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Abstract. We consider two classes of the graphs with a given bipartition. One is trees and the other is
unicyclic graphs. The signless Laplacian coefficients and the incidence energy are investigated for the sets
of trees/unicyclic graphs with n vertices in which each tree/unicyclic graph has an (n1,n2)-bipartition, where
n1 and n2 are positive integers not less than 2 and n1 +n2 = n. Four new graph transformations are proposed
for studying the signless Laplacian coefficients. Among the sets of trees/unicyclic graphs considered, we
obtain exactly, for each, the minimal element with respect to the quasi-ordering according to their signless
Laplacian coefficients and the element with the minimal incidence energies.

1. Introduction

Let G = (V(G),E(G)) be a simple graph, where V(G) = {v1, · · · , vn} and E(G) = {e1, · · · , em} are the vertex
set and the edge set of G, respectively. The adjacency matrix of G is denoted by A(G). The energy of G, as
introduced by Gutman [6], is defined as the sum of the absolute values of all the eigenvalues of A(G). Let
B be a matrix with real entries. The singular values of B are the positive square roots of the eigenvalues of
BBt, where Bt is the transpose of B. Moreover, if B is a symmetric matrix, then its singular values are the
absolute values of its eigenvalues. Nikiforov [18] extended the concept of energy to all matrices, defining
the energy of a matrix as the sum of the singular values of the matrix.

We denote by I(G) the vertex-edge incidence matrix of G, where I(G) is an (n × m)-matrix whose (i, j)-
entry is 1 if the vertex vi is incident with the edge e j, and 0 otherwise. In 2009, Jooyandeh et al. [11] defined
the incidence energy (IE) of a graph G as

IE(G) =

n∑
i=1

σi, (1)

where σ1, σ2, · · · , σn are the singular values of I(G).
Let D(G) = diag(dG(v1), dG(v2), · · · , dG(vn)) be the degree diagonal matrix of G, where dG(vi) (1 ≤ i ≤ n)

is the degree of vertex vi of G. We refer to L(G) = D(G) −A(G) and Q(G) = D(G) + A(G) as the Laplacian
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matrix and the signless Laplacian matrix, respectively. Since I(G)I t(G) = D(G) + A(G) = Q(G), we get [7]

IE(G) =

n∑
i=1

√
qi, (2)

where q1, q2, · · · , qn are the eigenvalues of the signless Laplacian matrix Q(G). It is noted that q1, q2, · · · , qn
are real and non-negative.

The IE of G, which origins from chemical graph theory, can help explain some phenomena of chemical
molecule. The graphs having the extremal IEs are derived on basis of (5) and other methods. For the graphs
with the extremal IEs and the upper and lower bounds of IE, one can refer to Refs. [5, 7, 10, 15, 20, 21, 24,
26, 27]. Kaya and Maden got some bounds for the generalized version of incidence energy [12].

The Laplacian and signless Laplacian characteristic polynomials of G are respectively defined as

L(G; x) = det[xI −L(G)] =

n∑
i=0

(−1)ici(G)xn−i, (3)

Q(G; x) = det[xI −Q(G)] =

n∑
i=0

(−1)iϕi(G)xn−i, (4)

where I is the identity matrix of order n, and ci(G) and ϕi(G) are coefficients of corresponding characteristic
polynomials. It is known that Q(G) and L(G) are similar if and only if (iff) G is bipartite. Therefore, the
Laplacian coefficients are the same as the signless Laplacian coefficients (SLCs) iff G is bipartite.

Let Gn be the set of all the simple graphs of order n. For G,H ∈ Gn, we write G � H if ci(G) ≤ ci(H)
with 0 ≤ i ≤ n. Similarly, we denote G �′ H if ϕi(G) ≤ ϕi(H) for 0 ≤ i ≤ n. We write G ≺′ H if G �′ H
with an integer k in such a way that ϕk(G) < ϕk(H). Then we refer to this symbol �′ as the quasi-ordering.
Mirzakhah and Kiani [16] obtained

G �′ H =⇒ IE(G) ≤ IE(H), (5)
G ≺′ H =⇒ IE(G) < IE(H). (6)

The Laplacian matrix has been studied extensively. Among various classes of graphs, some results have
been derived about the partial ordering according to �. For example, Laplacian-cospectral trees [17], trees
with a fixed matching number [9], unicyclic graphs [19], and bicyclic graphs [8], etc.

The signless Laplacian matrix of G has attracted more and more attention due to it can be used to
discover more structural characterization of graphs than the Laplacian matrix in some ways [24]. For the
partial ordering according to �′, there are many interesting results. Mirzakhah and Kiani [16] studied the
coefficients of the signless Laplacian matrix of unicyclic graphs. Li et al. [13] determined two maximal
elements and two minimal elements among unicyclic graphs. Zhang and Zhang [24] got two minimal
elements in bicyclic graphs. Among the unicyclic graphs having a fixed matching number, Zhang and
Zhang [25] characterized all the minimal elements. In the connected graphs of n vertices and m edges
without even cycles, Wang et al. [23] obtained the minimal element which has the minimum SLCs and
the minimum IE. Among the unicyclic graphs with n vertices and r pendent vertices, where n ≥ 4 and
r ≥ 1, Wang and Zhong [22] characterized a unique extremal graph which has the minimum SLCs and the
minimum IE. For further information on the signless Laplacian matrix, one can refer to three surveys [2–4].

Let G be a connected bipartite graph with n vertices. Then V(G) can be partitioned into two subsets
V1(G) and V2(G) in such a way that each edge in E(G) joins a vertex in V1(G) with a vertex in V2(G). Let
|V1(G)| = n1 and |V2(G)| = n2 with n1 + n2 = n. We say that G has an (n1,n2)-bipartition. Let Tn1,n2 /Un1,n2 be
the set of trees/unicyclic graphs with n vertices in which each tree/unicyclic graph has an (n1,n2)-bipartition,
where n1 and n2 are positive integers not less than 2 and n1 + n2 = n.

Motivated by all the above-mentioned work, we will characterize, in the present study, the minimal
graphs in terms of �′ according to their SLCs, and then deduce the graphs with the minimal IEs in Tn1,n2

andUn1,n2 .
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The subdivision graph S(G) of a graph G is a graph obtained by inserting a new vertex on each edge of G.
AmongTn1,n2 , by comparing the number of k-matchings of the subdivision graphs of the graphs considered,
Lin and Yan [14] characterized the trees having the minimal and the second minimal Laplacian coefficients.
In this paper, we will use the α-transformation (presented in Lemma 3.3 in Subsection 3.1) to obtain the
graph with the minimal SLCs among Tn1,n2 . Since the graphs among Tn1,n2 and Un1,n2 are bipartite, their
Laplacian coefficients are the same as their SLCs. Thus, in this paper, another straightforward and simpler
method is acquired to obtain the graph with the minimal Laplacian coefficients among Tn1,n2 (presented
in Theorem 3.13 in Subsection 3.2), and the graph with the minimal Laplacian coefficients amongUn1,n2 is
deduced (presented in Theorem 3.17 in Subsection 3.2).

The paper is organized as follows. In Subsection 3.1, four new transformations (see Lemmas 3.1–
3.11) which keep the bipartition unchanged are derived. In Subsection 3.2, by the four transformations
proposed in this paper, we obtain exactly, among Tn1,n2 andUn1,n2 , one minimal element with respect to the
quasi-ordering ≺′ according to their SLCs and we get the graph with the minimal IEs.

2. Preliminaries

Let G be a graph of order n. A connected graph of order n is an odd unicyclic graph if it has only
one cycle with an odd length. A spanning subgraph of G whose connected components are trees or odd
unicyclic graphs is called a TU-subgraph of G. Let H be a TU-subgraph of G consisting of s odd unicyclic
graphs and t trees T1,T2, · · · ,Tt of orders n1,n2, · · · ,nt, respectively. Then the weight of H is denoted by

W(H) = 4s
t∏

i=1

ni. (7)

If H contains no trees, then W(H) = 4s. If H contains no cycles, then W(H) =
∏t

i=1 ni. Note that isolated
vertices in H may be ignored since they do not contribute to W(H).

To obtain the main results of this paper, Lemma 2.1 is introduced as follows.

Lemma 2.1. [1] Let Q(G, x) = det[xI −Q(G)] =
∑n

i=0(−1)iϕi(G)xn−i be the characteristic polynomial of the signless
Laplacian matrix of a graph G with order n. Then

ϕi(G) =
∑
Hi

W(Hi), (i = 0, 1, 2, · · · ,n), (8)

where the summation runs over all TU-subgraphs Hi of G with i edges.
In particular, ϕ0(G) = 1, ϕ1(G) = 2m and ϕ2(G) = 2m2

−m − 1
2

∑n
i=1 d2

G(vi).

By Lemma 2.1, we get the following property, which is used to obtain our transformations in Subsection
3.1. Let G1 and G2 be two connected graphs with n vertices. Let i be a fixed number with 2 ≤ i ≤ n.
Let H1 = {H1,H2, . . . ,Hs

} and H2 = {Ĥ1, Ĥ2, . . . , Ĥt
} be the sets of all the TU-subgraphs of G1 and of

G2 with i edges exactly, respectively, where s ≤ t. Then ϕi(G1) =
∑s

j=1 W(H j) and ϕi(G2) =
∑t

j=1 W(Ĥ j).

If there exists a mapping f from H1 to H2 satisfying W(Hk) ≤ W(Ĥk), where 1 ≤ k ≤ s, then we have
ϕi(G1) = W(H1) + . . . + W(Hs) ≤W(Ĥ1) + · · · + W(Ĥt) = ϕi(G2).

3. Main results

3.1. Four transformations for studying the SLCs of graphs considered

In this subsection, we will introduce four new transformations for studying the SLCs of the graphs with
a given bipartition, which are shown in Lemmas 3.1–3.11. The bipartition for the graphs among Tn1,n2 and
Un1,n2 keeps unchanged within the framework of the four transformations.
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Figure 1: α-transformation from An to A∗n

For a subset M of E(G), G−M denotes the graph obtained from G by deleting all the edges in M. For an
edge set M∗ satisfying M∗ ∩ E(G) = ∅, G + M∗ denotes the graph obtained from G by adding all the edges
in M∗. If M = {e} and M∗ = {e}, then G −M and G + M∗ are rewritten as G − e and G + e, respectively. For a
subgraph H of G, G −H denotes the subgraph of G induced by the vertices not in H.

Let G1, G2 and G3 be three mutually disjoint graphs in which ui is a vertex of Gi (1 ≤ i ≤ 3). We denote
by G1 + u1u2 + G2 the graph obtained from G1 and G2 by adding an edge u1u2 between u1 of G1 with u2 of
G2. Similarly, G1 + u1u2 + G2 + u2u3 + G3 is the graph obtained from G1, G2 and G3 by adding an edge u1u2
between u1 of G1 with u2 of G2 and adding an edge u2u3 between u2 of G2 with u3 of G3.

We denote by NG(v) the neighbors of v in the graph G.
Let Q be a connected graph with a vertex x, and Tv and Tw two trees with v ∈ V(Tv) and w ∈ V(Tw). Let

P3 = uvw be a path of length 2. Let An be the graph with n vertices obtained from Q by first identifying x
of Q with u of P3 = uvw, then identifying v of Tv with v of P3 and identifying w of Tw with w of P3. Let A∗n
be the graph obtained from An by replanting Tw from w to u. An and A∗n are shown in Figs. 1(a) and 1(b),
respectively. In other words,

A∗n = An − {wy | y ∈ NTw (w)} + {uy | y ∈ NTw (w)}. (9)

The transformation from An to A∗n in (9) is called α-transformation.

Lemma 3.1. Let An and A∗n be the two graphs as defined in Fig. 1. If Q is a connected unicyclic graph, then we have
ϕi(An) ≥ ϕi(A∗n) for 0 ≤ i ≤ n, where the equalities do not hold for all i.

Proof. It follows from Lemma 2.1 that ϕi(An) = ϕi(A∗n) for i = 0, 1. Next, let 2 ≤ i ≤ n. For a fixed i, let H ∗

andH be the sets of all the TU-subgraphs of A∗n and of An with i edges exactly, respectively.
For an arbitrary TU-subgraph H∗ ∈ H ∗, let

f1 : H ∗ →H ,H∗ → H = f1(H∗), (10)

with V(H) = V(H∗) and

E(H) = E(H∗) − {ux | x ∈ NTw (u) ∩ V(H∗)} + {wx | x ∈ NTw (u) ∩ V(H∗)}.

Obviously, f1 is a bijection fromH ∗ toH .
For the sake of conciseness, a tree component, an odd unicyclic component, an arbitrary component,

and the same component are abbreviated as a TC, an OUC, an AC, and the SC, respectively. Let N be the
weight of all the components of H∗ not containing u, v or w. In A∗n, let uv = e1 and vw = e2. Three cases are
considered as follows.

Case (I) e1, e2 < E(H∗).
In this case, for an arbitrary TU-subgraph H∗ in H ∗, we denote by R∗u, R∗v and R∗w the connected

components of H∗ containing u, v and w, respectively. Since e1, e2 < E(H∗), R∗u, R∗v and R∗w = {w} are mutually
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disjoint; and R∗v and R∗w are TCs. Let |V(Q)∩V(R∗u)\{u}| = a, |V(Tw)∩V(R∗u)\{u}| = b and |V(Tv)∩V(R∗v)\{v}| = c.
Thus, we get

|V(R∗u)| = a + b + 1, |V(R∗v)| = c + 1, |V(R∗w)| = 1. (11)

By the bijection f1, in H, there exist three components, denoted by Ru, Rv and Rw, which correspond to R∗u,
R∗v and R∗w, respectively. It is noted that Ru, Rv and Rw contain u, v and w in H, respectively; Rv and Rw are
TCs; and Ru, Rv and Rw are mutually disjoint. Obviously, we have

|V(Ru)| = a + 1, |V(Rv)| = c + 1, |V(Rw)| = b + 1. (12)

Furthermore, we have the following statement:

Fact 3.2. Except for the component(s) containing u, v and w in H∗, an AC of H∗ corresponds to the SC of H.

Two subcases are considered according to the fact R∗u is a TC or an OUC.
Subcase (I.i) R∗u is a TC.
In this subcase, Ru is a TC. By Fact 3.2, (7), (11), and (12), we obtain

W( f1(H∗)) −W(H∗) = (a + 1)(b + 1)(c + 1)N − (a + b + 1)(c + 1)N
= Nab(c + 1) ≥ 0, (13)

with the third equality iff a = 0 or b = 0.
Subcase (I.ii) R∗u is an OUC.
In this subcase, Ru is an OUC. By Fact 3.2, (7), (11), and (12), we get

W( f1(H∗)) −W(H∗) = 4(b + 1)(c + 1)N − 4(c + 1)N = 4Nb(c + 1) ≥ 0, (14)

with the third equality iff b = 0.
Case (II) e1 ∈ E(H∗) and e2 < E(H∗).
Let R∗u,v = R∗u + uv + R∗v and Ru,v = Ru + uv + Rv. Obviously, by (11) and (12), R∗u,v is a component of

order a + b + c + 2 containing u, v in H∗ and Ru,v is a component of order a + c + 2 containing u, v of H. Since
e1 ∈ E(H∗) and e2 < E(H∗), by the bijection f1, R∗u,v and {w} in H∗ correspond to Ru,v and Rw in H, respectively.
Two subcases are considered according to the fact R∗u,v is a TC or an OUC.

Subcase (II.i) R∗u,v is a TC.
In this subcase, Ru,v is a TC. By Fact 3.2, (7), (11), and (12), we get

W( f1(H∗)) −W(H∗) = (a + c + 2)(b + 1)N − (a + b + c + 2)N
= Nb(a + c + 1) ≥ 0, (15)

with the third equality iff b = 0. We denote

H
∗

1 = {H∗ ∈ H ∗ | e1 ∈ E(H∗), e2 < E(H∗) and R∗u,v is a TC}.

Subcase (II.ii) R∗u,v is an OUC.
In this subcase, Ru,v is an OUC. It follows from Fact 3.2, (7) and (12) that

W( f1(H∗)) −W(H∗) = 4(b + 1)N − 4N = 4Nb ≥ 0, (16)

with the third equality iff b = 0.
Case (III) e1 < E(H∗) and e2 ∈ E(H∗).
Since e1 < E(H∗) and e2 ∈ E(H∗), by the bijection f1, R∗u and R∗v,w = R∗v + vw + R∗w in H∗ correspond to Ru

and Rv,w = Rv + vw + Rw in H, respectively. Obviously, by (11) and (12), R∗v,w is a TC of order c + 2 containing
v and w in H∗ and Rv,w is a TC of order b + c + 2 containing v and w in H. Two subcases are considered
according to the fact R∗u is a TC or an OUC.
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Subcase (III.i) R∗u is a TC.
In this subcase, Ru is a TC. By Fact 3.2, (7), (11), and (12), we have

W( f1(H∗)) −W(H∗) = (a + 1)(b + c + 2)N − (a + b + 1)(c + 2)N
= Nb(a − c − 1). (17)

We denote

H
∗

2 = {H∗ ∈ H ∗ | e1 < E(H∗), e2 ∈ E(H∗) and R∗u is a TC}.

We construct a mapping ξ1 fromH ∗2 toH ∗1 as follows. For H∗ ∈ H ∗2, let

ξ1 : H∗ → ξ1(H∗) = H∗ − e2 + e1. (18)

Obviously, ξ1 is bijective. Thus, there exists a one-to-one relationship betweenH ∗2 andH ∗1. Namely, for an
arbitrary H∗ ∈ H ∗2, we can find, by ξ1, a unique element ξ1(H∗) ∈ H ∗1 corresponding to it, and vice versa.
For H∗ ∈ H ∗2, by (17) and (15), we obtain

[W( f1(H∗)) −W(H∗)] + [W( f1(ξ1(H∗))) −W(ξ1(H∗))] = 2Nab ≥ 0. (19)

Furthermore, by (19), we get∑
H∗∈H ∗2

[W( f1(H∗)) −W(H∗)] +
∑

H∗∈H ∗1

[W( f1(H∗)) −W(H∗)]

=
∑

H∗∈H ∗2

[W( f1(H∗)) −W(H∗) + W( f1(ξ1(H∗))) −W(ξ1(H∗))] ≥ 0. (20)

Subcase (III.ii) R∗u is an OUC.
In this subcase, Ru is an OUC. By Fact 3.2 and (7), we obtain

W( f1(H∗)) −W(H∗) = 4(b + c + 2)N − 4(c + 2)N = 4Nb ≥ 0, (21)

with the third equality iff b = 0.
Case (IV) e1, e2 ∈ E(H∗).
We have three facts: (i) u, v and w of H∗ are contained in a component of H∗ (denoted by R∗u,v,w); (ii) R∗u,v,w

corresponds to a component (denoted by Ru,v,w) of H containing u, v and w; and (iii) R∗u,v,w and Ru,v,w are
TCs or OUCs simultaneously and have the same order. Therefore, it follows from Fact 3.2 and (7) that

W( f1(H∗)) = W(H∗). (22)

By (13), (14), (16), and (20)–(22), for a fixed i (2 ≤ i ≤ n), we finally get∑
H∗∈H ∗

W( f (H∗)) ≥
∑

H∗∈H ∗
W(H∗). (23)

The inequality in (23) holds when at least one of the inequalities in (14), (16) and (21) holds for b ≥ 1.
Therefore, by Lemma 2.1, for 0 ≤ i ≤ n, we obtain ϕi(An) ≥ ϕi(A∗n) and the equality holds iff i = 0, 1. Thus,
we obtain Lemma 3.1. �

In An and A∗n, if Q is a tree, then by deleting the proofs for Subcases (I.ii), (II.ii) and (III.ii) in Lemma 3.1,
we can easily get Lemma 3.3 as follows.

Lemma 3.3. Let An and A∗n be the two graphs as defined in Fig. 1. If Q is a tree, then we have ϕi(An) ≥ ϕi(A∗n) for
0 ≤ i ≤ n and the equalities do not hold for all i.
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Figure 2: β-transformation from Bn to B∗n

Remark 3.4. After performing the α-transformation once from An to A∗n in Lemma 3.1, An and A∗n have the same
bipartition, and the number of pendent vertices of A∗n is one more than that of An.

Let Bn be the graph shown in Fig. 2(a), where Bn satisfies the following conditions: (i) v and w are two
adjacent vertices at Cl of Bn; (ii) u is not at Cl and u is adjacent to v; (iii) u, v and w are identified with u′ of
a tree T3, v′ of a tree T1 and w′ of a tree T2, respectively; and (iv) The other vertices at Cl of Bn (except for v
and w) may be or maybe not attached by trees. Let B∗n be the graph obtained from Bn by replanting T3 from
u to w, where B∗n is shown in Fig. 2(b). In other words,

B∗n = Bn − {uy | y ∈ NT3 (u′)} + {wy | y ∈ NT3 (u′)}. (24)

The transformation from Bn to B∗n in (24) is called β-transformation.

Lemma 3.5. For 0 ≤ i ≤ n, we have ϕi(Bn) ≥ ϕi(B∗n) where the equality does not hold for all i.

Proof. By Lemma 2.1, ϕi(Bn) = ϕi(B∗n) for i = 0, 1. Next, we assume 2 ≤ i ≤ n.
For a fixed i, we denote by H ∗ and H the sets of all the TU-subgraphs of B∗n and of Bn with exactly i

edges, respectively. For an arbitrary TU-subgraph H∗ ∈ H ∗, let

f2 : H ∗ →H ,H∗ → H = f2(H∗), (25)

with V(H) = V(H∗) and

E(H) = E(H∗) − {wx | x ∈ NT3 (u′) ∩ V(H∗)} + {ux | x ∈ NT3 (u′) ∩ V(H∗)}.

Obviously, f2 is bijective fromH ∗ toH .
Let N be the weight of all the components of H∗ not containing u, v or w. Next, four cases are considered

as follows.
Case (I) uv, vw < E(H∗).
Two subcases are considered as follows.
Subcase (I.i) v and w of H∗ are not contained in a SC.
In this subcase, for an arbitrary TU-subgraph H∗ in H ∗, we denote by R̃u, R̃v and R̃w the connected

components of H∗ containing u, v and w, respectively. Since uv, vw < E(H∗), R̃u = {u}, R̃v and R̃w are TCs and
they are mutually disjoint. Let |V(R̃v − v)| = a, |V(R̃w −T3 −w)| = b and |V(T3)∩V(R̃w)\{w}| = c. Thus, we get

|V(R̃u)| = 1, |V(R̃v)| = a + 1, |V(R̃w)| = b + c + 1. (26)

By the bijection f2, in H, there exist three components, denoted by R′u, R′v and R′w, which correspond to
R̃u, R̃v and R̃w, respectively. Obviously, we have: (i) R′u, R′v and R′w contain u, v and w in H, respectively; (ii)
R′u, R′v and R′w are TCs and they are mutually disjoint; and (iii) R′v is R̃v. Furthermore, we have

|V(R′u)| = c + 1, |V(R′v)| = a + 1, |V(R′w)| = b + 1. (27)

We have the following statement:
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Fact 3.6. Except for the component(s) containing u, v and w in H∗, an AC of H∗ corresponds to the SC of H.

Therefore, by Fact 3.6, (7), (26), and (27), we obtain

W( f2(H∗)) −W(H∗) = (a + 1)(b + 1)(c + 1)N − (a + 1)(b + c + 1)N
= N(a + 1)bc ≥ 0, (28)

with the third equality iff b = 0 or c = 0.
Subcase (I.ii) v and w of H∗ are contained in a SC.
In this subcase, for an arbitrary TU-subgraph H∗ in H ∗, we denote by R̃1 the connected component of

H∗ containing v and w. Since vw < E(H∗), R̃1 is a TC. Since uv < E(H∗), u of H∗ is contained in R̃u = {u}.
Let |V(R̃1 − T3 − v − w)| = h and |V(T3) ∩ V(R̃1)\{w}| = c. Thus, we get

|V(R̃1)| = h + c + 2, |V(R̃u)| = 1. (29)

By the bijection f2, we obtain that R̃1 and R̃u in H∗ correspond to a TC (denoted by R′1) containing v and
w and R′u containing u in H, respectively. Obviously, we have

|V(R′1)| = h + 2, |V(R′u)| = c + 1. (30)

Thus, by Fact 3.6, (7), (29), and (30), we have

W( f2(H∗)) −W(H∗) = (h + 2)(c + 1)N − (h + c + 2)N = N(h + 1)c ≥ 0, (31)

with the third equality iff c = 0.
Case (II) uv ∈ E(H∗) and vw < E(H∗).
Two subcases are considered as follows.
Subcase (II.i) v and w of H∗ are not contained in a SC.
Since uv ∈ E(H∗) and vw < E(H∗), by the bijection f2, we obtain that a TC (denoted by R̃u,v) of order a + 2

containing u and v and R̃w containing w in H∗ correspond respectively to a TC (denoted by R′u,v) of order
a + c + 2 containing u and v and R′w containing w in H, where R̃u,v = R̃u + uv + R̃v and R′u,v = R′u + uv + R′v.
Thus, by Fact 3.6, (7), (26), and (27), we have

W( f2(H∗)) −W(H∗) = (a + c + 2)(b + 1)N − (a + 2)(b + c + 1)N
= Nc(b − a − 1). (32)

We denote

H
∗

3 = {H∗ ∈ H ∗ |uv ∈ E(H∗), vw < E(H∗), v and w of H∗ are not contained in a SC}.

Subcase (II.ii) v and w of H∗ are contained in a SC.
In this subcase, u, v and w of H∗ are contained in a TC of order h + c + 3, which corresponds to a TC of

order h + c + 3 containing u, v and w in H (by the bijection f2). Thus, by Fact 3.6 and (7), we obtain

W( f2(H∗)) −W(H∗) = 0. (33)

Case (III) uv < E(H∗) and vw ∈ E(H∗).
Subcase (III.i) v and w of H∗ are contained in a TC (namely, R̃v,w = R̃v + vw + R̃w) of H∗.
By the bijection f2, we obtain that R̃v,w of order a + b + c + 2 containing v and w and R̃u = {u} in H∗

correspond respectively to a TC (namely, R′v,w = R′v + vw + R′w) of order a + b + 2 containing v and w and R′u
in H. Thus, by Fact 3.6, (7) and (27), we have

W( f2(H∗)) −W(H∗) = (a + b + 2)(c + 1)N − (a + b + c + 2)N
= Nc(a + b + 1) ≥ 0, (34)
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with the third equality iff c = 0.
We denote

H
∗

4 = {H∗ ∈ H ∗ |uv < E(H∗), vw ∈ E(H∗), v and w of H∗ are contained in a TC of H∗}.

We construct a mapping ξ2 fromH ∗3 toH ∗4 as follows. For H∗ ∈ H ∗3, let

ξ2 : H∗ → ξ2(H∗) = H∗ − uv + vw. (35)

Obviously, ξ2 is bijective. Therefore, there exists a one-to-one relationship between H ∗3 and H ∗4. Namely,
for an arbitrary H∗ ∈ H ∗3, we can find, by ξ2, a unique element ξ2(H∗) ∈ H ∗4 corresponding to it, and vice
versa. For H∗ ∈ H ∗3, by (32) and (34), we obtain

[W( f2(H∗)) −W(H∗)] + [W( f2(ξ2(H∗))) −W(ξ2(H∗))] = 2Nbc ≥ 0, (36)

with the second equality iff b = 0 or c = 0. Therefore, by (36), we get∑
H∗∈H ∗3

[W( f2(H∗)) −W(H∗)] +
∑

H∗∈H ∗4

[W( f2(H∗)) −W(H∗)]

=
∑

H∗∈H ∗3

[W( f2(H∗)) −W(H∗) + W( f2(ξ2(H∗))) −W(ξ2(H∗))] ≥ 0. (37)

Subcase (III.ii) v and w of H∗ are contained in an OUC (namely R̃1 + vw).
By the bijection f2, we obtain that R̃1 +vw and R̃u = {u} in H∗ correspond respectively to an OUC (namely

R′1 + vw) containing v and w and R′u in H. Thus, by Fact 3.6, (7) and (30), we have

W( f2(H∗)) −W(H∗) = 4(c + 1)N − 4N = 4Nc ≥ 0, (38)

with the third equality iff c = 0.
Case (IV) uv, vw ∈ E(H∗).
We have three facts: (i) u, v and w of H∗ are contained in a component of H∗ (denoted by R̃u,v,w); (ii) R̃u,v,w

corresponds to a component (denoted by f2(R̃u,v,w)) of H containing u, v and w; and (iii) R̃u,v,w and f2(R̃u,v,w)
are TCs or OUCs simultaneously and have the same order. Therefore, by Fact 3.6 and (7), we obtain

W( f2(H∗) = W(H∗). (39)

By (28), (31), (33), and (37)–(39), for a fixed i (2 ≤ i ≤ n), we finally get∑
H∗∈H ∗

W( f2(H∗)) ≥
∑

H∗∈H ∗
W(H∗). (40)

The inequality in (40) holds when at least one of the inequalities in (31) and (38) holds for c ≥ 1. By Lemma
2.1, we get ϕi(Bn) ≥ ϕi(B∗n) for 0 ≤ i ≤ n and the equalities do not hold for all i. Therefore, we obtain Lemma
3.5. �

Remark 3.7. If Bn is a bipartite unicyclic graph, then after performing the β-transformation once from Bn to B∗n in
Lemma 3.5, we have three properties: (i) Bn and B∗n have the same girth; (ii) Bn and B∗n have the same bipartition; and
(iii) the number of pendent vertices of B∗n is one more than that of Bn.

Let Fn be the graph obtained from Cl = w1w2 . . .wl by identifying wi of Cl with w′i of Ti, where Ti is a tree,
w′i is a vertex of Ti and 1 ≤ i ≤ l. It is noted that Ti may be an empty graph, where 1 ≤ i ≤ l. Fn is shown in
Fig. 3(a). Let F∗n be the graph obtained from Fn through the following steps: (i) Replanting the tree T2 from
w2 to w4; (ii) Replanting the tree T3 from w3 to w1; (iii) deleting the edge w2w3; and (iv) adding a new edge
w1w4. F∗n is shown in Fig. 3(b). In other words, we have

F∗n = Fn − {w2y | y ∈ NT2 (w′2)} − {w3y | y ∈ NT3 (w′3)} − {w2w3}

+ {w4y | y ∈ NT2 (w′2)} + {w1y | y ∈ NT3 (w′3)} + {w1w4}. (41)

The transformation from Fn to F∗n in (41) is called γ-transformation.
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Figure 3: γ-transformation from Fn to F∗n

Lemma 3.8. We have ϕi(Fn) ≥ ϕi(F∗n) for 0 ≤ i ≤ n and the equalities do not hold for all i.

Proof. It follows from Lemma 2.1 that ϕi(Fn) = ϕi(F∗n) when i = 0, 1. Next, let 2 ≤ i ≤ n.
For a fixed i, let H ∗ and H be the sets of all the TU-subgraphs of F∗n and of Fn with exactly i edges,

respectively. For an arbitrary TU-subgraph H∗ ∈ H ∗, let

f3 : H ∗ →H ,H∗ → H = f3(H∗), (42)

with V(H) = V(H∗) and

E(H) = E(H∗) − {w4y | y ∈ A} − {w1y | y ∈ B} − {w1w4}

+ {w2y | y ∈ A} + {w3y | y ∈ B} + {w2w3},

where A = NT2 (w′2) ∩ V(H∗) and B = NT3 (w′3) ∩ V(H∗). Obviously, f3 is injective fromH ∗ toH .
Let N be the weight of all the components of H∗ not containing w1, w2, w3 or w4.
If all of w1w2, w1w4 and w3w4 are contained in E(H∗), then we have three facts: (i) w1, w2, w3 and w4 are

contained in a component of H∗ (denoted by R∗1,2,3,4); (ii) R∗1,2,3,4 corresponds to a component f3(R∗1,2,3,4) of H
containing w1, w2, w3, and w4; and (iii) R∗1,2,3,4 and f3(R∗1,2,3,4) are TCs or OUCs simultaneously and have the
same order. Furthermore, we have the following statement.

Fact 3.9. Except for the component(s) containing w1, w2, w3, and w4 in H∗, an AC of H∗ corresponds to the SC of H.

Therefore, by Fact 3.9 and (7), we obtain

W( f3(H∗)) = W(H∗). (43)

Next, we assume that at least one of w1w2, w1w4 and w3w4 does not belong to E(H∗). Seven cases are
considered as follows.

Case (I) w1w2,w1w4,w3w4 < E(H∗).
Two subcases are considered as follows.
Subcase (I.i) w1 and w4 of H∗ are not contained in a SC.
In this subcase, for an arbitrary TU-subgraph H∗ inH ∗, we denote by R∗1, R∗2, R∗3, and R∗4 the connected

components of H∗ containing w1, w2, w3, and w4, respectively. Obviously, R∗2 = {w2} and R∗3 = {w3}. It is
noted that R∗1, R∗2, R∗3, and R∗4 are mutually disjoint and they are TCs since w1w2,w1w4,w3w4 < E(H∗). Let
|V(R∗1 − T3 − w1)| = a, |V(T2) ∩ V(R∗4)\{w4}| = b, |V(T3) ∩ V(R∗1)\{w1}| = c, and |V(R∗4 − T2 − w4)| = d. Thus, we
get

|V(R∗1)| = a + c + 1, |V(R∗2)| = 1, |V(R∗3)| = 1, |V(R∗4)| = b + d + 1. (44)

By the bijection f3, in H, there exist four components, denoted by R1, R2, R3, and R4, which correspond to
R∗1, R∗2, R∗3, and R∗4, respectively. It is noted that R1, R2, R3, and R4 contain respectively w1, w2, w3, and w4 in
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H and they are mutually disjoint. Obviously, R1, R2 , R3, and R4 are all TCs since w1w2,w1w4,w3w4 < E(H).
We have

|V(R1)| = a + 1, |V(R2)| = b + 1, |V(R3)| = c + 1, |V(R4)| = d + 1. (45)

Therefore, by Fact 3.9, (7), (44), and (45), we obtain

W( f3(H∗)) −W(H∗) = (a + 1)(b + 1)(c + 1)(d + 1)N − (a + c + 1)(b + d + 1)N
= N[abcd + ac(b + d + 1) + bd(a + c + 1)] ≥ 0. (46)

Subcase (I.ii) w1 and w4 of H∗ are contained in a SC.
In this subcase, for an arbitrary TU-subgraph H∗ inH ∗, we denote by R∗5 the connected component of H∗

containing w1 and w4. Since w1w4 < E(H∗), R∗5 is a TC. Obviously, R∗2 = {w2} and R∗3 = {w3} are the components
containing w2 and w3 inH ∗, respectively. Let |V(R∗5 − T2 − T3 − w1 − w4)| = h, |V(T2) ∩ V(R∗5)\{w4}| = b and
|V(T3) ∩ V(R∗5)\{w1}| = c. Thus, we get

|V(R∗5)| = h + b + c + 2, |V(R∗2)| = 1, |V(R∗3)| = 1. (47)

By the bijection f3, we obtain that R∗5, R∗2 and R∗3 in H∗ correspond respectively to a TC (denoted by
R5) containing w1 and w4, R2 containing w2 and R3 containing w3 in H. It is noted that R5, R2 and R3 are
mutually disjoint. Obviously, we have

|V(R5)| = h + 2, |V(R2)| = b + 1, |V(R3)| = c + 1. (48)

Thus, by Fact 3.9, (7), (47), and (48), we get

W( f3(H∗)) −W(H∗) = (h + 2)(b + 1)(c + 1)N − (h + b + c + 2)N
= N[(h + 2)bc + (h + 1)(b + c)] ≥ 0. (49)

Case (II) w1w2,w1w4 ∈ E(H∗) and w3w4 < E(H∗).
In this case, w3 of H∗ is contained in R∗3 = {w3} and w1, w2 and w4 of H∗ are contained in a component

denoted by R∗2,1,4. Here R∗i, j,k = R∗i + wiw j + R∗j + w jwk + R∗k with 1 ≤ i, j, k ≤ 4. Obviously, |V
(
R∗i, j,k

)
| =

|V(R∗i )| + |V(R∗j)| + |V(R∗k)| and R∗i, j,k contains wi, w j and wk of H∗. Let Ri, j,k = Ri + wiw j + R j + w jwk + Rk with

1 ≤ i, j, k ≤ 4. Obviously, |V
(
Ri, j,k

)
| = |V(Ri)| + |V(R j)| + |V(Rk)| and Ri, j,k contains wi, w j and wk of H. Two

subcases are considered as follows.
Subcase (II.i) R∗2,1,4 is a TC.
By the bijection f3, we obtain that R∗2,1,4 of order a+b+c+d+3 and R∗3 = {w3} in H∗ correspond respectively

to a TC (namely R1,2,3) of order a + b + c + 3 and R4 of order d + 1 in H. Thus, by Fact 3.9 and (7), we get

W( f3(H∗)) −W(H∗) = (a + b + c + 3)(d + 1)N − (a + b + c + d + 3)N
= Nd(a + b + c + 2) ≥ 0. (50)

We denote

H
∗

5 = {H∗ ∈ H ∗ |w1w2, w1w4 ∈ E(H∗), w3w4 < E(H∗), and R∗2,1,4 is a TC}.

Subcase (II.ii) R∗2,1,4 is an OUC.
By the bijection f3, we obtain that R∗2,1,4 and R∗3 = {w3} in H∗ correspond to a TC (namely, R5 + w1w2 +

R2 + w2w3 + R3) of order h + b + c + 4 containing w1, w2, w3, and w4 in H. Thus, by Fact 3.9 and (7), we have

W( f3(H∗)) −W(H∗) = (h + b + c + 4)N − 4N = N(h + b + c) ≥ 0. (51)

Case (III) w1w2 < E(H∗) and w1w4,w3w4 ∈ E(H∗).
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In this case, w1, w3 and w4 of H∗ are contained in a component denoted by R∗1,4,3. Two subcases are
considered as follows.

Subcase (III.i) R∗1,4,3 is a TC.
By the bijection f3, we obtain that R∗1,4,3 of order a+b+c+d+3 and R∗2 = {w2} in H∗ correspond respectively

to a TC (namely, R2,3,4) of order b + c + d + 3 and R1 of order a + 1 in H. Thus, by Fact 3.9 and (7), we get

W( f3(H∗)) −W(H∗) = (a + 1)(b + c + d + 3)N − (a + b + c + d + 3)N
= Na(b + c + d + 2) ≥ 0. (52)

We denote

H
∗

6 = {H∗ ∈ H ∗ |w1w2 < E(H∗), w1w4,w3w4 ∈ E(H∗), and R∗1,4,3 is a TC}.

Subcase (III.ii) R∗1,4,3 is an OUC.
By the bijection f3, we obtain that R∗1,4,3 and R∗2 = {w2} in H∗ correspond to a TC (namely, R2 + w2w3 +

R3 + w3w4 + R5) of order h + b + c + 4 containing w1, w2, w3, and w4 in H. Thus, by Fact 3.9 and (7), we get

W( f3(H∗)) −W(H∗) = (h + b + c + 4)N − 4N = N(h + b + c) ≥ 0. (53)

Case (IV) w1w2,w3w4 ∈ E(H∗) and w1w4 < E(H∗).
Two subcases are considered as follows.
Subcase (IV.i) w1 and w4 of H∗ are not contained in a SC.
In this subcase, w1 and w2 of H∗ are contained in R∗1,2 and w3 and w4 of H∗ are contained in R∗3,4, where

R∗1,2 = R∗1 + w1w2 + R∗2 and R∗3,4 = R∗3 + w3w4 + R∗4. By the bijection f3, R∗1,2 of order a + c + 2 and R∗3,4 of
order b + d + 2 correspond respectively to a TC (namely, R1,2) of order a + b + 2 containing w1 and w2
and a TC (namely, R3,4) of order c + d + 2 containing w3 and w4 in H, where R1,2 = R1 + w1w2 + R2 and
R3,4 = R3 + w3w4 + R4. Thus, by Fact 3.9 and (7), we get

W( f3(H∗)) −W(H∗) = (a + b + 2)(c + d + 2)N − (a + c + 2)(b + d + 2)N
= N(b − c)(d − a). (54)

We denote

H
∗

7 ={H∗ ∈ H ∗ |w1w2,w3w4 ∈ E(H∗), w1w4 < E(H∗), w1 and w4 are not contained in a SC}.

We construct a mapping ξ3 fromH ∗7 toH ∗5 and a mapping ξ4 fromH ∗7 toH ∗6 as follow. For H ∈ H ∗7, let

ξ3 : H∗ → ξ3(H∗) = H∗ + w1w4 − w3w4,

ξ4 : H∗ → ξ4(H∗) = H∗ + w1w4 − w1w2.

For an arbitrary H∗ ∈ H ∗7, we can find, by ξ3 and ξ4, a unique ξ3(H∗) ∈ H ∗5 and a unique ξ4(H∗) ∈ H ∗6
corresponding to it, respectively. For H ∈ H ∗7, by (54), (50) and (52), we get

[W( f3(H∗)) −W(H∗)] + [W( f3(ξ3(H∗))) −W(ξ3(H∗))]
+ [W( f3(ξ4(H∗))) −W(ξ4(H∗))] = N[d(a + 2b + 2) + a(2c + d + 2)] ≥ 0. (55)

Since ξ3 and ξ4 are bijective, by (55), we have∑
H∗∈H ∗5

⋃
H ∗6

⋃
H ∗7

[W( f (H∗)) −W(H∗)]

=
∑

H∗∈H ∗7

[W( f3(H∗)) −W(H∗) + W( f3(ξ3(H∗))) −W(ξ3(H∗))

+ W( f3(ξ4(H∗))) −W(ξ4(H∗))] ≥ 0. (56)
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Subcase (IV.ii) w1 and w4 are contained in a SC.
In this subcase, w1, w2, w3, and w4 of H∗ are contained in a TC of order h + b + c + 4, which corresponds

to a TC of order h + b + c + 4 containing w1, w2, w3, and w4 in H (by the bijection f3). Thus, by Fact 3.9 and
(7), we get

W( f3(H∗)) −W(H∗) = 0. (57)

Case (V) w1w2,w1w4 < E(H∗) and w3w4 ∈ E(H∗).
Two subcases are considered as follows.
Subcase (V.i) w1 and w4 of H∗ are not contained in a SC.
By the bijection f3, we obtain that R∗1, R∗2 = {w2} and R∗3,4 with order b+d+2 in H∗ correspond respectively

to R1, R2 and R3,4 with order c + d + 2 in H. Therefore, by Fact 3.9, (7), (44), and (45), we get

W( f3(H∗)) −W(H∗) = (a + 1)(b + 1)(c + d + 2)N − (a + c + 1)(b + d + 2)N
= N[ab(c + d + 1) + b(d + 1) + ac − c(d + 1)]. (58)

We denote

H
∗

8 = {H∗ ∈ H ∗ |w1w2,w2w4 < E(H∗), w3w4 ∈ E(H∗), w1 and w4 of H∗are not contained in a SC}.

Subcase (V.ii) w1 and w4 of H∗ are contained in SC.
By the bijection f3, a TC (namely, R∗3 + w3w4 + R∗5) with order h + b + c + 3 containing w1, w3 and w4 and

R∗2 = {w2} in H∗ correspond respectively to a TC (namely, R3 + w3w4 + R5) with order h + c + 3 containing w1,
w3 and w4 and R2 of order b + 1 in H. Therefore, by Fact 3.9 and (7), we get

W( f3(H∗)) −W(H∗) = (b + 1)(h + c + 3)N − (h + b + c + 3)N
= Nb(h + c + 2) ≥ 0. (59)

Case (VI) w1w2 ∈ E(H∗) and w1w4,w3w4 < E(H∗).
Two subcases are considered as follows.
Subcase (VI.i) w1 and w4 of H∗ are not contained in SC.
By the bijection f3, we obtain that R∗1,2 of order a + c + 2, R∗3 = {w3} and R∗4 in H∗ correspond respectively

to a TC (namely, R1,2) of order a + b + 2, R3 and R4 in H. Therefore, by Fact 3.9, (7), (44), and (45), we obtain

W( f3(H∗)) −W(H∗) = (a + b + 2)(c + 1)(d + 1)N − (a + c + 2)(b + d + 1)N
= N[cd(a + b + 1) + bd + c(a + 1) − b(a + 1)]. (60)

We denote

H
∗

9 = {H∗ ∈ H ∗ |w1w2 ∈ E(H∗), w1w4,w3w4 < E(H∗), w1 and w4 of H∗are not contained in SC}.

We construct a mapping ξ5 fromH ∗8 toH ∗9 as follows. For H ∈ H ∗8, let

ξ5 : H∗ → ξ5(H∗) = H∗ + w1w2 − w3w4.

Obviously, ξ5 is bijective. Thus, there exists a one-to-one relationship betweenH ∗8 andH ∗9. By (58) and (60),
we have ∑

H∗∈H ∗8
⋃
H ∗9

[W( f3(H∗)) −W(H∗)]

=
∑

H∗∈H ∗8

[W( f3(H∗)) −W(H∗) + W( f3(ξ5(H∗))) −W(ξ5(H∗))] ≥ 0. (61)

Subcase (VI.ii) w1 and w4 of H∗ are contained in SC.
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By the bijection f3, we obtain that a TC (namely, R∗2 + w2w1 + R∗5) of order h + b + c + 3 containing w1,
w2 and w4 and R∗3 = {w3} in H∗ correspond respectively to a TC (namely, R2 + w2w1 + R5) of order h + b + 3
containing w1, w2 and w4 and R3 of order c + 1 in H. Therefore, by Fact 3.9 and (7), we obtain

W( f3(H∗)) −W(H∗) = (c + 1)(h + b + 3)N − (h + b + c + 3)N
= Nc(h + b + 2) ≥ 0. (62)

Case (VII) w1w2,w3w4 < E(H∗) and w1w4 ∈ E(H∗).
In this case, w1 and w4 of H∗ are contained in a SC. Two subcases are considered as follows.
Subcase (VII.i) w1 and w4 of H∗ are contained in a TC (namely R∗1,4 = R∗1 + w1w4 + R∗4).
By the bijection f3, we get that R∗1,4 with order a + b + c + d + 2, R∗2 = {w2} and R∗3 = {w3} in H∗ correspond

respectively to a TC (namely, R2,3 = R2 + w2w3 + R3) of order b + c + 2 containing w2 and w3, R1 and R4 in H.
Therefore, by Fact 3.9, (7) and (45), we get

W( f3(H∗)) −W(H∗) = (a + 1)(b + c + 2)(d + 1)N − (a + b + c + d + 2)N
= N[(ad + a + d)(b + c + 1) + ad] ≥ 0. (63)

Subcase (VII.ii) w1 and w4 of H∗ are contained in an OUC (namely R∗5 + w1w4).
By the bijection f3, we get that R∗5 + w1w4 in H∗ corresponds to R5 of order h + 2 containing w1 and w4 in

H, and R∗2 = {w2} and R∗3 = {w3} in H∗ correspond to a TC (namely, R2,3) of order b + c + 2 containing w2 and
w3 in H. Therefore, by Fact 3.9 and (7), we have

W( f3(H∗)) −W(H∗) = (h + 2)(b + c + 2)N − 4N
= N[h(b + c) + 2(b + c + f )] ≥ 0. (64)

By combining the proofs of Cases (I)–(VII), for a fixed i (2 ≤ i ≤ n), it follows from (43), (46), (49), (51),
(53), (56), (57), (59), and (61)–(64) that∑

H∗∈H ∗
W( f3(H∗)) ≥

∑
H∗∈H ∗

W(H∗). (65)

The inequality in (65) holds when the inequalities in (51) and (53) hold for b ≥ 1 or c ≥ 1 or h ≥ 1.
Furthermore, by Lemma 2.1, we have ϕi(Fn) ≥ ϕi(F∗n) for 0 ≤ i ≤ n and the equalities do not hold for all i.
Thus, we get Lemma 3.8. �

Remark 3.10. After performing the γ-transformation once from Fn to F∗n in Lemma 3.8, we have three facts: (i) The
girth of F∗n is two smaller than that of Fn; (ii) Fn and F∗n have the same bipartition; and (iii) The number of pendent
vertices of F∗n is two more than that of Fn.

Let Xn+1 be a star with n + 1 vertices and w0 the center vertex of Xn+1. Let n′1 + n′2 + n′3 + n′4 = n − 4,
n′1 + n′3 + 2 = n1 and n′2 + n′4 + 2 = n2, where 0 ≤ n′i ≤ n − 4 for 1 ≤ i ≤ 4. Let Dn be the graph obtained
from C4 = w1w2w3w4 by identifying wi with the center vertex of Xn′i +1, where 1 ≤ i ≤ 4. Let Mn be the graph
obtained from C4 = w1w2w3w4 by identifying w1 with the center vertex of Xn′1+n′3+1 and by identifying w2
with the center vertex of Xn′2+n′4+1. In other words,

Mn = Dn − {w3y | y ∈ A} − {w4y | y ∈ B} + {w1y | y ∈ A} + {w2y | y ∈ B}, (66)

where A = NXn′3+1
(w0) and B = NXn′4+1

(w0). The transformation from Dn to Mn in (66) is called ξ-
transformation. Dn and Mn are shown in Figs. 4(a) and 4(b), respectively. Obviously, Dn,Mn ∈ Un1,n2 .

Lemma 3.11. For 0 ≤ i ≤ n, we have ϕi(Dn) ≥ ϕi(Mn) and the equalities do not hold for all i.
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w1 w2

w3w4

n′1︷︸︸︷ n′2︷︸︸︷

︸︷︷︸
n′4

︸︷︷︸
n′3(a) Dn

w1 w2

w3w4

n′1+n′3︷︸︸︷ n′2+n′4︷︸︸︷

(b) Mn

Figure 4: ξ-transformation from Dn to Mn

Proof. By Lemma 2.1, ϕi(Dn) = ϕi(D∗n) for i = 0, 1. Next, we assume 2 ≤ i ≤ n.
For a fixed i, we denote by H ∗ and H the sets of all the TU-subgraphs of Mn and of Dn with exactly i

edges, respectively. For an arbitrary TU-subgraph H∗ ∈ H ∗, let

f4 : H ∗ →H ,H∗ → H = f4(H∗), (67)

with V(H) = V(H∗) and

E(H) = E(H∗) − {w1y | y ∈ A ∩ V(H∗)} − {w2y | y ∈ B ∩ V(H∗)}
+ {w3y | y ∈ A ∩ V(H∗)} + {w4y | y ∈ B ∩ V(H∗)},

where A = NXn′3+1
(w0) and B = NXn′4+1

(w0). Obviously, f4 is a bijection fromH ∗ toH .
Let N be the weight of all the components of H∗ not containing w1, w2, w3, or w4. In Mn, let w1w2 = e1,

w2w3 = e2, w3w4 = e3, and w1w4 = e4.
If all of e1, e2, e3, and e4 are contained in E(H∗), then the component containing w1, w2, w3, and w4 in Mn

has a cycle with even girth. This is contrary to the definition of TU-subgraph. Therefore, we get that at
most three of e1, e2, e3, and e4 are contained in E(H∗). Three cases are considered as follows.

Case (i) None of e1, e2, e3, and e4 is contained in E(H∗).
In this case, for an arbitrary TU-subgraph H∗ inH ∗, we denote by R∗w1

, R∗w2
, R∗w3

, and R∗w4
the connected

components of H∗ containing w1, w2, w3, and w4, respectively. Obviously, R∗w3
= {w3} and R∗w4

= {w4}. It is
noted that R∗w1

, R∗w2
, R∗w3

, and R∗w4
are mutually disjoint and they are TCs. Let |V(R∗w1

) ∩ V(Xn′1+1)\{w1}| = s,
|V(R∗w1

) ∩ V(Xn′3+1)\{w1}| = q, |V(R∗w2
) ∩ V(Xn′2+1)\{w2}| = t, and |V(R∗w2

) ∩ V(Xn′4+1)\{w2}| = p. Thus, we get

|V(R∗w1
)| = s + q + 1, |V(R∗w2

)| = t + p + 1, |V(R∗w3
)| = 1, V(R∗w4

)| = 1. (68)

By the bijection f4, in H, there exist four components, denoted by R′w1
, R′w2

, R′w3
, and R′w4

, which
correspond to R∗w1

, R∗w2
, R∗w3

, and R∗w4
, respectively. It is noted that R′w1

, R′w2
, R′w3

, and R′w4
contain respectively

w1, w2, w3, and w4 in H and they are mutually disjoint. Obviously, R′w1
, R′w2

, R′w3
, and R′w4

are TCs since
e1, e2, e3, e4 < E(H). We have

|V(R′w1
)| = s + 1, |V(R′w2

)| = t + 1, |V(R′w3
)| = q + 1, |V(R′w4

)| = p + 1. (69)

Furthermore, we have the following statement:

Fact 3.12. Except for the component(s) containing w1, w2, w3, and w4 in H∗, an AC of H∗ corresponds to the SC of
H.
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Therefore, by Fact 3.12, (7), (68), and (69), we get

W( f4(H∗)) −W(H∗) = (s + 1)(t + 1)(p + 1)(q + 1) − (s + q + 1)(t + p + 1)
= stpq + sq(t + p + 1) + tp(s + q + 1) ≥ 0. (70)

Case (ii) Only one of e1, e2, e3, and e4 is contained in E(H∗).
If e1 ∈ E(H∗) and e2, e3, e4 < E(H∗), then by the bijection f4, we obtain that a TC (namely, R∗w1

+ w1w2 + R∗w2
)

with order s+ t+p+q+2 containing w1 and w2, R∗w3
= {w3} and R∗w4

= {w4} in H∗ correspond to a TC (namely,
R′w1

+ w1w2 + R′w2
) of order s + t + 2 containing w1 and w2, R′w3

and R′w4
in H, respectively. Therefore, by Fact

3.12, (7) and (69), we obtain

W( f4(H∗)) −W(H∗) = (s + t + 2)(p + 1)(q + 1) − (s + t + p + q + 2). (71)

By the methods similar to (71), we get (72)–(74) as follows.
If e2 ∈ E(H∗) and e1, e3, e4 < E(H∗), then

W( f4(H∗)) −W(H∗) = (s + 1)(t + q + 2)(p + 1) − (s + q + 1)(t + p + 2). (72)

If e3 ∈ E(H∗) and e1, e2, e4 < E(H∗), then

W( f4(H∗)) −W(H∗) = (s + 1)(t + 1)(p + q + 2) − 2(s + q + 1)(t + p + 1). (73)

If e4 ∈ E(H∗) and e1, e2, e3 < E(H∗), then

W( f4(H∗)) −W(H∗) = (s + p + 2)(q + 1)(t + 1) − (s + q + 2)(t + p + 1). (74)

Therefore, in Case (ii), after adding (71)–(74) together, we get

W( f4(H∗)) −W(H∗) = 4p(t + s) + 2(pqs + pqt + pst + qst) ≥ 0. (75)

Case (iii) Two of e1, e2, e3, and e4 are contained in E(H∗).
In this case, there exist six kinds of classification. By the same analysis as those for (75), we get

W( f4(H∗)) −W(H∗)
= [(s + t + p + 3)(q + 1) − (s + t + p + q + 3)] + [(s + t + q + 3)(p + 1)
− (s + t + p + q + 3)] + [(s + t + 2)(p + q + 2) − 2(s + t + p + q + 2)]
+ [(s + p + 2)(t + q + 2) − (s + q + 2)(t + p + 2)] + [(s + p + q + 3)(t + 1)
− (s + q + 3)(t + p + 1)] + [(s + 1)(t + p + q + 3) − (s + q + 1)(t + p + 3)]

= 4p(t + s) ≥ 0. (76)

Case (iv) Three of e1, e2, e3, and e4 are contained in E(H∗).
In this case, there exist four kinds of classification. By the same analysis as those for (75), we obtain

W( f4(H)) = W(H∗). (77)

By combining (70), (75)–(77), for a fixed i (2 ≤ i ≤ n), we obtain∑
H∗∈H ∗

W( f4(H∗)) ≥
∑

H∗∈H ∗
W(H∗). (78)

The inequality in (78) holds when the inequalities in (75) and (76) hold for p, s, t ≥ 1. Furthermore, by
Lemma 2.1, we get ϕi(Dn) ≥ ϕi(Mn) for 0 ≤ i ≤ n and the equalities do not hold for all i. �
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3.2. The graphs with the minimal SLCs and the minimal IEs among Tn1,n2 andUn1,n2

In this subsection, we will use the α-transformation (presented in Lemma 3.3 in Subsection 3.1) to
obtain the graph with the minimal SLCs among Tn1,n2 , which is shown in Theorem 3.13. The β-, γ- and
ξ-transformations, as presented in Lemmas 3.5, 3.8 and 3.11 in Subsection 3.1, respectively, will be used to
obtain the graph with the minimal SLCs amongUn1,n2 , which is shown in Theorem 3.17. Furthermore, by
Theorems 3.13 and 3.17, we obtain the graphs with the minimal IEs among Tn1,n2 andUn1,n2 , respectively.

Let S(n1,n2) be a tree obtained from Xn1 and Xn2 by adding an edge between the center vertices of Xn1

and of Xn2 , where n1,n2 ≥ 2 and n1 + n2 = n.

Theorem 3.13. Let T ∈ Tn1,n2 with n1,n2 ≥ 2 and n1 + n2 = n. For 0 ≤ i ≤ n, we have ϕi(T) ≥ ϕi(S(n1,n2)) with
all the equalities iff T = S(n1,n2).

Proof. Let T0 be the graph with the minimal SLCs in Tn1,n2 , where n1,n2 ≥ 2 and n1 + n2 = n. Let dia(T0)
be the diameter of T0. We suppose dia(T0) ≥ 4. Thus, in T0, there exists a path P of length at least 4. Let
u, v and w be three vertices lying on P in such a way that v is adjacent to both u and w and the vertex
degrees of u and of w are greater than 1. Therefore, T0 can be viewed as the graph An (as shown in Fig.
1(a)), where Tv in An may be an empty graph. By Lemma 3.3, we can find another graph A∗n (as shown in
Fig. 1(b)) satisfying ϕi(T0) ≥ ϕi(A∗n) for 0 ≤ i ≤ n and the equalities do not hold for all i. This contradicts
the minimality of T0. Therefore, we obtain dia(T0) = 3 or dia(T0) = 2. If dia(T0) = 2, then T0 = Xn+1. Since
Xn+1 < Tn1,n2 as n1,n2 ≥ 2, we get dia(T0) = 3. As T0 ∈ Tn1,n2 and dia(T0) = 3, T0 must be S(n1,n2). Theorem
3.13 is thus proved. �

From Theorem 3.13, we obtain the graph with the minimal IE in Tn1,n2 , as shown in Theorem 3.14.

Theorem 3.14. Let T ∈ Tn1,n2 with n1,n2 ≥ 2 and n1 + n2 = n. We have IE(T) ≥ IE(S(n1,n2)) with the equality iff
T = S(n1,n2).

By Lemmas 3.5–3.11, we get the graph with the minimal SLCs amongUn1,n2 , as shown in Theorem 3.17.
To obtain Theorem 3.17, we introduce Lemmas 3.15 and 3.16 as follows.

Lemma 3.15. If G0 has the minimum SLCs inUn1,n2 , then a cut-edge of G0 must be a pendent edge.

Proof. Suppose that G0 has a cut-edge e = uv which is not a pendent edge. Hence u and v are two vertices
of degree at least 2 with NG0 (v) ∩NG0 (u) = ∅. Without loss of generality, we assume that G0 is Bn (as shown
in Fig. 2(a)). By employing the β-transformation and by Lemma 3.5, there is a graph B∗n (as shown in Fig.
2(b)) such that ϕi(G0) ≥ ϕi(B∗n) for 0 ≤ i ≤ n, where B∗n satisfies these three properties as shown in Remark
3.7. This contradicts the minimality of G0. Therefore, a cut-edge of G0 must be a pendent edge. �

Lemma 3.16. If G0 has the minimum SLCs inUn1,n2 and Cl is the cycle of G0, then l = 4.

Proof. We assume that G0 is Fn (as shown in Fig. 3(a)) and l ≥ 6. By applying the γ-transformation and by
Lemma 3.8, we obtain a new graph F∗n (as shown in Fig. 3(b)) having a cycle Cl−2 such that ϕi(G0) ≥ ϕi(F∗n)
for 0 ≤ i ≤ n and the equalities do not hold for all i, where F∗n satisfies these three properties as shown in
Remark 3.10. This contradicts the minimality of G0. Therefore, l = 4. �

Theorem 3.17. Let G ∈ Un1,n2 with n1,n2 ≥ 2 and n1 + n2 = n. We have ϕi(G) ≥ ϕi(Mn) for 0 ≤ i ≤ n and the
equalities do not hold for all i.

Proof. Let G0 be the graph with the minimum SLCs inUn1,n2 and Cl the cycle of G0. By Lemmas 3.15 and
3.16, we get that a cut-edge of G0 must be a pendent edge and l = 4, respectively. Therefore, we suppose
G0 = Dn, where Dn is shown in Fig. 4(a). By applying the ξ-transformation and by Lemma 3.11, we have
ϕi(Dn) ≥ ϕi(Mn) for 0 ≤ i ≤ n and the equalities do not hold for all i, where Mn is shown in Fig. 4(b) and
Mn ∈ Un1,n2 . This contradicts the minimality of G0. Therefore, we finally get G0 = Mn. Theorem 3.17 is thus
proved. �

By Theorem 3.17, we get the graph with the minimal IE amongUn1,n2 , which is shown in Theorem 3.18.

Theorem 3.18. Let G ∈ Un1,n2 with n1,n2 ≥ 2 and n1 + n2 = n. We have IE(G) ≥ IE(Mn) with the equality iff
G = Mn.
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[1] D. Cvetković, P. Rowlinson, S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra and its Applications 423 (2007)
155–171.
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[9] A. Ilić, On the ordering of trees by the Laplacian coefficients, Linear Algebra and its Applications 431 (2009) 2203–2212.

[10] Y.L. Jin, Y.N. Yeh, X.D. Zhang, Laplacian coefficient, matching polynomial and incidence energy of trees with described maximum
degree, Journal of Combinatorial Optimization 31 (2016) 1345–1372.

[11] M. Jooyandeh, D. Kiani, M. Mirzakhah, Incidence energy of a graph, MATCH Communications in Mathematical and in Computer
Chemistry 62 (2009) 561–572.

[12] E. Kaya, A.D. Maden, A generalization of the incidence energy and the Laplacian-energy-like invariant, MATCH Communications
in Mathematical and in Computer Chemistry 80 (2018) 467–480.

[13] H.H. Li, B.S. Tam, L. Su, On the signless Laplacian coefficients of unicyclic graphs, Linear Algebra and its Applications 439 (2013)
2008–2028.

[14] W.Q. Lin, W.G. Yan, Laplacian coefficients of trees with a given bipartition, Linear Algebra and its Applications 435 (2011)
152–162.
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