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Abstract. Let I(G) be a topological index of a graph. If I(G + e) < I(G) (or I(G + e) > I(G), respectively)
for each edge e < G, then I(G) is decreasing (or increasing, respectively) with addition of edges. In this
paper, we determine the extremal values of some monotonic topological indices which decrease or increase
with addition of edges, and characterize the corresponding extremal graphs among bipartite graphs with
a given connectivity.

1. Introduction and Preliminaries

Throughout this paper we consider only simple and connected graphs with order greater than 6. Let G be
a graph with vertex set V(G) and edge set E(G). For a vertex v ∈ V(G), we denote by NG(v) the neighborhood
of v in G. dG(v) = |NG(v)| is called the degree of v in G. In particular, let δ(G) = min{dG(v)|v ∈ V(G)}. For
vertices u, v ∈ V(G), the distance dG(u, v) is defined as the length of a shortest path between u and v in G. Let
G + e denotes the graph obtained from G by adding an edge e < E(G). For S ⊆ V(G), the induced subgraph
of G is denoted by G[S]. As usual, Pn and Kn denote a path and a complete graph on n vertices, respectively.

A graph is bipartite if its vertex set can be partitioned into two subsets X and Y so that every edge has
one end in X and one end in Y. If G contains every edge joining a vertex of X with a vertex of Y, then G is a
complete bipartite graph and is denoted by Kp,q, where p = |X| and q = |Y|.

A cut vertex (edge) of a graph is a vertex (an edge) whose removal increases the number of components
of the graph. A vertex (An edge) cut of a graph is a set of vertices (edges) whose removal disconnects the
graph. The vertex connectivity κ(G) (respectively, the edge connectivity κ′(G)) of a graph G is the minimum
number of vertices (respectively, the minimum number of edges) whose deletion yields the resulting graph
disconnected or a singleton. It is well known that κ(G) ≤ κ′(G) ≤ δ(G) for any graph G.

Topological indices, also known as molecular descriptors, are graph invariants that map a (molecular)
graph to a real number. They are used for modeling physicochemical, toxicologic, biological, and other prop-
erties of chemical compounds and more significantly in the nonempirical quantitative structure-property
relationships (QSPR) and quantitative structure-activity relationships (QSAR). Up to now, thousands of
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topological indices have been introduced and extensively studied in chemical graph theory. Some well-
known topological indices are distance-based (the Wiener index, the Harary index, the Kirchhoff index, the
eccentricity distance sum, etc.), vertex-degree-based (the Zagreb index, the Randić index, the atom-bond
connectivity index, etc.) and energy-based (the energy, the Laplacian energy, the matching energy, etc.),
respectively.

But from another perspective, many important topological indices have the monotonicity [4], i.e.,
decrease (or increase, respectively) with addition of edges, such as the Wiener index, the eccentricity
distance sum, the Kirchhoff index, the Merrifield-Simmons index are monotonically decreasing with the
addition of edges, and the Zagreb index, the Hosoya index, the atom-bond connectivity index, the Estrada
index, the matching energy are monotonically increasing with the addition of edges.

The vertex connectivity and edge connectivity are known as two very important graph parameters.
In the past several years, a lot of endeavors have been devoted to studying the extremal values of some
topological indices in terms of vertex (edge) connectivity. Gutman and Zhang [15] determined the graph
with minimum Wiener index among all graphs of order n and vertex (edge) connectivity k. The extremal
values of Zagreb and hyper-Wiener indices with a given connectivity obtained by Behtoei et al. [1]. Li
and Zhou [19] studied the extremal properties of the first and second Zagreb index when connectivity is at
most k. More results for graphs with a given connectivity can be found in [27, 29, 31] and the references
cited therein. In 2012, Nath and Paul [22] determined the minimum distance spectral radius among all
connected bipartite graphs of order n with a given matching number and a vertex connectivity. After that,
these results for bipartite graphs haven been extended to the distance Laplacian spectral radius by Liu et
al. [23], to the Wiener index by Li and Song [18] and the Estrada index by Huang et al. [16]. On the basis
of the monotonicity, unified approaches for various topological indices of graphs (or bipartite graphs) in
terms of some kinds of graph parameters were proposed in [4, 5, 29].

In this paper, we continue to study the mathematical properties of the monotonic topological indices and
concentrate on the extremal values of some topological indices in bipartite graphs with a given connectivity.
Furthermore, the extremal graphs of these topological indices are determined completely.

Let I(G) be a topological index of a graph. If I(G + e) < I(G) (or I(G + e) > I(G), respectively) for each
edge e < G, then I(G) decreases (or increases, respectively) with addition of edges. The following result
shows a common structural characteristic of the extremal graphs for monotonic topological indices over all
bipartite graphs with n vertices and a given connectivity.

Proposition 1.1. Let G be a bipartite graph with the minimal I-value (the maximal I-value) for the topological index
I which decreases (increases) with addition of edges among all bipartite graphs with n vertices and vertex connectivity
s. Let S be a minimum vertex cut of G. If G − S has a nontrivial component, then G − S has exactly two components
G1 and G2, and G[S ∪ V(G1)] and G[S ∪ V(G2)] are complete bipartite graphs.

Proof. Without loss of generality, we assume that I is a topological index which decreases with addition
of edges. Let G be a connected bipartite graph with the minimal I-value among all the bipartite graphs
with n vertices and vertex connectivity κ(G) = s. S is a minimum vertex cut of G and G1,G2, . . . ,Gk are the
components of G − S. If k ≥ 3 or G[S ∪ V(Gi)] is not a complete bipartite graph, then we can add some
appropriate edges between G1,G2, . . . ,Gk−1 or G[S ∪ V(Gi)] such that the result graph G′ is still bipartite
with n vertices and vertex connectivity s. However, I(G′) < I(G), a contradiction. Thus, the proof is
completed.

2. The extremal values of some topological indices in bipartite graphs with a given connectivity

In this section, we will discuss the extremal graphs with respect to some topological indices, including
the Merrifield-Simmons index, the first Zagreb index, the Harary index, the hyper-Wiener index, the
multiplicative Wiener index, among all bipartite graphs with a given connectivity.

The Merrifield-Simmons index or σ-index of a graph G, denoted by σ(G), was introduced by Merrifield
and Simmons [21]. It is defined as the total number of independent vertex sets of G, including the empty
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vertex set, that is

σ(G) =

n∑
k≥0

i(G; k),

where i(G; k) is the number of k-independent vertex sets of G, and i(G; 0) = 1.
The first Zagreb index is one of the oldest graph invariants, introduced by Gutman and Trinajestić [14].

Denoted by M1 and defined as the sum of squares of the vertex degrees, it is given by

M1(G) =
∑

uv∈E(G)

[dG(u) + dG(v)] =
∑

u∈V(G)

dG(u)2.

The Harary index of a graph G, denoted by H(G), has been introduced independently by Plavs̆ić et al.
[24] and by Ivanciuc et al. [17] in 1993 for the characterization of molecular graphs. The Harary index is
defined as

H(G) =
∑

{u,v}⊆V(G)

1
dG(u, v)

.

The hyper-Wiener index of G, denoted by WW(G), was first introduced by Randić [25] and defined as

WW(G) =
1
2

∑
{u,v}⊆V(G)

[
dG(u, v) + dG(u, v)2

]
.

The multiplicative Wiener index [12, 13] of graph G was put forward as

π(G) =
∏

{u,v}⊆V(G)

dG(u, v).

The above five indices are widely studied. Some recent results can be found in [2]-[11],[20],[26],[28],[30].
The following lemma is a direct consequence of the definitions above.

Lemma 2.1. Let G be a connected graph of order n and not isomorphic to the complete graph Kn. Then for each
e < E(G), we have (i) σ(G + e) < σ(G); (ii) M1(G + e) > M1(G); (iii) H(G + e) > H(G); (iv) WW(G + e) < WW(G);
(v) π(G + e) < π(G).

w
A S1 C1

B S2 D1 D2

w
A S1 C1

B S2 D1 D2

Figure 1: The graphs G and G′ in Lemma 2.2.

Lemma 2.2. Let G be a bipartite graph with n vertices and vertex connectivity s. If S is a minimum vertex cut of G
such that G − S has two nontrivial components G1 = Ka,b and G2 = Kc,d, then there is a bipartite graph G′ with n
vertices and vertex connectivity s such that

(i) σ(G′) < σ(G); (ii) M1(G′) > M1(G); (iii) H(G′) > H(G); (iv) WW(G′) < WW(G); (v) π(G′) < π(G).
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Proof. Let (X,Y) be the partition of G, S1 = S ∩ X, S2 = S ∩ Y, A = X ∩ V(G1), B = Y ∩ V(G1), C = X ∩ V(G2)
and D = Y ∩ V(G2). Then |S| = s, |A| = a, |B| = b, |C| = c and |D| = d. Since S is a minimum vertex cut of
G, we have |S1| = s1 ≤ min{b, d} and |S2| = s2 ≤ min{a, c}. Let D1 ⊆ D and D2 = D − D1 such that |D1| = s1,
w ∈ C, C1 = C − {w} and

G′ = G − {wv : v ∈ D2} + {yz : y ∈ B, z ∈ C1} + {pq : p ∈ A, q ∈ D}

(see Figure 1). Then G′ is also a bipartite graph with n vertices and vertex connectivity s, where S2 ∪D1 is a
minimum vertex cut of G′.

(i) For the Merrifield-Simmons index, we have to separately consider the following two cases.
Case 1. S1 , ∅ and S2 , ∅ (i.e., s1 ≥ 1 and s2 ≥ 1). Without loss of generality, we may assume that

a = max{a, b, c, d}. By calculating immediately, we get

σ(G) =

(
n
0

)
+

(
n
1

)
+

a+s1+c∑
i=2

(
a + s1 + c

i

)
+

b+s2+d∑
i=2

(
b + s2 + d

i

)
+

 a∑
i=1

(
a
i

)
 d∑

j=1

(
d
j

) +

 b∑
i=1

(
b
i

)
 c∑

j=1

(
c
j

)
and

σ(G′) =

(
n
0

)
+

(
n
1

)
+

a+s1+c∑
i=2

(
a + s1 + c

i

)
+

b+s2+d∑
i=2

(
b + s2 + d

i

)
+

b+d−s1∑
i=1

(
b + d − s1

i

)
.

Then

σ(G′) − σ(G) =

b+d−s1∑
i=1

(
b + d − s1

i

)
−

 a∑
i=1

(
a
i

)
 d∑

j=1

(
d
j

) −
 b∑

i=1

(
b
i

)
 c∑

j=1

(
c
j

)
=2b+d−s1 − 1 − (2a

− 1)(2d
− 1) − (2b

− 1)(2c
− 1)

≤2b+d−s1 − 1 − (2b
− 1)(2d

− 1) − (2b
− 1)(2c

− 1) (by a ≥ b)

≤2b+d−s1 − 1 − 2b−1(2d + 2c
− 2) (by 2b

− 1 ≥ 2b−1)

=(2b+d−s1 − 2b+d−1) − 1 − 2b−1(2c
− 2) < 0.

Case 2. S1 = ∅ or S2 = ∅, i.e., s1 = 0 or s2 = 0. Without loss of generality, we assume that s1 = 0 and s2 = s.
Equivalently, we can denote G by Ks∇(Ka,b ∪ Kc,d) which obtained by joining each vertex of Ks to a-part in
Ka,b and each vertex of c-part in Kc,d, respectively.

If c < d or a < b, then we will prove in the following that σ(Ks∇(Ka,b ∪ Kc+1,d−1)) < σ(Ks∇(Ka,b ∪ Kc,d)) or
σ(Ks∇(Ka+1,b−1 ∪ Kc,d)) < σ(Ks∇(Ka,b ∪ Kc,d)).

Note that σ(Ks∇(Ka,b∪Kc,d)) = σ(Ka,b)σ(Kc,d) +σ(Kb)σ(Kd)(σ(Ks)−1) = (2a + 2b
−1)(2c + 2d

−1) + 2b+d(2s
−1),

for c < d, we have

σ(Ks∇(Ka,b ∪ Kc+1,d−1)) − σ(Ks∇(Ka,b ∪ Kc,d))

=(2a + 2b
− 1)(2c+1 + 2d−1

− 1) + 2b+d−1(2s
− 1) − (2a + 2b

− 1)(2c + 2d
− 1) − 2b+d(2s

− 1)

=(2a + 2b
− 1)(2c

− 2d−1) − 2b+d−1(2s
− 1) < 0.

By the similar way, we can prove that σ(Ks∇(Ka+1,b−1 ∪ Kc,d)) < σ(Ks∇(Ka,b ∪ Kc,d)) for a < b.
Therefore, for a < b or c < d, one can always construct a new bipartite graph Ks∇(Ka,b ∪ Kc+1,d−1) (or

Ks∇(Ka+1,b−1 ∪ Kc,d) with n vertices and vertex connectivity s such that σ(Ks∇(Ka,b ∪ Kc+1,d−1)) < σ(G) (or
σ(Ks∇(Ka+1,b−1 ∪ Kc,d)) < σ(G)). So, in what follows, we assume that a ≥ b ≥ 1 and c ≥ d ≥ 1.
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Subcase 2.1. a ≥ b ≥ 2 and c ≥ d ≥ 2.

σ(G′) − σ(G) =

b+d∑
i=1

(
b + d

i

)
−

 a∑
i=1

(
a
i

)
 d∑

j=1

(
d
j

) −
 b∑

i=1

(
b
i

)
 c∑

j=1

(
c
j

)
=2b+d

− 1 − (2a
− 1)(2d

− 1) − (2b
− 1)(2c

− 1)

≤2b+d
− 1 − (2b

− 1)(2d
− 1) − (2b

− 1)(2d
− 1)

=2b+1 + 2d+1
− 2b+d

− 3 < 0.

Subcase 2.2. c > d = 1 and a ≥ b ≥ 1 (or a > b = 1 and c ≥ d ≥ 1).

σ(G′) − σ(G) =2b+d
− 1 − (2a

− 1)(2d
− 1) − (2b

− 1)(2c
− 1)

=2b+1
− 2a
− (2b

− 1)(2c
− 1)

≤2b+1
− 2b−1(2c

− 1) − 2a

=2b+1
− 2b+c−1 + 2b−1

− 2a < 0.

Analogously, one can show that σ(G′) − σ(G) < 0 for a > b = 1 and c ≥ d ≥ 1.
Subcase 2.3. a = b = c = d = 1. Then s = 1 and G = P5. G is a spanning subgraph of G′, where G′ is

obtained from K2,2 by attaching a pendant edge. So, σ(G′) < σ(G) from Lemma 2.1.
(ii) For the first Zagreb index, we have

M1(G′) −M1(G) =
(
dG′ (w)2

− dG(w)2
)

+
∑
x∈A

(
dG′ (x)2

− dG(x)2
)

+
∑
x∈B

(
dG′ (x)2

− dG(x)2
)

+
∑
x∈C1

(
dG′ (x)2

− dG(x)2
)

+
∑
x∈D1

(
dG′ (x)2

− dG(x)2
)

+
∑
x∈D2

(
dG′ (x)2

− dG(x)2
)

>
(
dG′ (w)2

− dG(w)2
)

+
∑
x∈A

(
dG′ (x)2

− dG(x)2
)

=[(s1 + s2)2
− (d + s2)2] + a[(b + s2 + d)2

− (b + s2)2]

=(s2
1 + 2s1s2 − d2

− 2s2d) + a(d2 + 2bd + 2s2d)

≥(s2
1 + 2s1s2 − d2

− 2s2d) + (d2 + 2bd + 2s2d)

=s2
1 + 2s1s2 + 2bd > 0.

(iii) Note that dG′ (x, y) + 2 = dG(x, y) = 3 for x ∈ A and y ∈ D; dG′ (w, y) − 2 = dG(w, y) = 1 for y ∈ D2;
dG′ (x, y) + 2 = dG(x, y) = 3 for x ∈ B and y ∈ C1, and the distances of other pairs of vertices are unchanged.
So, we have

H(G′) −H(G) =
∑

x∈A,y∈D

(
1

dG′ (x, y)
−

1
dG(x, y)

)
+

∑
x∈B,y∈C1

(
1

dG′ (x, y)
−

1
dG(x, y)

)
+

∑
y∈D2

(
1

dG′ (w, y)
−

1
dG(w, y)

)
=

2
3

ad +
2
3

b(c − 1) −
2
3

(d − s1) =
2
3

(ad + bc − b − d + s1) > 0.

(iv) Similarly, one can obtain that

WW(G′) −WW(G) = 5(d − s1 − ad − bc + b) < 0.

(v) For the multiplicative Wiener index, we have

π(G′)
π(G)

=
∏

x∈A,y∈D

dG′ (x, y)
dG(x, y)

∏
x∈B,y∈C1

dG′ (x, y)
dG(x, y)

∏
y∈D2

dG′ (w, y)
dG(w, y)

=
(1

3

)ad(1
3

)bc−b(1
3

)−d+s1

=
(1

3

)ad+bc−b−d+s1

< 1.

And π(G′) < π(G).
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Let K̃(x,n − s − x − 1) be the graph depicted in Figure 2, where n, x and s are non-negative integers and
0 ≤ x ≤ n − 2s − 1. It is easy to see that K̃(0,n − s − 1) is just the complete bipartite graph Ks,n−s.

· · ·

· · ·

· · ·

· · · · · ·

v1 v2
· · ·

vs

w
n − x − s − 1

x

Figure 2: The bipartite graph K̃(x,n − x − s − 1).

Theorem 2.3. Let G be a connected bipartite graph on n vertices with vertex connectivity s.

(i) If 1 ≤ s ≤ n−1
2 and n is odd, then σ(G) ≥ 3 · 2

n−1
2 + 2

n−2s−1
2 − 2 with equality if and only if G � K̃( n−2s−1

2 , n−1
2 );

(ii) If 1 ≤ s ≤ n
2 and n is even, then σ(G) ≥ 2

n+2
2 + 2

n−2s
2 − 2 with equality if and only if G � K̃( n−2s

2 , n−2
2 ).

Proof. Let G be a bipartite graph with the minimal Merrifield-Simmons index among all bipartite graphs
with n vertices and vertex connectivity s. Then there is a non-negative integer x (0 ≤ x ≤ n − 2s − 1) such
that G � K̃(x,n − s − x − 1) from Proposition 1.1 and Lemmas 2.1 and 2.2.

By the definition of the Merrifield-Simmons index, we have

σ(K̃(x,n − s − x − 1)) =

(
n
0

)
+

(
n
1

)
+

n−s−x∑
i=2

(
n − s − x

i

)
+

s+x∑
i=2

(
s + x

i

)
+

x∑
i=1

(
x
i

)
=2n−s−x + 2s+x + 2x

− 2 = 2n−s
· 2−x + (2s + 1) · 2x

− 2.

Let f (x) = 2n−s
· 2−x + (2s + 1) · 2x

− 2, then it is easy to get that

min f (x) =

 f ( n−2s−1
2 ) = 3 · 2

n−1
2 + 2

n−2s−1
2 − 2, if n is odd;

f ( n−2s
2 ) = 2

n+2
2 + 2

n−2s
2 − 2, if n is even.

Therefore, we have (i) σ(G) ≥ f ( n−2s−1
2 ) = 3 · 2

n−1
2 + 2

n−2s−1
2 − 2 for odd n, with equality if and only if

G � K̃( n−2s−1
2 , n−1

2 ); and (ii) σ(G) ≥ f ( n−2s
2 ) = 2

n+2
2 + 2

n−2s
2 − 2 for even n, with equality if and only if

G � K̃( n−2s
2 , n−2

2 ).

Corollary 2.4. Let G be a connected bipartite graph on n vertices with edge connectivity r (or minimum degree r).

(i) If 1 ≤ r ≤ n−1
2 and n is odd, then σ(G) ≥ 3 · 2

n−1
2 + 2

n−2r−1
2 − 2 with equality if and only if G � K̃( n−2r−1

2 , n−1
2 );

(ii) If 1 ≤ r ≤ n
2 and n is even, then σ(G) ≥ 2

n+2
2 + 2

n−2r
2 − 2 with equality if and only if G � K̃( n−2r

2 , n−2
2 ).

Proof. Note that the edge connectivity (or the minimum degree) of K̃( n−2r−1
2 , n−1

2 ) and K̃( n−2r
2 , n−2

2 ) is r. Let G
be a bipartite graph with the minimal Merrifield-Simmons index among all bipartite graphs with n vertices
and edge connectivity r (or minimum degree r). Recall that κ(G) ≤ κ′(G) ≤ δ(G), then the vertex connectivity
of G is at most r. By Theorem 2.3, we have (i) σ(G) ≥ σ(K̃( n−2r−1

2 , n−1
2 )) for odd n, with equality if and only if

G � K̃( n−2r−1
2 , n−1

2 ); (ii) σ(G) ≥ σ(K̃( n−2r
2 , n−2

2 )) for even n, with equality if and only if G � K̃( n−2r
2 , n−2

2 ).
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Theorem 2.5. Let G be a connected bipartite graph on n vertices with vertex connectivity s.

(i) If n−2
2 ≤ s ≤ n

2 , then M1(G) ≤ sn(n − s) with equality if and only if Ks,n−s;
(ii) If 1 ≤ s ≤ n−3

2 and n is odd, then M1(G) ≤ n3
−3n2+3n−1

4 + sn + s2 with equality if and only if G � K̃( n−2s−1
2 , n−1

2 );
(iii) If 1 ≤ s ≤ n−4

2 and n is even, then M1(G) ≤ n3
−3n2+2n

4 + sn + s2 + s with equality if and only if G � K̃( n−2s−2
2 , n

2 ).

Proof. Let G be a bipartite graph with the maximum first Zagreb index among all bipartite graphs of order n
with vertex connectivity s. By the same way as in the Theorem 2.3, we can confirm that G � K̃(x,n−s−x−1),
and by the definition of the first Zagreb index, we have

M1(K̃(x,n − s − x − 1)) = 1(x) = (1 − n)x2 + (n2
− 2sn − 2n + 1)x + sn2

− s2n.

If n−2
2 ≤ s ≤ n

2 , and note that x (0 ≤ x ≤ n/2) is a non-negative integer, then we have

M1(G) ≤ 1(0) = s(n − s)2

with equality if and only if G � K̃(0,n − s − 1), i.e., G � Ks,n−s.
If 1 ≤ s < n−2

2 , then it is not difficultly to verify that

max 1(x) =

1( n−2s−1
2 ) = n3

−3n2+3n−1
4 + sn + s2, if n is odd;

1( n−2s−2
2 ) = n3

−3n2+2n
4 + sn + s2 + s, if n is even.

Therefore, we have M1(G) ≤ 1( n−2s−1
2 ) = n3

−3n2+3n−1
4 + sn + s2 for odd n, with equality if and only if G �

K̃( n−2s−1
2 , n−1

2 ); M1(G) ≤ 1( n−2s−2
2 ) = n3

−3n2+2n
4 + sn + s2 + s for even n, with equality if and only if G �

K̃( n−2s−2
2 , n

2 ).

By the similar argument as in the proof of Corollary 2.4, we can show the following results.

Corollary 2.6. Let G be a connected bipartite graph on n vertices with edge connectivity r (or minimum degree r).

(i) If n−2
2 ≤ r ≤ n

2 , then M1(G) ≤ rn(n − r) with equality if and only if Kr,n−r;
(ii) If 1 ≤ r ≤ n−3

2 and n is odd, then M1(G) ≤ n3
−3n2+3n−1

4 + rn + r2 with equality if and only if G � K̃( n−2r−1
2 , n−1

2 );
(iii) If 1 ≤ r ≤ n−4

2n and n is even, then M1(G) ≤ n3
−3n2+2n

4 + rn + r2 + r with equality if and only if G � K̃( n−2r−2
2 , n

2 ).

Theorem 2.7. Let G be a connected bipartite graph on n vertices with vertex connectivity s.

(i) If 1 ≤ s ≤ n−1
2 and n is odd, then H(G) ≤ 3n2

8 −
7n
12 + 2s

3 + 5
24 with equality if and only if G � K̃( n−2s−1

2 , n−1
2 );

(ii) If 1 ≤ s ≤ n−2
2 and n is even, then H(G) ≤ 3n2

8 −
7n
12 + 2s

3 + 1
6 with equality if and only if G � K̃( n−2s−2

2 , n
2 ).

Proof. Let G be a bipartite graph with the minimum Harary index among all bipartite graphs of order n with
vertex connectivity s. By the same way as in the previous Theorem, we can confirm that G � K̃(x,n−s−x−1),
and by the definition of the Harary index, we have

H(K̃(x,n − s − x − 1)) = ψ(x) =
−6x2 + (6n − 12s − 8)x + 3n2

− 3n − 6s2 + 6sn
12

.

Then, its is easy to see that

maxψ(x) =

ψ( n−2s−1
2 ) = 3n2

8 −
7n
12 + 2s

3 + 5
24 , if n is odd;

ψ( n−2s−2
2 ) = 3n2

8 −
7n
12 + 2s

3 + 1
6 , if n is even.

Therefore, we have H(G) ≤ ψ( n−2s−1
2 ) = 3n2

8 −
7n
12 + 2s

3 + 5
24 for odd n, with equality if and only if G �

K̃( n−2s−1
2 , n−1

2 ). H(G) ≤ ψ( n−2s−2
2 ) = 3n2

8 −
7n
12 + 2s

3 + 1
6 for even n, with equality if and only if G � K̃( n−2s−2

2 , n
2 ).
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By the similar argument as in the proof of Corollary 2.4, we can show the following results.

Corollary 2.8. Let G be a connected bipartite graph on n vertices with edge connectivity r (or minimum degree r).

(i) If 1 ≤ r ≤ n−1
2 and n is odd, then H(G) ≤ 3n2

8 −
7n
12 + 2r

3 + 5
24 with equality if and only if G � K̃( n−2r−1

2 , n−1
2 );

(ii) If 1 ≤ r ≤ n−2
2 and n is even, then H(G) ≤ 3n2

8 −
7n
12 + 2r

3 + 1
6 with equality if and only if G � K̃( n−2r−2

2 , n
2 ).

Theorem 2.9. Let G be a connected bipartite graph on n vertices with vertex connectivity s.

(i) If n−3
2 ≤ s ≤ n

2 , then WW(G) ≥ 2s2
− 2sn + 3

2 n2
−

3
2 n with equality if and only if G � Ks,n−s;

(ii) If 1 ≤ s ≤ n−5
2 and n is odd, then WW(G) ≥ n2 + n − 5s − 3 with equality if and only if G � K̃( n−2s−3

2 , n+1
2 );

(iii) If 1 ≤ s ≤ n−4
2 and n is even, then WW(G) ≥ n2 + n − 5s − 3 with equality if and only if G � K̃( n−2s−2

2 , n
2 ).

Proof. Let G be a bipartite graph with the minimum hyper-Wiener index among all bipartite graphs of
order n with vertex connectivity s. By the same way as in the previous Theorem, we can confirm that
G � K̃(x,n − s − x − 1), and by the definition of the hyper-Wiener index, we have

WW(K̃(x,n − s − x − 1)) = ϕ(x) = 2x2 + (4s − 2n + 5)x + 2s2
− 2sn +

3
2

n2
−

3
2

n.

For n−3
2 ≤ s ≤ n

2 , it is clear to see that minϕ(x) = ϕ(0) = 2s2
− 2sn + 3

2 n2
−

3
2 n, and the extremal graph is

attained by Ks,n−s. On the other side, for 1 ≤ s ≤ n−4
2 ,

minϕ(x) =

ϕ( n−2s−3
2 ) = n2 + n − 5s − 3, if n is odd;

ϕ( n−2s−2
2 ) = n2 + n − 5s − 3, if n is even.

Therefore, we have WW(G) ≥ n2 + n − 5s − 3 for odd n, with equality if and only if G � K̃( n−2s−3
2 , n+1

2 );
WW(G) ≥ n2 + n − 5s − 3 for even n, with equality if and only if G � K̃( n−2s−2

2 , n
2 ).

By the similar argument as in the proof of Corollary 2.4, we can show the following results.

Corollary 2.10. Let G be a connected bipartite graph on n vertices with edge connectivity r (or minimum degree r).

(i) If n−3
2 ≤ r ≤ n

2 , then WW(G) ≥ 2r2
− 2rn + 3

2 n2
−

3
2 n with equality if and only if G � Kr,n−r;

(ii) If 1 ≤ r ≤ n−5
2 and n is odd, then WW(G) ≥ n2 + n − 5r − 3 with equality if and only if G � K̃( n−2r−3

2 , n+1
2 );

(iii) If 1 ≤ r ≤ n−4
2 and n is even, then WW(G) ≥ n2 + n − 5r − 3 with equality if and only if G � K̃( n−2r−2

2 , n
2 ).

Theorem 2.11. Let G be a connected bipartite graph on n vertices with vertex connectivity s.

(i) If 1 ≤ s ≤ n−1
2 and n is odd, then π(G) ≥ 3

n−2s−1
2 2

n2
−2n+1

4 with equality if and only if G � K̃( n−2s−1
2 , n−1

2 );

(ii) If 1 ≤ s ≤ n−2
2 and n is even, then π(G) ≥ 3

n−2s−2
2 2

n2
−2n+4

4 with equality if and only if G � K̃( n−2s−2
2 , n

2 ).

Proof. Let G be a bipartite graph with the minimum multiplicative Wiener index among all bipartite graphs
of order n with vertex connectivity s. By the same way as in the previous Theorem, we can confirm that
G � K̃(x,n − s − x − 1), and by the definition of the multiplicative Wiener index, we have

π(K̃(x,n − s − x − 1)) = exp
{[

x2 +
(
2s − n +

ln 3
ln 2

)
x + s2

− sn +
1
2

n2
−

1
2

n
]
· ln 2

}
= exp

{
φ(x) · ln 2

}
,
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where φ(x) = x2 +
(
2s − n + ln 3

ln 2

)
x + s2

− sn + 1
2 n2
−

1
2 n.

It is easy to check that

minφ(x) =

φ( n−2s−1
2 ) =

(n−2s−1)·ln 3
2 ln 2 + n2

−2n+1
4 , if n is odd;

φ( n−2s−2
2 ) =

(n−2s−2)·ln 3
2 ln 2 + n2

−2n+4
4 , if n is even.

This gives

π(G) ≥

exp
{
φ( n−2s−1

2 ) · ln 2
}

= 3
n−2s−1

2 2
n2
−2n+1

4 , if n is odd;

exp
{
φ( n−2s−2

2 ) · ln 2
}

= 3
n−2s−2

2 2
n2
−2n+4

4 , if n is even.

Therefore, we can conclude that π(G) ≥ 3
n−2s−1

2 2
n2
−2n+1

4 for odd n with equality if and only if G � K̃( n−2s−1
2 , n−1

2 )

and π(G) ≥ 3
n−2s−2

2 2
n2
−2n+4

4 for even n with equality if and only if G � K̃( n−2s−2
2 , n

2 ).

By the similar argument as in the proof of corollary 2.4, we can show the following results.

Corollary 2.12. Let G be a connected bipartite graph on n vertices with edge connectivity r (or minimum degree r).

(i) If 1 ≤ r ≤ n−1
2 and n is odd, then π(G) ≥ 3

n−2r−1
2 2

n2
−2n+1

4 with equality if and only if G � K̃( n−2r−1
2 , n−1

2 );

(ii) If 1 ≤ r ≤ n−2
2 and n is even, then π(G) ≥ 3

n−2r−2
2 2

n2
−2n+4

4 with equality if and only if G � K̃( n−2r−2
2 , n

2 ).

Remark. Note that the obtained expressions for the minimum (maximum) values of all the topological
indices discussed in this paper can be viewed as monotone decreasing (increasing) functions on s (or r), so
the results in Theorems 2.3-2.11 and Corollaries 2.4-2.12 also hold for a connected bipartite graph G on n
vertices with vertex connectivity at most s (or edge connectivity at most r, minimum degree at most r).
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