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Abstract. In this paper, we prove DDVV conjecture (the generalized Wintgen inequality) for Legen-
drian submanifolds in Kenmotsu space forms. Further, we derive an inequality for slant submanifolds in
Kenmotsu space forms.

1. Introduction

In differential geometry, one of most fundamental research problem is to discover the relationships for
intrinsic and extrinsic invariants. In [19], P. Wintgen found a relationship between Gaussian curvature G
(an intrinsic invariant), the squared mean curvature ‖H‖2 (an extrinsic invariant) and the normal curvature
G⊥ of any surface M2 in E4 always satisfy the inequality

G + G⊥ ≤ ‖H‖2 (1)

and the equality holds if and only if the ellipse of curvature of M2 in E4 is a circle. The inequality (1) is
called Wintgen inequality and the Whitney 2-sphere satisfies the equality case of Wintgen inequality.

Later, the Wintgen inequality was extended for the surfaces M2 of codimension m in a real space form
M̃m+2(c) in [18] and [11] independently as:

G + G⊥ ≤ ‖H‖2 + c.

The equality case was also investigated.
In 1999, De Smet, Dillen, Verstraelen, Vrancken [9] developed the generalized Wintgen inequality named

as DDVV conjecture for the submanifolds in real space forms as follows:

Conjecture 1.1. Let f : Mn
→ M̃n+m(c) be an isometric immersion, where M̃n+m(c) is a real space form of constant

sectional curvature c. Then

ρ + ρ⊥ ≤ ‖H‖2 + c. (2)

where ρ is the normalised scalar curvature (intrinsic invariant) and ρ⊥ is the normalised scalar normal curvature
(extrinsic invariant).

2010 Mathematics Subject Classification. 53C15; 53C25; 53C40; 53D10
Keywords. Wintgen inequality; Generalized Wintgen inequality; normal scalar curvature; normalized normal scalar curvature;

Legendrian submanifolds; slant submanifolds; Kenmotsu space form
Received: 08 December 2019; Accepted: 28 June 2020
Communicated by Dragan S. Djordjević
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If K and R⊥ are the sectional curvature and the normal curvature tensor on Mn, respectively in M̃n+m(c),
then the normalized scalar curvature tensor ρ is given by

ρ =
2τ

n(n − 1)
=

2
n(n − 1)

∑
1≤i< j≤n

K(ei ∧ e j) (3)

where τ is the scalar curvature, and the normalized scalar normal curvature ρ⊥ by

ρ⊥ =
2τ⊥

n(n − 1)
=

2
n(n − 1)

√ ∑
1≤i< j≤n

∑
n+1≤r<s≤m+n

(
R⊥(ei, e j, er; es)

)2
(4)

The Conjecture 1.1 was proven in [9] for a submanifold Mn of arbitrary dimension n ≥ 2 and codimension
2 in the real space form M̃n+2(c) of constant sectional curvature c. Later, the DDVV conjecture was proved
for general case in [12] and in [10] independently.

For a normally flat submanifold, i.e., R⊥ = 0, this conjecture was proved by B.-Y. Chen in [6]. Hence, the
conjecture is true for the hypersurfaces of real space forms.

Recently, I. Mihai proved DDVV conjecture for Lagrangian submanifolds in complex space forms [14]
and for Legendrian submanifolds in Sasakian space forms [15]. In this paper, we derive the generalized
Wintgen inequality (DDVV conjecture) for Legendrian submanifolds in Kenmotsu space forms.

2. Preliminaries

A (2m + 1)-dimensional Riemannian manifold (M̃2m+1, 1) is said to be a Kenmotsu manifold if it admits
a (1, 1) tensor field ϕ of its tangent bundle TM̃2m+1, a vector field ξ and a 1-form η, satisfying [4]

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1,
1(ϕX, ϕY) = 1(X,Y) − η(X)η(Y),

(∇̃Xϕ)Y = 1(ϕX,Y)ξ − η(Y)ϕX, ∇̃Xξ = X − η(X)ξ.

for all vector fields X,Y on M̃2m+1, where ∇̃ is the Levi-Civita connection of 1.
A Kenmotsu manifold with constant ϕ-sectional curvature c is said to be Kenmotsu space from and is

denoted by M̃2m+1(c). Recall that the Riemannian curvature tensor of a Kenmotsu space form M̃2m+1(c) is
given by

R̃(X,Y; Z,W) =
(c − 3)

4
{1(X,W)1(Y,Z) − 1(X,Z)1(Y,W)} −

(c + 1)
4

[η(Z){η(Y)1(X,W) − η(X)1(Y,W)}

+ η(W){1(Y,Z)η(X) − 1(X,Z)η(Y)} − 1(ϕX,W)1(ϕY,Z) + 1(ϕX,Z)1(ϕY,W)
+ 21(ϕX,Y)1(ϕZ,W)] (5)

for any vector fields X,Y,Z and W tangent to M̃2m+1(c). As examples of Kenmotsu space forms we mention
R2m+1 andH2m+1(−1), with usual Kenmotsu structures ( for instance, see [4]).

Let Mn be an n-dimensional Riemannian manifold isometrically immersed in a Kenmotsu space from
M̃2m+1(c). We denote by ∇ and h, the Riemannian connection and the second fundamental form of Mn,
respectively. Then, the Gauss and Ricci equations are respectively given by

R(X,Y,Z,W) = R̃(X,Y,Z,W) + 1(h(X,W), h(Y,Z)) − 1(h(X,Z), h(Y,W)), (6)

R⊥(X,Y,N1,N2) = R̃(X,Y,N1,N2) − 1([AN1 ,AN2 ]X,Y), (7)

for all X,Y,Z,W ∈ Γ(TMn) and N1,N2 ∈ Γ(T⊥Mn), where R̃ is the curvature tensor of M̃2m+1 and R⊥ is the
normal component of R̃, whereas R is the curvature tensor of Mn.
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For any orthonormal basis {e1, · · · , en} of the tangent space TpMn, the mean curvature vector H(p) is given
by

H(p) =
1
n

n∑
i=1

h(ei, ei), ‖H‖2 =
1
n2

n∑
i, j=1

1(h(ei, ei), h(e j, e j)).

A submanifold Mn is totally geodesic in M̃2m+1 if h = 0, and minimal if H = 0. If h(X,Y) = 1(X,Y)H for all
X,Y ∈ Γ(TMn), then Mn is totally umbilical in M̃2m+1.

A submanifold Mn normal to the structure vector field ξ is said to be a C-totally real submanifold. In this
case, it follows that ϕ maps any tangent space of Mn into the normal space, that is, ϕ(TpMn) ⊂ T⊥p Mn, for
each p ∈Mn. In particular, if n = m, then Mn is called a Legendrian submanifold.

For submanifolds tangent to the structure vector field ξ, we mention the following classes of submani-
folds.

(i) A submanifold Mn tangent to ξ is said to be an invariant submanifold if ϕ preserves any tangent space
of Mn, that is, ϕ(TpMn) ⊆ TpMn, for any p ∈Mn.

(ii) A submanifold Mn tangent to ξ is called an anti-invariant submanifold if ϕmaps any tangent space of
Mn into the normal space, that is, ϕ(TpMn) ⊆ T⊥p Mn, for any p ∈Mn.

(iii) A submanifold Mn tangent to ξ is said to be a slant submanifold if for each non-zero vector X ∈ TpMn

not proportional to ξp, the angle θ(X) between ϕX and TpMn is constant, which is independent of the
choice of p ∈Mn and X ∈ TpMn. The angle θ is called slant angle or Wirtinger angle of Mn.

3. DDVV conjecture for Legendrian submanifolds

In this section, we derive the generalized Wintgen inequality for Legendiran submanifolds of Kenmotsu
manifolds. An anti invariant submanifold Mn normal to the structure vector field ξ of a Kenmotsu manifold
M̃2m+1 is said to be a Legendrian submanifold, if n = m.

Following [20], we have

KN =
1
4

2m+1−n∑
r,s=1

Trace[Ar,As]2,

where Ar = Aen+r , r ∈ {1, · · · , 2m + 1 − n}, and call it the scalar normal curvature of Mn. The normalized scalar
normal curvature is given by ρN = 2

n(n−1)

√
KN. Since Aξ = 0, it follows that

KN =
1
2

∑
1≤r<s≤2m−n

Trace[Ar,As]2 =
∑

1≤r<s≤2m−n

∑
1≤i< j≤2m−n

1([Ar,As]ei, e j)2. (8)

We denote the second fundamental form hr
i j = 1(h(ei, e j), er), i, j ∈ {1, · · · ,n}, r ∈ {n+1, · · · , 2m+1−n}. Then,

in terms of the components of the second fundamental from, we write

KN =
∑

1≤r<s≤2m−n

∑
1≤i< j≤n

 n∑
k=1

(hr
jkhs

ik − hr
ikhs

jk)


2

. (9)

Lemma 3.1. Let Mn be an n-dimensional anti-invariant submanifold normal to ξ of a (2m+1)-dimensional Kenmotsu
space from M̃2m+1(c). Then,

ρ + ρN ≤ ‖H‖2 +
c − 3

4
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with equality holding if and only if, with respect to the suitable orthonormal frames {e1, · · · , en} and {en+1, · · · , e2m, e2m+1 =
ξ}, the shape operator of Mn in M̃2m+1(c) takes the from

Aen+1 =


λ1 µ 0 · · · 0
µ λ1 0 · · · 0
0 0 λ1 · · · 0
...

...
...

...
...

0 0 0 · · · λ1


, Aen+2 =


λ2 + µ 0 0 · · · 0

0 λ2 − µ 0 · · · 0
0 0 λ2 · · · 0
...

...
...

...
...

0 0 0 · · · λ2


,

Aen+3 =


λ3 0 0 · · · 0
0 λ3 0 · · · 0
0 0 λ3 · · · 0
...

...
...

...
...

0 0 0 · · · λ3


,

where λ1, λ2, λ3 and µ are real function on Mn,

Aen+4 = · · · = Ae2m = Ae2m+1 = 0.

Proof. Note that in the proof of this lemma, we use the similar arguments and technique used in [12] (see
also [14]). From the definition of H, we have

n2
‖H‖2 =

2m+1−n∑
r=1

 n∑
i=1

hr
ii


2

.

Since h2m+1
ii = 1(Ae2m+1 ei, ei) = 0, then the above expression will be

n2
‖H‖2 =

1
n − 1

2m−n∑
r=1

∑
1≤i< j≤n

(hr
ii − hr

j j)
2 +

2n
n − 1

2m−n∑
r=1

∑
1≤i< j≤n

hr
iih

r
j j. (10)

We use the following inequality given in [12],

2m−n∑
r=1

∑
1≤i< j≤n

(hr
ii − hr

j j)
2 + 2n

2m−n∑
r=1

∑
1≤i< j≤n

(hr
i j)

2
≥ 2n

[ ∑
1≤r<s≤2m−n

∑
1≤i< j≤n

 n∑
k=1

(hr
jk(hs

ik − hr
ikhs

jk)


2 ] 1

2

. (11)

Then, with the help of above inequality, (10) takes the from

n2
‖H‖2 ≥

2n
n − 1

[ ∑
1≤r<s≤2m−n

∑
1≤i< j≤n

 n∑
k=1

(hr
jk(hs

ik − hr
ikhs

jk)


2 ] 1

2

+
2n

n − 1

2m−n∑
r=1

∑
1≤i< j≤n

[hr
iih

r
j j − (hr

i j)
2].

Thus, from the definition of normalized scalar curvature and (9), we derive

n2
‖H‖2 ≥ n2ρN +

2n
n − 1

2m−n∑
r=1

∑
1≤i< j≤n

[hr
iih

r
j j − (hr

i j)
2]. (12)

On the other hand, from the Gauss equation we have

2τ =
∑

1≤i< j≤n

R̃(ei, e j, e j, ei) + 2
2m−n∑
r=1

∑
1≤i< j≤n

[hr
iih

r
j j − (hr

i j)
2],
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where for orthonormal vector fields from (5), we derive∑
1≤i< j≤n

R̃(ei, e j, e j, ei) =
(c − 3)

4
n(n − 1).

Then, we find

τ =
n(n − 1)(c − 3)

8
+

2m−n∑
r=1

∑
1≤i< j≤n

[hr
iih

r
j j − (hr

i j)
2]. (13)

From (3), (12) and (13), we derive

ρ + ρN ≤ ‖H‖2 +
c − 3

4
,

which is the required inequality. The equality case holds identically if and only if the shape operators takes
the given form with respect to the suitable frames (we use the similar arguments given in [12] see also
[14]).

We have the following corollary as a consequence of Lemma 3.1.

Corollary 3.2. Let Mn be an n-dimensional anti-invariant submanifold normal to ξ ofH2m+1(−1). Then, we have

ρ + ρN ≤ ‖H‖2 − 1.

Now, we derive the generalized Wintgen inequality (DDVV conjecture) for Legendrian submanifolds in a
Kenmotsu space from.

Theorem 3.3. Let Mn be a Legendrian submanifold of a Kenmotsu space form M̃2n+1(c). Then, we have

(ρ⊥)2
≤

(
‖H‖2 − ρ +

c − 3
4

)2

+
c + 1

n(n − 1)

(
ρ −

c − 3
4

)
+

(c + 1)2

8n(n − 1)
,

Proof. Consider the orthonormal frame fields on Mn as {e1, · · · , en}; then {en+1 = ϕe1, · · · , e2n = ϕen, e2n+1 = ξ}
is an orthonormal frame in the normal bundle T⊥Mn. From (5) and (7), we have

R⊥(ei, e j, en+r, en+s) = −
c + 1

4

[
− 1(ϕei, en+s)1(ϕe j, en+r) + 1(ϕei, en+r)1(ϕe j, en+s)

]
− 1([Ar,As]ei, e j).

Using the considered frame field, we derive

R⊥(ei, e j, en+r, en+s) =
c + 1

4

[
1(ϕei, ϕes) 1(ϕe j, ϕer) + 1(ϕei, ϕer) 1(ϕe j, ϕes)

]
− 1([Ar,As]ei, e j)

=
c + 1

4
(δisδ jr − δirδ js) − 1([Ar,As]ei, e j), (14)

for all i, j ∈ {1, · · · ,n}, r, s ∈ {1, · · · ,n}. Now, we find

(τ⊥)2 =
∑

1≤r<s≤n

∑
1≤i< j≤n

(
R⊥(ei, e j, en+r, en+s)

)2
.

Then, with the help of (14), the above relation expresses as

(τ⊥)2 =
∑

1≤r<s≤n

∑
1≤i< j≤n

(c + 1
4

(δisδ jr − δirδ js) − 1([Ar,As]ei, e j)
)2

=
(c + 1)2

16

∑
1≤r<s≤n

∑
1≤i< j≤n

(δisδ jr − δirδ js)2 + KN +
c + 1

2

∑
1≤r<s≤n

∑
1≤i< j≤n

(δisδ jr − δirδ js) 1([Ar,As]ei, e j)

=
n(n − 1)(c + 1)2

32
+

n2(n − 1)2

4
ρ2

N −
c + 1

4
‖h‖2 +

c + 1
4

n2
‖H‖2. (15)
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On the other hand, by Gauss equation and (5), we have

2τ = n(n − 1)
c − 3

4
+ n2
‖H‖2 − ‖h‖2,

equivalently,

n2
‖H‖2 − ‖h‖2 = n(n − 1)

(
ρ −

c − 3
4

)
.

Then, with the help of above relation, (15) takes the form

(ρ⊥)2 = ρN +
c + 1

n(n − 1)

(
ρ −

c − 3
4

)
+

(c + 1)2

8n(n − 1)
.

Then, by Lemma 3.1, we derive

(ρ⊥)2
≤

(
‖H‖2 − ρ +

c − 3
4

)2

+
c + 1

n(n − 1)

(
ρ −

c − 3
4

)
+

(c + 1)2

8n(n − 1)
,

which is required inequality.

4. Another inequality

In this section we derive an inequality for normalized scalar curvature ρ and normalized normal scalar
curvature ρN for a slant submanifold M in Kenmotsu space forms. We consider the structure vector field ξ
tangent to M.

Theorem 4.1. Let Mn be an n-dimensional slant submanifold of a Kenmotsu space form M̃2m+1(c). Then, we have

ρ + ρN ≤ ‖H‖2 +
c − 3

4
+

(3 cos2 θ − 2)(c + 1)
4n

.

Proof. Consider the orthonormal frame field on Mn as follows: {e1, e2 = secθTe1, · · · , en−2, en−1 = secθTen−2, en =
ξ}. Then, we have 1(e1, ϕe2) = −1(ϕe1, secθTe1) = − cosθ. Consequently, 12(ei, ϕei+1) = cos2 θ. Using this
fact in Gauss equation with (2), we derive

2τ = n(n − 1)
c − 3

4
−

c + 1
4

(n − 1)
(
3 cos2 θ − 2

)
+ 2

2m+1−n∑
r=1

∑
1≤i< j≤n

[
hr

iih
r
ii − (hr

i j)
2
]
. (16)

On the other hand, by similar argument as in proof of Lemma 3.1 (relation (12)), we have

n2
‖H‖2 ≥ n2ρN +

2n
n − 1

2m+1−n∑
r=1

∑
1≤i< j≤n

[hr
iih

r
j j − (hr

i j)
2]. (17)

Then, from (16) and (17), we derive

ρ + ρN ≤ ‖H‖2 +
c − 3

4
+

(3 cos2 θ − 2)(c + 1)
4n

.

Hence, we achieve the result.

Corollary 4.2. Let Mn be a slant submanifold ofH2m+1. Then, we have

ρ + ρN ≤ ‖H‖2 − 1.

Notice that the inequality for the normal scalar curvature and normalized normal scalar curvature in terms
of mean curvature does not change for the different submanifolds in H2m+1. For example; in Corollary
3.2, the inequality is obtained for anti-invariant submanifolds, while; in Corollary 4.2, it is for slant slant
submanifold but in both cases the inequality is same.
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[19] P. Wintgen, Sur línégalit́e de Chen-Willmore, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), A993–A995.
[20] K. Yano, M. Kon, Anti-invariant submanifolds, M. Dekker, New York, 1976.


