
in S, π is potentially Sr,s-graphic.

If m ≥ n + 3, then replace the induced Cm in G with a copy of Cm−3 ∪ C3, contradicting the choice of m.
Hence, we assume that every realization of π has circumference at most n − 1. Let G be a realization of π
containing a longest cycle C = v1v2 · · · vm with m ≤ n−1 and suppose that G has the maximum circumference
amongst all realizations of π. Let H = G \ V(C). Then |V(H)| = |G| − |V(C)| ≥ (d n

3 e + 2r + s − 2) − (n − 1) ≥ r.
Claim 1 ∆(H) ≤ 1.
Proof of Claim 1. The proof is similar to that of Claim 1 of Theorem 1.4. �
Claim 2 If ∆(H) = 0, then π→ (Cn,Sr,s).
Proof of Claim 2. Clearly, V(H) is an independent set of G. By Lemma 2.3(7), π→ (Cn,Sr,s). �
Claim 3 If ∆(H) = 1, then π→ (Cn,Sr,s).
Proof of Claim 3. Let H contain 2` ≥ 2 vertices with degree one and p isolated vertices. If p ≥ r, by

Lemma 2.3(7), then π→ (Cn,Sr,s). Assume p ≤ r − 1. By Lemma 2.3(3), NC(u) = NC(u′) for any two distinct
vertices u,u′ ∈ V(H) with dH(u) = dH(u′) = 1. Denote R = NC(u), where u ∈ V(H) with dH(u) = 1, and let
xiyi, 1 ≤ i ≤ ` be the (disjoint) edges in H.

Firstly, suppose that R = ∅. If |V(H)| ≥ 2r + s, then we can choose an independent set S of H with |S| = r.
Moreover, by |V(H)| − |S ∪NH(S)| ≥ 2r + s − 2r = s, π is potentially Sr,s-graphic. If r + s ≤ |V(H)| ≤ 2r + s − 1,
then m ≥ (d n

3 e+2r+ s−2)− (2r+ s−1) ≥ d n
3 e−1 and |V(H)| = d n

3 e+2r+ s−2−m. For each i = 1, . . . ,min{`,m},
we exchange the edges xiyi, vivi+1 for the nonedges vixi, vi+1yi, then let H contain 2`′ vertices with degree
one and p′ isolated vertices. If ` ≤ m, then `′ = 0, by |V(H)| ≥ r + s, we have π → (Cn,Sr,s). Assume
` ≥ m + 1. Then p′ ≥ 2m. If p′ ≥ r, by |V(H)| − r ≥ r + s − r = s, then π → (Cn,Sr,s). If p′ ≤ r − 1, by
`′ =

|V(H)|−p′

2 ≥
d

n
3 e+2r+s−2−m−p′

2 ≥
(2r−2p′)+p′−m

2 ≥ r − p′, then p′ isolated vertices in H along with r − p′ vertices
from r− p′ edges in H forms an independent set S with |S| = r in G. It follows from |NH(S)| = r− p′ ≤ r− 2m
and |V(H)|−|NH(S)∪S| ≥ (d n

3 e+2r+s−2−m)−(2r−2m) ≥ s thatπ is potentially Sr,s-graphic. If |V(H)| ≤ r+s−1,
then m ≥ (d n

3 e + 2r + s − 2) − (r + s − 1) = d n
3 e + r − 1 ≥ d r

2 e and r ≤ b 2n
3 c. By Lemma 2.3(5), dC(x) = |NC(x)| ≤ 1

for each x ∈ V(H) with dH(x) = 0. For each i = 1, . . . ,min{`, d r
2 e}, we can exchange the edges xiyi, vivi+1 for

the nonedges vixi, vi+1yi, and obtain a realization of π in which H contains at least r isolated vertices. Let S
be the set of r isolated vertices in H. Clearly, |NC(S)| ≤ r. Then |G| − |S ∪NC(S)| ≥ (d n

3 e + 2r + s − 2) − 2r ≥ s,
and so π is potentially Sr,s-graphic.

Now assume that R , ∅. If |V(H)| ≥ 2r + s, then π is potentially Sr,s-graphic. Assume r + s ≤ |V(H)| ≤
2r+s−1. By Lemma 2.3(6), we may assume 2`−2d s

2 e+2p+m−|R| ≤ 2r−2. By 2`+p+m = d n
3 e+2r+s−2 and
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s is even, we have 0 ≥ 2`− 2d s
2 e+ 2p + m− |R| − (2r− 2) = (d n

3 e+ 2r + s− 2)− (2r− 2)− s + p− |R| ≥ d n
3 e+ p− |R|.

By Lemma 2.3(4), |R| ≤ bm
3 c ≤ b

n−1
3 c. Thus d n

3 e + p ≤ b n−1
3 c, a contradiction.

If |V(H)| ≤ r + s − 1, then m = |G| − |V(H)| ≥ d n
3 e + r − 1, and hence r ≤ b 2n

3 c (by m ≤ n − 1). By

|R| ≤ bm
3 c and Lemma 2.3(5), we have m − 2|R| ≥ m − 2bm

3 c ≥ d
m
3 e ≥ d

d
n
3 e+r−1

3 e ≥ d
r
2 e and |NC(x) \ R| ≤ 1

for each x ∈ V(H) with dH(x) = 0. We now consider the following two cases according to the value of
|R| ≤ bm

3 c ≤ b
n−1

3 c = d n
3 e − 1. If |R| ≤ d n

3 e − 2, by ` ≥ d r−p
2 e, then we can use d r−p

2 e edges of C to breakout
d

r−p
2 e edges of H to obtain a realization of π in which H contains at least p + 2d r−p

2 e ≥ r isolated vertices. Let
S be the set of r isolated vertices in H. Clearly, |NC(S)| ≤ |R| + r ≤ bm

3 c + r ≤ d n
3 e + r − 2. This implies that

|G| − |S ∪NC(S)| ≥ (d n
3 e + 2r + s − 2) − (d n

3 e + 2r − 2) = s, and so π is potentially Sr,s-graphic. If |R| = d n
3 e − 1,

then |R| = bm
3 c = d n

3 e − 1. In this case, if r = 1, then n = 4 and m = 3. Since |V(H)| = |G| − m = s − 1 ≥ 1 is
odd, we have p ≥ 1 = r, a contradiction. Assume r ≥ 2. If m . 0(mod 3), by |R| = bm

3 c and Lemma 2.3(4),
C has three consecutive vertices, say v1, v2, v3, so that v1, v2, v3 < R; moreover, v4 ∈ R or vm ∈ R. Without
loss of generality, we let v4 ∈ R. If v1v3 ∈ E(G), then we exchange the edges x1y1, v1v3 for the nonedges
v1x1, v3y1 to obtain a realization of π containing a cycle v1v2v3y1v4 · · · vmv1 of length m + 1, a contradiction.
If v1v3 < E(G), then we first exchange the edges x1y1, v1v2, v2v3 for the nonedges v2x1, v2y1, v1v3 to obtain a
realization of π containing a cycle v1v3v4 · · · vmv1 of length m− 1, then by (m− 1)− 2|R| ≥ d r

2 e − 1, we can use
d

r−p
2 e − 1 edges of v1v3v4 · · · vmv1 to breakout d r−p

2 e − 1 edges of H to obtain a realization of π in which H has
2 + p + 2(d r−p

2 e − 1) ≥ r isolated vertices. Let S be the set of r isolated vertices in H and x1, y1 ∈ S. Clearly,
|NC(S)| ≤ |R| + r − 1 = bm

3 c + r − 1 = d n
3 e + r − 2, and so |G| − |S∪NC(S)| ≥ (d n

3 e + 2r + s − 2) − (d n
3 e + 2r − 2) = s

and π is potentially Sr,s-graphic. Assume m ≡ 0(mod 3). If p ≥ 1, we let x ∈ V(H) with dH(x) = 0. In this
case, if NC(x) \ R , ∅, we let v ∈ NC(x) \ R, by m ≡ 0(mod 3), |R| = bm

3 c and Lemma 2.3(4), then v = vi+1 or
vi−1 for some vi ∈ R. Without loss of generality, we let v = vi+1, then exchange the edges x1y1, vi+1x for the
nonedges vi+1x1, xy1 to obtain a realization of π containing a cycle v1v2 · · · vix1vi+1 · · · vmv1 of length m + 1,
a contradiction. Hence NC(x) \ R = ∅. By m − 2|R| ≥ d r

2 e, we can use d r−p
2 e edges of C to breakout d r−p

2 e

edges of H to obtain a realization of π in which H contains at least p + 2d r−p
2 e ≥ r isolated vertices. Let S

be the set of r isolated vertices in H and x ∈ S. Clearly, |NC(S)| ≤ |R| + r − 1 = bm
3 c + r − 1 = d n

3 e + r − 2,
and so |G| − |S ∪NC(S)| ≥ (d n

3 e + 2r + s − 2) − (d n
3 e + 2r − 2) = s and π is potentially Sr,s-graphic. If p = 0, by

m ≡ 0(mod 3) and |R| = bm
3 c = m

3 , we have that |G| − |R| = |V(C)| − |R|+ |V(H)| = m− m
3 + 2` = 2m

3 + 2` is even.
On the other hand, by |R| = d n

3 e − 1, we have that |G| − |R| = d n
3 e + 2r + s − 2 − (d n

3 e − 1) = 2r + s − 1 is odd, a
contradiction. �

Proof of Theorem 1.8. (1) By (24)9 (C3,S1,2), we have rpot(C3,S1,2) ≥ 5. Let π = (d1, . . . , d5) be a graphic
sequence. If π is not potentially C3-graphic, by Lemma 2.1, then d3 ≤ 1 or π = (25) or π = (24, 0), implying
that d1 = 4 − d5 ≥ 2, and so π is potentially S1,2-graphic. Thus rpot(C3,S1,2) = 5. By (25)9 (C3,S1,3), we have
rpot(C3,S1,3) ≥ 6. Let π = (d1, . . . , d6) be a graphic sequence. If π is not potentially C3-graphic, by Lemma
2.1, then d3 ≤ 1 or π = (25, 0) or π = (24, 02), thus d1 = 5 − d6 ≥ 3, and so π is potentially S1,3-graphic. Hence
rpot(C3,S1,3) = 6. For s ≥ 4, by Theorem 1.3, rpot(C3,S1,s) ≥ s + 2. Let π = (d1, . . . , ds+2) be a graphic sequence
with s ≥ 4. If π is not potentially S1,s-graphic, then d1 ≤ s − 1, and hence ds+2 = s + 1 − d1 ≥ 2, by s + 2 ≥ 6
and Lemma 2.1, π is potentially C3-graphic. Thus rpot(C3,S1,s) = s + 2 for s ≥ 4.

(2) Let r ≥ 2, s ≥ 1 be odd and (r, s) , (2, 1). By Theorem 1.3, rpot(C3,Sr,s) ≥ 2r + s. Let π = (d1, . . . , d2r+s)
be a graphic sequence. If s = 1, by Theorem 1.2(1), then rpot(C3,Sr,1) = 2r + 1. Assume s ≥ 3. If π is not
potentially C3-graphic, by Lemma 2.1, then d3 ≤ 1 or π = (24, 02r+s−4) or π = (25, 02r+s−5). If d3 ≤ 1, then
dr+s ≥ d2r+s−2 = 2r + s − 1 − d3 ≥ 2r + s − 2, by Lemma 2.4, π is potentially Sr,s-graphic. If π = (24, 02r+s−4) or
π = (25, 02r+s−5), by 2r + s − 4 ≥ 2r + s − 5 ≥ r, then every realization of π contains at least r isolated vertices,
and so π is potentially Sr,s-graphic.

(3) Let r ≥ 2, s ≥ 2 be even and (r, s) , (2, 2). By Theorem 1.3, rpot(C3,Sr,s) ≥ 2r + s − 1. Let π =
(d1, . . . , d2r+s−1) be a graphic sequence. If π is not potentially C3-graphic, by Lemma 2.1, then d3 ≤ 1 or
π = (24, 02r+s−5) or π = (25, 02r+s−6). If π = (24, 02r+s−5), by r+s ≥ 5, then every realization of π contains at least
2r + s− 5 ≥ r isolated vertices, and so π is potentially Sr,s-graphic. Assume π = (25, 02r+s−6). If r + s ≥ 6, then
every realization of π contains at least 2r + s − 6 ≥ r isolated vertices, and so π is potentially Sr,s-graphic. If
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r + s = 5, then r = 3, s = 2 and π = (62, 45), by Lemma 2.4, π is potentially S3,2-graphic. Assume d3 ≤ 1. Let
G be a realization of π with vertex set V(G) = {v1, v2, . . . , v2r+s−1} so that dG(vi) = di for each i. If d1 ≥ 3, let
v, v′ ∈ NG(v1)\{v2}, by ∆(G[V(G)\{v1, v2, v, v′}]) ≤ 1 and |G[V(G)\{v1, v2, v, v′}]| = |G|−4 = 2r+s−5 ≥ 2(r−2),
then we can find an independent set of G[V(G) \ {v1, v2, v, v′}] with order at least r− 2, thus {v, v′} along with
r − 2 vertices in V(G) \ {v1, v2, v, v′} forms an independent set S of G with |S| = r, and by |S∪NG(S)| ≤ 2r − 1,
there are at least (2r + s− 1)− (2r− 1) = s vertices which are not adjacent to each vertex in S, implying that π

is potentially Sr,s-graphic. If d1 = d2 = 2, then d2r+s−1 = 0 as d3 ≤ 1 and
2r+s−1∑

i=1
di is even. Clearly, d1 = 2r+ s−2,

dr+s−1 ≥ d2r+s−3 ≥ 2r + s − 3 and dr+s ≥ d2r+s−2 = 2r + s − 4 ≥ r. By Lemma 2.4, π is potentially Sr,s-graphic. If
d1 = 2 and d2 = 1, let v, v′ ∈ NG(v1), by |G[V(G) \ {v1, v, v′}]| = |G| − 3 = 2r + s − 4 ≥ 2(r − 2), then {v, v′} along
with r − 2 vertices in V(G) \ {v1, v, v′} forms an independent set S of G with |S| = r, and there are at least
(2r + s− 1)− (2r− 1) = s vertices which are not adjacent to each vertex in S, thus π is potentially Sr,s-graphic.

If d1 ≤ 1, then d2r+s−1 = 0 as
2r+s−1∑

i=1
di is even and 2r+ s−1 is odd. Clearly, d1 = 2r+ s−2 and d2r+s−1 ≥ 2r+ s−3.

By Lemma 2.4, π is potentially Sr,s-graphic. Thus rpot(C3,Sr,s) = 2r + s − 1.
(4) By Theorem 1.2, rpot(C3,S2,1) = 6. By (25) 9 (C3,S2,2), we have rpot(C3,S2,2) ≥ 6. Let π = (d1, . . . , d6)

be a graphic sequence. If π is not potentially C3-graphic, by Lemma 2.1, then d3 ≤ 1 or π = (25, 0) or
π = (24, 02), implying that d1 = 5 − d6 ≥ 4 and d4 = 5 − d3 ≥ 3. By Lemma 2.4, π is potentially S2,2-graphic.
Thus rpot(C3,S2,2) = 6. �

Proof of Theorem 1.9. (1) If s ≤ d n
2 e−1 and r+s ≤ d 2n

3 e+
−1+(−1)s

2 , by Theorem 1.3, then rpot(Pn,Sr,s) ≥ n+r−1.
Moreover, s ≤ d n

2 e − 1 ≤ b n
2 c and r + s ≤ d 2n

3 e +
−1+(−1)s

2 ≤ b
2n
3 c +

−1+(−1)s

2 + 1. If r + s ≤ b 2n
3 c, by Theorem 1.4,

then rpot(Cn,Sr,s) = n + r − 1. If r + s = b 2n
3 c + 1, then s is even and d 2n

3 e = b 2n
3 c + 1, by Theorem 1.7, we also

have rpot(Cn,Sr,s) = d n
3 e + 2r + s − 2 = d n

3 e + b
2n
3 c + r − 1 = n + r − 1. It follows from rpot(Pn,Sr,s) ≤ rpot(Cn,Sr,s)

that rpot(Pn,Sr,s) = n + r − 1.
(2) If s ≥ d n

2 e and r ≤ d 2n
3 e−d

n
2 e+

−1+(−1)s

2 , by α(Pn) = d n
2 e and Theorem 1.3, then rpot(Pn,Sr,s) ≥ b n

2 c+r+s−1.
Moreover, s ≥ d n

2 e ≥ b
n
2 c and r ≤ d 2n

3 e−d
n
2 e+

−1+(−1)s

2 ≤ b
2n
3 c−b

n
2 c+

−1+(−1)s

2 +1. If r ≤ b 2n
3 c−b

n
2 c, by Theorem 1.5,

then rpot(Cn,Sr,s) = d n
2 e+r+s−1. If r = b 2n

3 c−b
n
2 c+1, then s is even and d 2n

3 e−d
n
2 e = b 2n

3 c−b
n
2 c+1, by Theorem

1.7, we also have rpot(Cn,Sr,s) = d n
3 e+ 2r + s− 2 = d n

3 e+ b
2n
3 c− b

n
2 c+ r + s− 1 = d n

2 e+ r + s− 1. We now consider
the following two cases in terms of the parity of n. If n is even, by d n

2 e = b n
2 c, then rpot(Pn,Sr,s) ≤ rpot(Cn,Sr,s) =

b
n
2 c+ r+ s−1. Thus rpot(Pn,Sr,s) = b n

2 c+ r+ s−1. Assume that n is odd. If d 2n
3 e−d

n
2 e+

−1+(−1)s

2 ≤ b
2(n−1)

3 c−b
n−1

2 c,
by s ≥ d n

2 e ≥ b
n−1

2 c and Theorem 1.5, we have rpot(Cn−1,Sr,s) = d n−1
2 e + r + s − 1. If d 2n

3 e − d
n
2 e +

−1+(−1)s

2 ≥

b
2(n−1)

3 c − b
n−1

2 c+ 1, then s is even and r = d 2n
3 e − d

n
2 e = b

2(n−1)
3 c − b

n−1
2 c+ 1, by s ≥ d n

2 e ≥ b
n
2 c and Theorem 1.7,

we also have rpot(Cn−1,Sr,s) = d n−1
3 e + 2r + s − 2 = d n−1

3 e + b
2(n−1)

3 c − b
n−1

2 c + r + s − 1 = d n−1
2 e + r + s − 1. Let

π = (d1, . . . , dk) be a graphic sequence with k = b n
2 c+r+s−1. It follows from b n

2 c = d n−1
2 e that k = rpot(Cn−1,Sr,s).

Assume that π is not potentially Sr,s-graphic. Then π has a realization G containing Cn−1. If there exists one
edge between V(G) \ V(Cn−1) and V(Cn−1), then π is potentially Pn-graphic. Assume that there is no edge
between V(G) \V(Cn−1) and V(Cn−1). If there exists one edge xy ∈ E(G \V(Cn−1)), let v, v′ be two consecutive
vertices on Cn−1, then exchange the edges vv′, xy with the non-edges vx, v′y, we obtain a realization of π
which contains Pn. If there is no edge in G \V(Cn−1), by b n

2 c+ r + s− 1− (n− 1) ≥ r, then G contains Sr,s, that
is, π is potentially Sr,s-graphic, a contradiction. Hence rpot(Pn,Sr,s) = b n

2 c + r + s − 1.
(3) If s ≤ d n

2 e−1 and r+ s ≥ d 2n
3 e+

−1+(−1)s

2 +1 or if s ≥ d n
2 e and r ≥ d 2n

3 e−d
n
2 e+

−1+(−1)s

2 +1, by α(1)(Pn) = d 2n
3 e

and Theorem 1.3, then rpot(Pn,Sr,s) ≥ b n
3 c + 2r + s +

−3+(−1)s−1

2 . Moreover, r + s ≥ d 2n
3 e +

−1+(−1)s

2 + 1 and
r ≥ d 2n

3 e − d
n
2 e +

−1+(−1)s

2 + 1. Assume (n, r, s) , (6, 3, 2).
If s ≤ d n

2 e−1 (≤ b n
2 c) and r+s ≥ b 2n

3 c+1 or if s ≥ d n
2 e (≥ b n

2 c) and r ≥ b 2n
3 c−b

n
2 c+1, by Theorems 1.6 and 1.7,

then rpot(Cn,Sr,s) = d n
3 e + 2r + s +

−3+(−1)s−1

2 , implying that rpot(Pn,Sr,s) ≤ rpot(Cn,Sr,s) = d n
3 e + 2r + s +

−3+(−1)s−1

2 .

If n ≡ 0(mod 3), by d n
3 e = b n

3 c, then rpot(Pn,Sr,s) = b n
3 c + 2r + s +

−3+(−1)s−1

2 . Assume n . 0(mod 3). Let

π = (d1, . . . , dk) be a graphic sequence with k = b n
3 c + 2r + s +

−3+(−1)s−1

2 . Clearly, r + s ≥ b 2n
3 c + 1 and
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r ≥ b 2n
3 c − b

n
2 c + 1. By k ≥ d n−2

3 e + 2r + s +
−3+(−1)s−1

2 , k ≥ b n
3 c + (b 2n

3 c − b
n
2 c + 1) + r + s +

−3+(−1)s−1

2 ≥

d
n
2 e+ r + s +

−3+(−1)s−1

2 ≥ d
n−2

2 e+ r + s−1 and k ≥ b n
3 c+ (b 2n

3 c+ 1) + r +
−3+(−1)s−1

2 ≥ n + r +
−3+(−1)s−1

2 ≥ (n−2) + r−1,

we have k ≥ max{d n−2
3 e + 2r + s +

−3+(−1)s−1

2 , d n−2
2 e + r + s − 1, (n − 2) + r − 1} = rpot(Cn−2,Sr,s) (by Theorem

1.4–1.7). Assume that π is not potentially Sr,s-graphic. Then π has a realization G containing Cn−2. Let
H = G\V(Cn−2). It follows from r+s ≥ d 2n

3 e+
−1+(−1)s

2 +1 that |H| = |G|−|V(Cn−2)| = b n
3 c+2r+s+−3+(−1)s−1

2 −(n−2) ≥

b
n
3 c + (d 2n

3 e +
−1+(−1)s

2 + 1) + r +
−3+(−1)s−1

2 − (n − 2) ≥ r + 1 ≥ 2. If ∆(H) = 0, we let S ⊆ V(H) with |S| = r. If

NC(S) ≤ b n
2 c − 1, by r ≥ d 2n

3 e − d
n
2 e+

−1+(−1)s

2 + 1, then |G| − |S∪NC(S)| ≥ b n
3 c+ 2r + s +

−3+(−1)s−1

2 − (b n
2 c+ r− 1) ≥

b
n
3 c + (d 2n

3 e − d
n
2 e +

−1+(−1)s

2 + 1) + r + s +
−3+(−1)s−1

2 − (b n
2 c + r − 1) = s, and π is potentially Sr,s-graphic, a

contradiction. Hence |NC(S)| ≥ b n
2 c (= b n−2

2 c + 1). This implies that there are two consecutive vertices (say
v1, v2) on Cn−2 and two vertices x, x′ ∈ S so that v1x, v2x′ ∈ E(G). If x , x′, then π is potentially Pn-graphic.
Assume x = x′. If there is one vertex y ∈ V(H) \ {x} and one vertex v ∈ V(Cn−2) so that vy ∈ E(G), then π is
potentially Pn-graphic; if dC(y) = 0 for each y ∈ V(H)\{x}, thenπ is potentially Sr,s-graphic, a contradiction. If
∆(H) ≥ 1, let xy ∈ E(H), then either there exists one edge between {x, y} and V(Cn−2) (and so π is potentially
Pn-graphic), or we take vv′ ∈ E(Cn−2) and then exchange the edges vv′, xy with the non-edges vx, v′y to
obtain a realization of π which contains Pn. Hence rpot(Pn,Sr,s) = b n

3 c + 2r + s +
−3+(−1)s−1

2 .
If s ≤ d n

2 e − 1 (≤ b n
2 c) and d 2n

3 e +
−1+(−1)s

2 + 1 ≤ r + s ≤ b 2n
3 c, then s is odd and r + s = d 2n

3 e = b 2n
3 c. Then

rpot(Pn,Sr,s) ≥ b n
3 c+2r+ s−1 = n+ r−1. It follows from Theorem 1.4 that rpot(Pn,Sr,s) ≤ rpot(Cn,Sr,s) = n+ r−1.

Hence rpot(Pn,Sr,s) = b n
3 c + 2r + s − 1.

Assume s ≥ d n
2 e (≥ b n

2 c) and d 2n
3 e − d

n
2 e +

−1+(−1)s

2 + 1 ≤ r ≤ b 2n
3 c − b

n
2 c. Then we only have the following

three cases: s is odd and d 2n
3 e − d

n
2 e ≤ r = b 2n

3 c − b
n
2 c; s is odd and d 2n

3 e − d
n
2 e = r = b 2n

3 c − b
n
2 c − 1; s is even and

d
2n
3 e − d

n
2 e + 1 = r = b 2n

3 c − b
n
2 c.

If s is odd and d 2n
3 e−d

n
2 e ≤ r = b 2n

3 c−b
n
2 c, by Theorem 1.5, then rpot(Pn,Sr,s) ≤ rpot(Cn,Sr,s) = d n

2 e+r+s−1 =
d

n
3 e+2r+s−1. If n ≡ 0(mod 3), then rpot(Pn,Sr,s) = b n

3 c+2r+s−1. If n . 0(mod 3), letπ = (d1, . . . , dk) be a graphic
sequence with k = b n

3 c+2r+s−1. It is easy to check that k ≥ max{d n−2
3 e+2r+s−1, d n−2

2 e+r+s−1, (n−2)+r−1} =
rpot(Cn−2,Sr,s). Assume that π is not potentially Sr,s-graphic. Then π has a realization G containing Cn−2. Let
H = G\V(Cn−2). If ∆(H) = 0, we have |H| = |G|− |V(Cn−2)| ≥ r+1, let S ⊆ V(H) with |S| = r. If NC(S) ≤ b n

2 c−1,
by |G| − |S ∪ NC(S)| ≥ s, then π is potentially Sr,s-graphic, a contradiction. Hence |NC(S)| ≥ b n

2 c. Then there
are two consecutive vertices (say v1, v2) on Cn−2 and two vertices x, x′ ∈ S so that v1x, v2x′ ∈ E(G). If x , x′,
then π is potentially Pn-graphic. If x = x′, and if there is one vertex y ∈ V(H) \ {x} and one vertex v ∈ V(Cn−2)
so that vy ∈ E(G), then π is potentially Pn-graphic; if dC(y) = 0 for each y ∈ V(H) \ {x}, then π is potentially
Sr,s-graphic, a contradiction. If ∆(H) ≥ 1, let xy ∈ E(H), then either there exists one edge between {x, y} and
V(Cn−2) (and so π is potentially Pn-graphic), or we take vv′ ∈ E(Cn−2) and then exchange the edges vv′, xy
with the non-edges vx, v′y to obtain a realization of πwhich contains Pn. Hence rpot(Pn,Sr,s) = b n

3 c+2r+s−1.
If s is odd and d 2n

3 e − d
n
2 e = r = b 2n

3 c − b
n
2 c − 1 or if s is even and d 2n

3 e − d
n
2 e + 1 = r = b 2n

3 c − b
n
2 c, then

n ≡ 3(mod 6) and r = d 2n
3 e − d

n
2 e +

−1+(−1)s

2 + 1 = b 2n
3 c − b

n
2 c +

−1+(−1)s

2 , and hence

rpot(Pn,Sr,s) ≥ b
n
3 c + 2r + s +

−3+(−1)s−1

2

= b
n
3 c + r + s + (d 2n

3 e − d
n
2 e +

−1+(−1)s

2 + 1) +
−3+(−1)s−1

2
= b

n
2 c + r + s − 1.

(∗)

Now by s ≥ d n
2 e ≥ b

n
2 c, r ≤ b 2n

3 c − b
n
2 c and Theorem 1.5, we have b n

2 c + r + s − 1 ≤ rpot(Pn,Sr,s) ≤ rpot(Cn,Sr,s) =

d
n
2 e + r + s − 1. If s is odd, by s ≥ d n

2 e ≥ b
n−1

2 c, r = b 2n
3 c − b

n
2 c − 1 ≤ b 2(n−1)

3 c − b
n−1

2 c and Theorem 1.5, we have
rpot(Cn−1,Sr,s) = d n−1

2 e+r+s−1; if s is even, by s ≥ d n
2 e ≥ b

n−1
2 c, r = b 2n

3 c−b
n
2 c = b

2(n−1)
3 c−b

n−1
2 c+1 and Theorem

1.7, we also have rpot(Cn−1,Sr,s) = d n−1
3 e+ 2r + s− 2 = d n−1

3 e+ b
2(n−1)

3 c − b
n−1

2 c+ r + s− 1 = d n−1
2 e+ r + s− 1. Let

π = (d1, . . . , dk) be a graphic sequence with k = b n
2 c+r+s−1. It follows from b n

2 c = d n−1
2 e that k = rpot(Cn−1,Sr,s).

Assume that π is not potentially Sr,s-graphic. Then π has a realization G containing Cn−1. If there exists one
edge between V(G) \ V(Cn−1) and V(Cn−1), then π is potentially Pn-graphic. Assume that there is no edge
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between V(G) \V(Cn−1) and V(Cn−1). If there exists one edge xy ∈ E(G \V(Cn−1)), let v, v′ be two consecutive
vertices on Cn−1, then exchange the edges vv′, xy with the non-edges vx, v′y, we obtain a realization of π
which contains Pn. If there is no edge in G \V(Cn−1), by b n

2 c+ r + s− 1− (n− 1) ≥ r, then G contains Sr,s, that
is, π is potentially Sr,s-graphic, a contradiction. Hence rpot(Pn,Sr,s) ≤ b n

2 c + r + s − 1. It follows from (∗) that

rpot(Pn,Sr,s) = b n
3 c + 2r + s +

−3+(−1)s−1

2 .
If (n, r, s) = (6, 3, 2), then rpot(P6,S3,2) ≥ 8. Let π = (d1, . . . , d8) be a graphic sequence. Assume that π is not

potentially S3,2-graphic. By Theorem 1.7, we have rpot(C5,S3,2) = 8, and so π has a realization G containing
C5. If there exists one edge between V(G) \ V(C5) and V(C5), then π is potentially P6-graphic. Assume
that there is no edge between V(G) \ V(C5) and V(C5). If there exists one edge xy ∈ E(G \ V(C5)), let v, v′

be two consecutive vertices on C5, then exchange the edges vv′, xy with the non-edges vx, v′y, we obtain a
realization of π which contains P6. If there is no edge in G \ V(C5), by |G| − 5 = 3, then G contains S3,2, that
is, π is potentially S3,2-graphic, a contradiction. �
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[11] R. Luo, On potentially Ck-graphic sequences, Ars Combinatoria 64 (2002) 301–318.
[12] A.R. Rao, The clique number of a graph with a given degree sequence, In: Proceedings of the Symposium on Graph Theory,

volume 4 of ISI Lecture Notes, Macmillan of India, New Delhi, 1979, 251–267.
[13] N. Robertson, Z. Song, Hadwiger number and chromatic number for near regular degree sequences, Journal of Graph Theory 64

(2010) 175–183.
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