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Available at: http://www.pmf.ni.ac.rs/filomat

Oscillatory Behavior of Advanced Difference Equations with General
Arguments
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Abstract. In this paper, we introduce some oscillation criteria for the first-order advanced difference
equations with general arguments

∇x(n) −
m∑

i=1

pi(n)x (τi(n)) = 0, n ≥ 1, n ∈N,

where {pi(n)}(i = 1, 2, . . . ,m) are sequences of positive real numbers, {τi(n)}(i = 1, 2, . . . ,m) are sequences of
integers and are not necessarily monotone such that τi(n) ≥ n (i = 1, 2, . . . ,m). An example illustrating the
results is also given.

1. Introduction

In this paper, we study the oscillatory behavior of all solutions of the first-order advanced difference
equations

∇x(n) −
m∑

i=1

pi(n)x (τi(n)) = 0, n ∈N, n ≥ 1, (1)

where
{
pi(n)

}
(i = 1, 2, · · · ,m) are sequences of positive real numbers, {τi(n)} (i = 1, 2, · · · ,m) are sequences

of integers and are not necessarily monotone such that

τi(n) ≥ n for n ≥ 1. (2)
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Here, ∇ denotes the backward difference operator ∇x(n) = x(n) − x(n − 1). By a solution of (1), we mean a
sequence of real numbers {x(n)}which is defined for n ≥ 0 and satisfies (1) for all n ≥ 1.
Recently, there are too many studies in literature on the oscillation theory of advanced (or delay) type
differential or difference equations. See, for example, [1-18] and the references cited therein. As usual, a
solution {x(n)} of (1) is said to be oscillatory, for every positive integer n0, there exist n1,n2 ≥ n0 such that
x(n1)x(n2) ≤ 0. In other words, a solution {x(n)} is oscillatory if it is neither eventually positive nor eventually
negative. Otherwise, the solution is called nonoscillatory.

Throughout this paper, we are going to use the notation:
k−1∑
i=k

A(i) = 0.

Now, let’s recall some well-known oscillation results on this subject. For m = 1, equation (1) reduces to the
following equation.

∇x(n) − p(n)x (τ(n)) = 0, n ∈N, n ≥ 1. (3)

In 2002, Li and Zhu [15] proved that, when τ(n) = n + k, if there exists an integer n1 ≥ 0 and a positive
integer l such that

∞∑
n=n1+lk

p(n)

(k + 1
k

)l

q1/k+1
l (n) − 1

 = ∞,

where

q1(n) =

n−1∑
i=n−k

p(i), n ≥ k,

q j+1(n) =

n−1∑
i=n−k

p(i)q j(n), j ≥ 1, n ≥ ( j + 1)k,

then all solutions of (3) oscillate.
In 1991, Györi and Ladas [12] studied the following first order linear difference equation with advanced
argument τ(n) = n + σ.

∆x(n) − p(n)x(n + σ) = 0, n ≥ 0, (4)

where ∆ denotes the forward difference operator ∆x(n) = x(n + 1) − x(n), σ ≥ 2 is a positive integer and the
authors proved that if

lim sup
n→∞

n+σ−1∑
i=n

p(i) > 1, (5)

or

lim inf
n→∞

n+σ−1∑
i=n+1

p(i) >
(
σ − 1
σ

)σ
, (6)

then all solutions of (4) oscillate.
In 2007, Öcalan and Akın [16] analyzed the following first order linear difference equations

∆x(n) +

m∑
i=1

pi(n)x (n − ki) = 0, n ≥ 0, (7)

where pi(n) ≤ 0 and ki ≤ −1 for i = 1, 2, . . . ,m, and obtained some results for the oscillation of all solutions
of (7) (See also [17]). Furthermore, when pi(n) = pi (i = 1, 2, · · · ,m) in (7), see [12, Theorems 7.2.1 and 7.3.1].
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In 2012, Chatzarakis and Stavroulakis [1] proved that if {τ(n)} is nondecreasing and

lim sup
n→∞

τ(n)∑
j=n

p( j) > 1, (8)

then all solutions of (3) oscillate.
We note that, in [1], the authors assumed that τ(n) ≥ n + 1, n ≥ 1. We would like to state that, in fact, if
τ(n) ≥ n, n ≥ 1 is taken, then all results are valid in [1].
Also, in 2012, Chatzarakis and Stavroulakis [1] proved that if {τ(n)} is not necessarily monotone and

lim sup
n→∞

σ(n)∑
j=n

p( j) > 1, (9)

where

σ(n) = max
1≤s≤n

{τ(s)} , s ∈N, (10)

then all solutions of (3) oscillate. Unfortunately, we consider this result is not applicable. Indeed, if we
examine this result, it can not be proved like Theorem 2.1 in [1]. To see this, by using the proof of Theorem
2.1 in [1], since σ(n) ≥ τ(n) and {x(n)}, {σ(n)} are eventually nondecreasing, from equation (3), we have

∇x(n) − p(n)x (σ(n)) ≤ 0, n ≥ 1. (11)

Now, summing up (11) from n to σ(n), we obtain

x (σ(n)) − x(n − 1) −
σ(n)∑
j=n

p( j)x
(
σ( j)

)
≤ 0,

and the proof is stopped here (see the proof of Theorem 2.1 in [1]). Hence, Theorem 2.1
′′

and Theorem 2.4
′′

are not applicable in [1].
In 2016, Öcalan and Özkan [18] proved that if {τ(n)} is not necessarily monotone and

lim sup
n→∞

h(n)∑
j=n

p( j) > 1, (12)

where h(n) = minn≤s {τ(s)} , then all solutions of (3) oscillate.
Also, the authors [18], regarding the lim inf condition, tried to obtain a condition for the oscillatory solution
of the equation (3) when {τ(n)} is not necessarily monotone. Unfortunately, the authors have made a mistake
in the proof of Theorem 2.4 in [18], caused by induction. That is, the proof of Theorem 2.4 in [18] is invalid.
Therefore, one of the aim of this paper is to obtain the lim inf condition for the equation (3) to be oscillatory.

2. Main Results

In this section, we introduce a new sufficient condition, regarding the condition lim inf, for the oscillation
of all solutions of (3) when {τ(n)} is not necessarily monotone. Set

h(n) := min
n≤s
{τ(s)} , s ∈N. (13)

Obviously, {h(n)} is nondecreasing and τ(n) ≥ h(n) for all n ≥ 1. The following lemmas will be needed in the
proof of the Theorem 2.3.
The following one was given in [18].
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Lemma 2.1. [18] Assume that (13) holds and m > 0. Then, we have

m = lim inf
n→∞

h(n)∑
j=n+1

p( j) = lim inf
n→∞

τ(n)∑
j=n+1

p( j),

where {h(n)} is defined by (13).

Lemma 2.2. Suppose p(n) > 0 and {x(n)} is positive solution of the following inequalities

∇x(n) − p(n)x(n) ≥ 0, n ≥ s. (14)

Then

x(n) ≥ exp


n∑

j=s+1

p( j)

 x(s), n ≥ s. (15)

Proof. Dividing (14) by x(n), we have

∇x(n)
x(n)

− p(n) ≥ 0, n ≥ s. (16)

Summing up (16) from s + 1 to n, we obtain

n∑
j=s+1

∇x( j)
x( j)

−

n∑
j=s+1

p( j) ≥ 0. (17)

Now, we get
n∑

j=s+1

∇x( j)
x( j)

=

n∑
j=s+1

x( j) − x( j − 1)
x( j)

= (n − s) −
n∑

j=s+1

x( j − 1)
x( j)

= (n − s) −
n∑

j=s+1

exp
{

ln
x( j − 1)

x( j)

}

≤ (n − s) −
n∑

j=s+1

(
1 + ln

x( j − 1)
x( j)

)
=

n∑
j=s+1

ln
x( j)

x( j − 1)
,

where we have used the ex
≥ 1 + x for x ≥ 0. So, we obtain

n∑
j=s+1

∇x( j)
x( j)

≤

n∑
j=s+1

ln
x( j)

x( j − 1)
= ln x(n) − ln x(s)

= ln
x(n)
x(s)

.

Finally, from (17), we have

ln
x(n)
x(s)
−

n∑
j=s+1

p( j) ≥ 0,

or

x(n) ≥ exp


n∑

j=s+1

p( j)

 x(s),

which is desirable.
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Theorem 2.3. Assume that (2) holds. If {τ(n)} is not necessarily monotone and

lim inf
n→∞

τ(n)∑
j=n+1

p( j) >
1
e
, (18)

then all solutions of (3) oscillate.

Proof. Assume, for the sake of contradiction, that there exists a positive nonoscillatory solution x(n) of (3).
Since −x(n) is also a solution of (3), we can confine our discussion only to the case where the solution x(n)
is eventually positive. Then, there exists n1 > n0 ≥ 1 such that x(n), x (τ(n)) > 0, for all n ≥ n1. Thus, from
(3) we have

∇x(n) = p(n)x (τ(n)) ≥ 0, for all n ≥ n1,

which means that {x(n)} is an eventually nondecreasing. In view of this and taking into account that
τ(n) ≥ h(n) ≥ n, (3) gives

∇x(n) − p(n)x(h(n)) ≥ 0, n ≥ n1 (19)

and

∇x(n) − p(n)x(n) ≥ 0, n ≥ n1. (20)

On the other hand, by using Lemma 2.1 and from (18), it follows that there exists a constant c > 0 such that

h(n)∑
j=n+1

p( j) ≥ c >
1
e

, n ≥ n2 > n1. (21)

So, by Lemma 2.2 and (20), we obtain

x (h(n)) ≥ exp


h(n)∑

j=n+1

p( j)

 x (n) for all h(n) ≥ n. (22)

Since ex
≥ ex for x ∈ R, from (21) and (22), we get

x (h(n)) ≥ ecx (n) ≥ (ec) x (n) , (23)

where ec > 1. Thus, from (19) and (23), we have

∇x(n) − p(n) (ec) x (n) ≥ 0, n ≥ n2.

Let p1(n) := (ec) p(n). So, we obtain

∇x(n) − p1(n)x (n) ≥ 0, n ≥ n2. (24)

By using Lemma 2.2, we get

x (h(n)) ≥ exp


h(n)∑

j=n+1

p1( j)

 x (n) for all h(n) ≥ n. (25)
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Thus, from (21) and (25), we have

x (h(n)) ≥ exp


h(n)∑

j=n+1

(ec) p( j)

 x (n)

= exp

(ec)
h(n)∑

j=n+1

p( j)

 x (n) ≥ exp
{
ec2

}
x (n)

≥ (ec)2 x (n) .

Repeating the above procedures, it follows that by induction for any positive integer k, we obtain

x (h(n))
x (n)

≥ (ec)k for sufficiently large n. (26)

On the other hand, from (21), there exists n∗ ∈ (n, h(n)], n∗ ∈N such that

n∗∑
j=n+1

p( j) ≥
c
2

and
h(n)∑
j=n∗

p( j) ≥
c
2
. (27)

Summing up (19) from n + 1 to n∗, we obtain

x (n∗) − x(n) −
n∗∑

j=n+1

p( j)x
(
h( j)

)
≥ 0.

Now, using (27) and the fact that the functions {x(n)} and {h(n)} are nondecreasing, we have

x (n∗) ≥ x (h(n + 1))
n∗∑

j=n+1

p( j) ≥ x (h(n))
n∗∑

j=n+1

p( j),

or

x (n∗) ≥ x (h(n))
c
2
. (28)

Summing up (19) from n∗ to h(n), and using the same arguments we get

x(h(n)) − x(n∗ − 1) −
h(n)∑
j=n∗

p( j)x
(
h( j)

)
≥ 0,

or

x(h(n)) − x (h(n∗))
h(n)∑
j=n∗

p( j) ≥ 0,

or

x(h(n)) ≥ x (h(n∗))
c
2
. (29)

Combining the inequalities (28) and (29), we obtain

x(n∗) ≥ x (h(n))
c
2
≥ x (h(n∗))

( c
2

)2
,
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or

x (h(n∗))
x(n∗)

≤

(2
c

)2

< +∞,

i.e., lim infn→∞
x(h(n))

x(n) exists. This contradicts with (26). So, the proof of the theorem is completed.

A slight modification in the proofs of Theorem 2.3 and [18, Theorem 2.3] leads to the following result.

Theorem 2.4. Assume that all the conditions of Theorem 2.3 or (12) hold. Then
(i) the difference inequality

∇x(n) − p(n)x (τ(n)) ≥ 0, n ∈N, n ≥ 1

has no eventually positive solutions,
(ii) the difference inequality

∇x(n) − p(n)x (τ(n)) ≤ 0, n ∈N, n ≥ 1

has no eventually negative solutions.

Example 2.5. Consider

∇x(n) − p(n)x (τ(n)) = 0, n ∈N, n ≥ 1. (30)

We take p(n) = 0.19 and τ(n) = n + 2. We observe that

lim sup
n→∞

n+2∑
j=n

p( j) = 0.57 ≯ 1.

shows that condition (12) fails. However, since

lim inf
n→∞

n+2∑
j=n+1

p( j) = 0.38 >
1
e
,

every solution of (30) is oscillatory.

3. Equations with several arguments

Now, we consider the first-order advanced difference equations with several arguments and coefficients

∇x(n) −
m∑

i=1

pi(n)x (τi(n)) = 0, n ∈N, n ≥ 1 (31)

where
{
pi(n)

}
(i = 1, 2, · · · ,m) are positive sequences, {τi(n)} (i = 1, 2, . . . ,m) are sequences of integers and

are not necessarily monotone such that

τi(n) ≥ n for all n ∈N, n ≥ 1. (32)

In this section, we present some new sufficient conditions for the oscillation of all solutions of (31).
In 2014, Chatzarakis et al. [2] proved that if {τi(n)} (i = 1, 2, · · · ,m) are nondecreasing and

lim sup
n→∞

τ(n)∑
j=n

m∑
i=1

pi( j) > 1, (33)
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where τ(n) = min1≤i≤m {τi(n)}, then all solutions of (31) oscillate.
Set

hi(n) := inf
n≤s
τi(s) and h(n) = min

1≤i≤m
hi(n), n ≥ n0. (34)

Clearly, {hi(n)} (i = 1, 2, · · · ,m) are nondecreasing and τi(n) ≥ hi(n) ≥ h(n) for all n ≥ n0. Now, we have the
following result.

Theorem 3.1. Assume that (32) holds. If {τi(n)} (i = 1, 2, · · · ,m) are not necessarily monotone and

lim sup
n→∞

h(n)∑
j=n

m∑
i=1

pi( j) > 1, (35)

or

lim inf
n→∞

τ(n)∑
j=n+1

m∑
i=1

pi( j) >
1
e
, (36)

where τ(n) = min1≤i≤m {τi(n)} and h(n) is defined by (34), then all solutions of (31) oscillate.

Proof. Assume, for the sake of contradiction, that there exists a positive nonoscillatory solution x(n) of (31).
Then there exists n1 > n0 such that x(n), x (τi(n)) > 0 for all n ≥ n1. Thus, from (31) we have

∇x(n) −

 m∑
i=1

pi(n)

 x (τ(n)) ≥ 0.

Comparing (35) and (36), we obtain a contradiction to Theorem 2.4. Here, we have used the following
equality

lim inf
n→∞

τ(n)∑
j=n+1

m∑
i=1

pi( j) = lim inf
t→∞

h(n)∑
j=n+1

m∑
i=1

pi( j),

which is easily obtained as similar to the proof of Lemma 2.1.

A slight modification in the proof of Theorem 3.1 leads to the following result.

Theorem 3.2. Assume that all the conditions of Theorem 3.1 hold. Then
(i) the difference inequality

∇x(n) −
m∑

i=1

pi(n)x (τi(n)) ≥ 0, n ∈N, n ≥ 1

has no eventually positive solutions,
(ii) the difference inequality

∇x(n) −
m∑

i=1

pi(n)x (τi(n)) ≤ 0, n ∈N, n ≥ 1

has no eventually negative solutions.
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