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On the Existence of Solutions for Stochastic Differential Equations
Driven by Fractional Brownian Motion

Zhi Lia

aSchool of Information and Mathematics, Yangtze University, Jingzhou, Hubei 434023, P.R. China.

Abstract. In this paper, we are concerned with a class of stochastic differential equations driven by
fractional Brownian motion with Hurst parameter 1/2 < H < 1, and a discontinuous drift. By approximation
arguments and a comparison theorem, we prove the existence of solutions to this kind of equations under
the linear growth condition.

1. Introduction

Consider the following stochastic differential equation:

Xt = X0 +

∫ t

0
σ(s,Xs)dBH

s +

∫ t

0
b(Xs)ds t ∈ [0,T], (1)

where σ : [0,T] × R → R and b : R → R are two Borel functions, the integral
∫ t

0 σ(s,Xs)dBH
s is pathwise

Riemann-Stieltjes integral, and BH = {BH
t , t ∈ [0,T]} is a fractional Brownian motion with Hurst parameter

H ∈ (0, 1). That is, BH is a centered Gaussian process with covariance

RH(t, s) = E(BH
t BH

s ) =
1
2

(t2H + s2H
− |t − s|2H).

In the case H = 1
2 , the process BH is the standard Brownian motion and the existence of a weak solution

to (1) is well-known by the results of Zvonkin [9] and Veretennikov [8], assuming only that the coefficient
b(x) satisfies the following linear growth in x

|b(x)| ≤ C(1 + |x|). (2)

In the singular case H < 1
2 , Nualart and Ouknine [5] established the existence of a strong solution to (1)

with σ ≡ 1, also assuming only that the coefficient b(x) has linear growth in x. In the regular case H > 1
2 ,

Boufoussi and Ouknine [1] proved that (1) with σ ≡ 1 has a strong solution if the coefficient b is continuous
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and has the linear growth and Li et al. [3] proved that (1) has a weak solution when the coefficient b has
only the linear growth.

In [6], Nualart and Răşcanu established the existence and uniqueness of solution to (1) when b was local
Lipschitz continuity and the linear growth and σ satisfied some suitable conditions. The main motivation of
our work is to seek an answer to the following interesting question: when H > 1

2 , is there a strong solution
to (1), assuming only that the coefficient b(x) has linear growth in x but may be discontinuous? In this
paper, by approximation arguments and a comparison theorem we will prove the existence of the strong
solution to (1) when b(x) has linear growth and is left-continuous and lower semi-continuous in x.

The rest of this paper is organized as follows. In Section 2, we introduce some necessary notations and
preliminaries. In Section 3, we present and prove our main results.

2. Preliminaries

Let 1
2 < H < 1, 1−H < α < 1

2 . Denote by Wα,∞
0 ([0,T];R) the space of measurable functions f : [0,T]→ R

such that

‖ f ‖α,∞ := sup
t∈[0,T]

(
| f (t)| +

∫ t

0

| f (t) − f (s)|
(t − s)α+1 ds

)
< ∞,

and for any λ ≥ 0 a equivalent norm is defined by

‖ f ‖α,λ := sup
t∈[0,T]

e−λt
(
| f (t)| +

∫ t

0

| f (t) − f (s)|
(t − s)α+1 ds

)
< ∞.

For any 0 < α ≤ 1, denote by Cα([0,T];R) the space of α-Hölder continuous functions f : [0,T] → R,
equipped with the norm

‖ f ‖α := ‖ f ‖∞ + sup
0≤s<t≤T

| f (t) − f (s)|
(t − s)α

< ∞,

where ‖ f ‖∞ := supt∈[0,T] | f (t)|. We have, for all 0 < ε < α

Cα+ε([0,T];R) ⊂Wα,∞
0 ([0,T];R) ⊂ Cα−ε([0,T];R).

Fix a parameter 0 < α < 1
2 . Denote by W1−α,∞

T ([0,T];R) the space of measurable functions 1 : [0,T]→ R
such that

‖1‖1−α,∞,T := sup
0≤s<t≤T

( |1(t) − 1(s)|
(t − s)1−α +

∫ t

s

|1(y) − 1(s)|
(y − s)2−α dy

)
< ∞.

Clearly,
C1−α+ε([0,T];R) ⊂W1−α,∞

T ([0,T];R) ⊂ C1−α([0,T];R), ∀ε > 0.

Now, let us consider the following assumptions on the coefficients of (1).

(H1) σ(t, x) is differentiable in x, and there exist some constants M0 > 0, 0 < β, δ ≤ 1 and for every N ≥ 0
there exists MN > 0 such that the following properties hold:

(Hσ) :



i) Lipschitz continuity
|σ(t, x) − σ(t, y)| ≤M0|x − y|, ∀x, y ∈ R, ∀t ∈ [0,T],

ii) Local Hölder continuity
|∂xσ(t, x) − ∂yσ(t, y)| ≤MN |x − y|δ, ∀|x|, |y| ≤ N, ∀t ∈ [0,T],

iii) Hölder continuity in time
|σ(t, x) − σ(s, x)| + |∂xσ(t, x) − ∂yσ(s, x)| ≤M0|t − s|β, ∀x ∈ R, ∀t, s ∈ [0,T].

(H2) There exists a constant L0 > 0 such that the following properties hold:

(Hb) :


i) b(·) is left-continuous and lower semi-continuous, i.e., for each x0 ∈ R

limx→x−0 b(x) = b(x0), and lim infx→x+
0
b(x) ≥ b(x0),

ii) Linear growth
|b(x)| ≤ L0(1 + |x|), ∀x ∈ R.
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(H2’) There exists a constant L0 > 0 and for every N ≥ 0 there exists LN > 0 such that the following properties
hold:

(Hb) :


i) Local Lipschitz continuity
|b(x) − b(y)| ≤ LN |x − y|, ∀|x|, |y| ≤ N,

ii) Linear growth
|b(x)| ≤ L0(1 + |x|), ∀x ∈ R.

Remark 2.1. From i) and iii) of (H1), we can deduce that for all x ∈ R and t ∈ [0,T]

|σ(t, x)| ≤ |σ(0, 0)| + M0(|t|β + |x|) ≤M0,T(1 + |x|),

where M0,T = |σ(0, 0)| + M0(1 + T). Thus, the assumption (H1) implies that σ is the linear growth.

By the Theorem 2.1 of Nualart and Răşcanu [6], we can obtain the conclusion (I) of the following theorem.
Moreover, in view of the Lemma 4.1 of Shevchenko [7], we also have the conclusion (II) of the following
theorem.

Theorem 2.2. Suppose that X0 is an R-valued random variable and α0 = min{ 12 , β,
δ

1+δ }, the coefficients σ(t, x) and
b(x) satisfy assumption (H1) and (H2’) with β > 1 −H and δ > 1

H − 1. Then

(I) If α ∈ (1 −H, α0), then there exists a unique stochastic process X ∈ L0(Ω,F ,P; Wα,∞
0 ([0,T];

R)) solving the stochastic differential equation (1) and for P-almost all ω ∈ Ω

X(ω, ·) ∈ C1−α([0,T];R).

(II) Moreover, if α ∈ (1 −H, α0), X0 ∈ L∞(Ω,F ,P;R), then the solution X satisfies

E‖X‖pα,∞ < ∞, ∀p ≥ 1.

3. Main results

To treat our main results of this section, we will use the following approximation lemma and the proof
of this lemma we can refer to [2].

Lemma 3.1. Let b(·) satisfies the assumption (H2). Then the sequence of functions

bn(x) = inf
y∈R
{b(y) + n|x − y|}, (3)

is well defined for n ≥ L0 and it satisfies

(i) convergence: if xn → x−, then bn(xn)→ b(x);
(ii) monotonicity in n: ∀x ∈ R, bn(x) ≤ bn+1(x);

(iii) Lipschitz condition: ∀x, y ∈ R, |bn(x) − bn(y)| ≤ n|x − y|;
(iv) linear growth: ∀x ∈ R, |bn(s)| ≤ L0(1 + |x|).

The following comparison theorem is present in Nie and Răşcanu [4], which plays an important role in our
main results.

Theorem 3.2. Considering the two-dimensional decoupled system Xt = X0 +
∫ t

0 b1(Xs)ds +
∫ t

0 σ1(s,Xs)dBH
s , t ∈ [0,T],

Yt = Y0 +
∫ t

0 b2(Ys)ds +
∫ t

0 σ2(s,Ys)dBH
s , t ∈ [0,T],

where the coefficients σi(t, x) and bi(x), i = 1, 2, satisfy assumption (H1) and (H2’) with β > 1 − H, δ > 1
H − 1 and

α ∈ (1 −H, α0), then the following two assertions are equivalent:
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(i) For any t ∈ [0,T] and every X0 ≤ Y0: Xt ≤ Yt;
(ii) b1(x) ≤ b2(x), σ1(t, x) = σ2(t, x), ∀t ∈ [0,T] and ∀x ∈ R.

Let 0 < α < 1
2 , f ∈Wα,∞

0 ([0,T];R) and 1 ∈W1−α,∞
T ([0,T];R). Define

Gσ
t ( f ) =

∫ t

0
σ(s, f (s))d1s,

where σ satisfy the assumptions (H1) with constant β > α. For the following estimation on Gσ
t ( f ), we can

refer to the Proposition 4.2 of [6].

Proposition 3.3. If f ∈Wα,∞
0 ([0,T];R), then

Gσ( f ) ∈ C1−α([0,T];R) ⊂Wα,∞
0 ([0,T];R).

Moreover, for all λ ≥ 1 and f ∈Wα,∞
0 ([0,T];R):

(i)
∥∥∥∥Gσ( f )

∥∥∥∥
1−α
≤ Λα(1)C(1)(1 + ‖ f ‖α,∞),

(ii)
∥∥∥∥Gσ( f )

∥∥∥∥
α,λ
≤

Λα(1)C(2)

λ1−2α (1 + ‖ f ‖α,λ).

If f , h ∈Wα,∞
0 ([0,T];R) such that ‖ f ‖∞ ≤ N, ‖h‖∞ ≤ N, then for all λ ≥ 1,

‖Gσ( f ) − Gσ(h)‖α,λ ≤
Λα(1)CN

λ1−2α (1 + ∆( f ) + ∆(h))‖ f − h‖α,λ,

where
Λα(1) :=

1
Γ(1 − α)

sup
0≤s<t≤T

|(D1−α
t− 1t−)(s)| ≤

1
Γ(1 − α)Γ(α)

‖1‖1−α,∞,T,

∆( f ) = sup
r∈[0,T]

∫ r

0

| f (r) − f (s)|δ

(r − s)α+1 ds

and the constant C(1), C(2) and CN is independent of λ, f , h, 1 and only depends on T, and constants from (H1).

Let 0 < α < 1
2 , we shall give similar estimates on the ordinary Lebesgue integrals

Fb
t ( f ) =

∫ t

0
b( f (s))ds,

where b satisfy the assumptions (H2’). For the following estimation on Fb
t ( f ), we can refer to the Proposition

4.4 of [6].

Proposition 3.4. If f ∈ Wα,∞
0 ([0,T];R), then Fb( f ) ∈ C1−α([0,T];R) and Moreover, for all λ ≥ 1 and f ∈

Wα,∞
0 ([0,T];R):

( j)
∥∥∥∥Fb( f )

∥∥∥∥
1−α
≤ C(3)(1 + ‖ f ‖∞),

( j j)
∥∥∥∥Fb( f )

∥∥∥∥
α,λ
≤

C(4)

λ1−2α (1 + ‖ f ‖α,λ).

If f , h ∈Wα,∞
0 ([0,T];R) such that ‖ f ‖∞ ≤ N, ‖h‖∞ ≤ N, then for all λ ≥ 1,

‖Fb( f ) − Fb(h)‖α,λ ≤
dN

λ1−2α ‖ f − h‖α,λ

where the constant C(3), C(4) and dN is independent of λ, f , h and only depends on T, and constants from (H2’).
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Now, we can state and prove our main result in this paper.

Theorem 3.5. Suppose that X0 is an R-valued random variable and α0 = min{ 12 , β,
δ

1+δ }, the coefficients σ(t, x) and
b(x) satisfy assumption (H1) and (H2) with β > 1 −H and δ > 1

H − 1. Then

(I) If α ∈ (1−H, α0), then there exists a stochastic process X ∈ L0(Ω,F ,P; Wα,∞
0 ([0,T];R)) solving the stochastic

differential equation (1) and for P-almost all ω ∈ Ω

X(ω, ·) ∈ C1−α([0,T];R).

(II) Moreover, if α ∈ (1 −H, α0), X0 ∈ L∞(Ω,F ,P;R), then the solution X satisfies

E‖X‖pα,∞ < ∞, ∀p ≥ 1.

Proof. For any n ≥ L0, let bn be as in Lemma 3.1. Consider the following stochastic differential equation

Xn
t = X0 +

∫ t

0
σ(s,Xn

s )dBH
s +

∫ t

0
bn(Xn

s )ds. (4)

Since bn is Lipschitz and linear growth and σ satisfies the assumption (H1), by the results in the Theorem
2.1 we know

(I) If α ∈ (1 −H, α0), then there exists a unique stochastic process Xn
∈ L0(Ω,F ,P; Wα,∞

0
([0,T];R)) solving the stochastic differential equation (4) and for P-almost all ω ∈ Ω

Xn(ω, ·) ∈ C1−α([0,T];R).

(II) Moreover, if α ∈ (1 −H, α0), X0 ∈ L∞(Ω,F ,P;R), then the solution Xn satisfies

E‖Xn
‖

p
α,∞ < ∞, ∀p ≥ 1.

Notice that the Theorem 3.1 implies that {Xn
}n≥1 is a.s nondecreasing. Moreover, by the Lemma 4.1 of [7],

we have

‖Xn
‖α,∞ ≤ C1exp(C2G

1
1−α ) := N∗, (5)

where C1 and C2 are two constants depending only T and α, and

G =
1

Γ(1 − α)
sup

0<s<t<T
|(D1−α

t− Bt−)(s)|

with

Dα
b− f (x) =

(−1)α

Γ(1 − α)
×

( f (x)
(b − x)α

+ α

∫ b

x

f (x) − f (y)
(y − xα+1)

dy
)
I(a,b)(x).

Note that σ satisfies the assumption of the Proposition 3.1 and bn satisfies the assumption of the Proposition
3.2. Then, by the Proposition 3.1 and 3.2 and (4), there exists a constant C which is only depends on C(1),
C(3) and X0 such that

‖Xn
‖1−α ≤ C‖Xn

‖α,∞ ≤ CN∗.

It means that Xn converges to X in the space Cβ([0,T];R) for all β < 1−α. Since α < 1/2 and for all 0 < ε < α

Cα+ε([0,T];R) ⊂Wα,∞
0 ([0,T];R) ⊂ Cα−ε([0,T];R),

we can deduce from Ascoli-Arzela theorem and the monotonicity of the sequence {Xn
}n≥1 that Xn converges

uniformly to X ∈Wα,∞
0 ([0,T];R), ‖X‖α,∞ ≤ N and for all λ ≥ 1,

‖Xn
− X‖α,λ → 0, as n→∞. (6)
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Next, we will prove that X is the solution to the equation (1). On the one hand, we have for all λ ≥ 1,∥∥∥∥∫
·

0
bn(Xn

s )ds −
∫
·

0
b(Xs)ds

∥∥∥∥
α,λ
≤

∥∥∥∥∫
·

0
bn(Xn

s )ds −
∫
·

0
bn(Xs)ds

∥∥∥∥
α,λ

+
∥∥∥∥∫

·

0
bn(Xs)ds −

∫
·

0
b(Xs)ds

∥∥∥∥
α,λ

: = I1 + I2.

By the Proposition 3.2 and (6), we easily know I1 → 0, as n → ∞. Since {Xn
}n≥1 converges uniformly to X,

we get that I2 → 0, as n→∞ by using (i) in the Lemma 3.1. Thus, we have for all λ ≥ 1,

lim
n→∞

∥∥∥∥∫
·

0
bn(Xn

s )ds −
∫
·

0
b(Xs)ds

∥∥∥∥
α,λ

= 0. (7)

On the other hand, note that the fBm BH admits a version whose sample paths are almost surely Hölder
continuous of order strictly less than H, then using the Proposition 3.1 we have∥∥∥∥∫

·

0
σ(s,Xn

s )dBH
s −

∫
·

0
σ(s,Xs)dBH

s

∥∥∥∥
α,λ
≤

Λα(BH)CN

λ1−2α (1 + ∆(Xn) + ∆(X))‖Xn
− X‖α,λ.

Since α0 = min{ 12 , β,
δ

1+δ } and α ∈ (1 − H, α0), we know that ∆(Xn) and ∆(X) are bounded. Then, letting
n −→ ∞we have

lim
n→∞

∥∥∥∥∫
·

0
σ(s,Xn

s )dBH
s −

∫
·

0
σ(s,Xs)dBH

s

∥∥∥∥
α,λ

= 0. (8)

Thus, combining (7) and (8), using the equivalence of ‖ · ‖α,λ and ‖ · ‖α,∞ we get that X satisfies (1).
Moreover, by the proof of the Theorem 5.1 of [6] we know that if X ∈ Wα,∞

0 ([0,T];R) is a solution of (1),
then X ∈ C1−α([0,T];R). Hence, the proof of the first assertion is complete.

Lastly, by (5), we have for all p ≥ 1

E‖Xn
‖

p
α,∞ ≤ C1Eexp(pC2G

1
1−α ) < ∞ (9)

provided 1
1−α < 2. Noticing that 0 < α < 1/2, we obtain easily that 1

1−α < 2. This implies that the second
assertion holds. The proof is complete.

Remark 3.6. In the same way as in the Theorem 3.2 and the Theorem 3.3, by replacing (3) in the Lemma 3.1 with

bn(x) = supy∈R{b(y) − n|x − y|}, (10)

we can also prove the results of the Theorem 3.2 when b is right-continuous and upper semi-continuous, i.e., for each
x0 ∈ R,

limx→x+
0
b(x) = b(x0), and lim infx→x−0 b(x) ≤ b(x0).
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