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Abstract. In this paper, we study cyclic codes of length n over R = Zq + uZq, u2 = 0, where q is a power
of a prime p and (n, p) = 1. We have determined the complete ideal structure of R. Using this, we have
obtained the structure of cyclic codes and that of their duals through the factorization of xn

− 1 over R. We
have also computed total number of cyclic codes of length n over R. A necessary and sufficient condition
for a cyclic code over R to be self-dual is presented. We have presented a formula for the total number of
self-dual cyclic codes of length n over R. A new Gray map from R to Z2r

p is defined. Using Magma, some
good cyclic codes of length 4 over Z9 + uZ9 are obtained.

1. Introduction

The idea of finding good binary codes via the Gray map has inspired many researchers to study codes
over finite rings. This idea originated with the breakthrough paper of Hammons et al. [13], wherein it
was shown that some well known binary non-linear codes are actually images of some linear codes over
Z4 under the Gray map. Cyclic codes are among the most studied families of codes because of their rich
algebraic structure and their relatively efficient encoding and decoding methods. Cyclic codes have been
also studied extensively over various finite rings. Their structure over finite chain rings is now well known
[8, 16].

Bonnecaze and Udaya [6] have studied cyclic codes over the ring F2 + uF2, u2 = 0, and provided their
basic framework. They have also shown that there exist codes over F2 + uF2 which have better parameters
than the corresponding best known codes overZ4. This initiated the study of cyclic codes over other similar
rings such as F2 + uF2 + vF2 + uvF2, u2 = v2 = 0,uv = vu, [25]; F2 + vF2, v2 = v, [26]; Fq + uFq + · · · + uk−1Fq,
uk = 0, [1, 17] etc. Shi et al. [19] have constructed an infinite family of two Lee-weight codes over the ring
F2 + uF2, u2 = 0. In [20], Shi et al. have constructed two new infinite families of trace codes of dimension
2m over the ring Fp + uFp, u2 = u, where p is an odd prime. Recently, the rings such as Z4 + uZ4, u2 = 0
[24] and Z4 + vZ4, v2 = v [4, 5] have been introduced to construct good codes. Yildiz and Karadeniz [24]
have studied linear codes and self-dual codes overZ4 + uZ4. Cyclic codes overZ4 + uZ4 have been studied
in [2, 3, 23]. Luo and Parampalli [14] have studied the structure of self-dual cyclic codes over Z4 + uZ4
and obtained some good self-dual cyclic codes over Z4 via the Gray map. Shi et al. [18] have studied
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constacyclic codes overZ4[u]/
〈
u2
− 1

〉
with their Gray images. Cao and Li [7] have studied cyclic codes of

odd length over Z4[u]/
〈
uk

〉
.

In this paper, we study cyclic codes of length n over R = Zq + uZq, u2 = 0, where q is a power of a prime
p with (n, p) = 1. For this, we have first determined the complete ideal structure of R, and then using it,
we have obtained the structure of cyclic codes of length n over R, i.e., the ideal structure of R[x]/ 〈xn

− 1〉,
through the factorization of xn

− 1 over R. We also find the duals of cyclic codes over R and determine a
necessary and sufficient condition for a cyclic code to be self-dual. Formulas for counting total number of
cyclic codes and total number of self-dual cyclic codes of length n over R are presented. We have defined
a new Gray map from R to Z2r

p . Some good cyclic codes of length 4 over Z9 + uZ9 are obtained using the
computer algebra system Magma.

Gao et al. [11] have also studied cyclic codes of length n over R. Dinh et al. [9, 10] have studied
cyclic codes over the ring Z2s [u]/〈uk

〉 as well as over the ring GR(pe,m)[u]/〈uk
〉. However, our approach

for obtaining cyclic codes over R is different from the ones given in [11], [9] or [10]. We first establish the
complete ideal structure of R and then obtain the structure of cyclic codes over R using this ideal structure.
Moreover, we have also studied self-dual cyclic codes over R and have enumerated the ideals of R, and the
cyclic codes and self-dual cyclic codes of length n over R. An ideal structure of R has been presented in [12]
also, but this ideal structure is incomplete.

The paper is organized as follows: In Section 2, we determine the complete ideal structure of R. Section
3 describes the algebraic structure of cyclic codes and gives a formula for total number of cyclic codes over
R. In Section 4, we study duals of cyclic codes over R, and determine a necessary and sufficient condition
for a cyclic code over R to be a self-dual. We also count the total number of self-dual cyclic codes of length
n over R. A new Gray map from R to Z2r

p is defined and some examples of good cyclic codes of length 4
over Z9 + uZ9 are presented.

2. The ring Zq + uZq and its ideal structure

Throughout the paper, R denotes the ring Zq + uZq = {a + ub | a, b ∈ Zq} with u2 = 0, q = pr, p a prime
and r a positive integer. R can be viewed as the quotient ring Zq[u]/

〈
u2

〉
.

In this section, we discuss properties of the ring R and obtain its complete ideal structure. We also
determine the cardinalities of the ideals of R and their annihilators.

Lemma 2.1. An element a + ub ∈ R is a unit in R if and only if a is a unit in Zq.

Proof. Let a1 + ub1 be a unit in R. Then there exists an element a2 + ub2 such that (a1 + ub1)(a2 + ub2) = 1,
which implies that a1a2 + u(a1b2 + a2b1) = 1, from which we get a1a2 = 1. Therefore a1 is a unit in Zq.

Conversely let a ∈ Zq be a unit in Zq. Suppose that a + ub ∈ R is a non-unit for some b ∈ Zq. Then there
exists a non-zero element c + ud ∈ R such that (a + ub)(c + ud) = 0. This implies that ac = 0 and ad + bc = 0.
Now if c , 0, then ac = 0 contradicts the fact that a is a unit in Zq. If c = 0, then d , 0 and ad = 0, which
again contradicts the fact that a is a unit. Therefore a + ub must be a unit. Hence the result.

Thus the set of units of R is R∗ = {a + ub : a is a unit in Zq}. The set of non-units of R forms an ideal of
R, generated by p and u, i.e., the ideal

〈
p,u

〉
. For if a + ub is any non-unit in R, with a, b ∈ Zq, then a is a

non-unit in Zq, and so a = pc for some c ∈ Zq. Hence a + ub ∈
〈
p,u

〉
. As

〈
p,u

〉
does not contain any unit, it

contains precisely the non-units of R. Thus R is a local ring with its unique maximal ideal
〈
p,u

〉
. Further, R

is a non-chain ring as
〈
p,u

〉
is not a principal ideal.

Now we determine the structure of ideals of R = Zq + uZq.
Let I be any ideal of R. Define Φ : I → Zq such that Φ(a + ub) = a. Clearly Φ is a ring homomorphism

with the kernel

Ker Φ = {ub ∈ I | b ∈ Zq} .
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Define J = {b ∈ Zq | ub ∈ I}. Then J is an ideal of Zq. So, J = 〈p j
〉 for some j, 0 ≤ j ≤ r, and hence

Ker Φ = 〈up j
〉. It is easy to verify that Φ(I) is also an ideal of Zq. So, Φ(I) = 〈pi

〉, 0 ≤ i ≤ r. Therefore,
I = 〈pi + uα,up j

〉, where α ∈ Zq, 0 ≤ i, j ≤ r. Now since upi = u(pi + uα) ∈ I, we have upi
∈ Ker Φ, which

implies that p j
| pi and hence j ≤ i. Thus

I = 〈pi + uα,up j
〉, α ∈ Zq, 0 ≤ i ≤ r, 0 ≤ j ≤ i .

Now an element α ∈ Zq can be written in p-adic representation as α =
∑r−1

k=0 akpk, where ak ∈ Zp. If a0 , 0,
then α is a unit. Otherwise α is a non-unit. If α , 0 and t is the smallest non-negative integer such that
at , 0, then α can be written as α = pta, where a =

∑r−1
k=t akpk−t, 0 ≤ t ≤ r − 1. Clearly a is a unit. Thus any

α ∈ Zq is either zero or can be written as α = pta, where a is a unit and 0 ≤ t ≤ r − 1. Therefore an ideal I of
R can be written either as

I = 〈pi,up j
〉, 0 ≤ j ≤ i ≤ r ,

or as

I = 〈pi + upta,up j
〉, 0 ≤ j ≤ i ≤ r, 0 ≤ t ≤ r − 1 ,

where a is a unit. Further, if j = i, then I is a principal ideal — in the first case I = 〈pi
〉 and in the second case

I = 〈pi + upta〉. Also, when i = r, I is again a principal ideal. Therefore, for I to be a non-principal ideal, we
must have j < i ≤ r − 1.

Lemma 2.2. Let I = 〈pi + upta〉, where a is a unit inZq. Then the smallest non-negative integer T such that upT
∈ I

is T = min{i, r − i + t}.

Proof. We have u(pi + upta) = upi
∈ I and pr−ia−1(pi + upta) = upr−i+t

∈ I. Since T is the smallest non-negative
integer such that upT

∈ I, it follows that T ≤ min{i, r− i+ t}. Again since upT
∈ I, upT = (pi +upta)(q1 +uq2) for

some q1 + uq2 ∈ Zq + uZq. This implies that piq1 = 0, and from this follows that q1 = pr−iq3 for some q3 ∈ Zq.
Now upT = upiq2 + upr−i+taq3 = upmin{i,r−i+t}(pi−min{i,r−i+t}q2 + aq3pr−i+t−min{i,r−i+t}). Therefore pT

∈ 〈pmin{i,r−i+t}
〉,

which implies that pmin{i,r−i+t}
| pT, and so T ≥ min{i, r − i + t}. Hence T = min{i, r − i + t}.

In Theorem 2.3 and Theorem 2.4 below, we present distinct principal ideals and distinct non-principal
ideals, respectively, of R.

Theorem 2.3. The distinct principal ideals of R are:
1. 〈pi

〉, 0 ≤ i ≤ r.
2. 〈up j

〉, 0 ≤ j ≤ r − 1.
3. 〈pi + upta〉, 1 ≤ i ≤ r − 1, 0 ≤ t ≤ i − 1, where a =

∑T−1
k=t akpk−t, a unit in Zq, and T = min{i, r − i + t}.

Proof. The first two parts are straightforward. We prove (3). Let I be an ideal of R of the form 〈pi + uptα〉,
1 ≤ i ≤ r − 1, where α ∈ Zq is a unit and α =

∑r−1
k=t akpk−t. We first show that t < i. Suppose i ≤ t. Then

pi +uptα = pi(1+pt−iuα). Since 1+pt−iuα is a unit in R, 〈pi +uptα〉 = 〈pi
〉. As the ideals 〈pi

〉 are covered in part
(1), for the ideals to be distinct, we must have t < i. Also, t < r−i+t, as r > i. Therefore, t < T = min{i, r−i+t}.

Now

pi + uptα = pi + upt
r−1∑
k=t

akpk−t

= pi + u
(
atpt + at+1pt+1 + · · · + aTpT + · · · + ar−1pr−1

)
= pi + u

(
atpt + at+1pt+1 + · · · + aT−1pT−1

)
+ upT

(
aT + · · · + ar−1pr−T−1

)
= pi + upt

T−1∑
k=t

a jp j−t + δ(pi + uptα)(a′) ,



R. Kumar et al. / Filomat 34:12 (2020), 4199–4214 4202

where a′ = aT + · · · + ar−1pr−T−1, T is as defined in Lemma 2.2, and

δ =

{
u if T = i ,
pr−iα−1 if T = r − i + t .

Then we get

(pi + uptα)(1 − δa′) = pi + upt
T−1∑
k=t

akpk−t .

Since 1 − δa′ is a unit in R for each of the possible values of δ, we get 〈pi + uptα〉 = 〈pi + upt ∑T−1
k=t akpk−t

〉 =

〈pi + upta〉, where a =
∑T−1

k=t akpk−t. Clearly a is a unit. Thus I can be written in the required form.
Now we shall show that the ideals 〈pi + upta〉 are distinct for distinct values of i, t and a.

Case 1. Suppose 〈pi + upta〉 = 〈p j + upsb〉 for some i , j, 1 ≤ i, j ≤ r − 1, with a, b units in Zq. Then
Φ

(
〈pi + upta〉

)
= Φ

(
〈p j + upsb〉

)
, where Φ is the map as defined above. This implies that 〈pi

〉 = 〈p j
〉,

which is a contradiction, as 〈pi
〉 and 〈p j

〉 are distinct ideals of Zq for i , j .

Case 2. Suppose for any fixed i and t , s, 〈pi + upta〉 = 〈pi + upsb〉, where a, b units inZq. We may assume that
t < s. Then (pi + upta) = (c + ud)(pi + upsb) for some c + ud ∈ R. This implies that c = 1 + pr−iq′ for some
q′ ∈ Zq, and pta = psb(1 + pr−iq′) + pid . Then

pta − psb = pr−i+sbq′ + pid ,

which implies that

pt(a − bps−t) = pr−i+sbq′ + pid .

Since t < s and a is a unit, a − bps−t is a unit in Zq. As r − i + s > t and i > t, the above relation leads to
a contradiction. Therefore, we must have 〈pi + ptau〉 , 〈pi + psbu〉.

Case 3. Suppose for some fixed i and t, we have

〈pi + ptau〉 = 〈pi + ptbu〉 ,

where a =
∑T−1

k=t akpk−t, b =
∑T−1

k=t bkpk−t are units in Zq. Clearly 0 ≤ a, b ≤ pT−t
− 1. We have

(pi + ptau) = (c + du)(pi + ptbu) for some c + du ∈ R. This implies that c = 1 + pr−iq′ for some q′ ∈ Zq, and
pta = ptb(1 + pr−iq′) + pid. It follows that pmin{i, r−i+t}

| pt(a − b), i.e., pT−t
| (a − b). Since 0 ≤ a, b < pT−t,

we must have a = b.

Now we show that none of the ideals in part (1) and part (2) are covered by the ideals in part (3). Let
I = 〈pi + upta〉, with above conditions on i, t and a. First we observe that I is not the zero ideal 〈pr

〉, as i ≥ 1.
Now suppose I = 〈p j

〉 for some 0 ≤ j ≤ r − 1. Then (pi + upta) | p j and p j
| (pi + upta), from which we get

i ≤ j and j ≤ t, respectively. Thus we get i ≤ j ≤ t, a contradiction, as t < i. Thus ideals in part (1) are not
covered by the ideals in part (3). Next it is easy to see that I cannot be equal to an ideal of the form 〈up j

〉,
0 ≤ j ≤ r − 1, as i ≥ 1. Therefore, the ideals in part (2) are also not covered by the ideals in part (3). Hence
the result.

Now we consider the non-principal ideals of R.

Theorem 2.4. The distinct non-principal ideals of R are

1. 〈pi, up j
〉, where 0 ≤ j < i ≤ r − 1.
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2. 〈pi + upta, up j
〉, 2 ≤ i ≤ r − 2, 0 ≤ t ≤ i − 2, t < j < T, where T = min{i, r − i + t}, and a =

∑ j−1
k=t akpk−t, a

unit in Zq.

Proof. From Section 2, a non-principal ideal of R is either of the form 〈pi, up j
〉 or of the form 〈pi + upta,up j

〉,
where 0 ≤ j < i ≤ r − 1 and a is a unit. Since 〈pi, up j

〉 is always non-principal for j < i, case (1) is therefore
clear. For case (2), let I be an ideal of R of the form I = 〈pi + upta,up j

〉, where 0 ≤ j < i ≤ r − 1 and a
is a unit. Then from Lemma 2.2, upT

∈ 〈pi + upta〉. Therefore, if j ≥ T, then up j
∈ 〈pi + upta〉 and hence

〈pi + upta,up j
〉 = 〈pi + upta〉 is a principal ideal. Hence for I to be a non-principal ideal, we must have j < T.

Now suppose j ≤ t. Then 〈pi + upta, up j
〉 = 〈pi, up j

〉, as upta ∈ 〈up j
〉. Since the ideals 〈pi, up j

〉 have already
been considered, for I to be distinct from such ideals, we must have j > t. Thus t < j < T. Now we show
that for any j with t < j < T, I cannot be a principal ideal. First we observe that any principal ideal of R can
be expressed as I1 = 〈p` + upsb〉, 0 ≤ ` ≤ r, 0 ≤ s < `, where b is a unit or zero. Now suppose I = I1. Then
p` + upsb ∈ I implies that i ≤ `, and pi + upta ∈ I1 implies that ` ≤ i. Thus we get ` = i, and so I1 = 〈pi + upsb〉.
Now if b = 0, then I1 = 〈pi

〉 and then up j
∈ I1 implies that j ≥ ` = i, a contradiction, as i ≥ T and T > j. Now

let b be a unit. Then I = I1 implies that pi + upta = (α + uβ)(pi + upsb) for some α + uβ ∈ R. From this follows
that α = 1 + pr−iγ for some γ ∈ Zq and pta = βpi + αpsb. This implies that pta = ps(βpi−s + αb). Since α and
b are units and s < i, βpi−s + αb is a unit. As a is a unit, it follows that s = t, so that I1 = 〈pi + uptb〉. From
Lemma 2.2, T is the smallest non-negative integer such that upT

∈ I1. Then up j
∈ I1 implies that j ≥ T, a

contradiction. Hence I , I1.
Now if i = r−1, then T = min{r−1, r− (r−1) + t} = t + 1, and so there is no integer j in this case satisfying

t < j < T. Therefore, we must have i ≤ r − 2. Also, as i ≥ T, it follows from t < j < T that t ≤ i − 2 and i ≥ 2.

Summarizing the above results, we present the complete ideal structure of R in the following theorem.

Theorem 2.5. The distinct ideals of R are:

1. Principal ideals:
(i) 〈pi

〉, 0 ≤ i ≤ r.
(ii) 〈up j

〉, 0 ≤ j ≤ r − 1.
(iii) 〈pi + upta〉, 1 ≤ i ≤ r − 1, 0 ≤ t ≤ i − 1, where a =

∑T−1
k=t akpk−t is a unit inZq, and T = min{i, r − i + t}.

2. Non-principal ideals:
(i) 〈pi, up j

〉, 0 ≤ j < i ≤ r − 1.
(ii) 〈pi + upta, up j

〉, 2 ≤ i ≤ r− 2, 0 ≤ t ≤ i− 2, t < j < T, where T = min{i, r− i + t}, and a =
∑ j−1

k=t akpk−t,
a unit in Zq.

Now we determine the cardinalities of the ideals of R.

Theorem 2.6. The cardinalities of the ideals of R are given as follows:

1. Principal ideals:
(i) |〈pi

〉| = p2r−2i, 0 ≤ i ≤ r.
(ii) |〈up j

〉| = pr− j, 0 ≤ j ≤ r − 1.
(iii)

|〈pi + upta〉| = p2r−i−T =

p2r−2i, for i ≤
⌊

r+t
2

⌋
,

pr−t, for i >
⌊

r+t
2

⌋
,

where a is a unit.
2. Non-principal ideals:

(i) |〈pi,up j
〉| = p2r−i− j.

(ii) |〈pi + upta,up j
〉| = p2r−i− j, a is a unit.
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Proof. Let I be any ideal of R. Recall the map Φ : I → Zq such that Φ(a + ub) = a. Since Φ is a ring
homomorphism, I/Ker Φ � Φ(I). This implies that |I| = |Φ(I)||Ker Φ| = |Φ(I)||J|, where J is as defined in
Section 2, namely J = {b ∈ Zq | ub ∈ I}. Since both Φ(I) and J are ideals of Zq, Φ(I) = 〈pl1〉 and J = 〈pl2〉 for
some l1 and l2, 0 ≤ l1, l2 ≤ r, and so |Φ(I)| = pr−l1 and |J| = pr−l2 . Now we compute the cardinalities of ideals
as follows.

1. If I = 〈pi
〉, then Φ(I) = 〈pi

〉, and Ker Φ = 〈upi
〉. So J = 〈pi

〉. Therefore |I| = p2r−2i.

2. If I = 〈up j
〉, then Φ(I) = 〈0〉, and Ker Φ = 〈up j

〉, and so J = 〈p j
〉. Therefore |I| = pr− j.

3. If I = 〈pi + uapt
〉, where a is a unit, then Φ(I) = 〈pi

〉, and from Lemma 2.2, Ker Φ = 〈upT
〉. So J = 〈pT

〉,
where T = min{i, r − i + t}. Therefore |I| = pr−ipr−T = p2r−i−T.

4. If I = 〈pi + uapt, up j
〉, where a is a unit or zero, then Φ(I) = 〈pi

〉 and Ker Φ = 〈up j
〉, and so J = 〈p j

〉.
Therefore |I| = p2r−i− j.

In the following theorem we count the ideals of R.

Theorem 2.7. The number of distinct ideals of R is

N =
pb

r
2 c+2 + 3pr−b r

2 c+1
− 4p2

(p − 1)2 +

(
2
⌊

r
2

⌋
− r

)
pr−b r

2 c + (3 − 2r)p

(p − 1)
+ 2r + 1.

Proof. We count the total number of ideals of R in the following cases. For convenience, we denote
⌊

r
2

⌋
by ν.

Case (i): The number of ideals of the form 〈pi
〉, 0 ≤ i ≤ r, is r + 1.

Case (ii): The number of ideals of the form 〈upi
〉, 0 ≤ i ≤ r − 1, is r.

Case (iii): The number of ideals of the form 〈pi +upta〉, with a =
∑T−1

k=t akpk−t, a unit inZq, 1 ≤ i ≤ r−1, 0 ≤ t ≤ i−1
and T = min{i, r − i + t}, is

N1 =

ν∑
i=1

i−1∑
t=0

(p − 1)pi−t−1 +

r−1∑
i=ν+1

2i−r−1∑
t=0

(p − 1)pr−i−1 +

i−1∑
t=2i−r

(p − 1)pi−t−1


=

ν∑
i=1

(pi
− 1) +

r−1∑
i=ν+1

[
(p − 1)pr−i−1(2i − r) + (pr−i

− 1)
]

=
pν+1
− p

p − 1
− ν + 2

[
p
(

pr−ν−2
− 1

p − 1

)
− (r − 1) + (ν + 1) pr−ν−1

]
− r

(
pr−ν−1

− 1
)

+

(
pr−ν
− p

p − 1
− (r − ν − 1)

)
=

pν+1
− p

p − 1
+ 2

[
p
(

pr−ν−2
− 1

p − 1

)
− (r − 1) + (ν + 1) pr−ν−1

]
− rpr−ν−1 +

pr−ν
− p

p − 1
+ 1.

Case (iv): Any non-principal ideal of R can be expressed as 〈pi + upta, up j
〉, 2 ≤ i ≤ r − 2, 0 ≤ t ≤ i − 2,

T = min{i, r − i + t}, t < j < T and a =
∑T−1

k=t akpk−t is a unit or zero. When a = 0 there are
∑r−1

i=1 i =
r(r−1)

2 ideals
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of this type. When a is a unit, the number of such ideals is given by

N2
′ =

ν∑
i=2

i−2∑
t=0

i−1∑
j=1+t

(p − 1)p j−t−1 +

r−2∑
i=ν+1

2i−r−1∑
t=0

r−i+t−1∑
j=1+t

(p − 1)p j−t−1 +

i−2∑
t=2i−r

i−1∑
j=1+t

(p − 1)p j−t−1


=

ν∑
i=2

i−2∑
t=0

(pi−t−1
− 1) +

r−2∑
i=ν+1

2i−r−1∑
t=0

(pr−i−1
− 1) +

i−2∑
t=2i−r

(pi−t−1
− 1)


=

ν∑
i=2

[
pi
− p

p − 1
− (i − 1)

]
+

r−2∑
i=ν+1

[
(pr−i−1

− 1)(2i − r)
]

+

r−2∑
i=ν+1

[
pr−i
− p

p − 1
− (r − i − 1)

]

=

ν∑
i=2

[
pi
− p

p − 1
− (i − 1)

]
+

1
p − 1

[
2
{(

pr−ν−1
− p2

p − 1

)
− (r − 2)p + (ν + 1) pr−ν−1

}
− r

(
pr−ν−1

− p
)]

+

[
−2

(
(r − 2)(r − 1)

2
−

(ν)(ν + 1)
2

)
+ r (r − ν − 2)

]
+

r−2∑
i=ν+1

[
pr−i
− p

p − 1
− (r − i − 1)

]
=

(
pν+1
− p2

(p − 1)2

)
−

[
p

p − 1
(ν − 1)

]
−

(
(ν)(ν + 1)

2
− 1

)
+ (ν − 1)

+
1

p − 1

[
2
{(

pr−ν−1
− p2

p − 1

)
− (r − 2)p + (ν + 1) pr−ν−1

}
− r

(
pr−ν−1

− p
)]

+

[
−2

(
(r − 2)(r − 1)

2
−

(ν)(ν + 1)
2

)
+ r (r − ν − 2)

]
+

[(
pr−ν
− p2

(p − 1)2

)
+

(
−

p
p − 1

− r + 1
)

(r − ν − 2) +

(
(r − 2)(r − 1)

2

)
−

(
(ν)(ν + 1)

2

)]
=

1
p − 1

[
2
{(

pr−ν−1
− p2

p − 1

)
− (r − 2)p + (ν + 1) pr−ν−1

}
− r

(
pr−ν−1

− p
)]

+

(
pr−ν
− p2

(p − 1)2

)
+

(
−

p
p − 1

+ 1
)

(r − ν − 2) −
(

(r − 2)(r − 1)
2

)
+

pν+1
− p2

(p − 1)2 −
p

(p − 1)
(ν − 1) + ν.

Therefore total number of non-principal ideals of R is

N2 = N2
′ +

r(r − 1)
2

.

Adding the number of ideals in Case (i), Case (ii), Case (iii) and Case (iv), and substituting
⌊

r
2

⌋
for ν, we

get the total number of ideals N of R.

Example 2.8. If p = 2, r = 2, then R = Z4 + uZ4. Then from Theorem 2.7, we have N = 7. It can be easily verified
from [24] that R has 7 distinct ideals which are: 〈0〉, 〈1〉, 〈2〉, 〈u〉, 〈2u〉, 〈2 + u〉, and 〈2,u〉.

Example 2.9. If p = 3, r = 2, then from Theorem 2.7, there are total 8 ideals of R = Z9 + uZ9, which are:
〈0〉, 〈1〉, 〈3〉, 〈u〉, 〈3u〉, 〈3 + u〉, 〈3 + 2u〉, and 〈3,u〉.

Example 2.10. Consider R with p = 3, r = 5, i.e., the ring Z35 + uZ35 . Then the ideals of R are as given below:
Principal ideals:

(i) 〈pi
〉, 0 ≤ i ≤ r : 〈3i

〉, 0 ≤ i ≤ 5.
(ii) 〈up j

〉, 0 ≤ j ≤ r − 1 : 〈3 ju〉, 0 ≤ j ≤ 4.
(iii) 〈pi + upta〉, 1 ≤ i ≤ r− 1, 0 ≤ t ≤ T − 1, where T = min{i, r− i + t} and a =

∑T−1
j=t a jp j−t is a unit inZq. These

ideals are given in Table 1.
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i r − i t T Ideal a
1 4 0 1 〈3 + au〉 1, 2

2 3 0 2 〈32 + au〉 1 ≤ a ≤ 8, a , 3, 6
1 〈32 + 3au〉 1, 2

3 2
0 2 〈33 + au〉 1 ≤ a ≤ 8, a , 3, 61 3 〈33 + 3au〉
2 〈33 + 32au〉 1, 2

4 1

0 1 〈34 + au〉

1, 21 2 〈34 + 3au〉
2 3 〈34 + 32au〉
3 4 〈34 + 33au〉

Table 1: Principal ideals of Z35 + uZ35

Non-principal ideals:

(i) The non-principal ideals 〈pi + upta, p ju〉 when a = 0, i.e., 〈pi, p ju〉 are :

〈3,u〉, 〈32,u〉, 〈33,u〉, 〈34,u〉, 〈32, 3u〉, 〈33, 3u〉, 〈33, 32u〉, 〈34, 3u〉, 〈34, 32u〉, 〈34, 33u〉 .

(ii) 〈pi + upta, p ju〉, 2 ≤ i ≤ r − 2, 0 ≤ t ≤ i − 2, t < j < T, where T = min{i, r − i + t}, and a =
∑ j−1

k=t akpk−t is a
unit in Zq. These ideals are given in Table 2.

i r − i t T j Ideal a
2 4 0 2 1 〈32 + au, 3u〉

1, 23 2 0 2 1 〈33 + au, 3u〉
1 2 〈33 + 3au, 32u〉

Table 2: Non-principal ideals of Z35 + uZ35 .

3. Cyclic codes over R

In this section we study the structure of cyclic codes of length n over R, where (n, p) = 1. This structure
is established by using the ideal structure of R and the factorization of xn

− 1 into monic pairwise coprime
basic irreducible polynomials over R.

A cyclic shift on Rn is a permutation σ of Rn such that

σ(c0, c1, . . . , cn−1) = (cn−1, c0, . . . , cn−2) .

A linear code C over R is called a cyclic code, or an R-cyclic code, if it is invariant under the cyclic shift σ,
i.e., σ(C) = C. If the elements of Rn are represented as polynomials of degree at most n − 1 over R, then it is
well known that a subset C of Rn is a cyclic code over R if and only if C is an ideal of the quotient ring R[x]

〈xn−1〉 .
Recall that R is a local ring with the unique maximal ideal 〈p,u〉. We denote the residue field R

〈p,u〉
of R by

R. Further, we have R = R
〈p,u〉

= Fp. The image of any element a ∈ R under the projection map µ : R→ R is

denoted by a. The map µ is extended to R[x]→ R[x] in the usual way. The image of an element f (x) ∈ R[x]
in R[x] under this projection is denoted by f (x). A polynomial f (x) ∈ R[x] is called basic irreducible if f (x) is
an irreducible polynomial in R[x].
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Lemma 3.1. [11, Lemma 3] Two polynomials f (x) and 1(x) of R[x] are coprime if and only if f (x) and 1(x) are
coprime over R.

Now we present the ideal structure of the Galois extension ring R[x]
〈 f 〉 '

Zq[x]
〈 f 〉 + uZq[x]

〈 f 〉 of R, where f is a

basic irreducible polynomial of degree d over Zq, and enumerate the total number of ideals of R[x]
〈 f 〉 . We use

the ideal structure of R to obtain the ideal structure of R[x]
〈 f 〉 . Now, as in the case of ideals of R (described

in Section 2), for an ideal I of Zq[x]
〈 f 〉 + uZq[x]

〈 f 〉 , define a surjective ring homomorphism Ψ : I → Zq[x]
〈 f 〉 such that

Ψ(a(x) + ub(x)) = a(x). It is well known that the ideals of the ring Zq[x]
〈 f 〉 are given by 〈pi

〉, 0 ≤ i ≤ r − 1.
Therefore, as in the case of ideals of R, the ideal I takes the form

I = 〈pi + uh(x),up j
〉, where h(x) ∈

Zq[x]
〈 f 〉

.

Using p-adic expansion, every element h(x) of Zq[x]
〈 f 〉 can be written uniquely as h(x) =

∑r−1
k=0 hk(x)pk, where

hk(x) ∈ Fpd =
Zp[x]〈

f
〉 . Therefore,

I = 〈pi + upt
r−t−1∑
k=0

hk(x)pk,up j
〉, where hk(x) ∈ Fpd , 0 ≤ i ≤ r − 1, 0 ≤ j ≤ i .

Using similar argument as in Theorem 2.5, we have the following theorem.

Theorem 3.2. If f is a basic irreducible polynomial of degree d over Zq, then any ideal of the ring R[x]
〈 f 〉 is of the

following form:

1. Principal ideals:
(i) 〈pi

〉, 0 ≤ i ≤ r.
(ii) 〈up j

〉, 0 ≤ j ≤ r − 1.
(iii) 〈pi + upth(x)〉, 1 ≤ i ≤ r − 1, 0 ≤ t ≤ i − 1, h(x) =

∑T−1
k=t hk(x)pk−t, where hk(x) ∈ Fpd ∀k with h0(x) , 0,

and T = min{i, r − i + t}.
2. Non-principal ideals:

(i) 〈pi, up j
〉, 0 ≤ j < i ≤ r − 1.

(ii) 〈pi + upth(x), up j
〉, 2 ≤ i ≤ r − 2, 0 ≤ t ≤ i − 2, t < j < T, where T = min{i, r − i + t}, and

h(x) =
∑ j−1

k=t hk(x)pk−t, where hk(x) ∈ Fpd ∀ k with h0(x) , 0.

It can easily be observed that total number of ideals in R[x]
〈 f 〉 can be obtained by simply replacing p in

Theorem 2.7 by pd, where d = deg f . Therefore we have the following theorem.

Theorem 3.3. The number of distinct ideals in R[x]
〈 f 〉 , where d = deg f , is

Nd =
pd(b r

2 c+2) + 3pd(r−b r
2 c+1) − 4p2d

(pd − 1)2
+

(
2
⌊

r
2

⌋
− r

)
pd(r−b r

2 c) + (3 − 2r)pd

(pd − 1)
+ 2r + 1.

Now we consider the ideal structure of R[x]
〈xn−1〉 . As (n, p) = 1, it follows from [15, Theorem XIII.11] that

xn
−1 factorizes uniquely into monic pairwise coprime basic irreducible polynomials over R. For any factor

f of xn
− 1, define f̂ = xn

−1
f . The following result gives the structure of ideals of R[x]

〈xn−1〉 .

Lemma 3.4. [21] Let xn
− 1 = f1 f2 · · · fm, where fi, 1 ≤ i ≤ m, be the factorization of xn

− 1 into monic pairwise-
coprime basic irreducible polynomials over R. As fi(x) and f̂i(x) are coprime, let ui, vi ∈ Zq[x] such that ui f̂i +vi fi = 1,
and let ei = ui f̂i + 〈xn

− 1〉 ∈ R[x]/〈xn
− 1〉. Then
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1. e1, e2, · · · , em are mutually orthogonal non-zero idempotents of R[x]/〈xn
− 1〉.

2. e1 + e2 + · · · + em = 1.
3. R[x]/〈xn

− 1〉 = R1 ⊕ R2 ⊕ · · · ⊕ Rm, where Ri = Rei, 1 ≤ i ≤ m.

Theorem 3.5. Let (n, p) = 1, and xn
−1 = f1 f2 · · · fm be the factorization of xn

−1 into monic pairwise-coprime basic
irreducible polynomials in R[x]. Then any cyclic code C over R is of the form

C =

m⊕
i=1

Ciei(x) ,

where Ci, 1 ≤ i ≤ m, is an ideal of the ring R[x]
〈 fi〉

.

Proof. Since xn
− 1 = f1 f2 · · · fm is the factorization of xn

− 1 into monic basic irreducible pairwise-coprime
polynomials over R, by the Chinese Remainder Theorem we get

R[x]
〈xn − 1〉

=
R[x]⋂m
i=1〈 fi〉

=

m⊕
i=1

R[x]
〈 fi〉

.

It follows that any ideal of the ring R[x]
〈xn−1〉 is a direct sum of the ideals of the R[x]

〈 fi〉
. Define a map Φ0 : R[x]

〈 fi〉
→ Ri

such that 1 + 〈 fi〉 7→ (1 + 〈xn
− 1〉)ei = ui f̂i1. It is clear that Φ0 is an isomorphism. The result then follows

from the properties of direct product of rings.

3.1. Number of cyclic codes

In this subsection, we enumerate the cyclic codes of length n over R.

Theorem 3.6. Let (n, p) = 1, and xn
−1 = f1 f2 · · · fm be the factorization of xn

−1 into monic basic irreducible pairwise-
coprime polynomials in R[x]. Then the number of distinct cyclic codes of length n over R is Nd1 ×Nd2 × · · · ×Ndm ,
where Ndi is the total number of ideals in R[x]

〈 fi〉
as defined in Theorem 3.3, 1 ≤ i ≤ m.

Proof. Every ideal of R[x]
〈xn−1〉 is of the form I1 ⊕ · · · ⊕ Im, where Ii is an ideal of R[x]

〈 fi〉
. The number of ideals of

R[x]
〈 fi〉

is equal to Ndi as defined in Theorem 3.3. Hence the result.

Example 3.7. Let n = 7, p = 2, and r = 2, i.e., R = Z4 + uZ4. Then x7
− 1 factorizes into monic pairwise coprime

basic irreducible polynomials over R as x7
− 1 = (x + 1)(x3 + x + 1)(x3 + x2 + 1) = f1 f2 f3. So, d1 = 1 and d2 = d3 = 3.

From Theorem 3.3, we get Ndi = 2di + 5 for all i, i = 1, 2, 3. From Theorem 3.6, the total number of cyclic codes of
length 7 over R is Nd1 ×Nd2 ×Nd3 = (21 + 5) × (23 + 5) × (23 + 5) = 1183, which can also be verified from [7].

Example 3.8. Let p = 3, r = 2, so that R = Z9 + uZ9. Then from Theorem 3.2, there are total 8 ideals of R. These
are: 〈0〉, 〈1〉, 〈3〉, 〈u〉, 〈3u〉, 〈3 + u〉, 〈3 + 2u〉, 〈3,u〉. Further, for any basic irreducible polynomial f of degree d over R,
there are total 3d + 5 ideals of R[x]

〈 f 〉 , which are presented in Table 3.

Ideal (C) Number of ideals
〈3i
〉, i = 0, 1, 2 3

〈3iu〉, i = 0, 1 2
〈3 + uh(x)〉, h(x) ∈ F×

3d 3d
− 1

〈3,u〉 1

Table 3: Ideals of (Z9 + uZ9)[x]/
〈

f
〉
.
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4. Duals of cyclic codes over R

For a linear code C of length n over R, the dual of C is defined as

C⊥ = {x ∈ Rn
| x · c = 0,∀c ∈ C} .

In this section, we study duals of cyclic codes of length n over R, where (n, p) = 1. We first note the
following result.

Proposition 4.1. The number of codewords in any linear code C of length n over R is pk, for some integer k ∈
{0, 1, . . . , 2rn}. Moreover, the dual code C⊥ of C has pl codewords, where k + l = 2rn.

Proof. It can be easily verified that R is a Frobenius ring. Therefore, we have |C||C⊥| = |R|n = p2rn [22]. The
result follows.

In [7], Cao and Li have given the structure of duals of cyclic codes of length n over Z4[u]/〈uk
〉. In this

section, we obtain the structure of the duals of cyclic codes of length n over R using their approach.
For any polynomial a(x) =

∑n−1
i=0 aixi

∈
R[x]
〈xn−1〉 , we have a∗(x) = a(x−1) = a0 +

∑n−1
i=1 aixn−i.

Proposition 4.2. Let a, b be any two elements in Rn and a(x), b(x) be their respective polynomial representations.
Then a · b = 0 if a(x)b∗(x) = 0 in the ring R[x]

〈xn−1〉 .

Since xn
−1 also factorizes uniquely into monic pariwise coprime basic irreducible polynomials overZq,

andZq is a subring of R, we may consider such a factorization of xn
−1 over R as a factorization overZq. Let

xn
− 1 = f1 f2 · · · fm be the factorization of xn

− 1 into monic pairwise-coprime basic irreducible polynomials
inZq[x]. Then xn

− 1 can also be written as xn
− 1 = (q− 1) f̃1 f̃2 · · · f̃m, where f̃i is the reciprocal polynomial of

fi, which is defined as f̃i(x) = xdeg( f ) f (x−1). f̃1, f̃2, · · · , f̃m are pairwise-coprime basic irreducible polynomials
in Zq[x]. Therefore, for every positive integer i, 1 ≤ i ≤ m, we have 〈 f̃i(x)〉 = 〈 fi′ (x)〉, for some unique
positive integer i′, i.e., f̃i(x) = ωi fi′ (x) for some ωi ∈ Z×q , where 1 ≤ i′ ≤ m.

We define an automorphism α on R[x]
〈xn−1〉 by

α(a(x)) = a∗(x) ,

for any a(x) ∈ R[x]
〈xn−1〉 . This isomorphism induces a permutation of the set {1, · · · ,m} such that α(i) = i′. So,

the component ring R[x]
〈 fi〉

of R[x]
〈xn−1〉 is permuted to the component R[x]

〈 fi′ 〉
by α. It is clear that α2 = 1.

Now let ei = ui f̂i = 1 − vi fi, 1 ≤ i ≤ m, be the mutually orthogonal idempotents of R[x]
〈xn−1〉 , as

defined in Lemma 3.4. Then e∗i = ui(x−1) f̂i(x−1) = xnui(x−1) f̂i(x−1) = x(n−deg(ui)−deg( ˜̂fi))ũi(x) ˜̂fi(x) = γi f̂i′ ,

where γi = x(n−deg(ui)−deg( ˜̂fi))ũi(x)ω̂i, and ω̂i =

m∏
k=1,k,i

ωk. It can also be observed that e∗i = ui(x−1) f̂i(x−1) =

1 − xnvi(x−1) fi(x−1) = 1 − x(n−deg(vi)−deg( fi))ṽi(x) f̃i(x) = 1 − δi fi′ , where δi = x(n−deg(vi)−deg( fi))ṽi(x)ωi. This implies
that γi f̂i′ = e∗i = 1 − δi fi′ , i.e., γi f̂i′ + δi fi′ = 1. From the definition of ei′ as given in Lemma 3.4, we get
ei′ = γi f̂i′ = e∗i .

Theorem 4.3. Let C be a cyclic code of length n over R such that C =
⊕m

i=1 Ciei(x), where Ci are ideals of the ring
R[x]
〈 fi〉

, 1 ≤ i ≤ m. Then the dual code C⊥ of C is given by C⊥ =
⊕m

i=1 Dα(i)eα(i)(x), where Di is an ideal of R[x]
〈 fi〉

as
presented in the Table 4.

It can be observed that in Table 4 ideals Ci such that Ci = Di appear only in the cases (i), (ii), (iv), (v) and
(ix), when r is even; and in the cases (vii), (ix), when r is odd. Now we have the following theorem.
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Case Ci |Ci| Di |Di|

(i) 〈pi
〉 0 ≤ i ≤ r pd(2r−2i)

〈pr−i
〉 pd2i

(ii) 〈u〉 pdr
〈u〉 pdr

(iii) 〈upi
〉 1 ≤ i ≤ r − 1 pd(r−i)

〈pr−i,u〉 pd(r+i)

(iv) 〈(pi + pth(x)u)〉 i ≤
⌊

(r+t)
2

⌋
,h(x) =

∑i−t−1
k=0 hk(x)pk pd(2r−2i)

〈(pr−i + upr−2i+t(pi−t
− h∗(x)))〉 p2di

(v) 〈(pi + pth(x)u)〉 i >
⌊

(r+t)
2

⌋
,h(x) =

∑r−i−1
k=0 hk(x)pk pd(r−t)

〈pi−t + u(−h∗(x)), upr−i
〉 pd(r+t)

(vi) 〈pi + uh(x),up j
〉 (i, j as in Theorem 3.2) h(x) =

∑ j−1
k=0 hk(x)pk pd(2r−i− j)

〈pr− j + upr−i− j(p j
− h∗(x))〉 pd(i+ j)

(vii) 〈pi + upth(x),up j
〉(i, j as in Theorem 3.2) h(x) =

∑ j−t−1
k=0 hk(x)pk pd(2r−i− j)

〈pr− j + upr−i− j+t (p j−t
− h∗(x)),upr−i

〉 pd(i+ j)

(viii) 〈pi,u〉 1 ≤ i ≤ r − 1 pd(2r−i)
〈upr−i

〉 pdi

(ix) 〈pi,up j
〉 j < i pd(2r−i− j)

〈pr− j,upr−i
〉 pd(i+ j)

Table 4:

Theorem 4.4. The total number of ideals Ci in R[x]
〈 fi〉

such that Ci = Di is given by

N( f ,d) =

N ′ + (r − ν), if r is odd ,
N ′ + d′

r
2 + r

2 , if r is even, where

N ′ = 1
d′−1

[(
d′ (ν+1)+3d′ (r−ν−1)

−3d′2−d′
d′−1

)
+ (−2r + 7)d′ + (2(ν + 1) − r)d′(r−ν−1)

]
+ (2r − ν − 4) − (r−2)(r−1)

2 if d′ , 1, and
N ′ = 0 if d′ = 1, where d′ is the total number of polynomial p(x) ∈ Fpd such that p(x) + p∗(x) = 0 in Fpd and ν = b r

2 c.

Proof. Suppose d′ is the total number of polynomials p(x) ∈ Fpd such that p(x) + p∗(x) = 0 in Fpd . We note
that d′ ≥ 1, as the zero polynomial satisfies the given condition.

(a) If r is even, then Ci = Di, if Ci is one of the following cases of Table 4.
(1) Case (i), Ci = 〈p

r
2 〉. Number of ideals in this case is 1.

(2) Case (iv), Ci = 〈p
r
2 + upth(x)〉, 0 ≤ t ≤ r

2 − 1 with

h j(x) + h∗j(x) = 0, 0 ≤ j ≤
r
2
− t − 1.

Total number of ideals in this case is
∑ r

2−1
t=0 (d′ − 1)(d′(

r
2−t−1)) = d′

r
2 − 1.

(b) If r is either even or odd, then following three cases are common:
(3) Case (ii), Ci = 〈u〉,

(4) Case (vii), Ci = 〈pi + upth(x),upr−i
〉, t , 0, and

h j′ (x) + h∗j′ (x) = 0, t < j′ ≤ r − i + t − 1, 1 ≤ t ≤ i − 2.

Total number of ideals in this case is
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N ′ =

r−2∑
i=ν+1

i−2∑
t=1

T∑
j=t+1

(d′ − 1)d′( j−t−i)

=

r−2∑
i=ν+1

2i−r−1∑
t=1

r−i+t−1∑
j=1+t

(d′ − 1)d′( j−t−1) +

i−2∑
t=2i−r

i−1∑
j=1+t

(d′ − 1)d′( j−t−1)


=

r−2∑
i=ν+1

2i−r−1∑
t=1

(d′(r−i−1)
− 1) +

i−2∑
t=2i−r

(d′(i−t−1)
− 1)


=

r−2∑
i=ν+1

[
(d′(r−i−1)

− 1)(2i − r − 1)
]

+

r−2∑
i=ν+1

[
d′(r−i)

− d′

d′ − 1
− (r − i − 1)

]
=

1
d′ − 1

[
2
{(

d′(r−ν−1)
− d′2

d′ − 1

)
− (r − 2)d′ + (ν + 1) d′(r−ν−1)

}
− r

(
d′(r−ν−1)

)]
+

d′

d′ − 1

[(
d′ν + d′(r−ν−2)

− d′ − 1
(d′ − 1)

)
− r + 3

]
+ (2r − ν − 4) −

(r − 2)(r − 1)
2

=
1

d′ − 1

[(
d′(ν+1) + 3d′(r−ν−1)

− 3d′2 − d′

d′ − 1

)
+ (−2r + 7)pd′ + (2(ν + 1) − r)d′(r−ν−1)

]
+(2r − ν − 4) −

(r − 2)(r − 1)
2

(5) Case (ix), C = 〈pi,upr−i
〉, 1 ≤ i ≤ r−1, r < 2i. Total number of ideals in this case is

∑r−1
i=ν+1 1 = r−ν−1.

By adding corresponding cases, we have the result.

We can rearrange e1(x), e2(x), · · · , em(x) in this manner such that α(i) = i′, 1 ≤ i ≤ γ, and α(i) =
m−γ

2 + i, i =

γ + 1, · · · , m−γ
2 . Now we have the following theorem.

Theorem 4.5. The total number of self-dual cyclic codes of length n over R is given by

N( f1,d1) × · · · ×N( fγ,dγ) ×Ndγ+1 × · · · ×Nd m−γ
2
,

where N( fi,di) and Ndi are as given in Theorem 4.4 and Theorem 3.3, respectively.

Proof. Let xn
− 1 = f1 f2 · · · fm be the factorization of xn

− 1 into monic pairwise-coprime basic irreducible
polynomials in Zq[x]. Since α(i) = i′, 1 ≤ i ≤ γ, total number of ideals Ci in Zq[x]

〈 fi〉
such that Ci = Di is given

by N( fi,di). For remaining m − γ values of i, ideals of Zq[x]
〈 fi〉

and Zq[x]
〈 fα(i)〉

occur in pairs. Total number of these

pairs is m−γ
2 . Hence the result.

Example 4.6. Let n = 8, p = 3, r = 2, i.e., R = Z9 + uZ9. The factorization of x8
− 1 into coprime basic irreducible

polynomials is x8
− 1 = (x + 1)(x + 8)(x2 + 1)(x2 + 4x + 8)(x2 + 5x + 8) = f1 f2 f3 f4 f5. Then 〈 f̃1〉 = 〈 f1〉, 〈 f̃2〉 =

〈 f2〉, 〈 f̃3〉 = 〈 f3〉, 〈 f̃4〉 = 〈 f5〉, and 〈 f̃5〉 = 〈 f4〉, which implies that m = 5, d1 = 1, d2 = 1, d3 = 2, and γ = 3. As defined
in Theorem 4.5, we get d′1 = d′2 = 0, and d′3 = 3. From Theorem 4.5 total number of self-dual codes of length 8 over R
are 2 × 2 × 4 × 14 = 224. These self dual cyclic codes will take the form

C =

5⊕
i=1

Ciei(x) ,

where each of C1 and C2 is one of the ideals 〈3〉 and 〈u〉 of R; C3 is one of the ideals 〈3〉, 〈u〉 and 〈3 + uh(x)〉 of R[x]
〈 f3〉

,

where h(x) is a polynomial of degree 1, i.e. h(x) = ax, a ∈ F×3 which satisfies h(x) + h∗(x) = 0; ideals C4 and C5 of R[x]
〈 f4〉

and R[x]
〈 f5〉

, respectively, occur in pairs as given in Table 5.
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C4 C5 Number of ideals
〈3i
〉, i = 0, 1, 2 〈32−i

〉 3
〈u〉 〈u〉 1
〈3u〉 〈3,u〉 1
〈3 + uh(x)〉, h(x) ∈ F×32 〈3 − uh∗(x)〉 8
〈3,u〉 〈3u〉 1

Table 5:

Now we present some examples of cyclic codes of length n over R = Zq + uZq. For this we first define
the Lee weight on Rn.

For any element a =
∑r−1

i=0 (ai + ubi)pi
∈ R, we define the Gray map ϕ from R to Z2r

p as

ϕ (a) =

 r−1∑
i=0

(bi + ai),
r−1∑
i=0

bi,
r−1∑
i=1

(bi + ai),
r−1∑
i=1

bi, · · · , br−1 + ar−1, br−1

 .
ϕ can be extended to a map from Rn to Z2rn

p componentwise. ϕ is a non-linear isometry from Rn to Z2rn
p .

For any element a ∈ R, we define the Lee weight of a as

wL(a) = wH(ϕ(a)) .

The Lee weight of any element v of Rn is then defined as the rational sum of the Lee weights of its coordinates.
The Lee distance dL(C) of a linear code C over R is defined as the minimum Lee weight of any non-zero
codeword in C.

All the computations to determine minimum distance of codes were performed in Magma [27].

Example 4.7. Let n = 4, p = 3, r = 2, so that R = Z9 +uZ9. The factorization of x8
−1 into coprime basic irreducible

polynomials is x4
− 1 = (x + 1)(x + 8)(x2 + 1) = f1 f2 f3. Then 〈 f̃1〉 = 〈 f1〉, 〈 f̃2〉 = 〈 f2〉, 〈 f̃3〉 = 〈 f3〉. Some cyclic codes

of length 4 over R are shown in Table 6. We have

e1(x) = 7x3 + 7x2 + 7x + 7 ,
e2(x) = 2x3 + 7x2 + 2x + 7 ,
e3(x) = 4x2 + 5 .

Any cyclic code C of length 4 over R is given by

C = C1e1(x) ⊕ C2e2(x) ⊕ C3e3(x) ,

where C1, C2 are ideals of Z9, and C3 is an ideal of Z9[x]
〈x2+1〉 . Ideals of Z9[x]

〈x2+1〉 are listed in Table 5. The Gray image of C
under ϕ is a non-linear code of length 4n over Z3.
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C1 C2 C3 Parameters
〈0〉 〈0〉 〈1〉 (16, 38, 2)
〈3〉 〈u〉 〈3u〉 (16, 316, 8)
〈3〉 〈u〉 〈3 + ux〉 (16, 312, 8)
〈3〉 〈u〉 〈3 + u(1 + x)〉 (16, 312, 8)
〈3〉 〈u〉 〈3 + u〉 (16, 316, 4)
〈3〉 〈3 + u〉 〈3 + u(1 + x)〉 (16, 312, 8)
〈u〉 〈3 + u〉 〈3 + u(1 + x)〉 (16, 312, 8)
〈3u〉 〈3 + u〉 〈3 + u(1 + x)〉 (16, 312, 8)
〈3〉 〈3 + u〉 〈3 + ux〉 (16, 312, 8)
〈u〉 〈3 + u〉 〈3 + u〉 (16, 316, 4)
〈1〉 〈3 + u〉 〈3 + u〉 (16, 312, 4)
〈3u〉 〈3 + u〉 〈3 + ux〉 (16, 312, 8)
〈3〉 〈3u〉 〈3 + u(1 + x)〉 (16, 312, 8)
〈u〉 〈3u〉 〈3 + u(1 + x)〉 (16, 312, 8)
〈1〉 〈3u〉 〈3 + u(1 + x)〉 (16, 312, 4)
〈3u〉 〈3u〉 〈3 + u(1 + x)〉 (16, 312, 4)
〈3〉 〈3u〉 〈3 + ux〉 (16, 312, 4)
〈u〉 〈3u〉 〈3 + ux〉 (16, 312, 4)
〈3u〉 〈3u〉 〈3 + ux〉 (16, 312, 4)
〈3〉 〈1〉 〈3 + u(1 + x)〉 (16, 312, 4)
〈u〉 〈u〉 〈3 + u(1 + x)〉 (16, 312, 4)
〈3u〉 〈u〉 〈3 + u(1 + x)〉 (16, 312, 4)
〈3〉 〈u〉 〈3 + ux〉 (16, 312, 4)
〈u〉 〈u〉 〈3 + ux〉 (16, 312, 4)
〈3u〉 〈u〉 〈3 + ux〉 (16, 312, 4)
〈u〉 〈1〉 〈3 + u(1 + x)〉 (16, 312, 4)
〈3u〉 〈1〉 〈3 + u(1 + x)〉 (16, 312, 4)
〈3〉 〈1〉 〈3 + ux〉 (16, 312, 4)
〈u〉 〈1〉 〈3 + ux〉 (16, 312, 4)
〈3u〉 〈1〉 〈3 + ux〉 (16, 312, 4)

Table 6: Cyclic codes of length 4 over Z9 + uZ9.
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