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Abstract. The point and residual spectra of an operator are, respectively, split into 1,2-point spectrum and
1,2-residual spectrum, based on the denseness and closedness of its range. LetH ,K be infinite dimensional
complex separable Hilbert spaces and write MX =

( A X
0 B

)
∈ B(H ⊕K ). For given operators A ∈ B(H) and

B ∈ B(K ), the sets
⋃

X∈B(K ,H)
σ∗,i(MX) (∗ = p, r; i = 1, 2), are characterized. Moreover, we obtain some necessary

and sufficient condition such that σ∗,i(MX) = σ∗,i(A) ∪ σ∗,i(B) (∗ = p, r; i = 1, 2) for every X ∈ B(K ,H).

1. Introduction

We assume throughout that H and K are both complex separable infinite dimensional Hilbert spaces.
If A is a bounded linear operator from H to K , we write A ∈ B(H ,K ) and, if H = K , A ∈ B(H). The
identity operator onH is denoted by IH and simply by I if the underlying space is clear from the context.
Let A ∈ B(H ,K ). ThenN(A) and R(A) are, respectively, used to denote the kernel and the range of A, and
we write n(A) := dimN(A) and d(A) := dimR(A)⊥.

If there exists an operator A−1
l ∈ B(K ,H) such that A−1

l A = IH (resp. AA−1
r = IK ), then A is said to be

left (resp. right) invertible. If there exists an operator A−1
∈ B(K ,H) such that A−1A = IH and AA−1 = IK ,

then we call it invertible. Obviously, A is invertible if and only if A is both left and right invertible. In
the Hillbert space, we have the following well-known properties: (i) A is left invertible if and only if A
is bounded below, and if and only if A is injective, i.e., N(A) = {0} and its range R(A) is closed; (ii) A is
right invertible if and only if A is surjective, i.e., R(A) = K (see [2]). According to the Fredholm alternative
theorem, A is left (resp. right) invertible if and only if A∗ is right (resp. left) invertible, where (·)∗ denotes
the adjoint operation.

Recall we say that the operator A+ is the Moore-Penrose inverse of A inB(K ,H), if it solves the following
system of operator equations

AA+A = A, A+AA+ = A+,
(AA+)∗ = AA+, (A+A)∗ = A+A.
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Note that A is Moore-Penrose invertible if and only if its range R(A) is closed (see [1]).
Now, letH = K , i.e., A ∈ B(H). Then, the sets

σ(A) = {λ ∈ C : A − λ is not invertible} ,
σp(A) =

{
λ ∈ C : A − λ is noninjective

}
,

σr(A) =
{
λ ∈ C : A − λ is injective and R(A − λ) , H

}
,

σc(A) =
{
λ ∈ C : A − λ is injective,R(A − λ) = H and R(A − λ) , H

}
,

σm(A) = {λ ∈ C : A − λ is not Moore-Penrose invertible} ,
σl(A) = {λ ∈ C : A − λ is not left invertible} ,
σδ(A) =

{
λ ∈ C : A − λ is not right invertible

}
.

are the spectrum, point spectrum, residual spectrum, continuous spectrum, Moore-Penrose spectrum, left
spectrum and right spectrum of A, respectively. As usual, the resolvent set of A is defined by ρ(A) = C\σ(A).
For convenience, we write ρm(A) = C\σm(A) and ρl(A) = C\σl(A). In terms of the density and the closedness
of R(A−λ), the point spectrum σp(A) and the residual spectrum σr(A) of A have the following subdivisions:
σp(A) = σp,1(A) ∪ σp,2(A) (see [1, p. 89]) and σr(A) = σr,1(A) ∪ σr,2(A), where

σp,1(A) =
{
λ ∈ σp(A) : R(A − λ) = H

}
,

σp,2(A) =
{
λ ∈ σp(A) : R(A − λ) , H

}
,

σr,1(A) =
{
λ ∈ σr(A) : R(A − λ) is closed

}
,

σr,2(A) =
{
λ ∈ σr(A) : R(A − λ) is not closed

}
.

As we will see, the above subdivisions closely connect with the relevant space decomposition, and are
useful in the research of spectral inclusion properties of operators.

For given diagonal entries A ∈ B(H) and B ∈ B(K ), the authors have extensively studied the upper
triangular operator matrix

MX =

(
A X
0 B

)
∈ B(H ⊕K )

with an unknown operator X ∈ B(K ,H). See, e.g., [3–19]. In [5, 6, 9, 10, 12, 14–18], the perturbations of
different spectra (the spectra, left (right) spectra, point spectra, continuous spectra, residual spectra,· · · ) of
MX were discussed. In [14, 15], the sets⋃

X∈Inv(K ,H)
σl(MX) and

⋃
X∈Inv(K ,H)

σlw(MX)

were characterized, where σlw(·) and Inv(K ,H) denote the left Weyl spectrum and the set of all invertible
operators fromK intoH . In [13], the set

⋃
X∈B(K ,H)

σr(MX) was given by

⋃
X∈B(K ,H)

σr(MX) = [{λ ∈ σm(A) : d(A − λ) + d(B − λ) > 0}

∪{λ ∈ C : n(B − λ) ≤ d(A − λ),n(B − λ) < d(A − λ) + d(B − λ)}

∪{λ ∈ C : n(B − λ) = d(A − λ) = ∞}] \ σp(A).

(1)

In [7, 8, 10, 11, 19] the authors were interested by the following equality

σ∗(MX) = σ∗(A) ∪ σ∗(B) for every X ∈ B(K ,H),

where σ∗ ∈ {σ, σe, σw, σb}, σe(·), σw(·) and σb(·) denote the essential spectrum, Weyl spectrum and Browder
spectrum.
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One aim of the present paper is to describe the sets⋃
X∈B(K ,H)

σp,1(MX),
⋃

X∈B(K ,H)
σp,2(MX),

⋃
X∈B(K ,H)

σr,1(MX),
⋃

X∈B(K ,H)
σr,2(MX).

The other aim is to explore the relation between σ∗,i(MX) and σ∗,i(A)∪σ∗,i(B) (∗ = p, r; i = 1, 2). As a byproduct,
we also obtain some necessary and sufficient condition of

σ∗,i(MX) = σ∗,i(A) ∪ σ∗,i(B)(∗ = p, r; i = 1, 2) for every X ∈ B(K ,H)

in terms of the spectral properties of two diagonal entries A and B in MX.

2. Main Results

We first review some auxiliary lemmas, which are useful to prove the main results.

Lemma 2.1 (see [13, Lemma 2.3]). Let A ∈ B(H) be an operator with R(A) nonclosed. Then, there exists a closed
subspace Ω ⊂ R(A) ofH such that Ω ∩ R(A) = {0} and dimΩ = ∞.

The following Lemmas are obvious, and their proofs are omitted here.

Lemma 2.2. Let A ∈ B(H) and B ∈ B(K ). Then, MX is injective for every X ∈ B(K ,H) if and only if A and B are
both injective.

Lemma 2.3. Let A ∈ B(H) and B ∈ B(K ). Then,

R(MX) = H ⊕K for every X ∈ B(K ,H)

if and only if R(A) = H and R(B) = K .

Theorem 2.4. Let A ∈ B(H) and B ∈ B(K ), then⋃
X∈B(K ,H)

σp,1(MX) = ∆1 ∪ ∆2 ∪ ∆3,

where

∆1 = (σp,1(B) ∩ σm(B)) ∪ (σp(A) ∩ σc(B)),
∆2 = (σp,1(A) ∩ ρ(B)) ∪ (σp,1(B) ∩ ρ(A))

∪(σp,1(A) ∩ σp,1(B)) ∪ (σp,1(B) ∩ σc(A))
∪{λ ∈ σp,1(B) ∩ σr(A) : n(B − λ) > d(A − λ)}
∪{λ ∈ σp,1(B) ∩ σp,2(A) : n(B − λ) ≥ d(A − λ)},

∆3 = {λ ∈ σp,1(B) : n(B − λ) = ∞}.

Proof. First, we prove that
3⋃

k=1
∆k ⊆

⋃
X∈B(H ,K )

σp,1(MX). Without loss of generality, we only prove the case

when λ = 0 in what follows. Let 0 ∈ ∆1. Since R(B) is not closed, then R(B∗) is not closed. By Lemma
2.1, there exists an infinite dimensional closed subspace Ω ⊂ R(B∗) = N(B)⊥ such that Ω ∩ R(B∗) = {0}. If
n(A∗) < ∞, then there exist closed subspaces Ω1 and Ω2 of Ω such that dim Ω1 = n(A∗) and Ω = Ω1 ⊕Ω2.
Define X∗0 ∈ B(H ,K ) by

X∗0 =

(
0 X∗1
0 0

)
:
(
N(A∗)⊥

N(A∗)

)
→

(
Ω1

Ω2 ⊕Ω⊥

)
,
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where X∗1 : Ω1 → R(A)⊥ is a unitary operator. Then, M∗X0
can be written as

M∗X0
=

A∗1 0 0
0 X∗1 B∗1
0 0 B∗2

 :

N(A∗)⊥

N(A∗)
K

→
 H

Ω1
Ω2 ⊕Ω⊥

 .
Clearly, A∗1 and B∗ are injective, and so by Ω ∩ R(B∗) = {0}, one can see that M∗X0

is injective. On the other

hand, we obtain that R(M∗X0
) , H ⊕K from 0 ∈ σp,1(B)∪ σp(A). This implies that R(MX0 ) = H ⊕K and MX0

is noninjective. Therefore 0 ∈ σp,1(MX0 ). If n(A∗) = ∞, then one can define a unitary operator X∗1 fromN(A∗)
onto Ω. Taking

X∗0 =

(
0 X∗1
0 0

)
:
(
N(A∗)⊥

N(A∗)

)
→

(
Ω
Ω⊥

)
,

we know that M∗X0
is clearly injective and R(M∗X0

) , H ⊕K . Hence 0 ∈ σp,1(MX0 ).

Let 0 ∈ ∆2. If 0 ∈ (σp,1(A) ∩ ρ(B)) ∪ (σp,1(B) ∩ ρ(A)) ∪ (σp,1(A) ∩ σp,1(B)), then by Lemma 2.3, R(MX) =
H ⊕K for every X ∈ B(K ,H). Since 0 ∈ σp,1(A) or 0 ∈ σp,1(B) ∩ ρ(A), it follows that 0 ∈ σp(MX) for every
X ∈ B(K ,H). Hence 0 ∈ σp,1(MX) for every X ∈ B(K ,H). If 0 ∈ σp,1(B) ∩ σc(A), then define X0 ∈ B(K ,H)
by X0 = 0. It is obvious that 0 ∈ σp,1(MX0 ). If 0 ∈ σp,1(B) ∩ σr(A) and n(B) > d(A), then there exists a finite
dimensional subspace Ω ofN(B) such that dim Ω = d(A) andN(B) = Ω ⊕Ω⊥. Define X0 ∈ B(K ,H) by

X0 =

(
0 0 0

X1 0 0

)
:

 Ω
Ω⊥

N(B)⊥

→
(
R(A)
R(A)⊥

)
, (2)

where X1 : Ω→ R(A)⊥ is a unitary operator. Then, MX0 can be written as

MX0 =

A1 0 0 0
0 X1 0 0
0 0 0 B1

 :


H

Ω
Ω⊥

N(B)⊥

→
 R(A)
R(A)⊥

K

 ,
Clearly, we have 0 ∈ σp,1(MX0 ). If 0 ∈ σp,1(B) ∩ σp,2(A) and n(B) ≥ d(A), then define X0 ∈ B(K ,H) as in (2).

Now, let 0 ∈ ∆3. Then one can define a unitary operator X1 fromN(B) ontoH . Taking X0 ∈ B(K ,H)

X0 =
(
X1 0

)
:
(
N(B)
N(B)⊥

)
→H ,

we have the operator matrix

MX0 =

(
A X1 0
0 0 B1

)
:

 HN(B)
N(B)⊥

→
(
H

K

)
.

From the relation(
A X1 0
0 0 B1

) I −X−1
1 A 0

0 I 0
0 0 I

 =

(
0 X1 0
0 0 B1

)
and 0 ∈ σp,1(B), we obtain that 0 ∈ σp,1(MX0 ).

For the opposite inclusion, it suffices to prove that 0 <
3⋃

k=1
∆k implies 0 <

⋃
X∈B(H ,K )

σp,1(MX). Now we

consider four cases.
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Case 1: A and B are both injective. Obviously, MX is injective for every X ∈ B(K ,H) from Lemma 2.2 .
Therefore 0 <

⋃
X∈B(H ,K )

σp,1(MX).

Case 2: R(B) , K . Then R(MX) , H ⊕K for every X ∈ B(K ,H). Therefore 0 <
⋃

X∈B(H ,K )
σp,1(MX).

Case 3: B is surjective and n(B) < d(A). Indeed, MX as an operator from N(A)⊥ ⊕N(A) ⊕N(B)⊥ ⊕N(B)
into R(A) ⊕ R(A)⊥ ⊕K admits the following block representation

MX =

A1 0 X1 X2
0 0 X3 X4
0 0 B1 0


for every X ∈ B(K ,H), where B1 : N(B)⊥ → K is invertible. Then there is an invertible operator

U =

I 0 −X1B−1
1

0 I −X3B−1
1

0 0 I

 :

 R(A)
R(A)⊥

K

→
 R(A)
R(A)⊥

K

 (3)

such that

UMX =

A1 0 0 X2
0 0 0 X4
0 0 B1 0

 . (4)

In view of n(B) < d(A), we see that R(X4) , R(A)⊥. It follows from (4) that R(MX) , H ⊕ K for every
X ∈ B(K ,H). Then 0 <

⋃
X∈B(H ,K )

σp,1(MX).

Case 4: A is injective, B is surjective and n(B) = d(A) < ∞. Then we have

MX =

A1 X1 X2
0 X3 X4
0 B1 0

 :

 HN(B)⊥

N(B)

→
 R(A)
R(A)⊥

K


for every X ∈ B(K ,H), where B1 : N(B)⊥ → K is invertible. We also have

U

A1 X1 X2
0 X3 X4
0 B1 0

 =

A1 0 X2
0 0 X4
0 B1 0

 ,
where U as in (3). Note that n(B) = d(A) < ∞. If X4 : N(B) → R(A)⊥ is noninjective, then R(X4) , R(A)⊥,
and hence R(MX) , H ⊕ K . If X4 : N(B) → R(A)⊥ is injective, then MX is injective. This implies that
0 <

⋃
X∈B(H ,K )

σp,1(MX).

Corollary 2.5. Let A ∈ B(H) and B ∈ B(K ). Then,

σp,1(MX) ⊆ σp,1(A) ∪ σp,1(B) for every X ∈ B(K ,H)

if and only if σp,2(A) ∩ σc(B) = ∅.

Proof. Sufficiency. By Theorem 2.4, we have⋃
X∈B(K ,H)

σp,1(MX) ⊆ σp,1(A) ∪ σp,1(B) ∪ (σp,2(A) ∩ σc(B)).

If σp,2(A) ∩ σc(B) = ∅, then σp,1(MX) ⊆ σp,1(A) ∪ σp,1(B) for everyX ∈ B(K ,H).
Necessity. Assume to the contrary that there exists λ0 ∈ C, such that λ0 ∈ σp,2(A) ∩ σc(B). By Theorem

2.4, λ0 ∈ σp,1(MX0 ) for some X0 ∈ B(K ,H). This contradicts the assumption σp,1(MX) ⊆ σp,1(A) ∪ σp,1(B) for
everyX ∈ B(K ,H), since λ0 ∈ σp,2(A) ∩ σc(B).
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Corollary 2.6. Let A ∈ B(H) and B ∈ B(K ). Then,

σp,1(MX) = σp,1(A) ∪ σp,1(B) for every X ∈ B(K ,H)

if and only if σp,2(A) ∩ σc(B) = ∅, and the following statements are fulfilled:
(i) λ ∈ σp,1(A) implies λ ∈ ρ(B) ∪ σp,1(B) ∪ σc(B);
(ii) λ ∈ σp,1(B) implies λ ∈ ρ(A) ∪ σp,1(A).

Proof. Sufficiency. Assume that σp,2(A) ∩ σc(B) = ∅. By Corollary 2.5, we get σp,1(MX) ⊆ σp,1(A) ∪ σp,1(B)
for every X ∈ B(K ,H). Now, we prove the opposite inclusion. Suppose that λ = 0. If 0 ∈ σp,1(A),
then 0 ∈ ρ(B) ∪ σp,1(B) ∪ σc(B), and hence 0 ∈ σp,1(MX) for every X ∈ B(K ,H) from the proof of Theorem
2.4. If 0 ∈ σp,1(B), then 0 ∈ ρ(A) ∪ σp,1(A), and hence 0 ∈ σp,1(MX) for every X ∈ B(K ,H). Therefore,
σp,1(A) ∪ σp,1(B) ⊆ σp,1(MX) for every X ∈ B(K ,H).

Necessity. Assume to the contrary that there exists λ0 ∈ C, such that one of the assertions (i) and (ii) fails
to hold. There are three cases to consider.

Case 1: λ0 ∈ σp,1(A) and λ0 ∈ σp,2(B) ∪ σr(B). Take X0 ∈ B(K ,H) by X0 = 0. It is obvious that
λ0 < σp,1(MX0 ). This contradicts the assumption σp,1(MX) = σp,1(A) ∪ σp,1(B) for every X ∈ B(K ,H), since
λ0 ∈ σp,1(A) ∪ σp,1(B).

Case 2: λ0 ∈ σp,1(B) and λ0 ∈ σp,2(A) ∪ σr(A). Take X0 ∈ B(K ,H) by X0 = 0. Then λ0 ∈ σp,2(MX0 ), and
hence λ0 < σp,1(MX0 ).

Case 3: λ0 ∈ σp,1(B) ∩ σc(A). By Lemma 2.1, there exists an infinite dimensional closed subspace
Ω ⊂ R(A − λ0) such that Ω ∩ R(A − λ0) = {0}. then we may further define a unitary operator X1 from
N(B − λ0) to some closed subspace of Ω. Take X0 ∈ B(K ,H) by

X0 =

(
X1 0
0 0

)
:
(
N(B − λ0)
N(B − λ0)⊥

)
→

(
Ω
Ω⊥

)
. (5)

Clearly, MX0 − λ0 is injective, and hence λ0 < σp,1(MX0 ).

Theorem 2.7. Let A ∈ B(H) and B ∈ B(K ), then⋃
X∈B(K ,H)

σp,2(MX)

= σp,2(A) ∪ σp,2(B) ∪ (σp,1(B) ∩ σr(A)) ∪ (σp,1(A) ∩ σr(B)).

Proof. Without loss of generality, we suppose that λ = 0. Let 0 ∈ σp,2(A) ∪ σp,2(B) ∪ (σp,1(B) ∩ σr(A)) ∪
(σp,1(A) ∩ σr(B)). Define X0 ∈ B(K ,H) by X0 = 0. Clearly, we have 0 ∈ σp,2(MX0 ).

Now, let 0 < σp,2(A) ∪ σp,2(B) ∪ (σp(B) ∩ σr(A)) ∪ (σp(A) ∩ σr(B)). Then we consider two cases:
Case 1: A and B are injective. By Lemma 2.2, MX is injective for every X ∈ B(K ,H). Therefore

0 <
⋃

X∈B(K ,H)
σp,2(MX).

Case 2: R(A) = H and R(B) = K . By Lemma 2.3, R(MX) = H ⊕ K for every X ∈ B(K ,H). Hence
0 <

⋃
X∈B(K ,H)

σp,2(MX).

Corollary 2.8. Let A ∈ B(H) and B ∈ B(K ). Then,

σp,2(MX) ⊆ σp,2(A) ∪ σp,2(B) for every X ∈ B(K ,H)

if and only if (σp,1(B) ∩ σr(A)) ∪ (σp,1(A) ∩ σr(B)) = ∅.

Proof. In the similar way as the proof of Corollary 2.5, using Theorem 2.7, we get the desired result.
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Corollary 2.9. Let A ∈ B(H) and B ∈ B(K ). Then,

σp,2(MX) = σp,2(A) ∪ σp,2(B) for every X ∈ B(K ,H)

if and only if (σp,1(B) ∩ σr(A)) ∪ (σp,1(A) ∩ σr(B)) = ∅, and the following statements are fulfilled:
(i) λ ∈ σp,2(A) implies λ ∈ σp,2(B) ∪ σr(B) ∪ ρ(B) ∪ {λ ∈ σp,1(B) ∩ ρm(B) : n(B − λ) < d(A − λ)};
(ii) λ ∈ σp,2(B) implies λ ∈ σp(A) ∪ ρ(A) ∪ {λ ∈ σr,1(A) : n(B − λ) > d(A − λ)}.

Proof. Sufficiency. Assume that (σp,1(B) ∩ σr(A)) ∪ (σp,1(A) ∩ σr(B)) = ∅ and assertions (i) and (ii) hold.
By Corollary 2.8, we get σp,2(MX) ⊆ σp,2(A) ∪ σp,2(B) for every X ∈ B(K ,H). Now, we prove the opposite
inclusion. Suppose that λ = 0. If 0 ∈ (σp,2(A) ∩ ρ(B)) ∪ (σp,2(B) ∩ ρ(A)), then 0 ∈ σp,2(MX) for every
X ∈ B(K ,H). If 0 ∈ σp,2(A) and 0 ∈ σp,2(B)∪ σr(B), then 0 ∈ σp,2(MX) for every X ∈ B(K ,H), since R(B) , K .
If 0 ∈ σp,2(A) ∩ σp,1(B) ∩ ρm(B) and n(B) < d(A), then R(MX) , H ⊕K for every X ∈ B(K ,H) from the proof
of Case 3 of Theorem 2.4. Hence, 0 ∈ σp,2(MX) for every X ∈ B(K ,H). If 0 ∈ σp,2(B)∩ σr,1(A) and n(B) > d(A),
then 0 ∈ σp,2(B∗) ∩ σp,1(A∗) ∩ ρm(A∗) and n(A∗) < d(B∗), and hence 0 ∈ σp,2(M∗X) for every X ∈ B(K ,H) from
the above discussion. Therefore, σp,2(A) ∪ σp,2(B) ⊆ σp,2(MX) for every X ∈ B(K ,H).

Necessity. Assume not, and let λ0 ∈ C, but one of the assertions (i) and (ii) fails to hold. There are four
cases to consider.

Case 1: λ0 ∈ (σp,2(A) ∩ σc(B)) ∪ (σp,2(A) ∩ σp,1(B) ∩ σm(B)). By Theorem 2.4, λ0 ∈ σp,1(MX0 ) for some
X0 ∈ B(K ,H) and hence λ0 < σp,2(MX0 ). This contradicts the assumption σp,2(MX) = σp,2(A) ∪ σp,2(B) for
every X ∈ B(K ,H), since λ0 ∈ σp,2(A) ∪ σp,2(B).

Case 2: λ0 ∈ σp,2(A) ∩ σp,1(B) ∩ ρm(B) and n(B − λ0) ≥ d(A − λ0). By Theorem 2.4, λ0 ∈ σp,1(MX0 ) for some
X0 ∈ B(K ,H) and hence λ0 < σp,2(MX0 ).

Case 3: λ0 ∈ σp,2(B) ∩ (σc(A) ∪ σr,2(A). Use the operator X0 defined as in (5). Then MX0 is injective, and
hence λ0 < σp,2(MX0 ).

Case 4: λ0 ∈ σp,2(B)∩ σr,1(A) and n(B−λ0) ≤ d(A−λ0). then we may further define a unitary operator X1
fromN(B − λ0) to some closed subspace of R(A − λ0)⊥. Take X0 ∈ B(K ,H) by

X0 =

(
X1 0
0 0

)
:
(
N(B − λ0)
N(B − λ0)⊥

)
→

(
R(A − λ0)⊥

R(A − λ0)

)
.

Then MX0 is injective, and hence λ0 < σp,2(MX0 ).

Corollary 2.10. Let A ∈ B(H) and B ∈ B(K ), then

σp(A) ∪ σp(B) =
⋃

X∈B(K ,H)
σp,1(MX) ∪

⋃
X∈B(K ,H)

σp,2(MX).

Corollary 2.11. Let A ∈ B(H) and B ∈ B(K ). Then λ ∈ σp,1(MX1 ) and λ ∈ σp,2(MX2 ) for certain X1,X2 ∈

B(K ,H), if and only if one of the statements (a)–( f ) is fulfilled:
(a) λ ∈ (σp,1(B) ∩ σm(B) ∩ σr(A));
(b) λ ∈ (σp,1(B) ∩ σm(B) ∩ σp,2(A)) ∪ (σp,2(A) ∩ σc(B));
(c) λ ∈ σp,1(B) ∩ σr(A) and n(B − λ) > d(A − λ);
(d) λ ∈ σp,1(B) ∩ σp,2(A) and n(B − λ) ≥ d(A − λ);
(e) λ ∈ σp,1(B) ∩ σr(A) and n(B − λ) = ∞;
( f ) λ ∈ σp,1(B) ∩ σp,2(A) and n(B − λ) = ∞.

Proof. The result is immediately from Theorem 2.4 and Theorem 2.7.

Theorem 2.12. Let A ∈ B(H) and B ∈ B(K ), then⋃
X∈B(K ,H)

σr,1(MX) = ∆1 ∪ ∆2 ∪ ∆3,
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where

∆1 = (σr,1(A) ∩ ρ(B)) ∪ (σr,1(B) ∩ ρ(A)) ∪ (σr,1(A) ∩ σr,1(B)),
∆2 = {λ ∈ σr,1(A) ∩ σp,1(B) ∩ ρm(B) : n(B − λ) < d(A − λ) < ∞}

∪{λ ∈ σr,1(A) ∩ σp,2(B) ∩ ρm(B) : n(B − λ) ≤ d(A − λ) < ∞},
∆3 = {λ ∈ σr,1(A) : d(A − λ) = ∞}.

Proof. First, we prove that
3⋃

k=1
∆k ⊆

⋃
X∈B(K ,H)

σr,1(MX). Without loss of generality, we suppose that λ = 0.

Let 0 ∈ ∆1. If 0 ∈ (σr,1(A) ∩ ρ(B)) ∪ (σr,1(B) ∩ ρ(A)), then we clearly have 0 ∈ σr,1(MX) for every X ∈ B(K ,H).
If 0 ∈ σr,1(A) ∩ σr,1(B), then MX as an operator from H ⊕ K into R(A) ⊕ R(A)⊥ ⊕ R(B) ⊕ R(B)⊥ admits the
following block representation

MX =


A1 X1
0 X2
0 B1
0 0


for every X ∈ B(K ,H). Clearly, A1 : H → R(A) and B1 : K → R(B) are invertible. Thus there is an invertible
operator

U =


I 0 −X1B−1

1 0
0 I −X2B−1

1 0
0 0 I 0
0 0 0 I

 :


R(A)
R(A)⊥

R(B)
R(B)⊥

→

R(A)
R(A)⊥

R(B)
R(B)⊥


such that

UMX =


A1 0
0 0
0 B1
0 0

 .
This shows that 0 ∈ σr,1(MX) for every X ∈ B(K ,H).

Let 0 ∈ ∆2. Since n(B) ≤ d(A), then there exists a finite dimensional subspace Ω of R(A)⊥ such that
dim Ω = n(B) and R(A)⊥ = Ω ⊕Ω⊥. Define X0 ∈ B(K ,H) by

X0 =

 0 0
X1 0
0 0

 :
(
N(B)
N(B)⊥

)
→

R(A)
Ω
Ω⊥

 ,
where X1 : N(B)→ R(A)⊥ is a unitary operator. Then, MX0 can be written as

MX0 =


A1 0 0
0 X1 0
0 0 0
0 0 B1

 :

 HN(B)
N(B)⊥

→

R(A)

Ω
Ω⊥

K

 .
Clearly A1 : H → R(A) is invertible and B1 : K → R(B) is left invertible. It is easy to see that MX0 is injective
and R(MX0 ) is closed. On the other hand, since n(B) < d(A) or 0 ∈ σp,2(B), it follows that R(MX0 ) , H ⊕K .
Hence 0 ∈ σr,1(MX0 ).

Let 0 ∈ ∆3. Then one can define a unitary operator X1 fromK onto R(A)⊥. Taking

X0 =

(
0

X1

)
: K →

(
R(A)
R(A)⊥

)
,
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it is easy to check that 0 ∈ σr,1(MX0 ).

For the opposite inclusion, it suffices to prove that 0 <
3⋃

k=1
∆k implies 0 <

⋃
X∈B(K ,H)

σr,1(MX). Now we

consider three cases.
Case 1: A is not left invertible. Obviously, MX is not left invertible for every X ∈ B(K ,H). Therefore

0 <
⋃

X∈B(K ,H)
σr,1(MX).

Case 2: A is left invertible, R(B) is not closed and d(A − λ) < ∞. Then for every X ∈ B(K ,H), MX as an
operator fromH ⊕K into R(A) ⊕ R(A)⊥ ⊕K admits the following block representation

MX =

A1 X1
0 X2
0 B

 ,
where A1 : H → R(A) is invertible. So, we obtain

MX

(
I −A−1

1 X1
0 I

)
=

A1 0
0 X2
0 B

 .
Observe that X2 is a finite rank operator. Therefore 0 ∈ σm(B) leads to 0 ∈ σm(MX) for every X ∈ B(K ,H),
and hence 0 <

⋃
X∈B(K ,H)

σr,1(MX).

Case 3: A is left invertible, R(B) is closed and n(B) > d(A). Then, MX admits the following block
representation

MX =

A1 X1 X2
0 X3 X4
0 B1 0

 :

 HN(B)
N(B)⊥

→
 R(A)
R(A)⊥

K

 (6)

for every X ∈ B(K ,H). Clearly, A1 : H → R(A) is invertible. Thus the invertible operator V ∈ B(H ⊕
N(B) ⊕N(B)⊥) given by

V =

I −A−1
1 X1 −A−1

1 X2
0 I 0
0 0 I

 (7)

is such that

MXV =

A1 0 0
0 X3 X4
0 B1 0

 . (8)

From n(B) > d(A), X4 is noninjective, and hence MX is noninjective for every X ∈ B(K ,H). Therefore,
0 <

⋃
X∈B(K ,H)

σr,1(MX).

Corollary 2.13. Let A ∈ B(H) and B ∈ B(K ). Then,

σr,1(MX) ⊆ σr,1(A) ∪ σr,1(B) for every X ∈ B(K ,H).

Corollary 2.14. Let A ∈ B(H) and B ∈ B(K ). Then,

σr,1(MX) = σr,1(A) ∪ σr,1(B) for every X ∈ B(K ,H)

if and only if the following statements are fulfilled:
(i) λ ∈ σr,1(A) implies λ ∈ ρ(B) ∪ σr,1(B);
(ii) λ ∈ σr,1(B) implies λ ∈ ρ(A) ∪ σr,1(A).
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Proof. Sufficiency. By Corollary 2.13, we only need to prove σr,1(A) ∪ σr,1(B) ⊆ σr,1(MX) for every
X ∈ B(K ,H). Suppose that λ = 0. If 0 ∈ (σr,1(A)∩ρ(B))∪ (σr,1(B)∩ρ(A))∪ (σr,1(A)∩σr,1(B)), then 0 ∈ σr,1(MX)
for every X ∈ B(K ,H) from the proof of Theorem 2.12. Therefore, σr,1(A) ∪ σr,1(B) ⊆ σr,1(MX) for every
X ∈ B(K ,H).

Necessity. Assume not, and let λ0 ∈ C, but one of the assertions (i) and (ii) fails to hold. Take
X0 ∈ B(K ,H) by X0 = 0. Then λ0 < σr,1(MX0 ). This contradicts the assumption σr,1(MX) = σr,1(A) ∪ σr,1(B)
for every X ∈ B(K ,H), since λ0 ∈ σr,1(A) ∪ σr,1(B).

Theorem 2.15. Let A ∈ B(H) and B ∈ B(K ), then⋃
X∈B(K ,H)

σr,2(MX) = ∆1 ∪ ∆2 ∪ ∆3 ∪ ∆4,

where

∆1 = σr,2(A) ∪ (σc(A) ∩ σp,2(B)) ∪ (σc(A) ∩ σr(B)),
∆2 = (ρ(A) ∩ σr,2(B)) ∪ (σr,1(A) ∩ σc(B)) ∪ (σr,1(A) ∩ σr,2(B)),
∆3 = {λ ∈ σr,1(A) ∩ σm(B) : d(A − λ) = ∞}

∪{λ ∈ σr,1(A) ∩ σp,1(B) ∩ σm(B) : n(B − λ) < d(A − λ) < ∞}
∪{λ ∈ σr,1(A) ∩ σp,2(B) ∩ σm(B) : n(B − λ) ≤ d(A − λ) < ∞},

∆4 = {λ ∈ σr,1(A) ∩ ρm(B) : n(B − λ) = d(A − λ) = ∞}.

Proof. First, we prove that
4⋃

k=1
∆k ⊆

⋃
X∈B(K ,H)

σr,2(MX). We suppose that λ = 0. Let 0 ∈ ∆1. Then, by

Lemma 2.1, there exists an infinite dimensional closed subspace Ω ⊂ R(A) such that Ω ∩ R(A) = {0}. If
0 ∈ (σr,2(A)∩ σp(B))∪ (σc(A)∩ σp,2(B)), then we may further define a unitary operator X1 fromN(B) to some
closed subspace of Ω. Taking

X0 =

(
X1 0
0 0

)
:
(
N(B)
N(B)⊥

)
→

(
Ω
Ω⊥

)
,

we have the operator matrix

MX0 =

A1 X1 0
A2 0 0
0 0 B1

 :

 HN(B)
N(B)⊥

→
 Ω
Ω⊥

K

 .
Clearly, X1 and B1 are injective, and so by Ω ∩ R(A) = {0}, one can see that MX0 is injective. On the other
hand, from 0 ∈ σr,2(A) ∪ σp,2(B), we have that R(MX0 ) , H ⊕ K . Now 0 ∈ σm(MX0 ) follows from the fact
that 0 ∈ σm(A). Therefore 0 ∈ σr,2(MX0 ). If 0 ∈ (σr,2(A) \ σp(B)) ∪ (σc(A) ∩ σr(B)), then define X0 ∈ B(K ,H) by
X0 = 0. Clearly, 0 ∈ σr,2(MX0 ).

Let 0 ∈ ∆2. Define X0 ∈ B(K ,H) by X0 = 0. Clearly, 0 ∈ σr,2(MX0 ).
Let 0 ∈ ∆3. If n(B) < ∞, then there exists a closed subspace Ω of R(A)⊥ such that dim Ω = n(B) and

R(A)⊥ = Ω ⊕Ω⊥. Define X0 ∈ B(K ,H) by

X0 =

 0 0
X1 0
0 0

 :
(
N(B)
N(B)⊥

)
→

R(A)
Ω
Ω⊥

 ,
where X1 : Ω→ R(A)⊥ is a unitary operator. Then, MX0 can be written as

MX0 =


A1 0 0
0 X1 0
0 0 0
0 0 B1

 :

 HN(B)
N(B)⊥

→

R(A)

Ω
Ω⊥

K

 .
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Clearly, MX0 is injective. Since n(B) < d(A) or 0 ∈ σp,2(B), it follows that R(MX0 ) , H ⊕ K . Note that
0 ∈ σm(B), then 0 ∈ σm(MX0 ). Therefore 0 ∈ σr,2(MX0 ). If n(B) = d(A) = ∞, then we may further define a
unitary operator X1 fromN(B) onto R(A)⊥. Taking X0 ∈ B(K ,H)

X0 =

(
0 0

X1 0

)
:
(
N(B)
N(B)⊥

)
→

(
R(A)
R(A)⊥

)
, (9)

we can verify that 0 ∈ σr,2(MX0 ).
Let 0 ∈ ∆4. Since n(B) = d(A) = ∞, then there is an operator X1 : N(B) → R(A)⊥ such that N(X1) = 0,

R(X1) , R(X1) = R(A)⊥. Define X0 ∈ B(K ,H) as in (9). It is easy to check that 0 ∈ σr,2(MX0 ).

For the opposite inclusion, it suffices to prove that 0 <
4⋃

k=1
∆k implies 0 <

⋃
X∈B(K ,H)

σr,2(MX). Now we

consider four cases.
Case 1: 0 ∈ σp(A) or R(A) = H and R(B) = K . Obviously, 0 ∈ σp(MX) or R(MX) = H ⊕ K for every

X ∈ B(K ,H). Hence, 0 <
⋃

X∈B(K ,H)
σr,2(MX).

Case 2: A is left invertible and n(B) > d(A). From the proof of Case 2 of Theorem 2.12, we obtain that MX
is noninjective for every X ∈ B(K ,H). Therefore, 0 <

⋃
X∈B(K ,H)

σr,2(MX).

Case 3: A is left invertible, R(B) is not closed, R(B) = K and n(B) = d(A) < ∞. Then MX has the
matrix form as in (6) for every X ∈ B(K ,H). Also, the relation (8) holds true. If X4 in (8) is injective, then
R(MX) = H ⊕K ; If X4 in (8) is noninjective, then MX is noninjective. Hence, 0 <

⋃
X∈B(K ,H)

σr,2(MX).

Case 4: A is left invertible, R(B) is closed, and n(B) < ∞ or d(A) < ∞. Then, MX admits the following
block representation

MX =


A1 X1 X2
0 X3 X4
0 B1 0
0 0 0

 :

 HN(B)
N(B)⊥

→

R(A)
R(A)⊥

R(B)
R(B)⊥


for every X ∈ B(K ,H). Clearly, A1 : H → R(A) and B1 : K → R(B) are invertible. Thus there exists the
invertible operators

U =


I 0 0 0
0 I −X3B−1

1 0
0 0 I 0
0 0 0 I

 :


R(A)
R(A)⊥

R(B)
R(B)⊥

→

R(A)
R(A)⊥

R(B)
R(B)⊥


and V as in (7) such that

UMXV =


A1 0 0
0 0 X4
0 B1 0
0 0 0

 .
In view of n(B) < ∞ or d(A) < ∞, we see that X4 is a finite rank operator. It follows from R(MX) is closed for
every X ∈ B(K ,H). Therefore, 0 <

⋃
X∈B(K ,H)

σr,2(MX).

Corollary 2.16. Let A ∈ B(H) and B ∈ B(K ). Then,

σr,2(MX) ⊆ σr,2(A) ∪ σr,2(B) for every X ∈ B(K ,H)

if and only if (σc(A)∩ σp,2(B))∪ (σc(A)∩ σr,1(B))∪ (σr,1(A)∩ σc(B))∪∆3 ∪∆4 = ∅, where ∆3 and ∆4 as in Theorem
2.15.
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Proof. In the similar way as the proof of Corollary 2.5, using Theorem 2.15, we obtain the desired result.

Corollary 2.17. Let A ∈ B(H) and B ∈ B(K ). Then,

σr,2(MX) = σr,2(A) ∪ σr,2(B) for every X ∈ B(K ,H)

if and only if (σc(A) ∩ σp,2(B)) ∪ (σc(A) ∩ σr,1(B)) ∪ (σr,1(A) ∩ σc(B)) ∪ ∆3 ∪ ∆4 = ∅, and the following statements
are fulfilled:

(i) λ ∈ σr,2(A) implies λ ∈ σr(B) ∪ ρ(B);
(ii) λ ∈ σr,2(B) implies λ ∈ σc(A)∪σr,2(A)∪ρ(A)∪{λ ∈ σr,1(A) : d(A−λ) < ∞}, where ∆3 and ∆4 as in Theorem

2.15.

Proof. Sufficiency. By Corollary 2.16, we get σr,2(MX) ⊆ σr,2(A) ∪ σr,2(B) for every X ∈ B(K ,H). Now, we
prove the opposite inclusion. Assume that λ = 0. If 0 ∈ (σr,2(A) ∩ ρ(B)) ∪ (σr,2(B) ∩ ρ(A)), then 0 ∈ σr,2(MX)
for every X ∈ B(K ,H). If 0 ∈ σr,2(A) ∩ σr(B), then 0 ∈ σr(MX) for every X ∈ B(K ,H). This, together with
0 ∈ σr,2(A) ⊆ σl(A) ⊆ σl(MX) implies that 0 ∈ σr,2(MX) for every X ∈ B(K ,H). Similarly, if 0 ∈ σc(A) ∩ σr,2(B),
then 0 ∈ σr,2(MX) for every X ∈ B(K ,H). Now let 0 ∈ σr,2(B)∩σr,1(A) and d(A) < ∞. Then we get 0 ∈ σm(MX)
for every X ∈ B(K ,H) from the proof of Case 2 of Theorem 2.12. This implies that 0 ∈ σr,2(MX) for every
X ∈ B(K ,H). Therefore, σr,2(A) ∪ σr,2(B) ⊆ σr,2(MX) for every X ∈ B(K ,H).

Necessity. Assume to the contrary that there exists λ0 ∈ C, such that one of the assertions (i) and (ii) fails
to hold. There are three possible cases.

Case 1: λ0 ∈ (σr,2(A) ∩ σp(B)) ∪ (σr,2(B) ∩ σp(A)). Take X0 ∈ B(K ,H) by X0 = 0. Then λ0 ∈ σp(MX0 ), and
hence λ0 < σr,2(MX0 ). This contradicts the assumption σr,2(MX) = σr,2(A) ∪ σr,2(B) for every X ∈ B(K ,H),
since λ0 ∈ σr,2(A) ∪ σr,2(B).

Case 2: λ0 ∈ σr,2(A)∩ σc(B). This implies that λ0 ∈ σp,1(A∗)∩ σc(B∗). From the proof of Case 3 of Corollary
2.6, we obtain M∗X0

− λ0 is ingective for some X0 ∈ B(K ,H), and hence R(MX0 ) = H ⊕ K . Therefore
λ0 < σr,2(MX0 ).

Case 3: λ0 ∈ σr,2(B) ∩ σr,1(A) and d(A − λ0) = ∞. By Theorem 2.12, we obtain λ0 ∈ σr,1(MX0 ) for some
X0 ∈ B(K ,H), and hence λ0 < σr,2(MX0 ). Therefore λ0 < σr,2(MX0 ).

Remark 2.18. Let A ∈ B(H), B ∈ B(K ). From [6, Lemma1], we get that σ(MX) ⊆ σ(A) ∪ σ(B) for every
X ∈ B(K ,H). But the inclusion is not true for 1,2-point spectrum and 2-residual spectrum.

Remark 2.19. A description of the set
⋃

X∈B(K ,H)
σr(MX) was given in [13] (see (1)). From Theorem 2.12 and

Theorem 2.15, we obtain that⋃
X∈B(K ,H)

σr(MX) =
⋃

X∈B(K ,H)
σr,1(MX) ∪

⋃
X∈B(K ,H)

σr,2(MX).

Corollary 2.20. Let A ∈ B(H) and B ∈ B(K ). Thenλ ∈ σr,1(MX1 ) andλ ∈ σr,2(MX2 ) for certain X1,X2 ∈ B(K ,H),
if and only if one of the statements (a)–(e) is fulfilled:

(a) λ ∈ σr,1(A) ∩ ρm(B) and n(B − λ) = d(A − λ) = ∞;
(b) λ ∈ σr,1(A) ∩ σm(B) and d(A − λ) = ∞.

Proof. The result is immediately from Theorem 2.12 and Theorem 2.15.

We conclude this section with two illustrating examples of the previous results.

Example 2.21. LetH = K = `2. Consider the operators A ∈ B(`2) and B ∈ B(`2) defined by

Ax = (0, x1,
x2
√

2
,

x3
√

3
, · · · ), Bx = (x3, x4, x5, · · · )

for (x1, x2, x3, · · · ) ∈ `2. Then, we claim there exist X1 ∈ B(`2) and X2 ∈ B(`2) such that 0 ∈ σp,1(MX1 ) and
0 ∈ σp,2(MX2 ).
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Indeed, it is clear that 0 ∈ σp,1(B)∩ σr(A) and 2 = n(B) > d(A) = 1. By Corollary 2.11, we obtain that there
exist X1 ∈ B(`2) and X2 ∈ B(`2) such that 0 ∈ σp,1(MX1 )∩σp,2(MX2 ). In fact, if taking X2 = 0 and X1 ∈ B(`2) by

X1x = (x1, 0, 0, 0, · · · )

for (x1, x2, x3, · · · ) ∈ `2, we immediately see 0 ∈ σp,1(MX1 ) and 0 ∈ σp,2(MX2 ).

Example 2.22. LetH = K = `2. Consider the operators A ∈ B(`2) and B ∈ B(`2) defined by

Ax = (x1, 0, x2, 0, x3, 0, · · · ), Bx = (x1, x3, x5, · · · )

for (x1, x2, x3, · · · ) ∈ `2. Then, we claim there exist X1 ∈ B(`2) and X2 ∈ B(`2) such that 0 ∈ σr,1(MX1 ) and
0 ∈ σr,2(MX2 ).

Direct calculations show that 0 ∈ σr,1(A) ∩ ρm(B) and n(B) = d(A) = ∞. By Corollary 2.20, there exist
X1 ∈ B(`2) and X2 ∈ B(`2) such that 0 ∈ σr,1(MX1 ) ∩ σr,2(MX2 ). In fact, define X1 ∈ B(`2) and X2 ∈ B(`2) by

X1x = (0, 0, 0, x2, 0, x4, 0, x6, · · · ),
X2x = (0, 0, 0, 1

2 x2, 0, 1
4 x4, 0, 1

6 x6, · · · )

for (x1, x2, x3, · · · ) ∈ `2. Then we can check that 0 ∈ σr,1(MX1 ) and 0 ∈ σr,2(MX2 ).
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[9] D.S. Cvetković-llić, The point, residual and continuous spectrum of an upper triangular operator matrix, Linear Algebra Appl.

459 (2014) 357–367.
[10] H.K. Du, J. Pan, Perturbation of spectrums of 2 × 2 operator matrices, Proc. Amer. Math. Soc. 121 (1994) 761–766.
[11] J. K. Han, H. Y. Lee, W. Y. Lee, Invertible completions of 2×2 upper triangular operator matrices, Proc. Amer. Math. Soc. 128 (2000)

119–123.
[12] I. Hwang, W. Lee, The boundedness below of 2 × 2 upper triangular operator matrices, Integr. Equ. Oper. Theory. 39 (2001)

267–276.
[13] G. Hai, A. Chen, The residual spectrum and continuous spectrum of upper triangular operator matrices, Filomat. 28 (2014) 65–71.
[14] Y. Li, X. Sun, H. Du. The intersection of left (right) spectra of 2×2 upper triangular operator matries, Linear Algebra Appl., 418

(2006) 112–121.
[15] Y.Li, H.K. Du, The intersection of essential approximate point spectra of operator matrices, J. Math. Anal. Appl. 323 (2006)

1171–1183.
[16] J. Huang, Y. Huang, H. Wang, Closed range and Fredholm properties of upper-triangular operator matrices, Ann. Funct. Anal. 6

(2015) 42–52.
[17] X. Wu, J. Huang, A. Chen, Self-adjoint perturbations of spectra for upper triangular operator matrices, Linear Algebra Appl. 531

(2017) 1–21.
[18] S. Zhang, Z. Wu, H. Zhong, Continuous spectrum, point spectrum and residual spectrum of operator matrices, Linear Algebra

Appl. 433 (2010) 653–661.
[19] E.H. Zerouali, H. Zguitti. Perturbation of spectra of operator matrices and local spectral theory, J. Math. Anal. Appl. 324 (2006)

992–1005.


