Filomat 34:12 (2020), 4189–4197 https://doi.org/10.2298/FIL2012189H

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Sup-Hesitant Fuzzy Quasi-Associative Ideals of BCI-Algebras

Habib Harizavi^a, Young Bae Jun^b

^aDepartment of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran ^bDepartment of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea

Abstract. The notion of Sup-hesitant fuzzy quasi-associative ideal in BCI-algebras is introduced, and related properties are investigated. Characterizations of Sup-hesitant fuzzy quasi-associative ideal are provided. Relations between Sup-hesitant fuzzy ideal and Sup-hesitant fuzzy quasi-associative ideal are displayed. Conditions for a Sup-hesitant fuzzy ideal to be a Sup-hesitant fuzzy quasi-associative ideal are provided. Extension property for Sup-hesitant fuzzy quasi-associative ideal is established.

1. Introduction

Hesitant fuzzy sets are introduced by Torra and Narukawa as another generalization of fuzzy sets, and discussed its properties (see [12] and [13]). After then, several researchers have applied hesitant fuzzy sets to algebraic structure, for example, *BCK/BCI*-algebras (see [1, 3–6, 8, 9, 11]). Muhiuddin and Jun [10] introduced the notion of sup-hesitant fuzzy subalgebras and investigate several related properties in BCK/BCI-algebras. They considered characterizations of Sup-hesitant fuzzy subalgebras, and discussed Sup-hesitant fuzzy translation and Sup-hesitant fuzzy translation and Sup-hesitant fuzzy subalgebras. They also investigated relations between Sup-hesitant fuzzy translation and Sup-hesitant fuzzy subalgebras, and investigated several properties. They discussed relations between sup-hesitant fuzzy ideals in BCK/BCI-algebras, and investigated several properties. They discussed relations between sup-hesitant fuzzy subalgebras and sup-hesitant fuzzy ideals, and considered characterizations of Sup-hesitant fuzzy subalgebras and sup-hesitant fuzzy ideals.

In this paper, we introduce the Sup-hesitant fuzzy quasi-associative ideal in a BCI-algebra and investigate several properties. We discuss characterizations of Sup-hesitant fuzzy quasi-associative ideal, and consider relations between Sup-hesitant fuzzy ideal and Sup-hesitant fuzzy quasi-associative ideal. We provide conditions for a Sup-hesitant fuzzy ideal to be a Sup-hesitant fuzzy quasi-associative ideal. We establish the extension property for the Sup-hesitant fuzzy quasi-associative ideal.

2. Preliminaries

A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki and was extensively investigated by several researchers.

An algebra (*X*; *, 0) of type (2, 0) is called a *BCI-algebra* if it satisfies the following conditions:

Received: 27 December 2019; Accepted: 22 May 2020

²⁰¹⁰ Mathematics Subject Classification. 06F35, 03G25, 08A72.

Keywords. Sup-hesitant fuzzy subalgebra, Sup-hesitant fuzzy ideal, Sup-hesitant fuzzy quasi-associative ideal.

Communicated by Dijana Mosić

Corresponding Author: Habib Harizavi

Research supported by Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Email addresses: harizavi@scu.ac.ir (Habib Harizavi), skywine@gmail.com (Young Bae Jun)

- (I) $(\forall v, u, w \in X) (((v * u) * (v * w)) * (w * u) = 0),$
- (II) $(\forall v, u \in X) ((v * (v * u)) * u = 0),$
- (III) $(\forall v \in X) (v * v = 0)$,
- (IV) $(\forall v, u \in X) (v * u = 0, u * v = 0 \Rightarrow v = u).$

If a BCI-algebra *X* satisfies the following identity:

(V)
$$(\forall v \in X) (0 * v = 0),$$

then *X* is called a *BCK-algebra*.

A BCI-algebra X is said to be *associative* (see [2]) if it satisfies:

$$(\forall v, u, w \in X) ((v * u) * w = v * (u * w)).$$
⁽¹⁾

Any BCK/BCI-algebra X satisfies the following conditions:

$$(\forall v \in X) (v * 0 = v),$$

$$(\forall v, u, w \in X) (v \le u \implies v * w \le u * w, w * u \le w * v),$$
(2)
(3)

$$(\forall v, u, w \in X) ((v * u) * w = (v * w) * u),$$

$$(4)$$

$$(\forall v, u, w \in X) \left((v * w) * (u * w) \le v * u \right) \tag{5}$$

where $v \le u$ if and only if v * u = 0.

Any BCI-algebra *X* satisfies the following conditions:

 $(\forall v, u, w \in X) (0 * (0 * ((v * w) * (u * w))) = (0 * u) * (0 * v)),$ (6)

$$(\forall v, u \in X) (0 * (v * u)) = (0 * u) * (0 * v)),$$
(7)

$$(\forall v \in X) (0 * (0 * (0 * v)) = 0 * v),$$
(8)

$$(\forall v, u \in X) (0 * (v * u)) = (0 * v) * (0 * u)).$$
(9)

A subset *S* of a BCK/BCI-algebra *X* is called a *subalgebra* of *X* if $v * u \in S$ for all $v, u \in S$. A subset *A* of a BCK/BCI-algebra *X* is called an *ideal* of *X* if it satisfies:

$$0 \in A, \tag{10}$$

$$(\forall v \in X) (v * u \in A, u \in A \implies v \in A).$$
(11)

A subset Q of a BCI-algebra X is called a quasi-associative ideal of X (see [14]) if it satisfies (10) and

$$(\forall x, y, z \in X) (x * (y * z) \in Q, y \in Q \implies x * z \in Q).$$

$$(12)$$

Note that an ideal *Q* of a *BCI*-algebra *X* is a quasi-associative ideal of *X* if and only if the following assertion is valid:

$$(\forall x, y \in X) (x * (0 * y) \in Q \implies x * y \in Q).$$
⁽¹³⁾

We refer the reader to the books [2, 7] for further information regarding BCK/BCI-algebras.

Torra [12] introduced a new extension for fuzzy sets to manage those situations in which several values are possible for the definition of a membership function of a fuzzy set.

Let *X* be a reference set. Then we define hesitant fuzzy set on *X* in terms of a function \mathcal{H} that when applied to *X* returns a subset of [0, 1] (see [12, 13]).

In what follows, the power set of [0, 1] is denoted by $\mathcal{P}([0, 1])$ and

 $\mathcal{P}^*([0,1]) = \mathcal{P}([0,1]) \setminus \{\emptyset\}.$

For any element $Q \in \mathcal{P}^*([0, 1])$, the supremum of Q is denoted by sup Q. For any hesitant fuzzy set \mathcal{H} on X and $Q \in \mathcal{P}^*([0, 1])$, consider the set

 $\operatorname{Sup}[\mathcal{H};Q] := \{v \in X \mid \sup \mathcal{H}(v) \ge \sup Q\}.$

Definition 2.1 ([10]). Let X be a BCK/BCI-algebra. Given an element $Q \in \mathcal{P}^*([0, 1])$, a hesitant fuzzy set \mathcal{H} on X is called a Sup-hesitant fuzzy subalgebra of X related to Q (briefly, Q-Sup-hesitant fuzzy subalgebra of X) if the set Sup[$\mathcal{H}; Q$] is a subalgebra of X. If \mathcal{H} is a Q-Sup-hesitant fuzzy subalgebra of X for all $Q \in \mathcal{P}^*([0, 1])$, then we say that \mathcal{H} is a Sup-hesitant fuzzy subalgebra of X.

Lemma 2.2 ([10]). Every Sup-hesitant fuzzy subalgebra \mathcal{H} of a BCK/BCI-algebra X satisfies:

 $(\forall v \in X) (\sup \mathcal{H}(0) \ge \sup \mathcal{H}(v)).$

(14)

Definition 2.3 ([11]). Let X be a BCK/BCI-algebra. Given an element $Q \in \mathcal{P}^*([0, 1])$, a hesitant fuzzy set \mathcal{H} on X is called a Sup-hesitant fuzzy ideal of X related to Q (briefly, Q-Sup-hesitant fuzzy ideal of X) if the set Sup[$\mathcal{H}; Q$] is an ideal of X. If \mathcal{H} is a Q-Sup-hesitant fuzzy ideal of X for all $Q \in \mathcal{P}^*([0, 1])$, then we say that \mathcal{H} is a Sup-hesitant fuzzy ideal of X.

Lemma 2.4 ([11]). A hesitant fuzzy set \mathcal{H} on a BCK/BCI-algebra X is a Sup-hesitant fuzzy ideal of X if and only if it satisfies (14) and

$$(\forall v, u \in X) (\sup \mathcal{H}(v) \ge \min \{\sup \mathcal{H}(v * u), \sup \mathcal{H}(u)\}).$$
(15)

Lemma 2.5 ([11]). Every Sup-hesitant fuzzy ideal H of a BCK/BCI-algebra X satisfies:

$$(\forall v, u \in X) (v \le u \implies \sup \mathcal{H}(v) \ge \sup \mathcal{H}(u)).$$
(16)

3. Sup-hesitant fuzzy quasi-associative ideals

In what follows, let X be a BCI-algebra unless otherwise specified.

Definition 3.1. Given an element $Q \in \mathcal{P}^*([0,1])$, a hesitant fuzzy set \mathcal{H} on X is called a Sup-hesitant fuzzy quasiassociative ideal of X related to Q (briefly, Q-Sup-hesitant fuzzy quasi-associative ideal of X) if the set Sup[$\mathcal{H}; Q$] is a quasi-associative ideal of X. If \mathcal{H} is a Q-Sup-hesitant fuzzy quasi-associative ideal of X for all $Q \in \mathcal{P}^*([0,1])$, then we say that \mathcal{H} is a Sup-hesitant fuzzy quasi-associative ideal of X.

Example 3.2. (1) Let $X = \{0, 1, a\}$ be a BCI-algebra with the following Cayley table.

 $\begin{array}{c|ccccc} * & 0 & 1 & a \\ \hline 0 & 0 & 0 & a \\ 1 & 1 & 0 & a \\ a & a & a & 0 \end{array}$

Let \mathcal{H} be a hesitant fuzzy set on X defined by Table 1.

X	0	1	а
$\mathcal{H}(x)$	(0.8, 0.9]	(0.35, 0.9)	[0.33, 0.63]

It is routine to verify that \mathcal{H} is a Sup-hesitant fuzzy quasi-associative ideal of X. (2) Let $X = \{0, a, b, c\}$ be a BCI-algebra with the following Cayley table.

*	0	а	b	С
0	0	а	b	С
а	а	0	С	b
b	b	С	0	а
С	С	a 0 c b	а	0

Let \mathcal{H} *be a hesitant fuzzy set on* X *defined by Table 2. It is routine to verify that* \mathcal{H} *is a Sup-hesitant fuzzy quasi-associative ideal of* X.

X	0	а	Ь	С
$\mathcal{H}(x)$	(0.66, 0.88]	(0.35, 0.66)	[0.44, 0.58]	[0.38, 0.58]

Table 2: 7	Tabular repi	resentation	of \mathcal{H}
------------	--------------	-------------	------------------

Theorem 3.3. A hesitant fuzzy set \mathcal{H} on X is a Sup-hesitant fuzzy quasi-associative ideal of X if and only if if it satisfies (14) and

$$(\forall x, y, z \in X) (\min\{\sup \mathcal{H}(x * (y * z)), \sup \mathcal{H}(y)\} \le \sup \mathcal{H}(x * z)).$$
(17)

Proof. Let \mathcal{H} be a Sup-hesitant fuzzy quasi-associative ideal of X. If (14) is false, then there exists $Q \in \mathcal{P}^*([0,1])$ and $a \in X$ such that $\sup \mathcal{H}(0) < \sup Q \le \sup \mathcal{H}(a)$. It follows that $a \in \operatorname{Sup}[\mathcal{H};Q]$ and $0 \notin \operatorname{Sup}[\mathcal{H};Q]$. This is a contradiction, and so (14) is valid. Now assume that (17) is not valid. Then

 $\min\{\sup \mathcal{H}(a * (b * c)), \sup \mathcal{H}(b)\} > \sup \mathcal{H}(a * c)$

for some $a, b, c \in X$, and thus there exists $B \in \mathcal{P}^*([0, 1])$ such that

 $\min\{\sup \mathcal{H}(a * (b * c)), \sup \mathcal{H}(b)\} \ge \sup B > \sup \mathcal{H}(a * c).$

which implies that $a * (b * c) \in \text{Sup}[\mathcal{H}; B]$, $b \in \text{Sup}[\mathcal{H}; B]$ but $a * c \notin \text{Sup}[\mathcal{H}; B]$. This is a contradiction, and thus (17) holds.

Conversely, suppose that \mathcal{H} satisfies two conditions (14) and (17). Let $Q \in \mathcal{P}^*([0,1])$ be such that $\operatorname{Sup}[\mathcal{H};Q] \neq \emptyset$. Obviously, $0 \in \operatorname{Sup}[\mathcal{H};Q]$. Let $x, y, z \in X$ be such that $x * (y * z) \in \operatorname{Sup}[\mathcal{H};Q]$ and $y \in \operatorname{Sup}[\mathcal{H};Q]$. Then $\operatorname{sup} \mathcal{H}(x * (y * z)) \ge \operatorname{sup} Q$ and $\operatorname{sup} \mathcal{H}(y) \ge \operatorname{sup} Q$. It follows from (17) that

 $\sup \mathcal{H}(x * z) \ge \min\{\sup \mathcal{H}(x * (y * z)), \sup \mathcal{H}(y)\} \ge \sup Q$

and that $x * z \in \text{Sup}[\mathcal{H}; Q]$. Hence $\text{Sup}[\mathcal{H}; Q]$ is a quasi-associative ideal of *X* for all $Q \in \mathcal{P}^*([0, 1])$, and therefore \mathcal{H} is a Sup-hesitant fuzzy quasi-associative ideal of *X*. \Box

Proposition 3.4. If \mathcal{H} is a Sup-hesitant fuzzy quasi-associative ideal of X, then $\mathcal{H}(x * z) \ge \mathcal{H}(x * (0 * z))$ for all $x, z \in X$. In particular, $\mathcal{H}(0 * z) \ge \mathcal{H}(0 * (0 * z))$ for all $z \in X$.

Proof. Straightforward. \Box

We consider relations between a Sup-hesitant fuzzy ideal and a Sup-hesitant fuzzy quasi-associative ideal.

Theorem 3.5. Every Sup-hesitant fuzzy quasi-associative ideal is a Sup-hesitant fuzzy ideal.

Proof. Let \mathcal{H} be a Sup-hesitant fuzzy quasi-associative ideal of X. Since x * 0 = x for all $x \in X$, it follows from (17) that

$$\sup \mathcal{H}(x) = \sup \mathcal{H}(x * 0) \ge \min\{\sup \mathcal{H}(x * (y * 0)), \sup \mathcal{H}(y)\}$$
$$= \min\{\sup \mathcal{H}(x * y), \sup \mathcal{H}(y)\}$$

for all $x, y \in X$. Therefore \mathcal{H} is a Sup-hesitant fuzzy ideal of X. \Box

The following example shows that the converse of Theorem 3.5 is not true in general.

Example 3.6. Consider a BCI-algebra $X = \{0, a, 1, 2, \}$ with the following Cayley table.

	*	0	а	1	2 2 3 0 1	3
_	0	0	0	3	2	1
	а	а	0	3	2	1
	1	1	1	0	3	2
	2	2	2	1	0	3
	3	3	3	2	1	0

Let \mathcal{H} be a hesitant fuzzy set on X defined by

$$\mathcal{H}: X \to \mathcal{P}([0,1]), \ x \mapsto \begin{cases} (0.55, 0.89] & \text{if } x = 0, \\ (0.37, 0.77) & \text{if } x = a, \\ [0.25, 0.65] & \text{if } x = 1, \\ [0.35, 0.56] \cup \{0.65\} & \text{if } x = 2, \\ \{0.54\} \cup [0.60, 0.65] & \text{if } x = 3 \end{cases}$$

It is routine to verify that \mathcal{H} is a Sup-hesitant fuzzy ideal of X, but it is not a Sup-hesitant fuzzy quasi-associative ideal of X since

 $\sup \mathcal{H}(3 * 1) < \min\{\sup \mathcal{H}(3 * (0 * 1)), \sup \mathcal{H}(0)\}.$

Proposition 3.7. Every Sup-hesitant fuzzy quasi-associative ideal \mathcal{H} of X satisfies the following assertions.

- (1) $(\forall x, y \in X)(x \le y \implies \sup \mathcal{H}(x) \ge \sup \mathcal{H}(y)).$
- (2) $(\forall x, y \in X)(\sup \mathcal{H}(x * y) = \sup \mathcal{H}(0) \Rightarrow \sup \mathcal{H}(x) \ge \sup \mathcal{H}(y)).$
- (3) $(\forall x, y \in X)(\sup \mathcal{H}(x * y) \ge \min\{\sup \mathcal{H}(x), \sup \mathcal{H}(y)\}).$
- (4) $(\forall x, y, z \in X)(\sup \mathcal{H}(x * y) \ge \min\{\sup \mathcal{H}(x * z), \sup \mathcal{H}(z * y)\}).$
- (5) $(\forall x \in X)(\sup \mathcal{H}((0 * x) * x) = \sup \mathcal{H}(0))).$

Proof. (1) If $x \le y$, then x * y = 0 and thus

```
\sup \mathcal{H}(x) = \sup \mathcal{H}(x * 0) \ge \min\{\sup \mathcal{H}(x * (y * 0)), \sup \mathcal{H}(y)\}= \min\{\sup \mathcal{H}(x * y), \sup \mathcal{H}(y)\}= \min\{\sup \mathcal{H}(0), \sup \mathcal{H}(y)\} = \sup \mathcal{H}(y).
```

```
(2) It is similar to the proof of (1).
```

(3) For any $x, y \in X$, we have

```
\sup \mathcal{H}(x * y) \ge \min\{\sup \mathcal{H}(x * (y * y)), \sup \mathcal{H}(y)\}= \min\{\sup \mathcal{H}(x * 0), vy)\}= \min\{\sup \mathcal{H}(x), \sup \mathcal{H}(y)\}.
```

(4) Using (I) and (1), we get sup $\mathcal{H}((x * y) * (x * z)) \ge \sup \mathcal{H}(z * y)$ for all $x, y, z \in X$. Since \mathcal{H} is a Sup-hesitant fuzzy ideal of X (see Theorem 3.5), it follows that

 $\sup \mathcal{H}(x * y) \ge \min\{\sup \mathcal{H}((x * y) * (x * z)), \sup \mathcal{H}(x * z)\}$ $\ge \min\{\sup \mathcal{H}(z * y), \sup \mathcal{H}(x * z)\}$

for all $x, y, z \in X$.

(5) If we put x := 0 * x, y := 0 and z := x in (17), then

$$\sup \mathcal{H}(0) = \min\{\sup \mathcal{H}((0 * x) * (0 * x)), \sup \mathcal{H}(0)\} \le \sup \mathcal{H}((0 * x) * x)$$

for all $x \in X$. Combining this and (14) induces $\sup \mathcal{H}((0 * x) * x) = \sup \mathcal{H}(0)$ for all $x \in X$. \Box

By combining Proposition 3.7(3) and Theorem 3.5, we know that every Sup-hesitant fuzzy quasiassociative ideal is a Sup-hesitant fuzzy closed ideal.

We provide a condition for a Sup-hesitant fuzzy ideal to be a Sup-hesitant fuzzy quasi-associative ideal.

Theorem 3.8. In an associative BCI-algebra, every Sup-hesitant fuzzy ideal is a Sup-hesitant fuzzy quasi-associative ideal.

Proof. Let \mathcal{H} be a Sup-hesitant fuzzy ideal of an associative BCI-algebra X. Then

 $\sup \mathcal{H}(x * z) \ge \min\{\sup \mathcal{H}((x * z) * y), \sup \mathcal{H}(y)\}$ = min{sup $\mathcal{H}((x * y) * z), \sup \mathcal{H}(y)$ } = min{sup $\mathcal{H}(x * (y * z)), \sup \mathcal{H}(y)$ }

for all $x, y, z \in X$. Hence \mathcal{H} is a Sup-hesitant fuzzy quasi-associative ideal of X. \Box

Theorem 3.9. If \mathcal{H} is a Sup-hesitant fuzzy ideal of X, then the following are equivalent.

- (1) \mathcal{H} is a Sup-hesitant fuzzy quasi-associative ideal of X.
- (2) \mathcal{H} satisfies:

$$(\forall x, y \in X)(\sup \mathcal{H}(x * y) \ge \sup \mathcal{H}(x * (0 * y))).$$
(18)

(3) \mathcal{H} satisfies:

$$(\forall x, y, z \in X)(\sup \mathcal{H}((x * y) * z) \ge \sup \mathcal{H}(x * (y * z))).$$
(19)

Proof. (1) \Rightarrow (2). Assume that \mathcal{H} is a Sup-hesitant fuzzy quasi-associative ideal of X. Then

 $\sup \mathcal{H}(x * y) \ge \min\{\sup \mathcal{H}(x * (0 * y)), \sup \mathcal{H}(0)\} = \sup \mathcal{H}(x * (0 * y)).$

 $(2) \Rightarrow (3)$. Note that

$$\begin{aligned} &((x * y) * (0 * z)) * (x * (y * z)) = ((x * y) * (x * (y * z))) * (0 * z) \\ &\leq ((y * z) * y) * (0 * z) = (0 * z) * (0 * z) = 0 \end{aligned}$$

for all $x, y, z \in X$. Since \mathcal{H} is a Sup-hesitant fuzzy ideal, it follows from (14), (15), (16) and (18) that

 $\sup \mathcal{H}((x * y) * z) \ge \sup \mathcal{H}((x * y) * (0 * z))$ $\ge \min\{\sup \mathcal{H}(((x * y) * (0 * z)) * (x * (y * z))), \sup \mathcal{H}(x * (y * z))\}$ $\ge \min\{\sup \mathcal{H}(0), \sup \mathcal{H}(x * (y * z))\} = \sup \mathcal{H}(x * (y * z))$

for all $x, y, z \in X$.

(3) \Rightarrow (1). For any $x, y, z \in X$, we have

$$\sup \mathcal{H}(x * z) \ge \min\{\sup \mathcal{H}((x * z) * y), \sup \mathcal{H}(y)\}$$
$$= \min\{\sup \mathcal{H}((x * y) * z), \sup \mathcal{H}(y)\}$$
$$\ge \min\{\sup \mathcal{H}(x * (y * z), \sup \mathcal{H}(y)\}$$

by (4), (15) and (19). Therefore \mathcal{H} is a Sup-hesitant fuzzy quasi-associative ideal of *X*. \Box

Theorem 3.10. If a Sup-hesitant fuzzy ideal \mathcal{H} of X satisfies the following assertion

$$(\forall x, y \in X)(\sup \mathcal{H}(x * y) \ge \sup \mathcal{H}(x)), \tag{20}$$

then \mathcal{H} is a Sup-hesitant fuzzy quasi-associative ideal of X.

Proof. Let \mathcal{H} be a Sup-hesitant fuzzy ideal of X that satisfies the condition (20). Then

$$\sup \mathcal{H}((x * z) * (y * z)) = \sup \mathcal{H}((x * (y * z)) * z) \ge \sup \mathcal{H}(x * (y * z))$$

for all $x, y, z \in X$ by (4) and (20). It follows from (15) that

$$\sup \mathcal{H}(x * z) \ge \min\{\sup \mathcal{H}((x * z) * (y * z)), \sup \mathcal{H}(y * z)\}$$
$$\ge \min\{\sup \mathcal{H}(x * (y * z)), \sup \mathcal{H}(y)\}$$

for all $x, y, z \in X$. Therefore \mathcal{H} is a Sup-hesitant fuzzy quasi-associative ideal of X.

For any hesitant fuzzy set \mathcal{H} on X and an element a of X, consider a set

 $\mathcal{H}_a := \{ x \in X \mid \sup \mathcal{H}(a) \le \sup \mathcal{H}(x) \}.$

Lemma 3.11 ([11]). *If* \mathcal{H} *is a hesitant fuzzy ideal of* X*, then the set* \mathcal{H}_a *is an ideal of* X *for all* $a \in X$ *.*

Theorem 3.12. If \mathcal{H} is a hesitant fuzzy quasi-associative ideal of X, then the set \mathcal{H}_a is a quasi-associative ideal of X for all $a \in X$.

Proof. Let $x, y \in X$ be such that $x * (0 * y) \in \mathcal{H}_a$. Then

 $\sup \mathcal{H}(a) \le \sup \mathcal{H}(x * (0 * y)) \le \sup \mathcal{H}(x * y)$

by Theorem 3.9, and so $x * y \in \mathcal{H}_a$. Hence \mathcal{H}_a is a quasi-associative ideal of X for all $a \in X$. \Box

Proposition 3.13. Given an element $a \in X$, if \mathcal{H} is a Sup-hesitant fuzzy quasi-associative ideal of X, then the following conditions are valid:

$$(\forall x, y \in X) \left(\begin{array}{c} \sup \mathcal{H}(a) \le \min\{\sup \mathcal{H}(x * y), \sup \mathcal{H}(y)\} \\ \Rightarrow \sup \mathcal{H}(a) \le \sup \mathcal{H}(x) \end{array} \right).$$
(21)

$$(\forall x, y, z \in X) \left(\begin{array}{c} \sup \mathcal{H}(a) \le \min\{\sup \mathcal{H}(x \ast (y \ast z)), \sup \mathcal{H}(y)\} \\ \Rightarrow \sup \mathcal{H}(a) \le \sup \mathcal{H}(x \ast z) \end{array} \right).$$
(22)

$$(\forall x, y \in X) \left(\begin{array}{c} \sup \mathcal{H}(a) \le \sup \mathcal{H}(x * (0 * y)) \\ \Rightarrow \sup \mathcal{H}(a) \le \sup \mathcal{H}(x * y) \end{array} \right).$$
(23)

Proof. Straightforward by definition of Sup-hesitant fuzzy (quasi-assoiative) ideal.

Given a hesitant fuzzy set \mathcal{H} on X, we provide conditions for the set \mathcal{H}_a to be a quasi-associative ideal.

Theorem 3.14. *If a hesitant fuzzy set* \mathcal{H} *on* X *satisfies* (14) *and* (22)*, then the set* \mathcal{H}_a *is a quasi-associative ideal of* X *for any* $a \in X$.

Proof. Let $a \in X$. The condition (14) implies that $0 \in \mathcal{H}_a$. Let $x, y, z \in X$ be such that $x * (y * z) \in \mathcal{H}_a$ and $y \in \mathcal{H}_a$. Then $\sup \mathcal{H}(a) \leq \sup \mathcal{H}(x * (y * z))$ and $\sup \mathcal{H}(a) \leq \sup \mathcal{H}(y)$, which imply that

$$\sup \mathcal{H}(a) \le \min\{\sup \mathcal{H}(x * (y * z)), \sup \mathcal{H}(y)\}.$$

It follows from (22) that $\sup \mathcal{H}(a) \leq \sup \mathcal{H}(x * z)$. Hence $x * z \in \mathcal{H}_a$, and therefore \mathcal{H}_a is a quasi-associative ideal of *X*. \Box

Theorem 3.15. If a hesitant fuzzy set \mathcal{H} on X satisfies (14), (21) and (23), then the set \mathcal{H}_a is a quasi-associative ideal of X for any $a \in X$.

Proof. Let $a \in X$. The condition (14) implies that $0 \in \mathcal{H}_a$. Let $x, y \in X$ be such that $x * y \in \mathcal{H}_a$ and $y \in \mathcal{H}_a$. Then $\sup \mathcal{H}(a) \leq \sup \mathcal{H}(x * y)$ and $\sup \mathcal{H}(a) \leq \sup \mathcal{H}(y)$, which imply that

 $\sup \mathcal{H}(a) \le \min\{\sup \mathcal{H}(x * y), \sup \mathcal{H}(y)\}.$

It follows from (21) that $\sup \mathcal{H}(a) \leq \sup \mathcal{H}(x)$. Thus $x \in \mathcal{H}_a$, and so \mathcal{H}_a is an ideal of *X*. Let $x, y \in X$ be such that $x * (0 * y) \in \mathcal{H}_a$. Then $\sup \mathcal{H}(a) \leq \sup \mathcal{H}(x * (0 * y))$, and so $\sup \mathcal{H}(a) \leq \sup \mathcal{H}(x * y)$ by (23), that is, $x * y \in \mathcal{H}_a$. Therefore \mathcal{H}_a is a quasi-associative ideal of *X*. \Box

In the following theorem, we establish the extension property for a Sup-hesitant fuzzy quasi-associative ideal.

Theorem 3.16. Let \mathcal{H} and \mathcal{G} be Sup-hesitant fuzzy ideals of X such that $\mathcal{H}(0) = \mathcal{G}(0)$ and $\mathcal{H}(x) \leq \mathcal{G}(x)$ for all $x \neq 0 \in X$. If \mathcal{H} is a Sup-hesitant fuzzy quasi-associative ideal of X, then so is \mathcal{G} .

Proof. Assume that \mathcal{H} is a Sup-hesitant fuzzy quasi-associative ideal of X. Using (III), (4), (14), (15), (18) and given conditions, we have

$$\sup \mathcal{G}(x * y) \ge \min\{\sup \mathcal{G}((x * y) * (x * (0 * y))), \sup \mathcal{G}(x * (0 * y))\} \\\ge \min\{\sup \mathcal{H}((x * y) * (x * (0 * y))), \sup \mathcal{G}(x * (0 * y)))\} \\= \min\{\sup \mathcal{H}((x * (x * (0 * y))) * y), \sup \mathcal{G}(x * (0 * y)))\} \\\ge \min\{\sup \mathcal{H}((x * (x * (0 * y))) * (0 * y)), \sup \mathcal{G}(x * (0 * y)))\} \\= \min\{\sup \mathcal{H}((x * (0 * y)) * (x * (0 * y))), \sup \mathcal{G}(x * (0 * y)))\} \\= \min\{\sup \mathcal{H}(0), \sup \mathcal{G}(x * (0 * y))\} \\= \min\{\sup \mathcal{G}(0), \sup \mathcal{G}(x * (0 * y))\} \\= \sup \mathcal{G}(x * (0 * y))$$

for all $x, y \in X$. It follows from Theorem 3.9 that G is a Sup-hesitant fuzzy quasi-associative ideal of X. \Box

Conclusion

The concept of a hesitant fuzzy set has many applications in the domain of mathematics and elsewhere; among them are many logical algebras. Based on this, we applied this concept to introduce the Sup-hesitant fuzzy quasi-associative ideal in BCI-algebras. The researchers can apply this concept for more subjects of BCK/BCI-algebra. In this paper, we discussed characterizations of Sup-hesitant fuzzy quasi-associative ideal. Also, we considered relations between Sup-hesitant fuzzy ideal and Sup-hesitant fuzzy quasiassociative ideal. We provided conditions for a Sup-hesitant fuzzy ideal to be a Sup-hesitant fuzzy quasiassociative ideal. Finally, we established the extension property for Sup-hesitant fuzzy quasi-associative ideal.

References

- S. Aldhafeeri and G. Muhiuddin, Commutative ideals of BCK-algebras based on uni-hesitant fuzzy set theory. Missouri J. Math. Sci. 31 (2019), no. 1, 56–65.
- [2] Y. Huang, BCI-algebra, Science Press, Beijing 2006.
- [3] Y.B. Jun, A new type of p-ideals in BCI-algebras based on hesitant fuzzy sets. Azerb. J. Math. 8 (2018), no. 1, 104–115.
- [4] Y. B. Jun and S. S. Ahn, Hesitant fuzzy set theory applied to BCK/BCI-algerbas, J. Comput. Anal. Appl. 20 (2016), no. 4, 635–646.
 [5] Y.B. Jun, H.S. Kim and S.Z. Song, A new type of subsemigroups and ideals of semigroups in the framework of hesitant fuzzy set theory. J. Mult.-Valued Logic Soft Comput. 29 (2017), no. 1-2, 67–81.
- [6] Y. B. Jun and S. Z. Song, Hesitant fuzzy set theory applied to filters in MTL-algebras, Honam Mathematical J. 36 (2014), No. 4, 813–830. http://dx.doi.org/10.5831/HMJ.2014.36.4.813.
- [7] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co. Seoul 1994.
- [8] G. Muhiuddin, Hesitant fuzzy filters and hesitant fuzzy G-filters in residuated lattices, J. Comput. Anal. Appl. 20 (2016), no. 2, 394–404.

- [9] G. Muhiuddin and S. Aldhafeeri, Subalgebras and ideals in BCK/BCI-algebras based on uni-hesitant fuzzy set theory. Eur. J. Pure Appl. Math. 11 (2018), no. 2, 417–430.
- [10] G. Muhiuddin and Y.B. Jun, Sup-hesitant fuzzy subalgebras and its translations and extensions. Annals of Communications in Mathematics, Volume 2, Number 1 (2019), 48-56.
- [11] G. Muhiuddin, H. Harizavi and Y.B. Jun, Ideal theory in BCK/BCI-algebras in the frame of hesitant fuzzy set theory, Applications and Applied Mathematics (in press).
- [12] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst. 25 (2010), 529–539.
- [13] V. Torra and Y. Narukawa, On hesitant fuzzy sets and decision, in: The 18th IEEE International Conference on Fuzzy Systems, Jeju Island, Korea, 2009, pp. 1378-1382.
- [14] Z. Yue and X. H. Zhang, Quasi-associative ideals of *BCI*-algebras, Selected papers on BCK and BCI-algebras (in P. R. China) 1 (1992) 85–86.