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Abstract. Conformable fractional derivative is introduced by the authors Khalil at al in 2014. In this study,
we investigate the frenet frame with respect to conformable fractional derivative. Curvature and torsion
of a conformable curve are defined and the geometric interpretation of these two functions is studied.
Also, fundamental theorem of curves is expressed for the conformable curves and an example of the curve
corresponding to a fractional differential equation is given.

1. Introduction

The differential geometry of curves and surfaces has two aspects. One of them is called classical
differential geometry and the other one is called global differential geometry.The classical geometry is the
study of local properties of curves and surfaces. By local properties we mean those properties which depend
only on the behavior of the curve or surface in the neighbourhood of a point. The methods which have
shown themselves the adequate in the study of such properties are the methods of differential calculus.

Recently, in [9] the authors Khalil at al. introduced a new definition of the fractional derivative called
conformable fractional derivative. Moreover, in that paper, the definition of fractional integral is also
defined. This paper pioneered many new studies. In [11, 13], the authors investigate Lyapunov-type
inequalities in the frame of conformable derivatives. In the papers [4, 12], conformable fractional operators
and semigroup operators are studied. Further studies about conformable derivatives and its applications
are found in [1, 3, 5–8]. In addition to this, conformable fractional derivative for multivariable functions
is given in [1, 3, 8]. These papers give a chance to introduce the notion of conformable curve which is a
generalized form of a curve.

In this study, the classical differential geometry of curves is investigated with respect to conformable
fractional derivative and fractional integral. In this sense, conformable curve is defined and α−Frenet
formulas are given. If α = 1, the theory of conformable curves coincides with the classical theory of curves.
Especially, the fundamental theorem of the local theory of the conformable curves is given. And, for
α−differentiable functions κ > 0 and τ, a system of fractional order differential equations is formed, then a
conformable curve is obtained by the solution of this system.
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2. Comformable Fractional Derivative

In this section, we give some basic definitions and properties of conformable fractional derivative
introduced in [8–10].

Definition 2.1. [9] Given a function f : [0,∞) −→ R. The conformable derivative of the function f of order α is
defined by

Tα( f )(x) = lim
h→0

f (x + hx1−α) − f (x)
h

(1)

for all x > 0, α ∈ (0, 1).

Theorem 2.2. [9] If a function f : [0,∞) −→ R is α−differentiable at t0 > 0, α ∈ (0, 1], then f is continuous at t0.

Theorem 2.3. [9] Let α ∈ (0, 1] and f , 1 be α−differentiable at a point t > 0. Then

(1) Tα(a f + b1) = aTα( f ) + bTα(1), for all a, b ∈ R.

(2) Tα(tp) = ptp−α for all p ∈ R.

(3) Tα(λ) = 0, for all constant functions f (t) = λ.

(4) Tα( f1) = f Tα(1) + 1Tα( f ).

(5) Tα(
f
1

) =
1Tα( f ) − f Tα(1)

12 .

(6) If, in addition, f is differentiable, then Tα( f )(t) = t1−α d
dt

f (t).

Theorem 2.4. [10] Assume f , 1 : (0,∞) −→ R be two α−differentiable functions where α ∈ (0, 1]. Then 1 ◦ f is
α−differentiable and for all t with t , 0 and f (t) , 0 we have

Tα(1 ◦ f )(t) = Tα(1)( f (t))Tα( f )(t) f (t)α−1. (2)

Definition 2.5. [8] Let f be a vector valued function with n real variables such that f (x1, ..., xn) =
( f1(x1, ..., xn), ..., fm(x1, ..., xn)). Then we say that f is α−differentiable at a = (a1, ..., an) ∈ Rn where each ai > 0, if
there is a linear transformation L : Rn

−→ Rm such that

lim
h→0

‖ f (a1 + h1a1−α
1 , ..., an + hna1−α

n ) − f (a1, ..., an) − L(h)‖

‖h‖
= 0 (3)

where h = (h1, ..., hn) and α ∈ (0, 1]. The linear transformation is denoted by Dα f (a) and called the conformable
derivative of f of order α at a.

Theorem 2.6. [8] Let f be a vector valued function with n variables. If f is α−differentiable at a = (a1, ..., an) ∈ Rn,
each ai > 0, then there is a unique linear transformation L : Rn

−→ Rm such that

lim
h→0

‖ f (a1 + h1a1−α
1 , ..., an + hna1−α

n ) − f (a1, ..., an) − L(h)‖

‖h‖
= 0.

Theorem 2.7. [8] If a vector valued function f with n variables is α−differentiable at a = (a1, ..., an) ∈ Rn, each
ai > 0, then f is continuous at a ∈ Rn.



U. Gözütok, H. A. Çoban, Y. Sağıroğlu / Filomat 33:6 (2019), 1541–1550 1543

Theorem 2.8. [8] (Chain Rule) Let x ∈ Rn, y ∈ Rm. If f (x) = ( f1(x), ..., fm(x)) is α−differentiable at a = (a1, ..., an) ∈
Rn, each ai > 0 such that α ∈ (0, 1] and 1(y) = (11(y), ..., 1p(y)) is α−differentiable at f (a) ∈ Rm, all fi(a) > 0 such
that α ∈ (0, 1]. Then the composition 1 ◦ f is α−differentiable at a and

Dα(1 ◦ f )(a) = Dα1( f (a)) ◦ f (a)α−1
◦Dα f (a) (4)

where f (a)α−1 is the linear transformation from Rm to Rm defined by
f (a)α−1(x1, ..., xm) = (x1 f1(a)α−1, ..., xm fm(a)α−1).

Theorem 2.9. [8] Let f be a vector valued function with n variables such that f (x1, ..., xn) =
( f1(x1, ..., xn), ..., fm(x1, ..., xn)). Then f is α−differentiable at a = (a1, ..., an) ∈ Rn, each ai > 0 if and only if each fi is,
and

Dα f (a) = (Dα f1(a), ...,Dα fm(a)).

3. Conformable Curves

In this section, we are going to introduce conformable curves and their basic properties.

Definition 3.1. The function γ : (0,∞)→ R3 is called a conformable curve in R3 if γ is α−differentiable.

Notation: Along the work, for a conformable curve γ(t) = (γ1(t), γ2(t), γ3(t)), we use the notation

Dαγ(t) = Tαγ(t) = (Tαγ1(t),Tαγ2(t),Tαγ3(t)).

Definition 3.2. Let γ : (0,∞)→ R3 be a conformable curve. Velocity vector of γ is determined by

Tαγ(t)
t1−α , (5)

for all t ∈ (0,∞).

Definition 3.3. Let γ : (0,∞)→ R3 be a conformable curve. If the function h : (0,∞)→ (0,∞) is α−differentiable,
the conformable curve β = γ(h) : (0,∞)→ R3 is called the reparametrization of γ with h.

Definition 3.4. Let γ : (0,∞)→ R3 be a conformable curve. Then the velocity function v of γ is defined by

v(t) =
‖Tαγ(t)‖

t1−α (6)

for all t ∈ (0,∞).

Definition 3.5. Let γ : (0,∞)→ R3 be a conformable curve. The arc length function s of γ is defined by

s(t) = I0
α‖Tαγ(t)‖ (7)

for all t ∈ (0,∞). If v(t) = 1 for all t ∈ (0,∞), it’s said that γ has unit speed.

Lemma 3.6. Let the function f : (0,∞)→ R be continuous and increasing (or decreasing) on (0,∞). If the
function f is α−differentiable for all x ∈ (0,∞) and Tα f (x) , 0, then the inverse function f−1 : ( f (0+), f (b−))→ R
(or f−1 : ( f (b−), f (0+))→ R) is α−differentiable at y = f (x) where b ∈ (0,∞). Furthermore,

(Tα f−1)(y) =
(xy)1−α

Tα f (x)
.
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Proof. Since x, x + hx1−α
∈ (0,∞), α ∈ (0, 1), y = f (x) and f (x + hx1−α) = y + Hy1−α, it’s clear that x = f−1(y)

and x + hx1−α = f−1(y + Hy1−α). Since the function f is increasing (or decreasing),

H =
f (x + hx1−α) − f (x)

y1−α , 0 for all h , 0. Hence, for H→ 0, h→ 0. Therefore, we have

lim
H→0

f−1(y + Hy1−α) − f−1(y)
H

= lim
h→0

(xy)1−α

f (x + hx1−α) − f (x)
h

=
(xy)1−α

limh→0
f (x + hx1−α) − f (x)

h

=
(xy)1−α

Tα f (x)
.

Definition 3.7. Let γ be a conformable curve. If Tαγ(t) , 0 for all t ∈ (0,∞), γ is called a conformable regular
curve.

Theorem 3.8. If γ is a conformable regular curve, there is a reparametrization β of γ such that β has unit speed.

Proof. Let a ∈ (0,∞) be fixed. Consider the arc length function

s(t) = Ia
α‖Tαγ(t)‖.

Since γ is conformable regular, Tαs(t) = ‖Tαγ(t)‖ , 0. By Lemma (3.6), s(t) has an inverse function t = t(s)
and t = t(s) is also differentiable. On the other hand, β is a reparametrization of γ such that β(s) = γ(t(s)).
Let us show that β has unit speed: We know that Tαβ(s) = (Tαγ)(t(s))Tαt(s)t(s)α−1 by Theorem (2.8).
Therefore,

‖Tαβ(s)‖
s1−α =

‖(Tαγ)(t(s))‖Tαt(s)t(s)α−1

s1−α

=
(Tαs)(t(s))Tαt(s)t(s)α−1

s1−α =
Tα(s(t(s)))

s1−α =
Tαs
s1−α = 1.

This completes the proof.

4. α−Frenet Formulas

4.1. Conformable Curves With Unit Speed

Let β be a unit speed conformable curve, so
‖Tαβ(s)‖

s1−α = 1 for each s ∈ (0,∞). Then E1(s) =
Tαβ(s)
s1−α is called

the unit tangent vector field on β. Since E1 has constant length 1, we call TαE1 the curvature vector field of
β. α−differentiation of E1 · E1 = 1 gives 2TαE1 · E1 = 0, so TαE1 is always orthogonal to E1, that is, normal to
β.
The length of the curvature vector field TαE1 gives a numerical measurement of the turning of β. The real
valued function κ such that κ(s) = ‖TαE1(s)‖ for all s ∈ (0,∞) is called the curvature function of β. Let κ > 0.

The unit vector field E2 =
TαE1

κ
on β is called the principal normal vector field of β. The unit vector field

E3 = E1 × E2 on β is called binormal vector field of β. Therefore the orthonormal system of the vector fields
{E1,E2,E3} on β is called the α−frenet frame.

Remark 4.1. Now we express the terms TαE1,TαE2,TαE3 in terms of E1,E2,E3. Since E1 = Tαβ, we have
TαE1 = κE2. Let us consider TαE3. Since E3 · E3 = 1, TαE3 is orthogonal to E3. On the other hand, since E3 · E1 = 0,
TαE3 · E1 + E3 · TαE1 = 0. Hence, we have TαE3 · E1 = −E3 · TαE1 = −E3 · κE2 = 0, that is, TαE3 is orthogonal to
E1. Finally, since TαE3 is orthogonal to both E1 and E3, TαE3 is, at each point, a scalar multiple of E2. Thus,
TαE3 = −τE2, where the real valued function τ is called the torsion function of the conformable curve β.
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Theorem 4.2. If β is a unit speed conformable curve with curvature κ > 0 and torsion τ then,

TαE1 = κE2
TαE2 = −κE1 +τE3
TαE3 = −τE2

.

Proof. By Remark (4.1) first and third formulas are essentially just the definitions of curvature and torsion.
For second equation, let use orthonormal expansion to express TαE2 in terms of E1,E2,E3:

TαE2 = (TαE2 · E1)E1 + (TαE2 · E2)E2 + (TαE2 · E3)E3.

α−differentiating of E2 · E1 = 0 gives TαE2 · E1 = −E2 · TαE1 = −E2 · κE2 = −κ. As usual, TαE2 · E2 = 0, since
E2 is a unit vector field.
Finally, TαE2 · E3 = −E2 · TαE3 = −E2 · −τE2 = τ.

Remark 4.3. The equations obtained in Theorem 4.2 are the same as the equations in Theorem 3.2 in [2].

4.2. Conformable Curves With Arbitrary Speed

Remark 4.4. Let γ be a conformable regular curve with arbitrary speed and β be the unit speed reparametrization of
γ. If s is an arc length function for γ as in Theorem (3.8), then γ(t) = β(s(t)) for all t ∈ (0,∞). If κβ > 0, τβ,
Eβ1,E

β
2,E

β
3 are defined for β as in Subsection 4.1, we define for γ the curvature function as κ = κβ(s), torsion function

as τ = τβ(s), unit tangent vector field as E1 = Eβ1(s), principal normal vector field as E2 = Eβ2(s) and binormal vector
field as E3 = Eβ3(s).

Lemma 4.5. If γ is a conformable regular curve in R3 with κ > 0 then

TαE1 = κvλ1−αE2
TαE2 = −κvλ1−αE1 +τvλ1−αE3
TαE3 = −τvλ1−αE2

where λ =
t

s(t)
.

Proof. Let β be a unit speed reparametrization of γ, then by Remark 4.4 E1 = Eβ1(s), where s is an arc length
function for γ. The α−chain rule as applied to differentiation of vector fields gives

TαE1(t) = Tα(Eβ1(s(t))) = (TαEβ1)(s(t))Tαs(t)s(t)α−1

= κβ(s(t))Eβ2(s(t))vt1−αs(t)α−1

= κ(t)E2(t)v
t1−α

s(t)1−α = κvλ1−αE2

where λ =
t

s(t)
.

The formulas for TαE2 and TαE3 are derived in the same way.
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Theorem 4.6. Let γ be a conformable curve in R3. Then

E1 =
Tαγ
‖Tαγ‖

E3 =
Tαγ × T2

αγ

‖Tαγ × T2
αγ‖

E2 = E3 × E1

κ = (
t
λ

)1−α ‖Tαγ × T2
αγ‖

‖Tαγ‖3

τ = (
t
λ

)1−α (Tαγ × T2
αγ) · T3

αγ

‖Tαγ × T2
αγ‖2

.

Proof. Since Tαγ = vt1−αE1, we have E1 =
Tαγ
vt1−α . We know v =

‖Tαγ‖
t1−α , then E1 =

Tαγ
‖Tαγ‖

.

T2
αγ(t) = Tα(vt1−αE1) = (t1−αTαv + (1 − α)t1−2αv)E1 + κv2(tλ)1−αE2.

So we have

Tαγ × T2
αγ = vt1−αE1 × [(t1−αTαv + (1 − α)t1−2αv)E1 + κv2(tλ)1−αE2]

= vt1−α(t1−αTαv + (1 − α)t1−2αv)E1 × E1 + κv2(tλ)1−αE1 × E2

= κv3(λt2)1−αE3.

If we take norms, we get ‖Tαγ × T2
αγ‖ = κv3(λt2)1−α.

Then,

Tαγ × T2
αγ

‖Tαγ × T2
αγ‖

.

On the other hand,

κ =
‖Tαγ × T2

αγ‖

v3(λt2)1−α =
‖Tαγ × T2

αγ‖

(vt1−α)3(
λ
t

)1−α
= (

t
λ

)1−α ‖Tαγ × T2
αγ‖

‖Tαγ‖3
.

Now we need only to find E3 component of T3
αγ. Then,

T3
αγ(t) = κv3(λ2t)1−ατE3 + ...

Consequently,

(Tαγ × T2
αγ) · T3

αγ = κ2v6(λt)3(1−α)τ.

Thus,

τ =
(Tαγ × T2

αγ) · T3
αγ

κ2v6(λt)3(1−α)
=

(Tαγ × T2
αγ) · T3

αγ

(κv3(λt2)1−α)2 (
λ
t

)1−α

= (
t
λ

)1−α (Tαγ × T2
αγ) · T3

αγ

‖Tαγ × T2
αγ‖2

.

Remark 4.7. Although the equations in the case of unit speed conformable curves are structurally identical with
usual Frenet equations , arbitrary speed curves are different equations from usual case.
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Example 4.8. We compute the α−Frenet apparatus of the conformable curve

γ(t) =
(
3 cos(

tα

α
), 3 sin(

tα

α
), 4

tα

α

)
.

The α−derivatives are

Tαγ(t) =
(
−3 sin(

tα

α
), 3 cos(

tα

α
), 4
)

T2
αγ(t) =

(
−3 cos(

tα

α
),−3 sin(

tα

α
), 0
)

T3
αγ(t) =

(
3 sin(

tα

α
),−3 cos(

tα

α
), 0
)
.

Then, ‖Tαγ(t)‖ = 5. Applying the definition of cross product yields

Tαγ(t) × T2
αγ(t) =

(
12 sin(

tα

α
),−12 cos(

tα

α
), 9
)
.

Hence, ‖Tαγ(t) × T2
αγ(t)‖ = 15. The expression above for Tαγ(t) × T2

αγ(t) and T3
αγ(t) yield

(Tαγ(t) × T2
αγ(t)) · T3

αγ(t) = 6.

By Theorem 4.6,

E1(t) =
(
−

3
5

sin(
tα

α
),

3
5

cos(
tα

α
),

4
5

)
E2(t) =

(
− cos(

tα

α
),− sin(

tα

α
), 0
)

E3(t) =
(12

15
sin(

tα

α
),−

12
15

cos(
tα

α
),

9
15

)
κ(t) =

3
25

(
t
λ

)1−α

τ(t) =
4

25
(

t
λ

)1−α.

5. Fundamental Theorem of the Local Theory of Conformable Curves

Theorem 5.1. Given α−differentiable functions κ(s) > 0 and τ(s), s ∈ (0,∞), there exists a conformable regular
parametrized curve γ : (0,∞)→ R3 such that s is the arc length, k(s) is the curvature and τ(s) is the torsion of γ.

Proof. The starting point is to observe that α−Frenet equations

TαE1 = κE2
TαE2 = −κE1 +τE3
TαE3 = −τE2

(8)

may be considered as a system of fractional differential equations in (0,∞) ×R9,

Tαρ1(s) = f1(s, ρ1, ..., ρ9)
...

Tαρ9(s) = f9(s, ρ1, ..., ρ9)
, (9)

where (ρ1, ρ2, ρ3) = E1, (ρ4, ρ5, ρ6) = E2, (ρ7, ρ8, ρ9) = E3, and fi, i = 1, ..., 9 are linear functions (with
coefficients that depend on s) of the coordinates ρi.
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Given initial conditions s0 ∈ (0,∞), ρ1(s0), ..., ρ9(s0), there exists an open interval I ⊂ (0,∞) containing s0
and a unique α−differentiable mapping γ : I→ R9, with γ(s0) = (ρ1(s0), ..., ρ9(s0)) and Tαγ(s) = ( f1, ..., f9),
where each fi, i = 1, ..., 9 is calculated in (s, γ(s)) ∈ I ×R9. Furthermore, if the system is linear, I = (0,∞).
It follows that given an orthonormal, positively oriented trihedron {E1(s0),E2(s0),E3(s0)} in R3 and a value
s0 ∈ (0,∞), there exists a family of trihedrons {E1(s),E2(s),E3(s)}, s ∈ (0,∞).
We shall first show that the family {E1(s),E2(s),E3(s)} thus obtained remains orthonormal for every
s ∈ (0,∞). By using the system (8) to express the α−derivatives relative to s of the six quantities

E1 · E2, E1 · E3, E2 · E3, E1 · E1, E2 · E2, E3 · E3

as functions of these same quantities, we obtain that the system of α−differential equations

Tα(E1(s) · E2(s)) = κ(s)E2(s) · E2(s) − κ(s)E1(s) · E1(s) + τ(s)E1(s) · E3(s),
Tα(E1(s) · E3(s)) = κ(s)E2(s) · E3(s) − τ(s)E1(s) · E2(s),
Tα(E2(s) · E3(s)) = −κ(s)E1(s) · E3(s) + τ(s)E3(s) · E3(s) − τ(s)E2(s) · E2(s),
Tα(E1(s) · E1(s)) = 2κ(s)E1(s) · E2(s),
Tα(E2(s) · E2(s)) = −2κ(s)E1(s) · E3(s) + 2τ(s)E3(s) · E3(s),
Tα(E3(s) · E3(s)) = 2τ(s)E3(s) · E2(s).

It is easily checked that

E1 · E2 = 0, E1 · E3 = 0, E2 · E3 = 0, E1 · E1 = 1, E2 · E2 = 1, E3 · E3 = 1

is a solution of above system with initial conditions 0, 0, 0, 1, 1, 1. By uniqueness, the family
{E1(s),E2(s),E3(s)} is orthonormal for every s ∈ (0,∞), as we claimed.
From the family {E1(s),E2(s),E3(s)} it is possible to obtain a conformable curve by setting

γ(s) = Is0
α E1(s).

Example 5.2. Let α−differentiable functions κ(s) = 3 and τ(s) = 4. Then the associated fractional differential
equations are

TαE1 = 3E2
TαE2 = −3E1 +4E3
TαE3 = −4E2

.

Let TαE1 = (e(α)
11 , e

(α)
12 , e

(α)
13 ), TαE2 = (e(α)

21 , e
(α)
22 , e

(α)
23 ) and TαE3 = (e(α)

31 , e
(α)
32 , e

(α)
33 ) where e(α)

i j is the α−differentials of the
coordinate functions of the α−Frenet apparatus.
For simplicity, we choose α = 1/2. Hence,

e(1/2)
11 (s) =3e21(s)

e(1/2)
12 (s) =3e22(s)

e(1/2)
13 (s) =3e23(s)

e(1/2)
21 (s) = − 3e11(s) + 4e31(s)

e(1/2)
22 (s) = − 3e12(s) + 4e32(s)

e(1/2)
23 (s) = − 3e13(s) + 4e33(s)

e(1/2)
31 (s) = − 4e21(s)

e(1/2)
32 (s) = − 4e22(s)

e(1/2)
33 (s) = − 4e23(s),

(10)
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and given initial conditions

E1(
π2

400
) =(1, 0, 0)

E2(
π2

400
) =(0, 1, 0)

E3(
π2

400
) =(0, 0, 1).

(11)

Then the solutions of the system of α−differential equations (10) are

E1(s) =(
9
25

sin 10
√

s +
16
25
,−

3
5

cos 10
√

s,−
12
25

sin 10
√

s +
12
25

)

E2(s) =(
3
5

cos 10
√

s, sin 10
√

s,−
4
5

cos 10
√

s)

E3(s) =(−
12
25

sin 10
√

s +
12
25
,

4
5

cos 10
√

s,
16
25

sin 10
√

s +
9

25
).

Finally, the conformable curve corresponding to fractional system (10) with initial conditions (11) is the curve

γ(s) =
1

125

(
160
√

s − 9 cos 10
√

s − 8π,−15 sin 10
√

s + 15, 120
√

s + 12 cos 10
√

s − 6π
)
.

2

0.1
0.2

0.5

1

1.5

Graph of γ

γ(s)

6. Conclusions

In our study, the classical differential geometry of curves is investigated with respect to conformable
fractional derivative and conformable fractional integral. In this sense, a conformable curve is defined and
α−Frenet formulas are given. If α = 1, the theory of conformable curves coincides with the classical theory
of curves. A conformable curve is a natural generalization of a classical curve. Studying this problem, we
use conformable derivatives because it provides useful properties such as the product rule and chain rule
compared to other fractional derivatives including Caputo and Riemann-Liouville. Thus the fundamental
theorem of the local theory of the conformable curves is given. And, for α−differentiable functions κ > 0
and τ, a system of fractional order differential equations is formed, then a conformable curve is obtained
by the solution of this system.
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