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Finite Spectrum of Sturm-Liouville Problems with
Eigenparameter-Dependent Boundary Conditions on Time Scales

Ji-jun Aoa, Juan Wanga

aCollege of Sciences, Inner Mongolia University of Technology, Hohhot 010051, China

Abstract. The spectral analysis of a class of Sturm-Liouville problems with eigenparameter-dependent
boundary conditions on bounded time scales is investigated. By partitioning the bounded time scale such
that the coefficients of Sturm-Liouville equation satisfy certain conditions on the adjacent subintervals, the
finite eigenvalue results are obtained. The results show that the number of eigenvalues not only depend
on the partition of the bounded time scale, but also depend on the eigenparameter-dependent boundary
conditions. Both of the self-adjoint and non-self-adjoint cases are considered in this paper.

1. Introduction

According to the classical Sturm-Liouville theory [16], the spectrum of a regular or singular, self-adjoint
Sturm-Liouville problem(SLP) is unbounded and therefore infinite. In 1964, Atkinson in his well known
book [6] suggested that if the coefficients of SLP satisfy some special conditions, the problem may have
finite eigenvalues. In 2001, Kong, Wu, and Zettl proved the rationality of Atkinson’s judgment in [12]
by analyzing on a certain class of SLP. They demonstrate that this class of SLP has a finite number of
eigenvalues. Then a host of researchers got a slice of crucial achievements in the last decades or so, please
see [3–5, 11, 13] and the references therein.

It is well known, the SLP with eigenparameter-dependent boundary conditions have been an important
research topic in mathematical physics [3, 7, 8]. These problems appeared in some physical problems and
engineering problems such as heat conduction problems and vibrating string problems and so on [2, 9].
Generally, the spectrum of a SLP with eigenparameter-dependent boundary conditions will be influenced
by the eigenparameter which arise not only in the equation but also in the boundary conditions. Hence
there are some different characters on these problems compared to those classical SLPs. For the studies of
these problems here we refer to [2, 3, 7–9].

As an effective tool to unify both of the discrete and continuous systems, the concept of time scale
was put forward by German mathematician Stefan Hilger in 1988. There are numerous studies about the
problems on time scales. Especially, in recent years the eigenvalue problems of Sturm-Liouville equation
on time scales have been a new research topic in mathematical physics. There are some important results
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have been obtained by a multitude of researchers. In 1999, Agarwal et al studied the SLP with separated
boundary conditions under the condition p = 1 in [1]. They proved the existence of eigenvalues and
the number of the generalized zeros of eigenfunctions. In 2008, Kong considered the more general SLP
and investigated the dependence of the eigenvalues on the boundary conditions in [10]. In 2010, Zhang
et al studied the existence of eigenvalues about the SLP with coupled boundary conditions and showed
the relationship between the number of eigenvalues and the boundary conditions in [17]. In 2013, Zhao
generated the finite spectrum results of SLP to SLP on time scales in [18]. In 2016, Tuna in [14] studied the
completeness theorem for the dissipative SLP on time scales.

In the present paper, we study the finite spectrum of Sturm-Liouville problems with eigenparameter-
dependent boundary conditions on a bounded time scale and consider the following equation

−(px∆)∆ + qxσ = λwxσ on T, (1)

satisfying

1/p, q,w ∈ Cprd(T), (2)

together with the separated eigenparameter-dependent boundary conditions of the form (3) and the coupled
eigenparameter-dependent boundary conditions (see [4]) of the form (4) respectively.

The separated eigenparameter-dependent boundary conditions are

AλX(a) + BλX(b) = 0, X =

[
x

pxM

]
, (3)

where Aλ =

[
λα′1 + α1 λα′2 + α2

0 0

]
, Bλ =

[
0 0

λβ′1 + β1 λβ′2 + β2

]
with αi, α′i , βi, β′i ∈ R, i = 1, 2 satisfying

θ1 =

∣∣∣∣∣ α1 α2
α′1 α′2

∣∣∣∣∣ , 0, θ2 =

∣∣∣∣∣ β1 β2
β′1 β′2

∣∣∣∣∣ , 0. Here λ is the spectral parameter.

The coupled eigenparameter-dependent boundary conditions are

ÂλX(a) + B̂λX(b) = 0, X =

[
x

pxM

]
, (4)

where Âλ =

[
λα′1 + α1 λα′2 + α2
λβ′1 + β1 λβ′2 + β2

]
, B̂λ =

[
λα′3 + α3 λα′4 + α4
λβ′3 + β3 λβ′4 + β4

]
with αi, α′i , βi, β′i ∈ R, i = 1, 2, 3, 4

satisfying

det(Âλ) , 0, det(B̂λ) , 0,

rank
[
α1 α2 α3 α4
β1 β2 β3 β4

]
= 2, rank

[
α′1 α′2 α′3 α′4
β′1 β′2 β′3 β′4

]
= 2,

rank
[
α1 α2 α3 α4
α′1 α′2 α′3 α′4

]
= 2, rank

[
β1 β2 β3 β4
β′1 β′2 β′3 β′4

]
= 2.

Here λ is the spectral parameter.
Following the method of [5, 16], by partitioning the bounded time scale such that the coefficients of

(1) satisfy certain conditions on adjacent subintervals, we construct a kind of SLP with eigenparameter-
dependent boundary conditions on bounded time scales which has exactly finite number of eigenvalues.
Here the problems include both of the self-adjoint and non-self-adjoint cases and we will consider the
problems with separated and coupled eigenparameter-dependent boundary conditions respectively. As far
as we know, much less is known for boundary value problems with coupled eigenparameter-dependent
boundary conditions.

The paper is organized as follows: following the introduction in Section 1, some basic definitions about
time scales and related lemmas are listed in Section 2. The main results regarding an analysis of eigenvalues
of the considered problems and corresponding examples are given in Section 3.
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2. Preliminaries

Before presenting the main results, in this section, we recall the following concepts related to time scales
for the convenience of the reader and list some lemmas which are needed to prove our main theorems.

Definition 2.1. A time scale T is a closed subset of R. For t∈T we define the forward-jump operator σ and the
backward-jump operator ρ on T by

σ(t) := in f {s ∈ T : s > t} and ρ(t) := sup{s ∈ T : s < t},

where in f∅ := supT and sup∅ := in fT.

Definition 2.2. A point t∈T is called right-scattered, right-dense, left-scattered, and left-dense if σ(t) > t, σ(t) =
t, ρ(t) < t and ρ(t) = t respectively. The graininess µ : T→ [0,∞) is defined by

µ(t) = σ(t) − t.

Definition 2.3. We put Tκ = T if T is unbounded above and Tκ = T\(ρ(maxT), maxT] otherwise. Let f :
T→C,∀ t ∈ Tκ ,

f ∆(t) :=


lim
s→t

f (s) − f (t)
s − t

, µ(t) = 0

f σ(t) − f (t)
µ(t)

, µ(t) > 0,

(5)

where f σ(t) = f (σ(t)) .

Definition 2.4. A function f : T→ R is rd-continuous provided it is continuous at all right-dense points of T and
its left-sided limit exists (finite) at left-dense points of T. The set of all right-dense continuous functions on T is
denoted by

Crd = Crd(T).

Similarly, a function f : T → R is prd-continuous provided it is continuous at all points except finite right-dense
points of T and its left-sided limit exists (finite) at left-dense points of T. The set of all these functions on T is denoted
by

Cprd = Cprd(T).

If F∆(t) = f (t), for ∀t ∈ Tκ,∫ b

a
f (τ)∆(τ) = F(b) − F(a), a, b ∈ T.

Definition 2.5. Let [a, b]T = {∀t ∈ T, a ≤ t ≤ b}. The function x(·, λ) : [a, b]T → C is the solution of equation (1) if
and only if x(·, λ) ∈ D∆∆(λ). And ∀t ∈ [a, b]T, x(·, λ) satisfy the equation (1), where D∆∆(λ) := {x(·, λ) : [a, b]T →
C, x(·, λ) ∈ C1

prd(T), (px∆)(·, λ) ∈ C1
prd(T)}, C1

prd(T) = { f : f ∈ Cprd(T), and f is ∆-derivable}.

Lemma 2.6. Equation (1) is equivalent to the following form

[
x
u

]∆

=

 0
1

p(t)
q(t) − λw(t) 0


[

xσ

u

]
, u(t) = p(t)x∆(t)
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or

X∆ = A(t)X, (6)

where X =

[
x
u

]
, A(t) =


0

1
p(t)

q(t) − λw(t)
[q(t) − λw(t)]µ(t)

p(t)

.
Proof. It can be proved by direct calculation.

Lemma 2.7. ∀t0 ∈ [a, b]T, A(t) ∈ Cprd is n×n functional matrix, and ∀t ∈ [a, t0]T, I +µ(t)A(t) is invertible matrix,
then the initial value problem

X∆ = A(t)X, X(t0) = x0, x0 ∈ C
n,

has unique solution X ∈ C1
prd. (Refer to part 2.2 in [15]) It can be assumed that Φ(t, λ) = [φi j(t, λ)], t ∈ [a, b]T is the

fundamental matrix solution of equation (6) satisfied with the initial condition Φ(a, λ) = I, where

Φ(t, λ) =

[
θ(t, λ) ϕ(t, λ)

(pθ∆)(t, λ) (pϕ∆)(t, λ)

]
. (7)

Proof. See [15].

Lemma 2.8. Let (2) hold and Φ(t, λ) = [φi j(t, λ)], t ∈ [a, b]T is the fundamental matrix solution of equation (6)
satisfied with the initial condition Φ(a, λ) = I, then λ ∈ C is the eigenvalue of SLP (1), (3) if and only if the
characteristic function δ(λ) = 0, where

δ(λ) = det[Aλ + BλΦ(b, λ)]
= det(Aλ) + det(Bλ) + c11φ11(b, λ) + c12φ12(b, λ) + c21φ21(b, λ) + c22φ22(b, λ), (8)

with

C =

[
c11 c12
c21 c22

]
,

c11 = −(λα′2 + α2)(λβ′1 + β1), c12 = (λα′1 + α1)(λβ′1 + β1),
c21 = −(λα′2 + α2)(λβ′2 + β2), c22 = (λα′1 + α1)(λβ′2 + β2).

Proof. The proof of the first part of this lemma see [2] and the second part comes from a straightforward
computation.

Lemma 2.9. Let (2) hold and Φ(t, λ) = [φi j(t, λ)], t ∈ [a, b]T is the fundamental matrix solution of equation (6)
satisfied with the initial condition Φ(a, λ) = I, then λ ∈ C is the eigenvalue of SLP (1), (4) if and only if the
characteristic function δ̂(λ) = 0, where

δ̂(λ) = det[Âλ + B̂λΦ(b, λ)]
= det(Âλ) + det(B̂λ) + ĉ11φ11(b, λ) + ĉ12φ12(b, λ) + ĉ21φ21(b, λ) + ĉ22φ22(b, λ),

(9)

with

Ĉ =

[
ĉ11 ĉ12
ĉ21 ĉ22

]
,

ĉ11 = (λα′3 + α3)(λβ′2 + β2) − (λα′2 + α2)(λβ′3 + β3), ĉ12 = (λα′1 + α1)(λβ′3 + β3) − (λα′3 + α3)(λβ′1 + β1),
ĉ21 = (λα′4 + α4)(λβ′2 + β2) − (λα′2 + α2)(λβ′4 + β4), ĉ22 = (λα′1 + α1)(λβ′4 + β4) − (λα′4 + α4)(λβ′1 + β1).

Proof. The proof is similar to the one for Lemma 2.8.

Definition 2.10. The SLPs with eigenparameter-dependent boundary conditions (1), (3) and (1), (4) are said to be
degenerate if in (8), (9) either δ(λ), δ̂(λ) ≡ 0 for all λ ∈ C or δ(λ), δ̂(λ) , 0 for any λ ∈ C.



J.-J. Ao, J. Wang / Filomat 33:6 (2019), 1747–1757 1751

3. Finite spectrum of SLPs with eigenparameter-dependent boundary conditions on time scale

Assume (1) is defined on T = [a, b] ∪ {c} ∪ [d, e] with −∞ < a < b < c < d < e < +∞ and there exists a
partition of the intervals of time scale T

a = a0 < a1 < a2 < · · · < a2m < a2m+1 = b, d = b0 < b1 < b2 < · · · < b2n < b2n+1 = e, (10)

for some positive integers m and n, such that

r = 0 on [a2k, a2k+1],
∫ a2k+1

a2k

w , 0, k = 0, 1, . . . ,m,

r = 0 on [b2i, b2i+1],
∫ b2i+1

b2i

w , 0, i = 0, 1, . . . ,n,
(11)

and

q = w = 0 on [a2k+1, a2k+2],
∫ a2k+2

a2k+1

r , 0, k = 0, 1, . . . ,m − 1,

q = w = 0 on [b2i+1, b2i+2],
∫ b2i+2

b2i+1

r , 0, i = 0, 1, . . . ,n − 1.
(12)

Given (10)-(12), it is easy to set the following notation:

rk =

∫ a2k+2

a2k+1

r, k = 0, 1, . . . ,m − 1, qk =

∫ a2k+1

a2k

q, wk =

∫ a2k+1

a2k

w, k = 0, 1, . . . ,m,

r̃i =

∫ b2i+2

b2i+1

r, i = 0, 1, . . . ,n − 1, q̃i =

∫ b2i+1

b2i

q, w̃i =

∫ b2i+1

b2i

w, i = 0, 1, . . . ,n.
(13)

Then we can state the iterative formula as follows:

Lemma 3.1. Let (10)-(13) hold. Let Φ(t, λ) = [φi j(t, λ)] be the fundamental matrix solution of the equation (6)
determined by the initial condition Φ(a, λ) = I for each λ ∈ C. Then we have that

Φ(a1, λ) =

[
1 0

q0 − λw0 1

]
,

Φ(a3, λ) =

[
1 + (q0 − λw0)r0 r0

φ21(a3, λ) 1 + (q1 − λw1)r0

]
,

where φ21(a3, λ) = (q0 − λw0) + (q1 − λw1) + (q0 − λw0)(q1 − λw1)r0.
And in general, for 1 ≤ i ≤ m,

Φ(a2i+1, λ) =

[
1 ri−1

qi − λwi 1 + (qi − λwi)ri−1

]
Φ(a2i−1, λ).

Proof. Let u = px∆, r = 1
p , then we have x∆ = ru,u∆ = (q−λw)xσ.Observe from the system, that xσ is constant

on each subinterval where r is identically zero and u is constant on each subinterval where both q and w
are identically zero. Consider the equation (1) and the time scale T = [a, b] ∪ {c} ∪ [d, e]. The result follows
from repeated applications of the system.

Lemma 3.2. Let (10)-(13) hold. Let Ψ(t, λ) = [ψi j(t, λ)] be the fundamental matrix solution of the equation (6)
determined by the initial condition Ψ(d, λ) = I for each λ ∈ C. Then we have that

Ψ(b1, λ) =

[
1 0

q̃0 − λw̃0 1

]
,
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Ψ(b3, λ) =

[
1 + (q̃0 − λw̃0)r̃0 r̃0

ψ21(b3, λ) 1 + (q̃1 − λw̃1)r̃0

]
,

where ψ21(b3, λ) = (q̃0 − λw̃0) + (q̃1 − λw̃1) + (q̃0 − λw̃0)(q̃1 − λw̃1)r̃0.
And in general, for 1 ≤ j ≤ n,

Ψ(b2 j+1, λ) =

[
1 r̃ j−1

q̃ j − λw̃ j 1 + (q̃ j − λw̃ j)r̃ j−1

]
Ψ(b2 j−1, λ).

Proof. The proof is similar to the one for Lemma 3.1.

Lemma 3.3. Let (10)-(13) hold. Φ(t, λ),Ψ(t, λ) be defined as Lemma 3.1 and Lemma 3.2 respectively, then

Φ(e, λ) = Ψ(e, λ)M(λ)Φ(b, λ), (14)

where M(λ) = M2(λ)M1(λ), and

M1(λ) =

[
1 (c − b)r(b)

k1(λ) l1(λ)

]
, M2(λ) =

[
1 (d − c)r(c)

k2(λ) l2(λ)

]
,

k1(λ) = [q(b) − λw(b)](c − b), l1(λ) = 1 + [q(b) − λw(b)](c − b)2r(b),

k2(λ) = [q(c) − λw(c)](d − c), l2(λ) = 1 + [q(c) − λw(c)](d − c)2r(c).

Proof. From (1), (5), we know that

(px∆)(b) =
p(b)x(c) − p(b)x(b)

c − b
, (px∆)∆(b) =

(px∆)(c) − (px∆)(b)
c − b

, (15)

(px∆)∆(b) = [q(b) − λw(b)]x(c). (16)

Calculate from (15), (16) that

X(c) = M1(λ)X(b),

where

M1(λ) =

[
1 (c − b)r(b)

k1(λ) l1(λ)

]
,

k1(λ) = [q(b) − λw(b)](c − b), l1(λ) = 1 + [q(b) − λw(b)](c − b)2r(b).

Similarly, we have

X(d) = M2(λ)X(c),

where

M2(λ) =

[
1 (d − c)r(c)

k2(λ) l2(λ)

]
,

k2(λ) = [q(c) − λw(c)](d − c), l2(λ) = 1 + [q(c) − λw(c)](d − c)2r(c).

Also, because

X(b) = Φ(b, λ)X(a), X(e) = Ψ(e, λ)X(d),

then X(e) = Ψ(e, λ)M(λ)Φ(b, λ)X(a) and X(e) = Φ(e, λ)X(a).
From det(I + µ(b)A(b)) , 0, and Lemma 2.7 it can be obtained that

Φ(e) = Ψ(e, λ)M(λ)Φ(b, λ).



J.-J. Ao, J. Wang / Filomat 33:6 (2019), 1747–1757 1753

Corollary 3.4. Let M(λ) =

[
m11(λ) m12(λ)
m21(λ) m22(λ)

]
, then for the fundamental matrix Φ we have that

φ11(e, λ) = RR̃
m−1∏
i=0

(qi − λwi)
n−1∏
j=1

(q̃ j − λw̃ j)H(λ) + φ̃11(λ),

φ12(e, λ) = RR̃
m−1∏
i=1

(qi − λwi)
n−1∏
j=1

(q̃ j − λw̃ j)H(λ) + φ̃12(λ),

φ21(e, λ) = RR̃
m−1∏
i=0

(qi − λwi)
n∏

j=1

(q̃ j − λw̃ j)H(λ) + φ̃21(λ),

φ22(e, λ) = RR̃
m−1∏
i=1

(qi − λwi)
n∏

j=1

(q̃ j − λw̃ j)H(λ) + φ̃22(λ),

where H(λ) = m11(λ)(q̃0 − λw̃0) + m12(λ)(qm − λwm)(q̃0 − λw̃0) + m21(λ) + m22(λ)(qm − λwm), R =
∏m−1

i=0 ri,
R̃ =

∏n−1
i=0 r̃i, and φ̃i j(λ) = o(RR̃) as min{rk, r̃l : k = 0, . . . ,m − 1, l = 0, . . . ,n − 1} −→ ∞ for fixed q, w and

λ, i, j = 1, 2.

Now we can state our main results. Consider the SLP consisting of the equation (1) together with
separated eigenparameter-dependent boundary conditions (3). Then we have the following theorem.

Theorem 3.5. Let m,n ∈N, but w̃0 + w(c)(d − c) , 0, let (10)-(13) hold. Consider the SLP (1), (3). Then:
(1) If α′2β

′

2 , 0, then the SLP with separated eigenparameter-dependent boundary conditions (1), (3) has exactly
m + n + 5 eigenvalues λ j, j = 0, 1, . . . ,m + n + 4.

(2) If α′2β
′

2 = 0, but α′2β
′

1w0 + (α2β′2 + α′2β2)w0w̃n − α′1β
′

2w̃n , 0, then the SLP with separated eigenparameter-
dependent boundary conditions (1), (3) has exactly m + n + 4 eigenvalues λ j, j = 0, 1, . . . ,m + n + 3.

(3) If α′2β
′

2 = α′2β
′

1w0 + (α2β′2 + α′2β2)w0w̃n − α′1β
′

2w̃n = 0, but (α′2β1 + α2β′1)w0 − α′1β
′

1 + α2β2w0w̃n − (α′1β2 +
α1β′2)w̃n , 0, then the SLP with separated eigenparameter-dependent boundary conditions (1), (3) has exactly m+n+3
eigenvalues λ j, j = 0, 1, . . . ,m + n + 2.

(4) If α′2β
′

2 = α′2β
′

1w0 +(α2β′2 +α′2β2)w0w̃n−α′1β
′

2w̃n = (α′2β1 +α2β′1)w0−α′1β
′

1 +α2β2w0w̃n−(α′1β2 +α1β′2)w̃n = 0,
butα2β1w0−(α1β′1+α′1β1)−α1β2w̃n , 0, then the SLP with separated eigenparameter-dependent boundary conditions
(1), (3) has exactly m + n + 2 eigenvalues λ j, j = 0, 1, . . . ,m + n + 1.

(5) If α′2β
′

2 = α′2β
′

1w0 + (α2β′2 +α′2β2)w0w̃n−α′1β
′

2w̃n = (α′2β1 +α2β′1)w0−α′1β
′

1 +α2β2w0w̃n− (α′1β2 +α1β′2)w̃n =
α2β1w0−(α1β′1 +α′1β1)−α1β2w̃n = 0, but α1β1 , 0, then the SLP with separated eigenparameter-dependent boundary
conditions (1), (3) has exactly m + n + 1 eigenvalues λ j, j = 0, 1, . . . ,m + n.

(6) If none of the above conditions holds, then the SLP with separated eigenparameter dependent boundary
conditions (1), (3) either has l eigenvalues for l ∈ {1, 2, . . . ,m + n} or is degenerate.

Proof. We will prove the case (1) only, and the other cases can be proved in the same way, hence is omitted
here. From Lemma 2.8 and the time scale T = [a, b]∪ {c} ∪ [d, e] with −∞ < a < b < c < d < e < +∞we know
that

δ(λ) = det(Aλ) + det(Bλ) + c11φ11(e, λ) + c12φ12(e, λ) + c21φ21(e, λ) + c22φ22(e, λ),

note from Corollary 3.4 that the degree ofφ11(e, λ), φ12(e, λ), φ21(e, λ), andφ22(e, λ) in λ are m+n+2, m+n+1,
m + n + 3, and m + n + 2, respectively. Thus when α′2β

′

2 , 0, it can be concluded from Corollary 3.4 that
the degree of the characteristic polynomial function δ(λ) is m + n + 5, hence from Fundamental Theorem of
Algebra we know that δ(λ) has exactly m + n + 5 roots, thus m + n + 5 eigenvalues for SLP (1), (3) by Lemma
2.8.
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Consider the SLP consisting of the equation (1) together with coupled eigenparameter dependent
boundary conditions (4). Then we have the following theorem.

Theorem 3.6. Let m,n ∈N, but w̃0 + w(c)(d − c) , 0, let (10)-(13) hold. Consider the SLP (1), (4). Then:
(1) If α′4β

′

2 − α
′

2β
′

4 , 0, then the SLP with coupled eigenparameter-dependent boundary conditions (1), (4) has
exactly m + n + 5 eigenvalues λ j, j = 0, 1, . . . ,m +n + 4.

(2) If α′4β
′

2 − α
′

2β
′

4 = 0, but (α′3β
′

2 − α
′

2β
′

3)w0 + (α4β′2 + α′4β2 − α2β′4 − α
′

2β4)w0w̃n + (α′1β
′

4 − α
′

4β
′

1)w̃n , 0, then
the SLP with coupled eigenparameter-dependent boundary conditions (1), (4) has exactly m + n + 4 eigenvalues
λ j, j = 0, 1, . . . ,m + n + 3.

(3) If α′4β
′

2−α
′

2β
′

4 = (α′3β
′

2−α
′

2β
′

3)w0 +(α4β′2 +α′4β2−α2β′4−α
′

2β4)w0w̃n +(α′1β
′

4−α
′

4β
′

1)w̃n = 0, but (α3β′2 +α′3β2−

α2β′3−α
′

2β3)w0 + (α′1β
′

3−α
′

3β
′

1)+ (α4β2−α2β4)w0w̃n + (α1β′4 +α′1β4−α4β′1−α
′

4β1)w̃n , 0, then the SLP with coupled
eigenparameter-dependent boundary conditions (1), (4) has exactly m + n + 3 eigenvalues λ j, j = 0, 1, . . . ,m + n + 2.

(4) If α′4β
′

2 − α
′

2β
′

4 = (α′3β
′

2 − α
′

2β
′

3)w0 + (α4β′2 + α′4β2 − α2β′4 − α
′

2β4)w0w̃n + (α′1β
′

4 − α
′

4β
′

1)w̃n = (α3β′2 + α′3β2 −

α2β′3 − α
′

2β3)w0 + (α′1β
′

3 − α
′

3β
′

1) + (α4β2 − α2β4)w0w̃n + (α1β′4 + α′1β4 − α4β′1 − α
′

4β1)w̃n = 0, but (α3β2 − α2β3)w0 +
(α1β′3 + α′1β3 − α3β′1 − α

′

3β1) + (α1β4 − α4β1)w̃n , 0, then the SLP with coupled eigenparameter dependent boundary
conditions (1), (4) has exactly m + n + 2 eigenvalues λ j, j = 0, 1, . . . ,m + n + 1.

(5) If α′4β
′

2 − α
′

2β
′

4 = (α′3β
′

2 − α
′

2β
′

3)w0 + (α4β′2 + α′4β2 − α2β′4 − α
′

2β4)w0w̃n + (α′1β
′

4 − α
′

4β
′

1)w̃n = (α3β′2 + α′3β2 −

α2β′3 −α
′

2β3)w0 + (α′1β
′

3 −α
′

3β
′

1) + (α4β2 −α2β4)w0w̃n + (α1β′4 +α′1β4 −α4β′1 −α
′

4β1)w̃n = (α3β2 −α2β3)w0 + (α1β′3 +
α′1β3−α3β′1−α

′

3β1)+(α1β4−α4β1)w̃n = 0, but α1β3−α3β1 , 0, then the SLP with coupled eigenparameter-dependent
boundary conditions (1), (4) has exactly m + n + 1 eigenvalues λ j, j = 0, 1, . . . ,m + n.

(6) If none of the above conditions holds, then the SLP with coupled eigenparameter dependent boundary conditions
(1), (4) either has l eigenvalues for l ∈ {1, 2, . . . ,m + n} or is degenerate.

Proof. The proof is similar to the one for Theorem 3.5.

Corollary 3.7. Assume that equation (1) is defined on time scaleT. HereT = {e1, · · · , em}∪S, S = ∪n
i=1[ai, bi], bi <

ai+1, i = 1, 2, . . . ,n − 1, − ∞ < e j < +∞, m,n < +∞. Assume that a is the lower bound of T and b is the upper
bound of T. The SLP consisting of equation (1) with eigenparameter-dependent boundary conditions (3) and (4)
respectively. We have partition of every interval [ai, bi] similar to (10). And the coefficients are defined as (11)-(13).
Then the SLP has exactly finite eigenvalues.

To illustrate our main results two examples are given as follows:
Example 1. Consider the SLP with separated eigenparameter-dependent boundary conditions

−(pxM)M + qxσ = λwxσ, t ∈ T = [−4,−1] ∪ {0} ∪ [1, 4],
λx(−4) + (pxM)(−4) = 0,
2x(4) + (λ − 1)(pxM)(4) = 0.

(17)

Let m = 1 and n = 1, and p, q, w are piecewise constant functions defined as follows:

r(t) =
1

p(t)
=



0, t ∈ [−4,−3)
1, t ∈ [−3,−2)
0, t ∈ [−2,−1)
1, t = −1
1, t = 0
0, t ∈ [1, 2)
1, t ∈ [2, 3)
0, t ∈ [3, 4)
1, t = 4,

q(t) =



1, t ∈ [−4,−3)
0, t ∈ [−3,−2)
1, t ∈ [−2,−1]
0, t = 0
1, t ∈ [1, 2)
0, t ∈ [2, 3)
1, t ∈ [3, 4],

w(t) =



1, t ∈ [−4,−3)
0, t ∈ [−3,−2)
1, t ∈ [−2,−1]
0, t = 0
1, t ∈ [1, 2)
0, t ∈ [2, 3)
1, t ∈ [3, 4].

(18)

From the conditions given we know that

Aλ =

[
λ 1
0 0

]
, Bλ =

[
0 0
2 λ − 1

]
,
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and

θ1 = −1 , 0, θ2 = 2 , 0.

Then we can deduce that the characteristic function
δ(λ) = −2φ11 + 2λφ12 + (1 − λ)φ21 + λ(λ − 1)φ22

= 2λ6
− 26λ5 + 125λ4

− 271λ3 + 251λ2
− 62λ − 13.

Accordingly, the SLP with separated eigenparameter-dependent boundary conditions (17), (18) has exactly
m + n + 4 = 6 eigenvalues

λ0 = −0.130464, λ1 = 0.714767, λ2 = 1.62582, λ3 = 2.58332, λ4 = 3.61264, λ5 = 4.59392.

The graph of the characteristic function is displayed in Figure 1.
Example 2. Consider the SLP with coupled eigenparameter-dependent boundary conditions

−(pxM)M + qxσ = λwxσ, t ∈ T = [−3, 0] ∪ { 12 } ∪ [1, 4],
λx(−3) + (pxM)(−3) + (2λ + 1)x(4) + 3λ(pxM)(4) = 0,
−x(−3) + (2λ + 1)(pxM)(−3) + (λ + 2)x(4) + (pxM)(4) = 0.

(19)

Let m = 1 and n = 1, and p, q, w are piecewise constant functions defined as follows:

r(t) =
1

p(t)
=



0, t ∈ [−3,−2)
4, t ∈ [−2,−1)
0, t ∈ [−1, 0)
1, t = 0
1, t = 1

2
0, t ∈ [1, 2)
2, t ∈ [2, 3)
0, t ∈ [3, 4)
1, t = 4,

q(t) =



1
2 , t ∈ [−3,−2)
0, t ∈ [−2,−1)
1, t ∈ [−1, 0]
1, t = 1

2
3, t ∈ [1, 2)
0, t ∈ [2, 3)
1, t ∈ [3, 4],

w(t) =



1, t ∈ [−3,−2)
0, t ∈ [−2,−1)
3, t ∈ [−1, 0]
1
2 , t = 1

2
1, t ∈ [1, 2)
0, t ∈ [2, 3)
2, t ∈ [3, 4].

(20)

From the conditions given we know that

Âλ =

[
λ 1
−1 2λ + 1

]
, B̂λ =

[
2λ + 1 3λ
λ + 2 1

]
,

and

det(Âλ) , 0, det(B̂λ) , 0,

rank
[

0 1 1 0
−1 1 2 1

]
= 2, rank

[
1 0 2 3
0 2 1 0

]
= 2,

rank
[

0 1 1 0
1 0 2 3

]
= 2, rank

[
−1 1 2 1
0 2 1 0

]
= 2.

Then we can deduce that the characteristic function

δ̂(λ) =det(Âλ) + det(B̂λ) + (4λ2 + 3λ − 1)φ11 + (λ2 + 4λ + 1)φ12 + (6λ2 + 3λ − 1)φ21 + 4λφ22

=
1
64

(−8640λ7 + 88272λ6
− 264504λ5 + 215030λ4 + 187565λ3

− 355140λ2 + 134867λ − 4850).

Hence the SLP with coupled eigenparameter-dependent boundary conditions (19), (20) has exactly m+n+5 =
7 eigenvalues

λ0 = −1.06332, λ1 = 0.0401026, λ2 = 0.597517, λ3 = 1.16765 − 0.336124i,
λ4 = 1.16765 + 0.336124i, λ5 = 2.6273, λ6 = 5.67976.

The graph of the characteristic function is displayed in Figures 2 and 3.
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Figure 1: Characteristic Function in Example 1

-2 2 4 6

-200 000

200 000

400 000

0
Λ

∆HΛL

Figure 2: Characteristic Function in Example 2
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Figure 3: Characteristic Function in Example 2
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