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Abstract. The notion of Sup-hesitant fuzzy quasi-associative ideal in BCI-algebras is introduced, and
related properties are investigated. Characterizations of Sup-hesitant fuzzy quasi-associative ideal are
provided. Relations between Sup-hesitant fuzzy ideal and Sup-hesitant fuzzy quasi-associative ideal are
displayed. Conditions for a Sup-hesitant fuzzy ideal to be a Sup-hesitant fuzzy quasi-associative ideal are
provided. Extension property for Sup-hesitant fuzzy quasi-associative ideal is established.

1. Introduction

Hesitant fuzzy sets are introduced by Torra and Narukawa as another generalization of fuzzy sets, and
discussed its properties (see [12] and [13]). After then, several researchers have applied hesitant fuzzy
sets to algebraic structure, for example, BCK/BCI-algebras (see [1, 3–6, 8, 9, 11]). Muhiuddin and Jun
[10] introduced the notion of sup-hesitant fuzzy subalgebras and investigate several related properties in
BCK/BCI-algebras. They considered characterizations of Sup-hesitant fuzzy subalgebras, and discussed
Sup-hesitant fuzzy translation and Sup-hesitant fuzzy extension of Sup-hesitant fuzzy subalgebras. They
also investigated relations between Sup-hesitant fuzzy translation and Sup-hesitant fuzzy extension. Muhi-
uddin, Harizavi and Jun [11] introduced sup-hesitant fuzzy ideals in BCK/BCI-algebras, and investigated
several properties. They discussed relations between sup-hesitant fuzzy subalgebras and sup-hesitant
fuzzy ideals, and considered characterizations of Sup-hesitant fuzzy ideals.

In this paper, we introduce the Sup-hesitant fuzzy quasi-associative ideal in a BCI-algebra and investigate
several properties. We discuss characterizations of Sup-hesitant fuzzy quasi-associative ideal, and consider
relations between Sup-hesitant fuzzy ideal and Sup-hesitant fuzzy quasi-associative ideal. We provide
conditions for a Sup-hesitant fuzzy ideal to be a Sup-hesitant fuzzy quasi-associative ideal. We establish
the extension property for the Sup-hesitant fuzzy quasi-associative ideal.

2. Preliminaries

A BCK/BCI-algebra is an important class of logical algebras introduced by K. Iséki and was extensively
investigated by several researchers.

An algebra (X; ∗, 0) of type (2, 0) is called a BCI-algebra if it satisfies the following conditions:
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(I) (∀v,u,w ∈ X) (((v ∗ u) ∗ (v ∗ w)) ∗ (w ∗ u) = 0),

(II) (∀v,u ∈ X) ((v ∗ (v ∗ u)) ∗ u = 0),

(III) (∀v ∈ X) (v ∗ v = 0),

(IV) (∀v,u ∈ X) (v ∗ u = 0,u ∗ v = 0 ⇒ v = u).

If a BCI-algebra X satisfies the following identity:

(V) (∀v ∈ X) (0 ∗ v = 0),

then X is called a BCK-algebra.
A BCI-algebra X is said to be associative (see [2]) if it satisfies:

(∀v,u,w ∈ X) ((v ∗ u) ∗ w = v ∗ (u ∗ w)) . (1)

Any BCK/BCI-algebra X satisfies the following conditions:

(∀v ∈ X) (v ∗ 0 = v) , (2)
(∀v,u,w ∈ X) (v ≤ u ⇒ v ∗ w ≤ u ∗ w, w ∗ u ≤ w ∗ v) , (3)
(∀v,u,w ∈ X) ((v ∗ u) ∗ w = (v ∗ w) ∗ u) , (4)
(∀v,u,w ∈ X) ((v ∗ w) ∗ (u ∗ w) ≤ v ∗ u) (5)

where v ≤ u if and only if v ∗ u = 0.
Any BCI-algebra X satisfies the following conditions:

(∀v,u,w ∈ X) (0 ∗ (0 ∗ ((v ∗ w) ∗ (u ∗ w))) = (0 ∗ u) ∗ (0 ∗ v)) , (6)
(∀v,u ∈ X) (0 ∗ (0 ∗ (v ∗ u)) = (0 ∗ u) ∗ (0 ∗ v)) , (7)
(∀v ∈ X) (0 ∗ (0 ∗ (0 ∗ v)) = 0 ∗ v) , (8)
(∀v,u ∈ X) (0 ∗ (v ∗ u)) = (0 ∗ v) ∗ (0 ∗ u)) . (9)

A subset S of a BCK/BCI-algebra X is called a subalgebra of X if v ∗ u ∈ S for all v,u ∈ S. A subset A of a
BCK/BCI-algebra X is called an ideal of X if it satisfies:

0 ∈ A, (10)
(∀v ∈ X) (v ∗ u ∈ A, u ∈ A ⇒ v ∈ A) . (11)

A subset Q of a BCI-algebra X is called a quasi-associative ideal of X (see [14]) if it satisfies (10) and

(∀x, y, z ∈ X)
(
x ∗ (y ∗ z) ∈ Q, y ∈ Q ⇒ x ∗ z ∈ Q

)
. (12)

Note that an ideal Q of a BCI-algebra X is a quasi-associative ideal of X if and only if the following
assertion is valid:

(∀x, y ∈ X)
(
x ∗ (0 ∗ y) ∈ Q ⇒ x ∗ y ∈ Q

)
. (13)

We refer the reader to the books [2, 7] for further information regarding BCK/BCI-algebras.
Torra [12] introduced a new extension for fuzzy sets to manage those situations in which several values

are possible for the definition of a membership function of a fuzzy set.
Let X be a reference set. Then we define hesitant fuzzy set on X in terms of a function H that when

applied to X returns a subset of [0, 1] (see [12, 13]).
In what follows, the power set of [0, 1] is denoted by P([0, 1]) and

P
∗([0, 1]) = P([0, 1]) \ {∅}.

For any element Q ∈ P∗([0, 1]), the supremum of Q is denoted by sup Q. For any hesitant fuzzy setH on X
and Q ∈ P∗([0, 1]), consider the set

Sup[H ; Q] :=
{
v ∈ X | supH(v) ≥ sup Q

}
.
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Definition 2.1 ([10]). Let X be a BCK/BCI-algebra. Given an element Q ∈ P∗([0, 1]), a hesitant fuzzy set H on X
is called a Sup-hesitant fuzzy subalgebra of X related to Q (briefly, Q-Sup-hesitant fuzzy subalgebra of X) if the set
Sup[H ; Q] is a subalgebra of X. IfH is a Q-Sup-hesitant fuzzy subalgebra of X for all Q ∈ P∗([0, 1]), then we say
thatH is a Sup-hesitant fuzzy subalgebra of X.

Lemma 2.2 ([10]). Every Sup-hesitant fuzzy subalgebraH of a BCK/BCI-algebra X satisfies:

(∀v ∈ X)
(
supH(0) ≥ supH(v)

)
. (14)

Definition 2.3 ([11]). Let X be a BCK/BCI-algebra. Given an element Q ∈ P∗([0, 1]), a hesitant fuzzy set H on X
is called a Sup-hesitant fuzzy ideal of X related to Q (briefly, Q-Sup-hesitant fuzzy ideal of X) if the set Sup[H ; Q] is
an ideal of X. IfH is a Q-Sup-hesitant fuzzy ideal of X for all Q ∈ P∗([0, 1]), then we say thatH is a Sup-hesitant
fuzzy ideal of X.

Lemma 2.4 ([11]). A hesitant fuzzy setH on a BCK/BCI-algebra X is a Sup-hesitant fuzzy ideal of X if and only if
it satisfies (14) and

(∀v,u ∈ X)
(
supH(v) ≥ min{supH(v ∗ u), supH(u)}

)
. (15)

Lemma 2.5 ([11]). Every Sup-hesitant fuzzy idealH of a BCK/BCI-algebra X satisfies:

(∀v,u ∈ X)
(
v ≤ u ⇒ supH(v) ≥ supH(u)

)
. (16)

3. Sup-hesitant fuzzy quasi-associative ideals

In what follows, let X be a BCI-algebra unless otherwise specified.

Definition 3.1. Given an element Q ∈ P∗([0, 1]), a hesitant fuzzy setH on X is called a Sup-hesitant fuzzy quasi-
associative ideal of X related to Q (briefly, Q-Sup-hesitant fuzzy quasi-associative ideal of X) if the set Sup[H ; Q] is
a quasi-associative ideal of X. IfH is a Q-Sup-hesitant fuzzy quasi-associative ideal of X for all Q ∈ P∗([0, 1]), then
we say thatH is a Sup-hesitant fuzzy quasi-associative ideal of X.

Example 3.2. (1) Let X = {0, 1, a} be a BCI-algebra with the following Cayley table.

∗ 0 1 a
0 0 0 a
1 1 0 a
a a a 0

LetH be a hesitant fuzzy set on X defined by Table 1.

Table 1: Tabular representation ofH

X 0 1 a
H(x) (0.8, 0.9] (0.35, 0.9) [0.33, 0.63]

It is routine to verify thatH is a Sup-hesitant fuzzy quasi-associative ideal of X.
(2) Let X = {0, a, b, c} be a BCI-algebra with the following Cayley table.

∗ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

LetH be a hesitant fuzzy set on X defined by Table 2.
It is routine to verify thatH is a Sup-hesitant fuzzy quasi-associative ideal of X.
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Table 2: Tabular representation ofH

X 0 a b c
H(x) (0.66, 0.88] (0.35, 0.66) [0.44, 0.58] [0.38, 0.58]

Theorem 3.3. A hesitant fuzzy set H on X is a Sup-hesitant fuzzy quasi-associative ideal of X if and only if if it
satisfies (14) and

(∀x, y, z ∈ X)
(
min{supH(x ∗ (y ∗ z)), supH(y)} ≤ supH(x ∗ z)

)
. (17)

Proof. Let H be a Sup-hesitant fuzzy quasi-associative ideal of X. If (14) is false, then there exists Q ∈
P
∗([0, 1]) and a ∈ X such that supH(0) < sup Q ≤ supH(a). It follows that a ∈ Sup[H ; Q] and 0 < Sup[H ; Q].

This is a contradiction, and so (14) is valid. Now assume that (17) is not valid. Then

min{supH(a ∗ (b ∗ c)), supH(b)} > supH(a ∗ c)

for some a, b, c ∈ X, and thus there exists B ∈ P∗([0, 1]) such that

min{supH(a ∗ (b ∗ c)), supH(b)} ≥ sup B > supH(a ∗ c).

which implies that a ∗ (b ∗ c) ∈ Sup[H ; B], b ∈ Sup[H ; B] but a ∗ c < Sup[H ; B]. This is a contradiction, and
thus (17) holds.

Conversely, suppose that H satisfies two conditions (14) and (17). Let Q ∈ P∗([0, 1]) be such that
Sup[H ; Q] , ∅. Obviously, 0 ∈ Sup[H ; Q]. Let x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ Sup[H ; Q] and
y ∈ Sup[H ; Q]. Then supH(x ∗ (y ∗ z)) ≥ sup Q and supH(y) ≥ sup Q. It follows from (17) that

supH(x ∗ z) ≥ min{supH(x ∗ (y ∗ z)), supH(y)} ≥ sup Q

and that x ∗ z ∈ Sup[H ; Q]. Hence Sup[H ; Q] is a quasi-associative ideal of X for all Q ∈ P∗([0, 1]), and
thereforeH is a Sup-hesitant fuzzy quasi-associative ideal of X.

Proposition 3.4. If H is a Sup-hesitant fuzzy quasi-associative ideal of X, then H(x ∗ z) ≥ H(x ∗ (0 ∗ z)) for all
x, z ∈ X. In particular,H(0 ∗ z) ≥ H(0 ∗ (0 ∗ z)) for all z ∈ X.

Proof. Straightforward.

We consider relations between a Sup-hesitant fuzzy ideal and a Sup-hesitant fuzzy quasi-associative
ideal.

Theorem 3.5. Every Sup-hesitant fuzzy quasi-associative ideal is a Sup-hesitant fuzzy ideal.

Proof. Let H be a Sup-hesitant fuzzy quasi-associative ideal of X. Since x ∗ 0 = x for all x ∈ X, it follows
from (17) that

supH(x) = supH(x ∗ 0) ≥ min{supH(x ∗ (y ∗ 0)), supH(y)}
= min{supH(x ∗ y), supH(y)}

for all x, y ∈ X. ThereforeH is a Sup-hesitant fuzzy ideal of X.

The following example shows that the converse of Theorem 3.5 is not true in general.
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Example 3.6. Consider a BCI-algebra X = {0, a, 1, 2, } with the following Cayley table.

∗ 0 a 1 2 3
0 0 0 3 2 1
a a 0 3 2 1
1 1 1 0 3 2
2 2 2 1 0 3
3 3 3 2 1 0

LetH be a hesitant fuzzy set on X defined by

H : X→ P([0, 1]), x 7→


(0.55, 0.89] if x = 0,
(0.37, 0.77) if x = a,
[0.25, 0.65] if x = 1,
[0.35, 0.56] ∪ {0.65} if x = 2,
{0.54} ∪ [0.60, 0.65] if x = 3

It is routine to verify that H is a Sup-hesitant fuzzy ideal of X, but it is not a Sup-hesitant fuzzy quasi-associative
ideal of X since

supH(3 ∗ 1) < min{supH(3 ∗ (0 ∗ 1)), supH(0)}.

Proposition 3.7. Every Sup-hesitant fuzzy quasi-associative idealH of X satisfies the following assertions.

(1) (∀x, y ∈ X)(x ≤ y ⇒ supH(x) ≥ supH(y)).
(2) (∀x, y ∈ X)(supH(x ∗ y) = supH(0) ⇒ supH(x) ≥ supH(y)).
(3) (∀x, y ∈ X)(supH(x ∗ y) ≥ min{supH(x), supH(y)}).
(4) (∀x, y, z ∈ X)(supH(x ∗ y) ≥ min{supH(x ∗ z), supH(z ∗ y)}).
(5) (∀x ∈ X)(supH((0 ∗ x) ∗ x) = supH(0)}).

Proof. (1) If x ≤ y, then x ∗ y = 0 and thus

supH(x) = supH(x ∗ 0) ≥ min{supH(x ∗ (y ∗ 0)), supH(y)}
= min{supH(x ∗ y), supH(y)}
= min{supH(0), supH(y)} = supH(y).

(2) It is similar to the proof of (1).
(3) For any x, y ∈ X, we have

supH(x ∗ y) ≥ min{supH(x ∗ (y ∗ y)), supH(y)}
= min{supH(x ∗ 0), vy)}
= min{supH(x), supH(y)}.

(4) Using (I) and (1), we get supH((x∗y)∗(x∗z)) ≥ supH(z∗y) for all x, y, z ∈ X. SinceH is a Sup-hesitant
fuzzy ideal of X (see Theorem 3.5), it follows that

supH(x ∗ y) ≥ min{supH((x ∗ y) ∗ (x ∗ z)), supH(x ∗ z)}
≥ min{supH(z ∗ y), supH(x ∗ z)}

for all x, y, z ∈ X.
(5) If we put x := 0 ∗ x, y := 0 and z := x in (17), then

supH(0) = min{supH((0 ∗ x) ∗ (0 ∗ x)), supH(0)} ≤ supH((0 ∗ x) ∗ x)

for all x ∈ X. Combining this and (14) induces supH((0 ∗ x) ∗ x) = supH(0) for all x ∈ X.
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By combining Proposition 3.7(3) and Theorem 3.5, we know that every Sup-hesitant fuzzy quasi-
associative ideal is a Sup-hesitant fuzzy closed ideal.

We provide a condition for a Sup-hesitant fuzzy ideal to be a Sup-hesitant fuzzy quasi-associative ideal.

Theorem 3.8. In an associative BCI-algebra, every Sup-hesitant fuzzy ideal is a Sup-hesitant fuzzy quasi-associative
ideal.

Proof. LetH be a Sup-hesitant fuzzy ideal of an associative BCI-algebra X. Then

supH(x ∗ z) ≥ min{supH((x ∗ z) ∗ y), supH(y)}
= min{supH((x ∗ y) ∗ z), supH(y)}
= min{supH(x ∗ (y ∗ z)), supH(y)}

for all x, y, z ∈ X. HenceH is a Sup-hesitant fuzzy quasi-associative ideal of X.

Theorem 3.9. IfH is a Sup-hesitant fuzzy ideal of X, then the following are equivalent.

(1) H is a Sup-hesitant fuzzy quasi-associative ideal of X.
(2) H satisfies:

(∀x, y ∈ X)(supH(x ∗ y) ≥ supH(x ∗ (0 ∗ y))). (18)

(3) H satisfies:

(∀x, y, z ∈ X)(supH((x ∗ y) ∗ z) ≥ supH(x ∗ (y ∗ z))). (19)

Proof. (1)⇒ (2). Assume thatH is a Sup-hesitant fuzzy quasi-associative ideal of X. Then

supH(x ∗ y) ≥ min{supH(x ∗ (0 ∗ y)), supH(0)} = supH(x ∗ (0 ∗ y)).

(2)⇒ (3). Note that

((x ∗ y) ∗ (0 ∗ z)) ∗ (x ∗ (y ∗ z)) = ((x ∗ y) ∗ (x ∗ (y ∗ z))) ∗ (0 ∗ z)
≤ ((y ∗ z) ∗ y) ∗ (0 ∗ z) = (0 ∗ z) ∗ (0 ∗ z) = 0

for all x, y, z ∈ X. SinceH is a Sup-hesitant fuzzy ideal, it follows from (14), (15), (16) and (18) that

supH((x ∗ y) ∗ z) ≥ supH((x ∗ y) ∗ (0 ∗ z))
≥ min{supH(((x ∗ y) ∗ (0 ∗ z)) ∗ (x ∗ (y ∗ z))), supH(x ∗ (y ∗ z))}
≥ min{supH(0), supH(x ∗ (y ∗ z))} = supH(x ∗ (y ∗ z))

for all x, y, z ∈ X.
(3)⇒ (1). For any x, y, z ∈ X, we have

supH(x ∗ z) ≥ min{supH((x ∗ z) ∗ y), supH(y)}
= min{supH((x ∗ y) ∗ z), supH(y)}
≥ min{supH(x ∗ (y ∗ z), supH(y)}

by (4), (15) and (19). ThereforeH is a Sup-hesitant fuzzy quasi-associative ideal of X.

Theorem 3.10. If a Sup-hesitant fuzzy idealH of X satisfies the following assertion

(∀x, y ∈ X)(supH(x ∗ y) ≥ supH(x)), (20)

thenH is a Sup-hesitant fuzzy quasi-associative ideal of X.
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Proof. LetH be a Sup-hesitant fuzzy ideal of X that satisfies the condition (20). Then

supH((x ∗ z) ∗ (y ∗ z)) = supH((x ∗ (y ∗ z)) ∗ z) ≥ supH(x ∗ (y ∗ z))

for all x, y, z ∈ X by (4) and (20). It follows from (15) that

supH(x ∗ z) ≥ min{supH((x ∗ z) ∗ (y ∗ z)), supH(y ∗ z)}
≥ min{supH(x ∗ (y ∗ z)), supH(y)}

for all x, y, z ∈ X. ThereforeH is a Sup-hesitant fuzzy quasi-associative ideal of X.

For any hesitant fuzzy setH on X and an element a of X, consider a set

Ha := {x ∈ X | supH(a) ≤ supH(x)}.

Lemma 3.11 ([11]). IfH is a hesitant fuzzy ideal of X, then the setHa is an ideal of X for all a ∈ X.

Theorem 3.12. IfH is a hesitant fuzzy quasi-associative ideal of X, then the setHa is a quasi-associative ideal of X
for all a ∈ X.

Proof. Let x, y ∈ X be such that x ∗ (0 ∗ y) ∈ Ha. Then

supH(a) ≤ supH(x ∗ (0 ∗ y)) ≤ supH(x ∗ y)

by Theorem 3.9, and so x ∗ y ∈ Ha. HenceHa is a quasi-associative ideal of X for all a ∈ X.

Proposition 3.13. Given an element a ∈ X, if H is a Sup-hesitant fuzzy quasi-associative ideal of X, then the
following conditions are valid:

(∀x, y ∈ X)
(

supH(a) ≤ min{supH(x ∗ y), supH(y)}
⇒ supH(a) ≤ supH(x)

)
. (21)

(∀x, y, z ∈ X)
(

supH(a) ≤ min{supH(x ∗ (y ∗ z)), supH(y)}
⇒ supH(a) ≤ supH(x ∗ z)

)
. (22)

(∀x, y ∈ X)
(

supH(a) ≤ supH(x ∗ (0 ∗ y))
⇒ supH(a) ≤ supH(x ∗ y)

)
. (23)

Proof. Straightforward by definition of Sup-hesitant fuzzy (quasi-assoiative) ideal.

Given a hesitant fuzzy setH on X, we provide conditions for the setHa to be a quasi-associative ideal.

Theorem 3.14. If a hesitant fuzzy setH on X satisfies (14) and (22), then the setHa is a quasi-associative ideal of
X for any a ∈ X.

Proof. Let a ∈ X. The condition (14) implies that 0 ∈ Ha. Let x, y, z ∈ X be such that x ∗ (y ∗ z) ∈ Ha and
y ∈ Ha. Then supH(a) ≤ supH(x ∗ (y ∗ z)) and supH(a) ≤ supH(y), which imply that

supH(a) ≤ min{supH(x ∗ (y ∗ z)), supH(y)}.

It follows from (22) that supH(a) ≤ supH(x ∗ z). Hence x ∗ z ∈ Ha, and thereforeHa is a quasi-associative
ideal of X.

Theorem 3.15. If a hesitant fuzzy setH on X satisfies (14), (21) and (23), then the setHa is a quasi-associative ideal
of X for any a ∈ X.
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Proof. Let a ∈ X. The condition (14) implies that 0 ∈ Ha. Let x, y ∈ X be such that x ∗ y ∈ Ha and y ∈ Ha.
Then supH(a) ≤ supH(x ∗ y) and supH(a) ≤ supH(y), which imply that

supH(a) ≤ min{supH(x ∗ y), supH(y)}.

It follows from (21) that supH(a) ≤ supH(x). Thus x ∈ Ha, and soHa is an ideal of X. Let x, y ∈ X be such
that x ∗ (0 ∗ y) ∈ Ha. Then supH(a) ≤ supH(x ∗ (0 ∗ y)), and so supH(a) ≤ supH(x ∗ y) by (23), that is,
x ∗ y ∈ Ha. ThereforeHa is a quasi-associative ideal of X.

In the following theorem, we establish the extension property for a Sup-hesitant fuzzy quasi-associative
ideal.

Theorem 3.16. Let H and G be Sup-hesitant fuzzy ideals of X such that H(0) = G(0) and H(x) ≤ G(x) for all
x(, 0) ∈ X. IfH is a Sup-hesitant fuzzy quasi-associative ideal of X, then so is G.

Proof. Assume that H is a Sup-hesitant fuzzy quasi-associative ideal of X. Using (III), (4), (14), (15), (18)
and given conditions, we have

supG(x ∗ y) ≥ min{supG((x ∗ y) ∗ (x ∗ (0 ∗ y))), supG(x ∗ (0 ∗ y))}
≥ min{supH((x ∗ y) ∗ (x ∗ (0 ∗ y))), supG(x ∗ (0 ∗ y))}
= min{supH((x ∗ (x ∗ (0 ∗ y))) ∗ y), supG(x ∗ (0 ∗ y))}
≥ min{supH((x ∗ (x ∗ (0 ∗ y))) ∗ (0 ∗ y)), supG(x ∗ (0 ∗ y))}
= min{supH((x ∗ (0 ∗ y)) ∗ (x ∗ (0 ∗ y))), supG(x ∗ (0 ∗ y))}
= min{supH(0), supG(x ∗ (0 ∗ y))}
= min{supG(0), supG(x ∗ (0 ∗ y))}
= supG(x ∗ (0 ∗ y))

for all x, y ∈ X. It follows from Theorem 3.9 that G is a Sup-hesitant fuzzy quasi-associative ideal of X.

Conclusion

The concept of a hesitant fuzzy set has many applications in the domain of mathematics and elsewhere;
among them are many logical algebras. Based on this, we applied this concept to introduce the Sup-hesitant
fuzzy quasi-associative ideal in BCI-algebras. The researchers can apply this concept for more subjects of
BCK/BCI-algebra. In this paper, we discussed characterizations of Sup-hesitant fuzzy quasi-associative
ideal. Also, we considered relations between Sup-hesitant fuzzy ideal and Sup-hesitant fuzzy quasi-
associative ideal. We provided conditions for a Sup-hesitant fuzzy ideal to be a Sup-hesitant fuzzy quasi-
associative ideal. Finally, we established the extension property for Sup-hesitant fuzzy quasi-associative
ideal.
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