The Signless Laplacian Coefficients and the Incidence Energy of Graphs with a Given Bipartition

Lei Zhong ${ }^{\text {a,b }}$, Wen-Huan Wang ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Shanghai University, Shanghai 200444, China
${ }^{b}$ Department of Mathematics, University of Mississippi, Oxford, MS 38677, USA

Abstract

We consider two classes of the graphs with a given bipartition. One is trees and the other is unicyclic graphs. The signless Laplacian coefficients and the incidence energy are investigated for the sets of trees/unicyclic graphs with n vertices in which each tree/unicyclic graph has an $\left(n_{1}, n_{2}\right)$-bipartition, where n_{1} and n_{2} are positive integers not less than 2 and $n_{1}+n_{2}=n$. Four new graph transformations are proposed for studying the signless Laplacian coefficients. Among the sets of trees/unicyclic graphs considered, we obtain exactly, for each, the minimal element with respect to the quasi-ordering according to their signless Laplacian coefficients and the element with the minimal incidence energies.

1. Introduction

Let $G=(V(G), E(G))$ be a simple graph, where $V(G)=\left\{v_{1}, \cdots, v_{n}\right\}$ and $E(G)=\left\{e_{1}, \cdots, e_{m}\right\}$ are the vertex set and the edge set of G, respectively. The adjacency matrix of G is denoted by $\boldsymbol{A}(G)$. The energy of G, as introduced by Gutman [6], is defined as the sum of the absolute values of all the eigenvalues of $\boldsymbol{A}(G)$. Let \boldsymbol{B} be a matrix with real entries. The singular values of \boldsymbol{B} are the positive square roots of the eigenvalues of $\boldsymbol{B} \boldsymbol{B}^{\mathrm{t}}$, where $\boldsymbol{B}^{\mathrm{t}}$ is the transpose of \boldsymbol{B}. Moreover, if \boldsymbol{B} is a symmetric matrix, then its singular values are the absolute values of its eigenvalues. Nikiforov [18] extended the concept of energy to all matrices, defining the energy of a matrix as the sum of the singular values of the matrix.

We denote by $\boldsymbol{I}(G)$ the vertex-edge incidence matrix of G, where $\boldsymbol{I}(G)$ is an $(n \times m)$-matrix whose (i, j) entry is 1 if the vertex v_{i} is incident with the edge e_{j}, and 0 otherwise. In 2009, Jooyandeh et al. [11] defined the incidence energy (IE) of a graph G as

$$
\begin{equation*}
\operatorname{IE}(G)=\sum_{i=1}^{n} \sigma_{i}, \tag{1}
\end{equation*}
$$

where $\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n}$ are the singular values of $\boldsymbol{I}(G)$.
Let $\boldsymbol{D}(G)=\operatorname{diag}\left(d_{G}\left(v_{1}\right), d_{G}\left(v_{2}\right), \cdots, d_{G}\left(v_{n}\right)\right)$ be the degree diagonal matrix of G, where $d_{G}\left(v_{i}\right)(1 \leq i \leq n)$ is the degree of vertex v_{i} of G. We refer to $\boldsymbol{L}(G)=\boldsymbol{D}(G)-\boldsymbol{A}(G)$ and $\boldsymbol{Q}(G)=\boldsymbol{D}(G)+\boldsymbol{A}(G)$ as the Laplacian

[^0]matrix and the signless Laplacian matrix, respectively. Since $\boldsymbol{I}(G) \boldsymbol{I}^{\mathrm{t}}(G)=\boldsymbol{D}(G)+\boldsymbol{A}(G)=\boldsymbol{Q}(G)$, we get [7]
\[

$$
\begin{equation*}
\operatorname{IE}(G)=\sum_{i=1}^{n} \sqrt{q_{i}}, \tag{2}
\end{equation*}
$$

\]

where $q_{1}, q_{2}, \cdots, q_{n}$ are the eigenvalues of the signless Laplacian matrix $\boldsymbol{Q}(G)$. It is noted that $q_{1}, q_{2}, \cdots, q_{n}$ are real and non-negative.

The IE of G, which origins from chemical graph theory, can help explain some phenomena of chemical molecule. The graphs having the extremal IEs are derived on basis of (5) and other methods. For the graphs with the extremal IEs and the upper and lower bounds of IE, one can refer to Refs. [5, 7, 10, 15, 20, 21, 24, 26,27]. Kaya and Maden got some bounds for the generalized version of incidence energy [12].

The Laplacian and signless Laplacian characteristic polynomials of G are respectively defined as

$$
\begin{align*}
& L(G ; x)=\operatorname{det}[x \boldsymbol{I}-\boldsymbol{L}(G)]=\sum_{i=0}^{n}(-1)^{i} c_{i}(G) x^{n-i} \tag{3}\\
& Q(G ; x)=\operatorname{det}[x \boldsymbol{I}-\boldsymbol{Q}(G)]=\sum_{i=0}^{n}(-1)^{i} \varphi_{i}(G) x^{n-i} \tag{4}
\end{align*}
$$

where \boldsymbol{I} is the identity matrix of order n, and $c_{i}(G)$ and $\varphi_{i}(G)$ are coefficients of corresponding characteristic polynomials. It is known that $\boldsymbol{Q}(G)$ and $L(G)$ are similar if and only if (iff) G is bipartite. Therefore, the Laplacian coefficients are the same as the signless Laplacian coefficients (SLCs) iff G is bipartite.

Let \mathcal{G}_{n} be the set of all the simple graphs of order n. For $G, H \in \mathcal{G}_{n}$, we write $G \leq H$ if $c_{i}(G) \leq c_{i}(H)$ with $0 \leq i \leq n$. Similarly, we denote $G \leq^{\prime} H$ if $\varphi_{i}(G) \leq \varphi_{i}(H)$ for $0 \leq i \leq n$. We write $G \prec^{\prime} H$ if $G \leq^{\prime} H$ with an integer k in such a way that $\varphi_{k}(G)<\varphi_{k}(H)$. Then we refer to this symbol \leq^{\prime} as the quasi-ordering. Mirzakhah and Kiani [16] obtained

$$
\begin{align*}
& G \leq^{\prime} H \Longrightarrow I E(G) \leq I E(H) \tag{5}\\
& G \prec^{\prime} H \Longrightarrow I E(G)<I E(H) . \tag{6}
\end{align*}
$$

The Laplacian matrix has been studied extensively. Among various classes of graphs, some results have been derived about the partial ordering according to \leq. For example, Laplacian-cospectral trees [17], trees with a fixed matching number [9], unicyclic graphs [19], and bicyclic graphs [8], etc.

The signless Laplacian matrix of G has attracted more and more attention due to it can be used to discover more structural characterization of graphs than the Laplacian matrix in some ways [24]. For the partial ordering according to \leq^{\prime}, there are many interesting results. Mirzakhah and Kiani [16] studied the coefficients of the signless Laplacian matrix of unicyclic graphs. Li et al. [13] determined two maximal elements and two minimal elements among unicyclic graphs. Zhang and Zhang [24] got two minimal elements in bicyclic graphs. Among the unicyclic graphs having a fixed matching number, Zhang and Zhang [25] characterized all the minimal elements. In the connected graphs of n vertices and m edges without even cycles, Wang et al. [23] obtained the minimal element which has the minimum SLCs and the minimum IE. Among the unicyclic graphs with n vertices and r pendent vertices, where $n \geq 4$ and $r \geq 1$, Wang and Zhong [22] characterized a unique extremal graph which has the minimum SLCs and the minimum IE. For further information on the signless Laplacian matrix, one can refer to three surveys [2-4].

Let G be a connected bipartite graph with n vertices. Then $V(G)$ can be partitioned into two subsets $V_{1}(G)$ and $V_{2}(G)$ in such a way that each edge in $E(G)$ joins a vertex in $V_{1}(G)$ with a vertex in $V_{2}(G)$. Let $\left|V_{1}(G)\right|=n_{1}$ and $\left|V_{2}(G)\right|=n_{2}$ with $n_{1}+n_{2}=n$. We say that G has an $\left(n_{1}, n_{2}\right)$-bipartition. Let $\mathcal{T}_{n_{1}, n_{2}} / \mathcal{U}_{n_{1}, n_{2}}$ be the set of trees/unicyclic graphs with n vertices in which each tree/unicyclic graph has an (n_{1}, n_{2})-bipartition, where n_{1} and n_{2} are positive integers not less than 2 and $n_{1}+n_{2}=n$.

Motivated by all the above-mentioned work, we will characterize, in the present study, the minimal graphs in terms of \leq^{\prime} according to their SLCs, and then deduce the graphs with the minimal IEs in $\mathcal{T}_{n_{1}, n_{2}}$ and $\mathcal{U}_{n_{1}, n_{2}}$.

The subdivision graph $S(G)$ of a graph G is a graph obtained by inserting a new vertex on each edge of G. Among $\mathcal{T}_{n_{1}, n_{2}}$, by comparing the number of k-matchings of the subdivision graphs of the graphs considered, Lin and Yan [14] characterized the trees having the minimal and the second minimal Laplacian coefficients. In this paper, we will use the α-transformation (presented in Lemma 3.3 in Subsection 3.1) to obtain the graph with the minimal SLCs among $\mathcal{T}_{n_{1}, n_{2}}$. Since the graphs among $\mathcal{T}_{n_{1}, n_{2}}$ and $\mathcal{U}_{n_{1}, n_{2}}$ are bipartite, their Laplacian coefficients are the same as their SLCs. Thus, in this paper, another straightforward and simpler method is acquired to obtain the graph with the minimal Laplacian coefficients among $\mathcal{T}_{n_{1}, n_{2}}$ (presented in Theorem 3.13 in Subsection 3.2), and the graph with the minimal Laplacian coefficients among $\mathcal{U}_{n_{1}, n_{2}}$ is deduced (presented in Theorem 3.17 in Subsection 3.2).

The paper is organized as follows. In Subsection 3.1, four new transformations (see Lemmas 3.13.11) which keep the bipartition unchanged are derived. In Subsection 3.2, by the four transformations proposed in this paper, we obtain exactly, among $\mathcal{T}_{n_{1}, n_{2}}$ and $\mathcal{U}_{n_{1}, n_{2}}$, one minimal element with respect to the quasi-ordering $<^{\prime}$ according to their SLCs and we get the graph with the minimal IEs.

2. Preliminaries

Let G be a graph of order n. A connected graph of order n is an odd unicyclic graph if it has only one cycle with an odd length. A spanning subgraph of G whose connected components are trees or odd unicyclic graphs is called a TU-subgraph of G. Let H be a TU-subgraph of G consisting of s odd unicyclic graphs and t trees $T_{1}, T_{2}, \cdots, T_{t}$ of orders $n_{1}, n_{2}, \cdots, n_{t}$, respectively. Then the weight of H is denoted by

$$
\begin{equation*}
W(H)=4^{s} \prod_{i=1}^{t} n_{i} . \tag{7}
\end{equation*}
$$

If H contains no trees, then $W(H)=4^{s}$. If H contains no cycles, then $W(H)=\prod_{i=1}^{t} n_{i}$. Note that isolated vertices in H may be ignored since they do not contribute to $W(H)$.

To obtain the main results of this paper, Lemma 2.1 is introduced as follows.
Lemma 2.1. [1] Let $Q(G, x)=\operatorname{det}[x \boldsymbol{I}-\boldsymbol{Q}(G)]=\sum_{i=0}^{n}(-1)^{i} \varphi_{i}(G) x^{n-i}$ be the characteristic polynomial of the signless Laplacian matrix of a graph G with order n. Then

$$
\begin{equation*}
\varphi_{i}(G)=\sum_{H_{i}} W\left(H_{i}\right), \quad(i=0,1,2, \cdots, n), \tag{8}
\end{equation*}
$$

where the summation runs over all TU-subgraphs H_{i} of G with i edges.
In particular, $\varphi_{0}(G)=1, \varphi_{1}(G)=2 m$ and $\varphi_{2}(G)=2 m^{2}-m-\frac{1}{2} \sum_{i=1}^{n} d_{G}^{2}\left(v_{i}\right)$.
By Lemma 2.1, we get the following property, which is used to obtain our transformations in Subsection 3.1. Let G_{1} and G_{2} be two connected graphs with n vertices. Let i be a fixed number with $2 \leq i \leq n$. Let $\mathcal{H}_{1}=\left\{H^{1}, H^{2}, \ldots, H^{s}\right\}$ and $\mathcal{H}_{2}=\left\{\widehat{H}^{1}, \widehat{H}^{2}, \ldots, \widehat{H}^{t}\right\}$ be the sets of all the TU-subgraphs of G_{1} and of G_{2} with i edges exactly, respectively, where $s \leq t$. Then $\varphi_{i}\left(G_{1}\right)=\sum_{j=1}^{s} W\left(H^{j}\right)$ and $\varphi_{i}\left(G_{2}\right)=\sum_{j=1}^{t} W\left(\widehat{H}^{j}\right)$. If there exists a mapping f from \mathcal{H}_{1} to \mathcal{H}_{2} satisfying $W\left(H^{k}\right) \leq W\left(\widehat{H}^{k}\right)$, where $1 \leq k \leq s$, then we have $\varphi_{i}\left(G_{1}\right)=W\left(H^{1}\right)+\ldots+W\left(H^{s}\right) \leq W\left(\widehat{H}^{1}\right)+\cdots+W\left(\widehat{H}^{t}\right)=\varphi_{i}\left(G_{2}\right)$.

3. Main results

3.1. Four transformations for studying the SLCs of graphs considered

In this subsection, we will introduce four new transformations for studying the SLCs of the graphs with a given bipartition, which are shown in Lemmas 3.1-3.11. The bipartition for the graphs among $\mathcal{T}_{n_{1}, n_{2}}$ and $\mathcal{U}_{n_{1}, n_{2}}$ keeps unchanged within the framework of the four transformations.

Figure 1: α-transformation from A_{n} to A_{n}^{*}

For a subset M of $E(G), G-M$ denotes the graph obtained from G by deleting all the edges in M. For an edge set M^{*} satisfying $M^{*} \cap E(G)=\emptyset, G+M^{*}$ denotes the graph obtained from G by adding all the edges in M^{*}. If $M=\{e\}$ and $M^{*}=\{e\}$, then $G-M$ and $G+M^{*}$ are rewritten as $G-e$ and $G+e$, respectively. For a subgraph H of $G, G-H$ denotes the subgraph of G induced by the vertices not in H.

Let G_{1}, G_{2} and G_{3} be three mutually disjoint graphs in which u_{i} is a vertex of $G_{i}(1 \leq i \leq 3)$. We denote by $G_{1}+u_{1} u_{2}+G_{2}$ the graph obtained from G_{1} and G_{2} by adding an edge $u_{1} u_{2}$ between u_{1} of G_{1} with u_{2} of G_{2}. Similarly, $G_{1}+u_{1} u_{2}+G_{2}+u_{2} u_{3}+G_{3}$ is the graph obtained from G_{1}, G_{2} and G_{3} by adding an edge $u_{1} u_{2}$ between u_{1} of G_{1} with u_{2} of G_{2} and adding an edge $u_{2} u_{3}$ between u_{2} of G_{2} with u_{3} of G_{3}.

We denote by $N_{G}(v)$ the neighbors of v in the graph G.
Let Q be a connected graph with a vertex x, and T_{v} and T_{w} two trees with $v \in V\left(T_{v}\right)$ and $w \in V\left(T_{v}\right)$. Let $P_{3}=u v w$ be a path of length 2 . Let A_{n} be the graph with n vertices obtained from Q by first identifying x of Q with u of $P_{3}=u v w$, then identifying v of T_{v} with v of P_{3} and identifying w of T_{w} with w of P_{3}. Let A_{n}^{*} be the graph obtained from A_{n} by replanting T_{w} from w to $u . A_{n}$ and A_{n}^{*} are shown in Figs. 1(a) and 1(b), respectively. In other words,

$$
\begin{equation*}
A_{n}^{*}=A_{n}-\left\{w y \mid y \in N_{T_{w}}(w)\right\}+\left\{u y \mid y \in N_{T_{w}}(w)\right\} . \tag{9}
\end{equation*}
$$

The transformation from A_{n} to A_{n}^{*} in (9) is called α-transformation.
Lemma 3.1. Let A_{n} and A_{n}^{*} be the two graphs as defined in Fig. 1. If Q is a connected unicyclic graph, then we have $\varphi_{i}\left(A_{n}\right) \geq \varphi_{i}\left(A_{n}^{*}\right)$ for $0 \leq i \leq n$, where the equalities do not hold for all i.

Proof. It follows from Lemma 2.1 that $\varphi_{i}\left(A_{n}\right)=\varphi_{i}\left(A_{n}^{*}\right)$ for $i=0,1$. Next, let $2 \leq i \leq n$. For a fixed i, let \mathcal{H}^{*} and \mathcal{H} be the sets of all the TU-subgraphs of A_{n}^{*} and of A_{n} with i edges exactly, respectively.

For an arbitrary TU-subgraph $H^{*} \in \mathcal{H}^{*}$, let

$$
\begin{equation*}
f_{1}: \mathcal{H}^{*} \rightarrow \mathcal{H}, H^{*} \rightarrow H=f_{1}\left(H^{*}\right) \tag{10}
\end{equation*}
$$

with $V(H)=V\left(H^{*}\right)$ and

$$
E(H)=E\left(H^{*}\right)-\left\{u x \mid x \in N_{T_{w}}(u) \cap V\left(H^{*}\right)\right\}+\left\{w x \mid x \in N_{T_{w}}(u) \cap V\left(H^{*}\right)\right\} .
$$

Obviously, f_{1} is a bijection from \mathcal{H}^{*} to \mathcal{H}.
For the sake of conciseness, a tree component, an odd unicyclic component, an arbitrary component, and the same component are abbreviated as a TC, an OUC, an AC, and the SC, respectively. Let N be the weight of all the components of H^{*} not containing u, v or w. In A_{n}^{*}, let $u v=e_{1}$ and $v w=e_{2}$. Three cases are considered as follows.

Case (I) $e_{1}, e_{2} \notin E\left(H^{*}\right)$.
In this case, for an arbitrary TU-subgraph H^{*} in \mathcal{H}^{*}, we denote by R_{u}^{*}, R_{v}^{*} and R_{w}^{*} the connected components of H^{*} containing u, v and w, respectively. Since $e_{1}, e_{2} \notin E\left(H^{*}\right), R_{u}^{*}, R_{v}^{*}$ and $R_{w}^{*}=\{w\}$ are mutually
disjoint; and R_{v}^{*} and R_{w}^{*} are TCs. Let $\left|V(Q) \cap V\left(R_{u}^{*}\right) \backslash\{u\}\right|=a,\left|V\left(T_{w}\right) \cap V\left(R_{u}^{*}\right) \backslash\{u\}\right|=b$ and $\left|V\left(T_{v}\right) \cap V\left(R_{v}^{*}\right) \backslash\{v\}\right|=c$. Thus, we get

$$
\begin{equation*}
\left|V\left(R_{u}^{*}\right)\right|=a+b+1, \quad\left|V\left(R_{v}^{*}\right)\right|=c+1, \quad\left|V\left(R_{w}^{*}\right)\right|=1 . \tag{11}
\end{equation*}
$$

By the bijection f_{1}, in H, there exist three components, denoted by R_{u}, R_{v} and R_{w}, which correspond to R_{u}^{*}, R_{v}^{*} and R_{v}^{*}, respectively. It is noted that R_{u}, R_{v} and R_{w} contain u, v and w in H, respectively; R_{v} and R_{w} are TCs; and R_{u}, R_{v} and R_{w} are mutually disjoint. Obviously, we have

$$
\begin{equation*}
\left|V\left(R_{u}\right)\right|=a+1, \quad\left|V\left(R_{v}\right)\right|=c+1, \quad\left|V\left(R_{w}\right)\right|=b+1 \tag{12}
\end{equation*}
$$

Furthermore, we have the following statement:
Fact 3.2. Except for the component(s) containing u, v and w in H^{*}, an $A C$ of H^{*} corresponds to the SC of H.
Two subcases are considered according to the fact R_{u}^{*} is a TC or an OUC.
Subcase (I.i) R_{u}^{*} is a TC.
In this subcase, R_{u} is a TC. By Fact 3.2, (7), (11), and (12), we obtain

$$
\begin{align*}
W\left(f_{1}\left(H^{*}\right)\right)-W\left(H^{*}\right) & =(a+1)(b+1)(c+1) N-(a+b+1)(c+1) N \\
& =\operatorname{Nab}(c+1) \geq 0 \tag{13}
\end{align*}
$$

with the third equality iff $a=0$ or $b=0$.
Subcase (I.ii) R_{u}^{*} is an OUC.
In this subcase, R_{u} is an OUC. By Fact 3.2, (7), (11), and (12), we get

$$
\begin{equation*}
W\left(f_{1}\left(H^{*}\right)\right)-W\left(H^{*}\right)=4(b+1)(c+1) N-4(c+1) N=4 N b(c+1) \geq 0 \tag{14}
\end{equation*}
$$

with the third equality iff $b=0$.
Case (II) $e_{1} \in E\left(H^{*}\right)$ and $e_{2} \notin E\left(H^{*}\right)$.
Let $R_{u, v}^{*}=R_{u}^{*}+u v+R_{v}^{*}$ and $R_{u, v}=R_{u}+u v+R_{v}$. Obviously, by (11) and (12), $R_{u, v}^{*}$ is a component of order $a+b+c+2$ containing u, v in H^{*} and $R_{u, v}$ is a component of order $a+c+2$ containing u, v of H. Since $e_{1} \in E\left(H^{*}\right)$ and $e_{2} \notin E\left(H^{*}\right)$, by the bijection $f_{1}, R_{u, v}^{*}$ and $\{w\}$ in H^{*} correspond to $R_{u, v}$ and R_{w} in H, respectively. Two subcases are considered according to the fact $R_{u, v}^{*}$ is a TC or an OUC.

Subcase (II.i) $R_{u, v}^{*}$ is a TC.
In this subcase, $R_{u, v}$ is a TC. By Fact 3.2, (7), (11), and (12), we get

$$
\begin{align*}
W\left(f_{1}\left(H^{*}\right)\right)-W\left(H^{*}\right) & =(a+c+2)(b+1) N-(a+b+c+2) N \\
& =N b(a+c+1) \geq 0, \tag{15}
\end{align*}
$$

with the third equality iff $b=0$. We denote

$$
\mathcal{H}_{1}^{*}=\left\{H^{*} \in \mathcal{H}^{*} \mid e_{1} \in E\left(H^{*}\right), e_{2} \notin E\left(H^{*}\right) \text { and } R_{u, v}^{*} \text { is a TC }\right\} .
$$

Subcase (II.ii) $R_{u, v}^{*}$ is an OUC.
In this subcase, $R_{u, v}$ is an OUC. It follows from Fact 3.2, (7) and (12) that

$$
\begin{equation*}
W\left(f_{1}\left(H^{*}\right)\right)-W\left(H^{*}\right)=4(b+1) N-4 N=4 N b \geq 0 \tag{16}
\end{equation*}
$$

with the third equality iff $b=0$.
Case (III) $e_{1} \notin E\left(H^{*}\right)$ and $e_{2} \in E\left(H^{*}\right)$.
Since $e_{1} \notin E\left(H^{*}\right)$ and $e_{2} \in E\left(H^{*}\right)$, by the bijection f_{1}, R_{u}^{*} and $R_{v, w}^{*}=R_{v}^{*}+v w+R_{v}^{*}$ in H^{*} correspond to R_{u} and $R_{v, w}=R_{v}+v w+R_{w}$ in H, respectively. Obviously, by (11) and (12), $R_{v, w}^{*}$ is a TC of order $c+2$ containing v and w in H^{*} and $R_{v, w}$ is a TC of order $b+c+2$ containing v and w in H. Two subcases are considered according to the fact R_{u}^{*} is a TC or an OUC.

Subcase (III.i) R_{u}^{*} is a TC.
In this subcase, R_{u} is a TC. By Fact 3.2, (7), (11), and (12), we have

$$
\begin{align*}
W\left(f_{1}\left(H^{*}\right)\right)-W\left(H^{*}\right) & =(a+1)(b+c+2) N-(a+b+1)(c+2) N \\
& =N b(a-c-1) . \tag{17}
\end{align*}
$$

We denote

$$
\mathcal{H}_{2}^{*}=\left\{H^{*} \in \mathcal{H}^{*} \mid e_{1} \notin E\left(H^{*}\right), e_{2} \in E\left(H^{*}\right) \text { and } R_{u}^{*} \text { is a TC }\right\} .
$$

We construct a mapping ξ_{1} from \mathcal{H}_{2}^{*} to \mathcal{H}_{1}^{*} as follows. For $H^{*} \in \mathcal{H}_{2}^{*}$, let

$$
\begin{equation*}
\xi_{1}: H^{*} \rightarrow \xi_{1}\left(H^{*}\right)=H^{*}-e_{2}+e_{1} \tag{18}
\end{equation*}
$$

Obviously, ξ_{1} is bijective. Thus, there exists a one-to-one relationship between \mathcal{H}_{2}^{*} and \mathcal{H}_{1}^{*}. Namely, for an arbitrary $H^{*} \in \mathcal{H}_{2}^{*}$, we can find, by ξ_{1}, a unique element $\xi_{1}\left(H^{*}\right) \in \mathcal{H}_{1}^{*}$ corresponding to it, and vice versa. For $H^{*} \in \mathcal{H}_{2}^{*}$, by (17) and (15), we obtain

$$
\begin{equation*}
\left[W\left(f_{1}\left(H^{*}\right)\right)-W\left(H^{*}\right)\right]+\left[W\left(f_{1}\left(\xi_{1}\left(H^{*}\right)\right)\right)-W\left(\xi_{1}\left(H^{*}\right)\right)\right]=2 N a b \geq 0 \tag{19}
\end{equation*}
$$

Furthermore, by (19), we get

$$
\begin{align*}
& \sum_{H^{*} \in \mathcal{H}_{2}^{*}}\left[W\left(f_{1}\left(H^{*}\right)\right)-W\left(H^{*}\right)\right]+\sum_{H^{*} \in \mathcal{H}_{1}^{*}}\left[W\left(f_{1}\left(H^{*}\right)\right)-W\left(H^{*}\right)\right] \\
& \quad=\sum_{H^{*} \in \mathcal{H}_{2}^{*}}\left[W\left(f_{1}\left(H^{*}\right)\right)-W\left(H^{*}\right)+W\left(f_{1}\left(\xi_{1}\left(H^{*}\right)\right)\right)-W\left(\xi_{1}\left(H^{*}\right)\right)\right] \geq 0 \tag{20}
\end{align*}
$$

Subcase (III.ii) R_{u}^{*} is an OUC.
In this subcase, R_{u} is an OUC. By Fact 3.2 and (7), we obtain

$$
\begin{equation*}
W\left(f_{1}\left(H^{*}\right)\right)-W\left(H^{*}\right)=4(b+c+2) N-4(c+2) N=4 N b \geq 0 \tag{21}
\end{equation*}
$$

with the third equality iff $b=0$.
Case (IV) $e_{1}, e_{2} \in E\left(H^{*}\right)$.
We have three facts: (i) u, v and w of H^{*} are contained in a component of H^{*} (denoted by $R_{u, v, w}^{*}$); (ii) $R_{u, v, w}^{*}$ corresponds to a component (denoted by $R_{u, v, v}$) of H containing u, v and w; and (iii) $R_{u, v, w}^{*}$ and $R_{u, v, w}$ are TCs or OUCs simultaneously and have the same order. Therefore, it follows from Fact 3.2 and (7) that

$$
\begin{equation*}
W\left(f_{1}\left(H^{*}\right)\right)=W\left(H^{*}\right) \tag{22}
\end{equation*}
$$

By (13), (14), (16), and (20)-(22), for a fixed $i(2 \leq i \leq n)$, we finally get

$$
\begin{equation*}
\sum_{H^{*} \in \mathcal{H}^{*}} W\left(f\left(H^{*}\right)\right) \geq \sum_{H^{*} \in \mathcal{H}^{*}} W\left(H^{*}\right) \tag{23}
\end{equation*}
$$

The inequality in (23) holds when at least one of the inequalities in (14), (16) and (21) holds for $b \geq 1$. Therefore, by Lemma 2.1, for $0 \leq i \leq n$, we obtain $\varphi_{i}\left(A_{n}\right) \geq \varphi_{i}\left(A_{n}^{*}\right)$ and the equality holds iff $i=0,1$. Thus, we obtain Lemma 3.1.

In A_{n} and A_{n}^{*}, if Q is a tree, then by deleting the proofs for Subcases (I.ii), (II.ii) and (III.ii) in Lemma 3.1, we can easily get Lemma 3.3 as follows.

Lemma 3.3. Let A_{n} and A_{n}^{*} be the two graphs as defined in Fig. 1. If Q is a tree, then we have $\varphi_{i}\left(A_{n}\right) \geq \varphi_{i}\left(A_{n}^{*}\right)$ for $0 \leq i \leq n$ and the equalities do not hold for all i.

Figure 2: β-transformation from B_{n} to B_{n}^{*}

Remark 3.4. After performing the α-transformation once from A_{n} to A_{n}^{*} in Lemma 3.1, A_{n} and A_{n}^{*} have the same bipartition, and the number of pendent vertices of A_{n}^{*} is one more than that of A_{n}.

Let B_{n} be the graph shown in Fig. 2(a), where B_{n} satisfies the following conditions: (i) v and w are two adjacent vertices at C_{l} of B_{n}; (ii) u is not at C_{l} and u is adjacent to v; (iii) u, v and w are identified with u^{\prime} of a tree T_{3}, v^{\prime} of a tree T_{1} and w^{\prime} of a tree T_{2}, respectively; and (iv) The other vertices at C_{l} of B_{n} (except for v and w) may be or maybe not attached by trees. Let B_{n}^{*} be the graph obtained from B_{n} by replanting T_{3} from u to w, where B_{n}^{*} is shown in Fig. 2(b). In other words,

$$
\begin{equation*}
B_{n}^{*}=B_{n}-\left\{u y \mid y \in N_{T_{3}}\left(u^{\prime}\right)\right\}+\left\{w y \mid y \in N_{T_{3}}\left(u^{\prime}\right)\right\} . \tag{24}
\end{equation*}
$$

The transformation from B_{n} to B_{n}^{*} in (24) is called β-transformation.
Lemma 3.5. For $0 \leq i \leq n$, we have $\varphi_{i}\left(B_{n}\right) \geq \varphi_{i}\left(B_{n}^{*}\right)$ where the equality does not hold for all i.
Proof. By Lemma 2.1, $\varphi_{i}\left(B_{n}\right)=\varphi_{i}\left(B_{n}^{*}\right)$ for $i=0,1$. Next, we assume $2 \leq i \leq n$.
For a fixed i, we denote by \mathcal{H}^{*} and \mathcal{H} the sets of all the TU-subgraphs of B_{n}^{*} and of B_{n} with exactly i edges, respectively. For an arbitrary TU-subgraph $H^{*} \in \mathcal{H}^{*}$, let

$$
\begin{equation*}
f_{2}: \mathcal{H}^{*} \rightarrow \mathcal{H}, H^{*} \rightarrow H=f_{2}\left(H^{*}\right) \tag{25}
\end{equation*}
$$

with $V(H)=V\left(H^{*}\right)$ and

$$
E(H)=E\left(H^{*}\right)-\left\{w x \mid x \in N_{T_{3}}\left(u^{\prime}\right) \cap V\left(H^{*}\right)\right\}+\left\{u x \mid x \in N_{T_{3}}\left(u^{\prime}\right) \cap V\left(H^{*}\right)\right\} .
$$

Obviously, f_{2} is bijective from \mathcal{H}^{*} to \mathcal{H}.
Let N be the weight of all the components of H^{*} not containing u, v or w. Next, four cases are considered as follows.

Case (I) $u v, v w \notin E\left(H^{*}\right)$.
Two subcases are considered as follows.
Subcase (I.i) v and w of H^{*} are not contained in a SC.
In this subcase, for an arbitrary TU-subgraph H^{*} in \mathcal{H}^{*}, we denote by $\widetilde{R}_{u}, \widetilde{R}_{v}$ and \widetilde{R}_{w} the connected components of H^{*} containing u, v and w, respectively. Since $u v, v w \notin E\left(H^{*}\right), \widetilde{R}_{u}=\{u\}, \widetilde{R}_{v}$ and \widetilde{R}_{w} are TCs and they are mutually disjoint. Let $\left|V\left(\widetilde{R}_{v}-v\right)\right|=a,\left|V\left(\widetilde{R}_{w}-T_{3}-w\right)\right|=b$ and $\left|V\left(T_{3}\right) \cap V\left(\widetilde{R}_{w}\right) \backslash\{w\}\right|=c$. Thus, we get

$$
\begin{equation*}
\left|V\left(\widetilde{R}_{u}\right)\right|=1, \quad\left|V\left(\widetilde{R}_{v}\right)\right|=a+1, \quad\left|V\left(\widetilde{R}_{w}\right)\right|=b+c+1 \tag{26}
\end{equation*}
$$

By the bijection f_{2}, in H, there exist three components, denoted by $R_{u}^{\prime}, R_{v}^{\prime}$ and R_{w}^{\prime}, which correspond to $\widetilde{R}_{u}, \widetilde{R}_{v}$ and \widetilde{R}_{w}, respectively. Obviously, we have: (i) $R_{u}^{\prime}, R_{v}^{\prime}$ and R_{w}^{\prime} contain u, v and w in H, respectively; (ii) $R_{u}^{\prime}, R_{v}^{\prime}$ and R_{w}^{\prime} are TCs and they are mutually disjoint; and (iii) R_{v}^{\prime} is \widetilde{R}_{v}. Furthermore, we have

$$
\begin{equation*}
\left|V\left(R_{u}^{\prime}\right)\right|=c+1, \quad\left|V\left(R_{v}^{\prime}\right)\right|=a+1, \quad\left|V\left(R_{w}^{\prime}\right)\right|=b+1 \tag{27}
\end{equation*}
$$

We have the following statement:

Fact 3.6. Except for the component(s) containing u, v and w in H^{*}, an $A C$ of H^{*} corresponds to the SC of H.
Therefore, by Fact 3.6, (7), (26), and (27), we obtain

$$
\begin{align*}
W\left(f_{2}\left(H^{*}\right)\right)-W\left(H^{*}\right) & =(a+1)(b+1)(c+1) N-(a+1)(b+c+1) N \\
& =N(a+1) b c \geq 0 \tag{28}
\end{align*}
$$

with the third equality iff $b=0$ or $c=0$.
Subcase (I.ii) v and w of H^{*} are contained in a SC.
In this subcase, for an arbitrary TU-subgraph H^{*} in \mathcal{H}^{*}, we denote by \widetilde{R}_{1} the connected component of H^{*} containing v and w. Since $v w \notin E\left(H^{*}\right), \widetilde{R}_{1}$ is a TC. Since $u v \notin E\left(H^{*}\right), u$ of H^{*} is contained in $\widetilde{R}_{u}=\{u\}$.

Let $\left|V\left(\widetilde{R}_{1}-T_{3}-v-w\right)\right|=h$ and $\left|V\left(T_{3}\right) \cap V\left(\widetilde{R}_{1}\right) \backslash\{w\}\right|=c$. Thus, we get

$$
\begin{equation*}
\left|V\left(\widetilde{R}_{1}\right)\right|=h+c+2, \quad\left|V\left(\widetilde{R}_{u}\right)\right|=1 \tag{29}
\end{equation*}
$$

By the bijection f_{2}, we obtain that \widetilde{R}_{1} and \widetilde{R}_{u} in H^{*} correspond to a TC (denoted by R_{1}^{\prime}) containing v and w and R_{u}^{\prime} containing u in H, respectively. Obviously, we have

$$
\begin{equation*}
\left|V\left(R_{1}^{\prime}\right)\right|=h+2,\left|V\left(R_{u}^{\prime}\right)\right|=c+1 . \tag{30}
\end{equation*}
$$

Thus, by Fact 3.6, (7), (29), and (30), we have

$$
\begin{equation*}
W\left(f_{2}\left(H^{*}\right)\right)-W\left(H^{*}\right)=(h+2)(c+1) N-(h+c+2) N=N(h+1) c \geq 0 \tag{31}
\end{equation*}
$$

with the third equality iff $c=0$.
Case (II) $u v \in E\left(H^{*}\right)$ and $v w \notin E\left(H^{*}\right)$.
Two subcases are considered as follows.
Subcase (II.i) v and w of H^{*} are not contained in a SC.
Since $u v \in E\left(H^{*}\right)$ and $v w \notin E\left(H^{*}\right)$, by the bijection f_{2}, we obtain that a TC (denoted by $\widetilde{R}_{u, v}$) of order $a+2$ containing u and v and \widetilde{R}_{w} containing w in H^{*} correspond respectively to a TC (denoted by $R_{u, v}^{\prime}$) of order $a+c+2$ containing u and v and R_{w}^{\prime} containing w in H, where $\widetilde{R}_{u, v}=\widetilde{R}_{u}+u v+\widetilde{R}_{v}$ and $R_{u, v}^{\prime}=R_{u}^{\prime}+u v+R_{v}^{\prime}$. Thus, by Fact 3.6, (7), (26), and (27), we have

$$
\begin{align*}
W\left(f_{2}\left(H^{*}\right)\right)-W\left(H^{*}\right) & =(a+c+2)(b+1) N-(a+2)(b+c+1) N \\
& =N c(b-a-1) . \tag{32}
\end{align*}
$$

We denote

$$
\mathcal{H}_{3}^{*}=\left\{H^{*} \in \mathcal{H}^{*} \mid u v \in E\left(H^{*}\right), v w \notin E\left(H^{*}\right), v \text { and } w \text { of } H^{*} \text { are not contained in a SC }\right\} .
$$

Subcase (II.ii) v and w of H^{*} are contained in a SC.
In this subcase, u, v and w of H^{*} are contained in a TC of order $h+c+3$, which corresponds to a TC of order $h+c+3$ containing u, v and w in H (by the bijection f_{2}). Thus, by Fact 3.6 and (7), we obtain

$$
\begin{equation*}
W\left(f_{2}\left(H^{*}\right)\right)-W\left(H^{*}\right)=0 . \tag{33}
\end{equation*}
$$

Case (III) $u v \notin E\left(H^{*}\right)$ and $v w \in E\left(H^{*}\right)$.
Subcase (III.i) v and w of H^{*} are contained in a TC (namely, $\widetilde{R}_{v, w}=\widetilde{R}_{v}+v w+\widetilde{R}_{w}$) of H^{*}.
By the bijection f_{2}, we obtain that $\widetilde{R}_{v, w}$ of order $a+b+c+2$ containing v and w and $\widetilde{R}_{u}=\{u\}$ in H^{*} correspond respectively to a TC (namely, $R_{v, v}^{\prime}=R_{v}^{\prime}+v w+R_{w}^{\prime}$) of order $a+b+2$ containing v and w and R_{u}^{\prime} in H. Thus, by Fact 3.6, (7) and (27), we have

$$
\begin{align*}
W\left(f_{2}\left(H^{*}\right)\right)-W\left(H^{*}\right) & =(a+b+2)(c+1) N-(a+b+c+2) N \\
& =N c(a+b+1) \geq 0, \tag{34}
\end{align*}
$$

with the third equality iff $c=0$.
We denote
$\mathcal{H}_{4}^{*}=\left\{H^{*} \in \mathcal{H}^{*} \mid u v \notin E\left(H^{*}\right), v w \in E\left(H^{*}\right), v\right.$ and w of H^{*} are contained in a TC of $\left.H^{*}\right\}$.
We construct a mapping ξ_{2} from \mathcal{H}_{3}^{*} to \mathcal{H}_{4}^{*} as follows. For $H^{*} \in \mathcal{H}_{3}^{*}$, let

$$
\begin{equation*}
\xi_{2}: H^{*} \rightarrow \xi_{2}\left(H^{*}\right)=H^{*}-u v+v w . \tag{35}
\end{equation*}
$$

Obviously, ξ_{2} is bijective. Therefore, there exists a one-to-one relationship between \mathcal{H}_{3}^{*} and \mathcal{H}_{4}^{*}. Namely, for an arbitrary $H^{*} \in \mathcal{H}_{3}^{*}$, we can find, by ξ_{2}, a unique element $\xi_{2}\left(H^{*}\right) \in \mathcal{H}_{4}^{*}$ corresponding to it, and vice versa. For $H^{*} \in \mathcal{H}_{3}^{*}$, by (32) and (34), we obtain

$$
\begin{equation*}
\left[W\left(f_{2}\left(H^{*}\right)\right)-W\left(H^{*}\right)\right]+\left[W\left(f_{2}\left(\xi_{2}\left(H^{*}\right)\right)\right)-W\left(\xi_{2}\left(H^{*}\right)\right)\right]=2 N b c \geq 0 \tag{36}
\end{equation*}
$$

with the second equality iff $b=0$ or $c=0$. Therefore, by (36), we get

$$
\begin{align*}
& \sum_{H^{*} \in \mathcal{H}_{3}^{*}}\left[W\left(f_{2}\left(H^{*}\right)\right)-W\left(H^{*}\right)\right]+\sum_{H^{*} \in \mathcal{H}_{4}^{*}}\left[W\left(f_{2}\left(H^{*}\right)\right)-W\left(H^{*}\right)\right] \\
& \quad=\sum_{H^{*} \in \mathcal{H}_{3}^{*}}\left[W\left(f_{2}\left(H^{*}\right)\right)-W\left(H^{*}\right)+W\left(f_{2}\left(\xi_{2}\left(H^{*}\right)\right)\right)-W\left(\xi_{2}\left(H^{*}\right)\right)\right] \geq 0 \tag{37}
\end{align*}
$$

Subcase (III.ii) v and w of H^{*} are contained in an OUC (namely $\widetilde{R}_{1}+v w$).
By the bijection f_{2}, we obtain that $\widetilde{R}_{1}+v w$ and $\widetilde{R}_{u}=\{u\}$ in H^{*} correspond respectively to an OUC (namely $\left.R_{1}^{\prime}+v w\right)$ containing v and w and R_{u}^{\prime} in H. Thus, by Fact 3.6, (7) and (30), we have

$$
\begin{equation*}
W\left(f_{2}\left(H^{*}\right)\right)-W\left(H^{*}\right)=4(c+1) N-4 N=4 N c \geq 0 \tag{38}
\end{equation*}
$$

with the third equality iff $c=0$.
Case (IV) $u v, v w \in E\left(H^{*}\right)$.
We have three facts: (i) u, v and w of H^{*} are contained in a component of H^{*} (denoted by $\widetilde{R}_{u, v, w}$); (ii) $\widetilde{R}_{u, v, w}$ corresponds to a component (denoted by $f_{2}\left(\widetilde{R}_{u, v, w}\right)$) of H containing u, v and w; and (iii) $\widetilde{R}_{u, v, w}$ and $f_{2}\left(\widetilde{R}_{u, v, w}\right)$ are TCs or OUCs simultaneously and have the same order. Therefore, by Fact 3.6 and (7), we obtain

$$
\begin{equation*}
W\left(f_{2}\left(H^{*}\right)=W\left(H^{*}\right)\right. \tag{39}
\end{equation*}
$$

By (28), (31), (33), and (37)-(39), for a fixed $i(2 \leq i \leq n)$, we finally get

$$
\begin{equation*}
\sum_{H^{*} \in \mathcal{H}^{*}} W\left(f_{2}\left(H^{*}\right)\right) \geq \sum_{H^{*} \in \mathcal{H}^{*}} W\left(H^{*}\right) \tag{40}
\end{equation*}
$$

The inequality in (40) holds when at least one of the inequalities in (31) and (38) holds for $c \geq 1$. By Lemma 2.1, we get $\varphi_{i}\left(B_{n}\right) \geq \varphi_{i}\left(B_{n}^{*}\right)$ for $0 \leq i \leq n$ and the equalities do not hold for all i. Therefore, we obtain Lemma 3.5.

Remark 3.7. If B_{n} is a bipartite unicyclic graph, then after performing the β-transformation once from B_{n} to B_{n}^{*} in Lemma 3.5, we have three properties: (i) B_{n} and B_{n}^{*} have the same girth; (ii) B_{n} and B_{n}^{*} have the same bipartition; and (iii) the number of pendent vertices of B_{n}^{*} is one more than that of B_{n}.

Let F_{n} be the graph obtained from $C_{l}=w_{1} w_{2} \ldots w_{l}$ by identifying w_{i} of C_{l} with w_{i}^{\prime} of T_{i}, where T_{i} is a tree, w_{i}^{\prime} is a vertex of T_{i} and $1 \leq i \leq l$. It is noted that T_{i} may be an empty graph, where $1 \leq i \leq l . F_{n}$ is shown in Fig. 3(a). Let F_{n}^{*} be the graph obtained from F_{n} through the following steps: (i) Replanting the tree T_{2} from w_{2} to w_{4}; (ii) Replanting the tree T_{3} from w_{3} to w_{1}; (iii) deleting the edge $w_{2} w_{3}$; and (iv) adding a new edge $w_{1} w_{4}$. F_{n}^{*} is shown in Fig. 3(b). In other words, we have

$$
\begin{align*}
F_{n}^{*}=F_{n} & -\left\{w_{2} y \mid y \in N_{T_{2}}\left(w_{2}^{\prime}\right)\right\}-\left\{w_{3} y \mid y \in N_{T_{3}}\left(w_{3}^{\prime}\right)\right\}-\left\{w_{2} w_{3}\right\} \\
& +\left\{w_{4} y \mid y \in N_{T_{2}}\left(w_{2}^{\prime}\right)\right\}+\left\{w_{1} y \mid y \in N_{T_{3}}\left(w_{3}^{\prime}\right)\right\}+\left\{w_{1} w_{4}\right\} . \tag{41}
\end{align*}
$$

The transformation from F_{n} to F_{n}^{*} in (41) is called γ-transformation.

Figure 3: γ-transformation from F_{n} to F_{n}^{*}

Lemma 3.8. We have $\varphi_{i}\left(F_{n}\right) \geq \varphi_{i}\left(F_{n}^{*}\right)$ for $0 \leq i \leq n$ and the equalities do not hold for all i.
Proof. It follows from Lemma 2.1 that $\varphi_{i}\left(F_{n}\right)=\varphi_{i}\left(F_{n}^{*}\right)$ when $i=0,1$. Next, let $2 \leq i \leq n$.
For a fixed i, let \mathcal{H}^{*} and \mathcal{H} be the sets of all the TU-subgraphs of F_{n}^{*} and of F_{n} with exactly i edges, respectively. For an arbitrary TU-subgraph $H^{*} \in \mathcal{H}^{*}$, let

$$
\begin{equation*}
f_{3}: \mathcal{H}^{*} \rightarrow \mathcal{H}, H^{*} \rightarrow H=f_{3}\left(H^{*}\right) \tag{42}
\end{equation*}
$$

with $V(H)=V\left(H^{*}\right)$ and

$$
\begin{aligned}
E(H)=E\left(H^{*}\right) & -\left\{w_{4} y \mid y \in A\right\}-\left\{w_{1} y \mid y \in B\right\}-\left\{w_{1} w_{4}\right\} \\
& +\left\{w_{2} y \mid y \in A\right\}+\left\{w_{3} y \mid y \in B\right\}+\left\{w_{2} w_{3}\right\}
\end{aligned}
$$

where $A=N_{T_{2}}\left(w_{2}^{\prime}\right) \cap V\left(H^{*}\right)$ and $B=N_{T_{3}}\left(w_{3}^{\prime}\right) \cap V\left(H^{*}\right)$. Obviously, f_{3} is injective from \mathcal{H}^{*} to \mathcal{H}.
Let N be the weight of all the components of H^{*} not containing w_{1}, w_{2}, w_{3} or w_{4}.
If all of $w_{1} w_{2}, w_{1} w_{4}$ and $w_{3} w_{4}$ are contained in $E\left(H^{*}\right)$, then we have three facts: (i) w_{1}, w_{2}, w_{3} and w_{4} are contained in a component of H^{*} (denoted by $R_{1,2,3,4}^{*}$); (ii) $R_{1,2,3,4}^{*}$ corresponds to a component $f_{3}\left(R_{1,2,3,4}^{*}\right)$ of H containing w_{1}, w_{2}, w_{3}, and w_{4}; and (iii) $R_{1,2,3,4}^{*}$ and $f_{3}\left(R_{1,2,3,4}^{*}\right)$ are TCs or OUCs simultaneously and have the same order. Furthermore, we have the following statement.

Fact 3.9. Except for the component(s) containing w_{1}, w_{2}, w_{3}, and w_{4} in H^{*}, an $A C$ of H^{*} corresponds to the SC of H. Therefore, by Fact 3.9 and (7), we obtain

$$
\begin{equation*}
W\left(f_{3}\left(H^{*}\right)\right)=W\left(H^{*}\right) \tag{43}
\end{equation*}
$$

Next, we assume that at least one of $w_{1} w_{2}, w_{1} w_{4}$ and $w_{3} w_{4}$ does not belong to $E\left(H^{*}\right)$. Seven cases are considered as follows.

Case (I) $w_{1} w_{2}, w_{1} w_{4}, w_{3} w_{4} \notin E\left(H^{*}\right)$.
Two subcases are considered as follows.
Subcase (I.i) w_{1} and w_{4} of H^{*} are not contained in a SC.
In this subcase, for an arbitrary TU-subgraph H^{*} in \mathcal{H}^{*}, we denote by $R_{1}^{*}, R_{2}^{*}, R_{3}^{*}$, and R_{4}^{*} the connected components of H^{*} containing w_{1}, w_{2}, w_{3}, and w_{4}, respectively. Obviously, $R_{2}^{*}=\left\{w_{2}\right\}$ and $R_{3}^{*}=\left\{w_{3}\right\}$. It is noted that $R_{1}^{*}, R_{2}^{*}, R_{3}^{*}$, and R_{4}^{*} are mutually disjoint and they are TCs since $w_{1} w_{2}, w_{1} w_{4}, w_{3} w_{4} \notin E\left(H^{*}\right)$. Let $\left|V\left(R_{1}^{*}-T_{3}-w_{1}\right)\right|=a,\left|V\left(T_{2}\right) \cap V\left(R_{4}^{*}\right) \backslash\left\{w_{4}\right\}\right|=b,\left|V\left(T_{3}\right) \cap V\left(R_{1}^{*}\right) \backslash\left\{w_{1}\right\}\right|=c$, and $\left|V\left(R_{4}^{*}-T_{2}-w_{4}\right)\right|=d$. Thus, we get

$$
\begin{equation*}
\left|V\left(R_{1}^{*}\right)\right|=a+c+1, \quad\left|V\left(R_{2}^{*}\right)\right|=1, \quad\left|V\left(R_{3}^{*}\right)\right|=1, \quad\left|V\left(R_{4}^{*}\right)\right|=b+d+1 \tag{44}
\end{equation*}
$$

By the bijection f_{3}, in H, there exist four components, denoted by R_{1}, R_{2}, R_{3}, and R_{4}, which correspond to $R_{1}^{*}, R_{2}^{*}, R_{3}^{*}$, and R_{4}^{*}, respectively. It is noted that R_{1}, R_{2}, R_{3}, and R_{4} contain respectively w_{1}, w_{2}, w_{3}, and w_{4} in
H and they are mutually disjoint. Obviously, R_{1}, R_{2}, R_{3}, and R_{4} are all TCs since $w_{1} w_{2}, w_{1} w_{4}, w_{3} w_{4} \notin E(H)$. We have

$$
\begin{equation*}
\left|V\left(R_{1}\right)\right|=a+1, \quad\left|V\left(R_{2}\right)\right|=b+1, \quad\left|V\left(R_{3}\right)\right|=c+1, \quad\left|V\left(R_{4}\right)\right|=d+1 \tag{45}
\end{equation*}
$$

Therefore, by Fact 3.9, (7), (44), and (45), we obtain

$$
\begin{align*}
W\left(f_{3}\left(H^{*}\right)\right)-W\left(H^{*}\right) & =(a+1)(b+1)(c+1)(d+1) N-(a+c+1)(b+d+1) N \\
& =N[a b c d+a c(b+d+1)+b d(a+c+1)] \geq 0 \tag{46}
\end{align*}
$$

Subcase (I.ii) w_{1} and w_{4} of H^{*} are contained in a SC.
In this subcase, for an arbitrary TU-subgraph H^{*} in \mathcal{H}^{*}, we denote by R_{5}^{*} the connected component of H^{*} containing w_{1} and w_{4}. Since $w_{1} w_{4} \notin E\left(H^{*}\right), R_{5}^{*}$ is a TC. Obviously, $R_{2}^{*}=\left\{w_{2}\right\}$ and $R_{3}^{*}=\left\{w_{3}\right\}$ are the components containing w_{2} and w_{3} in \mathcal{H}^{*}, respectively. Let $\left|V\left(R_{5}^{*}-T_{2}-T_{3}-w_{1}-w_{4}\right)\right|=h,\left|V\left(T_{2}\right) \cap V\left(R_{5}^{*}\right) \backslash\left\{w_{4}\right\}\right|=b$ and $\left|V\left(T_{3}\right) \cap V\left(R_{5}^{*}\right) \backslash\left\{w_{1}\right\}\right|=c$. Thus, we get

$$
\begin{equation*}
\left|V\left(R_{5}^{*}\right)\right|=h+b+c+2, \quad\left|V\left(R_{2}^{*}\right)\right|=1, \quad\left|V\left(R_{3}^{*}\right)\right|=1 \tag{47}
\end{equation*}
$$

By the bijection f_{3}, we obtain that R_{5}^{*}, R_{2}^{*} and R_{3}^{*} in H^{*} correspond respectively to a TC (denoted by R_{5}) containing w_{1} and w_{4}, R_{2} containing w_{2} and R_{3} containing w_{3} in H. It is noted that R_{5}, R_{2} and R_{3} are mutually disjoint. Obviously, we have

$$
\begin{equation*}
\left|V\left(R_{5}\right)\right|=h+2, \quad\left|V\left(R_{2}\right)\right|=b+1, \quad\left|V\left(R_{3}\right)\right|=c+1 \tag{48}
\end{equation*}
$$

Thus, by Fact 3.9, (7), (47), and (48), we get

$$
\begin{align*}
W\left(f_{3}\left(H^{*}\right)\right)-W\left(H^{*}\right) & =(h+2)(b+1)(c+1) N-(h+b+c+2) N \\
& =N[(h+2) b c+(h+1)(b+c)] \geq 0 . \tag{49}
\end{align*}
$$

Case (II) $w_{1} w_{2}, w_{1} w_{4} \in E\left(H^{*}\right)$ and $w_{3} w_{4} \notin E\left(H^{*}\right)$.
In this case, w_{3} of H^{*} is contained in $R_{3}^{*}=\left\{w_{3}\right\}$ and w_{1}, w_{2} and w_{4} of H^{*} are contained in a component denoted by $R_{2,1,4}^{*}$. Here $R_{i, j, k}^{*}=R_{i}^{*}+w_{i} w_{j}+R_{j}^{*}+w_{j} w_{k}+R_{k}^{*}$ with $1 \leq i, j, k \leq 4$. Obviously, $\left|V\left(R_{i, j, k}^{*}\right)\right|=$ $\left|V\left(R_{i}^{*}\right)\right|+\left|V\left(R_{j}^{*}\right)\right|+\left|V\left(R_{k}^{*}\right)\right|$ and $R_{i, j, k}^{*}$ contains w_{i}, w_{j} and w_{k} of H^{*}. Let $R_{i, j, k}=R_{i}+w_{i} w_{j}+R_{j}+w_{j} w_{k}+R_{k}$ with $1 \leq i, j, k \leq 4$. Obviously, $\left|V\left(R_{i, j, k}\right)\right|=\left|V\left(R_{i}\right)\right|+\left|V\left(R_{j}\right)\right|+\left|V\left(R_{k}\right)\right|$ and $R_{i, j, k}$ contains w_{i}, w_{j} and w_{k} of H. Two subcases are considered as follows.

Subcase (II.i) $R_{2,1,4}^{*}$ is a TC.
By the bijection f_{3}, we obtain that $R_{2,1,4}^{*}$ of order $a+b+c+d+3$ and $R_{3}^{*}=\left\{w_{3}\right\}$ in H^{*} correspond respectively to a TC (namely $R_{1,2,3}$) of order $a+b+c+3$ and R_{4} of order $d+1$ in H. Thus, by Fact 3.9 and (7), we get

$$
\begin{align*}
W\left(f_{3}\left(H^{*}\right)\right)-W\left(H^{*}\right) & =(a+b+c+3)(d+1) N-(a+b+c+d+3) N \\
& =N d(a+b+c+2) \geq 0 . \tag{50}
\end{align*}
$$

We denote

$$
\mathcal{H}_{5}^{*}=\left\{H^{*} \in \mathcal{H}^{*} \mid w_{1} w_{2}, w_{1} w_{4} \in E\left(H^{*}\right), w_{3} w_{4} \notin E\left(H^{*}\right), \text { and } R_{2,1,4}^{*} \text { is a TC }\right\} .
$$

Subcase (II.ii) $R_{2,1,4}^{*}$ is an OUC.
By the bijection f_{3}, we obtain that $R_{2,1,4}^{*}$ and $R_{3}^{*}=\left\{w_{3}\right\}$ in H^{*} correspond to a TC (namely, $R_{5}+w_{1} w_{2}+$ $R_{2}+w_{2} w_{3}+R_{3}$) of order $h+b+c+4$ containing w_{1}, w_{2}, w_{3}, and w_{4} in H. Thus, by Fact 3.9 and (7), we have

$$
\begin{equation*}
W\left(f_{3}\left(H^{*}\right)\right)-W\left(H^{*}\right)=(h+b+c+4) N-4 N=N(h+b+c) \geq 0 \tag{51}
\end{equation*}
$$

Case (III) $w_{1} w_{2} \notin E\left(H^{*}\right)$ and $w_{1} w_{4}, w_{3} w_{4} \in E\left(H^{*}\right)$.

In this case, w_{1}, w_{3} and w_{4} of H^{*} are contained in a component denoted by $R_{1,4,3}^{*}$. Two subcases are considered as follows.

Subcase (III.i) $R_{1,4,3}^{*}$ is a TC.
By the bijection f_{3}, we obtain that $R_{1,4,3}^{*}$ of order $a+b+c+d+3$ and $R_{2}^{*}=\left\{w_{2}\right\}$ in H^{*} correspond respectively to a TC (namely, $R_{2,3,4}$) of order $b+c+d+3$ and R_{1} of order $a+1$ in H. Thus, by Fact 3.9 and (7), we get

$$
\begin{align*}
W\left(f_{3}\left(H^{*}\right)\right)-W\left(H^{*}\right) & =(a+1)(b+c+d+3) N-(a+b+c+d+3) N \\
& =N a(b+c+d+2) \geq 0 . \tag{52}
\end{align*}
$$

We denote

$$
\mathcal{H}_{6}^{*}=\left\{H^{*} \in \mathcal{H}^{*} \mid w_{1} w_{2} \notin E\left(H^{*}\right), w_{1} w_{4}, w_{3} w_{4} \in E\left(H^{*}\right), \text { and } R_{1,4,3}^{*} \text { is a TC }\right\} .
$$

Subcase (III.ii) $R_{1,4,3}^{*}$ is an OUC.
By the bijection f_{3}, we obtain that $R_{1,4,3}^{*}$ and $R_{2}^{*}=\left\{w_{2}\right\}$ in H^{*} correspond to a TC (namely, $R_{2}+w_{2} w_{3}+$ $R_{3}+w_{3} w_{4}+R_{5}$) of order $h+b+c+4$ containing w_{1}, w_{2}, w_{3}, and w_{4} in H. Thus, by Fact 3.9 and (7), we get

$$
\begin{equation*}
W\left(f_{3}\left(H^{*}\right)\right)-W\left(H^{*}\right)=(h+b+c+4) N-4 N=N(h+b+c) \geq 0 \tag{53}
\end{equation*}
$$

Case (IV) $w_{1} w_{2}, w_{3} w_{4} \in E\left(H^{*}\right)$ and $w_{1} w_{4} \notin E\left(H^{*}\right)$.
Two subcases are considered as follows.
Subcase (IV.i) w_{1} and w_{4} of H^{*} are not contained in a SC.
In this subcase, w_{1} and w_{2} of H^{*} are contained in $R_{1,2}^{*}$ and w_{3} and w_{4} of H^{*} are contained in $R_{3,4^{\prime}}^{*}$ where $R_{1,2}^{*}=R_{1}^{*}+w_{1} w_{2}+R_{2}^{*}$ and $R_{3,4}^{*}=R_{3}^{*}+w_{3} w_{4}+R_{4}^{*}$. By the bijection $f_{3}, R_{1,2}^{*}$ of order $a+c+2$ and $R_{3,4}^{*}$ of order $b+d+2$ correspond respectively to a TC (namely, $R_{1,2}$) of order $a+b+2$ containing w_{1} and w_{2} and a TC (namely, $R_{3,4}$) of order $c+d+2$ containing w_{3} and w_{4} in H, where $R_{1,2}=R_{1}+w_{1} w_{2}+R_{2}$ and $R_{3,4}=R_{3}+w_{3} w_{4}+R_{4}$. Thus, by Fact 3.9 and (7), we get

$$
\begin{align*}
W\left(f_{3}\left(H^{*}\right)\right)-W\left(H^{*}\right) & =(a+b+2)(c+d+2) N-(a+c+2)(b+d+2) N \\
& =N(b-c)(d-a) . \tag{54}
\end{align*}
$$

We denote
$\mathcal{H}_{7}^{*}=\left\{H^{*} \in \mathcal{H}^{*} \mid w_{1} w_{2}, w_{3} w_{4} \in E\left(H^{*}\right), w_{1} w_{4} \notin E\left(H^{*}\right), w_{1}\right.$ and w_{4} are not contained in a SC $\}$.
We construct a mapping ξ_{3} from \mathcal{H}_{7}^{*} to \mathcal{H}_{5}^{*} and a mapping ξ_{4} from \mathcal{H}_{7}^{*} to \mathcal{H}_{6}^{*} as follow. For $H \in \mathcal{H}_{7}^{*}$, let

$$
\begin{aligned}
& \xi_{3}: H^{*} \rightarrow \xi_{3}\left(H^{*}\right)=H^{*}+w_{1} w_{4}-w_{3} w_{4} \\
& \xi_{4}: H^{*} \rightarrow \xi_{4}\left(H^{*}\right)=H^{*}+w_{1} w_{4}-w_{1} w_{2} .
\end{aligned}
$$

For an arbitrary $H^{*} \in \mathcal{H}_{7}^{*}$, we can find, by ξ_{3} and ξ_{4}, a unique $\xi_{3}\left(H^{*}\right) \in \mathcal{H}_{5}^{*}$ and a unique $\xi_{4}\left(H^{*}\right) \in \mathcal{H}_{6}^{*}$ corresponding to it, respectively. For $H \in \mathcal{H}_{7}^{*}$, by (54), (50) and (52), we get

$$
\begin{align*}
& {\left[W\left(f_{3}\left(H^{*}\right)\right)-W\left(H^{*}\right)\right]+\left[W\left(f_{3}\left(\xi_{3}\left(H^{*}\right)\right)\right)-W\left(\xi_{3}\left(H^{*}\right)\right)\right]} \\
& \quad+\left[W\left(f_{3}\left(\xi_{4}\left(H^{*}\right)\right)\right)-W\left(\xi_{4}\left(H^{*}\right)\right)\right]=N[d(a+2 b+2)+a(2 c+d+2)] \geq 0 \tag{55}
\end{align*}
$$

Since ξ_{3} and ξ_{4} are bijective, by (55), we have

$$
\begin{align*}
& \sum_{H^{*} \in \mathcal{H}_{5}^{*} \cup \mathcal{H}_{6}^{*} \cup \mathcal{H}_{7}^{*}}\left[W\left(f\left(H^{*}\right)\right)-W\left(H^{*}\right)\right] \\
&= \sum_{H^{*} \in \mathcal{H}_{7}^{*}}\left[W\left(f_{3}\left(H^{*}\right)\right)-W\left(H^{*}\right)+W\left(f_{3}\left(\xi_{3}\left(H^{*}\right)\right)\right)-W\left(\xi_{3}\left(H^{*}\right)\right)\right. \\
&\left.\quad+W\left(f_{3}\left(\xi_{4}\left(H^{*}\right)\right)\right)-W\left(\xi_{4}\left(H^{*}\right)\right)\right] \geq 0 . \tag{56}
\end{align*}
$$

Subcase (IV.ii) w_{1} and w_{4} are contained in a SC.
In this subcase, w_{1}, w_{2}, w_{3}, and w_{4} of H^{*} are contained in a TC of order $h+b+c+4$, which corresponds to a TC of order $h+b+c+4$ containing w_{1}, w_{2}, w_{3}, and w_{4} in H (by the bijection f_{3}). Thus, by Fact 3.9 and (7), we get

$$
\begin{equation*}
W\left(f_{3}\left(H^{*}\right)\right)-W\left(H^{*}\right)=0 \tag{57}
\end{equation*}
$$

Case (V) $w_{1} w_{2}, w_{1} w_{4} \notin E\left(H^{*}\right)$ and $w_{3} w_{4} \in E\left(H^{*}\right)$.
Two subcases are considered as follows.
Subcase (V.i) w_{1} and w_{4} of H^{*} are not contained in a SC.
By the bijection f_{3}, we obtain that $R_{1}^{*}, R_{2}^{*}=\left\{w_{2}\right\}$ and $R_{3,4}^{*}$ with order $b+d+2$ in H^{*} correspond respectively to R_{1}, R_{2} and $R_{3,4}$ with order $c+d+2$ in H. Therefore, by Fact 3.9, (7), (44), and (45), we get

$$
\begin{align*}
W\left(f_{3}\left(H^{*}\right)\right)-W\left(H^{*}\right) & =(a+1)(b+1)(c+d+2) N-(a+c+1)(b+d+2) N \\
& =N[a b(c+d+1)+b(d+1)+a c-c(d+1)] . \tag{58}
\end{align*}
$$

We denote

$$
\mathcal{H}_{8}^{*}=\left\{H^{*} \in \mathcal{H}^{*} \mid w_{1} w_{2}, w_{2} w_{4} \notin E\left(H^{*}\right), w_{3} w_{4} \in E\left(H^{*}\right), w_{1} \text { and } w_{4} \text { of } H^{*} \text { are not contained in a SC }\right\} .
$$

Subcase (V.ii) w_{1} and w_{4} of H^{*} are contained in SC.
By the bijection f_{3}, a TC (namely, $R_{3}^{*}+w_{3} w_{4}+R_{5}^{*}$) with order $h+b+c+3$ containing w_{1}, w_{3} and w_{4} and $R_{2}^{*}=\left\{w_{2}\right\}$ in H^{*} correspond respectively to a TC (namely, $R_{3}+w_{3} w_{4}+R_{5}$) with order $h+c+3$ containing w_{1}, w_{3} and w_{4} and R_{2} of order $b+1$ in H. Therefore, by Fact 3.9 and (7), we get

$$
\begin{align*}
W\left(f_{3}\left(H^{*}\right)\right)-W\left(H^{*}\right) & =(b+1)(h+c+3) N-(h+b+c+3) N \\
& =N b(h+c+2) \geq 0 . \tag{59}
\end{align*}
$$

Case (VI) $w_{1} w_{2} \in E\left(H^{*}\right)$ and $w_{1} w_{4}, w_{3} w_{4} \notin E\left(H^{*}\right)$.
Two subcases are considered as follows.
Subcase (VI.i) w_{1} and w_{4} of H^{*} are not contained in SC.
By the bijection f_{3}, we obtain that $R_{1,2}^{*}$ of order $a+c+2, R_{3}^{*}=\left\{w_{3}\right\}$ and R_{4}^{*} in H^{*} correspond respectively to a TC (namely, $R_{1,2}$) of order $a+b+2, R_{3}$ and R_{4} in H. Therefore, by Fact 3.9, (7), (44), and (45), we obtain

$$
\begin{align*}
W\left(f_{3}\left(H^{*}\right)\right)-W\left(H^{*}\right) & =(a+b+2)(c+1)(d+1) N-(a+c+2)(b+d+1) N \\
& =N[c d(a+b+1)+b d+c(a+1)-b(a+1)] . \tag{60}
\end{align*}
$$

We denote

$$
\mathcal{H}_{9}^{*}=\left\{H^{*} \in \mathcal{H}^{*} \mid w_{1} w_{2} \in E\left(H^{*}\right), w_{1} w_{4}, w_{3} w_{4} \notin E\left(H^{*}\right), w_{1} \text { and } w_{4} \text { of } H^{*} \text { are not contained in SC }\right\} .
$$

We construct a mapping ξ_{5} from \mathcal{H}_{8}^{*} to \mathcal{H}_{9}^{*} as follows. For $H \in \mathcal{H}_{8}^{*}$, let

$$
\xi_{5}: H^{*} \rightarrow \xi_{5}\left(H^{*}\right)=H^{*}+w_{1} w_{2}-w_{3} w_{4} .
$$

Obviously, ξ_{5} is bijective. Thus, there exists a one-to-one relationship between \mathcal{H}_{8}^{*} and \mathcal{H}_{9}^{*}. By (58) and (60), we have

$$
\begin{align*}
& \sum_{H^{*} \in \mathcal{H}_{8}^{*} \cup \mathcal{H}_{9}^{*}}\left[W\left(f_{3}\left(H^{*}\right)\right)-W\left(H^{*}\right)\right] \\
& =\sum_{H^{*} \in \mathcal{H}_{8}^{*}}\left[W\left(f_{3}\left(H^{*}\right)\right)-W\left(H^{*}\right)+W\left(f_{3}\left(\xi_{5}\left(H^{*}\right)\right)\right)-W\left(\xi_{5}\left(H^{*}\right)\right)\right] \geq 0 \tag{61}
\end{align*}
$$

Subcase (VI.ii) w_{1} and w_{4} of H^{*} are contained in SC.

By the bijection f_{3}, we obtain that a TC (namely, $R_{2}^{*}+w_{2} w_{1}+R_{5}^{*}$) of order $h+b+c+3$ containing w_{1}, w_{2} and w_{4} and $R_{3}^{*}=\left\{w_{3}\right\}$ in H^{*} correspond respectively to a TC (namely, $R_{2}+w_{2} w_{1}+R_{5}$) of order $h+b+3$ containing w_{1}, w_{2} and w_{4} and R_{3} of order $c+1$ in H. Therefore, by Fact 3.9 and (7), we obtain

$$
\begin{align*}
W\left(f_{3}\left(H^{*}\right)\right)-W\left(H^{*}\right) & =(c+1)(h+b+3) N-(h+b+c+3) N \\
& =N c(h+b+2) \geq 0 \tag{62}
\end{align*}
$$

Case (VII) $w_{1} w_{2}, w_{3} w_{4} \notin E\left(H^{*}\right)$ and $w_{1} w_{4} \in E\left(H^{*}\right)$.
In this case, w_{1} and w_{4} of H^{*} are contained in a SC. Two subcases are considered as follows.
Subcase (VII.i) w_{1} and w_{4} of H^{*} are contained in a TC (namely $R_{1,4}^{*}=R_{1}^{*}+w_{1} w_{4}+R_{4}^{*}$).
By the bijection f_{3}, we get that $R_{1,4}^{*}$ with order $a+b+c+d+2, R_{2}^{*}=\left\{w_{2}\right\}$ and $R_{3}^{*}=\left\{w_{3}\right\}$ in H^{*} correspond respectively to a TC (namely, $R_{2,3}=R_{2}+w_{2} w_{3}+R_{3}$) of order $b+c+2$ containing w_{2} and w_{3}, R_{1} and R_{4} in H. Therefore, by Fact 3.9, (7) and (45), we get

$$
\begin{align*}
W\left(f_{3}\left(H^{*}\right)\right)-W\left(H^{*}\right) & =(a+1)(b+c+2)(d+1) N-(a+b+c+d+2) N \\
& =N[(a d+a+d)(b+c+1)+a d] \geq 0 . \tag{63}
\end{align*}
$$

Subcase (VII.ii) w_{1} and w_{4} of H^{*} are contained in an OUC (namely $R_{5}^{*}+w_{1} w_{4}$).
By the bijection f_{3}, we get that $R_{5}^{*}+w_{1} w_{4}$ in H^{*} corresponds to R_{5} of order $h+2$ containing w_{1} and w_{4} in H, and $R_{2}^{*}=\left\{w_{2}\right\}$ and $R_{3}^{*}=\left\{w_{3}\right\}$ in H^{*} correspond to a TC (namely, $R_{2,3}$) of order $b+c+2$ containing w_{2} and w_{3} in H. Therefore, by Fact 3.9 and (7), we have

$$
\begin{align*}
W\left(f_{3}\left(H^{*}\right)\right)-W\left(H^{*}\right) & =(h+2)(b+c+2) N-4 N \\
& =N[h(b+c)+2(b+c+f)] \geq 0 . \tag{64}
\end{align*}
$$

By combining the proofs of Cases (I)-(VII), for a fixed $i(2 \leq i \leq n)$, it follows from (43), (46), (49), (51), (53), (56), (57), (59), and (61)-(64) that

$$
\begin{equation*}
\sum_{H^{*} \in \mathcal{H}^{*}} W\left(f_{3}\left(H^{*}\right)\right) \geq \sum_{H^{*} \in \mathcal{H}^{*}} W\left(H^{*}\right) \tag{65}
\end{equation*}
$$

The inequality in (65) holds when the inequalities in (51) and (53) hold for $b \geq 1$ or $c \geq 1$ or $h \geq 1$. Furthermore, by Lemma 2.1, we have $\varphi_{i}\left(F_{n}\right) \geq \varphi_{i}\left(F_{n}^{*}\right)$ for $0 \leq i \leq n$ and the equalities do not hold for all i. Thus, we get Lemma 3.8.

Remark 3.10. After performing the γ-transformation once from F_{n} to F_{n}^{*} in Lemma 3.8, we have three facts: (i) The girth of F_{n}^{*} is two smaller than that of F_{n}; (ii) F_{n} and F_{n}^{*} have the same bipartition; and (iii) The number of pendent vertices of F_{n}^{*} is two more than that of F_{n}.

Let X_{n+1} be a star with $n+1$ vertices and w_{0} the center vertex of X_{n+1}. Let $n_{1}^{\prime}+n_{2}^{\prime}+n_{3}^{\prime}+n_{4}^{\prime}=n-4$, $n_{1}^{\prime}+n_{3}^{\prime}+2=n_{1}$ and $n_{2}^{\prime}+n_{4}^{\prime}+2=n_{2}$, where $0 \leq n_{i}^{\prime} \leq n-4$ for $1 \leq i \leq 4$. Let D_{n} be the graph obtained from $C_{4}=w_{1} w_{2} w_{3} w_{4}$ by identifying w_{i} with the center vertex of $X_{n_{i}^{\prime}+1}$, where $1 \leq i \leq 4$. Let M_{n} be the graph obtained from $C_{4}=w_{1} w_{2} w_{3} w_{4}$ by identifying w_{1} with the center vertex of $X_{n_{1}^{\prime}+n_{3}^{\prime}+1}$ and by identifying w_{2} with the center vertex of $X_{n_{2}^{\prime}+n_{4}^{\prime}+1}$. In other words,

$$
\begin{equation*}
M_{n}=D_{n}-\left\{w_{3} y \mid y \in A\right\}-\left\{w_{4} y \mid y \in B\right\}+\left\{w_{1} y \mid y \in A\right\}+\left\{w_{2} y \mid y \in B\right\} \tag{66}
\end{equation*}
$$

where $A=N_{X_{n_{3}^{\prime}+1}}\left(w_{0}\right)$ and $B=N_{X_{n_{4}^{\prime}+1}}\left(w_{0}\right)$. The transformation from D_{n} to M_{n} in (66) is called $\xi-$ transformation. D_{n} and M_{n} are shown in Figs. 4(a) and 4(b), respectively. Obviously, $D_{n}, M_{n} \in \mathcal{U}_{n_{1}, n_{2}}$.

Lemma 3.11. For $0 \leq i \leq n$, we have $\varphi_{i}\left(D_{n}\right) \geq \varphi_{i}\left(M_{n}\right)$ and the equalities do not hold for all i.

Figure 4: ξ-transformation from D_{n} to M_{n}

Proof. By Lemma 2.1, $\varphi_{i}\left(D_{n}\right)=\varphi_{i}\left(D_{n}^{*}\right)$ for $i=0,1$. Next, we assume $2 \leq i \leq n$.
For a fixed i, we denote by \mathcal{H}^{*} and \mathcal{H} the sets of all the TU-subgraphs of M_{n} and of D_{n} with exactly i edges, respectively. For an arbitrary TU-subgraph $H^{*} \in \mathcal{H}^{*}$, let

$$
\begin{equation*}
f_{4}: \mathcal{H}^{*} \rightarrow \mathcal{H}, H^{*} \rightarrow H=f_{4}\left(H^{*}\right) \tag{67}
\end{equation*}
$$

with $V(H)=V\left(H^{*}\right)$ and

$$
\begin{aligned}
E(H)= & E\left(H^{*}\right)-\left\{w_{1} y \mid y \in A \cap V\left(H^{*}\right)\right\}-\left\{w_{2} y \mid y \in B \cap V\left(H^{*}\right)\right\} \\
& +\left\{w_{3} y \mid y \in A \cap V\left(H^{*}\right)\right\}+\left\{w_{4} y \mid y \in B \cap V\left(H^{*}\right)\right\}
\end{aligned}
$$

where $A=N_{X_{n_{3}^{\prime}+1}}\left(w_{0}\right)$ and $B=N_{X_{n_{4}^{\prime}+1}}\left(w_{0}\right)$. Obviously, f_{4} is a bijection from \mathcal{H}^{*} to \mathcal{H}.
Let N be the weight of all the components of H^{*} not containing w_{1}, w_{2}, w_{3}, or w_{4}. In M_{n}, let $w_{1} w_{2}=e_{1}$, $w_{2} w_{3}=e_{2}, w_{3} w_{4}=e_{3}$, and $w_{1} w_{4}=e_{4}$.

If all of e_{1}, e_{2}, e_{3}, and e_{4} are contained in $E\left(H^{*}\right)$, then the component containing w_{1}, w_{2}, w_{3}, and w_{4} in M_{n} has a cycle with even girth. This is contrary to the definition of TU-subgraph. Therefore, we get that at most three of e_{1}, e_{2}, e_{3}, and e_{4} are contained in $E\left(H^{*}\right)$. Three cases are considered as follows.

Case (i) None of e_{1}, e_{2}, e_{3}, and e_{4} is contained in $E\left(H^{*}\right)$.
In this case, for an arbitrary TU-subgraph H^{*} in \mathcal{H}^{*}, we denote by $R_{w_{1}}^{*}, R_{w_{2}}^{*}, R_{w_{3}}^{*}$, and $R_{w_{4}}^{*}$ the connected components of H^{*} containing w_{1}, w_{2}, w_{3}, and w_{4}, respectively. Obviously, $R_{w_{3}}^{*}=\left\{w_{3}\right\}$ and $R_{w_{4}}^{*}=\left\{w_{4}\right\}$. It is noted that $R_{w_{1}}^{*}, R_{w_{2}}^{*}, R_{w_{3}}^{*}$, and $R_{w_{4}}^{*}$ are mutually disjoint and they are TCs. Let $\left|V\left(R_{w_{1}}^{*}\right) \cap V\left(X_{n_{1}^{\prime}+1}\right) \backslash\left\{w_{1}\right\}\right|=s$, $\left|V\left(R_{w_{1}}^{*}\right) \cap V\left(X_{n_{3}^{\prime}+1}\right) \backslash\left\{w_{1}\right\}\right|=q,\left|V\left(R_{w_{2}}^{*}\right) \cap V\left(X_{n_{2}^{\prime}+1}\right) \backslash\left\{w_{2}\right\}\right|=t$, and $\left|V\left(R_{w_{2}}^{*}\right) \cap V\left(X_{n_{4}^{\prime}+1}\right) \backslash\left\{w_{2}\right\}\right|=p$. Thus, we get

$$
\begin{equation*}
\left|V\left(R_{w_{1}}^{*}\right)\right|=s+q+1,\left|V\left(R_{w_{2}}^{*}\right)\right|=t+p+1, \quad\left|V\left(R_{w_{3}}^{*}\right)\right|=1, \quad V\left(R_{w_{4}}^{*}\right) \mid=1 . \tag{68}
\end{equation*}
$$

By the bijection f_{4}, in H, there exist four components, denoted by $R_{w_{1}}^{\prime}, R_{w_{2}}^{\prime}, R_{w_{3}}^{\prime}$, and $R_{w_{4}}^{\prime}$, which correspond to $R_{w_{1}}^{*}, R_{w_{2}}^{*}, R_{w_{3}}^{*}$, and $R_{w_{4}}^{*}$, respectively. It is noted that $R_{w_{1}}^{\prime}, R_{w_{2}}^{\prime}, R_{w_{3}}^{\prime}$, and $R_{w_{4}}^{\prime}$ contain respectively w_{1}, w_{2}, w_{3}, and w_{4} in H and they are mutually disjoint. Obviously, $R_{w_{1}}^{\prime}, R_{w_{2}}^{\prime}, R_{w_{3}}^{\prime}$, and $R_{w_{4}}^{\prime}$ are TCs since $e_{1}, e_{2}, e_{3}, e_{4} \notin E(H)$. We have

$$
\begin{equation*}
\left|V\left(R_{w_{1}}^{\prime}\right)\right|=s+1,\left|V\left(R_{w_{2}}^{\prime}\right)\right|=t+1,\left|V\left(R_{w_{3}}^{\prime}\right)\right|=q+1,\left|V\left(R_{w_{4}}^{\prime}\right)\right|=p+1 \tag{69}
\end{equation*}
$$

Furthermore, we have the following statement:
Fact 3.12. Except for the component(s) containing w_{1}, w_{2}, w_{3}, and w_{4} in H^{*}, an $A C$ of H^{*} corresponds to the SC of H.

Therefore, by Fact 3.12, (7), (68), and (69), we get

$$
\begin{align*}
W\left(f_{4}\left(H^{*}\right)\right)-W\left(H^{*}\right) & =(s+1)(t+1)(p+1)(q+1)-(s+q+1)(t+p+1) \\
& =\operatorname{stpq}+s q(t+p+1)+t p(s+q+1) \geq 0 \tag{70}
\end{align*}
$$

Case (ii) Only one of e_{1}, e_{2}, e_{3}, and e_{4} is contained in $E\left(H^{*}\right)$.
If $e_{1} \in E\left(H^{*}\right)$ and $e_{2}, e_{3}, e_{4} \notin E\left(H^{*}\right)$, then by the bijection f_{4}, we obtain that a TC (namely, $R_{w_{1}}^{*}+w_{1} w_{2}+R_{w_{2}}^{*}$) with order $s+t+p+q+2$ containing w_{1} and $w_{2}, R_{w_{3}}^{*}=\left\{w_{3}\right\}$ and $R_{w_{4}}^{*}=\left\{w_{4}\right\}$ in H^{*} correspond to a TC (namely, $R_{w_{1}}^{\prime}+w_{1} w_{2}+R_{w_{2}}^{\prime}$) of order $s+t+2$ containing w_{1} and $w_{2}, R_{w_{3}}^{\prime}$ and $R_{w_{4}}^{\prime}$ in H, respectively. Therefore, by Fact 3.12, (7) and (69), we obtain

$$
\begin{equation*}
W\left(f_{4}\left(H^{*}\right)\right)-W\left(H^{*}\right)=(s+t+2)(p+1)(q+1)-(s+t+p+q+2) \tag{71}
\end{equation*}
$$

By the methods similar to (71), we get (72)-(74) as follows.
If $e_{2} \in E\left(H^{*}\right)$ and $e_{1}, e_{3}, e_{4} \notin E\left(H^{*}\right)$, then

$$
\begin{equation*}
W\left(f_{4}\left(H^{*}\right)\right)-W\left(H^{*}\right)=(s+1)(t+q+2)(p+1)-(s+q+1)(t+p+2) \tag{72}
\end{equation*}
$$

If $e_{3} \in E\left(H^{*}\right)$ and $e_{1}, e_{2}, e_{4} \notin E\left(H^{*}\right)$, then

$$
\begin{equation*}
W\left(f_{4}\left(H^{*}\right)\right)-W\left(H^{*}\right)=(s+1)(t+1)(p+q+2)-2(s+q+1)(t+p+1) \tag{73}
\end{equation*}
$$

If $e_{4} \in E\left(H^{*}\right)$ and $e_{1}, e_{2}, e_{3} \notin E\left(H^{*}\right)$, then

$$
\begin{equation*}
W\left(f_{4}\left(H^{*}\right)\right)-W\left(H^{*}\right)=(s+p+2)(q+1)(t+1)-(s+q+2)(t+p+1) \tag{74}
\end{equation*}
$$

Therefore, in Case (ii), after adding (71)-(74) together, we get

$$
\begin{equation*}
W\left(f_{4}\left(H^{*}\right)\right)-W\left(H^{*}\right)=4 p(t+s)+2(p q s+p q t+p s t+q s t) \geq 0 . \tag{75}
\end{equation*}
$$

Case (iii) Two of e_{1}, e_{2}, e_{3}, and e_{4} are contained in $E\left(H^{*}\right)$.
In this case, there exist six kinds of classification. By the same analysis as those for (75), we get

$$
\begin{align*}
W(& \left.f_{4}\left(H^{*}\right)\right)-W\left(H^{*}\right) \\
= & {[(s+t+p+3)(q+1)-(s+t+p+q+3)]+[(s+t+q+3)(p+1)} \\
& -(s+t+p+q+3)]+[(s+t+2)(p+q+2)-2(s+t+p+q+2)] \\
& +[(s+p+2)(t+q+2)-(s+q+2)(t+p+2)]+[(s+p+q+3)(t+1) \\
& -(s+q+3)(t+p+1)]+[(s+1)(t+p+q+3)-(s+q+1)(t+p+3)] \\
= & 4 p(t+s) \geq 0 . \tag{76}
\end{align*}
$$

Case (iv) Three of e_{1}, e_{2}, e_{3}, and e_{4} are contained in $E\left(H^{*}\right)$.
In this case, there exist four kinds of classification. By the same analysis as those for (75), we obtain

$$
\begin{equation*}
W\left(f_{4}(H)\right)=W\left(H^{*}\right) \tag{77}
\end{equation*}
$$

By combining (70), (75)-(77), for a fixed $i(2 \leq i \leq n)$, we obtain

$$
\begin{equation*}
\sum_{H^{*} \in \mathcal{H}^{*}} W\left(f_{4}\left(H^{*}\right)\right) \geq \sum_{H^{*} \in \mathcal{H}^{*}} W\left(H^{*}\right) \tag{78}
\end{equation*}
$$

The inequality in (78) holds when the inequalities in (75) and (76) hold for $p, s, t \geq 1$. Furthermore, by Lemma 2.1, we get $\varphi_{i}\left(D_{n}\right) \geq \varphi_{i}\left(M_{n}\right)$ for $0 \leq i \leq n$ and the equalities do not hold for all i.

3.2. The graphs with the minimal SLCs and the minimal IEs among $\mathcal{T}_{n_{1}, n_{2}}$ and $\mathcal{U}_{n_{1}, n_{2}}$

In this subsection, we will use the α-transformation (presented in Lemma 3.3 in Subsection 3.1) to obtain the graph with the minimal SLCs among $\mathcal{T}_{n_{1}, n_{2}}$, which is shown in Theorem 3.13. The β-, γ - and ξ-transformations, as presented in Lemmas 3.5, 3.8 and 3.11 in Subsection 3.1, respectively, will be used to obtain the graph with the minimal SLCs among $\mathcal{U}_{n_{1}, n_{2}}$, which is shown in Theorem 3.17. Furthermore, by Theorems 3.13 and 3.17, we obtain the graphs with the minimal IEs among $\mathcal{T}_{n_{1}, n_{2}}$ and $\mathcal{U}_{n_{1}, n_{2}}$, respectively.

Let $S\left(n_{1}, n_{2}\right)$ be a tree obtained from $X_{n_{1}}$ and $X_{n_{2}}$ by adding an edge between the center vertices of $X_{n_{1}}$ and of $X_{n_{2}}$, where $n_{1}, n_{2} \geq 2$ and $n_{1}+n_{2}=n$.

Theorem 3.13. Let $T \in \mathcal{T}_{n_{1}, n_{2}}$ with $n_{1}, n_{2} \geq 2$ and $n_{1}+n_{2}=n$. For $0 \leq i \leq n$, we have $\varphi_{i}(T) \geq \varphi_{i}\left(S\left(n_{1}, n_{2}\right)\right)$ with all the equalities iff $T=S\left(n_{1}, n_{2}\right)$.

Proof. Let T_{0} be the graph with the minimal SLCs in $\mathcal{T}_{n_{1}, n_{2}}$, where $n_{1}, n_{2} \geq 2$ and $n_{1}+n_{2}=n$. Let dia $\left(T_{0}\right)$ be the diameter of T_{0}. We suppose $\operatorname{dia}\left(T_{0}\right) \geq 4$. Thus, in T_{0}, there exists a path P of length at least 4 . Let u, v and w be three vertices lying on P in such a way that v is adjacent to both u and w and the vertex degrees of u and of w are greater than 1. Therefore, T_{0} can be viewed as the graph A_{n} (as shown in Fig. 1(a)), where T_{v} in A_{n} may be an empty graph. By Lemma 3.3, we can find another graph A_{n}^{*} (as shown in Fig. 1(b)) satisfying $\varphi_{i}\left(T_{0}\right) \geq \varphi_{i}\left(A_{n}^{*}\right)$ for $0 \leq i \leq n$ and the equalities do not hold for all i. This contradicts the minimality of T_{0}. Therefore, we obtain $\operatorname{dia}\left(T_{0}\right)=3$ or $\operatorname{dia}\left(T_{0}\right)=2$. If $\operatorname{dia}\left(T_{0}\right)=2$, then $T_{0}=X_{n+1}$. Since $X_{n+1} \notin \mathcal{T}_{n_{1}, n_{2}}$ as $n_{1}, n_{2} \geq 2$, we get $\operatorname{dia}\left(T_{0}\right)=3$. As $T_{0} \in \mathcal{T}_{n_{1}, n_{2}}$ and $\operatorname{dia}\left(T_{0}\right)=3, T_{0}$ must be $S\left(n_{1}, n_{2}\right)$. Theorem 3.13 is thus proved.

From Theorem 3.13, we obtain the graph with the minimal IE in $\mathcal{T}_{n_{1}, n_{2}}$, as shown in Theorem 3.14.
Theorem 3.14. Let $T \in \mathcal{T}_{n_{1}, n_{2}}$ with $n_{1}, n_{2} \geq 2$ and $n_{1}+n_{2}=n$. We have $I E(T) \geq I E\left(S\left(n_{1}, n_{2}\right)\right)$ with the equality iff $T=S\left(n_{1}, n_{2}\right)$.

By Lemmas 3.5-3.11, we get the graph with the minimal SLCs among $\mathcal{U}_{n_{1}, n_{2}}$, as shown in Theorem 3.17. To obtain Theorem 3.17, we introduce Lemmas 3.15 and 3.16 as follows.

Lemma 3.15. If G_{0} has the minimum SLCs in $\mathcal{U}_{n_{1}, n_{2}}$, then a cut-edge of G_{0} must be a pendent edge.
Proof. Suppose that G_{0} has a cut-edge $e=u v$ which is not a pendent edge. Hence u and v are two vertices of degree at least 2 with $N_{G_{0}}(v) \cap N_{G_{0}}(u)=\emptyset$. Without loss of generality, we assume that G_{0} is B_{n} (as shown in Fig. 2(a)). By employing the β-transformation and by Lemma 3.5, there is a graph B_{n}^{*} (as shown in Fig. 2(b)) such that $\varphi_{i}\left(G_{0}\right) \geq \varphi_{i}\left(B_{n}^{*}\right)$ for $0 \leq i \leq n$, where B_{n}^{*} satisfies these three properties as shown in Remark 3.7. This contradicts the minimality of G_{0}. Therefore, a cut-edge of G_{0} must be a pendent edge.

Lemma 3.16. If G_{0} has the minimum SLCs in $\mathcal{U}_{n_{1}, n_{2}}$ and C_{l} is the cycle of G_{0}, then $l=4$.
Proof. We assume that G_{0} is F_{n} (as shown in Fig. 3(a)) and $l \geq 6$. By applying the γ-transformation and by Lemma 3.8, we obtain a new graph F_{n}^{*} (as shown in Fig. 3(b)) having a cycle C_{l-2} such that $\varphi_{i}\left(G_{0}\right) \geq \varphi_{i}\left(F_{n}^{*}\right)$ for $0 \leq i \leq n$ and the equalities do not hold for all i, where F_{n}^{*} satisfies these three properties as shown in Remark 3.10. This contradicts the minimality of G_{0}. Therefore, $l=4$.
Theorem 3.17. Let $G \in \mathcal{U}_{n_{1}, n_{2}}$ with $n_{1}, n_{2} \geq 2$ and $n_{1}+n_{2}=n$. We have $\varphi_{i}(G) \geq \varphi_{i}\left(M_{n}\right)$ for $0 \leq i \leq n$ and the equalities do not hold for all i.

Proof. Let G_{0} be the graph with the minimum SLCs in $\mathcal{U}_{n_{1}, n_{2}}$ and C_{l} the cycle of G_{0}. By Lemmas 3.15 and 3.16, we get that a cut-edge of G_{0} must be a pendent edge and $l=4$, respectively. Therefore, we suppose $G_{0}=D_{n}$, where D_{n} is shown in Fig. 4(a). By applying the ξ-transformation and by Lemma 3.11, we have $\varphi_{i}\left(D_{n}\right) \geq \varphi_{i}\left(M_{n}\right)$ for $0 \leq i \leq n$ and the equalities do not hold for all i, where M_{n} is shown in Fig. 4(b) and $M_{n} \in \mathcal{U}_{n_{1}, n_{2}}$. This contradicts the minimality of G_{0}. Therefore, we finally get $G_{0}=M_{n}$. Theorem 3.17 is thus proved.

By Theorem 3.17, we get the graph with the minimal IE among $\mathcal{U}_{n_{1}, n_{2}}$, which is shown in Theorem 3.18.
Theorem 3.18. Let $G \in \mathcal{U}_{n_{1}, n_{2}}$ with $n_{1}, n_{2} \geq 2$ and $n_{1}+n_{2}=n$. We have $\operatorname{IE}(G) \geq \operatorname{IE}\left(M_{n}\right)$ with the equality iff $G=M_{n}$.

References

[1] D. Cvetković, P. Rowlinson, S.K. Simić, Signless Laplacians of finite graphs, Linear Algebra and its Applications 423 (2007) 155-171.
[2] D. Cvetković, S. Simić, Towards a spectral theory of graphs based on the signless Laplacian, I, Publications De Linstitut Mathematique 85 (2009) 19-33.
[3] D. Cvetković, S. Simić, Towards a spectral theory of graphs based on the signless Laplacian, II, Linear Algebra and its Applications 432 (2010) 2257-2272.
[4] D. Cvetković, S. Simić, Towards a spectral theory of graphs based on the signless Laplacian, III, Applicable Analysis and Discrete Mathematics 4 (2010) 156-166.
[5] K.C. Das, I. Gutman, On incidence energy of graphs, Linear Algebra and its Applications 446 (2014) 329-344.
[6] I. Gutman, The energy of a graph, Ber. Math. -Statist. Sekt. Forschungszentrum. Graz 103(100-105) (1978) 1-22.
[7] I. Gutman, D. Kiani, M. Mirzakhah, On incidence energy of graphs, MATCH Communications in Mathematical and in Computer Chemistry 62 (2009) 573-580.
[8] C.X. He, H.Y. Shan, On the Laplacian coefficients of bicyclic graphs, Discrete Mathematics 310 (2010) 3404-3412.
[9] A. Ilić, On the ordering of trees by the Laplacian coefficients, Linear Algebra and its Applications 431 (2009) 2203-2212.
[10] Y.L. Jin, Y.N. Yeh, X.D. Zhang, Laplacian coefficient, matching polynomial and incidence energy of trees with described maximum degree, Journal of Combinatorial Optimization 31 (2016) 1345-1372.
[11] M. Jooyandeh, D. Kiani, M. Mirzakhah, Incidence energy of a graph, MATCH Communications in Mathematical and in Computer Chemistry 62 (2009) 561-572.
[12] E. Kaya, A.D. Maden, A generalization of the incidence energy and the Laplacian-energy-like invariant, MATCHCommunications in Mathematical and in Computer Chemistry 80 (2018) 467-480.
[13] H.H. Li, B.S. Tam, L. Su, On the signless Laplacian coefficients of unicyclic graphs, Linear Algebra and its Applications 439 (2013) 2008-2028.
[14] W.Q. Lin, W.G. Yan, Laplacian coefficients of trees with a given bipartition, Linear Algebra and its Applications 435 (2011) 152-162.
[15] I. Ž. Milovanović, M.M. Matejić, P.D. Milošević, E.I. Milovanović, On bounds for incidence energy of a graph, Applied Mathematics and Computational Science 4 (2019) 1-6.
[16] M. Mirzakhah, D. Kiani, Some results on signless Laplacian coefficients of graphs, Linear Algebra and its Applications 437 (2012) 2243-2251.
[17] B. Mohar, On the Laplacian coefficients of acyclic graphs, Linear Algebra and its Applications 722 (2007) 736-741.
[18] V. Nikiforov, The energy of graphs and matrices, Journal of Mathematical Analysis and Applications 326 (2007) 1472-1475.
[19] D. Stevanović, A. Ilić, On the Laplacian coefficients of unicyclic graphs, Linear Algebra and its Applications 430 (2009) $2290-2300$.
[20] Z.K. Tang, Y.P. Hou, On incidence energy of trees, MATCH Communications in Mathematical and in Computer Chemistry 66 (2011) 977-984.
[21] W. Wang, Y. Luo, X. Gao, On incidence energy of some graphs, Ars Combinatoria 114 (2014) 427-436.
[22] W.H. Wang, L. Zhong, The signless Laplacian coefficients and the incidence energy of unicyclic graphs with given pendent vertices, Filomat 33 (2019) 177-192.
[23] W.H. Wang, L. Zhong, L.J. Zheng, The signless Laplacian coefficients and the incidence energy of the graphs without even cycles, Linear Algebra and its Applications 563 (2019) 476-493.
[24] J. Zhang, X.D. Zhang, The signless Laplacian coefficients and incidence energy of bicyclic graphs, Linear Algebra and its Applications 439 (2013) 3859-3869.
[25] J. Zhang, X.D. Zhang, Signless Laplacian coefficients and incidence energy of unicyclic graphs with the matching number, Linear and Multilinear Algebra 63 (2015) 1981-2008.
[26] J.B. Zhang, H.B. Kan, X.D. Liu, Graphs with extremal incidence energy, Filomat 29 (2015) 1251-1258.
[27] J.B. Zhang, J.P. Li, New results on the incidence energy of graphs, MATCH Communications in Mathematical and in Computer Chemistry 68 (2012) 777-803.

[^0]: 2010 Mathematics Subject Classification. 05C50; 05C31
 Keywords. Signless Laplacian coefficient, incidence energy, TU-subgraph
 Received: 30 December 2019; Revised: 20 January 2020; Accepted: 04 February 2020
 Communicated by Dragan S. Djordjević
 Research supported by the National Natural Science Foundation of China under the grant numbers 11871040 and 11001166.
 Email address: whwang@shu.edu. cn (Wen-Huan Wang)

