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Abstract. In this paper, first, we apply the successive approximations method in terms of midpoint
quadrature formula to solve nonlinear fuzzy Fredholm integral equations of the second kind (NFFIE-2).
Considering some assumptions, we acquire a new error estimation. Moreover, we prove the convergence
of the proposed method. Then, we study the numerical stability of the proposed method with respect to
the first iteration choice. Eventually, to demonstrate the accuracy of the suggested method, we present two
numerical examples.

1. Introduction

The fuzzy integral equations (FIEs) are used to solve many problems in several applied sciences such
as mathematical economics, electrical engineering, medicine, biology and optimal control theory. Since
these equations usually can not be solved explicitly, it is required to obtain the approximate solutions.
Many authors have used Banach fixed point theorem to prove the existence and uniqueness of solutions of
these equations [4, 6, 13]. Numerical methods for solving fuzzy Fredholm integral equations of the second
kind, based on the successive approximation methods and some other techniques, have been investigated
in [5–7, 15, 18–23]. Ezzati and Ziari [8] suggested an iterative procedure via the trapezoidal rule to solve
fuzzy Fredholm integral equations, and also proved the convergence of the proposed method. Baghmisheh
and Ezzati investigated the error estimation and numerical solution of nonlinear fuzzy Fredholm integral
equations of the second kind using triangular functions [17]. In [16], authors presented a numerical method
based on the iterative method and midpoint quadrature formula for solving linear fuzzy Fredholm integral
equations of the second kind. In this paper, we apply the proposed method introduced in [16] to solve
nonlinear fuzzy Fredholm integral equation. Also, by considering some assumptions, we acquire a new
error estimation.
Due to the error bound of the midpoint rule in comparing Trapezoidal and Simpson rules, and also
according to the fact that Trapezoidal and Simpson rules can not be used to approximate integrals which
are not defined in the first and the end points of the integration, in this paper we use the midpoint rule to
approximate the solution of fuzzy integral equations with singular kernel.
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Here, first, we present a numerical method based on the iterative procedure and the midpoint formula to
approximate the solution of NFFIE-2

u(x) = f (x) ⊕ (FR)
∫ b

a
K(x, s) � G(u(s))ds, (1)

where x ∈ [a, b], K(x, s) is a positive crisp kernel defined in [a, b] × [a, b], and f : [a, b] → RF, u(x) is a fuzzy
function and G : RF → RF is continuous. Then, we present the error estimation of this method. We suppose
that K : [a, b] × [a, b]→ R is continuous. So, K is uniformly continuous. Therefore, there exists MK > 0 such
that

MK = max
a≤x,s≤b

|K(x, s)|.

The structure of the paper is as follows: In Section 2, basic concepts of fuzzy set theory, fuzzy Reiman
integrable function and modulus of continuity are reviewed. In Section 3, the midpoint quadrature formula
for solving NFFIE-2 is introduced. The error estimate, convergence and numerical stability analysis of the
suggested method are presented in Section 4. We present two numerical examples in Section 5 to show the
efficiency of the method. Finally, the conclusions of the paper are presented in section 6.

2. Basic concepts of fuzzy logic

Definition 1 (See [2]). A fuzzy number is a function u : R→ [0, 1] having the properties:

(1) u is normal, that is ∃ x0 ∈ R such that u(x0) = 1,

(2) u is fuzzy convex set, i.e. u(λx + (1 − λ)y) ≥ min
{
u(x),u(y)

}
, ∀x, y ∈ R, λ ∈ [0, 1],

(3) u is upper semi-continuous on R,

(4) the { x ∈ R : u(x) > 0} is compact set.

The set of all fuzzy numbers is denoted by Rz. An alternative definition which yields the same Rz is given
by [11].

Definition 2 (See [10, 12]). An arbitrary fuzzy number is represented, in parametric form, by an ordered
pair of functions (u(r),u(r)), 0 ≤ r ≤ 1, which satisfy the following requirements:

(1) u(r) is a bounded left continuous non-decreasing function over [0,1],

(2) u(r) is a bounded left continuous non-increasing function over [0,1],

(3) u(r) ≤ u(r) , 0 ≤ r ≤ 1.

The addition and scalar multiplication of fuzzy numbers in Rz are defined as follows:

(1) (u ⊕ v)(r) = (u(r) + v(r),u(r) + v(r)),

(2) (λ � u)(r) =


(λu(r), λu(r))λ ≥ 0,

(λu(r), λu(r))λ < 0.

Definition 3 (See [1]). For two fuzzy numbers u = (u(r),u(r)), v = (v(r), v(r)) the quantity D(u, v) =
sup

r∈[0,1]
max{|u(r) − v(r)| , |u(r) − v(r)| } is the distance between u and v.

The following properties are hold (See [1]):

(1) (Rz,D) is a complete metric space,
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(2) D(u ⊕ w, v ⊕ w) = D(u, v), ∀ u, v,w ∈ Rz,

(3) D(k � u, k � v) = |k|D(u, v), ∀ u, v ∈ Rz, ∀ k ∈ R,

(4) D(u ⊕ v,w ⊕ e) ≤ D(u,w) + D(v, e), ∀ u, v,w, e ∈ Rz.

(5) D(a � u, b � u) ≤ |a − b|D(u, 0), ∀ u ∈ Rz, ∀ a, b ∈ R, ab > 0.

Theorem 1 (See [2, 3]).

(1) The pair (Rz,⊕) is a commutative semigroup with 0̃ = χ0 zero element.

(2) For fuzzy numbers which are not crisp, there is no opposite element ( that is, (Rz,⊕) can not be a
group).

(3) For any a, b ∈ R with a, b ≥ 0 or a, b ≤ 0 and for any u ∈ Rz, we have
(a + b) � u = a � u ⊕ b � u.
For arbitrary a, b ∈ R, this property is not fulfilled.

(4) For any λ, µ ∈ R and u ∈ Rz, we have
λ � (u ⊕ v) = λ � u ⊕ λ � u.

(5) For any λ ∈ R and u, v ∈ Rz, we have
λ � (µ � u) = (λ.µ) � u.

(6) The function ‖.‖z : Rz → R defined by ‖u‖z = D(u, 0̃) has the usual properties of the norm, that is,
‖u‖z = 0 if and only if u = õ,
‖λ � u‖z = |λ|‖u‖z, and
‖u ⊕ v‖z ≤ ‖u‖z + ‖v‖z.

(7) |‖u‖z − ‖v‖z| ≤ D(u, v) and D(u, v) ≤ |u‖z + ‖v‖z for any u, v ∈ Rz.

Definition 4 (See [11]). A fuzzy real number valued function f : [a, b] → Rz is said to be continuous in
x0 ∈ [a, b], if for each ε > 0 there exists δ > 0 such that D( f (x), f (x0)) < ε, whenever x ∈ [a, b] and |x − x0| < δ.
We say that f is fuzzy continuous on [a, b] if f is continuous at each x0 ∈ [a, b], and denote the space of all
such functions by Cz[a, b].

Definition 5 (See [3]). If X = { f : [a, b]→ Rz| f is continuous}, then X together with the metric

D∗( f , 1) = sup
a≤s≤b

D( f (s), 1(s))

is complete metric space.

Definition 6 (See [1]). Let f : [a, b]→ Rz, be a bounded mapping, then function
ω[a,b]( f , .) : R+ ∪ {0} → R+ defined by

ω[a,b]( f , δ) = sup
{
D( f (x), f (y))| x, y ∈ [a, b], |x − y| ≤ δ

}
, (2)

is called the modulus of oscillation of f on [a, b]. In addition, if f ∈ Cz[a, b] (i.e. f : [a, b]→ Rz is continuous
on [a, b]), then ω[a,b]( f , δ) is called the modulus of continuity of f on [a, b]. Some properties of the modulus
of continuity are given in below.

Theorem 2 (See [8]). The following properties hold:

(1) D( f (x), f (y)) ≤ ω[a,b]( f , |x − y|), for any x, y ∈ [a, b],
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(2) ω[a,b]( f , δ) is increasing function of δ,

(3) ω[a,b]( f , 0) = 0,

(4) ω[a,b]( f , δ1 + δ2) ≤ ω[a,b]( f , δ1) + ω[a,b]( f , δ2) for any δ1, δ2 ≥ 0,

(5) ω[a,b]( f ,nδ) ≤ nω[a,b]( f , δ) for any δ ≥ 0, n ∈ N,

(6) ω[a,b]( f , λδ) ≤ (λ + 1)ω[a,b]( f , δ) for any δ, λ ≥ 0,

(7) if [a, b] ⊆ [c, d] then ω[a,b]( f , δ) ≤ ω[c,d]( f , δ) .

Definition 7 (See [14]). Let f : [a, b] → Rz, for ∆x : a = x0 < x1 < ... < xn = b, partition of the intervals
[a, b]. Let us consider the intermediate points ξi ∈ [xi−1, xi], i = 1, ...,n, and δ : [a, b]→ R+. The division Px =
([xi−1, xi]; ξi); i = 1, ...,n, denoted shortly by Px = (∆n, ξ) is said to be δ-fine if [xi−1, xi] ⊆ (ξi − δ(ξi), ξi + δ(ξi)).
The function f is called Henstock integrable to I ∈ Rz, if for any ε > 0, there is function δ : [a, b]→ R+ such
that for any δ-fine division we have D(

∑n
i=0(xi − xi−1) � f (ξi, η j), I), where Σ denotes the fuzzy summation.

Then I is called the Henstock integral of f and denoted by I( f ) = (FH)
∫ b

a f (s)ds. If the above δ is a constant
function, then one recaptures the concept of Riemann integral. In this case I ∈ Rz is called integral of f on

[a, b] and is be denoted by (FR)
∫ b

a f (s)ds.

In [8], it is proved that if f ∈ Cz[a, b], then its definite integral exists, and,

(FR)
∫ b

a f (s; r)ds =
∫ b

a f (s; r)ds, (FR)
∫ b

a f (s; r)ds =
∫ b

a f (s; r)ds.

Lemma 1 (See [9]). If f , 1 : [a, b] → Rz are fuzzy continuous functions, then the function F : [a, b] → R+ by
F(s) = D( f (s), 1(s)) is continuous on A = [a, b], and

D
(
(FR)

∫ b

a
f (s)ds, (FR)

∫ b

a
1(s)ds

)
≤

∫ b

a
D

(
f (s), 1(s)

)
ds.

Lemma 2 (See [5]). Let f : [a, b]→ Rz be a L-Lipschitz function. Then for ∆x : a = x0 < x1 < ... < xn = b, we
have:

D
(
(FR)

∫ b

a
f (s)ds, (b − a) � f (x)

)
≤ L

(
(b − a)2

4
+ (x −

a + b
2

)2

)
, (3)

for any x ∈ [a, b].

Lemma 3 (See [3]). Let f : [a, b]→ Rz be a L-Lipschitz function. Then for ∆x : a = x0 < x1 < ... < xn = b and
ηi ∈ [xi−1, xi], i = 1, 2, ...,n, we have:

D

(FR)
∫ b

a
f (s)ds,

n∑
i=1

(xi − xi−1) � f (ηi)

 ≤ L(b − a)2

2n
. (4)

3. Introducing the quadrature rule

In this section, we consider the NFFIE-2 (1), where K(x, s) is a continuous positive crisp kernel defined
on [a, b] × [a, b] and G : Rz → Rz is continuous function. We assume that K is continuous and therefore
uniformly continuous with respect to x, s. This property implies that there exists MK > 0 such that

MK = max
a≤x,s≤b

|K(x, s)|.
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3.1. Existence of a unique solution

Theorem 3 (See [8]). Let the function K(x, s) be continuous and positive defined on [a, b] × [a, b] and
f : [a, b]→ Rz is a fuzzy continuous function. Moreover, assume that there exists L1 > 0 such that

D
(
G(u1(x),G(u2(y)

)
≤ L1.D(u1(x),u2(y)).

If B = L1MK(b − a) < 1, then the fuzzy integral equation (1) has a unique solution u∗ ∈ X and it can be
obtained by the following successive approximation method

u0(x) = f (x), um(x) = f (x) ⊕ (FR)
∫ b

a
K(x, s) � G(um−1)(s)ds. (5)

Moreover, the sequence of successive approximation (um)m≥1 converges to the solution u∗, furthermore the
following error estimation holds

D(u∗(x),um(x)) ≤
Γ0Bm+1

L1(1 − B)
, where Γ0 = sup

x∈[a,b]
‖ G( f (x)) ‖ . (6)

3.2. Presentation of the numerical method

Now, we introduce the numerical method to find the approximate solution of the NFFIE-2 (1). For this
aim, we consider the uniform partition of [a, b] as ∆x : a = s0 < s1 < ... < sn−1 < sn = b, with s j = s0 + jh ,
where h = s j − s j−1 . The following process gives the approximate solution of 1 at point x

F0(x) = f (x), Fm(x) = f (x) ⊕
n−1∑
j=0

h � K(x, s j +
h
2

) � G(Fm−1(s j +
h
2

)). (7)

4. Convergence and stability analysis

Here we obtain an error estimate for the proposed method. First we prove the following lemma.
Lemma 4. In the approach of integral equation(1), let the following conditions hold:

(1) f ∈ C([a, b],Rz), G ∈ C([a, b] × Rz,Rz), K ∈ C([a, b] × [a, b],R), K(x, s) ≥ 0, ∀x, s ∈ [a, b],

(2) there exists L1 ≥ 0 such that D(G(u(s)),G(v(s))) ≤ L1D(u(s), v(s)), ∀u, v ∈ Rz,

(3) L1MK(b − a) < 1, where MK ≥ 0 is such that |K(x, s)| ≤MK, ∀x, s ∈ [a, b],

(4) there exists δ ≥ 0 such that D( f (x), f (y)) ≤ δ|x − y|, ∀x, y ∈ [a, b],

(5) there exists η ≥ 0 such that |K(x, s) − K(y, s)| ≤ η|x − y|, ∀x, y ∈ [a, b],

(6) there exists γ ≥ 0 such that |K(x, s) − K(x, t)| ≤ γ|s − t|, ∀x, s, t ∈ [a, b],

then the function K(x, s) � G(u(s)) is L− Lipschitz, where L = [MKL1
(
δ + ηM(b − a)

)
+ Mγ].

Proof. For arbitrary fixed x ∈ [a, b] we can write

D
(
K(x, s1) � G(um(s1)),K(x, s2) � G(um(s2))

)
≤ D

(
K(x, s1) � G(um(s1)),K(x, s1) � G(um(s2))

)
+ D

(
K(x, s1) � G(um(s2)),K(x, s2) � G(um(s2))

)
≤ |K(x, s1)|D

(
G(um(s1)),G(um(s2))

)
+ |K(x, s1) − K(x, s2)|D

(
G(um(s2)), 0̃

)
≤MKL1D

(
um(s1),um(s2)

)
+ D

(
G(um(s2)), 0̃

)
γ|s1 − s2|, (8)
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but

D
(
G(um(s2), 0̃)

)
≤ D

(
G(um(s2)),G(u0(s2))

)
+ D

(
G(u0(s2)), 0̃)

)
≤ L1D(um(s),u0(s)) + Γ0 ≤

L1Γ0MK(b − a)
1 − L1MK(b − a)

+ Γ0 = M, (9)

and

D (um(s1),um(s2)) ≤ D
(

f (s1), f (s2)
)

+ D
(
(FR)

∫ b

a
K(s1, s) � G(um(s))ds, (FR)

∫ b

a
K(s2, s) � G(um(s))ds

)
≤ δ|s1 − s2| +

∫ b

a
|K(s1, s) − K(s2, s)|D

(
G(um(s)), 0̃

)
ds ≤ δ|s1 − s2| +

∫ b

a
η|s1 − s2|Mds

≤

(
δ + ηM(b − a)

)
|s1 − s2|, (10)

using (8), (9) and (10) we get

D
(
K(x, s1) � G(u(s1)),K(x, s2) � G(u(s2))

)
≤ L|s1 − s2|

where

L = [MKL1
(
δ + ηM(b − a)

)
+ Mγ].

Theorem 4. Assume (7) satisfies the conditions of lemma (4), then the iterative procedure (7), converges to
the unique solution of E.q. (1), u∗, and its error estimate is as follows

D∗(u∗,Fm) ≤
1

1 − B

(
Γ0Bm+1

L1
+

L(b − a)2

4n

)
. (11)

Proof. Since

u1(x) = f (x) ⊕ (FR)
∫ b

a
K(x, s) � G(u0(s))ds,

we have

D(u1(x),F1(x)) = D
(
(FR)

∫ b

a
K(x, s) � G(u0(s))ds,

n−1∑
j=0

h � K(x, s j +
h
2

) � G(F0(s j +
h
2

))
)

= D
(
(FR)

∫ b

a
K(x, s) � G( f (s))ds,

n−1∑
j=0

h � K(x, s j +
h
2

) � G( f (s j +
h
2

))
)

= D
( n−1∑

j=0

∫ s j+1

s j

K(x, s) � G( f (s))ds,
n−1∑
j=0

h � K(x, s j +
h
2

) � G( f (s j +
h
2

))
)

≤

n−1∑
j=0

D
( ∫ s j+1

s j

K(x, s) � G( f (s))ds, (s j+1 − sj) � K(x, s j +
h
2

) � G( f (s j +
h
2

))
)
,

using lemma (2) and lemma (4), we conclude that

D(u1(x),F1(x)) ≤
n−1∑
j=0

L ×
(

(s j+1 − s j)2

4
+ (s j +

h
2
−

s j + s j+1

2
)2

)
≤ L

(b − a)2

4n
.
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Clearly

u2(x) = f (x) ⊕ (FR)
∫ b

a
K(x, s) � G(u1(s))ds,

so

D(u2(x),F2(x)) =D
(
(FR)

∫ b

a
K(x, s) � G(u1(s))ds,

n−1∑
j=0

h � K(x, s j +
h
2

) � G(F1(s j +
h
2

))
)

≤ D
(
(FR)

∫ b

a
K(x, s) � G(u1(s))ds,

n−1∑
j=0

h � K(x, s j +
h
2

) � G(u1(s j +
h
2

))
)

+ D
( n−1∑

j=0

h � K(x, s j +
h
2

) � G(u1(s j +
h
2

)),
n−1∑
j=0

h � K(x, s j +
h
2

) � G(F1(s j +
h
2

))
)

≤

n−1∑
j=0

D
(
(FR)

∫ s j+1

s j

K(x, s) � G(u1(s))ds, h � K(x, s j +
h
2

) � G(u1(s j +
h
2

))
)

+ h
n−1∑
j=0

D
(
K(x, s j +

h
2

) � G(u1(s j +
h
2

)),K(x, s j +
h
2

) � G(F1(s j +
h
2

))
)

≤
L(b − a)2

4n
+ h

n−1∑
j=0

|K(x, s j +
h
2

)| ×D
(
G(u1(s j +

h
2

)),G(F1(s j +
h
2

))
)
≤

L(b − a)2

4n

+ hMKL1

n−1∑
j=0

D
(
u1(s j +

h
2

),F1(s j +
h
2

)
)
≤

L(b − a)2

4n
+ MKL1(b − a)

L(b − a)2

4n

=
L(b − a)2

4n
(1 + B).

By induction, for m ≥ 3, we have:

D(um(x),Fm(x)) ≤
L(b − a)2

4n
(1 + B + ... + Bm−1) ≤

1 − Bm

1 − B
L(b − a)2

4n
,

∀x ∈ [a, b].

Since B < 1, according to 1−Bm

1−B ≤
1

1−B for each m ∈ N, we get:

D∗(um,Fm) ≤
L(b − a)2

4n(1 − B)
. (12)

Considering inequalities (6) and (12), we have:

D∗(u∗,Fm) ≤ D∗(u∗,um) + D∗(um,Fm) ≤
1

1 − B

(
Γ0Bm+1

L1
+

L(b − a)2

4n

)
, (13)

which completes the proof.

Remark 1. Since B < 1, it is easy to show that

lim
m,n→∞

D∗(u∗,Fm) = 0. (14)

Thus, the proposed method is convergent.
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4.1. Numerical stability analysis
In order to investigate the numerical stability of (7) with respect to small perturbation in the starting

approximation, we consider another starting approximation v0 ∈ Cz[a, b] such that there exists ε > 0 for
which D(u0(x), v0(x)) < ε,∀x ∈ [a, b]. The following sequence of successive approximations is obtained as
follows:

v0(x) = f (x), vm(x) = f (x) ⊕ (FR)
∫ b

a
K(x, s) � G(vm−1(s))ds. (15)

Thus,

vm(x) = f (x) ⊕
n−1∑
j=0

K(x, s j +
h
2

)G(vm−1(s j +
h
2

)). (16)

As in [6], given the following definition, we prove the numerical stability of the method.

Definition 8 (See [6]). The algorithm used to solve the integral equation (1) is numerically stable with
respect to the choice of the first iteration if and only if there exists two constants K1,K2 > 0 , which are
independent of h such that,

D(Fm(x), vm(x)) < K1ε + K2h where x ∈ [a, b]. (17)

Theorem 5. With assumptions of Theorem 4 and B = L1MK(b − a) < 1, the suggested method (7) is
numerically stable.

Proof. Similarly as Theorem 4, it follows that

D∗(vm, vm) ≤
L̄(b − a)2

4n(1 − B)
.

From Definition 3, we obtain

D(Fm(x), vm(x)) ≤ D(Fm(x),um(x)) + D(um(x), vm(x)) + D(vm(x), vm(x))

≤
L(b − a)2

4n(1 − B
+

L̄(b − a)2

4n(1 − B
+ D(um(x), vm(x)).

Since D(u0(x), v0(x)) < ε, ∀x ∈ [a, b], we can write

D ((u1(x), v1(x))) ≤ D
(
(FR)

∫ b

a
K(x, s) � G(u0(s))ds, (FR)

∫ b

a
K(x, s) � G(v0(s))ds

)
≤MkL1(b − a)ε < ε.

By induction, we have

D(um(x), vm(x)) < Bmε < ε,

thus

D(Fm(x), vm(x)) ≤
(L + L̄)(b − a)2

4n(1 − B)
+ ε = K1ε + K2h,

with K1 = 1, K2 =
(L+L̄)(b−a)

4(1−B) .

So, the numerical stability is proved.
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5. Numerical examples

To demonstrate the accuracy of the method in the previous section, we present two examples.

Example 1. Consider the following nonlinear fuzzy Fredholm integral equation as:

u(x) = f (x) ⊕ (FR)
∫ 1

0
K(x, s) � (u(s))2ds,

where

f (x, r) = ( f (x, r), f (x, r)) =
(
rx −

64
15

r2x14, (2 − r)x −
64
15

(2 − r)2x14
)
,

and

K(x, s) =
4x14

(1 − s)1/2
,

with the exact solution

u(x, r) =
(
u(x, r),u(x, r)

)
= (rx, (2 − r)x).

The approximate and exact solutions have been compared in Table 1 .

Table 1. The accuracy of the solution to Example 1 in x = 0.5
n=100, m=3 n=200, m=5

r-level |u − zm| |u − zm| |u − zm| |u − zm|

0.0 0 5.68e-4 0 5.64e-4
0.2 5.68e-6 4.60e-4 5.63e-6 4.57e-4
0.4 2.27e-5 3.63e-4 2.25e-5 3.61e-4
0.6 5.11e-5 2.78e-4 5.07e-5 2.76e-4
0.8 9.09e-5 2.04e-4 9.02e-5 2.03e-4
1.0 1.42e-4 1.42e-4 1.41e-4 1.41e-4

Example 2. Consider the following nonlinear fuzzy Fredholm integral equation :

u(x) = f (x) ⊕ (FR)
∫ 1

0
K(x, s) � (u(s))2ds,

where

f (x, r) =
(

f (x, r), f (x, r)
)

=
(
x3(r2 + 5) −

9
80

(r2 + 5)2(1 −
3
2

x)7, x3(6 − 3r2) −
9

80
(6 − 3r2)2(1 −

3
2

x)7
)
,

and

K(x, s) =
3(1 − 3

2 x)7

4s1/3
.

The exact solution of this example is given by

u(x, r) =
(
u(x, r),u(x, r)

)
=

(
x3(r5 + 2), x3(6 − 3r2)

)
.

The approximate and exact solutions have been compared in Table 2.
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Table 2. The accuracy of the solution to Example 2 in x = 0.5
n=20 , m=5 n=50 , m=10

r-level |u − zm| |u − zm| |u − zm| |u − zm|

0.0 6.73857e-7 9.69868e-7 1.08012e-7 1.55515e-7
0.2 6.84670e-7 9.31522e-7 1.09746e-7 1.49359e-7
0.4 7.17621e-7 8.21103e-7 1.15033e-7 1.31637e-7
0.6 7.74254e-7 6.52490e-7 1.24119e-7 1.04584e-7
0.8 8.57139e-7 4.48864e-7 1.37420e-7 7.19285e-8
1.0 9.69868e-7 2.42769e-7 1.55515e-7 3.88930e-8

6. Conclusions

In this paper, we applied the proposed method in [16] to solve NFFIE-2. Also, in Lemma 4, we
proved that the product of a bounded function and a Lipschitz function is a Lipschitz function. Using this
lemma, we acquired a new error estimation for NFFIE-2. The numerical results also show the accuracy of
the proposed method.
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