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Abstract. In this paper, a nonconvex nonsmooth multiobjective programming problem is considered
and two its higher-order duals are defined. Further, several duality results are established between the
considered nonsmooth vector optimization problem and its dual models under assumptions that the
involved functions are higher-order (Φ, ρ)-type I functions.

1. Introduction

In the paper, we consider the following nondifferentiable multiobjective programming problem:

ϕ(x) :=
(

f1 (x) +
(
xTB1x

)1/2
, ..., fq (x) +

(
xTBqx

)1/2
)
→ min

1 j (x) 5 0, j = 1, ...,m,
x ∈ X,

(VP)

where fi : X → R, i ∈ I =
{
1, ..., q

}
, 1 j : X → R, j ∈ J = {1, ...,m}, are differentiable functions on a nonempty

open convex set X ⊂ Rn and, moreover, each Bi, i ∈ I, is an n × n positive semidefinite symmetric matrix.
Let D be the set of all feasible solutions in the considered vector optimization problem (VP), that is,

D =
{
x ∈ X : 1 j (x) 5 0, j = 1, ...,m

}
,

and, moreover, we define by J (x) the set of all active inequality constraints at point x ∈ D, that is,

J (x) =
{
j ∈ J : 1 j (x) = 0

}
.

Remark 1.1. Note that the considered multiobjective programming problem reduces to a usual vector optimization
problem if Bi ≡ 0 for all i ∈ I.
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In most real-life problems, decisions are made taking into account several conflicting criteria, rather
than by optimizing a single objective. Such an optimization problem is called multiobjective programming
problem or vector optimization problem. Multiobjective programming is, therefore, the search for a solution
that best manages trade-offs criteria that conflict and that cannot be converted to a common measure. In
recent years, multiobjective programming has grown remarkably in different directions in the settings of
optimality conditions and duality theory. As a special case of a vector optimization problem, which appears
repeatedly in the literature, is a nondifferentiable multiobjective programming problem containing a certain
square root of a quadratic form in each component of the objective function. It has been enriched by the
applications of various types of generalizations of convexity theory (see, for example, [4], [9], [18], [23], [25],
[26], [28], [33], [34], [37], [38], [39], and others). In [16], Hanson and Mond introduced the so-called classes
of (generalized) type I functions in nonlinear scalar optimization problems as a generalization of invexity
introduced by Hanson [14]. The notion of type I functions has been generalized in several directions.
Later, Kaul et al. [22] investigated Karush-Kuhn-Tucker type necessary and sufficient conditions and
obtained duality results for differentiable multiobjective programming problems involving generalized
type I functions. The class of higher-order type I functions for scalar optimization problems was introduced
by Mishra and Rueda [26].

Mangasarian [24] introduced the concepts of second- and higher-order duality for nonlinear optimiza-
tion problems. He has also indicated that the study of such dual problems is significant due to the
computational advantage over the first-order duality as it provides tighter bounds for the value of the
objective function when approximations are used. Motivated by the foregoing concepts introduced in [24],
several researchers have worked in this field (see, for instance, [3], [4], [5], [6], [15], [21], [26], [31], [32],
[35], [36], [41], [42], [43], and others). Mond [33] was the first who defined second order convexity and
he used it to prove second-order duality results. Jeyakumar [21] discussed second-order Mangasarian
type duality under ρ-convexity. In [42], Zhang and Mond proved some duality theorems for second-order
duality in nonlinear programming under generalized second-order B-invexity. Various duality results for a
mathematical programming problem has been established under higher-order invexity by Mond and Zang
[35]. In [44], Zhang introduced higher-order (F, ρ)-convexity and he established higher-order duality results
for multiobjective programming problems under introduced concept of generalized convexity. Mishra and
Rueda [26] generalized the results of Zhang and Mond [42] and they proved various duality results between
the considered nondifferentiable mathematical programming problem and its higher-order duals under the
concept of higher-order type I functions. Later on, Yang et al. [41] discussed higher-order duality results
under generalized convexity assumptions for multiobjective programming problems involving support
functions. Mishra et al. [32] extended the class of generalized type I functions introduced by Aghezzaf and
Hachimi [1] to the context of a higher-order case. Further, they formulated a number of higher-order duals
to a nondifferentiable multiobjective programming problem and established higher-order duality results
under the introduced higher-order generalized type I functions. In [40], Yang et al. established a converse
duality theorem for higher-order Mond-Weir type multiobjective programming problems involving cones.
Ahmad et al. [4] derived optimality conditions and Mond-Weir duality results for a nondifferentiable mul-
tiobjective programming problem containing a certain square root of a quadratic form in each component
of the objective function in the presence of equality and inequality constraints. Recently, Jayswal et al. [20]
have established weak, strong and strict converse duality theorems for higher-order Wolfe and Mond-Weir
type multiobjective dual programs in order to relate efficient solutions of primal and dual problems under
assumption that the involved functions are (generalized) higher-order

(
F, α, ρ, d

)
-V-type I functions.

In this paper, we consider a nonsmooth multiobjective programming problem and, following Mishra
and Rueda [26] and Caristi et al. [8], we introduce the concept of higher-order

(
Φ, ρ

)
-type I objective and

constraint functions for such a vector optimization problem. Further, we formulate two higher-order dual-
order case problems for the considered nondifferentiable multiobjective programming problem, that are,
higher-order dual problem in the sense of Mangasarian and higher-order mixed dual problem. Using the
concept of higher-order

(
Φ, ρ

)
-type I objective and constraint functions, we prove weak, strong and strict

converse duality theorems between the considered nonsmooth multiobjective programming problem and
its higher-order dual problems formulated in the paper. Since the concept of

(
Φ, ρ

)
-type I objective and

constraint functions generalizes a lot of other generalized type I notions previously defined in the literature,
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therefore, the results established in the paper are more general than those existing in the literature.

2. Nondifferentiable multiobjective programming and higher-order (Φ,ρ)-type I objective and con-
straint functions

The following convention for equalities and inequalities will be used in the paper.
For any x = (x1, x2, ..., xn)T, y =

(
y1, y2, ..., yn

)T, we define:
(i) x = y if and only if xi = yi for all i = 1, 2, ...,n;
(ii) x > y if and only if xi > yi for all i = 1, 2, ...,n;
(iii) x = y if and only if xi = yi for all i = 1, 2, ...,n;
(iv) x ≥ y if and only if x = y and x , y.
We begin our considerations by introducing the definition of higher-order

(
Φ, ρ

)
-type I objective and

constraint functions for a usual vector optimization problem, which we obtain if we set Bi ≡ 0 for all i ∈ I in
the considered nondifferentiable multiobjective programming problem (VP) (see Remark 1.1). Hence, we
now consider a usual nonlinear vector optimization problem as follows

f (x) =
(

f1 (x) , ..., fq (x)
)
→ min

subject to 1 j(x) 5 0, j = 1, ...,m,

x ∈ X,

(VP0)

where the functions fi, i ∈ I, 1 j, j ∈ J, and the set X are defined in the similar way as for the problem (VP).
Throughout the paper, we shall write 1 =

(
11, ..., 1m

)
: X→ Rm.

Let k =
(
k1, ..., kq

)
: X × Rn

→ Rq and h = (h1, ..., hm) : X × Rn
→ Rm be differentiable functions, p any

vector in Rn.

Definition 2.1. If there exist ρ =
(
ρ f1 , ..., ρ fq , ρ11 , ..., ρ1m

)
∈ Rq+m and a function Φ : X × X × Rn+1

→ R, where
Φ (x,u, ·) is convex on Rn+1, Φ (x,u, (0, a)) = 0 for all x ∈ X and any a ∈ R+, such that, the following inequalities

fi(x) − fi(u) − ki
(
u, p

)
+ pT
∇pki

(
u, p

)
= Φ

(
x,u,

(
∇pki

(
u, p

)
, ρ fi

))
, i ∈ I, (1)

−1 j(u) − h j
(
u, p

)
+ pT
∇ph j

(
u, p

)
= Φ

(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
, j ∈ J (2)

hold for all x ∈ X, then
(

f , 1
)
,is said to be higher-order

(
Φ, ρ

)
-type I objective and constraint functions at u ∈ X on X.

If inequalities (1) and (2) are satisfied at each u ∈ X, then
(

f , 1
)

is said to be higher-order
(
Φ, ρ

)
-type I objective and

constraint functions on X.
If inequalities (1) are strict for all x ∈ X, (x , u) and i ∈ I, then

(
f , 1

)
, is said to be higher-order strictly

(
Φ, ρ

)
-type I

objective and constraint functions at u ∈ X on X.

Now, we give an example of such a nondifferentiable vector optimization problem in which the involved
functions are higher-order

(
Φ, ρ

)
-type I objective and constraint functions on the set of all feasible solutions.

Example 2.2. Consider the following nonconvex vector optimization problem:

f (x) =
(
x3, x2

)
→ min

subject to x2
− 1 5 0,

−x − 1 5 0,

x ∈ R.

(VP10)
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Note that the set of all feasible solutions in the considered nonconvex vector optimization problem (VP10) is D ={
x ∈ R : x2

− 1 5 0 ∧ −x − 1 5 0
}

= [−1, 1] and u = 0 is a feasible solution. It can be shown, by Definition 2.1, that(
f , 1

)
are higher-order

(
Φ, ρ

)
-type I objective and constraint functions at u = 0 on D. Indeed, let Φ : D×D×R2

→ R be
defined by Φ

(
x,u,

(
ϑ, ρ

))
= ϑ

(
u − x2

)
+ρ, ki : D×R→ R, i = 1, 2, be defined by ki

(
u, p

)
=

p
u2+1 −1, h j : D×R→ R,

j = 1, 2, be defined by h j (x,u) =
p

u2+1 − 1, ρ f1 = 1, ρ f2 = 1, ρ11 = 2, ρ12 = 2. Then, by Definition 2.1, we have

f1(x) − f1(u) − k1
(
u, p

)
+ pT
∇pk1

(
u, p

)
−Φ

(
x,u,

(
∇pk1

(
u, p

)
, ρ f1

))
= x3

− u3
−

( p
u2 + 1

− 1
)

+ p
( 1

u2 + 1

)
−Φ

(
x,u,

( 1
u2 + 1

, ρ f1

))
= x3 + x2 = 0 ∀x ∈ D

f2(x) − f2(u) − k2
(
u, p

)
+ pT
∇pk2

(
u, p

)
−Φ

(
x,u,

(
∇pk2

(
u, p

)
, ρ f2

))
= x2

− u2
−

( p
u2 + 1

− 1
)

+ p
( 1

u2 + 1

)
−Φ

(
x,u,

( 1
u2 + 1

, ρ f2

))
= 2x2 = 0 ∀x ∈ D11(x) − 11(u) − h1

(
u, p

)
+ pT
∇ph1

(
u, p

)
−Φ

(
x,u,

(
∇ph1

(
u, p

)
, ρ11

))
= −

(
u2
− 1

)
−

( p
u2 + 1

− 1
)

+ p
( 1

u2 + 1

)
−Φ

(
x,u,

( 1
u2 + 1

, ρ11

))
= x2 = 0 ∀x ∈ D

12(x) − 12(u) − h2
(
u, p

)
+ pT
∇ph2

(
u, p

)
−Φ

(
x,u,

(
∇ph2

(
u, p

)
, ρ12

))
= − (−u − 1) −

( p
u2 + 1

− 1
)

+ p
( 1

u2 + 1

)
−Φ

(
x,u,

( 1
u2 + 1

, ρ12

))
= x2 = 0 ∀x ∈ D

Hence, by Definition 2.1, it follows that
(

f , 1
)

are higher-order
(
Φ, ρ

)
-type I objective and constraint functions at

u = 0 on D.

Remark 2.3. Note that the functions constituting the considered nonconvex vector optimization problem (VP10) are
not higher-order type I at u = 0 on D with respect to any function η : D ×D→ R in the sense of the definition given
by Mishra and Rueda [26]. Further, it can be shown that all functions involved in the nonconvex vector optimization
problem (VP10) considered in Example 2.2 are not

(
Φ, ρ

)
-invex at u = 0 on D (see [8]) with respect to Φ and ρ defined

above. Also note that not all functions constituting the nonconvex vector optimization problem (VP10) considered in
Example 2.2 are higher order

(
Φ, ρ

)
-invex at u = 0 on D with respect to the functions ki, i = 1, 2, and h j, j = 1, 2 (see

[19]). Indeed, none of the constraint functions is higher order
(
Φ, ρ

)
-invex at u = 0 on D with respect to the functions

Φ, h j and scalars ρ1 j , j = 1, 2 given above. As it follows even from this example, the class of higher-order
(
Φ, ρ

)
-type

I objective and constraint functions is a larger class of functions than many classes of higher order generalized convex
functions, previously defined in the literature. Hence, various higher order duality results established in the paper
are applicable to a large class of nonconvex vector optimization problems in comparison to the similar results earlier
established in the literature under other concepts of higher order generalized convexity.

Lemma 2.4. (Generalized Schwartz inequality): Let B be a positive semidefinite symmetric matrix of order n. Then,
for all x, z ∈ Rn,

xTBz 5
(
xTBx

)1/2 (
zTBz

)1/2
. (3)

Note that the equality holds, if Bx = αBw for some α ∈ Rn with α = 0. Moreover, if
(
zTBz

)1/2
5 1, then

xTBz 5
(
xTBx

)1/2
. (4)
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3. Optimality

In this section, we give necessary optimality conditions for properly efficiency in the considered non-
differentiable multiobjective programming problem (VP) which are useful in proving higher-order dual
results for (VP) in next sections.

Definition 3.1. A feasible point x is said to be a Pareto solution (an efficient solution) for (VP) if and only if there is
no another x ∈ D such that f (x) ≤ f (x).

Afterwards, Geoffrion [11] modified the efficiency concept and defined the proper efficient solution in
a multiobjective programming problem as follows:

Definition 3.2. An efficient solution x for (VP) is said to be properly efficient if there exists a scalar M > 0, such that
for each i ∈ I and x ∈ D satisfying fi (x) < fi(x), we have fi(x)− fi(x)

fk(x)− fk(x) 5M for at least one k satisfying fk(x) < fk(x).

Remark 3.3. Note that if xTBix, i ∈ I, is not zero, then the corresponding function involved in the objective function
of the considered nondifferentiable multiobjective programming problem (VP) is not differentiable. In order to derive

necessary optimality conditions in such a case, for a feasible solution x, we define the set Ω (x) =
q⋃

i=1
Ωi (x), where

Ωi (x) =

{
ω ∈ Rn : ωT

∇1 j (x) 5 0, j ∈ J (x) and ωT
∇ fi (x) + ωTBix

(xTBix)1/2 < 0, if xTBix > 0,

ωT
∇ fi (x) +

(
ωTBiω

)1/2
< 0, if xTBix = 0

}
, i ∈ I.

In [7], Bhatia and Jain established necessary optimality conditions for a feasible solution to be a properly
efficient solution for the considered nondifferentiable multiobjective fractional programming problem in
which the numerator of each component of the objective function contains a term involving square root
of a certain positive semi-definite quadratic form. Necessary optimality conditions for the considered
nondifferentiable multiobjective programming problem (VP) can be also found, for example, in [2], [4], [34].

Theorem 3.4. (Necessary optimality conditions): Let x be a properly efficient solution in the considered nondiffer-
entiable multiobjective programming problem (VP), the set Ω (x) be empty and a suitable constraint qualification be
satisfied at x. Then, there exist λ ∈ Rq, ξ ∈ Rm and wi ∈ Rn, i ∈ I, such that

q∑
i=1

λi
{
∇ fi (x) + Biwi

}
+

m∑
j=1

ξ j∇1 j (x) = 0, (5)

ξ j1 j (x) = 0, j ∈ J, (6)

λi > 0, i = 1, ..., q,
q∑

i=1

λi = 1, ξ j = 0, j ∈ J, (7)

(
xTBix

)1/2
= xTBiwi, i ∈ I, (8)

wT
i Biwi 5 1, i ∈ I. (9)
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4. Mangasarian duality

In this section, a higher-order dual problem in the sense of Mangasarian is formulated for the considered
nondifferentiable multiobjective programming problem (VP) and several duality theorems are established
under assumption that the functions constituting the problem (VP) are (generalized) higher-order

(
Φ, ρ

)
-

type I objective and constraint functions.
Consider the following dual problem (MVD) in the sense of Mangasarian related to problem (VP):

Maximize
(

f1 (u) +
[
u + p

]T B1w1 + k1
(
u, p

)
+ ξT1(u) + ξTh

(
u, p

)
, ...,

fq (u) +
[
u + p

]T Bqwq + kq
(
u, p

)
+ ξT1(u) + ξTh

(
u, p

))
(MVD)

s.t.
q∑

i=1

λi

(
∇pki

(
u, p

)
+ Biwi

)
+

m∑
j=1

ξ j∇ph j
(
u, p

)
= 0, (10)

wT
i Bwi 5 1, i ∈ I, (11)

u ∈ X, p ∈ Rn, wi ∈ Rn, λi > 0, i = 1, ..., q,
q∑

i=1

λi = 1, ξ j = 0, j ∈ J. (12)

Let

ΩMVD =

{(
u, λ, ξ,

(
w1, ...,wq

)
, p

)
∈ X × Rq

+ × Rm
+ × (Rn

× ... × Rn)
q times

× Rn : verifying the constraints of (MVD)
}

be the set of all feasible solutions in problem (MVD). Further, U =
{
u ∈ X :

(
u, λ, ξ,

(
w1, ...,wq

)
, p

)
∈ ΩMVD

}
.

Theorem 4.1. (Weak duality). Let x and
(
u, λ, ξ,w, p

)
be any feasible solutions for the vector optimization problems

(VP) and (MVD), respectively. Further, assume that
(

fi (·) + (·)T Biwi, 1(·)
)
, i ∈ I, is higher-order

(
Φ, ρ

)
-type I

objective and constraint functions at u on D ∪U. If
∑q

i=1 λiρ fi +
∑m

j ξ jρ1 j = 0, then the following cannot hold:

fi (x) +
(
xTBix

)1/2
5 fi (u) +

[
u + p

]T Biwi + ki
(
u, p

)
+ ξT1(u) + ξTh

(
u, p

)
, i ∈ I, (13)

and
fi (x) +

(
xTBix

)1/2
< fi (u) +

[
u + p

]T Biwi + ki
(
u, p

)
+ ξT1(u) + ξTh

(
u, p

)
for at least one i ∈ I. (14)

Proof. Let x and
(
u, λ, ξ,w, p

)
be feasible solutions for the vector optimization problems (VP) and (MVD),

respectively. We proceed by contradiction. Suppose, contrary to the result, that the inequalities (13) and
(14) hold. Then, by the generalized Schwartz inequality (see Lemma 2.4), (13) and (14) give, respectively,

fi (x) + xTBiwi 5 fi (u) +
[
u + p

]T Biwi + ki
(
u, p

)
+ ξT1(u) + ξTh

(
u, p

)
, i ∈ I (15)

and
fi (x) + xTBiwi < fi (u) +

[
u + p

]T Biwi + ki
(
u, p

)
+ ξT1(u) + ξTh

(
u, p

)
for at least one i ∈ I. (16)

Since
(
u, λ, ξ,w, p

)
∈ ΩMVD, we have that λi > 0, i = 1, ..., q,

∑q
i=1 λi = 1. Thus, (15) and (16) yield

λi

[
fi (x) + xTBiwi

]
5 λi

(
fi (u) +

[
u + p

]T Biwi + ki
(
u, p

))
+ λi

[
ξT1(u) + ξTh

(
u, p

)]
, i ∈ I (17)

and

λi

[
fi (x) + xTBiwi

]
< λi

(
fi (u) +

[
u + p

]T Biwi + ki
(
u, p

))
+ λi

[
ξT1(u) + ξTh

(
u, p

)]
for at least one i ∈ I.

(18)
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Adding both sides of (17) and (18) and using
∑q

i=1 λi = 1, we get

q∑
i=1

λi

[
fi (x) + xTBiwi

]
<

q∑
i=1

λi

(
fi (u) +

[
u + p

]T Biwi + ki
(
u, p

))
+ ξT1(u) + ξTh

(
u, p

)
. (19)

By assumption,
(

fi (·) + (·)T Biwi, 1(·)
)
, i ∈ I, is higher-order

(
Φ, ρ

)
-type I objective and constraint functions at

u on D ∪U. Then, by Definition 2.1, the following inequalities

fi(z) + zTBiwi − fi(u) − uTBiwi − ki
(
u, p

)
+ pT
∇pki

(
u, p

)
= Φ

(
z,u,

(
∇pki

(
u, p

)
+ Biwi, ρ fi

))
, i ∈ I, (20)

−1 j(u) − h j
(
u, p

)
+ pT
∇ph j

(
u, p

)
= Φ

(
z,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
, j ∈ J (21)

hold for all z ∈ D ∪U. Therefore, they are also satisfied for z = x ∈ D. Hence, multiplying each inequality
(20) by λi > 0, i ∈ I, and each inequality (21) by ξ j = 0, j ∈ J, we get

λi

[
fi(x) + xTBiwi − fi(u) − uTBiwi − ki

(
u, p

)
+ pT
∇pki

(
u, p

)]
= λiΦ

(
x,u,

(
∇pki

(
u, p

)
+ Biwi, ρ fi

))
, i ∈ I, (22)

ξ j

[
−1 j(u) − h j

(
u, p

)
+ pT
∇ph j

(
u, p

)]
= ξ jΦ

(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
, j ∈ J. (23)

Adding both sides of (22) and (23), we get∑q
i=1 λi

[
fi(x) + xTBiwi − fi(u) − uTBiwi − ki

(
u, p

)
+ pT
∇pki

(
u, p

)]
=

∑q
i=1 λiΦ

(
x,u,

(
∇pki

(
u, p

)
+ Biwi, ρ fi

))
,

(24)∑m
j=1 ξ j

[
−1 j(u) − h j

(
u, p

)
+ pT
∇ph j

(
u, p

)]
=

∑m
j=1 ξ jΦ

(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
. (25)

Let us introduce the following notations

λ̃i =
λi∑q

i=1 λi +
∑m

j=1 ξ j
, i ∈ I, ξ̃ j =

ξ j∑q
i=1 λi +

∑m
j=1 ξ j

, j ∈ J. (26)

Note that λ̃i ∈ (0, 1], i ∈ I, ξ̃ j ∈ [0, 1], j ∈ J, and

q∑
i=1

λ̃i +

m∑
j=1

ξ̃ j = 1. (27)

Taking into account (26) in (24) and (25), and then adding both sides the resulting inequalities, we obtain

q∑
i=1

λ̃i

[
fi(x) + xTBiwi − fi(u) − uTBiwi − ki

(
u, p

)
+ pT
∇pki

(
u, p

)]
+

m∑
j=1

ξ̃ j

[
−1 j(u) − h j

(
u, p

)
+ pT
∇ph j

(
u, p

)]
=

q∑
i=1

λ̃iΦ
(
x,u,

(
∇pki

(
u, p

)
+ Biwi, ρ fi

))
+

m∑
j=1

ξ̃ jΦ
(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
. (28)

By Definition 2.1, it follows that Φ (x,u, ·) is convex on Rn+1. Since λ̃i > 0, i ∈ I, ξ̃ j ∈ [0, 1], j ∈ J, by (27) and
the definition of a convex function, we have

q∑
i=1

λ̃i

[
fi(x) + xTBiwi −

[
fi(u) + uTBiwi

]
− ki

(
u, p

)
+ pT
∇pki

(
u, p

)]
+

m∑
j=1

ξ̃ j

[
−1 j(u) − h j

(
u, p

)
+ pT
∇ph j

(
u, p

)]
= Φ

x,u,

 q∑
i=1

λ̃i

(
∇pki

(
u, p

)
+ Biwi, ρ fi

)
+

m∑
j=1

ξ̃ j

(
∇ph j

(
u, p

)
, ρ1 j

)
 . (29)
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Using (26) in (29), by the constraint (10), we get

1∑q
i=1 λi+

∑m
j=1 ξ j

∑q
i=1 λi

[
fi(x) + xTBiwi − fi(u) − uTBiwi − ki

(
u, p

)
+ pT
∇pki

(
u, p

)]
+

1∑q
i=1 λi+

∑m
j=1 ξ j

∑m
j=1 ξ j

(
−1 j(u) − h j

(
u, p

)
+ pT
∇ph j

(
u, p

))
= Φ

(
x,u, 1∑q

i=1 λi+
∑m

j=1 ξ j

(
0 ,

∑q
i=1 λiρ fi +

∑m
j=1 ξ jρ1 j

))
.

(30)
By Definition 2.1, it follows that Φ (x,u, (0, a)) = 0 for every a ∈ R+. By assumption,

∑q
i=1 λiρ fi +

∑m
j=1 ξ jρ1 j = 0.

Thus, the following inequality

Φ

x,u,
1∑q

i=1 λi +
∑m

j=1 ξ j

0 ,
q∑

i=1

λiρ fi +

m∑
j=1

ξ jρ1 j


 = 0 (31)

holds. Combining (30) and (31), we obtain that∑q
i=1 λi

(
fi(x) + xTBiwi

)
=

∑q
i=1 λi

(
fi(u) + uTBiwi + ki

(
u, p

)
− pT

∇pki
(
u, p

))
+

∑m
j=1 ξ j

(
1 j(u) + h j

(
u, p

)
− pT
∇ph j

(
u, p

))
.

Thus, ∑q
i=1 λi

(
fi(x) + xTBiwi

)
=

∑q
i=1 λi

(
fi(u) +

[
u + p

]T Biwi + ki
(
u, p

))
+∑m

j=1 ξ j

(
1 j(u) + h j

(
u, p

))
− pT ∑q

i=1

[
∇pki

(
u, p

)
+ Biwi +

∑m
j=1 ξ j∇ph j

(
u, p

)]
.

By the constraint (10), it follows that the following inequality∑q
i=1 λi

(
fi(x) + xTBiwi

)
=

∑q
i=1 λi

(
fi(u) +

[
u + p

]T Biwi + ki
(
u, p

))
+

∑m
j=1 ξ j

(
1 j(u) + h j

(
u, p

))
.

holds, contradicting (19). This completes the proof of the theorem.

Theorem 4.2. (Strong duality). Let x ∈ D be a properly efficient solution of the considered nondifferentiable
multiobjective programming problem (VP) such that the set Ω (x) is empty and ∇1 j (x), j ∈ J (x), be linearly
independent. Further, assume that ki (x, 0) = 0 for all i ∈ I; ∇pk (x, 0) = ∇ f (x) ,

h j (x, 0) = 0 for all j ∈ J; ∇ph (x, 0) = ∇1 (x) .
(32)

Then there exist λ ∈ Rq, ξ ∈ Rm, wi ∈ Rn, i ∈ I, such that
(
x, λ, ξ,

(
w1, ...,wq

)
, p = 0

)
is feasible for (MVD) and

the corresponding objective values of (VP) and (MVD) are equal. Further, if weak duality (Theorem 4.1) holds, then(
x, λ, ξ,

(
w1, ...,wq

)
, p = 0

)
is a properly efficient solution of a maximum type in (MVD).

Proof. By assumption, x ∈ D is a properly efficient solution of the considered nondifferentiable multi-
objective programming problem (VP), the set Ω (x) is empty and the Linear Independence Constraint
Qualification is satisfied at x. Then, by Theorem 3.4 and (32), it follows that

(
x, λ, ξ,

(
w1, ...,wq

)
, p = 0

)
is

feasible in (MVD). Also the corresponding objective values of (VP) and (MVD) are equal as it follows by (8)
and (32).

In order to prove that
(
x, λ, ξ,

(
w1, ...,wq

)
, p = 0

)
is a properly efficient of a maximum type for (MVD),

first, we show that
(
x, λ, ξ,

(
w1, ...,wq

)
, p = 0

)
is efficient of a maximum type for (MVD). We proceed by

contradiction. Suppose, contrary to the result, that it is not efficient of (MVD). Then, by Definition 3.1, there
exists

(
ũ, λ̃, ξ̃,

(
w̃1, ..., w̃q

)
, p̃

)
∈ ΩMVD such that

fi
(
ũ
)

+
[
ũ + p̃

]T Biw̃i + ki
(
ũ, p̃

)
+ ξ̃T1(ũ) + ξ̃Th

(
ũ, p̃

)
= fi (x) + xTBiwi + ki (x, 0) + ξ

T
1(x) + ξ

T
h (x, 0) , i ∈ I,

(33)
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fi∗
(
ũ
)

+
[
ũ + p̃

]T Bi∗w̃i∗ + ki∗
(
ũ, p̃

)
+ ξ̃T1(ũ) + ξ̃Th

(
ũ, p̃

)
> fi∗ (x) + xTBi∗wi∗ + ki∗ (x, 0) + ξ

T
1(x) + ξ

T
h (x, 0)

for at least one i∗ ∈ I.
(34)

Then, (32), (33) and (34) yield, respectively,

fi (x) + xTBiwi + ξ
T
1(x) 5 fi

(
ũ
)

+
[
ũ + p̃

]T Biw̃i + ki
(
ũ, p̃

)
+ ξ̃T1(ũ) + ξ̃Th

(
ũ, p̃

)
, i ∈ I, (35)

fi∗ (x) + xTBi∗wi∗ + ξ
T
1(x) < fi∗

(
ũ
)

+
[
ũ + p̃

]T Bi∗w̃i∗ + ki∗
(
ũ, p̃

)
+ ξ̃T1(ũ) + ξ̃Th

(
ũ, p̃

)
for at least one i∗ ∈ I.

(36)
Hence, by (6) and (8), it follows that the following inequalities

fi (x) +
(
xTBix

)1/2
5 fi

(
ũ
)

+
[
ũ + p̃

]T Biw̃i + ki
(
ũ, p̃

)
+ ξ̃T1(ũ) + ξ̃Th

(
ũ, p̃

)
, i ∈ I, (37)

fi∗ (x) +
(
xTBi∗x

)1/2
< fi∗

(
ũ
)

+
[
ũ + p̃

]T Bi∗w̃i∗ + ki∗
(
ũ, p̃

)
+ ξ̃T1(ũ) + ξ̃Th

(
ũ, p̃

)
for at least one i∗ ∈ I (38)

hold, contradicting weak duality (Theorem 4.1). This means that
(
x, λ, ξ,

(
w1, ...,wq

)
, p = 0

)
is efficient of a

maximum type for (MVD).
Now, we shall prove that

(
x, λ, ξ,

(
w1, ...,wq

)
, p = 0

)
is a properly efficient solution of a maximum type

in (MVD) by the method of contradiction. Suppose that
(
x, λ, ξ,

(
w1, ...,wq

)
, p = 0

)
is not so. Then, by

Definition 3.2, it follows that there exist
(
ũ, λ̃, ξ̃,

(
w̃1, ..., w̃q

)
, p̃

)
∈ ΩMVD and i∗ ∈ I satisfying

fi∗
(
ũ
)

+
[
ũ + p̃

]T Bi∗w̃i∗ + ki∗
(
ũ, p̃

)
+ ξ̃T1(ũ) + ξ̃Th

(
ũ, p̃

)
> fi∗ (x) + xTBi∗wi∗ + ki∗ (x, 0) + ξ

T
1(x) + ξ

T
h (x, 0)

(39)
such that the inequality

fi∗
(
ũ
)

+
[
ũ + p̃

]T Bi∗w̃i∗ + ki∗
(
ũ, p̃

)
+ ξ̃T1(ũ) + ξ̃Th

(
ũ, p̃

)
−

(
fi∗ (x) + xTBi∗wi∗ + ki∗ (x, 0) + ξ

T
1(x) + ξ

T
h (x, 0)

)
>

M
(

ft (x) + xTBtwt + kt (x, 0) + ξ
T
1(x) + ξ

T
h (x, 0)−

(
ft
(
ũ
)

+
[
ũ + p̃

]T Btw̃t + kt
(
ũ, p̃

)
+ ξ̃T1(ũ) + ξ̃Th

(
ũ, p̃

)))
.

(40)
holds for each scalar M > 0 and all t ∈ I satisfying

ft (x) + xTBtwt + kt (x, 0) + ξ
T
1(x) + ξ

T
h (x, 0) > ft

(
ũ
)

+
[
ũ + p̃

]T Btw̃t + kt
(
ũ, p̃

)
+ ξ̃T1(ũ) + ξ̃Th

(
ũ, p̃

)
. (41)

We divide the index set I and denote by I1 the set of indexes of objective functions satisfying the inequality
(41). By I2 we denote the set of indexes of objective functions defining by I2 = I\ (I1 ∪ i∗). Let M > λi∗

λt
|I1|,

where |I1| denotes the number of elements in the set I1. Hence, by (40) and (41), it follows that

λi∗
(

fi∗
(
ũ
)

+
[
ũ + p̃

]T Bi∗w̃i∗ + ki∗
(
ũ, p̃

)
+ ξ̃T1(ũ) + ξ̃Th

(
ũ, p̃

)
−

(
fi∗ (x) + xTBi∗wi∗ + ki∗ (x, 0) + ξ

T
1(x) + ξ

T
h (x, 0)

))
>∑

t∈I1
λt

(
ft (x) + xTBtwt + kt (x, 0) + ξ

T
1(x) + ξ

T
h (x, 0)−

(
ft
(
ũ
)

+
[
ũ + p̃

]T Btw̃t + kt
(
ũ, p̃

)
+ ξ̃T1(ũ) + ξ̃Th

(
ũ, p̃

)))
.

(42)
Using the definition of the set I2 together with (42), we obtain

q∑
i=1

λi

(
fi (x) + xTBiwi + ki (x, 0) + ξ

T
1(x) + ξ

T
h (x, 0)

)
= λi∗

(
fi∗ (x) + xTBi∗wi∗ + ki∗ (x, 0) + ξ

T
1(x) + ξ

T
h (x, 0)

)
+

∑
i∈I1

λi

(
fi (x) + xTBiwi + ki (x, 0) + ξ

T
1(x) + ξ

T
h (x, 0)

)
+

∑
i∈I2

λi

(
fi (x) + xTBiwi + ki (x, 0) + ξ

T
1(x) + ξ

T
h (x, 0)

)
<
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λi∗
(

fi∗
(
ũ
)

+
[
ũ + p̃

]T Bi∗w̃i∗ + ki∗
(
ũ, p̃

)
+ ξ̃T1(ũ) + ξ̃Th

(
ũ, p̃

))
+

∑
t∈I1

λt

(
ft
(
ũ
)

+
[
ũ + p̃

]T Btw̃t + kt
(
ũ, p̃

)
+ ξ̃T1(ũ) + ξ̃Th

(
ũ, p̃

))
+

∑
t∈I2

λt

(
ft
(
ũ
)

+
[
ũ + p̃

]T Btw̃t + kt
(
ũ, p̃

)
+ ξ̃T1(ũ) + ξ̃Th

(
ũ, p̃

))
=

q∑
i=1

λi

(
fi
(
ũ
)

+
[
ũ + p̃

]T Biw̃i + ki
(
ũ, p̃

)
+ ξ̃T1(ũ) + ξ̃Th

(
ũ, p̃

))
.

By (6), (8) and (32), it follows that the following inequality
q∑

i=1

λi

(
fi (x) +

(
xTBix

)1/2
)
<

q∑
i=1

λi

(
fi
(
ũ
)

+
[
ũ + p̃

]T Biw̃i + ki
(
ũ, p̃

)
+ ξ̃T1(ũ) + ξ̃Th

(
ũ, p̃

))
holds, contradicting weak duality (Theorem 4.1). This means that

(
x, λ, ξ,

(
w1, ...,wq

)
, p = 0

)
is a properly

efficient solution in (MVD) and completes the proof of theorem.

Theorem 4.3. (Restricted converse duality). Let x and
(
u, λ, ξ,

(
w1, ...,wq

)
, p

)
be feasible solutions in the vector

optimization problems (VP) and (MVD), respectively, such that

fi (x) + xTBiwi 5 fi (u) +
[
u + p

]T Biwi + ki
(
u, p

)
+ ξ

T
1(u) + ξ

T
h
(
u, p

)
, i ∈ I. (43)

Further, assume that
(

fi (·) + (·)T Biwi, i ∈ I, 1 j(·), j ∈ J
)
, is higher-order strictly

(
Φ, ρ

)
-type I objective and constraint

functions at u on D ∪U. If
∑q

i=1 λiρ fi +
∑m

j ξ jρ1 j = 0, then x = u.

Proof. Since λi > 0, i ∈ I,
∑q

i=1 λi = 1, (43) gives

∑q
i=1 λi

(
fi (x) + xTBiwi

)
5

∑q
i=1 λi

(
fi (u) +

[
u + p

]T Biwi + ki
(
u, p

))
+ ξ

T
1(u) + ξ

T
h
(
u, p

)
. (44)

We proceed by contradiction. Suppose, contrary to the result, that x , u. By assumption,
(

fi (·) + (·)T Biwi, 1(·)
)
,

i ∈ I, is higher-order
(
Φ, ρ

)
-type I objective and constraint functions at u on D ∪ U. Since λi > 0, i ∈ I, and

ξ j = 0, j ∈ J, by Definition 2.1, we have

λi

(
fi(x) + xTBiw − fi(u) − uTBiwi − ki

(
u, p

)
+ pT
∇pki

(
u, p

))
> λiΦ

(
x,u,

(
∇pki

(
u, p

)
+ Biwi, ρ fi

))
, i ∈ I, (45)

ξ j

[
−1 j(u) − h j

(
u, p

)
+ pT
∇ph j

(
u, p

)]
= ξ jΦ

(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
, j ∈ J. (46)

Adding both sides of (45) and (46), we get∑q
i=1 λi

(
fi(x) + xTBiwi − fi(u) − uTBiwi − ki

(
u, p

)
+ pT
∇pki

(
u, p

))
>

∑q
i=1 λiΦ

(
x,u,

(
∇pki

(
u, p

)
+ Biwi, ρ fi

))
,

(47)∑m
j=1 ξ j

[
−1 j(u) − h j

(
u, p

)
+ pT
∇ph j

(
u, p

)]
=

∑m
j=1 ξ jΦ

(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
. (48)

Let us introduce the following notations

λ∗i =
λi∑q

i=1 λi +
∑m

j=1 ξ j

, i ∈ I, ξ∗j =
ξ j∑q

i=1 λi +
∑m

j=1 ξ j

, j ∈ J. (49)
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Note that λ∗i ∈ (0, 1], i ∈ I, ξ∗j ∈ [0, 1], j ∈ J, and

q∑
i=1

λ∗i +

m∑
j=1

ξ∗j = 1. (50)

Using (47) and (48) together with (49), we get, respectively,∑q
i=1 λ

∗

i

[
fi(x) + xTBiwi −

(
fi(u) + uTBiwi

)
− ki

(
u, p

)
+ pT
∇pki

(
u, p

)]
>

∑q
i=1 λ

∗

i Φ
(
x,u,

(
∇pki

(
u, p

)
+ Biwi, ρ fi

))
,

(51)∑m
j=1 ξ

∗

j

[
−1 j(u) − h j

(
u, p

)
+ pT
∇ph j

(
u, p

)]
=

∑m
j=1 ξ

∗

jΦ
(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
. (52)

Adding both sides of (51) and (52), respectively, and then adding both sides of the obtained inequalities,
we get ∑q

i=1 λ
∗

i

[
fi(x) + xTBiwi −

(
fi(u) + uTBiwi

)
− ki

(
u, p

)
+ pT
∇pki

(
u, p

)]
+∑m

j=1 ξ
∗

j

[
−1 j(u) − h j

(
u, p

)
+ pT
∇ph j

(
u, p

)]
>∑q

i=1 λ
∗

i Φ
(
x,u,

(
∇pki

(
u, p

)
+ Biwi, ρ fi

))
+

∑m
j=1 ξ

∗

jΦ
(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
.

(53)

By Definition 2.1, it follows that Φ (x,u, ·) is convex on Rn+1. Since λ∗i ∈ (0, 1], i ∈ I, ξ∗j ∈ [0, 1], j ∈ J, and (50)
is satisfied, by the definition of a convex function, we have∑q

i=1 λ
∗

i

[
fi(x) + xTBiwi −

(
fi(u) + uTBiwi

)
− ki

(
u, p

)
+ pT
∇pki

(
u, p

)]
+∑m

j=1 ξ
∗

j

[
−1 j(u) − h j

(
u, p

)
+ pT
∇ph j

(
u, p

)]
>

Φ
(
x,u,

(∑q
i=1 λ

∗

i

(
∇pki

(
u, p

)
+ Biwi, ρ fi

)
+

∑m
j=1 ξ

∗

j

(
∇ph j

(
u, p

)
, ρ1 j

)))
.

(54)

Using (54) together with (49), we get

1∑q
i=1 λi+

∑m
j=1 ξ j

∑q
i=1 λi

[
fi(x) + xTBiwi −

(
fi(u) + uTBiwi

)
− ki

(
u, p

)
+ pT

∇pki
(
u, p

)]
+

1∑q
i=1 λi+

∑m
j=1 ξ j

∑m
j=1 ξ j

[
−1 j(u) − h j

(
u, p

)
+ pT

∇ph j
(
u, p

)]
>

Φ
(
x,u, 1∑q

i=1 λi+
∑m

j=1 ξ j

(∑q
i=1 λi

[
∇pki

(
u, p

)
+ Biwi

]
+

∑m
j=1 ξ j∇ph j

(
u, p

)
,

∑q
i=1 λiρ fi +

∑m
j=1 ξ jρ1 j

))
.

(55)

By the constraint (10), the inequality (55) gives

1∑q
i=1 λi+

∑m
j=1 ξ j

∑q
i=1 λi

[
fi(x) + xTBiwi −

(
fi(u) + uTBiwi

)
− ki

(
u, p

)
+ pT
∇pki

(
u, p

)]
+

1∑q
i=1 λi+

∑m
j=1 ξ j

∑m
j=1 ξ j

(
−1 j(u) − h j

(
u, p

)
+ pT
∇ph j

(
u, p

))
>

Φ
(
x,u, 1∑q

i=1 λi+
∑m

j=1 ξ j

(
0 ,

∑q
i=1 λiρ fi +

∑m
j=1 ξ jρ1 j

))
.

(56)

By Definition 2.1, it follows that Φ (x,u, (0, a)) = 0 for every a ∈ R+. By assumption,
∑q

i=1 λiρ fi +
∑m

j=1 ξ jρ1 j = 0.
Thus, the following inequality

Φ

x,u,
1∑q

i=1 λi +
∑m

j=1 ξ j

0 ,
q∑

i=1

λiρ fi +

m∑
j=1

ξ jρ1 j


 = 0 (57)
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holds. Hence, (56) and (57) yield∑q
i=1 λi

(
fi(x) + xTBiwi

)
>

∑q
i=1 λi

(
fi(u) + uTBiwi + ki

(
u, p

)
− pT

∇pki
(
u, p

))
+

∑m
j=1 ξ j

(
1 j(u) + h j

(
u, p

)
− pT
∇ph j

(
u, p

))
.

Thus, ∑q
i=1 λi

(
fi(x) + xTBiwi

)
>

∑q
i=1 λi

(
fi(u) +

[
u + p

]T Biwi + ki
(
u, p

))
+∑m

j=1 ξ j

(
1 j(u) + h j

(
u, p

))
− pT ∑q

i=1 λi

[
∇pki

(
u, p

)
+ Biwi +

∑m
j=1 ξ j∇ph j

(
u, p

)]
.

By the constraint (10), it follows that the following inequality∑q
i=1 λi

(
fi(x) + xTBiwi

)
>

∑q
i=1 λi

(
fi(u) +

[
u + p

]T Biwi + ki
(
u, p

))
+

∑m
j=1 ξ j

(
1 j(u) + h j

(
u, p

))
holds, contradicting (44). This completes the proof of the theorem.

5. Mixed duality

In this section, a higher-order mixed dual problem is formulated for the considered nondifferentiable
multiobjective programming problem (VP) and several mixed duality theorems are established under
assumption that the functions constituting the problem (VP) are (generalized) higher-order

(
Φ, ρ

)
-type I

objective and constraint functions.
Consider the following higher-order mixed dual problem (MXVD) related to problem (VP):

Maximize

 f1 (u) + uTB1w1 + k1
(
u, p

)
− pT
∇pk1

(
u, p

)
+

∑
j∈J0

[
ξ j1 j(u) + ξ jh j

(
u, p

)
− pT
∇pξ jh j

(
u, p

)]
, ...,

fq (u) + uTBqwq + kq
(
u, p

)
− pT
∇pkq

(
u, p

)
+

∑
j∈J0

[
ξ j1 j(u) + ξ jh j

(
u, p

)
− pT
∇pξ jh j

(
u, p

)] (MXVD)

s.t.
q∑

i=1

λi

(
∇pki

(
u, p

)
+ Biwi

)
+

m∑
j=1

ξ j∇ph j
(
u, p

)
= 0, (58)

∑
j∈Jβ

(
ξ j1 j(u) + ξ jh j

(
u, p

)
− pT
∇pξ jh j

(
u, p

))
= 0, β = 1, ..., s, (59)

wT
i Bwi ≤ 1, i ∈ I, (60)

u ∈ X, p ∈ Rn, wi ∈ Rn, λi > 0, i = 1, ..., q,
q∑

i=1

λi = 1, ξ j = 0, j ∈ J, (61)

where Jβ ⊆ J, β = 0, 1, ..., s with Jβ ∩ Jγ = ∅, β , γ and
s⋃
β=0

Jβ = J.

Let

ΩMXVD =

{(
u, λ, ξ,

(
w1, ...,wq

)
, p

)
∈ X × Rq

+ × Rm
+ × (Rn

× ... × Rn)
q times

× Rn : verifying the constraints of (MXVD)
}

be the set of all feasible solutions in problem (MXVD). Further, UMXVD =
{
u ∈ X :

(
u, λ, ξ,

(
w1, ...,wq

)
, p

)
∈ ΩMXVD

}
.
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Theorem 5.1. (Weak duality). Let x and
(
u, λ, ξ,

(
w1, ...,wq

)
, p

)
be any feasible solutions for the problems (VP) and

(MXVD), respectively. Further, assume that
((

fi (·) + (·)T Biwi +
∑

j∈J0
ξ j1 j(u), i ∈ I

)
,

(
1 j(u), j ∈ Jβ, β = 1, ..., s

))
is higher-order

(
Φ, ρ

)
-type I objective and constraint functions at u on D ∪UMXVD. If

∑q
i=1 λiρ fi +

∑
j∈Jβ ξ jρ1 j = 0,

then the following cannot hold

fi (x) +
(
xTBix

)1/2
5 fi (u) + uTBiwi + ki

(
u, p

)
− pT
∇pki

(
u, p

)
+

∑
j∈J0

[
ξ j1 j(u) + ξ jh j

(
u, p

)
− pT
∇pξ jh j

(
u, p

)]
, i ∈ I,
(62)

and

fi (x) +
(
xTBix

)1/2
< fi (u) + uTBiwi + ki

(
u, p

)
− pT
∇pki

(
u, p

)
+

∑
j∈J0

[
ξ j1 j(u) + ξ jh j

(
u, p

)
− pT
∇pξ jh j

(
u, p

)]
for at least one ∈ I. (63)

Proof. Let x and
(
u, λ, ξ,

(
w1, ...,wq

)
, p

)
be feasible solutions for the vector optimization problems (VP) and

(MXVD), respectively. We proceed by contradiction. Suppose, contrary to the result, that the inequalities
(62) and (63) are satisfied. Then, by the generalized Schwartz inequality (see Lemma 2.4), (62) and (63)
yield, respectively,

fi (x) + xTBiwi 5 fi (u) + uTBiwi + ki
(
u, p

)
− pT
∇pki

(
u, p

)
+

∑
j∈J0

[
ξ j1 j(u) + ξ jh j

(
u, p

)
− pT
∇pξ jh j

(
u, p

)]
, i ∈ I,

(64)
and

fi (x) + xTBiwi < fi (u) + uTBiwi + ki
(
u, p

)
− pT
∇pki

(
u, p

)
+

∑
j∈J0

[
ξ j1 j(u) + ξ jh j

(
u, p

)
− pT
∇pξ jh j

(
u, p

)]
for at least one i ∈ I.

(65)

Multiplying each inequality (64) by λi > 0, i = 1, ..., q, and then using
∑q

i=1 λi = 1, we get∑q
i=1 λi

(
fi (x) + xTBiwi

)
<

∑q
i=1 λi

(
fi (u) + uTBiwi + ki

(
u, p

)
− pT

∇pki
(
u, p

))
+∑

j∈J0

[
ξ j1 j(u) + ξ jh j

(
u, p

)
− pT
∇pξ jh j

(
u, p

)]
.

(66)

By assumption,
((

fi (·) + (·)T Biwi +
∑

j∈J0
ξ j1 j(·), i ∈ I

)
,

(
1 j(·), j ∈ Jβ, β = 1, ..., s

))
are higher-order

(
Φ, ρ

)
-type

I objective and constraint functions at u on D ∪UMXVD. Then, by Definition 2.1, the following inequalities

fi(x) + xTBiwi +
∑

j∈J0
ξ j1 j(x) − fi(u) − uTBiwi −

∑
j∈J0
ξ j1 j(u) − ki

(
u, p

)
+ pT
∇pki

(
u, p

)
=

Φ
(
x,u,

(
∇pki

(
u, p

)
+ Biwi +

∑
j∈J0
ξ j∇p1 j

(
u, p

)
, ρ fi

))
, i ∈ I,

(67)

−1 j(u) − h j
(
u, p

)
+ pT
∇ph j

(
u, p

)
= Φ

(
z,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
, j ∈ Jβ, β = 1, ..., s (68)

hold. Hence, multiplying each inequality (67) by λi > 0, i ∈ I, and each inequality (68) by ξ j = 0, j ∈ J, and
then using

∑q
i=1 λi = 1, we get∑q

i=1 λi

(
fi(x) + xTBiwi − fi(u) − uTBiwi − ki

(
u, p

)
+ pT
∇pki

(
u, p

))∑
j∈J0
ξ j1 j(x) −

∑
j∈J0
ξ j1 j(u) =∑q

i=1 λiΦ
(
x,u,

(
∇pki

(
u, p

)
+ Biwi +

∑
j∈J0
ξ j∇p1 j

(
u, p

)
, ρ fi

))
,

(69)

∑
j∈Jβ ξ j

(
−1 j(u) − h j

(
u, p

)
+ pT
∇ph j

(
u, p

))
=

∑
j∈Jβ ξ jΦ

(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
. (70)

Combining (59) and (70), we obtain∑
j∈Jβ

ξ jΦ
(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
5 0, β = 1, ..., s. (71)
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Hence, (69) and (71) yield∑q
i=1 λi

(
fi(x) + xTBiwi − fi(u) − uTBiwi − ki

(
u, p

)
+ pT
∇pki

(
u, p

))
+∑

j∈J0
ξ j1 j(x) −

∑
j∈J0
ξ j1 j(u) −

∑
j∈Jβ ξ j

(
−1 j(u) − h j

(
u, p

)
+ pT
∇ph j

(
u, p

))
=∑q

i=1 λiΦ
(
x,u,

(
∇pki

(
u, p

)
+ Biwi +

∑
j∈J0
ξ j∇p1 j

(
u, p

)
, ρ fi

))
+

∑
j∈Jβ ξ jΦ

(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
.

(72)

Let us introduce the following notations

λ̃i =
λi∑q

i=1 λi +
∑

j∈Jβ ξ j
, i ∈ I, ξ̃ j =

ξ j∑q
i=1 λi +

∑
j∈Jβ ξ j

, j ∈ Jβ, β = 1, ..., s. (73)

Note that λ̃i ∈ (0, 1], i ∈ I, ξ̃ j ∈ [0, 1], j ∈ J, and

q∑
i=1

λ̃i +
∑
j∈Jβ

ξ̃ j = 1. (74)

Using (73) in (72), we get∑q
i=1 λ̃i

(
fi(x) + xTBiwi − fi(u) − uTBiwi − ki

(
u, p

)
+ pT
∇pki

(
u, p

))
+

1∑q
i=1 λi+

∑
j∈Jβ

ξ j

[∑
j∈J0
ξ j1 j(x) −

∑
j∈J0
ξ j1 j(u) −

∑
j∈J0
ξ jh j

(
u, p

)
+ pT ∑

j∈J0
ξ j∇ph j

(
u, p

)]
=∑q

i=1 λ̃iΦ
(
x,u,

(
∇pki

(
u, p

)
+ Biw +

∑
j∈J0
ξ j∇ph j

(
u, p

)
, ρ fi

))
+

∑
j∈Jβ ξ̃ jΦ

(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
.

(75)

By Definition 2.1, it follows that Φ (x,u, ·) is convex on Rn+1. Since λ̃i ∈ (0, 1], i ∈ I, ξ̃ j ∈ [0, 1], j ∈ Jβ, β = 1, ..., s,
and (74) is satisfied, by the definition of a convex function, we have∑q

i=1 λ̃iΦ
(
x,u,

(
∇pki

(
u, p

)
+ Biwi +

∑
j∈J0
ξ j∇ph j

(
u, p

)
, ρ fi

))
+

∑
j∈Jβ ξ̃ jΦ

(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
=

Φ
(
x,u,

(∑q
i=1 λ̃i

[
∇pki

(
u, p

)
+ Biwi +

∑
j∈J0
ξ j∇ph j

(
u, p

)
, ρ fi

]
+

∑
j∈Jβ ξ̃ j

(
∇ph j

(
u, p

)
, ρ1 j

)))
.

(76)

Combining (75) and (76), we obtain∑q
i=1 λ̃i

(
fi(x) + xTBiwi − fi(u) − uTBiwi − ki

(
u, p

)
+ pT
∇pki

(
u, p

))
+

1∑q
i=1 λi+

∑
j∈Jβ

ξ j

[∑
j∈J0
ξ j1 j(x) −

∑
j∈J0
ξ j1 j(u) −

∑
j∈J0
ξ jh j

(
u, p

)
+ pT ∑

j∈J0
ξ j∇ph j

(
u, p

)]
=

Φ

(
x,u,

(∑q
i=1 λ̃i

[
∇pki

(
u, p

)
+ Biwi + 1∑q

i=1 λi+
∑

j∈Jβ
ξ j

∑
j∈J0
ξ j∇ph j

(
u, p

)
, ρ fi

]
+

∑
j∈Jβ ξ̃ j

(
∇ph j

(
u, p

)
, ρ1 j

))) (77)

Using (73) in (77), we obtain

1∑q
i=1 λi+

∑
j∈Jβ

ξ j

{∑q
i=1 λi

[
fi(x) + xTBiwi − fi(u) − uTBiwi − ki

(
u, p

)
+ pT

∇pki
(
u, p

)]
+∑

j∈J0
ξ j1 j(x) −

∑
j∈J0
ξ j1 j(u) −

∑
j∈J0
ξ jh j

(
u, p

)
+ pT ∑

j∈J0
ξ j∇ph j

(
u, p

)}
=

Φ

(
x,u, 1∑q

i=1 λi+
∑

j∈Jβ
ξ j

(∑q
i=1 λi

[
∇pki

(
u, p

)
+ Biwi +

∑
j∈J0
ξ j∇ph j

(
u, p

)]
+

∑
j∈Jβ ξ j∇ph j

(
u, p

)
,
∑q

i=1 λiρ fi +
∑

j∈Jβ ξ jρ1 j

))
.
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Since
∑q

i=1 λi = 1 and
s⋃
β=0

Jβ = J, the above inequality yields

1∑q
i=1 λi+

∑
j∈Jβ

ξ j

{∑q
i=1 λi

[
fi(x) + xTBiwi − fi(u) − uTBiwi − ki

(
u, p

)
+ pT

∇pki
(
u, p

)]
+∑

j∈J0
ξ j1 j(x) −

∑
j∈J0
ξ j1 j(u) −

∑
j∈J0
ξ jh j

(
u, p

)
+ pT ∑

j∈J0
ξ j∇ph j

(
u, p

)}
=

Φ

(
x,u, 1∑q

i=1 λi+
∑

j∈Jβ
ξ j

(∑q
i=1 λi

[
∇pki

(
u, p

)
+ Biwi

]
+

∑m
j=1 ξ j∇ph j

(
u, p

)
,

∑q
i=1 λiρ fi +

∑
j∈Jβ ξ jρ1 j

))
.

(78)

By the constraint (58), the inequality (78) implies

1∑q
i=1 λi+

∑
j∈Jβ

ξ j

{∑q
i=1 λi

[
fi(x) + xTBiwi − fi(u) − uTBiwi − ki

(
u, p

)
+ pT

∇pki
(
u, p

)]
+∑

j∈J0
ξ j1 j(x) −

∑
j∈J0
ξ j1 j(u) −

∑
j∈J0
ξ jh j

(
u, p

)
+ pT ∑

j∈J0
ξ j∇ph j

(
u, p

)}
=

Φ

(
x,u, 1∑q

i=1 λi+
∑

j∈Jβ
ξ j

(
0,

∑q
i=1 λiρ fi +

∑
j∈Jβ ξ jρ1 j

))
.

(79)

By Definition 2.1, it follows that Φ (x,u, (0, a)) = 0 for every a ∈ R+. By assumption,
∑q

i=1 λiρ fi +
∑

j∈Jβ ξ jρ1 j = 0.
Thus, the following inequality

Φ

x,u,
1∑q

i=1 λi +
∑

j∈Jβ ξ j

0 ,
q∑

i=1

λiρ fi +
∑
j∈Jβ

ξ jρ1 j


 = 0 (80)

holds. Combining (79) and (80), we get∑q
i=1 λi

(
fi(x) + xTBiwi − fi(u) − uTBiwi − ki

(
u, p

)
+ pT
∇pki

(
u, p

))
+∑

j∈J0
ξ j1 j(x) −

∑
j∈J0
ξ j1 j(u) −

∑
j∈J0
ξ jh j

(
u, p

)
+ pT ∑

j∈J0
ξ j∇ph j

(
u, p

)
= 0.

Thus, by x ∈ D and ξ j = 0, j ∈ J, it follows that the following inequality∑q
i=1 λi

(
fi(x) + xTBiwi

)
=

∑q
i=1 λi

(
fi(u) + uTBiwi + ki

(
u, p

)
− pT
∇pki

(
u, p

))
+∑

j∈J0

(
ξ j1 j(u) + ξ jh j

(
u, p

)
− pT
∇pξ jh j

(
u, p

))
.

holds, contradicting (66). This completes the proof of the theorem.

Theorem 5.2. (Strong duality). Let x ∈ D be a properly efficient solution in the considered nondifferentiable
multiobjective programming problem (VP) such that the set Ω (x) is empty and let ∇1 j (x), j ∈ J (x), be linearly
independent. Further, assume that ki (x, 0) = 0 for all i ∈ I; ∇pk (x, 0) = ∇ f (x) ,

h j (x, 0) = 0 for all j ∈ J; ∇ph (x, 0) = ∇1 (x) .
(81)

Then there exist λ ∈ Rq, ξ ∈ Rm, wi ∈ Rn, i ∈ I, such that
(
x, λ, ξ,

(
w1, ...,wq

)
, p = 0

)
is feasible for (MXVD) and the

corresponding objective values of (VP) and (MXVD) are equal. Further, if weak duality (Theorem 5.1) holds, then(
x, λ, ξ,

(
w1, ...,wq

)
, p = 0

)
is a properly efficient solution of a maximum type for the higher-order mixed dual problem

(MXVD).
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Proof. Since x ∈ D is assumed to be a properly efficient solution in the considered nondifferentiable mul-
tiobjective programming problem (VP) such that the set Ω (x) is empty and, moreover, the Linear Inde-
pendence Constraint Qualification is satisfied at x, by Theorem 3.4 and the assumption (81), it follows that(
x, λ, ξ,

(
w1, ...,wq

)
, p = 0

)
is feasible in (MXVD). Therefore, it is not difficult to see that the corresponding

objective values of (VP) and (MXVD) are equal as it follows by (8) and (81).
In order to prove that

(
x, λ, ξ,

(
w1, ...,wq

)
, p = 0

)
is a properly efficient solution in (MXVD), first, we

show that
(
x, λ, ξ,

(
w1, ...,wq

)
, p = 0

)
is an efficient solution of a maximum type in (MXVD). We proceed by

contradiction. Suppose, contrary to the result, that it is not efficient in (MXVD). Then, by Definition 3.1,
there exists

(
ũ, λ̃, ξ̃,

(
w̃1, ..., w̃q

)
, p̃

)
∈ ΩMXVD such that

fi
(
ũ
)

+ ũTBiw̃i + ki
(
ũ, p̃

)
− p̃T
∇pki

(
ũ, p̃

)
+

∑
j∈J0
ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)]
=

fi (x) + xTBiwi + ki (x, 0) +
∑

j∈J0
ξ j

[
1 j(x) + h j (x, 0)

]
, i ∈ I.

(82)

fi
(
ũ
)

+ ũTBiw̃i + ki
(
ũ, p̃

)
− p̃T
∇pki

(
ũ, p̃

)
+

∑
j∈J0
ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)]
>

fi (x) + xTBiwi + ki (x, 0) +
∑

j∈J0
ξ j

[
1 j(x) + h j (x, 0)

]
for at least one i ∈ I.

(83)

Hence, (6) and (81) yield, respectively,

fi (x) + xTBiwi 5 fi
(
ũ
)

+ ũTBiw̃i + ki
(
ũ, p̃

)
− p̃T
∇pki

(
ũ, p̃

)
+

∑
j∈J0
ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)]
, i ∈ I,

fi (x) + xTBiwi < fi
(
ũ
)

+ ũTBiw̃i + ki
(
ũ, p̃

)
− p̃T
∇pki

(
ũ, p̃

)
+

∑
j∈J0
ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)]
for at least one i ∈ I.

Using (8) and (60), we get, respectively, that the following inequalities

fi (x) +
(
xTBix

)1/2
5 fi

(
ũ
)

+ ũTBiw̃i + ki
(
ũ, p̃

)
− p̃T
∇pki

(
ũ, p̃

)
+

∑
j∈J0
ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)]
, i ∈ I,

fi (x) +
(
xTBix

)1/2
< fi

(
ũ
)

+ ũTBiw̃i + ki
(
ũ, p̃

)
− p̃T
∇pki

(
ũ, p̃

)
+

∑
j∈J0
ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)]
for at least one i ∈ I

hold, contradicting weak duality (Theorem 5.1). Hence,
(
x, λ, ξ,

(
w1, ...,wq

)
, p = 0

)
is efficient of a maximum

type in (MXVD).
We now prove that

(
x, λ, ξ,

(
w1, ...,wq

)
, p = 0

)
is a properly efficient solution in (MXVD). We proceed

by contradiction. Suppose, contrary to the result, that it is not properly efficient in (MXVD). Then, by
Definition 3.2, it follows that, for each scalar M > 0, there exist

(
ũ, λ̃, ξ̃,

(
w̃1, ..., w̃q

)
, p̃

)
∈ ΩMXVD and i∗ ∈ I

satisfying

fi∗
(
ũ
)

+ ũTBi∗w̃i∗ + ki∗
(
ũ, p̃

)
− p̃T
∇pki∗

(
ũ, p̃

)
+

∑
j∈J0
ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)]
>

fi∗ (x) + xTBi∗wi∗ + ki∗ (x, 0) +
∑

j∈J0
ξ j

[
1 j(x) + h j (x, 0)

] (84)

such that, the inequality

fi∗
(
ũ
)

+ ũTBi∗w̃i∗ + ki∗
(
ũ, p̃

)
− p̃T
∇pki∗

(
ũ, p̃

)
+

∑
j∈J0
ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)]
−(

fi∗ (x) + xTBi∗wi∗ + ki∗ (x, 0) +
∑

j∈J0
ξ j

[
1 j(x) + h j (x, 0)

])
> M

(
ft (x) + xTBtwt + kt (x, 0) +

∑
j∈J0
ξ j

[
1 j(x) + h j (x, 0)

]
−(

ft
(
ũ
)

+ ũTBtw̃t + kt
(
ũ, p̃

)
− p̃T
∇pkt

(
ũ, p̃

)
+

∑
j∈J0
ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)])
(85)
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holds for all t ∈ I satisfying

ft (x) + xTBtwt + kt (x, 0) +
∑

j∈J0
ξ j

[
1 j(x) + h j (x, 0)

]
>

ft
(
ũ
)

+ ũTBtw̃t + kt
(
ũ, p̃

)
− p̃T
∇pkt

(
ũ, p̃

)
+

∑
j∈J0
ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)]
.

(86)

Hence, by (6), (8) and (81), it follows that the inequality

fi∗
(
ũ
)

+ ũTBi∗w̃i∗ + ki∗
(
ũ, p̃

)
− p̃T
∇pki∗

(
ũ, p̃

)
+

∑
j∈J0
ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)]
− fi∗ (x) − xTBi∗wi∗ >

M
(

ft (x) + xTBtwt − ft
(
ũ
)
− ũTBtw̃t − kt

(
ũ, p̃

)
+ p̃T

∇pkt
(
ũ, p̃

)
−

∑
j∈J0
ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)])
(87)

holds for all t ∈ I satisfying

ft (x) +
(
xTBtx

)1/2
> ft

(
ũ
)

+ ũTBtw̃t + kt
(
ũ, p̃

)
− p̃T
∇pkt

(
ũ, p̃

)
+

∑
j∈J0
ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)]
.
(88)

We divide the index set I and denote by I1 the set of indexes of objective functions satisfying the inequality
(88). By I2 we denote the set of indexes of objective functions defining by I2 = I\ (I1 ∪ i∗). Let M > λi∗

λt
|I1|,

where |I1| denotes the number of elements in the set I1. Hence, by (87) and (88), it follows that

λi∗
(

fi∗
(
ũ
)

+ ũTBi∗w̃i∗ + ki∗
(
ũ, p̃

)
− p̃T
∇pki∗

(
ũ, p̃

)
+

∑
j∈J0
ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)]
− fi∗ (x) − xTBi∗wi∗

)
>∑

t∈I1
λt

(
ft (x) + xTBtwt − ft

(
ũ
)
− ũTBtw̃t − kt

(
ũ, p̃

)
+ p̃T

∇pkt
(
ũ, p̃

)
−

∑
j∈J0
ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)])
.

(89)
Using the definition of the set I2 together with (89), we get

q∑
i=1

λi

 fi (x) + xTBiwi + ki (x, 0) +
∑
j∈J0

ξ j

[
1 j(x) + h j (x, 0)

] = λi∗

 fi∗ (x) + xTBi∗wi∗ + ki∗ (x, 0) +
∑
j∈J0

ξ j

[
1 j(x) + h j (x, 0)

]+

∑
i∈I1

λi

 fi (x) + xTBiwi + ki (x, 0) +
∑
j∈J0

ξ j

[
1 j(x) + h j (x, 0)

]+∑
i∈I2

λi

 fi (x) + xTBiwi + ki (x, 0) +
∑
j∈J0

ξ j

[
1 j(x) + h j (x, 0)

] <

λi∗

 fi∗
(
ũ
)

+ ũTBi∗w̃i∗ + ki∗
(
ũ, p̃

)
− p̃T
∇pki∗

(
ũ, p̃

)
+

∑
j∈J0

ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)]+

∑
t∈I1

λt

 ft
(
ũ
)

+ ũTBtw̃t + kt
(
ũ, p̃

)
− p̃T
∇pkt

(
ũ, p̃

)
+

∑
j∈J0

ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)]+

∑
t∈I2

λt

 ft
(
ũ
)

+ ũTBtw̃t + kt
(
ũ, p̃

)
− p̃T
∇pkt

(
ũ, p̃

)
+

∑
j∈J0

ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)] =

q∑
i=1

λi

 fi
(
ũ
)

+ ũTBiw̃i + ki
(
ũ, p̃

)
− p̃T
∇pki

(
ũ, p̃

)
+

∑
j∈J0

ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)] .
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By (6), (8), (81), it follows that the following inequality

q∑
i=1

λi

(
fi (x) +

(
xTBix

)1/2
)
<

q∑
i=1

λi

 fi
(
ũ
)

+ ũTBiw̃i + ki
(
ũ, p̃

)
− p̃T
∇pki

(
ũ, p̃

)
+

∑
j∈J0

ξ̃ j

[
1 j(ũ) + h j

(
ũ, p̃

)
− p̃T
∇ph j

(
ũ, p̃

)]
holds, contradicting weak duality (Theorem 5.1). This means that

(
x, λ, ξ,

(
w1, ...,wq

)
, p = 0

)
is a properly

efficient solution in (MXVD) and completes the proof of this theorem.

A restricted version of the converse duality for (VP) and (MXVD) is the following:

Theorem 5.3. (Restricted converse duality). Let x and
(
u, λ, ξ,

(
w1, ...,wq

)
, p

)
be feasible solutions in problems (VP)

and (MXVD), respectively, such that

fi (x) + xTBiwi +
∑

j∈J0
ξ j

[
1 j(x) + h j

(
x, p

)
− pT
∇ph j

(
x, p

)]
5 fi (u) + uTBiwi+

ki
(
u, p

)
− pT
∇pki

(
u, p

)
+

∑
j∈J0
ξ j

[
1 j(u) + h j

(
u, p

)
− pT
∇ph j

(
u, p

)]
, i ∈ I.

(90)

Further, assume that
((

fi (·) + (·)T Biwi +
∑

j∈J0
ξ j1 j(·), i ∈ I

)
,

(
1 j(·), j ∈ Jβ, β = 1, ..., s

))
, is higher-order strictly(

Φ, ρ
)
-type I objective and constraint functions at u on D ∪UMXVD. If

∑q
i=1 λiρ fi +

∑
j∈Jβ ξ jρ1 j , then x = u.

Proof. We proceed by contradiction. Suppose, contrary to the result, that x , u. By assumption,((
fi (·) + (·)T Biwi +

∑
j∈J0
ξ j1 j(·), i ∈ I

)
,

(
1 j(·), j ∈ Jβ, β = 1, ..., s

))
is higher-order strictly

(
Φ, ρ

)
-type I objective

and constraint functions at u on D ∪U. By Definition 2.1, we have

fi(x) + xTBiwi +
∑

j∈J0
ξ j

[
1 j(x) + h j

(
x, p

)
− pT
∇ph j

(
x, p

)]
−

(
fi(u) + uTBiwi+

ki
(
u, p

)
− pT
∇pki

(
u, p

)
+

∑
j∈J0
ξ j

[
1 j(u) + h j

(
u, p

)
− pT
∇ph j

(
u, p

)])
>

Φ
(
x,u,

(
∇pki

(
u, p

)
+ Biwi +

∑
j∈J0
ξ j∇ph j

(
u, p

)
, ρ fi

))
, i ∈ I,

(91)

−1 j(u) − h j
(
u, p

)
+ pT
∇ph j

(
u, p

)
= Φ

(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
, j ∈ Jβ. (92)

Combining (90) and (91), we get

Φ

x,u,

∇pki
(
u, p

)
+ Biwi +

∑
j∈J0

ξ j∇ph j
(
u, p

)
, ρ fi


 < 0, i ∈ I, (93)

Since λi > 0, i ∈ I, and ξ j = 0, j ∈ J, (93) and (92) yield, respectively,

q∑
i=1

λiΦ

x,u,

∇pki
(
u, p

)
+ Biwi +

∑
j∈J0

ξ j∇ph j
(
u, p

)
, ρ fi


 < 0, (94)

∑
j∈Jβ

ξ j

(
−1 j(u) − h j

(
u, p

)
+ pT
∇ph j

(
u, p

))
=

∑
j∈Jβ

ξ jΦ
(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
. (95)

Hence, using the constraint (59) together with (95), we get∑
j∈Jβ

ξ jΦ
(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
5 0. (96)



T. Antczak, H. Slimani / Filomat 33:6 (2019), 1619–1639 1637

Let us introduce the following notations

λ∗i =
λi∑q

i=1 λi +
∑

j∈Jβ ξ j

, i ∈ I, ξ∗j =
ξ j∑q

i=1 λi +
∑

j∈Jβ ξ j

, j ∈ Jβ, β = 1, ..., s. (97)

Note that λ∗i ∈ (0, 1], i ∈ I, ξ∗j ∈ [0, 1], j ∈ J, and

q∑
i=1

λ∗i +
∑
j∈Jβ

ξ∗j = 1. (98)

Taking into account (97) in (94) and (96), we get, respectively,

q∑
i=1

λ∗i Φ

x,u,

∇pki
(
u, p

)
+ Biwi +

∑
j∈J0

ξ j∇ph j
(
u, p

)
, ρ fi


 < 0, (99)

∑
j∈Jβ

ξ∗jΦ
(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
5 0. (100)

Adding both sides of (99) and (100), we obtain

q∑
i=1

λ∗i Φ

x,u,

∇pki
(
u, p

)
+ Biwi +

∑
j∈J0

ξ j∇ph j
(
u, p

)
, ρ fi


 +

∑
j∈Jβ

ξ∗jΦ
(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
< 0. (101)

By Definition 2.1, it follows that Φ (x,u, ·) is convex on Rn+1. Since λ∗i ∈ (0, 1], i ∈ I, ξ∗j ∈ [0, 1], j ∈ J, and (98)
is satisfied, by the definition of a convex function, we have∑q

i=1 λ
∗

i Φ
(
x,u,

(
∇pki

(
u, p

)
+ Biwi +

∑
j∈J0
ξ j∇ph j

(
u, p

)
, ρ fi

))
+

∑
j∈Jβ ξ

∗

jΦ
(
x,u,

(
∇ph j

(
u, p

)
, ρ1 j

))
=

Φ
(
x,u,

(∑q
i=1 λ

∗

i

(
∇pki

(
u, p

)
+ Biwi +

∑
j∈J0
ξ j∇ph j

(
u, p

)
, ρ fi

))
+

∑
j∈Jβ ξ

∗

j

(
∇ph j

(
u, p

)
, ρ1 j

))
.

(102)

Combining (101) and (102) and using (97), we get

Φ

(
x,u, 1∑q

i=1 λi+
∑

j∈Jβ
ξ j

(∑q
i=1 λi

[
∇pki

(
u, p

)
+ Biwi +

∑
j∈J0
ξ j∇ph j

(
u, p

)]
+

∑
j∈Jβ ξ j∇ph j

(
u, p

)
,

∑q
i=1 λiρ fi +

∑
j∈Jβ ξ jρ1 j

)
< 0.

(103)

Since
∑q

i=1 λi = 1 and
s⋃
β=0

Jβ = J, (103) yields

Φ

(
x,u, 1∑q

i=1 λi+
∑

j∈Jβ
ξ j

(∑q
i=1 λi

[
∇pki

(
u, p

)
+ Biwi

]
+

∑m
j=1 ξ j∇ph j

(
u, p

)
,

∑q
i=1 λiρ fi +

∑
j∈Jβ ξ jρ1 j

)
< 0. (104)

Hence, the constraint (58) implies

Φ

x,u,
1∑q

i=1 λi +
∑

j∈Jβ ξ j

0 ,
q∑

i=1

λiρ fi +
∑
j∈Jβ

ξ jρ1 j


 < 0. (105)

By Definition 2.1, it follows that Φ (x,u, (0, a)) = 0 for every a ∈ R+. By assumption,
∑q

i=1 λiρ fi +
∑

j∈Jβ ξ jρ1 j = 0.
Thus, the following inequality

Φ

x,u,
1∑q

i=1 λi +
∑

j∈Jβ ξ j

0 ,
q∑

i=1

λiρ fi +
∑
j∈Jβ

ξ jρ1 j


 = 0

holds, contradicting (105). This completes the proof of the theorem.
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6. Conclusion

In the paper, a new concept of type I functions has been defined in the case of a nondifferentiable
multiobjective programming problem. The class of so-called higher-order (Φ,ρ)-type I objective and con-
straint functions is a generalization and extension of many concepts of higher-order generalized convexity,
including the class of higher-order type I functions introduced by Mishra and Rueda [26] and the class of
(Φ,ρ)-invex functions introduced by Caristi et al. [8]. For the considered nondifferentiable multiobjective
programming problem, its higher-order Mangasarian dual problem and its higher-order mixed dual prob-
lem have been defined and weak, strong and strict converse duality theorems have been established under
assumptions that the involved functions are higher-order (strictly)

(
Φ, ρ

)
-type I objective and constraint

functions. Since the concept of
(
Φ, ρ

)
-type I objective and constraint functions unify many other concepts

of type I objective and constraint functions previously defined in the literature, therefore, the higher-order
duality results established in the paper extend adequate results already existing in optimization theory.
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