Oscillatory Behavior of Advanced Difference Equations with General Arguments

Şeyda Öcalan ${ }^{\text {a }}$, Özkan Öcalan ${ }^{\text {b }}$, Mustafa Kemal Yildiz ${ }^{\text {c }}$
${ }^{a}$ T.C. Ministry of Education, Şehit Cengiz Topel Mithatpaşa Middle School, 24000, Erzincan, Turkey
or
Afyon Kocatepe University, Institute of Science, 03200
Afyonkarahisar, Turkey
${ }^{b}$ Akdeniz University, Faculty of Science
Department of Mathematics, 07058
Antalya, Turkey
${ }^{\text {c Afyon Kocatepe University, Faculty of Science and Arts }}$
Department of Mathematics, ANS Campus, 03200
Afyonkarahisar, Turkey

Abstract

In this paper, we introduce some oscillation criteria for the first-order advanced difference equations with general arguments $\nabla x(n)-\sum_{i=1}^{m} p_{i}(n) x\left(\tau_{i}(n)\right)=0, n \geq 1, n \in \mathbb{N}$, where $\left\{p_{i}(n)\right\}(i=1,2, \ldots, m)$ are sequences of positive real numbers, $\left\{\tau_{i}(n)\right\}(i=1,2, \ldots, m)$ are sequences of integers and are not necessarily monotone such that $\tau_{i}(n) \geq n(i=1,2, \ldots, m)$. An example illustrating the

 results is also given.
1. Introduction

In this paper, we study the oscillatory behavior of all solutions of the first-order advanced difference equations

$$
\begin{equation*}
\nabla x(n)-\sum_{i=1}^{m} p_{i}(n) x\left(\tau_{i}(n)\right)=0, \quad n \in \mathbb{N}, \quad n \geq 1 \tag{1}
\end{equation*}
$$

where $\left\{p_{i}(n)\right\}(i=1,2, \cdots, m)$ are sequences of positive real numbers, $\left\{\tau_{i}(n)\right\}(i=1,2, \cdots, m)$ are sequences of integers and are not necessarily monotone such that

$$
\begin{equation*}
\tau_{i}(n) \geq n \text { for } n \geq 1 \tag{2}
\end{equation*}
$$

[^0]Here, ∇ denotes the backward difference operator $\nabla x(n)=x(n)-x(n-1)$. By a solution of (1), we mean a sequence of real numbers $\{x(n)\}$ which is defined for $n \geq 0$ and satisfies (1) for all $n \geq 1$.
Recently, there are too many studies in literature on the oscillation theory of advanced (or delay) type differential or difference equations. See, for example, [1-18] and the references cited therein. As usual, a solution $\{x(n)\}$ of (1) is said to be oscillatory, for every positive integer n_{0}, there exist $n_{1}, n_{2} \geq n_{0}$ such that $x\left(n_{1}\right) x\left(n_{2}\right) \leq 0$. In other words, a solution $\{x(n)\}$ is oscillatory if it is neither eventually positive nor eventually negative. Otherwise, the solution is called nonoscillatory.
Throughout this paper, we are going to use the notation: $\sum_{i=k}^{k-1} A(i)=0$.
Now, let's recall some well-known oscillation results on this subject. For $m=1$, equation (1) reduces to the following equation.

$$
\begin{equation*}
\nabla x(n)-p(n) x(\tau(n))=0, n \in \mathbb{N}, n \geq 1 \tag{3}
\end{equation*}
$$

In 2002, Li and Zhu [15] proved that, when $\tau(n)=n+k$, if there exists an integer $n_{1} \geq 0$ and a positive integer l such that

$$
\sum_{n=n_{1}+l k}^{\infty} p(n)\left[\left(\frac{k+1}{k}\right)^{l} q_{l}^{1 / k+1}(n)-1\right]=\infty
$$

where

$$
\begin{aligned}
q_{1}(n) & =\sum_{i=n-k}^{n-1} p(i), n \geq k \\
q_{j+1}(n) & =\sum_{i=n-k}^{n-1} p(i) q_{j}(n), \quad j \geq 1, \quad n \geq(j+1) k
\end{aligned}
$$

then all solutions of (3) oscillate.
In 1991, Györi and Ladas [12] studied the following first order linear difference equation with advanced argument $\tau(n)=n+\sigma$.

$$
\begin{equation*}
\Delta x(n)-p(n) x(n+\sigma)=0, \quad n \geq 0 \tag{4}
\end{equation*}
$$

where Δ denotes the forward difference operator $\Delta x(n)=x(n+1)-x(n), \sigma \geq 2$ is a positive integer and the authors proved that if

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{i=n}^{n+\sigma-1} p(i)>1 \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \sum_{i=n+1}^{n+\sigma-1} p(i)>\left(\frac{\sigma-1}{\sigma}\right)^{\sigma} \tag{6}
\end{equation*}
$$

then all solutions of (4) oscillate.
In 2007, Öcalan and Akın [16] analyzed the following first order linear difference equations

$$
\begin{equation*}
\Delta x(n)+\sum_{i=1}^{m} p_{i}(n) x\left(n-k_{i}\right)=0, \quad n \geq 0 \tag{7}
\end{equation*}
$$

where $p_{i}(n) \leq 0$ and $k_{i} \leq-1$ for $i=1,2, \ldots, m$, and obtained some results for the oscillation of all solutions of (7) (See also [17]). Furthermore, when $p_{i}(n)=p_{i}(i=1,2, \cdots, m)$ in (7), see [12, Theorems 7.2.1 and 7.3.1].

In 2012, Chatzarakis and Stavroulakis [1] proved that if $\{\tau(n)\}$ is nondecreasing and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{j=n}^{\tau(n)} p(j)>1 \tag{8}
\end{equation*}
$$

then all solutions of (3) oscillate.
We note that, in [1], the authors assumed that $\tau(n) \geq n+1, n \geq 1$. We would like to state that, in fact, if $\tau(n) \geq n, n \geq 1$ is taken, then all results are valid in [1].
Also, in 2012, Chatzarakis and Stavroulakis [1] proved that if $\{\tau(n)\}$ is not necessarily monotone and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{j=n}^{\sigma(n)} p(j)>1 \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma(n)=\max _{1 \leq s \leq n}\{\tau(s)\}, s \in \mathbb{N} \tag{10}
\end{equation*}
$$

then all solutions of (3) oscillate. Unfortunately, we consider this result is not applicable. Indeed, if we examine this result, it can not be proved like Theorem 2.1 in [1]. To see this, by using the proof of Theorem 2.1 in [1], since $\sigma(n) \geq \tau(n)$ and $\{x(n)\},\{\sigma(n)\}$ are eventually nondecreasing, from equation (3), we have

$$
\begin{equation*}
\nabla x(n)-p(n) x(\sigma(n)) \leq 0, n \geq 1 \tag{11}
\end{equation*}
$$

Now, summing up (11) from n to $\sigma(n)$, we obtain

$$
x(\sigma(n))-x(n-1)-\sum_{j=n}^{\sigma(n)} p(j) x(\sigma(j)) \leq 0
$$

and the proof is stopped here (see the proof of Theorem 2.1 in [1]). Hence, Theorem 2.1" and Theorem 2.4" are not applicable in [1].
In 2016, Öcalan and Özkan [18] proved that if $\{\tau(n)\}$ is not necessarily monotone and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{j=n}^{h(n)} p(j)>1 \tag{12}
\end{equation*}
$$

where $h(n)=\min _{n \leq s}\{\tau(s)\}$, then all solutions of (3) oscillate.
Also, the authors [18], regarding the lim inf condition, tried to obtain a condition for the oscillatory solution of the equation (3) when $\{\tau(n)\}$ is not necessarily monotone. Unfortunately, the authors have made a mistake in the proof of Theorem 2.4 in [18], caused by induction. That is, the proof of Theorem 2.4 in [18] is invalid. Therefore, one of the aim of this paper is to obtain the lim inf condition for the equation (3) to be oscillatory.

2. Main Results

In this section, we introduce a new sufficient condition, regarding the condition lim inf, for the oscillation of all solutions of (3) when $\{\tau(n)\}$ is not necessarily monotone. Set

$$
\begin{equation*}
h(n):=\min _{n \leq s}\{\tau(s)\}, \quad s \in \mathbb{N} . \tag{13}
\end{equation*}
$$

Obviously, $\{h(n)\}$ is nondecreasing and $\tau(n) \geq h(n)$ for all $n \geq 1$. The following lemmas will be needed in the proof of the Theorem 2.3.
The following one was given in [18].

Lemma 2.1. [18] Assume that (13) holds and $m>0$. Then, we have

$$
m=\liminf _{n \rightarrow \infty} \sum_{j=n+1}^{h(n)} p(j)=\liminf _{n \rightarrow \infty} \sum_{j=n+1}^{\tau(n)} p(j)
$$

where $\{h(n)\}$ is defined by (13).
Lemma 2.2. Suppose $p(n)>0$ and $\{x(n)\}$ is positive solution of the following inequalities

$$
\begin{equation*}
\nabla x(n)-p(n) x(n) \geq 0, \quad n \geq s \tag{14}
\end{equation*}
$$

Then

$$
\begin{equation*}
x(n) \geq \exp \left\{\sum_{j=s+1}^{n} p(j)\right\} x(s), \quad n \geq s \tag{15}
\end{equation*}
$$

Proof. Dividing (14) by $x(n)$, we have

$$
\begin{equation*}
\frac{\nabla x(n)}{x(n)}-p(n) \geq 0, \quad n \geq s \tag{16}
\end{equation*}
$$

Summing up (16) from $s+1$ to n, we obtain

$$
\begin{equation*}
\sum_{j=s+1}^{n} \frac{\nabla x(j)}{x(j)}-\sum_{j=s+1}^{n} p(j) \geq 0 \tag{17}
\end{equation*}
$$

Now, we get

$$
\begin{aligned}
\sum_{j=s+1}^{n} \frac{\nabla x(j)}{x(j)} & =\sum_{j=s+1}^{n} \frac{x(j)-x(j-1)}{x(j)}=(n-s)-\sum_{j=s+1}^{n} \frac{x(j-1)}{x(j)} \\
& =(n-s)-\sum_{j=s+1}^{n} \exp \left\{\ln \frac{x(j-1)}{x(j)}\right\} \\
& \leq(n-s)-\sum_{j=s+1}^{n}\left(1+\ln \frac{x(j-1)}{x(j)}\right)=\sum_{j=s+1}^{n} \ln \frac{x(j)}{x(j-1)^{\prime}}
\end{aligned}
$$

where we have used the $e^{x} \geq 1+x$ for $x \geq 0$. So, we obtain

$$
\begin{aligned}
\sum_{j=s+1}^{n} \frac{\nabla x(j)}{x(j)} & \leq \sum_{j=s+1}^{n} \ln \frac{x(j)}{x(j-1)}=\ln x(n)-\ln x(s) \\
& =\ln \frac{x(n)}{x(s)}
\end{aligned}
$$

Finally, from (17), we have

$$
\ln \frac{x(n)}{x(s)}-\sum_{j=s+1}^{n} p(j) \geq 0
$$

or

$$
x(n) \geq \exp \left\{\sum_{j=s+1}^{n} p(j)\right\} x(s)
$$

which is desirable.

Theorem 2.3. Assume that (2) holds. If $\{\tau(n)\}$ is not necessarily monotone and

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \sum_{j=n+1}^{\tau(n)} p(j)>\frac{1}{e} \tag{18}
\end{equation*}
$$

then all solutions of (3) oscillate.
Proof. Assume, for the sake of contradiction, that there exists a positive nonoscillatory solution $x(n)$ of (3). Since $-x(n)$ is also a solution of (3), we can confine our discussion only to the case where the solution $x(n)$ is eventually positive. Then, there exists $n_{1}>n_{0} \geq 1$ such that $x(n), x(\tau(n))>0$, for all $n \geq n_{1}$. Thus, from (3) we have

$$
\nabla x(n)=p(n) x(\tau(n)) \geq 0, \text { for all } n \geq n_{1}
$$

which means that $\{x(n)\}$ is an eventually nondecreasing. In view of this and taking into account that $\tau(n) \geq h(n) \geq n$, (3) gives

$$
\begin{equation*}
\nabla x(n)-p(n) x(h(n)) \geq 0, \quad n \geq n_{1} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla x(n)-p(n) x(n) \geq 0, \quad n \geq n_{1} \tag{20}
\end{equation*}
$$

On the other hand, by using Lemma 2.1 and from (18), it follows that there exists a constant $c>0$ such that

$$
\begin{equation*}
\sum_{j=n+1}^{h(n)} p(j) \geq c>\frac{1}{e}, \quad n \geq n_{2}>n_{1} \tag{21}
\end{equation*}
$$

So, by Lemma 2.2 and (20), we obtain

$$
\begin{equation*}
x(h(n)) \geq \exp \left\{\sum_{j=n+1}^{h(n)} p(j)\right\} x(n) \text { for all } h(n) \geq n \tag{22}
\end{equation*}
$$

Since $e^{x} \geq e x$ for $x \in \mathbb{R}$, from (21) and (22), we get

$$
\begin{equation*}
x(h(n)) \geq e^{c} x(n) \geq(e c) x(n) \tag{23}
\end{equation*}
$$

where $e c>1$. Thus, from (19) and (23), we have

$$
\nabla x(n)-p(n)(e c) x(n) \geq 0, \quad n \geq n_{2}
$$

Let $p_{1}(n):=(e c) p(n)$. So, we obtain

$$
\begin{equation*}
\nabla x(n)-p_{1}(n) x(n) \geq 0, \quad n \geq n_{2} \tag{24}
\end{equation*}
$$

By using Lemma 2.2, we get

$$
\begin{equation*}
x(h(n)) \geq \exp \left\{\sum_{j=n+1}^{h(n)} p_{1}(j)\right\} x(n) \text { for all } h(n) \geq n \tag{25}
\end{equation*}
$$

Thus, from (21) and (25), we have

$$
\begin{aligned}
x(h(n)) & \geq \exp \left\{\sum_{j=n+1}^{h(n)}(e c) p(j)\right\} x(n) \\
& =\exp \left\{(e c) \sum_{j=n+1}^{h(n)} p(j)\right\} x(n) \geq \exp \left\{e c^{2}\right\} x(n) \\
& \geq(e c)^{2} x(n) .
\end{aligned}
$$

Repeating the above procedures, it follows that by induction for any positive integer k, we obtain

$$
\begin{equation*}
\frac{x(h(n))}{x(n)} \geq(e c)^{k} \text { for sufficiently large } n \tag{26}
\end{equation*}
$$

On the other hand, from (21), there exists $n^{*} \in(n, h(n)], n^{*} \in \mathbb{N}$ such that

$$
\begin{equation*}
\sum_{j=n+1}^{n^{*}} p(j) \geq \frac{c}{2} \text { and } \sum_{j=n^{*}}^{h(n)} p(j) \geq \frac{c}{2} \tag{27}
\end{equation*}
$$

Summing up (19) from $n+1$ to n^{*}, we obtain

$$
x\left(n^{*}\right)-x(n)-\sum_{j=n+1}^{n^{*}} p(j) x(h(j)) \geq 0 .
$$

Now, using (27) and the fact that the functions $\{x(n)\}$ and $\{h(n)\}$ are nondecreasing, we have

$$
x\left(n^{*}\right) \geq x(h(n+1)) \sum_{j=n+1}^{n^{*}} p(j) \geq x(h(n)) \sum_{j=n+1}^{n^{*}} p(j)
$$

or

$$
\begin{equation*}
x\left(n^{*}\right) \geq x(h(n)) \frac{c}{2} . \tag{28}
\end{equation*}
$$

Summing up (19) from n^{*} to $h(n)$, and using the same arguments we get

$$
x(h(n))-x\left(n^{*}-1\right)-\sum_{j=n^{*}}^{h(n)} p(j) x(h(j)) \geq 0
$$

or

$$
x(h(n))-x\left(h\left(n^{*}\right)\right) \sum_{j=n^{*}}^{h(n)} p(j) \geq 0
$$

or

$$
\begin{equation*}
x(h(n)) \geq x\left(h\left(n^{*}\right)\right) \frac{c}{2} \tag{29}
\end{equation*}
$$

Combining the inequalities (28) and (29), we obtain

$$
x\left(n^{*}\right) \geq x(h(n)) \frac{c}{2} \geq x\left(h\left(n^{*}\right)\right)\left(\frac{c}{2}\right)^{2}
$$

or

$$
\frac{x\left(h\left(n^{*}\right)\right)}{x\left(n^{*}\right)} \leq\left(\frac{2}{c}\right)^{2}<+\infty
$$

i.e., $\lim \inf _{n \rightarrow \infty} \frac{x(h(n))}{x(n)}$ exists. This contradicts with (26). So, the proof of the theorem is completed.

A slight modification in the proofs of Theorem 2.3 and [18, Theorem 2.3] leads to the following result.
Theorem 2.4. Assume that all the conditions of Theorem 2.3 or (12) hold. Then
(i) the difference inequality

$$
\nabla x(n)-p(n) x(\tau(n)) \geq 0, \quad n \in \mathbb{N}, \quad n \geq 1
$$

has no eventually positive solutions,
(ii) the difference inequality

$$
\nabla x(n)-p(n) x(\tau(n)) \leq 0, \quad n \in \mathbb{N}, \quad n \geq 1
$$

has no eventually negative solutions.
Example 2.5. Consider

$$
\begin{equation*}
\nabla x(n)-p(n) x(\tau(n))=0, n \in \mathbb{N}, n \geq 1 . \tag{30}
\end{equation*}
$$

We take $p(n)=0.19$ and $\tau(n)=n+2$. We observe that

$$
\limsup _{n \rightarrow \infty} \sum_{j=n}^{n+2} p(j)=0.57 \ngtr 1 .
$$

shows that condition (12) fails. However, since

$$
\liminf _{n \rightarrow \infty} \sum_{j=n+1}^{n+2} p(j)=0.38>\frac{1}{e}
$$

every solution of (30) is oscillatory.

3. Equations with several arguments

Now, we consider the first-order advanced difference equations with several arguments and coefficients

$$
\begin{equation*}
\nabla x(n)-\sum_{i=1}^{m} p_{i}(n) x\left(\tau_{i}(n)\right)=0, n \in \mathbb{N}, n \geq 1 \tag{31}
\end{equation*}
$$

where $\left\{p_{i}(n)\right\}(i=1,2, \cdots, m)$ are positive sequences, $\left\{\tau_{i}(n)\right\}(i=1,2, \ldots, m)$ are sequences of integers and are not necessarily monotone such that

$$
\begin{equation*}
\tau_{i}(n) \geq n \text { for all } n \in \mathbb{N}, n \geq 1 . \tag{32}
\end{equation*}
$$

In this section, we present some new sufficient conditions for the oscillation of all solutions of (31). In 2014, Chatzarakis et al. [2] proved that if $\left\{\tau_{i}(n)\right\}(i=1,2, \cdots, m)$ are nondecreasing and

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\lim \sup } \sum_{j=n}^{\tau(n)} \sum_{i=1}^{m} p_{i}(j)>1 \tag{33}
\end{equation*}
$$

where $\tau(n)=\min _{1 \leq i \leq m}\left\{\tau_{i}(n)\right\}$, then all solutions of (31) oscillate.
Set

$$
\begin{equation*}
h_{i}(n):=\inf _{n \leq s} \tau_{i}(s) \text { and } h(n)=\min _{1 \leq i \leq m} h_{i}(n), \quad n \geq n_{0} \tag{34}
\end{equation*}
$$

Clearly, $\left\{h_{i}(n)\right\}(i=1,2, \cdots, m)$ are nondecreasing and $\tau_{i}(n) \geq h_{i}(n) \geq h(n)$ for all $n \geq n_{0}$. Now, we have the following result.

Theorem 3.1. Assume that (32) holds. If $\left\{\tau_{i}(n)\right\}(i=1,2, \cdots, m)$ are not necessarily monotone and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sum_{j=n}^{h(n)} \sum_{i=1}^{m} p_{i}(j)>1 \tag{35}
\end{equation*}
$$

or

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \sum_{j=n+1}^{\tau(n)} \sum_{i=1}^{m} p_{i}(j)>\frac{1}{e} \tag{36}
\end{equation*}
$$

where $\tau(n)=\min _{1 \leq i \leq m}\left\{\tau_{i}(n)\right\}$ and $h(n)$ is defined by (34), then all solutions of (31) oscillate.
Proof. Assume, for the sake of contradiction, that there exists a positive nonoscillatory solution $x(n)$ of (31). Then there exists $n_{1}>n_{0}$ such that $x(n), x\left(\tau_{i}(n)\right)>0$ for all $n \geq n_{1}$. Thus, from (31) we have

$$
\nabla x(n)-\left(\sum_{i=1}^{m} p_{i}(n)\right) x(\tau(n)) \geq 0
$$

Comparing (35) and (36), we obtain a contradiction to Theorem 2.4. Here, we have used the following equality

$$
\liminf _{n \rightarrow \infty} \sum_{j=n+1}^{\tau(n)} \sum_{i=1}^{m} p_{i}(j)=\liminf _{t \rightarrow \infty} \sum_{j=n+1}^{h(n)} \sum_{i=1}^{m} p_{i}(j),
$$

which is easily obtained as similar to the proof of Lemma 2.1.
A slight modification in the proof of Theorem 3.1 leads to the following result.
Theorem 3.2. Assume that all the conditions of Theorem 3.1 hold. Then
(i) the difference inequality

$$
\nabla x(n)-\sum_{i=1}^{m} p_{i}(n) x\left(\tau_{i}(n)\right) \geq 0, \quad n \in \mathbb{N}, \quad n \geq 1
$$

has no eventually positive solutions,
(ii) the difference inequality

$$
\nabla x(n)-\sum_{i=1}^{m} p_{i}(n) x\left(\tau_{i}(n)\right) \leq 0, \quad n \in \mathbb{N}, \quad n \geq 1
$$

has no eventually negative solutions.

References

[1] G. E. Chatzarakis, I. P. Stavroulakis, Oscillations of difference equations with general advanced argument, Cent. Eur. J. Math. 10(2) (2012) 807-823.
[2] G. E. Chatzarakis, S. Pinelas, I. P. Stavroulakis, Oscillations of difference equations with several deviated arguments, Aequat. Math. 88 (2014) 105-123.
[3] G. E. Chatzarakis, I. Jadlovská, Oscillations in deviating difference equations using an iterative technique, J. Inequal. Appl. (2017) Paper No. 173, 24 pages.
[4] G. E. Chatzarakis, I. Jadlovská, Improved iterative oscillation tests for first-order deviating difference equations, Int. J. Difference Equ. 12(2) (2017) 185-210.
[5] G. E. Chatzarakis, L. Shaikhet, Oscillation criteria for difference equations with non-monotone arguments, Adv. Difference Equ. (2017) Paper No. 62, 16 pages.
[6] G. E. Chatzarakis, L. Horvat-Dmitrovic, M. Pasic, Oscillation tests for difference equations with several non-monotone deviating arguments, Math. Slovaca 68(5) (2018) 1083-1096.
[7] G. E. Chatzarakis, I. Jadlovská, Oscillations in difference equations with several arguments using an iterative method, Filomat 32(1) (2018) 255-273.
[8] G. E. Chatzarakis, I. Jadlovská, Difference equations with several non-monotone deviating arguments: Iterative oscillation tests, Dynamic Systems and Applications 27(2) (2018) 271-298.
[9] G. E. Chatzarakis, I. Jadlovská, Oscillations of deviating difference equations using an iterative method, Mediterr. J. Math. 16(1) (2019) Paper No. 16, 20 pages.
[10] L. H. Erbe, B. G. Zhang, Oscillation of discrete analogues of delay equations, Differential Integral Equations 2(3) (1989) 300-309.
[11] L. H. Erbe, Q. Kong, B. G. Zhang, Oscillation theory for functional differential equations, Marcel Dekker, New York, 1995.
[12] I. Győri, G. Ladas, Oscillation theory of delay differential equations with applications, Clarendon Press, Oxford, 1991.
[13] G. S. Ladde, Oscillations caused by retarded perturbations of first order linear ordinary differential equations, Atti Acad. Naz. Lincei Rendiconti 63 (1978) 351-359.
[14] G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation theory of differential equations with deviating arguments, Monographs and Textbooks in Pure and Applied Mathematics, vol. 110, Marcel Dekker, Inc., New York, 1987.
[15] X. Li, D. Zhu, Oscillation of advanced difference equations with variable coefficients, Ann. Differential Equations 18(3) (2002) $254-263$.
[16] Ö. Öcalan, Ö. Akın, Oscillation properties for advanced difference equations, Novi Sad J. Math. 37(1) (2007) 39-47.
[17] Ö. Öcalan, Linearized oscillation of nonlinear difference equations with advanced arguments, Arch. Math. (Brno) 45(3) (2009) $203-212$.
[18] Ö. Öcalan, U. M. Özkan, Oscillations of dynamic equations on time scales with advanced arguments, Int. J. Dyn. Syst. Differ. Equ. 6(4) (2016) 275-284.

[^0]: 2010 Mathematics Subject Classification. 34C10; 39A10; 39A12; 39 A21.
 Keywords. Advanced; difference equations; nonmonotone; oscillatory solutions.
 Received: 25 December 2019; Revised: 17 April 2020; Accepted: 21 June 2020
 Communicated by Jelena Manojlović
 Email addresses: seydaocalann@hotmail.com (Şeyda Öcalan), ozkanocalan@akdeniz.edu.tr (Özkan Öcalan), mkyildiz@aku.edu.tr (Mustafa Kemal Yildiz)

