A Further Result on the Potential-Ramsey Number of G_{1} and G_{2}

Jinzhi Du ${ }^{\text {a }}$, Jianhua Yin ${ }^{\text {a }}$
${ }^{a}$ School of Science, Hainan University, Haikou 570228, P.R. China

Abstract

A non-increasing sequence $\pi=\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers is a graphic sequence if it is realizable by a simple graph G on n vertices. In this case, G is referred to as a realization of π. Given a graph H, a graphic sequence π is potentially H-graphic if π has a realization containing H as a subgraph. Busch et al. (Graphs Combin., $30(2014) 847-859$) considered a degree sequence analogue to classical graph Ramsey number as follows: for graphs G_{1} and G_{2}, the potential-Ramsey number $r_{\text {pot }}\left(G_{1}, G_{2}\right)$ is the smallest non-negative integer k such that for any k-term graphic sequence π, either π is potentially G_{1}-graphic or the complementary sequence $\bar{\pi}=\left(k-1-d_{k}, \ldots, k-1-d_{1}\right)$ is potentially G_{2}-graphic. They also gave a lower bound on $r_{p o t}\left(G, K_{r+1}\right)$ for a number of choices of G and determined the exact values for $r_{p o t}\left(K_{n}, K_{r+1}\right)$, $r_{p o t}\left(C_{n}, K_{r+1}\right)$ and $r_{p o t}\left(P_{n}, K_{r+1}\right)$. In this paper, we will extend the complete graph K_{r+1} to the complete split graph $S_{r, s}=K_{r} \vee \overline{K_{s}}$. Clearly, $S_{r, 1}=K_{r+1}$. We first give a lower bound on $r_{p o t}\left(G, S_{r, s}\right)$ for a number of choices of G, and then determine the exact values for $r_{p o t}\left(C_{n}, S_{r, s}\right)$ and $r_{p o t}\left(P_{n}, S_{r, s}\right)$.

1. Introduction

Graphs in this paper are finite, undirected and simple. Terms and notation not defined here are from [1]. A non-increasing sequence $\pi=\left(d_{1}, \ldots, d_{n}\right)$ of nonnegative integers is a graphic sequence if it is realizable by a (simple) graph G on n vertices. In this case, G is referred to as a realization of π, and we write $\pi=\pi(G)$. Two well known characterizations of graphic sequences were given by Havel and Hakimi [10,9], and Erdős and Gallai [5]. Given a graph H, a graphic sequence π is potentially H-graphic if there exists a realization of π containing H as a subgraph. The complementary sequence of π is denoted by $\bar{\pi}=\left(\overline{d_{1}}, \ldots, \overline{d_{k}}\right)=\left(k-1-d_{k}, \ldots, k-1-d_{1}\right)$.

Degree sequence problems can be broadly classified into two types, first described as "forcible" problems and "potential" problems by A.R. Rao in [12]. In a forcible degree sequence problem, a specified graph property must exist in every realization of the degree sequence π, while in a potential degree sequence problem, the desired property must be found in at least one realization of π. Results on forcible degree sequences are often stated as traditional problems in extremal graph theory.

There are a number of degree sequence analogues to well known problems in extremal graph theory, including potentially graphic sequence analogues of the Turán problem [6,7,8], the Erdős-Sós conjecture

[^0][14], Hadwiger's conjecture [4,13] and the Sauer-Spencer theorem [3]. Motivated in part by this previous work, Busch et al. [2] proposed a degree sequence analogue to classical graph Ramsey number. Given two graphs G_{1} and G_{2} and a graphic sequence π, we write that $\pi \rightarrow\left(G_{1}, G_{2}\right)$ if either π is potentially G_{1}-graphic or $\bar{\pi}$ is potentially G_{2}-graphic. Busch et al. [2] defined the potential-Ramsey number of G_{1} and G_{2}, denoted $r_{\text {pot }}\left(G_{1}, G_{2}\right)$, to be the smallest non-negative integer k such that $\pi \rightarrow\left(G_{1}, G_{2}\right)$ for any k-term graphic sequence π. Busch et al. [2] first gave a lower bound on $r_{p o t}\left(G, K_{t}\right)$ for a number of choices of G, and then determined the exact values for $r_{p o t}\left(K_{n}, K_{t}\right), r_{p o t}\left(C_{n}, K_{t}\right)$ and $r_{p o t}\left(P_{n}, K_{t}\right)$, where K_{n}, C_{n} and P_{n} are the complete graph on n vertices, the cycle on n vertices and the path on n vertices, respectively. The 1-dependence number of a graph G, denoted $\alpha^{(1)}(G)$, is the maximum order of an induced subgraph H of G with $\Delta(H) \leq 1$, where $\Delta(H)$ is the maximum degree of H.

Theorem 1.1 [2] Let G be a graph of order n with no isolated vertices such that $\alpha^{(1)}(G) \leq n-1$ and let $t \geq 2$. Then $r_{p o t}\left(G, K_{t}\right) \geq \max \left\{2 t+n-\alpha^{(1)}(G)-2, n+t-2\right\}$.

Theorem 1.2 [2] (1) If $n \geq t \geq 3$, then $r_{\text {pot }}\left(K_{n}, K_{t}\right)=2 n+t-4$ except when $n=t=3$, in which case $r_{p o t}\left(K_{3}, K_{3}\right)=6$.
(2) If $n \geq 3$ and $t \geq 2$ with $t \leq\left\lfloor\frac{2 n}{3}\right\rfloor$, then $r_{\text {pot }}\left(C_{n}, K_{t}\right)=n+t-2$.
(3) If $n \geq 4$ and $t \geq 3$ with $t \geq\left\lfloor\frac{2 n}{3}\right\rfloor+1$, then $r_{\text {pot }}\left(C_{n}, K_{t}\right)=2 t-2+\left\lceil\frac{n}{3}\right\rceil$.
(4) If $n \geq 6$ and $t \geq 3$, then $r_{\text {pot }}\left(P_{n}, K_{t}\right)= \begin{cases}n+t-2, & \text { if } t \leq\left\lfloor\frac{2 n}{3}\right\rfloor, \\ 2 t-2+\left\lfloor\frac{n}{3}\right\rfloor, & \text { if } t \geq\left\lfloor\frac{2 n}{3}\right\rfloor+1 .\end{cases}$

We now extend the complete graph K_{r+1} to $S_{r, s}=K_{r} \vee \overline{K_{s}}$, a complete split graph on $r+s$ vertices, where $\overline{K_{s}}$ is the complement of K_{s} and \vee denotes join operation. Clearly, $S_{r, 1}=K_{r+1}$. Therefore, the complete split graph $S_{r, s}$ is an extension of the complete graph K_{r+1}. In this paper, we first give a lower bound on $r_{p o t}\left(G, S_{r, s}\right)$ for a number of choices of G (Theorem 1.3), and then determine the exact values of $r_{p o t}\left(C_{n}, S_{r, s}\right)$ for $n \geq 3$ and $r, s \geq 1$ (Theorem 1.4-1.8) and $r_{p o t}\left(P_{n}, S_{r, s}\right)$ for $n \geq 6$ and $r, s \geq 1$ (Theorem 1.9).

Theorem 1.3 Let G be a graph of order n with no isolated vertices such that $\alpha^{(1)}(G) \leq n-1$ and let $r, s \geq 1$. Then $r_{p o t}\left(G, S_{r, s}\right) \geq \max \left\{n+2 r+s-\alpha^{(1)}(G)+\frac{-3+(-1)^{s-1}}{2}, n+r+s-\alpha(G)-1, n+r-1\right\}$, where $\alpha(G)$ is the independence number of G.

Theorem 1.4 Let $n \geq 4, r \geq 1$ and $s \geq 1$. If $s \leq\left\lfloor\frac{n}{2}\right\rfloor$ and $r+s \leq\left\lfloor\frac{2 n}{3}\right\rfloor$, then $r_{p o t}\left(C_{n}, S_{r, s}\right)=n+r-1$.
Theorem 1.5 Let $n \geq 4, r \geq 1$ and $s \geq 1$. If $s \geq\left\lfloor\frac{n}{2}\right\rfloor$ and $r \leq\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor$, then $r_{p o t}\left(C_{n}, S_{r, s}\right)=\left\lceil\frac{n}{2}\right\rceil+r+s-1$.
Theorem 1.6 Let $n \geq 4, r \geq 1$ and $s \geq 1$, where s is odd, or let $(n, r, s)=(4,1,4)$ or $(5,2,2)$ or $(4,2,2)$ or $(6,3,2)$. If $s \leq\left\lfloor\frac{n}{2}\right\rfloor$ and $r+s \geq\left\lfloor\frac{2 n}{3}\right\rfloor+1$ or if $s \geq\left\lfloor\frac{n}{2}\right\rfloor$ and $r \geq\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor+1$, then $r_{p o t}\left(C_{n}, S_{r, s}\right)=\left\lceil\frac{n}{3}\right\rceil+2 r+s-1$.

Theorem 1.7 Let $n \geq 4, r \geq 1$ and $s \geq 2$, where s is even, and let $(n, r, s) \neq(4,1,4),(5,2,2),(4,2,2)$ and $(6,3,2)$. If $s \leq\left\lfloor\frac{n}{2}\right\rfloor$ and $r+s \geq\left\lfloor\frac{2 n}{3}\right\rfloor+1$ or if $s \geq\left\lfloor\frac{n}{2}\right\rfloor$ and $r \geq\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor+1$, then $r_{p o t}\left(C_{n}, S_{r, s}\right)=\left\lceil\frac{n}{3}\right\rceil+2 r+s-2$.

Theorem 1.8 (1) $r_{p o t}\left(C_{3}, S_{1,2}\right)=5, r_{p o t}\left(C_{3}, S_{1,3}\right)=6$ and $r_{p o t}\left(C_{3}, S_{1, s}\right)=s+2$ for $s \geq 4$.
(2) If $r \geq 2$ and $s \geq 1$, where s is odd and $(r, s) \neq(2,1)$, then $r_{p o t}\left(C_{3}, S_{r, s}\right)=2 r+s$.
(3) If $r \geq 2$ and $s \geq 2$, where s is even and $(r, s) \neq(2,2)$, then $r_{p o t}\left(C_{3}, S_{r, s}\right)=2 r+s-1$.
(4) $r_{p o t}\left(C_{3}, S_{2,1}\right)=6$ and $r_{p o t}\left(C_{3}, S_{2,2}\right)=6$.

Theorem 1.9 Let $n \geq 6, r \geq 1$ and $s \geq 1$.
(1) If $s \leq\left\lceil\frac{n}{2}\right\rceil-1$ and $r+s \leq\left\lceil\frac{2 n}{3}\right\rceil+\frac{-1+(-1)^{s}}{2}$, then $r_{p o t}\left(P_{n}, S_{r, s}\right)=n+r-1$.
(2) If $s \geq\left\lceil\frac{n}{2}\right\rceil$ and $r \leq\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil+\frac{-1+(-1)^{s}}{2}$, then $r_{p o t}\left(P_{n}, S_{r, s}\right)=\left\lfloor\frac{n}{2}\right\rfloor+r+s-1$.
(3) If $s \leq\left\lceil\frac{n}{2}\right\rceil-1$ and $r+s \geq\left\lceil\frac{2 n}{3}\right\rceil+\frac{-1+(-1)^{s}}{2}+1$ or if $s \geq\left\lceil\frac{n}{2}\right\rceil$ and $r \geq\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil+\frac{-1+(-1)^{s}}{2}+1$, then $r_{p o t}\left(P_{n}, S_{r, s}\right)=\left\lfloor\frac{n}{3}\right\rfloor+2 r+s+\frac{-3+(-1)^{s-1}}{2}$.

It is easy to see that if $s=1$, then Theorem 1.3 reduces to Theorem 1.1, Theorem 1.4 reduces to Theorem 1.2(2), Theorem 1.6 reduces to Theorem 1.2(3) and Theorem 1.9 reduces to Theorem 1.2(4).

2. Proofs of Theorem 1.3-1.9

We first prove Theorem 1.3.
Proof of Theorem 1.3. When s is odd, let $\ell=n-\alpha^{(1)}(G)-1$ and consider $\pi=\pi\left(K_{\ell} \vee\left(r+\frac{s-1}{2}\right) K_{2}\right)$, where $p K_{2}$ denotes the disjoint union of p copies of K_{2}. Clearly, π is unigraphic. Firstly, $\bar{\pi}$ is uniquely realized by
$\left(K_{2 r+s-1}-\left(r+\frac{s-1}{2}\right) K_{2}\right) \cup \overline{K_{\ell}}$ which contains no $S_{r, s}$, where \cup denotes disjoint union and $K_{2 r+s-1}-\left(r+\frac{s-1}{2}\right) K_{2}$ is the graph obtained from $K_{2 r+s-1}$ by deleting $r+\frac{s-1}{2}$ independent edges. Secondly, any copy of G lying in the unique realization of π requires at least $\alpha^{(1)}(G)+1$ vertices from the $r+\frac{s-1}{2}$ independent edges, which is impossible as any such collection of vertices would necessarily induce a subgraph of G with order at least $\alpha^{(1)}(G)+1$ and maximum degree at most one. Hence $\pi \rightarrow\left(G, S_{r, s}\right)$. Thus $r_{p o t}\left(G, S_{r, s}\right) \geq n+2 r+s-\alpha^{(1)}(G)-1$. When s is even, let $\ell=n-\alpha^{(1)}(G)-1$ and consider $\pi=\pi\left(K_{\ell} \vee\left(r+\frac{s}{2}-1\right) K_{2}\right)$. Similarly, we can show that $\pi \rightarrow$ $\left(G, S_{r, s}\right)$. Thus $r_{p o t}\left(G, S_{r, s}\right) \geq n+2 r+s-\alpha^{(1)}(G)-2$. Therefore, we have $r_{p o t}\left(G, S_{r, s}\right) \geq n+2 r+s-\alpha^{(1)}(G)+\frac{-3+(-1)^{s-1}}{2}$ for any integer $s \geq 1$.

In order to show that $r_{p o t}\left(G, S_{r, s}\right) \geq n+r+s-\alpha(G)-1$, we let $\ell=n-\alpha(G)-1$ and consider $\pi=\pi\left(K_{\ell} \vee \overline{K_{r+s-1}}\right)$, which is unigraphic. Firstly, $\bar{\pi}$ is uniquely realized by $K_{r+s-1} \cup \overline{K_{\ell}}$ which contains no $S_{r, s}$. Secondly, any copy of G lying in the unique realization of π requires at least $\alpha(G)+1$ vertices from the $\overline{K_{r+s-1}}$, which is impossible as any such collection of vertices would necessarily induce a subgraph of G with order at least $\alpha(G)+1$ and maximum degree zero. Hence $\pi \rightarrow\left(G, S_{r, s}\right)$. Thus $r_{p o t}\left(G, S_{r, s}\right) \geq n+r+s-\alpha(G)-1$.

We now consider $\pi=\pi\left(K_{n-1} \cup \overline{K_{r-1}}\right)$, which is unigraphic. Clearly, $\pi \rightarrow\left(G, S_{r, s}\right)$. Thus, $r_{p o t}\left(G, S_{r, s}\right) \geq$ $n+r-1$. \square

In order to prove Theorem 1.4-1.9, we need some useful lemmas as follows. For a subgraph H of graph G and a vertex v in $G, N_{H}(v)$ denotes those neighbors of v lying in H and we let $d_{H}(v)=\left|N_{H}(v)\right|$. Moreover, for $S \subseteq V(G)$, we denote $N_{H}(S)=\cup_{v \in S} N_{H}(v)$.

Lemma 2.1 [11] Let $n \geq 3$ and $\pi=\left(d_{1}, \ldots, d_{n}\right)$ be a graphic sequence with $d_{3} \geq 2$. Then π is potentially C_{3}-graphic if and only if $\pi \neq\left(2^{4}\right),\left(2^{5}\right)$, where the symbol x^{y} in a sequence stands for y consecutive terms x.

Lemma 2.2 [2] Let $n \geq 4, r, s \geq 1, k=\max \left\{\left\lceil\frac{n}{3}\right\rceil+2 r+s+\frac{-3+(-1)^{s-1}}{2},\left\lceil\frac{n}{2}\right\rceil+r+s-1, n+r-1\right\}$ and $\pi=\left(d_{1}, \ldots, d_{k}\right)$ be a graphic sequence. Suppose that π has a realization G containing a cycle $C=v_{0} v_{1} \cdots v_{m-1}$ with $m \geq n$, and amongst all such realizations let m be minimum. If $m>n$, then (1) C is induced; (2) $d_{G}(x)=0$ for each $x \in V(G) \backslash V(C)$.

Lemma 2.3 Let $n \geq 4, r, s \geq 1, k=\max \left\{\left\lceil\frac{n}{3}\right\rceil+2 r+s+\frac{-3+(-1)^{s-1}}{2},\left\lceil\frac{n}{2}\right\rceil+r+s-1, n+r-1\right\}$ and $\pi=\left(d_{1}, \ldots, d_{k}\right)$ be a graphic sequence. Let G be a realization of π containing a longest cycle $C=v_{1} v_{2} \cdots v_{m}$ with $m \leq n-1$ and suppose that G has the maximum circumference amongst all realizations of π. Denote $H=G \backslash V(C)$. Then
(1) [2] H is acyclic.
(2) [2] If $\Delta(H) \geq 2$, then the unique non-trivial component of H is a star H_{1}. Moreover, if $x \in V(H)$ is the center of H_{1}, then $d_{H}(x)=\Delta(H), m$ is even and x is adjacent to either all odd index vertices or all even index vertices of C.
(3) If $\Delta(H)=1$, then $N_{C}(u)=N_{C}\left(u^{\prime}\right)$ for any two distinct vertices $u, u^{\prime} \in V(H)$ with $d_{H}(u)=d_{H}\left(u^{\prime}\right)=1$.
(4) [2] If $\Delta(H)=1$, denote $R=N_{C}(u)$ and $R^{+}=\left\{v_{i+1} \mid v_{i} \in R\right\}$, where $u \in V(H)$ with $d_{H}(u)=1$, then $v_{i \pm 1}, v_{i \pm 2} \notin R$ for any $v_{i} \in R, R^{+}$is an independent set of G, and $x y \notin E(G)$ for any $x \in R^{+}$and $y \in V(H)$ with $d_{H}(y)=0$.
(5) If $\Delta(H)=1$, then $\left|N_{C}(x) \backslash R\right| \leq 1$ for each $x \in V(H)$ with $d_{H}(x)=0$.
(6) If $\Delta(H)=1, R \neq \emptyset$ and $r+s \leq|V(H)| \leq 2 r+s-1$, then $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$ or $2 \ell-2\left\lceil\frac{s}{2}\right\rceil+2 p+m-|R| \leq 2 r-2$.
(7) If $\Delta(H) \leq 1$ and H contains p isolated vertices with $p \geq r$, then $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$.

Proof. (3) Let $x x^{\prime} \in E(H)$. For $v_{i} \in V(C)$, if $v_{i} x \in E(G)$ and $v_{i} x^{\prime} \notin E(G)$, then exchange the edges $x x^{\prime}$ and $v_{i} v_{i+1}$ for the nonedges $v_{i+1} x$ and $v_{i} x^{\prime}$, we obtain a realization of π containing a cycle $v_{1} \cdots v_{i} x v_{i+1} \cdots v_{m} v_{1}$ of length $m+1$, a contradiction. Hence, if $v_{i} x \in E(G)$, then $v_{i} x^{\prime} \in E(G)$. This implies that $N_{C}(x) \subseteq N_{C}\left(x^{\prime}\right)$. Similarly, we have $N_{C}\left(x^{\prime}\right) \subseteq N_{C}(x)$. Thus $N_{C}(x)=N_{C}\left(x^{\prime}\right)$. For $y y^{\prime} \in E(H)$ with $y y^{\prime} \neq x x^{\prime}$, if $v_{i} x \in E(G)$ and $v_{i} y \notin E(G)$, then exchange the edges $x x^{\prime}, y y^{\prime}, v_{i} v_{i+1}$ for the nonedges $v_{i+1} x, x^{\prime} y^{\prime}, v_{i} y$, we obtain a realization of π containing a cycle $v_{1} \cdots v_{i} x v_{i+1} \cdots v_{m} v_{1}$ of length $m+1$, a contradiction. Hence, if $v_{i} x \in E(G)$, then $v_{i} y \in E(G)$. This implies that $N_{C}(x) \subseteq N_{C}(y)$. Similarly, we have $N_{C}(y) \subseteq N_{C}(x)$. Thus $N_{C}(x)=N_{C}(y)$. Therefore, $N_{C}(u)=N_{C}\left(u^{\prime}\right)$ for any two distinct vertices $u, u^{\prime} \in V(H)$ with $d_{H}(u)=d_{H}\left(u^{\prime}\right)=1$.
(5) Assume $v_{j}, v_{k} \in N_{C}(x) \backslash R$ with $k \geq j+1$ for $x \in V(H)$ with $d_{H}(x)=0$. Let $x_{1} y_{1} \in E(H)$, if $k-j=1$, then π contains a cycle with length $m+1$, a contradiction. If $k-j \geq 2$, then exchange the edges $x_{1} y_{1}, v_{k} x, v_{j} v_{j+1}$ for the nonedges $v_{k} y_{1}, v_{j} x_{1}, v_{j+1} x$, we obtain a realization of π which contains a cycle $v_{1} \cdots v_{j} x v_{j+1} \cdots v_{1}$ of length $m+1$, a contradiction.
(6) Note that $|E(C \backslash R)| \geq m-2|R|$. If $m-2|R| \geq \ell-\left\lfloor\frac{s}{2}\right\rfloor$, then we can use $\ell-\left\lfloor\frac{s}{2}\right\rfloor$ edges in C to breakout the $\ell-\left\lfloor\frac{s}{2}\right\rfloor$ edges in H and create a realization of π in which there are at least r isolated vertices in H, implying that $\bar{\pi}$ is potentially $S_{r, s}$-graphic. If $m-2|R| \leq \ell-\left\lfloor\frac{s}{2}\right\rfloor-1$, we can use the $m-2|R|$ edges to breakout the $m-2|R|$ edges in H
and obtain a realization of π in which there are $2(m-2|R|)+p+\left(\ell-(m-2|R|)-\left\lceil\frac{s}{2}\right\rceil\right)=\ell-\left\lceil\frac{s}{2}\right\rceil+(m-2|R|)+p$ isolated vertices in H. If $\ell-\left\lceil\frac{s}{2}\right\rceil+(m-2|R|)+p \geq r$, then $\bar{\pi}$ is potentially $S_{r, s}$ graphic. Assume $\ell-\left\lceil\frac{s}{2}\right\rceil+(m-2|R|)+p \leq r-1$. On the other hand, by Lemma 2.3(4), then R^{+}along with the p isolates in H and $\ell-\left\lceil\frac{s}{2}\right\rceil$ vertices from $\ell-\left\lceil\frac{s}{2}\right\rceil$ edges in H forms an independent set in G. If $\ell-\left\lceil\frac{s}{2}\right\rceil+\left|R^{+}\right|+p=\ell-\left\lceil\frac{s}{2}\right\rceil+|R|+p \geq r$, then $\bar{\pi}$ is potentially $S_{r, s}$-graphic. If $\ell-\left\lceil\frac{s}{2}\right\rceil+|R|+p \leq r-1$, then $\left(\ell-\left\lceil\frac{s}{2}\right\rceil+(m-2|R|)+p\right)+\left(\ell-\left\lceil\frac{s}{2}\right\rceil+|R|+p\right) \leq 2 r-2$, i.e., $2 \ell-2\left\lceil\frac{\mathrm{~s}}{2}\right\rceil+2 p+m-|R| \leq 2 r-2$.
(7) Clearly, $|V(H)|=|G|-|V(C)| \geq(n+r-1)-(n-1)=r$. Let S be the set of r isolated vertices in H. If $\left|N_{C}(S)\right| \leq\left\lceil\frac{n}{2}\right\rceil-1$, then $|G|-\left|N_{C}(S) \cup S\right| \geq\left(\left\lceil\frac{n}{2}\right\rceil+r+s-1\right)-\left(\left\lceil\frac{n}{2}\right\rceil+r-1\right)=s$, implying that \bar{G} contains $S_{r, s}$, i.e., $\bar{\pi}$ is potentially $S_{r, s}$-graphic. If $\left|N_{C}(S)\right| \leq\left\lceil\frac{n}{3}\right\rceil+r+\frac{-3+(-1)^{s-1}}{2}$, then $|G|-\left|N_{C}(S) \cup S\right| \geq$ $\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s+\frac{-3+(-1)^{s-1}}{2}\right)-\left(\left\lceil\frac{n}{3}\right\rceil+2 r+\frac{-3+(-1)^{s-1}}{2}\right) \geq s$, and so $\bar{\pi}$ is potentially $S_{r, s}$-graphic. Assume $\left|N_{C}(S)\right| \geq\left\lceil\frac{n}{2}\right\rceil$ and $\left|N_{C}(S)\right| \geq r+\left\lceil\frac{n}{3}\right\rceil+\frac{-3+(-1)^{s-1}}{2}+1$. By $\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n-1}{2}\right\rfloor+1 \geq\left\lfloor\frac{m}{2}\right\rfloor+1$ and the maximum of m, there are two consecutive vertices (say $\left.v_{1}, v_{2}\right)$ on C and $x, x^{\prime} \in S\left(x \neq x^{\prime}\right)$ so that $v_{1} x, v_{2} x^{\prime} \in E(G)$, and hence $r \geq 2$. By $r+\left\lceil\frac{n}{3}\right\rceil+\frac{-3+(-1)^{s-1}}{2}+1 \geq r+1$, there are $y \in S$ and $v, v^{\prime} \in V(C)\left(v \neq v^{\prime}\right)$ so that $v y, v^{\prime} y \in E(G)$. Assume $N_{C}(x)=\left\{v_{1}\right\}$ and $N_{C}\left(x^{\prime}\right)=\left\{v_{2}\right\}$. Then $y \neq x, x^{\prime}$. If $N_{C}(y) \cap\left\{v_{1}, v_{2}\right\}=\emptyset$, then exchange the edges $v_{1} x, v_{2} x^{\prime}, v y, v^{\prime} y$ for the nonedges $v_{1} y, v_{2} y, v x, v^{\prime} x^{\prime}$, we obtain a realization of π containing a cycle $v_{1} y v_{2} \cdots v_{m} v_{1}$ of length $m+1$, a contradiction. If $N_{C}(y) \cap\left\{v_{1}, v_{2}\right\} \neq \emptyset$, without loss of generality, we let $v=v_{1}$, then exchange the edges $v_{2} x^{\prime}, v^{\prime} y$ for the nonedges $v_{2} y, v^{\prime} x^{\prime}$, we obtain a realization of π containing a cycle $v_{1} y v_{2} \cdots v_{m} v_{1}$ of length $m+1$, a contradiction. Hence $\left|N_{C}(x)\right| \geq 2$ or $\left|N_{C}\left(x^{\prime}\right)\right| \geq 2$. For $v \in V(C) \backslash\left\{v_{1}\right\}$, if $v x \in E(G)$ and $v x^{\prime} \notin E(G)$, then exchange the edges $v x, v_{2} x^{\prime}$ for the nonedges $v_{2} x, v x^{\prime}$, we obtain a realization of π containing a cycle $v_{1} x v_{2} \cdots v_{m} v_{1}$ of length $m+1$, a contradiction. Similarly, we have that for $v \in V(C) \backslash\left\{v_{2}\right\}$, if $v x^{\prime} \in E(G)$, then $v x \in E(G)$. So, we conclude that $N_{C}(x) \backslash\left\{v_{1}\right\}=N_{C}\left(x^{\prime}\right) \backslash\left\{v_{2}\right\}$.

We claim that $\left|N_{C}(z) \backslash\left(N_{C}(x) \cup\left\{v_{2}\right\}\right)\right| \leq 1$ for $z \in V(S) \backslash\left\{x, x^{\prime}\right\}$. To the contrary, let $v, v^{\prime} \in N_{C}(z) \backslash\left(N_{C}(x) \cup\left\{v_{2}\right\}\right)$ with $v \neq v^{\prime}$. If $N_{C}(z) \cap\left\{v_{1}, v_{2}\right\}=\emptyset$, then exchange the edges $v z, v^{\prime} z, v_{1} x, v_{2} x^{\prime}$ with the nonedges $v_{1} z, v_{2} z, v x, v^{\prime} x^{\prime}$, we obtain a realization of π which contains a cycle $v_{1} z v_{2} \cdots v_{m} v_{1}$ of length $m+1$, a contradiction. If $N_{C}(z) \cap\left\{v_{1}, v_{2}\right\} \neq \emptyset$, without loss of generality, we let $v_{1} \in N_{C}(z)$, then exchange the edges $v^{\prime} z, v_{2} x^{\prime}$ with the nonedges $v_{2} z, v^{\prime} x^{\prime}$, we obtain a realization of π which contains a cycle $v_{1} z v_{2} \cdots v_{m} v_{1}$ of length $m+1$, a contradiction.

Since $\left|N_{C}(S)\right| \geq r+\left\lceil\frac{n}{3}\right\rceil+\frac{-3+(-1)^{s-1}}{2}+1$ and $\left|V(S) \backslash\left\{x, x^{\prime}\right\}\right|=r-2,\left|N_{C}(x)\right|=\left|N_{C}\left(x^{\prime}\right)\right| \geq\left|N_{C}(S)\right|-(r-2)-1 \geq$ $\left\lceil\frac{n}{3}\right\rceil+\frac{-3+(-1)^{s-1}}{2}+2$. If $v_{3} \in N_{C}(x)$ or $v_{m} \in N_{C}(x)$, then G clearly contains a cycle of length $m+1$, a contradiction. Hence $v_{3}, v_{m} \notin N_{C}(x)$. Let $v_{p}, v_{p+q} \in N_{C}(x) \backslash\left\{v_{1}\right\}$ so that q is the minimum. Then $4 \leq p \leq p+q \leq m-1$. If $q=1$, then G clearly contains a cycle of length $m+1$, a contradiction. If $q=2$, by $N_{C}(x) \backslash\left\{v_{1}\right\}=N_{C}\left(x^{\prime}\right) \backslash\left\{v_{2}\right\}$, then $v_{p} x v_{1} v_{m} \cdots v_{p+2} x^{\prime} v_{2} v_{3} \cdots v_{p-1} v_{p}$ is a cycle of length $m+1$, a contradiction. Hence $q \geq 3$. If $n \neq 0(\bmod 3)$, then $\left\lceil\frac{n}{3}\right\rceil \leq\left|N_{C}(x)\right| \leq\left\lceil\frac{m-4}{3}\right\rceil+1 \leq\left\lceil\frac{n-2}{3}\right\rceil$ (by $v_{2} \notin N_{C}(x)$ and $\left.m \leq n-1\right)$, a contradiction. If $n \equiv 0(\bmod 3)$ and $m \leq n-2$, then $\left\lceil\frac{n}{3}\right\rceil \leq\left|N_{C}(x)\right| \leq\left\lceil\frac{m-4}{3}\right\rceil+1 \leq\left\lceil\frac{n-3}{3}\right\rceil$, a contradiction. Assume $n \equiv 0(\bmod 3)$ and $m=n-1$. If s is odd, then $\left\lceil\frac{n}{3}\right\rceil+1 \leq\left|N_{C}(x)\right| \leq\left\lceil\frac{m-4}{3}\right\rceil+1 \leq\left\lceil\frac{n-2}{3}\right\rceil$, a contradiction. Assume that s is even. If $r \geq 3$, we take $z \in S \backslash\left\{x, x^{\prime}\right\}$. If $\left|N_{C}(z) \backslash\left(N_{C}(x) \cup\left\{v_{2}\right\}\right)\right|=0$, then $\left|N_{C}(x)\right|=\left|N_{C}\left(x^{\prime}\right)\right| \geq\left|N_{C}(S)\right|-(r-3)-1 \geq\left\lceil\frac{n}{3}\right\rceil+1$ and $\left\lceil\frac{n}{3}\right\rceil+1 \leq\left|N_{C}(x)\right| \leq\left\lceil\frac{m-4}{3}\right\rceil+1 \leq\left\lceil\frac{n-2}{3}\right\rceil$, a contradiction. If $\left|N_{C}(z) \backslash\left(N_{C}(x) \cup\left\{v_{2}\right\}\right)\right|=1$, let $N_{C}(z) \backslash\left(N_{C}(x) \cup\left\{v_{2}\right\}\right)=\left\{v_{j}\right\}$, where $3 \leq j \leq m$, then $N_{C}(z) \backslash\left\{v_{j}\right\}=N_{C}(x) \backslash\left\{v_{1}\right\}=N_{C}\left(x^{\prime}\right) \backslash\left\{v_{2}\right\}$. To the contrary, let $v^{\prime} \in N_{C}(x) \backslash\left\{v_{1}\right\}$ and $v^{\prime} \notin N_{C}(z)$, exchange the edges $v^{\prime} x, v_{2} x^{\prime}, v_{j} z$ with the nonedges $v^{\prime} z, v_{2} x, v_{j} x^{\prime}$, we obtain a realization of π containing a cycle $v_{1} x v_{2} \cdots v_{m} v_{1}$ of length $m+1$, a contradiction. Thus $\left\lceil\frac{n}{3}\right\rceil \leq\left|N_{C}(x)\right| \leq\left\lceil\frac{m-5}{3}\right\rceil+1=\left\lceil\frac{n-3}{3}\right\rceil$ (by $v_{2}, v_{j} \notin N_{C}(x)$ and $m=n-1$), a contradiction. Assume $r=2$. If $k \geq\left\lceil\frac{n}{3}\right\rceil+s+3$ and $\left|N_{C}(S)\right| \leq\left\lceil\frac{n}{3}\right\rceil+1$, then $|G|-\left|N_{C}(S) \cup S\right| \geq\left(\left\lceil\frac{n}{3}\right\rceil+s+3\right)-\left(\left\lceil\frac{n}{3}\right\rceil+3\right)=s$, and $\bar{\pi}$ is potentially $S_{2, s}$-graphic. If $k \geq\left\lceil\frac{n}{3}\right\rceil+s+3$ and $\left|N_{C}(S)\right| \geq\left\lceil\frac{n}{3}\right\rceil+2$, then $\left\lceil\frac{n}{3}\right\rceil+1 \leq\left|N_{C}(S)\right|-1=\left|N_{C}(x)\right| \leq\left\lceil\frac{m-4}{3}\right\rceil+1 \leq\left\lceil\frac{n-2}{3}\right\rceil$, a contradiction. If $k=\left\lceil\frac{n}{3}\right\rceil+s+2$, then $n=6, m=5, s \geq 4$. Since $|G|=k=s+4$ is even, there is $z \in V(H) \backslash\left\{x, x^{\prime}\right\}$ with $d_{H}(z)=0$. Note that $N_{C}(x)=\left\{v_{1}, v_{4}\right\}$ and $N_{C}\left(x^{\prime}\right)=\left\{v_{2}, v_{4}\right\}$ (by $\left|N_{C}(x)\right|=\left|N_{C}\left(x^{\prime}\right)\right| \geq\left\lceil\frac{6}{3}\right\rceil=2$). If $v_{3} \in N_{C}(z)$, then $v_{2} \notin N_{C}(z)$, exchange the edges $v_{2} x^{\prime}, v_{3} z$ with the nonedges $v_{2} z, v_{3} x^{\prime}$, we obtain a realization of π which contains a cycle $v_{1} v_{2} v_{3} x^{\prime} v_{4} v_{5} v_{1}$ of length 6 , a contradiction. Hence $v_{3} \notin N_{C}(z)$. Similarly, $v_{5} \notin N_{C}(z)$. Thus $N_{C}(z) \subseteq\left\{v_{1}, v_{4}\right\}$ or $N_{C}(z) \subseteq\left\{v_{2}, v_{4}\right\}$. Without loss of generality, we let $N_{C}(z) \subseteq\left\{v_{1}, v_{4}\right\}$, then there are $(s+4)-4=s$ vertices in G which are not adjacent to x and z, implying that $\bar{\pi}$ is potentially $S_{2, s}$-graphic.

Lemma 2.4 [15] Let $n \geq r+1$ and $\pi=\left(d_{1}, \ldots, d_{n}\right)$ be a graphic sequence with $d_{r} \geq r+s-1$ and $d_{r+s} \geq r$. If $d_{i} \geq 2 r+(s-1)-i$ for $i=1, \ldots, r+s-1$, then π is potentially $S_{r, s}$-graphic.

Proof of Theorem 1.4. By $\alpha\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$ and $\alpha^{(1)}\left(C_{n}\right)=\left\lfloor\frac{2 n}{3}\right\rfloor$ (see [2]), it is easy to get from Theorem 1.3 that $r_{p o t}\left(C_{n}, S_{r, s}\right) \geq n+r-1$.

Let $\pi=\left(d_{1}, \ldots, d_{k}\right)$ be a graphic sequence with $k=n+r-1$. We now prove that $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$. If no realization of π contains a cycle, by Lemma 2.1, then $d_{3} \leq 1$. Let G be a realization of π. Then $|G|=n+r-1 \geq$ $\left(\left\lfloor\frac{2 n}{3}\right\rfloor+\left\lceil\frac{n}{3}\right\rceil\right)+r-1 \geq\left\lceil\frac{n}{3}\right\rceil+2 r+s-1 \geq 2 r+2$. Let $v_{1}, v_{2} \in V(G)$ so that $d_{G}\left(v_{1}\right)=d_{1}$ and $d_{G}\left(v_{2}\right)=d_{2}$. Then in G, each vertex of $V(G) \backslash\left\{v_{1}, v_{2}\right\}$ has degree at most one. By $\left|V(G) \backslash\left\{v_{1}, v_{2}\right\}\right| \geq 2 r$, we can choose an independent set $S \subseteq V(G) \backslash\left\{v_{1}, v_{2}\right\}$ of G with $|S|=r$. Then $\left|N_{G}(S)\right| \leq r$. Since $|G|-\left|S \cup N_{G}(S)\right| \geq n-r-1=\left\lfloor\frac{2 n}{3}\right\rfloor+\left\lceil\frac{n}{3}\right\rceil-r-1 \geq s$, it is easy to see that \bar{G} contains $S_{r, s}$ as a subgraph. In other words, $\bar{\pi}$ is potentially $S_{r, s}$-graphic.

Suppose that there is a realization G of π containing a cycle $C=v_{0} v_{1} \cdots v_{m-1}$ with $m \geq n$, and amongst all such realizations let m be minimum. If $m=n$ then we are done, so further assume that $m \geq n+1$. Then C is induced by Lemma 2.2(1).

Assume first that $m=n+1$. Then $r \geq 2$. By Lemma 2.2(2), we have $d_{G}(x)=0$ for each vertex in $V(G) \backslash V(C)$, i.e., $G=C \cup \overline{K_{r-2}}$, where $C=C_{n+1}$. Then $\overline{K_{r-2}} \cup\left\{v_{1}, v_{3}\right\}$ is an independent set of size r in G. By $n \geq 4$, there are $m-5=n-4=\left\lceil\frac{n}{3}\right\rceil+\left\lfloor\frac{2 n}{3}\right\rfloor-4 \geq\left\lceil\frac{n}{3}\right\rceil+r+s-4 \geq s$ vertices which are not adjacent to each vertex of $\overline{K_{r-2}} \cup\left\{v_{1}, v_{3}\right\}$ in G, implying that \bar{G} contains $S_{r, s}$, i.e., $\bar{\pi}$ is potentially $S_{r, s}$-graphic.

Suppose that $m=n+2$. Then $r \geq 3$ and $n \geq 6$. By Lemma 2.2(2), we have $d_{G}(x)=0$ for each vertex in $V(G) \backslash V(C)$, i.e., $G=C \cup \overline{K_{r-3}}$, where $C=C_{n+2}$. Then $\overline{K_{r-3}} \cup\left\{v_{1}, v_{3}, v_{5}\right\}$ is an independent set of size r in G. By $r \geq 3$ and $m \geq 8$, there are $m-7=n-5=\left\lceil\frac{n}{3}\right\rceil+\left\lfloor\frac{2 n}{3}\right\rfloor-5 \geq\left\lceil\frac{n}{3}\right\rceil+r+s-5 \geq s$ vertices which are not adjacent to each vertex of $\overline{K_{r-3}} \cup\left\{v_{1}, v_{3}, v_{5}\right\}$ in G, implying that \bar{G} contains $S_{r, s}$, i.e., $\bar{\pi}$ is potentially $S_{r, s}$-graphic.

If $m \geq n+3$, then replace the induced C_{m} in G with a copy of $C_{m-3} \cup C_{3}$, contradicting the choice of m. Hence, we assume that every realization of π has circumference at most $n-1$. Let G be a realization of π containing a longest cycle $C=v_{1} v_{2} \cdots v_{m}$ with $m \leq n-1$ and suppose that G has the maximum circumference amongst all realizations of π. Let $H=G \backslash V(C)$. Then $|V(H)|=|G|-|V(C)| \geq(n+r-1)-(n-1)=r$.

Claim $1 \Delta(H) \leq 1$.
Proof of Claim 1. To the contrary, we assume $\Delta(H) \geq 2$. By Lemma 2.3 (1) and (2), the unique non-trivial component of H is a star H_{1}. Moreover, if $x \in V(H)$ is the center of H_{1}, then $d_{H}(x)=\Delta(H), m$ is even and x is adjacent to either all odd index vertices or all even index vertices of C. Without loss of generality, $v_{i} x \in E(G)$ if and only if i is even. Let x^{\prime} be an neighbor of x in H. If x^{\prime} is adjacent to v_{2}, then $v_{1} v_{2} x^{\prime} x v_{4} \cdots v_{m} v_{1}$ is a cycle of length $m+1$ in G, a contradiction. Hence x^{\prime} is not adjacent to v_{2}. We now exchange the edges $x x^{\prime}$ and $v_{1} v_{2}$ with the nondeges $v_{1} x$ and $v_{2} x^{\prime}$, and obtain a realization of π containing a cycle $v_{1} x v_{2} v_{3} \cdots v_{m} v_{1}$ of length $m+1$, a contradiction.

Claim 2 If $\Delta(H)=0$, then $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$.
Proof of Claim 2. Clearly, $V(H)$ is an independent set of G. By Lemma 2.3(7), $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$.
Claim 3 If $\Delta(H)=1$, then $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$.
Proof of Claim 3. Let H contain $2 \ell \geq 2$ vertices with degree one and p isolated vertices. If $p \geq r$, by Lemma 2.3(7), then $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$. Assume $p \leq r-1$. By Lemma 2.3(3), $N_{C}(u)=N_{C}\left(u^{\prime}\right)$ for any two distinct vertices $u, u^{\prime} \in V(H)$ with $d_{H}(u)=d_{H}\left(u^{\prime}\right)=1$. Denote $R=N_{C}(u)$, where $u \in V(H)$ with $d_{H}(u)=1$, and let $x_{i} y_{i}, 1 \leq i \leq \ell$ be the (disjoint) edges in H.

Firstly, suppose that $R=\emptyset$. If $|V(H)| \geq 2 r+s$, then we can choose an independent set S of H with $|S|=r$. Moreover, by $|V(H)|-\left|S \cup N_{H}(S)\right| \geq 2 r+s-2 r=s, \bar{\pi}$ is potentially $S_{r, s}$-graphic. If $r+s \leq|V(H)| \leq 2 r+s-1$, then $m \geq(n+r-1)-(2 r+s-1) \geq\left\lceil\frac{n}{3}\right\rceil$. For each $i=1, \ldots, \min \{\ell, m\}$, we exchange the edges $x_{i} y_{i}, v_{i} v_{i+1}$ for the nonedges $v_{i} x_{i}, v_{i+1} y_{i}$ to obtain at least r isolated vertices in H, implying that $\bar{\pi}$ is potentially $S_{r, s}$ graphic. If $|V(H)| \leq r+s-1$, then $m \geq(n+r-1)-(r+s-1) \geq\left\lceil\frac{n}{3}\right\rceil+r$. By Lemma 2.3(5), $d_{C}(x)=\left|N_{C}(x)\right| \leq 1$ for each $x \in V(H)$ with $d_{H}(x)=0$. Thus by $\frac{|V(H)|}{2} \leq \frac{\left\lfloor\frac{2 n}{3}\right\rfloor-1}{2} \leq\left\lceil\frac{n}{3}\right\rceil+r \leq m$, for each $i=1, \ldots \ell$, we can exchange the edges $x_{i} y_{i}, v_{i} v_{i+1}$ for the nonedges $v_{i} x_{i}, v_{i+1} y_{i}$. Finally, we obtain a realization of π so that $V(H)$ is an independent set and $d_{C}(x) \leq 1$ for each $x \in V(H)$. By $|V(C)| \leq n-1$ and $|V(H)| \geq r$, we take $S \subseteq V(H)$ with $|S|=r$. Clearly, there are at least $|G|-2 r=(n+r-1)-2 r=n-r-1 \geq\left\lceil\frac{n}{3}\right\rceil+s-1 \geq s$ vertices which are not adjacent to each vertex in S. This implies that $\bar{\pi}$ is potentially $S_{r, s}$-graphic.

Now assume that $R \neq \emptyset$. If $|V(H)| \geq 2 r+s$, then $\bar{\pi}$ is potentially $S_{r, s}$-graphic. Assume $r+s \leq|V(H)| \leq$ $2 r+s-1$. By Lemma 2.3(6), we may assume $2 \ell-2\left\lceil\frac{s}{2}\right\rceil+2 p+m-|R| \leq 2 r-2$. By $2 \ell+p+m=n+r-1$ and $r+s \leq\left\lfloor\frac{2 n}{3}\right\rfloor$, we have $0 \geq 2 \ell-2\left\lceil\frac{s}{2}\right\rceil+2 p+m-|R|-(2 r-2) \geq(n+r-1)-(2 r-2)-(s+1)+p-|R| \geq\left\lceil\frac{n}{3}\right\rceil+p-|R|$. By Lemma 2.3(4), $|R| \leq\left\lfloor\frac{m}{3}\right\rfloor \leq\left\lfloor\frac{n-1}{3}\right\rfloor$. This implies that $\left\lceil\frac{n}{3}\right\rceil+p \leq\left\lfloor\frac{n-1}{3}\right\rfloor$, a contradiction.

If $|V(H)| \leq r+s-1$, then $m \geq\left\lceil\frac{n}{3}\right\rceil+r$. By Lemma 2.3(5), $\left|N_{C}(x) \backslash R\right| \leq 1$ for each $x \in V(H)$ with $d_{H}(x)=0$. Since $p \leq r-1$, we have $\ell \geq\left\lceil\frac{r-p}{2}\right\rceil$. By $m \geq\left\lceil\frac{n}{3}\right\rceil+r,|R| \leq\left\lfloor\frac{m}{3}\right\rfloor$ and $\left\lceil\frac{n}{3}\right\rceil \geq \frac{\left\lfloor\frac{2 n}{3}\right\rfloor}{2} \geq \frac{r}{2}$, then $m-2|R| \geq m-2\left\lfloor\frac{m}{3}\right\rfloor \geq\left\lceil\frac{m}{3}\right\rceil \geq\left\lceil\frac{\left\lceil\frac{n}{3}\right\rceil+r}{3}\right\rceil \geq\left\lceil\frac{\frac{r}{2}+r}{3}\right\rceil=\left\lceil\frac{r}{2}\right\rceil$, and hence we can use $\left\lceil\frac{r-p}{2}\right\rceil$ edges of C to breakout $\left\lceil\frac{r-p}{2}\right\rceil$ edges of H and obtain a realization of π in which H contains at least $p+2\left\lceil\frac{r-p}{2}\right\rceil \geq r$ isolated vertices. Let S be the set of r isolated vertices in H. Clearly, $\left|N_{C}(S)\right| \leq|R|+r \leq\left\lfloor\frac{m}{3}\right\rfloor+r \leq\left\lceil\frac{n}{3}\right\rceil+r-1$. Then $|G|-\left|S \cup N_{C}(S)\right| \geq(n+r-1)-\left(\left\lceil\frac{n}{3}\right\rceil+2 r-1\right) \geq s$, and so $\bar{\pi}$ is potentially $S_{r, s}$-graphic.

Proof of Theorem 1.5. By Theorem 1.3, $r_{p o t}\left(C_{n}, S_{r, s}\right) \geq\left\lceil\frac{n}{2}\right\rceil+r+s-1$. Let $\pi=\left(d_{1}, \ldots, d_{k}\right)$ be a graphic sequence with $k=\left\lceil\frac{n}{2}\right\rceil+r+s-1$. We now prove that $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$. If no realization of π contains a cycle, by Lemma 2.1, then $d_{3} \leq 1$. Let G be a realization of π. By $\left\lceil\frac{n}{2}\right\rceil-r \geq\left\lceil\frac{n}{2}\right\rceil-\left(\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor\right)=\left\lceil\frac{n}{3}\right\rceil$, i.e., $\left\lceil\frac{n}{2}\right\rceil \geq\left\lceil\frac{n}{3}\right\rceil+r$, we have $|G|=\left\lceil\frac{n}{2}\right\rceil+r+s-1 \geq\left\lceil\frac{n}{3}\right\rceil+2 r+s-1 \geq 2 r+2$. Let $v_{1}, v_{2} \in V(G)$ so that $d_{G}\left(v_{1}\right)=d_{1}$ and $d_{G}\left(v_{2}\right)=d_{2}$. Then in G, each vertex of $V(G) \backslash\left\{v_{1}, v_{2}\right\}$ has degree at most one. By $\left|V(G) \backslash\left\{v_{1}, v_{2}\right\}\right| \geq 2 r$, we can choose an independent set $S \subseteq V(G) \backslash\left\{v_{1}, v_{2}\right\}$ of G with $|S|=r$. Then $\left|N_{G}(S)\right| \leq r$. Since $|G|-\left|S \cup N_{G}(S)\right| \geq\left\lceil\frac{n}{2}\right\rceil+s-r-1 \geq\left(\left\lceil\frac{n}{3}\right\rceil+r\right)+s-r-1 \geq s$, it is easy to see that \bar{G} contains $S_{r, s}$ as a subgraph. In other words, $\bar{\pi}$ is potentially $S_{r, s}-$ graphic.

Suppose that there is a realization G of π containing a cycle $C=v_{0} v_{1} \cdots v_{m-1}$ with $m \geq n$, and amongst all such realizations let m be minimum. If $m=n$ then we are done, so further assume that $m \geq n+1$. Then C is induced by Lemma 2.2(1).

Firstly, assume $m=n+1$. By Lemma 2.2(2), we have $d_{G}(x)=0$ for each vertex in $V(G) \backslash V(C)$, i.e., $G=C \cup \overline{K_{r+s-\left\lfloor\frac{n}{2}\right\rfloor-2}}$, where $C=C_{n+1}$. If $r=1$, then $n \geq 5$. Since there are $|G|-3=\left\lceil\frac{n}{2}\right\rceil+s-3 \geq s$ vertices which are not adjacent to v_{1} in $G, \bar{\pi}$ is potentially $S_{r, s}$-graphic. If $r \geq 2$, then $n \geq 9$. Since $r+s-\left\lfloor\frac{n}{2}\right\rfloor-2 \geq r-2$, we have that $\left\{v_{1}, v_{3}\right\}$ in C along with $r-2$ vertices in $\overline{K_{r+s-\left\lfloor\frac{n}{2}\right\rfloor-2}}$ forms an independent set S with $|S|=r$ in G and there are $|G|-(r+3)=\left\lceil\frac{n}{2}\right\rceil+s-4 \geq s$ vertices which are not adjacent to each vertex in S, implying that $\bar{\pi}$ is potentially $S_{r, s}$-graphic.

If $m=n+2$, by Lemma 2.2(2), we have $d_{G}(x)=0$ for each vertex in $V(G) \backslash V(C)$, i.e., $G=C \cup \overline{K_{r+s-\left\lfloor\frac{n}{2}\right\rfloor}}$, where $C=C_{n+2}$. If $r=1$, then $n \geq 5$. Since there are $|G|-3=\left\lceil\frac{n}{2}\right\rceil+s-3 \geq s$ vertices which are not adjacent to v_{1} in $G, \bar{\pi}$ is potentially $S_{r, s}$-graphic. If $r=2$, then $n \geq 9$. Since there are $|G|-5=\left\lceil\frac{n}{2}\right\rceil+s-4 \geq s$ vertices which are not adjacent to v_{1} and v_{3} in $G, \bar{\pi}$ is potentially $S_{r, s}$-graphic. If $r \geq 3$, then $n \geq 15$, and hence $\left\{v_{1}, v_{3}, v_{5}\right\}$ along with $r-3$ vertices in $\overline{K_{r+s-\left\lfloor\frac{n}{2}\right\rfloor-3}}$ forms an independent set S with $|S|=r$ in G and there are $|G|-(r+4)=\left\lceil\frac{n}{2}\right\rceil+r+s-1-(r+4)=\left\lceil\frac{n}{2}\right\rceil+s-5 \geq s$ vertices which are not adjacent to each vertex in S, implying that $\bar{\pi}$ is potentially $S_{r, s}$-graphic.

If $m \geq n+3$, then replace the induced C_{m} in G with a copy of $C_{m-3} \cup C_{3}$, contradicting the choice of m. Hence, we assume that every realization of π has circumference at most $n-1$. Let G be a realization of π containing a longest cycle $C=v_{1} v_{2} \cdots v_{m}$ with $m \leq n-1$ and suppose that G has the maximum circumference amongst all realizations of π. Let $H=G \backslash V(C)$. Then $|V(H)|=|G|-|V(C)| \geq\left(\left\lceil\frac{n}{2}\right\rceil+r+s-1\right)-(n-1)=$ $r+s-\left\lfloor\frac{n}{2}\right\rfloor \geq r$.

Claim $1 \Delta(H) \leq 1$.
Proof of Claim 1. The proof is similar to that of Claim 1 of Theorem 1.4. \quad
Claim 2 If $\Delta(H)=0$, then $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$.
Proof of Claim 2. Clearly, $V(H)$ is an independent set of G. By Lemma 2.3(7), $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$. \square
Claim 3 If $\Delta(H)=1$, then $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$.
Proof of Claim 3. Let H contain $2 \ell \geq 2$ vertices with degree one and p isolated vertices. If $p \geq r$, by Lemma 2.3(7), then $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$. Assume $p \leq r-1$. By Lemma 2.3(3), $N_{C}(u)=N_{C}\left(u^{\prime}\right)$ for any two distinct vertices $u, u^{\prime} \in V(H)$ with $d_{H}(u)=d_{H}\left(u^{\prime}\right)=1$. Denote $R=N_{C}(u)$, where $u \in V(H)$ with $d_{H}(u)=1$, and let $x_{i} y_{i}, 1 \leq i \leq \ell$ be the (disjoint) edges in H.

Firstly, suppose that $R=\emptyset$. If $|V(H)| \geq 2 r+s$, then we can choose an independent set S of H with $|S|=r$. Moreover, by $|V(H)|-\left|S \cup N_{H}(S)\right| \geq 2 r+s-2 r=s, \bar{\pi}$ is potentially $S_{r, s}$-graphic. If $r+s \leq|V(H)| \leq 2 r+s-1$,
then $m \geq\left(\left\lceil\frac{n}{2}\right\rceil+r+s-1\right)-(2 r+s-1) \geq\left\lceil\frac{n}{3}\right\rceil$. For each $i=1, \ldots, \min \{\ell, m\}$, we exchange the edges $x_{i} y_{i}, v_{i} v_{i+1}$ for the nonedges $v_{i} x_{i}, v_{i+1} y_{i}$ to obtain at least r isolated vertices in H, implying that $\bar{\pi}$ is potentially $S_{r, s}$ graphic. If $|V(H)| \leq r+s-1$, then $m \geq\left(\left\lceil\frac{n}{2}\right\rceil+r+s-1\right)-(r+s-1) \geq\left\lceil\frac{n}{3}\right\rceil+r \geq\left\lceil\frac{r}{2}\right\rceil$. By Lemma 2.3(5), $d_{C}(x)=\left|N_{C}(x)\right| \leq 1$ for each $x \in V(H)$ with $d_{H}(x)=0$. For each $i=1, \ldots, \min \left\{\ell,\left\lceil\frac{r}{2}\right\rceil\right\}$, we can exchange the edges $x_{i} y_{i}, v_{i} v_{i+1}$ for the nonedges $v_{i} x_{i}, v_{i+1} y_{i}$, and obtain a realization of π in which H contains at least r isolated vertices. Let S be the set of r isolated vertices in H. Clearly, $\left|N_{C}(S)\right| \leq r$. Then $|G|-\left|S \cup N_{C}(S)\right| \geq\left(\left\lceil\frac{n}{2}\right\rceil+r+s-1\right)-2 r \geq\left\lceil\frac{n}{3}\right\rceil+s-1 \geq s$, and so $\bar{\pi}$ is potentially $S_{r, s}$-graphic.

Now assume that $R \neq \emptyset$. If $|V(H)| \geq 2 r+s$, then $\bar{\pi}$ is potentially $S_{r, s}$-graphic. Assume $r+s \leq|V(H)| \leq$ $2 r+s-1$. By Lemma 2.3(6), we may assume $2 \ell-2\left\lceil\frac{s}{2}\right\rceil+2 p+m-|R| \leq 2 r-2$. By $2 \ell+p+m=\left\lceil\frac{n}{2}\right\rceil+r+s-1$ and $\left\lceil\frac{n}{2}\right\rceil-r \geq\left\lceil\frac{n}{3}\right\rceil$, we have $0 \geq 2 \ell-2\left\lceil\frac{s}{2}\right\rceil+2 p+m-|R|-(2 r-2) \geq\left(\left\lceil\frac{n}{2}\right\rceil+r+s-1\right)-(2 r-2)-(s+1)+p-|R| \geq\left\lceil\frac{n}{3}\right\rceil+p-|R|$. By Lemma 2.3(4), $|R| \leq\left\lfloor\frac{m}{3}\right\rfloor \leq\left\lfloor\frac{n-1}{3}\right\rfloor$. Thus $\left\lceil\frac{n}{3}\right\rceil+p \leq\left\lfloor\frac{n-1}{3}\right\rfloor$, a contradiction.

If $|V(H)| \leq r+s-1$, then $m \geq\left\lceil\frac{n}{3}\right\rceil+r$. By Lemma 2.3(5), $\left|N_{C}(x) \backslash R\right| \leq 1$ for each $x \in V(H)$ with $d_{H}(x)=0$. Since $p \leq r-1$, we have $\ell \geq\left\lceil\frac{r-p}{2}\right\rceil$. By $m \geq\left\lceil\frac{n}{3}\right\rceil+r,|R| \leq\left\lfloor\frac{m}{3}\right\rfloor$ and $\left\lceil\frac{n}{3}\right\rceil \geq \frac{\left\lfloor\frac{2 n}{3}\right\rfloor}{2} \geq \frac{r}{2}$, then $m-2|R| \geq m-2\left\lfloor\frac{m}{3}\right\rfloor \geq\left\lceil\frac{m}{3}\right\rceil \geq\left\lceil\frac{\left\lceil\frac{n}{3}\right\rceil+r}{3}\right\rceil \geq\left\lceil\frac{\frac{r}{2}+r}{3}\right\rceil=\left\lceil\frac{r}{2}\right\rceil$, and hence we can use $\left\lceil\frac{r-p}{2}\right\rceil$ edges of C to breakout $\left\lceil\frac{r-p}{2}\right\rceil$ edges of H and obtain a realization of π in which H contains at least $p+2\left\lceil\frac{r-p}{2}\right\rceil \geq r$ isolated vertices. Let S be the set of r isolated vertices in H. Clearly, $\left|N_{C}(S)\right| \leq|R|+r \leq\left\lfloor\frac{m}{3}\right\rfloor+r \leq\left\lceil\frac{n}{3}\right\rceil+r-1$. Then $|G|-\left|S \cup N_{C}(S)\right| \geq\left(\left\lceil\frac{n}{2}\right\rceil+r+s-1\right)-\left(\left\lceil\frac{n}{3}\right\rceil+2 r-1\right) \geq s$, and so $\bar{\pi}$ is potentially $S_{r, s}$-graphic.

Proof of Theorem 1.6. Clearly, $r \geq\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor+1$ and $r+s \geq\left\lfloor\frac{2 n}{3}\right\rfloor+1$. By $\left(2^{6}\right) \rightarrow\left(C_{4}, S_{1,4}\right),\left(C_{4}, S_{2,2}\right)$ and $\left(C_{5}, S_{2,2}\right)$, and $\left(2^{8}\right) \rightarrow\left(C_{6}, S_{3,2}\right)$, we have $r_{p o t}\left(C_{n}, S_{r, s}\right) \geq\left\lceil\frac{n}{3}\right\rceil+2 r+s-1$ for $(n, r, s)=(4,1,4),(5,2,2),(4,2,2),(6,3,2)$. Moreover, by Theorem 1.3, we also have $r_{p o t}\left(C_{n}, S_{r, s}\right) \geq\left\lceil\frac{n}{3}\right\rceil+2 r+s-1$ when $n \geq 4, r \geq 1$, and $s \geq 1$ is odd. Let $\pi=\left(d_{1}, \ldots, d_{k}\right)$ be a graphic sequence with $k=\left\lceil\frac{n}{3}\right\rceil+2 r+s-1$. We now prove that $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$. If no realization of π contains a cycle, by Lemma 2.1, then $d_{3} \leq 1$. Let G be a realization of π. Then $|G|=\left\lceil\frac{n}{3}\right\rceil+2 r+s-1 \geq 2 r+2$. Let $v_{1}, v_{2} \in V(G)$ so that $d_{G}\left(v_{1}\right)=d_{1}$ and $d_{G}\left(v_{2}\right)=d_{2}$. Then in G, each vertex of $V(G) \backslash\left\{v_{1}, v_{2}\right\}$ has degree at most one. By $\left|V(G) \backslash\left\{v_{1}, v_{2}\right\}\right| \geq 2 r$, we can choose an independent set $S \subseteq V(G) \backslash\left\{v_{1}, v_{2}\right\}$ of G with $|S|=r$. Then $\left|N_{G}(S)\right| \leq r$. Since $|G|-\left|S \cup N_{G}(S)\right| \geq\left\lceil\frac{n}{3}\right\rceil+s-1 \geq s, \bar{\pi}$ is potentially $S_{r, s}$-graphic.

Suppose that there is a realization G of π containing a cycle $C=v_{0} v_{1} \cdots v_{m-1}$ with $m \geq n$, and amongst all such realizations let m be minimum. If $m=n$ then we are done, so further assume that $m \geq n+1$. Then C is induced by Lemma 2.2(1).

Assume first that $m=n+1$. By Lemma 2.2(2), we have $d_{G}(x)=0$ for each vertex in $V(G) \backslash V(C)$, i.e., $G=C \cup \overline{K_{2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-2}}$, where $C=C_{n+1}$. Since $2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-2 \geq r-1, v_{1}$ in C along with $r-1$ vertices in $\overline{K_{2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-2}}$ forms an independent set S with $|S|=r$ in G and there are $|G|-(r+2)=\left\lceil\frac{n}{3}\right\rceil+r+s-3 \geq s$ vertices which are not adjacent to each vertex in $S, \bar{\pi}$ is potentially $S_{r, s}$-graphic.

If $m=n+2$, by Lemma 2.2(2), we have $d_{G}(x)=0$ for each vertex in $V(G) \backslash V(C)$, i.e., $G=C \cup \overline{K_{2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-3}}$, where $C=C_{n+2}$. If $r=1$, then there are $|G|-3=\left\lceil\frac{n}{3}\right\rceil+s-2 \geq s$ vertices which are not adjacent to v_{1} in G, and so $\bar{\pi}$ is potentially $S_{r, s}$-graphic. If $r \geq 2$, then $2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-3 \geq r-2$, and so $\left\{v_{1}, v_{3}\right\}$ along with $r-2$ vertices in $\overline{K_{2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-3}}$ forms an independent set S with $|S|=r$ in G and there are $|G|-(r+3)=\left\lceil\frac{n}{3}\right\rceil+2 r+s-1-(r+3)=$ $\left\lceil\frac{n}{3}\right\rceil+r+s-4 \geq s$ vertices which are not adjacent to each vertex of $S, \bar{\pi}$ is potentially $S_{r, s}$ graphic.

If $m \geq n+3$, then replace the induced C_{m} in G with a copy of $C_{m-3} \cup C_{3}$, contradicting the choice of m. Hence, we assume that every realization of π has circumference at most $n-1$. Let G be a realization of π containing a longest cycle $C=v_{1} v_{2} \cdots v_{m}$ with $m \leq n-1$ and suppose that G has the maximum circumference amongst all realizations of π. Let $H=G \backslash V(C)$. Then $|V(H)|=|G|-|V(C)| \geq\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-1\right)-(n-1) \geq r$.

Claim $1 \Delta(H) \leq 1$.
Proof of Claim 1. The proof is similar to that of Claim 1 of Theorem 1.4.
Claim 2 If $\Delta(H)=0$, then $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$.
Proof of Claim 2. Clearly, $V(H)$ is an independent set of G. By Lemma 2.3(7), $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$.
Claim 3 If $\Delta(H)=1$, then $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$.
Proof of Claim 3. Let H contain $2 \ell \geq 2$ vertices with degree one and p isolated vertices. If $p \geq r$, by Lemma 2.3(7), then $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$. Assume $p \leq r-1$. By Lemma 2.3(3), $N_{C}(u)=N_{C}\left(u^{\prime}\right)$ for any two distinct
vertices $u, u^{\prime} \in V(H)$ with $d_{H}(u)=d_{H}\left(u^{\prime}\right)=1$. Denote $R=N_{C}(u)$, where $u \in V(H)$ with $d_{H}(u)=1$, and let $x_{i} y_{i}, 1 \leq i \leq \ell$ be the (disjoint) edges in H.

Firstly, suppose that $R=\emptyset$. If $|V(H)| \geq 2 r+s$, then we can choose an independent set S of H with $|S|=r$. Moreover, by $|V(H)|-\left|S \cup N_{H}(S)\right| \geq 2 r+s-2 r=s, \bar{\pi}$ is potentially $S_{r, s}$-graphic. If $r+s \leq|V(H)| \leq 2 r+s-1$, then $m \geq\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-1\right)-(2 r+s-1) \geq\left\lceil\frac{n}{3}\right\rceil$ and $|V(H)|=\left\lceil\frac{n}{3}\right\rceil+2 r+s-1-m$. For each $i=1, \ldots, \min \{\ell, m\}$, we exchange the edges $x_{i} y_{i}, v_{i} v_{i+1}$ for the nonedges $v_{i} x_{i}, v_{i+1} y_{i}$, then let H contain $2 \ell^{\prime}$ vertices with degree one and p^{\prime} isolated vertices. If $\ell \leq m$, then $\ell^{\prime}=0$, by $|V(H)| \geq r+s$, we have $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$. Assume $\ell \geq m+1$. Then $p^{\prime} \geq 2 m$. If $p^{\prime} \geq r$, by $|V(H)|-r \geq r+s-r=s$, then $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$. If $p^{\prime} \leq r-1$, by $\ell^{\prime}=\frac{|V(H)|-p^{\prime}}{2} \geq \frac{\left[\frac{n}{3} 7+2 r+s-1-m-p^{\prime}\right.}{2} \geq \frac{\left(2 r-2 p^{\prime}\right)+p^{\prime}-m}{2} \geq r-p^{\prime}$, then p^{\prime} isolated vertices in H along with $r-p^{\prime}$ vertices from $r-p^{\prime}$ edges in H forms an independent set S with $|S|=r$ in G. It follows from $\left|N_{H}(S)\right|=r-p^{\prime} \leq r-2 m$ and $|V(H)|-\left|N_{H}(S) \cup S\right| \geq\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-1-m\right)-(2 r-2 m) \geq s$ that $\bar{\pi}$ is potentially $S_{r, s}$-graphic. If $|V(H)| \leq r+s-1$, then $m \geq\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-1\right)-(r+s-1) \geq\left\lceil\frac{r}{2}\right\rceil$. By Lemma 2.3(5), $d_{C}(x)=\left|N_{C}(x)\right| \leq 1$ for each $x \in V(H)$ with $d_{H}(x)=0$. For each $\left.i=1, \ldots, \min \left\{\ell, \Gamma \frac{r}{2}\right\rceil\right\}$, we can exchange the edges $x_{i} y_{i}, v_{i} v_{i+1}$ for the nonedges $v_{i} x_{i}, v_{i+1} y_{i}$, and obtain a realization of π in which H contains at least r isolated vertices. Let S be the set of r isolated vertices in H. Clearly, $\left|N_{C}(S)\right| \leq r$. Then $|G|-\left|S \cup N_{C}(S)\right| \geq\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-1\right)-2 r \geq s$, and so $\bar{\pi}$ is potentially $S_{r, s}$-graphic.

Now assume that $R \neq \emptyset$. If $|V(H)| \geq 2 r+s$, then $\bar{\pi}$ is potentially $S_{r, s}$-graphic. Assume $r+s \leq|V(H)| \leq$ $2 r+s-1$. By Lemma 2.3(6), we may assume $2 \ell-2\left\lceil\frac{s}{2}\right\rceil+2 p+m-|R| \leq 2 r-2$. By $2 \ell+p+m=\left\lceil\frac{n}{3}\right\rceil+2 r+s-1$, we have $0 \geq 2 \ell-2\left\lceil\frac{s}{2}\right\rceil+2 p+m-|R|-(2 r-2) \geq\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-1\right)-(2 r-2)-(s+1)+p-|R| \geq\left\lceil\frac{n}{3}\right\rceil+p-|R|$. By Lemma 2.3(4), $|R| \leq\left\lfloor\frac{m}{3}\right\rfloor \leq\left\lfloor\frac{n-1}{3}\right\rfloor$. Thus $\left\lceil\frac{n}{3}\right\rceil+p \leq\left\lfloor\frac{n-1}{3}\right\rfloor$, a contradiction.

If $|V(H)| \leq r+s-1$, then $m \geq\left\lceil\frac{n}{3}\right\rceil+r$ and $r \leq\left\lfloor\frac{2 n}{3}\right\rfloor-1$. By Lemma 2.3(5), $\left|N_{C}(x) \backslash R\right| \leq 1$ for each $x \in V(H)$ with $d_{H}(x)=0$. Since $p \leq r-1$, we have $\ell \geq\left\lceil\frac{r-p}{2}\right\rceil$. By $m \geq\left\lceil\frac{n}{3}\right\rceil+r,|R| \leq\left\lfloor\frac{m}{3}\right\rfloor$ and $\left\lceil\frac{n}{3}\right\rceil \geq \frac{\left\lfloor\frac{2 n}{3}\right\rfloor}{2} \geq \frac{r}{2}$, then $m-2|R| \geq m-2\left\lfloor\frac{m}{3}\right\rfloor \geq\left\lceil\frac{m}{3}\right\rceil \geq\left\lceil\frac{\left\lceil\frac{n}{3}\right\rceil+r}{3}\right\rceil \geq\left\lceil\frac{r}{2}+r\right\rceil=\left\lceil\frac{r}{2}\right\rceil$, and hence we can use $\left\lceil\frac{r-p}{2}\right\rceil$ edges of C to breakout $\left\lceil\frac{r-p}{2}\right\rceil$ edges of H and obtain a realization of π in which H contains at least $p+2\left\lceil\frac{r-p}{2}\right\rceil \geq r$ isolated vertices. Let S be the set of r isolated vertices in H. Clearly, $\left|N_{C}(S)\right| \leq|R|+r \leq\left\lfloor\frac{m}{3}\right\rfloor+r \leq\left\lceil\frac{n}{3}\right\rceil+r-1$. Then $|G|-\left|S \cup N_{C}(S)\right| \geq\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-1\right)-\left(\left\lceil\frac{n}{3}\right\rceil+2 r-1\right) \geq s$, and so $\bar{\pi}$ is potentially $S_{r, s}$-graphic.

Proof of Theorem 1.7. Clearly, $r \geq\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor+1$ and $r+s \geq\left\lfloor\frac{2 n}{3}\right\rfloor+1$. From Theorem 1.3 we have $r_{p o t}\left(C_{n}, S_{r, s}\right) \geq\left\lceil\frac{n}{3}\right\rceil+2 r+s-2$. Let $\pi=\left(d_{1}, \ldots, d_{k}\right)$ be a graphic sequence with $k=\left\lceil\frac{n}{3}\right\rceil+2 r+s-2$. We now prove that $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$. If no realization of π contains a cycle, by Lemma 2.1, then $d_{3} \leq 1$. Let G be a realization of π. Then $|G|=\left\lceil\frac{n}{3}\right\rceil+2 r+s-2 \geq 2 r+2$. Let $v_{1}, v_{2} \in V(G)$ so that $d_{G}\left(v_{1}\right)=d_{1}$ and $d_{G}\left(v_{2}\right)=d_{2}$. Then in G, each vertex of $V(G) \backslash\left\{v_{1}, v_{2}\right\}$ has degree at most one. By $\left|V(G) \backslash\left\{v_{1}, v_{2}\right\}\right| \geq 2 r$, we can choose an independent set $S \subseteq V(G) \backslash\left\{v_{1}, v_{2}\right\}$ of G with $|S|=r$. Then $\left|N_{G}(S)\right| \leq r$. Since $|G|-\left|S \cup N_{G}(S)\right| \geq\left\lceil\frac{n}{3}\right\rceil+s-2 \geq s$, $\bar{\pi}$ is potentially $S_{r, s}$-graphic.

Suppose that there is a realization G of π containing a cycle $C=v_{0} v_{1} \cdots v_{m-1}$ with $m \geq n$, and amongst all such realizations let m be minimum. If $m=n$ then we are done, so further assume that $m \geq n+1$. Then C is induced by Lemma 2.2(1).

Assume first that $m=n+1$. By Lemma 2.2(2), we have $d_{G}(x)=0$ for each vertex in $V(G) \backslash V(C)$, i.e., $G=C \cup \overline{K_{2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-3}}$, where $C=C_{n+1}$. If $r=1$, then $n=4,|V(C)|=5$ and $|G|=s+2$ is even, implying that $\left|V\left(\overline{K_{2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-3}}\right)\right| \geq 1$, and $\bar{\pi}$ is potentially $S_{1, s^{-}}$graphic. Assume $r \geq 2$ and $4 \leq n \leq 6$. If $r+s \geq\left\lfloor\frac{2 n}{3}\right\rfloor+2$, then $2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-3 \geq r-1$, and hence v_{1} in C along with $r-1$ vertices in $\overline{K_{2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-3}}$ forms an independent set S with $|S|=r$ in G and there are $|G|-(r+2)=\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-2\right)-(r+2)=\left\lceil\frac{n}{3}\right\rceil+r+s-4 \geq s$ vertices which are not adjacent to each vertex in $S, \bar{\pi}$ is potentially $S_{r, s}$-graphic. If $r \geq 3$, by $r+s \geq\left\lfloor\frac{2 n}{3}\right\rfloor+1$, then $2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-3 \geq r-2$, and hence $\left\{v_{1}, v_{3}\right\}$ in C along with $r-2$ vertices in $\overline{K_{2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-3}}$ forms an independent set S with $|S|=r$ in G and there are $|G|-(r+3)=\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-2\right)-(r+3)=\left\lceil\frac{n}{3}\right\rceil+r+s-5 \geq s$ vertices which are not adjacent to each vertex in $S, \bar{\pi}$ is potentially $S_{r, s}$-graphic. For the case of $r=2$ and $r+s=\left\lfloor\frac{2 n}{3}\right\rfloor+1$, if $n=4$, then $r+s=3$ and $s=1$, a contradiction; if $n=5$, then $(n, r, s)=(5,2,2)$, a contradiction; if $n=6$, then $r+s=5$ and $s=3$, a contradiction. Assume $r \geq 2$ and $n \geq 7$. By $2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-3 \geq r-2,\left\{v_{1}, v_{3}\right\}$ in C along with $r-2$ vertices in $\overline{K_{2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-3}}$ forms an independent set S with $|S|=r$ in G and there are
$|G|-(r+3)=\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-2\right)-(r+3)=\left\lceil\frac{n}{3}\right\rceil+r+s-5 \geq s$ vertices which are not adjacent to each vertex in $S, \bar{\pi}$ is potentially $S_{r, s}$-graphic.

Suppose that $m=n+2$. By Lemma 2.2(2), we have $d_{G}(x)=0$ for each vertex in $V(G) \backslash V(C)$, i.e., $G=C \cup \overline{K_{2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-4}}$, where $C=C_{n+2}$. If $r=1$, then $n=4,|V(C)|=6$ and $|G|=s+2$. In this case, if $s=4$, then $(n, r, s)=(4,1,4)$, a contradiction; if $s \geq 6$, then $\left|V\left(\overline{K_{2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-4}}\right)\right| \geq 1$, and $\bar{\pi}$ is potentially $S_{1, s}$-graphic. Assume $r \geq 2$ and $4 \leq n \leq 6$. If $r+s \geq\left\lfloor\frac{2 n}{3}\right\rfloor+3$, then $2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-4 \geq r-1$, and hence v_{1} in C along with $r-1$ vertices in $\overline{K_{2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-4}}$ forms an independent set S with $|S|=r$ in G and there are $|G|-(r+2)=\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-2\right)-(r+2)=\left\lceil\frac{n}{3}\right\rceil+r+s-4 \geq s$ vertices which are not adjacent to each vertex in $S, \bar{\pi}$ is potentially $S_{r, s}$-graphic. If $r+s=\left\lfloor\frac{2 n}{3}\right\rfloor+2$ and $r \geq 3$, then $2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-4=r-2$, and hence $\left\{v_{1}, v_{3}\right\}$ in C along with $r-2$ vertices in $\overline{K_{2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-4}}$ forms an independent set S with $|S|=r$ in G and there are $|G|-(r+3)=\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-2\right)-(r+3)=\left\lceil\frac{n}{3}\right\rceil+r+s-5 \geq s$ vertices which are not adjacent to each vertex in $S, \bar{\pi}$ is potentially $S_{r, s}$-graphic. For the case of $r+s=\left\lfloor\frac{2 n}{3}\right\rfloor+2$ and $r=2$, if $n=4$, then $(n, r, s)=(4,2,2)$, a contradiction; if $n=5$, then $r+s=5$ and $s=3$, a contradiction; if $n=6$, then $r+s=6, s=4$ and $|G|=m=8$, implying that $G=C_{8}$ and $\pi=\left(2^{8}\right)$. It is easy to see that $\pi \rightarrow\left(C_{6}, S_{2,4}\right)$. For the case of $r+s=\left\lfloor\frac{2 n}{3}\right\rfloor+1$, by $|G|=\left\lceil\frac{n}{3}\right\rceil+2 r+s-2 \geq m=n+2$, we have $r \geq 3$ and $r+s \geq 5$, implying that $(n, r, s)=(6,3,2)$, a contradiction. Assume $r \geq 2$ and $n \geq 7$. If $r=2$, then there are $|G|-5=\left(\left\lceil\frac{n}{3}\right\rceil+s+2\right)-5=\left\lceil\frac{n}{3}\right\rceil+s-3 \geq s$ vertices which are not adjacent to v_{1} and $v_{3}, \bar{\pi}$ is potentially $S_{2, s}$ graphic. If $r \geq 3$, then $2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-4 \geq r-3$, and hence $\left\{v_{1}, v_{3}, v_{5}\right\}$ in C along with $r-3$ vertices in $\overline{K_{2 r+s-\left\lfloor\frac{2 n}{3}\right\rfloor-4}}$ forms an independent set S with $|S|=r$ in G and there are $|G|-(r+4)=\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-2\right)-(r+4)=\left\lceil\frac{n}{3}\right\rceil+r+s-6 \geq s$ vertices which are not adjacent to each vertex in $S, \bar{\pi}$ is potentially $S_{r, s}$-graphic.

If $m \geq n+3$, then replace the induced C_{m} in G with a copy of $C_{m-3} \cup C_{3}$, contradicting the choice of m. Hence, we assume that every realization of π has circumference at most $n-1$. Let G be a realization of π containing a longest cycle $C=v_{1} v_{2} \cdots v_{m}$ with $m \leq n-1$ and suppose that G has the maximum circumference amongst all realizations of π. Let $H=G \backslash V(C)$. Then $\left.|V(H)|=|G|-|V(C)| \geq\left(\Gamma \frac{n}{3}\right\rceil+2 r+s-2\right)-(n-1) \geq r$.

Claim $1 \Delta(H) \leq 1$.
Proof of Claim 1. The proof is similar to that of Claim 1 of Theorem 1.4.
Claim 2 If $\Delta(H)=0$, then $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$.
Proof of Claim 2. Clearly, $V(H)$ is an independent set of G. By Lemma 2.3(7), $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$.
Claim 3 If $\Delta(H)=1$, then $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$.
Proof of Claim 3. Let H contain $2 \ell \geq 2$ vertices with degree one and p isolated vertices. If $p \geq r$, by Lemma 2.3(7), then $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$. Assume $p \leq r-1$. By Lemma 2.3(3), $N_{C}(u)=N_{C}\left(u^{\prime}\right)$ for any two distinct vertices $u, u^{\prime} \in V(H)$ with $d_{H}(u)=d_{H}\left(u^{\prime}\right)=1$. Denote $R=N_{C}(u)$, where $u \in V(H)$ with $d_{H}(u)=1$, and let $x_{i} y_{i}, 1 \leq i \leq \ell$ be the (disjoint) edges in H.

Firstly, suppose that $R=\emptyset$. If $|V(H)| \geq 2 r+s$, then we can choose an independent set S of H with $|S|=r$. Moreover, by $|V(H)|-\left|S \cup N_{H}(S)\right| \geq 2 r+s-2 r=s, \bar{\pi}$ is potentially $S_{r, s}$ graphic. If $r+s \leq|V(H)| \leq 2 r+s-1$, then $m \geq\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-2\right)-(2 r+s-1) \geq\left\lceil\frac{n}{3}\right\rceil-1$ and $|V(H)|=\left\lceil\frac{n}{3}\right\rceil+2 r+s-2-m$. For each $i=1, \ldots, \min \{\ell, m\}$, we exchange the edges $x_{i} y_{i}, v_{i} v_{i+1}$ for the nonedges $v_{i} x_{i}, v_{i+1} y_{i}$, then let H contain $2 \ell^{\prime}$ vertices with degree one and p^{\prime} isolated vertices. If $\ell \leq m$, then $\ell^{\prime}=0$, by $|V(H)| \geq r+s$, we have $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$. Assume $\ell \geq m+1$. Then $p^{\prime} \geq 2 m$. If $p^{\prime} \geq r$, by $|V(H)|-r \geq r+s-r=s$, then $\pi \rightarrow\left(C_{n}, S_{r, s}\right)$. If $p^{\prime} \leq r-1$, by $\ell^{\prime}=\frac{|V(H)|-p^{\prime}}{2} \geq \frac{\left[\frac{n}{3} 7+2 r+s-2-m-p^{\prime}\right.}{2} \geq \frac{\left(2 r-2 p^{\prime}\right)+p^{\prime}-m}{2} \geq r-p^{\prime}$, then p^{\prime} isolated vertices in H along with $r-p^{\prime}$ vertices from $r-p^{\prime}$ edges in H forms an independent set S with $|S|=r$ in G. It follows from $\left|N_{H}(S)\right|=r-p^{\prime} \leq r-2 m$ and $|V(H)|-\left|N_{H}(S) \cup S\right| \geq\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-2-m\right)-(2 r-2 m) \geq s$ that $\bar{\pi}$ is potentially $S_{r, s}$ graphic. If $|V(H)| \leq r+s-1$, then $m \geq\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-2\right)-(r+s-1)=\left\lceil\frac{n}{3}\right\rceil+r-1 \geq\left\lceil\frac{r}{2}\right\rceil$ and $r \leq\left\lfloor\frac{2 n}{3}\right\rfloor$. By Lemma 2.3(5), $d_{C}(x)=\left|N_{C}(x)\right| \leq 1$ for each $x \in V(H)$ with $d_{H}(x)=0$. For each $i=1, \ldots, \min \left\{\ell,\left\lceil\frac{r}{2}\right\rceil\right\}$, we can exchange the edges $x_{i} y_{i}, v_{i} v_{i+1}$ for the nonedges $v_{i} x_{i}, v_{i+1} y_{i}$, and obtain a realization of π in which H contains at least r isolated vertices. Let S be the set of r isolated vertices in H. Clearly, $\left|N_{C}(S)\right| \leq r$. Then $|G|-\left|S \cup N_{C}(S)\right| \geq\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-2\right)-2 r \geq s$, and so $\bar{\pi}$ is potentially $S_{r, s}$-graphic.

Now assume that $R \neq \emptyset$. If $|V(H)| \geq 2 r+s$, then $\bar{\pi}$ is potentially $S_{r, s}$-graphic. Assume $r+s \leq|V(H)| \leq$ $2 r+s-1$. By Lemma 2.3(6), we may assume $2 \ell-2\left\lceil\frac{s}{2}\right\rceil+2 p+m-|R| \leq 2 r-2$. By $2 \ell+p+m=\left\lceil\frac{n}{3}\right\rceil+2 r+s-2$ and
s is even, we have $0 \geq 2 \ell-2\left\lceil\frac{s}{2}\right\rceil+2 p+m-|R|-(2 r-2)=\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-2\right)-(2 r-2)-s+p-|R| \geq\left\lceil\frac{n}{3}\right\rceil+p-|R|$. By Lemma 2.3(4), $|R| \leq\left\lfloor\frac{m}{3}\right\rfloor \leq\left\lfloor\frac{n-1}{3}\right\rfloor$. Thus $\left\lceil\frac{n}{3}\right\rceil+p \leq\left\lfloor\frac{n-1}{3}\right\rfloor$, a contradiction.

If $|V(H)| \leq r+s-1$, then $m=|G|-|V(H)| \geq\left\lceil\frac{n}{3}\right\rceil+r-1$, and hence $r \leq\left\lfloor\frac{2 n}{3}\right\rfloor$ (by $m \leq n-1$). By $|R| \leq\left\lfloor\frac{m}{3}\right\rfloor$ and Lemma 2.3(5), we have $m-2|R| \geq m-2\left\lfloor\frac{m}{3}\right\rfloor \geq\left\lceil\frac{m}{3}\right\rceil \geq\left\lceil\frac{\left\lceil\frac{n}{3}\right\rceil+r-1}{3}\right\rceil \geq\left\lceil\frac{r}{2}\right\rceil$ and $\left|N_{\mathrm{C}}(x) \backslash R\right| \leq 1$ for each $x \in V(H)$ with $d_{H}(x)=0$. We now consider the following two cases according to the value of $|R| \leq\left\lfloor\frac{m}{3}\right\rfloor \leq\left\lfloor\frac{n-1}{3}\right\rfloor=\left\lceil\frac{n}{3}\right\rceil-1$. If $|R| \leq\left\lceil\frac{n}{3}\right\rceil-2$, by $\ell \geq\left\lceil\frac{r-p}{2}\right\rceil$, then we can use $\left\lceil\frac{r-p}{2}\right\rceil$ edges of C to breakout $\left\lceil\frac{r-p}{2}\right\rceil$ edges of H to obtain a realization of π in which H contains at least $p+2\left\lceil\frac{r-p}{2}\right\rceil \geq r$ isolated vertices. Let S be the set of r isolated vertices in H. Clearly, $\left|N_{C}(S)\right| \leq|R|+r \leq\left\lfloor\frac{m}{3}\right\rfloor+r \leq\left\lceil\frac{n}{3}\right\rceil+r-2$. This implies that $|G|-\left|S \cup N_{C}(S)\right| \geq\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-2\right)-\left(\left\lceil\frac{n}{3}\right\rceil+2 r-2\right)=s$, and so $\bar{\pi}$ is potentially $S_{r, s}$ graphic. If $|R|=\left\lceil\frac{n}{3}\right\rceil-1$, then $|R|=\left\lfloor\frac{m}{3}\right\rfloor=\left\lceil\frac{n}{3}\right\rceil-1$. In this case, if $r=1$, then $n=4$ and $m=3$. Since $|V(H)|=|G|-m=s-1 \geq 1$ is odd, we have $p \geq 1=r$, a contradiction. Assume $r \geq 2$. If $m \not \equiv 0(\bmod 3)$, by $|R|=\left\lfloor\frac{m}{3}\right\rfloor$ and Lemma 2.3(4), C has three consecutive vertices, say v_{1}, v_{2}, v_{3}, so that $v_{1}, v_{2}, v_{3} \notin R$; moreover, $v_{4} \in R$ or $v_{m} \in R$. Without loss of generality, we let $v_{4} \in R$. If $v_{1} v_{3} \in E(G)$, then we exchange the edges $x_{1} y_{1}, v_{1} v_{3}$ for the nonedges $v_{1} x_{1}, v_{3} y_{1}$ to obtain a realization of π containing a cycle $v_{1} v_{2} v_{3} y_{1} v_{4} \cdots v_{m} v_{1}$ of length $m+1$, a contradiction. If $v_{1} v_{3} \notin E(G)$, then we first exchange the edges $x_{1} y_{1}, v_{1} v_{2}, v_{2} v_{3}$ for the nonedges $v_{2} x_{1}, v_{2} y_{1}, v_{1} v_{3}$ to obtain a realization of π containing a cycle $v_{1} v_{3} v_{4} \cdots v_{m} v_{1}$ of length $m-1$, then by $(m-1)-2|R| \geq\left\lceil\frac{r}{2}\right\rceil-1$, we can use $\left\lceil\frac{r-p}{2}\right\rceil-1$ edges of $v_{1} v_{3} v_{4} \cdots v_{m} v_{1}$ to breakout $\left\lceil\frac{r-p}{2}\right\rceil-1$ edges of H to obtain a realization of π in which H has $2+p+2\left(\left\lceil\frac{r-p}{2}\right\rceil-1\right) \geq r$ isolated vertices. Let S be the set of r isolated vertices in H and $x_{1}, y_{1} \in S$. Clearly, $\left|N_{C}(S)\right| \leq|R|+r-1=\left\lfloor\frac{m}{3}\right\rfloor+r-1=\left\lceil\frac{n}{3}\right\rceil+r-2$, and so $|G|-\left|S \cup N_{C}(S)\right| \geq\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-2\right)-\left(\left\lceil\frac{n}{3}\right\rceil+2 r-2\right)=s$ and $\bar{\pi}$ is potentially $S_{r, s}$-graphic. Assume $m \equiv 0(\bmod 3)$. If $p \geq 1$, we let $x \in V(H)$ with $d_{H}(x)=0$. In this case, if $N_{C}(x) \backslash R \neq \emptyset$, we let $v \in N_{C}(x) \backslash R$, by $m \equiv 0(\bmod 3),|R|=\left\lfloor\frac{m}{3}\right\rfloor$ and Lemma 2.3(4), then $v=v_{i+1}$ or v_{i-1} for some $v_{i} \in R$. Without loss of generality, we let $v=v_{i+1}$, then exchange the edges $x_{1} y_{1}, v_{i+1} x$ for the nonedges $v_{i+1} x_{1}, x y_{1}$ to obtain a realization of π containing a cycle $v_{1} v_{2} \cdots v_{i} x_{1} v_{i+1} \cdots v_{m} v_{1}$ of length $m+1$, a contradiction. Hence $N_{C}(x) \backslash R=\emptyset$. By $m-2|R| \geq\left\lceil\frac{r}{2}\right\rceil$, we can use $\left\lceil\frac{r-p}{2}\right\rceil$ edges of C to breakout $\left\lceil\frac{r-p}{2}\right\rceil$ edges of H to obtain a realization of π in which H contains at least $p+2\left\lceil\frac{r-p}{2}\right\rceil \geq r$ isolated vertices. Let S be the set of r isolated vertices in H and $x \in S$. Clearly, $\left|N_{C}(S)\right| \leq|R|+r-1=\left\lfloor\frac{m}{3}\right\rfloor+r-1=\left\lceil\frac{n}{3}\right\rceil+r-2$, and so $|G|-\left|S \cup N_{C}(S)\right| \geq\left(\left\lceil\frac{n}{3}\right\rceil+2 r+s-2\right)-\left(\left\lceil\frac{n}{3}\right\rceil+2 r-2\right)=s$ and $\bar{\pi}$ is potentially $S_{r, s}$-graphic. If $p=0$, by $m \equiv 0(\bmod 3)$ and $|R|=\left\lfloor\frac{m}{3}\right\rfloor=\frac{m}{3}$, we have that $|G|-|R|=|V(C)|-|R|+|V(H)|=m-\frac{m}{3}+2 \ell=\frac{2 m}{3}+2 \ell$ is even. On the other hand, by $|R|=\left\lceil\frac{n}{3}\right\rceil-1$, we have that $|G|-|R|=\left\lceil\frac{n}{3}\right\rceil+2 r+s-2-\left(\left\lceil\frac{n}{3}\right\rceil-1\right)=2 r+s-1$ is odd, a contradiction. \square

Proof of Theorem 1.8. (1) By $\left(2^{4}\right) \rightarrow\left(C_{3}, S_{1,2}\right)$, we have $r_{p o t}\left(C_{3}, S_{1,2}\right) \geq 5$. Let $\pi=\left(d_{1}, \ldots, d_{5}\right)$ be a graphic sequence. If π is not potentially C_{3}-graphic, by Lemma 2.1, then $d_{3} \leq 1$ or $\pi=\left(2^{5}\right)$ or $\pi=\left(2^{4}, 0\right)$, implying that $\overline{d_{1}}=4-d_{5} \geq 2$, and so $\bar{\pi}$ is potentially $S_{1,2}$-graphic. Thus $r_{p o t}\left(C_{3}, S_{1,2}\right)=5$. By $\left(2^{5}\right) \rightarrow\left(C_{3}, S_{1,3}\right)$, we have $r_{p o t}\left(C_{3}, S_{1,3}\right) \geq 6$. Let $\pi=\left(d_{1}, \ldots, d_{6}\right)$ be a graphic sequence. If π is not potentially C_{3}-graphic, by Lemma 2.1, then $d_{3} \leq 1$ or $\pi=\left(2^{5}, 0\right)$ or $\pi=\left(2^{4}, 0^{2}\right)$, thus $\overline{d_{1}}=5-d_{6} \geq 3$, and so $\bar{\pi}$ is potentially $S_{1,3}$-graphic. Hence $r_{p o t}\left(C_{3}, S_{1,3}\right)=6$. For $s \geq 4$, by Theorem 1.3, $r_{p o t}\left(C_{3}, S_{1, s}\right) \geq s+2$. Let $\pi=\left(d_{1}, \ldots, d_{s+2}\right)$ be a graphic sequence with $s \geq 4$. If $\bar{\pi}$ is not potentially $S_{1, s}$-graphic, then $\overline{d_{1}} \leq s-1$, and hence $d_{s+2}=s+1-\overline{d_{1}} \geq 2$, by $s+2 \geq 6$ and Lemma 2.1, π is potentially C_{3}-graphic. Thus $r_{p o t}\left(C_{3}, S_{1, s}\right)=s+2$ for $s \geq 4$.
(2) Let $r \geq 2, s \geq 1$ be odd and $(r, s) \neq(2,1)$. By Theorem 1.3, $r_{p o t}\left(C_{3}, S_{r, s}\right) \geq 2 r+s$. Let $\pi=\left(d_{1}, \ldots, d_{2 r+s}\right)$ be a graphic sequence. If $s=1$, by Theorem 1.2(1), then $r_{p o t}\left(C_{3}, S_{r, 1}\right)=2 r+1$. Assume $s \geq 3$. If π is not potentially C_{3}-graphic, by Lemma 2.1, then $d_{3} \leq 1$ or $\pi=\left(2^{4}, 0^{2 r+s-4}\right)$ or $\pi=\left(2^{5}, 0^{2 r+s-5}\right)$. If $d_{3} \leq 1$, then $\overline{d_{r+s}} \geq \overline{d_{2 r+s-2}}=2 r+s-1-d_{3} \geq 2 r+s-2$, by Lemma 2.4, $\bar{\pi}$ is potentially $S_{r, s}$ graphic. If $\pi=\left(2^{4}, 0^{2 r+s-4}\right)$ or $\pi=\left(2^{5}, 0^{2 r+s-5}\right)$, by $2 r+s-4 \geq 2 r+s-5 \geq r$, then every realization of π contains at least r isolated vertices, and so $\bar{\pi}$ is potentially $S_{r, s}$-graphic.
(3) Let $r \geq 2, s \geq 2$ be even and $(r, s) \neq(2,2)$. By Theorem 1.3, $r_{p o t}\left(C_{3}, S_{r, s}\right) \geq 2 r+s-1$. Let $\pi=$ $\left(d_{1}, \ldots, d_{2 r+s-1}\right)$ be a graphic sequence. If π is not potentially C_{3}-graphic, by Lemma 2.1 , then $d_{3} \leq 1$ or $\pi=\left(2^{4}, 0^{2 r+s-5}\right)$ or $\pi=\left(2^{5}, 0^{2 r+s-6}\right)$. If $\pi=\left(2^{4}, 0^{2 r+s-5}\right)$, by $r+s \geq 5$, then every realization of π contains at least $2 r+s-5 \geq r$ isolated vertices, and so $\bar{\pi}$ is potentially $S_{r, s}$ graphic. Assume $\pi=\left(2^{5}, 0^{2 r+s-6}\right)$. If $r+s \geq 6$, then every realization of π contains at least $2 r+s-6 \geq r$ isolated vertices, and so $\bar{\pi}$ is potentially $S_{r, s}$-graphic. If
$r+s=5$, then $r=3, s=2$ and $\bar{\pi}=\left(6^{2}, 4^{5}\right)$, by Lemma $2.4, \bar{\pi}$ is potentially $S_{3,2}$-graphic. Assume $d_{3} \leq 1$. Let G be a realization of π with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{2 r+s-1}\right\}$ so that $d_{G}\left(v_{i}\right)=d_{i}$ for each i. If $d_{1} \geq 3$, let $v, v^{\prime} \in N_{G}\left(v_{1}\right) \backslash\left\{v_{2}\right\}$, by $\Delta\left(G\left[V(G) \backslash\left\{v_{1}, v_{2}, v, v^{\prime}\right\}\right]\right) \leq 1$ and $\left|G\left[V(G) \backslash\left\{v_{1}, v_{2}, v, v^{\prime}\right\}\right]\right|=|G|-4=2 r+s-5 \geq 2(r-2)$, then we can find an independent set of $G\left[V(G) \backslash\left\{v_{1}, v_{2}, v, v^{\prime}\right\}\right]$ with order at least $r-2$, thus $\left\{v, v^{\prime}\right\}$ along with $r-2$ vertices in $V(G) \backslash\left\{v_{1}, v_{2}, v, v^{\prime}\right\}$ forms an independent set S of G with $|S|=r$, and by $\left|S \cup N_{G}(S)\right| \leq 2 r-1$, there are at least $(2 r+s-1)-(2 r-1)=s$ vertices which are not adjacent to each vertex in S, implying that $\bar{\pi}$ is potentially $S_{r, s}$-graphic. If $d_{1}=d_{2}=2$, then $d_{2 r+s-1}=0$ as $d_{3} \leq 1$ and $\sum_{i=1}^{2 r+s-1} d_{i}$ is even. Clearly, $\overline{d_{1}}=2 r+s-2$, $\overline{d_{r+s-1}} \geq \overline{d_{2 r+s-3}} \geq 2 r+s-3$ and $\overline{d_{r+s}} \geq \overline{d_{2 r+s-2}}=2 r+s-4 \geq r$. By Lemma 2.4, $\bar{\pi}$ is potentially $S_{r, s}$-graphic. If $d_{1}=2$ and $d_{2}=1$, let $v, v^{\prime} \in N_{G}\left(v_{1}\right)$, by $\left|G\left[V(G) \backslash\left\{v_{1}, v, v^{\prime}\right\}\right]\right|=|G|-3=2 r+s-4 \geq 2(r-2)$, then $\left\{v, v^{\prime}\right\}$ along with $r-2$ vertices in $V(G) \backslash\left\{v_{1}, v, v^{\prime}\right\}$ forms an independent set S of G with $|S|=r$, and there are at least $(2 r+s-1)-(2 r-1)=s$ vertices which are not adjacent to each vertex in S, thus $\bar{\pi}$ is potentially $S_{r, s}$-graphic. If $d_{1} \leq 1$, then $d_{2 r+s-1}=0$ as $\sum_{i=1}^{2 r+s-1} d_{i}$ is even and $2 r+s-1$ is odd. Clearly, $\overline{d_{1}}=2 r+s-2$ and $\overline{d_{2 r+s-1}} \geq 2 r+s-3$. By Lemma 2.4, $\bar{\pi}$ is potentially $S_{r, s}$-graphic. Thus $r_{p o t}\left(C_{3}, S_{r, s}\right)=2 r+s-1$.
(4) By Theorem 1.2, $r_{p o t}\left(C_{3}, S_{2,1}\right)=6$. By $\left(2^{5}\right) \rightarrow\left(C_{3}, S_{2,2}\right)$, we have $r_{p o t}\left(C_{3}, S_{2,2}\right) \geq 6$. Let $\pi=\left(d_{1}, \ldots, d_{6}\right)$ be a graphic sequence. If π is not potentially C_{3}-graphic, by Lemma 2.1, then $d_{3} \leq 1$ or $\pi=\left(2^{5}, 0\right)$ or $\pi=\left(2^{4}, 0^{2}\right)$, implying that $\overline{d_{1}}=5-d_{6} \geq 4$ and $\overline{d_{4}}=5-d_{3} \geq 3$. By Lemma 2.4, $\bar{\pi}$ is potentially $S_{2,2}$-graphic. Thus $r_{\text {pot }}\left(C_{3}, S_{2,2}\right)=6$.

Proof of Theorem 1.9. (1) If $s \leq\left\lceil\frac{n}{2}\right\rceil-1$ and $r+s \leq\left\lceil\frac{2 n}{3}\right\rceil+\frac{-1+(-1)^{s}}{2}$, by Theorem 1.3, then $r_{p o t}\left(P_{n}, S_{r, s}\right) \geq n+r-1$. Moreover, $s \leq\left\lceil\frac{n}{2}\right\rceil-1 \leq\left\lfloor\frac{n}{2}\right\rfloor$ and $r+s \leq\left\lceil\frac{2 n}{3}\right\rceil+\frac{-1+(-1)^{s}}{2} \leq\left\lfloor\frac{2 n}{3}\right\rfloor+\frac{-1+(-1)^{s}}{2}+1$. If $r+s \leq\left\lfloor\frac{2 n}{3}\right\rfloor$, by Theorem 1.4, then $r_{p o t}\left(C_{n}, S_{r, s}\right)=n+r-1$. If $r+s=\left\lfloor\frac{2 n}{3}\right\rfloor+1$, then s is even and $\left\lceil\frac{2 n}{3}\right\rceil=\left\lfloor\frac{2 n}{3}\right\rfloor+1$, by Theorem 1.7, we also have $r_{p o t}\left(C_{n}, S_{r, s}\right)=\left\lceil\frac{n}{3}\right\rceil+2 r+s-2=\left\lceil\frac{n}{3}\right\rceil+\left\lfloor\frac{2 n}{3}\right\rfloor+r-1=n+r-1$. It follows from $r_{p o t}\left(P_{n}, S_{r, s}\right) \leq r_{p o t}\left(C_{n}, S_{r, s}\right)$ that $r_{p o t}\left(P_{n}, S_{r, s}\right)=n+r-1$.
(2) If $s \geq\left\lceil\frac{n}{2}\right\rceil$ and $r \leq\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil+\frac{-1+(-1)^{s}}{2}$, by $\alpha\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$ and Theorem 1.3, then $r_{p o t}\left(P_{n}, S_{r, s}\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+r+s-1$. Moreover, $s \geq\left\lceil\frac{n}{2}\right\rceil \geq\left\lfloor\frac{n}{2}\right\rfloor$ and $r \leq\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil+\frac{-1+(-1)^{s}}{2} \leq\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor+\frac{-1+(-1)^{s}}{2}+1$. If $r \leq\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor$, by Theorem 1.5, then $r_{p o t}\left(C_{n}, S_{r, s}\right)=\left\lceil\frac{n}{2}\right\rceil+r+s-1$. If $r=\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor+1$, then s is even and $\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor+1$, by Theorem 1.7, we also have $r_{p o t}\left(C_{n}, S_{r, s}\right)=\left\lceil\frac{n}{3}\right\rceil+2 r+s-2=\left\lceil\frac{n}{3}\right\rceil+\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor+r+s-1=\left\lceil\frac{n}{2}\right\rceil+r+s-1$. We now consider the following two cases in terms of the parity of n. If n is even, by $\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n}{2}\right\rfloor$, then $r_{p o t}\left(P_{n}, S_{r, s}\right) \leq r_{p o t}\left(C_{n}, S_{r, s}\right)=$ $\left\lfloor\frac{n}{2}\right\rfloor+r+s-1$. Thus $r_{p o t}\left(P_{n}, S_{r, s}\right)=\left\lfloor\frac{n}{2}\right\rfloor+r+s-1$. Assume that n is odd. If $\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil+\frac{-1+(-1)^{s}}{2} \leq\left\lfloor\frac{2(n-1)}{3}\right\rfloor-\left\lfloor\frac{n-1}{2}\right\rfloor$, by $s \geq\left\lceil\frac{n}{2}\right\rceil \geq\left\lfloor\frac{n-1}{2}\right\rfloor$ and Theorem 1.5, we have $r_{p o t}\left(C_{n-1}, S_{r, s}\right)=\left\lceil\frac{n-1}{2}\right\rceil+r+s-1$. If $\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil+\frac{-1+(-1)^{s}}{2} \geq$ $\left\lfloor\frac{2(n-1)}{3}\right\rfloor-\left\lfloor\frac{n-1}{2}\right\rfloor+1$, then s is even and $r=\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{2(n-1)}{3}\right\rfloor-\left\lfloor\frac{n-1}{2}\right\rfloor+1$, by $s \geq\left\lceil\frac{n}{2}\right\rceil \geq\left\lfloor\frac{n}{2}\right\rfloor$ and Theorem 1.7, we also have $r_{p o t}\left(C_{n-1}, S_{r, s}\right)=\left\lceil\frac{n-1}{3}\right\rceil+2 r+s-2=\left\lceil\frac{n-1}{3}\right\rceil+\left\lfloor\frac{2(n-1)}{3}\right\rfloor-\left\lfloor\frac{n-1}{2}\right\rfloor+r+s-1=\left\lceil\frac{n-1}{2}\right\rceil+r+s-1$. Let $\pi=\left(d_{1}, \ldots, d_{k}\right)$ be a graphic sequence with $k=\left\lfloor\frac{n}{2}\right\rfloor+r+s-1$. It follows from $\left\lfloor\frac{n}{2}\right\rfloor=\left\lceil\frac{n-1}{2}\right\rceil$ that $k=r_{p o t}\left(C_{n-1}, S_{r, s}\right)$. Assume that $\bar{\pi}$ is not potentially $S_{r, s}$-graphic. Then π has a realization G containing C_{n-1}. If there exists one edge between $V(G) \backslash V\left(C_{n-1}\right)$ and $V\left(C_{n-1}\right)$, then π is potentially P_{n}-graphic. Assume that there is no edge between $V(G) \backslash V\left(C_{n-1}\right)$ and $V\left(C_{n-1}\right)$. If there exists one edge $x y \in E\left(G \backslash V\left(C_{n-1}\right)\right)$, let v, v^{\prime} be two consecutive vertices on C_{n-1}, then exchange the edges $v v^{\prime}, x y$ with the non-edges $v x, v^{\prime} y$, we obtain a realization of π which contains P_{n}. If there is no edge in $G \backslash V\left(C_{n-1}\right)$, by $\left\lfloor\frac{n}{2}\right\rfloor+r+s-1-(n-1) \geq r$, then \bar{G} contains $S_{r, s}$, that is, $\bar{\pi}$ is potentially $S_{r, s}$-graphic, a contradiction. Hence $r_{p o t}\left(P_{n}, S_{r, s}\right)=\left\lfloor\frac{n}{2}\right\rfloor+r+s-1$.
(3) If $s \leq\left\lceil\frac{n}{2}\right\rceil-1$ and $r+s \geq\left\lceil\frac{2 n}{3}\right\rceil+\frac{-1+(-1)^{s}}{2}+1$ or if $s \geq\left\lceil\frac{n}{2}\right\rceil$ and $r \geq\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil+\frac{-1+(-1)^{s}}{2}+1$, by $\alpha^{(1)}\left(P_{n}\right)=\left\lceil\frac{2 n}{3}\right\rceil$ and Theorem 1.3, then $r_{p o t}\left(P_{n}, S_{r, s}\right) \geq\left\lfloor\frac{n}{3}\right\rfloor+2 r+s+\frac{-3+(-1)^{s-1}}{2}$. Moreover, $r+s \geq\left\lceil\frac{2 n}{3}\right\rceil+\frac{-1+(-1)^{s}}{2}+1$ and $r \geq\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil+\frac{-1+(-1)^{s}}{2}+1$. Assume $(n, r, s) \neq(6,3,2)$.

If $s \leq\left\lceil\frac{n}{2}\right\rceil-1\left(\leq\left\lfloor\frac{n}{2}\right\rfloor\right)$ and $r+s \geq\left\lfloor\frac{2 n}{3}\right\rfloor+1$ or if $s \geq\left\lceil\frac{n}{2}\right\rceil\left(\geq\left\lfloor\frac{n}{2}\right\rfloor\right)$ and $r \geq\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor+1$, by Theorems 1.6 and 1.7, then $r_{p o t}\left(C_{n}, S_{r, s}\right)=\left\lceil\frac{n}{3}\right\rceil+2 r+s+\frac{-3+(-1)^{s-1}}{2}$, implying that $r_{p o t}\left(P_{n}, S_{r, s}\right) \leq r_{p o t}\left(C_{n}, S_{r, s}\right)=\left\lceil\frac{n}{3}\right\rceil+2 r+s+\frac{-3+(-1)^{s-1}}{2}$. If $n \equiv 0(\bmod 3)$, by $\left\lceil\frac{n}{3}\right\rceil=\left\lfloor\frac{n}{3}\right\rfloor$, then $r_{\text {pot }}\left(P_{n}, S_{r, s}\right)=\left\lfloor\frac{n}{3}\right\rfloor+2 r+s+\frac{-3+(-1)^{s-1}}{2}$. Assume $n \not \equiv 0(\bmod 3)$. Let $\pi=\left(d_{1}, \ldots, d_{k}\right)$ be a graphic sequence with $k=\left\lfloor\frac{n}{3}\right\rfloor+2 r+s+\frac{-3+(-1)^{s-1}}{2}$. Clearly, $r+s \geq\left\lfloor\frac{2 n}{3}\right\rfloor+1$ and
$r \geq\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor+1$. By $k \geq\left\lceil\frac{n-2}{3}\right\rceil+2 r+s+\frac{-3+(-1)^{s-1}}{2}, k \geq\left\lfloor\frac{n}{3}\right\rfloor+\left(\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor+1\right)+r+s+\frac{-3+(-1)^{s-1}}{2} \geq$ $\left\lceil\frac{n}{2}\right\rceil+r+s+\frac{-3+(-1)^{s-1}}{2} \geq\left\lceil\frac{n-2}{2}\right\rceil+r+s-1$ and $k \geq\left\lfloor\frac{n}{3}\right\rfloor+\left(\left\lfloor\frac{2 n}{3}\right\rfloor+1\right)+r+\frac{-3+(-1)^{s-1}}{2} \geq n+r+\frac{-3+(-1)^{s-1}}{2} \geq(n-2)+r-1$, we have $k \geq \max \left\{\left\lceil\frac{n-2}{3}\right\rceil+2 r+s+\frac{-3+(-1)^{s-1}}{2},\left\lceil\frac{n-2}{2}\right\rceil+r+s-1,(n-2)+r-1\right\}=r_{p o t}\left(C_{n-2}, S_{r, s}\right)$ (by Theorem 1.4-1.7). Assume that $\bar{\pi}$ is not potentially $S_{r, s}$-graphic. Then π has a realization G containing C_{n-2}. Let $H=G \backslash V\left(C_{n-2}\right)$. It follows from $r+s \geq\left\lceil\frac{2 n}{3}\right\rceil+\frac{-1+(-1)^{s}}{2}+1$ that $|H|=|G|-\left|V\left(C_{n-2}\right)\right|=\left\lfloor\frac{n}{3}\right\rfloor+2 r+s+\frac{-3+(-1)^{s-1}}{2}-(n-2) \geq$ $\left\lfloor\frac{n}{3}\right\rfloor+\left(\left\lceil\frac{2 n}{3}\right\rceil+\frac{-1+(-1)^{s}}{2}+1\right)+r+\frac{-3+(-1)^{s-1}}{2}-(n-2) \geq r+1 \geq 2$. If $\Delta(H)=0$, we let $S \subseteq V(H)$ with $|S|=r$. If $N_{C}(S) \leq\left\lfloor\frac{n}{2}\right\rfloor-1$, by $r \geq\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil+\frac{-1+(-1)^{s}}{2}+1$, then $|G|-\left|S \cup N_{C}(S)\right| \geq\left\lfloor\frac{n}{3}\right\rfloor+2 r+s+\frac{-3+(-1)^{s-1}}{2}-\left(\left\lfloor\frac{n}{2}\right\rfloor+r-1\right) \geq$ $\left\lfloor\frac{n}{3}\right\rfloor+\left(\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil+\frac{-1+(-1)^{s}}{2}+1\right)+r+s+\frac{-3+(-1)^{s-1}}{2}-\left(\left\lfloor\frac{n}{2}\right\rfloor+r-1\right)=s$, and $\bar{\pi}$ is potentially $S_{r, s}$-graphic, a contradiction. Hence $\left|N_{C}(S)\right| \geq\left\lfloor\frac{n}{2}\right\rfloor\left(=\left\lfloor\frac{n-2}{2}\right\rfloor+1\right)$. This implies that there are two consecutive vertices (say v_{1}, v_{2}) on C_{n-2} and two vertices $x, x^{\prime} \in S$ so that $v_{1} x, v_{2} x^{\prime} \in E(G)$. If $x \neq x^{\prime}$, then π is potentially P_{n}-graphic. Assume $x=x^{\prime}$. If there is one vertex $y \in V(H) \backslash\{x\}$ and one vertex $v \in V\left(C_{n-2}\right)$ so that $v y \in E(G)$, then π is potentially P_{n}-graphic; if $d_{C}(y)=0$ for each $y \in V(H) \backslash\{x\}$, then $\bar{\pi}$ is potentially $S_{r, s}$-graphic, a contradiction. If $\Delta(H) \geq 1$, let $x y \in E(H)$, then either there exists one edge between $\{x, y\}$ and $V\left(C_{n-2}\right)$ (and so π is potentially P_{n}-graphic), or we take $v v^{\prime} \in E\left(C_{n-2}\right)$ and then exchange the edges $v v^{\prime}, x y$ with the non-edges $v x, v^{\prime} y$ to obtain a realization of π which contains P_{n}. Hence $r_{p o t}\left(P_{n}, S_{r, s}\right)=\left\lfloor\frac{n}{3}\right\rfloor+2 r+s+\frac{-3+(-1)^{s-1}}{2}$.

If $s \leq\left\lceil\frac{n}{2}\right\rceil-1\left(\leq\left\lfloor\frac{n}{2}\right\rfloor\right)$ and $\left\lceil\frac{2 n}{3}\right\rceil+\frac{-1+(-1)^{s}}{2}+1 \leq r+s \leq\left\lfloor\frac{2 n}{3}\right\rfloor$, then s is odd and $r+s=\left\lceil\frac{2 n}{3}\right\rceil=\left\lfloor\frac{2 n}{3}\right\rfloor$. Then $r_{p o t}\left(P_{n}, S_{r, s}\right) \geq\left\lfloor\frac{n}{3}\right\rfloor+2 r+s-1=n+r-1$. It follows from Theorem 1.4 that $r_{p o t}\left(P_{n}, S_{r, s}\right) \leq r_{p o t}\left(C_{n}, S_{r, s}\right)=n+r-1$. Hence $r_{p o t}\left(P_{n}, S_{r, s}\right)=\left\lfloor\frac{n}{3}\right\rfloor+2 r+s-1$.

Assume $s \geq\left\lceil\frac{n}{2}\right\rceil\left(\geq\left\lfloor\frac{n}{2}\right\rfloor\right)$ and $\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil+\frac{-1+(-1)^{s}}{2}+1 \leq r \leq\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor$. Then we only have the following three cases: s is odd and $\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil \leq r=\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor ; s$ is odd and $\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil=r=\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor-1 ; s$ is even and $\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil+1=r=\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor$.

If s is odd and $\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil \leq r=\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor$, by Theorem 1.5, then $r_{p o t}\left(P_{n}, S_{r, s}\right) \leq r_{p o t}\left(C_{n}, S_{r, s}\right)=\left\lceil\frac{n}{2}\right\rceil+r+s-1=$ $\left\lceil\frac{n}{3}\right\rceil+2 r+s-1$. If $n \equiv 0(\bmod 3)$, then $r_{p o t}\left(P_{n}, S_{r, s}\right)=\left\lfloor\frac{n}{3}\right\rfloor+2 r+s-1$. If $n \not \equiv 0(\bmod 3)$, let $\pi=\left(d_{1}, \ldots, d_{k}\right)$ be a graphic sequence with $k=\left\lfloor\frac{n}{3}\right\rfloor+2 r+s-1$. It is easy to check that $k \geq \max \left\{\left\lceil\frac{n-2}{3}\right\rceil+2 r+s-1,\left\lceil\frac{n-2}{2}\right\rceil+r+s-1,(n-2)+r-1\right\}=$ $r_{p o t}\left(C_{n-2}, S_{r, s}\right)$. Assume that $\bar{\pi}$ is not potentially $S_{r, s}$-graphic. Then π has a realization G containing C_{n-2}. Let $H=G \backslash V\left(C_{n-2}\right)$. If $\Delta(H)=0$, we have $|H|=|G|-\left|V\left(C_{n-2}\right)\right| \geq r+1$, let $S \subseteq V(H)$ with $|S|=r$. If $N_{C}(S) \leq\left\lfloor\frac{n}{2}\right\rfloor-1$, by $|G|-\left|S \cup N_{C}(S)\right| \geq s$, then $\bar{\pi}$ is potentially $S_{r, s}$-graphic, a contradiction. Hence $\left|N_{C}(S)\right| \geq\left\lfloor\frac{n}{2}\right\rfloor$. Then there are two consecutive vertices (say v_{1}, v_{2}) on C_{n-2} and two vertices $x, x^{\prime} \in S$ so that $v_{1} x, v_{2} x^{\prime} \in E(G)$. If $x \neq x^{\prime}$, then π is potentially P_{n}-graphic. If $x=x^{\prime}$, and if there is one vertex $y \in V(H) \backslash\{x\}$ and one vertex $v \in V\left(C_{n-2}\right)$ so that $v y \in E(G)$, then π is potentially P_{n}-graphic; if $d_{C}(y)=0$ for each $y \in V(H) \backslash\{x\}$, then $\bar{\pi}$ is potentially $S_{r, s}$-graphic, a contradiction. If $\Delta(H) \geq 1$, let $x y \in E(H)$, then either there exists one edge between $\{x, y\}$ and $V\left(C_{n-2}\right)$ (and so π is potentially P_{n}-graphic), or we take $v v^{\prime} \in E\left(C_{n-2}\right)$ and then exchange the edges $v v^{\prime}, x y$ with the non-edges $v x, v^{\prime} y$ to obtain a realization of π which contains P_{n}. Hence $r_{p o t}\left(P_{n}, S_{r, s}\right)=\left\lfloor\frac{n}{3}\right\rfloor+2 r+s-1$.

If s is odd and $\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil=r=\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor-1$ or if s is even and $\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil+1=r=\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor$, then $n \equiv 3(\bmod 6)$ and $r=\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil+\frac{-1+(-1)^{s}}{2}+1=\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor+\frac{-1+(-1)^{s}}{2}$, and hence

$$
\begin{align*}
r_{p o t}\left(P_{n}, S_{r, s}\right) & \geq\left\lfloor\frac{n}{3}\right\rfloor+2 r+s+\frac{-3+(-1)^{s-1}}{2} \\
& =\left\lfloor\frac{n}{3}\right\rfloor+r+s+\left(\left\lceil\frac{2 n}{3}\right\rceil-\left\lceil\frac{n}{2}\right\rceil+\frac{-1+(-1)^{s}}{2}+1\right)+\frac{-3+(-1)^{s-1}}{2} \tag{*}\\
& =\left\lfloor\frac{n}{2}\right\rfloor+r+s-1 .
\end{align*}
$$

Now by $s \geq\left\lceil\frac{n}{2}\right\rceil \geq\left\lfloor\frac{n}{2}\right\rfloor, r \leq\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor$ and Theorem 1.5, we have $\left\lfloor\frac{n}{2}\right\rfloor+r+s-1 \leq r_{p o t}\left(P_{n}, S_{r, s}\right) \leq r_{p o t}\left(C_{n}, S_{r, s}\right)=$ $\left\lceil\frac{n}{2}\right\rceil+r+s-1$. If s is odd, by $s \geq\left\lceil\frac{n}{2}\right\rceil \geq\left\lfloor\frac{n-1}{2}\right\rfloor, r=\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor-1 \leq\left\lfloor\frac{2(n-1)}{3}\right\rfloor-\left\lfloor\frac{n-1}{2}\right\rfloor$ and Theorem 1.5, we have $r_{p o t}\left(C_{n-1}, S_{r, s}\right)=\left\lceil\frac{n-1}{2}\right\rceil+r+s-1$; if s is even, by $s \geq\left\lceil\frac{n}{2}\right\rceil \geq\left\lfloor\frac{n-1}{2}\right\rfloor, r=\left\lfloor\frac{2 n}{3}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor=\left\lfloor\frac{2(n-1)}{3}\right\rfloor-\left\lfloor\frac{n-1}{2}\right\rfloor+1$ and Theorem 1.7, we also have $r_{p o t}\left(C_{n-1}, S_{r, s}\right)=\left\lceil\frac{n-1}{3}\right\rceil+2 r+s-2=\left\lceil\frac{n-1}{3}\right\rceil+\left\lfloor\frac{2(n-1)}{3}\right\rfloor-\left\lfloor\frac{n-1}{2}\right\rfloor+r+s-1=\left\lceil\frac{n-1}{2}\right\rceil+r+s-1$. Let $\pi=\left(d_{1}, \ldots, d_{k}\right)$ be a graphic sequence with $k=\left\lfloor\frac{n}{2}\right\rfloor+r+s-1$. It follows from $\left\lfloor\frac{n}{2}\right\rfloor=\left\lceil\frac{n-1}{2}\right\rceil$ that $k=r_{p o t}\left(C_{n-1}, S_{r, s}\right)$. Assume that $\bar{\pi}$ is not potentially $S_{r, s}$-graphic. Then π has a realization G containing C_{n-1}. If there exists one edge between $V(G) \backslash V\left(C_{n-1}\right)$ and $V\left(C_{n-1}\right)$, then π is potentially P_{n}-graphic. Assume that there is no edge
between $V(G) \backslash V\left(C_{n-1}\right)$ and $V\left(C_{n-1}\right)$. If there exists one edge $x y \in E\left(G \backslash V\left(C_{n-1}\right)\right)$, let v, v^{\prime} be two consecutive vertices on C_{n-1}, then exchange the edges $v v^{\prime}, x y$ with the non-edges $v x, v^{\prime} y$, we obtain a realization of π which contains P_{n}. If there is no edge in $G \backslash V\left(C_{n-1}\right)$, by $\left\lfloor\frac{n}{2}\right\rfloor+r+s-1-(n-1) \geq r$, then \bar{G} contains $S_{r, s}$, that is, $\bar{\pi}$ is potentially $S_{r, s}$-graphic, a contradiction. Hence $r_{p o t}\left(P_{n}, S_{r, s}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor+r+s-1$. It follows from (*) that $r_{\text {pot }}\left(P_{n}, S_{r, s}\right)=\left\lfloor\frac{n}{3}\right\rfloor+2 r+s+\frac{-3+(-1)^{s-1}}{2}$.

If $(n, r, s)=(6,3,2)$, then $r_{p o t}\left(P_{6}, S_{3,2}\right) \geq 8$. Let $\pi=\left(d_{1}, \ldots, d_{8}\right)$ be a graphic sequence. Assume that $\bar{\pi}$ is not potentially $S_{3,2}$-graphic. By Theorem 1.7, we have $r_{p o t}\left(C_{5}, S_{3,2}\right)=8$, and so π has a realization G containing C_{5}. If there exists one edge between $V(G) \backslash V\left(C_{5}\right)$ and $V\left(C_{5}\right)$, then π is potentially P_{6}-graphic. Assume that there is no edge between $V(G) \backslash V\left(C_{5}\right)$ and $V\left(C_{5}\right)$. If there exists one edge $x y \in E\left(G \backslash V\left(C_{5}\right)\right)$, let v, v^{\prime} be two consecutive vertices on C_{5}, then exchange the edges $v v^{\prime}, x y$ with the non-edges $v x, v^{\prime} y$, we obtain a realization of π which contains P_{6}. If there is no edge in $G \backslash V\left(C_{5}\right)$, by $|G|-5=3$, then \bar{G} contains $S_{3,2}$, that is, $\bar{\pi}$ is potentially $S_{3,2}$-graphic, a contradiction.

Acknowledgement The authors thank the referees for their helpful suggestions.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
[2] A. Busch, M. Ferrara, S. Hartke, M. Jacobson, A degree sequence variant of graph Ramsey numbers, Graphs and Combinatorics 30 (2014) 847-859.
[3] A. Busch, M. Ferrara, S. Hartke, M. Jacobson, H. Kaul, D. West, Packing of graphic n-tuples, Journal of Graph Theory 70 (2012) 29-39.
[4] Z. Dvorak, B. Mohar, Chromatic number and complete graph substructures for degree sequences, Combinatorica 33 (2013) 513-529.
[5] P. Erdős, T. Gallai, Graphs with prescibed degrees of vertices (Hungarian), Mat. Lapok 11 (1960) 264-274.
[6] P. Erdős, M. Jacobson, J. Lehel, Graphs realizing the same degree sequences and their respective clique numbers, in: Y. Alavi et al., (Eds.), Graph Theory, Combinatorics and Applications, Vol.1, John Wiley \& Sons, New York, 1991, 439-449.
[7] M. Ferrara, T. LeSaulnier, C. Moffatt, P. Wenger, On the sum necessary to ensure a degree sequence is potentially H-graphic, Combinatorica 36 (2016) 687-702.
[8] M. Ferrara, J. Schmitt, A general lower bound for potentially H-graphic sequences, SIAM Journal on Discrete Mathematics 23 (2009) 517-526.
[9] S.L. Hakimi, On the realizability of a set of integers as degrees of vertices of a graph, J. SIAM Appl. Math. 10 (1962) 496-506.
[10] V. Havel, A remark on the existence of finite graphs (Czech.), Časopis Pěst. Mat. 80 (1955) 477-480.
[11] R. Luo, On potentially C_{k}-graphic sequences, Ars Combinatoria 64 (2002) 301-318.
[12] A.R. Rao, The clique number of a graph with a given degree sequence, In: Proceedings of the Symposium on Graph Theory, volume 4 of ISI Lecture Notes, Macmillan of India, New Delhi, 1979, 251-267.
[13] N. Robertson, Z. Song, Hadwiger number and chromatic number for near regular degree sequences, Journal of Graph Theory 64 (2010) 175-183.
[14] J.H. Yin, J.S. Li, A variation of a conjecture due to Erdős and Sós, Acta Mathematica Sinica (English Series) 25 (2009) 795-802.
[15] J.H. Yin, L. Meng, M.X. Yin, Graphic sequences and split graphs, Acta Mathematicae Applicatae Sinica (English Series) 32 (2016) 1005-1014.

[^0]: 2010 Mathematics Subject Classification. Primary 05C07; Secondary 05C35
 Keywords. Graphic sequence; Potential-Ramsey number
 Received: 30 November 2017; Accepted: 05 February 2019
 Communicated by Francesco Belardo
 Research supported by National Natural Science Foundation of China (Nos. 11961019, 11561017).
 Corresponding author: Jianhua Yin
 Email address: yinjh@hainanu.edu.cn (Jianhua Yin)

