On Bazilevič Functions and Umezawa's Lemma

Mamoru Nunokawa ${ }^{\text {a }}$, Janusz Sokó ${ }^{\text {b }}{ }^{\text {b }}$
${ }^{a}$ University of Gunma, Hoshikuki-Cho 798-8, Chuou-Ward, Chiba 260-0808, Japan
${ }^{b}$ Corresponding Author, Faculty of Mathematics and Natural Sciences, University of Rzeszów, ul. Prof. Pigonia 1, 35-310 Rzeszów, Poland

Abstract

We consider some properties on $|z|=r<1$ of analytic functions in the unit disk $|z|<1$. Applying Umezawa's lemma, On the theory of univalent functions, Tohoku Math J. 7(1955) 212-228, we prove some sufficient conditions for functions to be in the class of Bazilevič functions and some related results.

1. Introduction

Let \mathcal{H} denote the class of analytic functions in the unit $\operatorname{disk} \mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. Let \mathcal{A}_{p} denote the class of all functions analytic in the unit disk \mathbb{D} which have the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{p+n} z^{p+n}, \quad z \in \mathbb{D} \tag{1}
\end{equation*}
$$

A function $f(z)$ meromorphic in a domain $D \subset \mathbb{C}$ is said to be p-valent in D if for each w the equation $f(z)=w$ has at most p roots in D, where roots are counted in accordance with their multiplicity, and there is some v such that the equation $f(z)=v$ has exactly p roots in D. In [6] S. Ozaki proved that if $f(z)$ of the form (1) is analytic in a convex domain $D \subset \mathbb{C}$ and for some real α we have

$$
\mathfrak{R e}\left\{\exp (i \alpha) f^{(p)}(z)\right\}>0 \quad z \in D
$$

then $f(z)$ is at most p-valent in D. Ozaki's condition is a generalization of the well known NoshiroWarschawski univalence condition, [4], [12]. In recent paper [10] there are some other conditions for a function to be p-valent in D. Further, a function $f \in \mathcal{A}_{p}, p=1,2,3, \ldots$, is said to be p-valently starlike, if

$$
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad z \in \mathbb{D}
$$

The class of all such functions is usually denoted by \mathcal{S}_{p}^{*}. For $p=1$ we receive the well known class of normalized starlike univalent functions. Recall that $f(z)$ of the form (1) is called the p-valently Bazilevič function of type β if there exists a p-valently starlike function

$$
g(z)=z^{p}+\sum_{n=p+1} b_{n} z^{n}, \quad z \in \mathbb{D}
$$

[^0]such that
$$
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f^{1-\beta}(z) g^{\beta}(z)}\right\}>0 \quad z \in \mathbb{D}
$$
where $\beta>0$. Let \mathcal{P} denote the class of analytic functions $q(z)$ in \mathbb{D} of the form
\[

$$
\begin{equation*}
q(z)=1+\sum_{n=1}^{\infty} q_{n} z^{n}, \quad z \in \mathbb{D} \tag{2}
\end{equation*}
$$

\]

such that $\mathfrak{R e}\{q(z)\}>0$, for $z \in \mathbb{D}$. Functions in \mathcal{P} are sometimes called Carathéodory functions.
Lemma 1.1. [7, Lemma 2] see also [11, pp.224-225] Let us denote by D_{z} a simply connected closed domain including $z=0$ inside and by C_{z} the boundary of D_{z}. Let

$$
\begin{equation*}
w=f(z)=z^{p}+\sum_{n=p+1} a_{n} z^{n} \tag{3}
\end{equation*}
$$

be regular on D_{z} and $f(z) / z^{p} \neq 0, f^{\prime}(z) \neq 0$ on D_{z}. If $f(z)$ is at least $(p+1)$-valent then C_{z} has at least one arc C_{z}^{\prime} such that

$$
\begin{equation*}
\int_{C_{z}^{\prime}} \frac{\partial}{\partial \theta}\left[\arg \left\{z f^{\prime}(z)\right\}\right] \mathrm{d} \theta \leq-\pi \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{C_{z}^{\prime}} \frac{\partial}{\partial \theta} \arg \{f(z)\} \mathrm{d} \theta=0, \quad z \in C_{z}^{\prime} \tag{5}
\end{equation*}
$$

hold, and $f\left(z_{1}\right)=f\left(z_{2}\right)$, where $z_{1}=r e^{i \theta_{1}}, z_{1}=r e^{i \theta_{2}}, \theta_{1}<\theta_{2}$ are the initial and the end point of C_{z}^{\prime} respectively.
Lemma 1.2. [11, p.224-225] Let $f(z)$ be analytic in a simply connected domain D where boundary Γ_{z} consists of a regular curve and $f^{\prime}(z) \neq 0$ on Γ_{z}. Suppose that

$$
\int_{\Gamma_{z}} \frac{\partial}{\partial \theta}\left[\arg \left\{z f^{\prime}(z)\right\}\right] \mathrm{d} \theta=\int_{\Gamma_{z}} \mathfrak{R e}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \mathrm{d} \theta=2 k \pi .
$$

If we have for arbitrary $p-k+1$ arcs $C_{1}, C_{2}, \ldots, C_{p-k+1}$ on the boundary Γ_{z} of D which doesn't overlap one another

$$
\begin{equation*}
\int_{C_{1}+C_{2}+\ldots+C_{p-k+1}} \frac{\partial}{\partial \theta}\left[\arg \left\{z f^{\prime}(z)\right\}\right] d \theta>-\pi \tag{6}
\end{equation*}
$$

or, if for arbitrary $p-k+1 \operatorname{arcs} C_{1}, C_{2}, \ldots, C_{p-k+1}$ on the boundary Γ_{z} of D which doesn't overlap one another

$$
\begin{equation*}
\int_{C_{1}+C_{2}+\ldots+C_{p-k+1}} \frac{\partial}{\partial \theta}\left[\arg \left\{z f^{\prime}(z)\right\}\right] d \theta<(p+k+1) \pi \tag{7}
\end{equation*}
$$

then $f(z)$ is at most p-valent in D.
Here, $\arg \mathrm{d} f(z)$ means the argument of the tangent to the curve $f\left(r e^{i \theta}\right), 0 \leq \theta \leq 2 \pi \operatorname{or} \arg \left\{i z f^{\prime}(z)\right\}$. Applying Umezawa's Lemma 1.2, we can have the following contraposition of it.

Theorem 1.3. Let $f(z)$ be of the form (1) be analytic in \mathbb{D} and $f^{\prime}(z) \neq 0$ in \mathbb{D} and let for arbitrary $r, 0<r<1, f(z)$ satisfies

$$
\int_{|z|=r} \frac{\partial}{\partial \theta}\left[\arg \left\{z f^{\prime}(z)\right\}\right] \mathrm{d} \theta=2 p \pi .
$$

Then, if $f(z)$ is at lest $(p+1)$-valent in \mathbb{D}, then there exists an arc Γ on the circle $|z|=r, 0<r<1$, for which

$$
\begin{equation*}
\int_{\Gamma} \frac{\partial}{\partial \theta}\left[\arg \left\{z f^{\prime}(z)\right\}\right] \mathrm{d} \theta \leq-\pi \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{\Gamma} \frac{\partial}{\partial \theta}\left[\arg \left\{z f^{\prime}(z)\right\}\right] \mathrm{d} \theta \geq(2 p+1) \pi \tag{9}
\end{equation*}
$$

2. Results and Discussion

Applying Theorem 1.3 gives the following theorem.
Theorem 2.1. Let

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1} a_{n} z^{n}, \quad z \in \mathbb{D} \tag{10}
\end{equation*}
$$

be analytic in \mathbb{D}. Assume that there exists a p-valently starlike function

$$
\begin{equation*}
g(z)=z^{p}+\sum_{n=p+1} b_{n} z^{n}, \quad z \in \mathbb{D} \tag{11}
\end{equation*}
$$

such that

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f^{1-\beta}(z) g^{\beta}(z)}\right\}>0 \quad z \in \mathbb{D} \tag{12}
\end{equation*}
$$

where $\beta>0$. Then $f(z)$ is p-valent in \mathbb{D}.
Proof. From the hypothesis (12), we have

$$
\begin{align*}
& \int_{|z|=r} \frac{\partial}{\partial \theta} \arg \left\{\frac{z f^{\prime}(z)}{f^{1-\beta}(z) g^{\beta}(z)}\right\} \mathrm{d} \theta \tag{13}\\
= & \int_{|z|=r}\left(\frac{\partial}{\partial \theta} \arg \left\{z f^{\prime}(z)\right\}-\frac{\partial}{\partial \theta} \arg \left\{f^{1-\beta}(z)\right\} \mathrm{d} \theta-\frac{\partial}{\partial \theta} \arg \left\{g^{\beta}(z)\right\}\right) \\
= & \int_{|z|=r}\left(\frac{\partial}{\partial \theta} \arg \left\{z f^{\prime}(z)\right\}-(1-\beta) \frac{\partial}{\partial \theta} \arg \{f(z)\}-\beta \frac{\partial}{\partial \theta} \arg \{g(z)\}\right) \mathrm{d} \theta
\end{align*}
$$

It is trivial that $f(z)$ is at least p-valent in \mathbb{D} because

$$
f(z)=z^{p}+\sum_{n=p+1} a_{n} z^{n}
$$

is at least p-valent in at the neighborhood of the origin. Then if $f(z)$ is not p-valent in \mathbb{D} or $f(z)$ is at least $(p+1)$-valent in \mathbb{D}, then by Lemma 1.1, there exists an arc on the circle $|z|=r, 0<r<1$, for which we have the following picture Fig. 1. which is a part of the image of $w=f(z),|z|=r$.

$$
\begin{aligned}
\Gamma= & \left\{f(z): f\left(r e^{i \theta}\right), 0 \leq \theta_{1} \leq \theta \leq \theta_{2}, z_{j}=r e^{i \theta_{j}}, j=1,2, f\left(z_{1}\right)=f\left(z_{2}\right)\right. \\
& \text { and } \left.\left.\frac{\partial}{\partial \theta} \arg \left\{z f^{\prime}(z)\right\}\right|_{z_{2}}=\left.\frac{\partial}{\partial \theta} \arg \left\{z f^{\prime}(z)\right\}\right|_{z_{1}}-\pi\right\} .
\end{aligned}
$$

Fig.1. $w=f(z)$-plane

Then, we have

$$
\begin{equation*}
\int_{\Gamma} \frac{\partial}{\partial \theta} \arg \left\{z f^{\prime}(z)\right\} \mathrm{d} \theta=-\pi \tag{14}
\end{equation*}
$$

From (13), we must have

$$
\begin{align*}
& \int_{\Gamma} \frac{\partial}{\partial \theta} \arg \left\{\frac{z f^{\prime}(z)}{f^{1-\beta}(z) g^{\beta}(z)}\right\} \mathrm{d} \theta \tag{15}\\
= & \int_{\Gamma}\left(\frac{\partial}{\partial \theta} \arg \left\{z f^{\prime}(z)\right\}-(1-\beta) \frac{\partial}{\partial \theta} \arg \{f(z)\}-\beta \frac{\partial}{\partial \theta} \arg \{g(z)\}\right) \mathrm{d} \theta \\
= & \int_{\Gamma}\left(\frac{\partial}{\partial \theta} \arg \left\{z f^{\prime}(z)\right\}-\beta \frac{\partial}{\partial \theta} \arg \{g(z)\}\right) \mathrm{d} \theta \\
> & -\pi
\end{align*}
$$

because $f\left(z_{1}\right)=f\left(z_{2}\right)$. Therefore, we have

$$
\begin{equation*}
\int_{\Gamma} \frac{\partial}{\partial \theta} \arg \left\{z f^{\prime}(z)\right\} \mathrm{d} \theta>\int_{\Gamma} \beta \frac{\partial}{\partial \theta} \arg \{g(z)\} \mathrm{d} \theta-\pi>-\pi \tag{16}
\end{equation*}
$$

because $0<\beta$ and $g(z)$ is p-valently starlike in \mathbb{D}. This contradicts (14) and it completes the proof of Theorem 2.1.

Corollary 2.2. If $f(z) \in \mathcal{A}_{p}$ and there exist $g(z) \in \mathcal{S}_{p}^{*}, q(z) \in \mathcal{P}$ and a positive integer $k \geq 2$ such that

$$
\begin{equation*}
f^{k}(z)=k p \int_{0}^{z} \frac{g^{k}(t) q(t)}{t} \mathrm{~d} t \quad z \in \mathbb{D} \tag{17}
\end{equation*}
$$

then $f(z)$ is p-valent in \mathbb{D}.

Proof. Equality (17) may be written in the form

$$
z f^{k-1}(z) f^{\prime}(z)=p g^{k}(z) q(z)
$$

or

$$
\frac{z f^{\prime}(z)}{f^{1-k}(z) g^{k}(z)}=p q(z)
$$

and $\mathfrak{R e}\{p q(z)\}>0$ in \mathbb{D}. This gives (12) hence $f(z)$ is p-valent in \mathbb{D}.

For $k=2$, Corollary 2.2 becomes the following corollary.
Corollary 2.3. Let If $f(z) \in \mathcal{A}_{p}$ and there exist $g(z) \in \mathcal{S}_{p}^{*}$ and $q(z) \in \mathcal{P}$ such that

$$
z f(z) f^{\prime}(z)=p g^{2}(z) q(z) z \in \mathbb{D}
$$

Then $f(z)$ is p-valent in \mathbb{D}.
Theorem 2.4. Let

$$
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}
$$

be analytic in \mathbb{D}. Assume that there exists a p-valently starlike function

$$
g(z)=z^{p}+\sum_{n=p+1}^{\infty} b_{n} z^{n}
$$

such that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{p f^{1-\beta}(z) g^{\beta}(z)}<\left(\frac{1+z}{1-z}\right)^{2} \tag{18}
\end{equation*}
$$

Then

$$
\int_{0}^{2 \pi}\left|\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{p f^{1-\beta}(z) g^{\beta}(z)}\right\}\right| \mathrm{d} \theta \leq 2 \pi, \quad|z|<\sqrt{2}-1
$$

Proof. If $\Phi(z)<\Phi_{0}(z)$, then [1]

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\mathfrak{R e}\left\{\Phi\left(\rho e^{i \theta}\right)\right\}\right| \mathrm{d} \theta \leq \int_{0}^{2 \pi}\left|\mathfrak{R e}\left\{\Phi_{0}\left(\rho e^{i \theta}\right)\right\}\right| \mathrm{d} \theta \text { for } 0<\rho<1 \tag{19}
\end{equation*}
$$

From (18) and from (19), for all $z=\rho e^{i \theta}, \rho \in(0,1)$, we have

$$
\int_{0}^{2 \pi}\left|\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{p f^{1-\beta}(z) g^{\beta}(z)}\right\}\right| \mathrm{d} \theta \leq \int_{0}^{2 \pi}\left|\mathfrak{R e}\left\{\left(\frac{1+z}{1-z}\right)^{2}\right\}\right| \mathrm{d} \theta
$$

If $0<r \leq \sqrt{2}-1$, then $\left(1-r^{2}\right)^{2}-4 r^{2} \sin ^{2} \theta \geq 0$ and we have

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|\mathfrak{R e}\left(\frac{1+z}{1-z}\right)^{2}\right| \mathrm{d} \theta & =2 \int_{0}^{\pi}\left|\frac{\left(1-r^{2}\right)^{2}-4 r^{2} \sin ^{2} \theta}{\left(1+r^{2}-2 r \cos \theta\right)^{2}}\right| \mathrm{d} \theta \\
& =2\left[\frac{4 r \sin \theta}{r^{2}-2 r \cos \theta+1}+\theta\right]_{0}^{\pi} \\
& =2 \pi
\end{aligned}
$$

where $z=r e^{i \theta}$.

Theorem 2.5. Assume that $f(z) \in \mathcal{A}_{p}, g(z) \in \mathcal{A}_{p}$. If there are positive integer $m, n \in\{1, \ldots, p\}$ such that

$$
\begin{equation*}
\left|\arg \left\{\frac{z f^{(m)}(z)}{f^{(m-1)}(z)}\right\}\right|<\frac{\gamma \pi}{2}, \quad z \in \mathbb{D}, \tag{20}
\end{equation*}
$$

for some $\gamma \in(0,1)$,

$$
\begin{equation*}
\left|\arg \left\{\frac{z g^{(n)}(z)}{g^{(n-1)}(z)}\right\}\right|<\frac{\pi}{2}, \quad z \in \mathbb{D}, \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left\{\frac{f^{(n)}(z)}{g^{(n)}(z)}\right\}\right|<\frac{(1-\gamma) \pi}{2 \beta}, \quad z \in \mathbb{D}, \tag{22}
\end{equation*}
$$

for some $\beta>1-\gamma$, then

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f^{1-\beta}(z) g^{\beta}(z)}\right\}>0, \quad z \in \mathbb{D} . \tag{23}
\end{equation*}
$$

This means that $f(z)$ is a p-valently Bazilevič function of type β.
Proof. Let

$$
q(z)=\left\{\frac{z f^{(m-1)}(z)}{(p-m+2) f^{(m-2)}(z)}\right\}, \quad q(0)=1 .
$$

If there exists a point $z_{0},\left|z_{0}\right|<1$, such that

$$
\begin{equation*}
|\arg \{q(z)\}|<\frac{\pi \gamma}{2} \tag{24}
\end{equation*}
$$

for $|z|<\left|z_{0}\right|$ and

$$
\begin{equation*}
\left|\arg \left\{q\left(z_{0}\right)\right\}\right|=\frac{\pi \gamma}{2} \tag{25}
\end{equation*}
$$

for some $\gamma \in(0,1)$, then from [5], we have

$$
\begin{equation*}
\frac{z_{0} q^{\prime}\left(z_{0}\right)}{q\left(z_{0}\right)}=\frac{2 i k \arg \left\{q\left(z_{0}\right)\right\}}{\pi}, \tag{26}
\end{equation*}
$$

for some $k \geq\left(a+a^{-1}\right) / 2 \geq 1$, where $\left\{q\left(z_{0}\right)\right\}^{1 / \gamma}= \pm i a$, and $a>0$. If we consider (25) for the case $\arg \left\{q\left(z_{0}\right)\right\}=$ $\pi \gamma / 2$, then from (26) we have

$$
\begin{aligned}
\left|\arg \left\{\frac{z f^{(m)}(z)}{f^{(m-1)}(z)}\right\}\right| & =\left|\arg \left\{(p-m+2) q\left(z_{0}\right)-1+\frac{z_{0} q^{\prime}\left(z_{0}\right)}{q\left(z_{0}\right)}\right\}\right| \\
& =\left|\arg \left\{(p-m+2) q\left(z_{0}\right)-1+i k \gamma\right\}\right| \\
& \geq \arg \left\{(p-m+2) q\left(z_{0}\right)\right\}=\pi \gamma / 2 .
\end{aligned}
$$

This contradicts (20), so supposition (25) is false and (24) holds true in whole unit disc \mathbb{D}. The same argumentation shows that (24) holds true if we consider (25) for the case $\arg \left\{q\left(z_{0}\right)\right\}=-\pi \gamma / 2$. Applying this method again and again we obtain that (20) implies the same inequality for all smaller numbers than m namely

$$
\left|\arg \left\{\frac{z f^{(m)}(z)}{f^{(m-1)}(z)}\right\}\right|<\frac{\gamma \pi}{2} \quad \Rightarrow \quad \forall k \in\{1, \ldots, m\}: \quad\left|\arg \left\{\frac{z f^{(k)}(z)}{f^{(k-1)}(z)}\right\}\right|<\frac{\gamma \pi}{2} .
$$

Also, in the same way, from (21) we have

$$
\left|\arg \left\{\frac{z g^{(n)}(z)}{g^{(n-1)}(z)}\right\}\right|<\frac{\pi}{2} \quad \Rightarrow \quad \forall k \in\{1, \ldots, n\}: \quad\left|\arg \left\{\frac{z g^{(k)}(z)}{g^{(k-1)}(z)}\right\}\right|<\frac{\pi}{2}
$$

Furthermore, it is known, [3, p.200], that if q is convex univalent in \mathbb{D} and $F(z), G(z)$ are analytic in \mathbb{D}, $G(0)=F(0)$ and

$$
\mathfrak{R e}\left\{\frac{z G^{\prime}(z)}{G(z)}\right\}>0, \quad(z \in \mathbb{D})
$$

then we have

$$
\begin{equation*}
\frac{F^{\prime}(z)}{G^{\prime}(z)}<q(z) \quad \Rightarrow \quad \frac{F(z)}{G(z)}<q(z), \quad(z \in \mathbb{D}) . \tag{27}
\end{equation*}
$$

If we put

$$
\begin{equation*}
F(z)=f^{(n-1)}(z), \quad G(z)=g^{(n-1)}(z), \quad q(z)=\left\{\frac{1+z}{1-z}\right\}^{\alpha}, \quad \alpha=\frac{(1-\gamma) \pi}{2 \beta} \tag{28}
\end{equation*}
$$

then by (25) and (27), we have

$$
\begin{equation*}
\left|\arg \left\{\frac{f^{(n)}(z)}{g^{(n)}(z)}\right\}\right|<\frac{(1-\gamma) \pi}{2 \beta} \Rightarrow\left|\arg \left\{\frac{f^{(n-1)}(z)}{g^{n-1}(z)}\right\}\right|<\frac{(1-\gamma) \pi}{2 \beta}, \quad(z \in \mathbb{D}) . \tag{29}
\end{equation*}
$$

Applying this method again and again we obtain that

$$
\left|\arg \left\{\frac{f^{(n)}(z)}{g^{(n)}(z)}\right\}\right|<\frac{(1-\gamma) \pi}{2 \beta} \Rightarrow \forall k \in\{0, \ldots, n\}: \quad\left|\arg \left\{\frac{f^{(k-1)}(z)}{g^{k-1}(z)}\right\}\right|<\frac{(1-\gamma) \pi}{2 \beta}, \quad(z \in \mathbb{D})
$$

Note that (27) is an improvement of the earlier Pommerenke's result [8, Lemma 1, p.180]: If $f(z)$ is analytic and $g(z)$ is convex in \mathbb{D}, then

$$
\begin{equation*}
\left|\arg \frac{f^{\prime}(z)}{g^{\prime}(z)}\right|<\frac{\alpha \pi}{2}, \quad z \in \mathbb{D} \quad \Rightarrow \quad\left|\arg \frac{f(z)}{g(z)}\right|<\frac{\alpha \pi}{2}, \quad z \in \mathbb{D} \tag{30}
\end{equation*}
$$

where $0<\alpha \leq 1$.
From the above considerations, we can see that inequality (20) holds true for $m=1$, inequality (21) holds true for $n=1$ and inequality (22) holds true for $n=0$. Therefore, we have

$$
\begin{aligned}
\left|\arg \left\{\frac{z f^{\prime}(z)}{f^{1-\beta}(z) g^{\beta}(z)}\right\}\right| & =\left|\arg \left\{\frac{z f^{\prime}(z)}{f(z)}\left[\frac{f(z)}{g(z)}\right]^{\beta}\right\}\right| \\
& =\left|\arg \left\{\frac{z f^{\prime}(z)}{f(z)}\right\}+\beta \arg \left\{\frac{f(z)}{g(z)}\right\}\right| \\
& \leq\left|\arg \left\{\frac{z f^{\prime}(z)}{f(z)}\right\}\right|+\beta\left|\arg \left\{\frac{f(z)}{g(z)}\right\}\right| \\
& \leq \frac{\gamma \pi}{2}+\beta \frac{(1-\gamma) \pi}{2 \beta} \\
& =\frac{\pi}{2}
\end{aligned}
$$

This is (23).

References

[1] G. Avhadiev, L. A. Aksent'ev, The subordination principle in sufficient conditions for univalence, Dokl. Akad. Nauk SSSR, 211(1)(1973), (Soviet Math. Dokl.14(4)(1973)) 934-939.
[2] A. W. Goodman, Univalent Functions, Vols. I and II, Mariner Publishing Co.: Tampa, Florida (1983).
[3] S. S. Miller, P. T. Mocanu, Differential Subordinations, Theory and Applications, Series of Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York / Basel 2000.
[4] K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Univ. Jap.1(2)(1934-35) 129-135.
[5] M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser. A 69(7)(1993) $234-237$.
[6] S. Ozaki, On the theory of multivalent functions II, Sci. Rep. Tokyo Bunrika Daigaku Sect. A (1941) 45-87.
[7] S. Ogawa, On some criteria for p-valence, J. Math. Soc. Japan 13(1961) 431-441.
[8] Ch. Pommerenke, On close to-convex functions, Trans. Amer. Math. Soc. 114(1)(1965) 176-186.
[9] K. Sakaguchi, A note on p-valent functions J. Math. Soc. Japan 14(3)(1962) 312-321.
[10] J. Sokół, M. Nunokawa, N. E. Cho, H. Tang, On Some Applications of Noshiro-Warschawski's Theorem, Filomat, 31(1)(2017) 107-112.
[11] T. Umezawa, On the theory of univalent functions, Tohoku Math J. 7(1955) 212-228.
[12] S. Warschawski, On the higher derivatives at the boundary in conformal mapping, Trns. Amer. Math. Soc. 38(1935) 310-340.

[^0]: 2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C80
 Keywords. Bazilevič functions; starlike; convex.
 Received: 20 October 2017; Revised: 10 June 2018; Accepted: 05 July 2019
 Communicated by Miodrag Mateljević
 Email addresses: mamoru_nuno@doctor.nifty.jp (Mamoru Nunokawa), jsokol@ur.edu.pl (Janusz Sokół)

