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Through Fixed Point Results for Nonlinear F-Contractions Involving
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Abstract. In the present paper, the aim is to obtain some new fixed point theorems for nonlinear F-
contractions involving generalized distance to prove the existence of solution to second order differential
equation related to conversion of solar energy to electrical energy. Non-trivial examples are also presented,
to illustrate the obtained results and to show that new results are proper generalization of recently appeared
results in the literature.

1. Introduction and Preliminaries

A fundamental result in fixed point theory is the Banach Contraction Principle [2]. In the last few
decades, many authors have been extended and generalized the Banach’s contraction principle in several
ways. There is vast amount of literature dealing with extensions of Banach contraction principle (see
[1, 3, 4, 12, 16–19]). One of an attractive and important generalization is given by Wardowski in [23]. He
introduced a new type of contraction called F-contraction and proved a new fixed point theorem concerning
F-contraction.

Definition 1.1. [23] Let (X, d) be a metric space. A mapping T : X → X is said to be F-contraction if there exist
τ > 0 such that

d(Tx,Ty) > 0 implies τ + F(d(Tx,Ty)) ≤ F(d(x, y)) for all x, y ∈ X, (1)

where F : (0,∞)→ R is a function satisfying:

(F1) F is strictly increasing;

(F2) for all sequence {tn} ⊆ (0,∞), limn→∞ αn = 0, if and only if limn→∞ F(tn) = −∞;

(F3) there exist 0 < k < 1 such that limα→0+ tkF(t) = 0.

We denote by ∆(F), the collection of all functions F : (0,∞)→ R satisfying (F1), (F2) and (F3).
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Theorem 1.2. [23] Let (X, d) be a complete metric space and T : X → X be a F-contraction. Then T has a unique
fixed point x∗ ∈ X and for every x0 ∈ X a picard sequence {Tnx0}n∈N converges to x∗.

Further, Turinici in [22], replaced (F2) by the following condition:

(F2
′

) limt→0+ F(t) = −∞.

Note that, in general, F ∈ ∆(F) is not continuous. However, by (F1) and the properties of the monotone
functions, we have the following proposition.

Proposition 1.3. [22] Let F : (0,∞)→ R be a function satisfying (F1) and (F2), then there exists a countable subset
Λ(F) ⊆ (0, 1) such that

F(t − 0) = F(t) = F(t + 0) for each t ∈ (0, 1) \Λ(F).

Lemma 1.4. [22] Let F : (0,∞)→ R be a function satisfying (F1) and (F2
′

). Then for each sequence {tn} in (0, 1)

F(tn)→ −∞⇒ tn → 0.

After this, many authors generalized the F-contraction in several ways (see [6, 9, 10]). In 2015, Klim and
Wardowski [14] extended the concept of F-contractive mappings to the case of nonlinear F-contractions
and proved a fixed point theorems via the dynamic processes. In 2017, Wardowski [24] omitted one of the
conditions of F-contraction and introduced (ϕ,F)-contraction (or nonlinear F-contraction).

Definition 1.5. [24] A mapping T : X → X is said to be a (ϕ,F)-contraction (or nonlinear F-contraction), if there
exist F ∈ F and a function ϕ : (0,∞)→ (0,∞) satisfying:

(H1) lim infs→t+ ϕ(s) > 0, for all t ≥ 0.

(H2) ϕ(d(x, y)) + F(d(Tx,Ty)) ≤ F(d(x, y)), for all x, y ∈ X such that Tx , Ty

Theorem 1.6. [24] Let (X, d) be a complete metric space and let T : X → X be a (ϕ,F)-contraction. Then T has a
unique fixed point in X.

In 1996, Kada, Suzuki and Takahashi [15] introduced the generalized metric, which is known as the
w-distance and improved Caristi’s fixed point theorem, Ekeland’s variational principle and nonconvex
minimization theorem using the results of Takahashi [15], for more results on the w-distance, (see [5, 7, 11,
20, 21]).

Definition 1.7. [15] Let X be a metric space with metric d. Then a function p : X×X→ [0,∞) is called a w-distance
on X, if the following are satisfied:

(a) p(x, z) ≤ p(x, y) + p(y, z), for all x, y, z ∈ X;

(b) for all x ∈ X, p(x, .) : X → [0,∞) is lower semicontinuous (i.e., if x ∈ X and yn → y ∈ X, then p(x, y) ≤
lim infn→∞ p(x, yn));

(c) for any ε > 0, ∃ δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ implies d(x, y) ≤ ε.

Example 1.8. [15] Let (X, d) be a metric space. A mapping p : X × X→ [0,∞) defined by

p(x, y) = k > 0 for all x, y ∈ X

is a w-distance on X. The mapping p is not a metric, since p(x, x) , 0 for any x ∈ X.

Example 1.9. Let (X, ‖.‖) be a normed linear space. A mapping p : X × X → [0,∞) defined by p(x, y) = ‖x‖ + ‖y‖
for all x, y ∈ X is a w-distance on X.

Lemma 1.10. [15] Let X be a metric space with metric d and let p be a w-distance on X. Let {un} and {vn} be sequences
in X, let αn and βn be sequences in [0,+∞) converging to 0, and let u, v,w ∈ X. Then the following hold:
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(i) if p(un, v) ≤ αn and p(un,w) ≤ βn for any n ∈ N, then v = w. In particular, if p(u, v) = 0, and p(u,w) = 0,
then v = w;

(ii) if p(un, vn) ≤ αn and p(un,w) ≤ βn for any n ∈N, then vn converges to w;

(iii) if p(un,un) ≤ αn for any n,m ∈N with m > n, then {un} is a cauchy sequence;

(iv) if p(v,un) ≤ αn for any n ∈N, then {un} is a cauchy sequence.

Recently, in [13], Kostić et al. introduced a special type of w-distance named as w0- distance, to extend best
proximity results of Tchier et al. [22] involving simulation functions. The w0-distance is slightly different
to the original w-distance, in regard that the lower semicontinuity with respect to both variables (when one
of them is fixed) is supposed.

Definition 1.11. [13] Let X be a metric space with metric d. Then a function p : X × X → [0.∞) is called a
w0-distance on X, if the following are satisfied:

(P1) p(x, z) ≤ p(x, y) + p(y, z), for all x, y, z ∈ X,

(P2) for any x ∈ X, functions p(x, .), p(., x) : X→ [0,∞) are lower semicontinuous,

(P3) for any ε > 0, ∃ δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ implies d(x, y) ≤ ε.

Let (X, d) be a metric space, p : X × X→ [0,∞) a w0-distance on X, and, for every x, y ∈ X let

µ(x, y) := max{p(x, y), p(y, x)}.

Remark 1.12. [13] The function µ : X × X→ [0,∞) has the following properties (for all x, y, z ∈ X)

(1) µ(x, y) = 0⇒ x = y;

(2) µ(x, y) = µ(y, x), i.e. µ is symmetric;

(3) µ(x, y) ≤ µ(x, z) + µ(z, y), i.e. µ satisfies the triangle inequality.

Example 1.13. [13] Let X = [0,∞) be a metric space with metric d(x, y) =| x − y |, for all x, y ∈ X, then p defined
by p(x, y) = x + y for all x, y ∈ X is a w0-distance.

Example 1.14. [13] Let X = [0,∞) be a metric space with usual metric d. Let p : X × X→ R be defined as

p(x, y) = k ∈ (0, 1) f or all x, y ∈ X

and let α : X→ [0,∞) be defined by

α(x) =

{
e−x i f x > 0
2 i f x = 0

A function q : X × X→ [0,∞) defined by

q(x, y) = max{α(x), k}, f or all x, y ∈ X

is then a w-distance on X. However, q is not a w0-distance on X, since for any sequence {xn} ⊂ (0,∞) such that
xn → 0 we have

lim inf
n→∞

q(xn, y) = lim inf
n→∞

max{e−xn , k} = 1 < q(0, y) = max{α(0), k} = 2

In this paper, we prove fixed point theorems for generalized non-linear F-contraction involving w0-distance
in the setting of complete metric spaces. Our results generalize many results appearing recently in the
literature including Wardowski [24].
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2. Fixed Point Theorems for Generalized Non-Linear F-contractions

In this section, we obtain fixed point results for nonlinear F-contraction involving w0-distance. Henceforth,
we will denote by Φ, the collection of all functions ϕ : (0,∞)→ (0,∞) satisfying

lim inf
s→t+

ϕ(s) > 0, for all t ≥ 0. (2)

Theorem 2.1. Let (X, d) be a complete metric space with a w0-distance p and T : X → X. Assume that there exists
ϕ ∈ Φ, a non-decreasing real-valued function F1 on (0,∞) and a continuous function F2 : (0,∞) → R satisfying
condition (F2

′

) such that following hold:

(C1) F1(a) ≤ F2(a) for all a > 0;

(C2) µ(Tx,Ty) > 0 implies ϕ(µ(x, y)) + F2(µ(Tx,Ty)) ≤ F1(µ(x, y)) for all x, y ∈ X.

Then T has a unique fixed point in X.

Proof. Take any x0 ∈ X and define the sequence xn = Tnx0 and γn = µ(xn−1, xn), n ∈ N. If µ(xn−1, xn) = 0, for
some n ∈ N then xn−1 = xn and so xn−1, is a fixed point of T. Assume that γn > 0 for all n ∈ N, then from
(C2), we have

ϕ(γn) + F2(γn+1) ≤ F1(γn) for all n ∈N, (3)

which implies

F2(γn+1) ≤ F1(γn) for all n ∈N. (4)

From (C1) and using (4), we get

F1(γn+1) ≤ F1(γn) for all n ∈N. (5)

Since F1 is non-decreasing, so (5) implies {γn} is a decreasing sequence of positive real numbers. Also, since
ϕ ∈ Φ, there exists c > 0 and n0 ∈N such that ϕ(γn) > c, for all n ≥ n0. From (C1) and (C2), we have

F2(γn) ≤ F1(γn−1) − ϕ(γn−1) ≤ F2(γn−1) − ϕ(γn−1), (6)

which further implies

F2(γn) ≤ F2(γn−2) − ϕ(γn−1) − ϕ(γn−1)
...

≤ F2(γ1) −
n−1∑
i=1

ϕ(γi)

= F2(γ1) −
n0−1∑
i=1

ϕ(γi) −
n−1∑
i=n0

ϕ(γi)

≤ F2(γ1) − (n − n0)c, n ≥ n0.

(7)

Tending with n→∞ in (7), we get F2(γn)→ −∞ and, by (F2
′

), we have

lim
n→∞

γn = lim
n→∞

µ(xn−1, xn) = 0. (8)

Next, we claim that

lim
n,m→∞

µ(xn, xm) = 0. (9)

If (9) is not true then there exist η > 0 such that for every q ≥ 0 with mk > nk ≥ q

µ(xm, xn) > η.
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Also there exists q0 ∈N such that

γq0 = µ(xn−1, xn) < η for all n ≥ q0. (10)

Consider two subsequences {xnk } and {xmk } of {xn} satisfying

q0 ≤ nk < mk < mk + 1 and µ(xmk , xnk ) > η for all k. (11)

Observe that

µ(xmk−1, xnk ) ≤ η for all k, (12)

where mk is chosen as minimal index for which (11) is satisfied. Also note that because of (10) and (11), the
case nk+1 ≤ mk is impossible. Thus, nk+2 ≤ mk for all k. It implies that

nk + 1 < mk < mk + 1 for all k.

Using the triangle inequality for µ, by (11) and (12) we get

η < µ(xmk , xnk ) ≤ µ(xmk , xmk−1) + µ(xmk−1, xnk ) ≤ γmk + η. (13)

Tending to the limit k→∞ in (13) and using (8), we get

lim
k→∞

µ(xmk , xnk ) = η. (14)

Now tending limit k→∞ in the inequalities

µ(xmk+1, xnk+1) ≤ µ(xmk+1, xmk ) + µ(xmk , xnk+1) + µ(xnk , xnk+1) (15)

and

µ(xmk , xnk ) − µ(xmk , xmk+1) − µ(xnk , xnk+1) ≤ µ(xmk+1, xnk+1), (16)

by using (8) and (14), we obtain

lim
n→∞

µ(xmk+1, xnk+1) = η. (17)

From (C2) and (C2), we get

ϕ(µ(xmk , xnk )) ≤ F1(µ(xmk , xnk )) − F2(µ(xmk+1, xnk+1))
≤ F2(µ(xmk , xnk )) − F2(µ(xmk+1, xnk+1)).

(18)

By passing limit k→∞, using (14), (17) and using the fact that F2 is continuous, we get

lim inf
s→η+

ϕ(s) ≤ 0,

which is contradiction to (2) and hence (9) holds.
Thus, by Lemma 1.10(iii), {xn} is a Cauchy sequence in X. Since (X, d) is complete metric space, so

lim
n→∞

xn = x∗ ∈ X. (19)

This means that for all ε > 0 there exist q ∈ N such that µ(xn, xm) < ε for all m > n ≥ q. Now for a fixed
n ∈Nwith n ≥ q the function p(xn, .) is lower semi-continuous; hence we obtain

p(xn,u) ≤ lim inf
m→∞

p(xn, xm) < ε.

Thus,

lim
n→∞

p(xn,u) = 0. (20)

Similarly limn→∞ p(u, xn) = 0, which together with (20) yields

lim
n→∞

µ(xn,u) = 0. (21)
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Now from (C2), we have

F2(µ(Txn,Tu)) ≤ F1(µ(xn,u)) − ϕ(µ(xn,u)) ≤ F1(µ(xn,u)). (22)

By using (C1), (22) gives

F1(µ(Txn,Tu)) ≤ F1(µ(xn,u)). (23)

Since (F1) is non-decreasing, therefore we obtain

µ(Txn,Tu) ≤ µ(xn,u), (24)

letting n→∞ and using (21), we have

lim
n→∞

µ(Txn,Tu) = 0. (25)

From triangular inequality for µ, we have

µ(xn,Tu) ≤ µ(xn,Txn) + µ(Txn,Tu).

Letting n→∞ and using (8) and (25), we have

lim
n→∞

µ(xn,Tu) = 0,

which further implies

lim
n→∞

p(xn,Tu) = 0. (26)

Hence, by using Lemma 1.10, (20) and (26) gives Tu = u.
For uniqueness of fixed point, let x∗, y∗ ∈ X be such that Tx∗ = x∗ and Ty∗ = y∗. Assume that x∗ , y∗. If
µ(Tx∗,Ty∗) = 0, then Tx∗ = Ty∗, so, µ(Tx∗,Ty∗) > 0. Thus, from (C2), we obtain

ϕ(µ(x∗, y∗)) ≤ F1(µ(x∗, y∗)) − F2(µ(Tx∗,Ty∗))
≤ F1(µ(x∗, y∗)) − F1(µ(Tx∗,Ty∗))
= 0,

a contradiction as ϕ ∈ Φ. Hence x∗ = y∗.

Theorem 2.2. Let (X, d) be a complete metric space with a w0-distance p and T : X → X. Assume that there exists
ϕ ∈ Φ, a non-decreasing real-valued function F1 on (0,∞) and a function F2 : (0,∞)→ R satisfying condition (F2

′

)
and (F3) such that (C1) and (C2) hold. Then T has a unique fixed point in X.

Proof. Take any x0 ∈ X and define the sequence xn = Tnx0 and γn = µ(xn−1, xn), n ∈ N. If µ(xn−1, xn) = 0, for
some n ∈ N then xn−1 = xn and so xn−1, is a fixed point of T. Assume that γn > 0 for all n ∈ N, then as in
proof of Theorem 2.1, we obtain

F2(γn) ≤ F2(γ1) − (n − n0)c, n ≥ n0. (27)

Tending with n→∞ in (27), we get F(γn)→ −∞ and, by (F2
′

), we have

lim
n→∞

γn = lim
n→∞

µ(xn−1, xn) = 0. (28)

Now from (F3), there exist k ∈ (0, 1) such that

lim
n→∞

γk
nF2(γn) = 0. (29)

Then from (27), for all n ∈Nwe have

γk
nF2(γn) − γk

nF2(γ1) ≤ γk
n(F2(γ1) − (n − n0)c) − γk

nF2(γ1)

= −γk
n(n − n0)c ≤ 0.

(30)
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Letting n→∞ in (30), and using (28) and (29), we obtain

lim
n→∞

nγk
n = 0. (31)

Observe that from (31) there exists q0 ∈N such that nγk
n ≤ 1 for all n ≥ q0. Consequently, we have

γn ≤
1

n
1
k

for all n ≥ q0. (32)

In order to show that {xn}n∈N is a Cauchy sequence, consider m,n ∈ N such that m > n ≥ q0. From the
definition of µ and (32), we get

µ(xm, xn) ≤ γm−1 + γm−2 + · · · + γn <
∞∑

i=n

γi ≤

∞∑
i=n

1

i
1
k

Since the series
∑
∞

i=n
1

i
1
k

is convergent, so from above and using Lemma 1.10(iii) , {xn} is a Cauchy sequence

in X. Since (X, d) is complete metric space, so

lim
n→∞

xn = x∗ ∈ X. (33)

This means that for all ε > 0 there exist q ∈ N such that µ(xn, xm) < ε for all m > n ≥ q. Now for a fixed
n ∈Nwith n ≥ q the function p(xn, .) is lower semi-continuous; hence we obtain

p(xn,u) ≤ lim inf
m→∞

p(xn, xm) < ε.

Thus,

lim
n→∞

p(xn,u) = 0. (34)

Similarly limn→∞ p(u, xn) = 0, which together with (34) yields

lim
n→∞

µ(xn,u) = 0. (35)

Now from (C2), (C1) and by using the fact that (F1) is non-decreasing (see proof of Theorem 2.1), we get

lim
n→∞

p(xn,Tu) = 0. (36)

Now equations (34) and (36) by Lemma 1.10(i) imply that Tu = u.
For uniqueness of fixed point, let x∗, y∗ ∈ X be such that Tx∗ = x∗ and Ty∗ = y∗. Assume that x∗ , y∗. If
µ(Tx∗,Ty∗) = 0, then Tx∗ = Ty∗, so, µ(Tx∗,Ty∗) > 0. Thus, from (C2), we obtain

ϕ(µ(x∗, y∗)) ≤ 0,

a contradiction as ϕ ∈ Φ. Hence x∗ = y∗.

Theorem 2.3. Let (X, d) be a complete metric space with a w0-distance p. Assume that there exist ϕ ∈ Φ, a non
decreasing function F : (0,∞)→ R satisfying (F2

′

) and a function G : [0,∞)3
→ [0,∞) satisfying

(G1) max{a, b} ≤ G(a, b, c), for all a, b, c ≥ 0;

(G2) G(a, b, c) = 0 if and only if a = b = c = 0.

Then for a given function ψ : X→ [0,∞), the operator T : X→ X satisfying

(G3) G(µ(Tx,Ty), ψ(Tx), ψ(Ty)) > 0⇒ ϕ(µ(x, y)) + F(G(µ(Tx,Ty), ψ(Tx), ψ(Ty))) ≤ F(µ(x, y))

for all x, y ∈ X has a unique fixed point in X.
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Proof. Take any x0 ∈ X and define the sequence xn = Tnx0 andγn = µ(xn−1, xn), n ∈N. If G(µ(xn−1, xn), ψ(xn−1), ψ(xn)) =
0, for some n ∈N, then xn−1 = xn and so xn−1 is a fixed point of T. Assume that G(µ(Tx,Ty), ψ(Tx), ψ(Ty)) > 0,
then from (G3) we have

F(G(γn+1, ψ(γn), ψ(γn+1))) ≤ F(γn) − ϕ(γn) for all n ∈N. (37)

Since F is non decreasing, so by using (G1), from (37), we get

F(γn+1) ≤ F(max{γn+1, ψ(γn)})
≤ F(G(γn+1, ψ(γn), ψ(γn+1)))
≤ F(γn) − ϕ(γn)
< F(γn).

(38)

Thus, we get that {γn}n∈N is a decreasing sequence of positive real numbers. Since ϕ ∈ Φ, so as in the proof
of Theorem 2.1, we obtain

lim
n→∞

γn = lim
n→∞

µ(xn−1, xn) = 0. (39)

Next, we claim that

lim
n,m→∞

µ(xn, xm) = 0. (40)

If (40) is not true, then from Proposition 1.3, there exist η ∈ (0,∞) \ Λ(F) such that F is continuous at η and
for every for every q ≥ 0 with mk > nk ≥ q and µ(xm, xn) > η. Also there exists q0 ∈N such that

γq0 = µ(xn−1, xn) < η for all n ≥ q0 (41)

Consider two subsequences {xnk } and {xmk } of {xn} satisfying

q0 ≤ nk < mk < mk + 1 and µ(xmk , xnk ) > η for all k. (42)

Then, as in proof of Theorem 2.1, we get

lim
k→∞

µ(xmk , xnk ) = η (43)

and

lim
n→∞

µ(xmk+1, xnk+1) = η. (44)

By using (G1) and (G3), we obtain

ϕ(µ(xmk , xnk )) ≤ F(µ(xmk , xnk )) − F(G(µ(xmk+1, xnk+1), ψ(xmk+1), ψ(xnk+1)))
≤ F(µ(xmk , xnk )) − F(max{µ(xmk+1, xnk+1), ψ(xmk+1)})
≤ F(µ(xmk , xnk )) − F(µ(xmk+1, xnk+1)).

(45)

By passing limit k→∞, using (43), (44) and the fact that F is continuous at η, we get

lim inf
s→η+

ϕ(s) ≤ 0,

which is contradiction to (2) and hence (40) holds.
Thus, by Lemma 1.10(iii), {xn} is a Cauchy sequence in X. Since (X, d) is complete metric space, so

lim
n→∞

xn = x∗ ∈ X. (46)

This implies that for all ε > 0 there exist q ∈ N such that µ(xn, xm) < ε for all m > n ≥ q. Now for a fixed
n ∈Nwith n ≥ q the function p(xn, .) is lower semi-continuous; hence we obtain

p(xn,u) ≤ lim inf
m→∞

p(xn, xm) < ε
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Thus

lim
n→∞

p(xn,u) = 0. (47)

Similarly limn→∞ p(u, xn) = 0 which together with (47) yields

lim
n→∞

µ(xn,u) = 0. (48)

From (G3), we obtain

F(G(µ(Txn,Tu), ψ(Txn), ψ(Tu))) ≤ F(µ(xn,u)) − ϕ(µ(xn,u)) ≤ F(µ(xn,u)), (49)

and by using (G1) and (F1), we get

µ(Txn,Tu) ≤ µ(xn,u). (50)

Letting n→∞ and using (48), we have

lim
n→∞

µ(Txn,Tu) = 0. (51)

By using triangular inequality for µ, we obtain

µ(xn,Tu) ≤ µ(xn,Txn) + µ(Txn,Tu)

Letting n→∞ and using (39) and (14), we have

lim
n→∞

µ(xn,Tu) = 0,

which further implies

lim
n→∞

p(xn,Tu) = 0. (52)

Hence, by using Lemma 1.10, (47) and (52) gives Tu = u.
For uniqueness, let x∗, y∗ ∈ X be such that Tx∗ = x∗ and Ty∗ = y∗. Assume that x∗ , y∗. If G(µ(Tx∗,Ty∗), ψ(Tx∗), ψ(Ty∗)) =
0 then µ(x∗, y∗) = 0 implies x∗ = y∗, so, let G(µ(Tx∗,Ty∗), ψ(Tx∗), ψ(Ty∗)) > 0. Thus, from (G3), we obtain

ϕ(µ(x∗, y∗)) ≤ 0,

a contradiction as ϕ ∈ Φ. Hence x∗ = y∗.

3. Consequences and Examples

In this section, we derive special cases of the Theorems obtained in Section 2.

Corollary 3.1. Let (X, d) be a complete metric space with a w0-distance p and T : X→ X. Assume that there exists
ϕ ∈ Φ and a continuous function F : (0,∞)→ R satisfying (F1) and (F2

′

) such that T satisfies

µ(Tx,Ty) > 0 implies ϕ(µ(x, y)) + F(µ(Tx,Ty)) ≤ F(µ(x, y)), (53)

for all x, y ∈ X. Then T has a unique fixed point in X.

Proof. Define F1 = F2 = F, then (C1) and (C2) hold true and result follows from Theorem 2.1.

Corollary 3.2. Let (X, d) be a complete metric space with a w0-distance p and T : X→ X. Assume that there exists
a non-decreasing real-valued function F1 on (0,∞) and a continuous function F2 : (0,∞) → R satisfying condition
(F2

′

). If there exists τ > 0 such that T satisfies (C1) and

µ(Tx,Ty) > 0 implies τ + F2(µ(Tx,Ty)) ≤ F1(µ(x, y)), (54)

for all x, y ∈ X. Then T has a unique fixed point in X.
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Proof. Define ϕ : (0,∞)→ (0,∞) by
ϕ(t) = τ,

where τ > 0. Then (C2) holds true and result follows from Theorem 2.1.

Corollary 3.3. Let (X, d) be a complete metric space with a w0-distance p and T : X→ X. Assume that there exists
ϕ ∈ Φ and a function F : (0,∞)→ R satisfying (F1), (F2

′

) and (F3) such that T satisfies

µ(Tx,Ty) > 0 implies ϕ(µ(x, y)) + F(µ(Tx,Ty)) ≤ F(µ(x, y)), (55)

for all x, y ∈ X. Then T has a unique fixed point in X.

Proof. Define F1 = F2 = F, then (C1) and (C2) holds true and result follows from Theorem 2.2.

Corollary 3.4. Let (X, d) be a complete metric space with a w0-distance p and T : X→ X. Assume that there exists
a non-decreasing real-valued function F1 on (0,∞) and a function F2 : (0,∞) → R satisfying condition (F2

′

) and
(F3). If there exists τ > 0 such that T satisfies (C1) and

µ(Tx,Ty) > 0 implies τ + F2(µ(Tx,Ty)) ≤ F1(µ(x, y)), (56)

for all x, y ∈ X. Then T has a unique fixed point in X.

Proof. Define ϕ : (0,∞)→ (0,∞) by
ϕ(t) = τ,

where τ > 0. Then (56) holds true and result follows from Theorem 2.2.

Corollary 3.5. Let (X, d) be a complete metric space with a w0-distance p. Assume that there is a non decreasing
function F : (0,∞)→ R satisfying (F2

′

) and a function G : [0,∞)3
→ [0,∞) satisfying (G1) and (G2). If there exists

τ > 0 then for a given function ψ : X→ [0,∞), the operator T : X→ X satisfying

G(µ(Tx,Ty), ψ(Tx), ψ(Ty)) > 0 implies τ + F(G(µ(Tx,Ty), ψ(Tx), ψ(Ty)))
≤ F(µ(x, y))

(57)

for all x, y ∈ X has a unique fixed point in X.

Proof. Define ϕ : (0,∞)→ (0,∞) by
ϕ(t) = τ,

where τ > 0. Then (57) holds true and result follows from Theorem 2.3.

Corollary 3.6. Let (X, d) be a complete metric space with a w0-distance p and T : X→ X. Assume that there exists
ϕ ∈ Φ, a non decreasing function F : (0,∞)→ R satisfying (F2

′

). If T satisfies

µ(Tx,Ty) > 0 implies ϕ(µ(Tx,Ty)) + F(µ(Tx,Ty)) ≤ F(µ(x, y))

for all x, y ∈ X, then T has a unique fixed point in X.

Proof. Define G : [0,∞)3
→ [0,∞) by

G(a, b, c) = a + b + c,

for all a, b, c ∈ [0,∞). Then G satisfies (G1) and (G2). Also, there exists a function ψ : X→ [0,∞), defined by
ψ(t) = 0 for all t ∈ [0,∞) such that T satisfies (G3). Thus, the result follows from Theorem 2.3.

Remark 3.7. By taking p = d in Corollary 3.6, we get Theorem 1.6.
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Figure 1: Graph of Inequality 58

Figure 2: Graph of Inequality 59
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Example 3.8. Let X = [0,∞) be a metric space with usual metric d(x, y) = |x − y| for all x, y ∈ X and a w0-distance
p defined by p(x, y) = x + y for all x, y ∈ X. Then

µ(x, y) = x + y.

Define the functions F1, F2 : (0,∞) → R by F1(t) = ln t and F2(t) = ln(2t) for all t > 0 respectively. Then the
function F1 is non-decreasing and the function F2 satisfy the condition (F2

′

) and (F3). Also F2(t) ≥ F1(t) for all t > 0.
Define ϕ : (0,∞)→ (0,∞) by ϕ(t) = 1

t for all t > 0. Then ϕ ∈ Φ. Now define T : X→ X by

T(x) =

{
0 0 ≤ x, < 3
e

1
2x x ≥ 3

.

Assume that µ(Tx,Ty) > 0, then there arises the following cases:
Case I If x ∈ [0, 3) and y ≥ 3, then we have

F2(µ(Tx,Ty)) − F1(µ(x, y)) = ln(2e
1

2y ) − ln(x + y)

= ln
( 2e

1
2y

x + y

)
≤ −

1
x + y

= −ϕ(µ(x, y))

(58)

Case II If x, y ≥ 3, then we have

F2(µ(Tx,Ty)) − F1(µ(x, y)) = ln(2(e
1
2x + e

1
2y )) − ln(x + y)

= ln
(2(e

1
2x + e

1
2y )

x + y

)
≤ −

1
x + y

= −ϕ(µ(x, y)).

(59)

The inequalities 58 and 59 are shown in Figure 1 and Figure 2 respectively. Thus all conditions of Theorem 2.2 hold
true and note that 0 is the unique fixed point of T.

Example 3.9. Let X = [0,∞) be a metric space with usual metric d(x, y) = |x − y| for all x, y ∈ X and a w0-distance
p defined by p(x, y) = x + y for all x, y ∈ X. Then

µ(x, y) = x + y.

Define G : [0,∞)3
→ [0,∞), F : (0,∞) → R, ϕ : (0,∞) → (0,∞) and ψ : X → [0,∞) by G(a, b, c) = a + b + c for

all a, b, c ≥ 0, F(t) = ln t, for all t > 0,

ϕ(t) =

{
t + 1 1 > t > 0
ln 2 t ≥ 1

andψ(x) = 2x for all x ∈ X, respectively then G satisfy (G1) and (G2) andϕ ∈ Φ. Now define the mapping T : X→ X
by

Tx =

{
x

3e2 x > 0
0 x = 0

Assume that G(a, b, c) > 0, then

F(G(µ(Tx,Ty), ψ(Tx), ψ(Ty))) − F(µ(x, y)) = F(
x + y

e2 ) − F(x + y)

= −2.
(60)
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Here arises the following cases:
Case I If 0 < x + y < 1, then from (60), we have

F(G(µ(Tx,Ty), ψ(Tx), ψ(Ty))) − F(µ(x, y)) = −2
≤ −(x + y + 1)
= −ϕ(µ(x, y)).

Case II If x + y ≥ 1, then from (60), we have

F(G(µ(Tx,Ty), ψ(Tx), ψ(Ty))) − F(µ(x, y)) = −2
≤ − ln 2
= −ϕ(µ(x, y)).

In all cases contractive condition (G3) is satisfied. Hence all the hypothesis of Theorem 2.3 are satisfied and note that
0 is the unique fixed point of T in X.

Remark 3.10. In Examples 3.8 and 3.9, µ(2, 2) = p(2, 2) = 4 , 0, so (d1) does not hold and p , d. Therefore,
Theorems 1.2 and 1.6 can not be applied for this example.

4. Solution to differential equation of RLC circuit’s current

For decades, solar panels has been praised as promising alternative energy source and a great way to
offset energy costs. They absorb sunlight as a source of energy to generate direct current electricity. A solar
panel works by allowing particles of light or photons, to knock electrons free from atoms, thus, in turn,
generating a flow of electricity. With a basic understanding of how light is transformed into electricity, a
mathematical model can be presented of the electric current in an RLC parallel circuit, also known as a
tuning circuit (see [8]). In Figure 3, V is the voltage of the power source, I is the current in the circuit, R is

Figure 3: RLC parallel circuit

the resistance of the resistor, L is the inductance of the inductor and C is the capacitance of the capacitor.
Such problems are mathematically modeled as initial value problem for second order ordinary differential
equation of the form :

d2u
dt2 + R

L
du
dt = f (t,u(t)), t ∈ [0, 1],

u(0) = u′(0) = 0,
(61)

where f : [0, 1] ×R+
→ R is a continuous function.

In this section, we prove the existence of the solution to the RLC differential equation (61). The problem
(61) is equivalent to the following integral equation

u(t) =

∫ 1

0
G(t, s) f (s,u(s))ds, t ∈ [0, 1], (62)
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where G is the Green’s function defined by

G(t, s) =

{
(t − s)eτ(t−s) i f 0 ≤ s ≤ t ≤ 1

0 i f 0 ≤ t ≤ s ≤ 1

Here τ > 0 is a constant, calculated in terms of R and L, mentioned in (61).
Now, u is a solution of problem (61) if and only if u is a solution of the integral equation (62).

Theorem 4.1. Let X = C([0, 1],R+) be the space of all continuous functions defined on [0, 1] with norm defined by

‖u‖ = sup
t∈[0,1]

e−2τt
|u(t)|

for all u ∈ X. Consider the non linear integral equation (62) and suppose that the following conditions hold:

(1) there exist a continuous function w : [0, 1]→ (0,∞) and τ > 0 such that

| f (s,u(s))| ≤
1
2
τ2w(s)|u(s)|,

for all s ∈ [0, 1], u(s) ∈ R;

(2) maxs∈[0,1] w(s) = e−α, where α > e.

Then, the integral equation (62) has a solution.

Proof. Let X = C([0, 1],R+) and ‖u‖ = supt∈[0,1] e−2τt
|u(t)|, then (X, ‖.‖) is a complete metric space.

Define T : X→ X by

Tu(t) =

∫ 1

0
G(t, s) f (s,u(s))ds, (63)

for all x ∈ X and t ∈ [0, 1].
Note that the existence of a solution to the equation (62) is equivalent to the existence of a fixed point of the
mapping T.
Define µ : X × X→ [0,∞) and F1, F2 : (0,∞)→ R by

µ(x, y) = max{‖x‖, ‖y‖}

for all x, y ∈ X, F1(t) = ln t and F2(t) = ln 2t for all t ∈ (0,∞) respectively. Then for u, v ∈ X, we obtain

|Tu(t)| =

∣∣∣∣∣∣
∫ 1

0
G(t, s) f (u,u(s))ds

∣∣∣∣∣∣
≤

∫ 1

0
G(t, s)| f (s,u(s))|ds

≤

∫ 1

0

1
2

G(t, s)τ2e−α|u(s)|ds

=

∫ 1

0
τ2e−α(t − s)eτ(t−s)e2τs

‖u‖ds

=
1
2
τ2e−α+τt

‖u‖
∫ 1

0
(t − s)eτsds

=
1
2
τ2e−α+τt

‖u‖
[−t
τ
−

1
τ2 +

eτt

τ2

]
=

1
2

e−α‖u‖e2τt[1 − τte−τt
− e−τt]
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Since [1 − τte−τt
− e−τt] ≤ 1, then

‖Tu‖ ≤
1
2

e−α‖u‖

Similarly, we have that

‖Tv‖ ≤
1
2

e−α‖v‖

This implies that

µ(Tu,Tv) = max{‖Tu‖, ‖Tv‖}

≤
1
2

e−α max{‖u‖, ‖v‖}

≤
1
2

e−e max{‖u‖, ‖v‖}.

(64)

Define ϕ : (0,∞)→ (0,∞) such that

min
t∈(0,∞)

ϕ(t) ≥ e, (65)

then ϕ ∈ Φ. By combing (64) and (65), we get

µ(Tu,Tv) ≤
1
2

e−ϕ(µ(u,v)) max{‖u‖, ‖v‖},

which further implies that
ln(2µ(Tu,Tv)) ≤ ln(µ(u, v)) − ϕ(µ(u, v)).

Thus,
ϕ(µ(u, v)) + F2(µ(Tu,Tv)) ≤ F1(µ(u, v)).

Hence all the conditions of Theorem 2.1 are satisfied and so, the integral equation (62) has a solution.
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