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Existence and Multiplicity of Positive Solutions for a Singular
Riemann-Liouville Fractional Differential Problem

Rodica Lucaa

aDepartment of Mathematics, Gh. Asachi Technical University, Iasi 700506, Romania

Abstract. We investigate the existence and multiplicity of positive solutions for a nonlinear Riemann-
Liouville fractional differential equation with a nonnegative singular nonlinearity, subject to Riemann-
Stieltjes boundary conditions which contain fractional derivatives. In the proofs of our main results, we
use an application of the Krein-Rutman theorem and some theorems from the fixed point index theory.

1. Introduction

We consider the nonlinear fractional differential equation

Dα
0+x(t) + f (t, x(t)) = 0, t ∈ (0, 1), (1)

with the integral-differential boundary conditions

x(0) = x′(0) = · · · = x(n−2)(0) = 0, Dβ0

0+
x(1) =

m∑
i=1

∫ 1

0
ai(t)D

βi

0+
x(t) dHi(t), (2)

where α ∈ R, α ∈ (n − 1,n], n, m ∈ N, n ≥ 3, βi ∈ R for all i = 0, . . . ,m, 0 ≤ β1 < β2 < · · · < βm < α − 1,
1 ≤ β0 < α − 1, Dk

0+
denotes the Riemann-Liouville derivative of order k (for k = α, β0, β1, . . . , βm), the

integrals from the boundary conditions (BC) are Riemann-Stieltjes integrals with Hi, i = 1, . . . ,m, functions
of bounded variation, the functions ai ∈ C(0, 1)∩L1(0, 1), i = 1, . . . ,m, and the nonlinearity f is nonnegative
and it may be singular at the points t = 0, t = 1 and/or x = 0.

We will present conditions for the data of problem (1),(2) connected to the spectral radii of some
associated linear operators such that this problem has at least one or two positive solutions (x(t) > 0 for
all t ∈ (0, 1]). In the proof of the main existence theorems we use an application of the Krein-Rutman
theorem in the space C[0, 1] and the fixed point index theory. Our assumptions are different than those
used in [1], where the authors use various height functions of the sign-changed nonlinearity defined on
special bounded sets and two theorems from the fixed point index theory to prove the existence of multiple
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positive solutions for problem (1),(2) with ai(t) = 1 for all t ∈ [0, 1] and i = 1, . . . ,m. The equation (1) with a
positive parameter λ, subject to the boundary conditions

x(0) = x′(0) = · · · = x(n−2)(0) = 0, Dp
0+

x(1) =

m∑
i=1

aiD
q
0+

x(ξi),

where ξi ∈ R, i = 1, . . . ,m, 0 < ξ1 < · · · < ξm < 1, p, q ∈ R, p ∈ [1,n − 2], q ∈ [0, p], was investigated in
[12]. In paper [12], the nonlinearity f changes sign and it is singular only at t = 0 and/or t = 1, and there
the authors apply the Guo-Krasnosel’skii fixed point theorem to prove the existence of positive solutions
when the parameter belongs to various intervals. In the paper [32], the authors prove the existence of at
least three positive solutions for equation (1) with the boundary conditions

x(0) = x′(0) = · · · = x(n−2)(0) = 0, Dβ
0+

x(1) = λ

∫ η

0
h(t)Dβ

0+
x(t) dt,

where β ≥ 1, α−β−1 > 0, η ∈ (0, 1], 0 ≤ λ
∫ η

0 h(t)tα−β−1 dt < 1, h ∈ L1[0, 1] is nonnegative and may be singular
at t = 0 and t = 1, and the function f is nonnegative and may be singular at the points t = 0, t = 1 and
x = 0. In [32], the authors use different height functions of the nonlinear term on special bounded sets, the
Krasnosel’skii theorem and the Leggett-Williams fixed point index theorem. We also mention the paper
[26], where the author investigates the fractional differential equation (1) supplemented with the boundary
conditions

x(0) = x′(0) = · · · = x(n−2)(0) = 0, Dβ
0+

x(1) =

∫ η

0
a(t)Dγ

0+
x(t) dV(t),

where β ∈ (0, 1), γ ∈ [0, α − 1), η ∈ (0, 1], a(t) ∈ L1[0, 1] ∩ C(0, 1), and the function f (t, x) is nonnegative and
it may be singular at t = 0, t = 1 and x = 0. The author proves in [26] some existence and multiplicity
results which are closely associated with the relationship between 1 and the spectral radii corresponding
to the relevant linear operators. For some recent results on the existence, nonexistence and multiplicity of
positive solutions for fractional differential equations and systems of fractional differential equations with
various boundary conditions, we refer the reader to the monographs [11], [16], [33] and the papers [2]-[6],
[8]-[10], [13]-[15], [18]-[23], [25], [27], [28], [30].

The paper is organized as follows. Section 2 contains some auxiliary results which investigate a nonlocal
boundary value problem for linear fractional differential equations, and the theorems used in the proofs of
the main results. In Section 3, we give the existence and multiplicity theorems for the positive solutions of
problem (1),(2). Finally in Section 4, an example is presented to illustrate our main results.

2. Auxiliary results

In this section we present some auxiliary results that we will use in the proof of the main theorems. We
consider the fractional differential equation

Dα
0+x(t) + y(t) = 0, t ∈ (0, 1), (3)

with the boundary conditions (2), where y ∈ C(0, 1) ∩ L1(0, 1). We denote by

∆ =
Γ(α)

Γ(α − β0)
−

m∑
i=1

Γ(α)
Γ(α − βi)

∫ 1

0
sα−βi−1 ai(s) dHi(s).

Lemma 2.1. ([1]) If ∆ , 0, then the unique solution x ∈ C[0, 1] of problem (3),(2) is given by

x(t) =

∫ 1

0
G(t, s)y(s) ds, t ∈ [0, 1], (4)
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where

G(t, s) = 11(t, s) +
tα−1

∆

m∑
i=1

(∫ 1

0
ai(τ)12i(τ, s) dHi(τ)

)
, (5)

and

11(t, s) =
1

Γ(α)

{
tα−1(1 − s)α−β0−1

− (t − s)α−1, 0 ≤ s ≤ t ≤ 1,
tα−1(1 − s)α−β0−1, 0 ≤ t ≤ s ≤ 1,

12i(t, s) =
1

Γ(α − βi)

{
tα−βi−1(1 − s)α−β0−1

− (t − s)α−βi−1, 0 ≤ s ≤ t ≤ 1,
tα−βi−1(1 − s)α−β0−1, 0 ≤ t ≤ s ≤ 1,

(6)

for all (t, s) ∈ [0, 1] × [0, 1], i = 1, . . . ,m.

Here the functions 12i may have negative values, because we did not impose a relation between β0
and βi, i = 1, . . . ,m. In [1], the authors used the condition βm ≤ β0 which implies that 12i, i = 1, . . . ,m are
nonnegative functions (see Lemma 2.3 from [1], or Lemma 2.3 from [12]).

Based on some properties of the function 11 given by (6) (see [12]), we obtain the following lemma.

Lemma 2.2. We suppose that ∆ , 0 and F(s) :=
1
∆

m∑
i=1

∫ 1

0
ai(τ)12i(τ, s) dHi(τ) ≥ 0, for all s ∈ [0, 1]. Then the

Green function G given by (5) is a continuous function on [0, 1] × [0, 1] and satisfies the inequalities:
a) G(t, s) ≤ J(s) for all t, s ∈ [0, 1], where J(s) = h(s) + F(s), s ∈ [0, 1], and h(s) = 1

Γ(α) (1 − s)α−β0−1(1 − (1 − s)β0 ),
s ∈ [0, 1];

b) G(t, s) ≥ tα−1 J(s) for all t, s ∈ [0, 1];
c) G(t, s) ≤ tα−1K(s) for all t, s ∈ [0, 1], where K(s) = 1

Γ(α) (1 − s)α−β0−1 + F(s), s ∈ [0, 1].

In a similar manner as the authors obtained Lemma 2.5 from [12], we deduce here the following result.

Lemma 2.3. We suppose that ∆ , 0, F(s) ≥ 0 for all s ∈ [0, 1], y ∈ C(0, 1) ∩ L1(0, 1) and y(t) ≥ 0 for all t ∈ (0, 1).
Then the solution x of problem (3),(2) given by (4) satisfies the inequality x(t) ≥ tα−1

‖x‖ for all t ∈ [0, 1], where
‖x‖ = supt∈[0,1] |x(t)|, and so x(t) ≥ 0 for all t ∈ [0, 1].

Now we recall some theorems concerning the fixed point index theory. Let X be a real Banach space
with the norm ‖ · ‖, Q ⊂ X a cone, “≤” the partial ordering defined by Q and θ the zero element in X. For
ρ > 0, let Bρ = {u ∈ X, ‖u‖ < ρ} be the open ball of radius ρ centered at θ, its closure Bρ = {u ∈ X, ‖u‖ ≤ ρ}
and its boundary ∂Bρ = {u ∈ X, ‖u‖ = ρ}. The proofs of our main theorems are based on the following fixed
point index theorems.

Theorem 2.4. (see [7]) LetA : Bρ ∩Q→ Q be a completely continuous operator. If there exists u0 ∈ Q \ {θ} such
that u −Au , λu0 for all λ ≥ 0 and u ∈ ∂Bρ ∩Q, then i(A,Bρ ∩Q,Q) = 0.

Theorem 2.5. (see [7]) LetA : Bρ ∩Q→ Q be a completely continuous operator. IfAu , µu for all u ∈ ∂Bρ ∩Q
and µ ≥ 1, then i(A,Bρ ∩Q,Q) = 1.

Let the space C[0, 1] and the cone P = {u ∈ C[0, 1], u(t) ≥ 0, ∀ t ∈ [0, 1]}. We present next an application
of the Krein-Rutman theorem in the space C[0, 1].

Theorem 2.6. (see [17], [31]) Suppose that A : C[0, 1] → C[0, 1] is a completely continuous linear operator, and
A(P) ⊂ P. If there exist v ∈ C[0, 1] \ (−P) and a constant c > 0 such that cAv ≥ v, then the spectral radius r(A) , 0
and A has an eigenvector u0 ∈ P \ {θ} corresponding to its principal characteristic value λ1 = (r(A))−1, that is
λ1Au0 = u0 or Au0 = r(A)u0, and so r(A) > 0.
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3. Main results

We give in this section some theorems for the existence of at least one or two positive solutions for
problem (1),(2). We present firstly the assumptions that we will use in the sequel.

(I1) α ∈ R, α ∈ (n − 1,n], n, m ∈ N, n ≥ 3, βi ∈ R for all i = 0, . . . ,m, 0 ≤ β1 < β2 < · · · < βm < α − 1,
1 ≤ β0 < α − 1.

(I2) ai ∈ C(0, 1) ∩ L1(0, 1) for all i = 1, . . . ,m, and Hi : [0, 1] → R, i = 1, . . . ,m are functions of bounded
variation.

(I3) ∆ =
Γ(α)

Γ(α−β0) −
∑m

i=1
Γ(α)

Γ(α−βi)

∫ 1

0 sα−βi−1 ai(s) dHi(s) , 0, and

F(s) =
1
∆

m∑
i=1

∫ 1

0
ai(τ)12i(τ, s) dHi(τ) ≥ 0 for all s ∈ [0, 1].

(I4) The function f : (0, 1) × (0,∞) → [0,∞) is continuous. Besides for any 0 < r < R there exists
φr,R ∈ C((0, 1), [0,∞)) ∩ L1(0, 1) such that f (t,u) ≤ φr,R(t) for all t ∈ (0, 1) and u ∈ [rtα−1,R].

(I5) There exist R1 > 0 and a function p1 ∈ C((0, 1); [0,∞)) ∩ L1(0, 1) with
∫ 1

0 p1(t) dt > 0 such that f (t,u) ≥
p1(t)u for all (t,u) ∈ (0, 1) × (0,R1].

(I6) There exist R2 > 0 and a function p2 ∈ C((0, 1); [0,∞)) ∩ L1(0, 1) with
∫ 1

0 p2(t) dt > 0 such that f (t,u) ≤
p2(t)u for all (t,u) ∈ (0, 1) × [R2,∞).

(I7) There exist R3 > 0 and a function p3 ∈ C((0, 1); [0,∞)) ∩ L1(0, 1) with
∫ 1

0 p3(t) dt > 0 such that f (t,u) ≤
p3(t)u for all (t,u) ∈ (0, 1) × (0,R3].

(I8) There exist R4 > 0 and a function p4 ∈ C((0, 1); [0,∞)) ∩ L1(0, 1) with
∫ 1

0 p4(t) dt > 0 such that f (t,u) ≥
p4(t)u for all (t,u) ∈ (0, 1) × [R4,∞).

We consider X = C[0, 1] the space of continuous functions defined on [0, 1] with the supremum norm
‖x‖ = supt∈[0,1] |x(t)|, and the cone P = {x ∈ X, x(t) ≥ tα−1

‖x‖, ∀ t ∈ [0, 1]}.
We define the operators

Ax(t) =

∫ 1

0
G(t, s) f (s, x(s)) ds,

Tix(t) =

∫ 1

0
G(t, s)pi(s)x(s) ds, i = 1, . . . , 4.

Lemma 3.1. Assume that (I1)− (I4) hold. Then for any r > 0, the operatorA : P\Br → P is completely continuous.

Proof. For any x ∈ P \ Br, we have rtα−1
≤ x(t) ≤ ‖x‖. Let R = ‖x‖. By (I4) it follows that there exists a

function φr,R ∈ C((0, 1), [0,∞)) ∩ L1(0, 1) such that f (t, x(t)) ≤ φr,R(t) for all t ∈ (0, 1). Then by using Lemma
2.2, we find

Ax(t) =

∫ 1

0
G(t, s) f (s, x(s)) ds ≤

∫ 1

0
J(s) f (s, x(s)) ds

≤

∫ 1

0
J(s)φr,R(s) ds ≤ J0

∫ 1

0
φr,R(s) ds < ∞, ∀ t ∈ [0, 1],

where J0 = maxt∈[0,1] J(t), and thenAx is well defined.
On the other hand, we obtain

Ax(t) =

∫ 1

0
G(t, s) f (s, x(s)) ds ≥ tα−1

∫ 1

0
J(s) f (s, x(s)) ds ≥ tα−1

Ax(t1),

for all t, t1 ∈ [0, 1], and soAx(t) ≥ tα−1
‖Ax‖ for all t ∈ [0, 1]. ThereforeA(P \ Br) ⊂ P.

We will prove next that A is completely continuous. Firstly we show that A is continuous. Let
{xn}n≥1 ⊂ P \ Br and ‖xn − x0‖ → 0 as n→∞, with x0 ∈ P \ Br. Then there exists R > r such that r ≤ ‖xn‖ ≤ R
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for all n = 0, 1, . . .. By (I4), for the above r, R we deduce (by the absolute continuity of the integral) that for

any ε > 0 there exists θ ∈ (0, 1/2) such that
∫ θ

0 φr,R(s) ds < ε/(6J0) and
∫ 1

1−θ φr,R(s) ds < ε/(6J0). Because f (t, x)
is uniformly continuous on [θ, 1 − θ] × [θα−1r,R], then there exists N > 0 such that for any n > N, we have

| f (t, xn(t)) − f (t, x0(t))| <
ε

3
∫ 1

0 J(s) ds
, ∀ t ∈ [θ, 1 − θ].

Therefore for any n > N, we find

‖Axn −Ax0‖ ≤ max
t∈[0,1]

∫ 1

0
G(t, s)| f (s, xn(s)) − f (s, x0(s))| ds

≤

∫ 1

0
J(s)| f (s, xn(s)) − f (s, x0(s))| ds

≤ 2
∫ θ

0
J(s)φr,R(s) ds +

∫ 1−θ

θ
J(s)| f (s, xn(s)) − f (s, x0(s))| ds + 2

∫ 1

1−θ
J(s)φr,R(s) ds

< 2J0

∫ θ

0
φr,R(s) ds +

∫ 1−θ

θ
J(s)| f (s, xn(s)) − f (s, x0(s))| ds + 2J0

∫ 1

1−θ
φr,R(s) ds < ε.

Hence ‖Axn −Ax0‖ → 0 as n→∞, and soA is a continuous operator.
Next we will show that A is a compact operator, that is, it maps bounded sets into relatively compact

sets. For this, let E ⊂ P \ Br be a bounded set. Then there exists R1 > r such that r ≤ ‖x‖ ≤ R1 for all x ∈ E.
By the above proof we obtain

Ax(t) ≤
∫ 1

0
J(s)φr,R1 (s) ds ≤ J0

∫ 1

0
φr,R1 (s) ds, ∀ t ∈ [0, 1], x ∈ E,

which implies thatA(E) is uniformly bounded.
The function G(t, s) is uniformly continuous on [0, 1] × [0, 1]. So for any ε > 0 there exists ζ1 > 0 such

that for any t1, t2 ∈ [0, 1] with |t1 − t2| < ζ1, and for any s ∈ [0, 1] we have

|G(t1, s) − G(t2, s)| <
ε

2 max{
∫ 1

0 φr,R1 (s) ds, 1}
.

Therefore, for any x ∈ E, we deduce

|Ax(t1) −Ax(t2)| ≤
∫ 1

0
|G(t1, s) − G(t2, s)| f (s, x(s)) ds

≤

∫ 1

0
|G(t1, s) − G(t2, s)|φr,R1 (s) ds ≤

∫ 1

0

ε

2 max{
∫ 1

0 φr,R1 (s) ds, 1}
φr,R1 (s) ds < ε.

This implies that A(E) is equicontinuous. By using Arzela-Ascoli theorem, we conclude that A(E) is
relatively compact, and thenA : P \ Br → P is a compact operator. �

Under assumptions (I1)− (I4), by the extension theorem, for any r > 0, the operatorA has a completely
continuous extension (also denoted byA) from P to P.

By using similar arguments as those used in the proof of Lemma 3.2 from [24], based on Theorem 2.6,
we obtain the following result.

Lemma 3.2. Assume that (I1)− (I3) hold, and pi ∈ C((0, 1); [0,∞))∩L1(0, 1) with
∫ 1

0 pi(t) dt > 0, i = 1, . . . , 4. Then
the operators Ti : P→ P are linear and completely continuous. Besides, the spectral radius r(Ti) > 0 and Ti has an
eigenfunction ψi ∈ P \ {θ} corresponding to the eigenvalue r(Ti), that is Tiψi = r(Ti)ψi, i = 1, . . . , 4.
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Theorem 3.3. We assume that (I1) − (I4) hold, and there exist R2 > R1 > 0 such that (I5) and (I6) are satisfied.
Besides, we suppose that r(T1) ≥ 1 > r(T2) > 0. Then the boundary value problem (1),(2) has at least one positive
solution.

Proof. By (I5), for any x ∈ ∂BR1 ∩ P, we obtain

Ax(t) =

∫ 1

0
G(t, s) f (s, x(s)) ds ≥

∫ 1

0
G(t, s)p1(s)x(s) ds = T1x(t), ∀ t ∈ [0, 1].

We assume thatA has no fixed points on ∂BR1 ∩ P (otherwise the theorem is proved). We will show that

x −Ax , µψ1, ∀ x ∈ ∂BR1 ∩ P, µ ≥ 0, (7)

whereψ1 is given in Lemma 3.2. In fact, if not, there exist x1 ∈ ∂BR1 ∩P and µ1 ≥ 0 such that x1−Ax1 = µ1ψ1.
Then µ1 > 0 and x1 = Ax1 + µ1ψ1 ≥ µ1ψ1. We denote by µ0 = sup{µ, x1 ≥ µψ1}. Then µ0

≥ µ1, x1 ≥ µ0ψ1
and

Ax1 ≥ T1x1 ≥ µ
0
T1ψ1 = µ0r(T1)ψ1 ≥ µ

0ψ1.

Hence x1 = Ax1 +µ1ψ1 ≥ µ0ψ1 +µ1ψ1 = (µ0 +µ1)ψ1, which contradicts the definition of µ0. We deduce that
relation (7) holds, and by Theorem 2.4 we deduce

i(A,BR1 ∩ P,P) = 0. (8)

Now we consider the set
V = {x ∈ P \ BR1 , Ax = µx with µ ≥ 1}.

We will prove next that the set V is bounded. For any x ∈ V, we find

x(t) ≤ µx(t) = Ax(t) =

∫ 1

0
G(t, s) f (s, x(s)) ds

=

∫
D1

G(t, s) f (s, x(s)) ds +

∫
D2

G(t, s) f (s, x(s)) ds

≤

∫
D1

G(t, s)p2(s)x(s) ds +

∫ 1

0
G(t, s) f (s, x̃(s)) ds

≤

∫ 1

0
G(t, s)p2(s)x(s) ds +

∫ 1

0
G(t, s) f (s, x̃(s)) ds

= T2x(t) +Ax̃(t) ≤ T2x(t) + J0M,

where D1 = {s, x(s) ≥ R2}, D2 = {s, x(s) < R2}, x̃(s) = min{x(s),R2}, M =
∫ 1

0 φR1,R2 (s) ds < ∞ (by (I4)). Then
we obtain (I − T2)x(t) ≤ M for all t ∈ [0, 1]. Because r(T2) < 1, we deduce that the inverse operator of
(I − T2) exists and (I − T2)−1 =

∑
∞

i=1 T
i
2. Therefore we find x(t) ≤ (I − T2)−1(M) and x(t) ≤ M‖(I − T2)−1

‖ for
all t ∈ [0, 1], which means that V is bounded. We choose R̃2 > max{R2, sup{‖x‖, x ∈ V}}. ThenAx , µx for
all µ ≥ 1, x ∈ ∂BR̃2

∩ P, and by Theorem 2.5, we obtain

i(A,BR̃2
∩ P,P) = 1. (9)

By (8) and (9) we conclude

i(A, (BR̃2
\ BR1 ) ∩ P,P) = i(A,BR̃2

∩ P,P) − i(A,BR1 ∩ P,P) = 1.

Then we deduce that A has at least one fixed point x̃ on (BR̃2
\ BR1 ) ∩ P, which is a positive solution of

problem (1),(2). Taking into account the remark from the beginning of the proof (that A may have fixed
points on ∂BR1 ∩ P), we conclude that the solution x̃ of problem (1),(2) satisfies R1 ≤ ‖x̃‖ < R̃2. �
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Theorem 3.4. We assume that (I1) − (I4) hold and there exist R4 > R3 > 0 such that (I7) and (I8) are satisfied.
Besides, we suppose that r(T4) > 1 ≥ r(T3) > 0. Then the boundary value problem (1),(2) has at least one positive
solution.

Proof. We suppose thatA has no fixed points on ∂BR3 ∩P (otherwise the theorem is proved). We will show
that

Ax , µx, ∀ x ∈ ∂BR3 ∩ P, µ > 1. (10)

If not, there exist x1 ∈ ∂BR3 ∩ P and µ1 > 1 such thatAx1 = µ1x1. By using (I7) we obtain

µ1x1(t) = Ax1(t) =

∫ 1

0
G(t, s) f (s, x1(s)) ds

≤

∫ 1

0
G(t, s)p3(s)x1(s) ds = T3x1(t), ∀ t ∈ [0, 1].

Because T3 is a nondecreasing operator, we deduce

µ2
1x1(t) ≤ µ1T3x1(t) = T3(µ1x1)(t) ≤ T3(T3x1(t)) = T 2

3 x1(t), ∀ t ∈ [0, 1].

Repeating the process, we find

µn
1x1(t) ≤ T n

3 x1(t), ∀ t ∈ [0, 1], n ≥ 1,

and so
µn

1‖x1‖ = ‖µn
1x1‖ ≤ ‖T

n
3 x1‖ ≤ ‖T

n
3 ‖‖x1‖, ∀n ≥ 1.

We conclude that ‖T n
3 ‖ ≥ µ

n
1 for all n ≥ 1, and then r(T3) = limn→∞

n
√
‖T n

3 ‖ ≥ µ1 > 1, which is a contradiction,
because r(T3) ≤ 1. Therefore the relation (10) is satisfied, and by Theorem 2.5 we deduce that

i(A,BR3 ∩ P,P) = 1. (11)

Now we consider a decreasing sequence (cn)n≥1, with 0 < cn < 1, for all n ≥ 1, convergent to 0, and we
define the operators

Fnx(t) =

∫ 1

cn

G(t, s)p4(s)x(s) ds.

By Theorem 3.7 from [29], the sequence of spectral radii (r(Fn))n is increasing and converges to r(T4). Then
we can choose n0 sufficiently large such that r(Fn0 ) > 1. We define Rn0 = R4c1−α

n0
. Then for any x ∈ ∂BRn0

∩ P,
we have

x(t) ≥ tα−1
‖x‖ = tα−1Rn0 ≥ cα−1

n0
Rn0 = R4, ∀ t ∈ [cn0 , 1]. (12)

In a similar manner as we obtained Lemma 3.2 (see [24]), we deduce thatFn0 has an eigenfunctionψ0 ∈ P\{θ}
corresponding to the eigenvalue r(Fn0 ), that is Fn0ψ0 = r(Fn0 )ψ0. Let x ∈ ∂BRn0

∩ P. By (I8) and (12), we find

Ax(t) =

∫ 1

0
G(t, s) f (s, x(s)) ds ≥

∫ 1

cn0

G(t, s) f (s, x(s)) ds

≥

∫ 1

cn0

G(t, s)p4(s)x(s) ds = Fn0 x(t), ∀ t ∈ [0, 1].

We assume that A has no fixed points on ∂BRn0
∩ P (otherwise the theorem is proved). We will show

that

x −Ax , µψ0, ∀ x ∈ ∂BRn0
∩ P, µ > 0. (13)
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In fact, if not, there exist x2 ∈ ∂BRn0
∩P and µ2 > 0 such that x2−Ax2 = µ2ψ0. We denote by µ0 = sup{µ, x2 ≥

µψ0}. Then µ0 ≥ µ2 and x2 ≥ µ0ψ0. In addition we have

x2(t) = Ax2(t) + µ2ψ0(t) ≥ Fn0 x2(t) + µ2ψ0(t) ≥ µ0Fn0ψ0(t) + µ2ψ0(t)
= µ0r(Fn0 )ψ0(t) + µ2ψ0(t) ≥ µ0ψ0(t) + µ2ψ0(t) = (µ0 + µ2)ψ0(t), ∀ t ∈ [0, 1].

The obtained inequality contradicts the definition of µ0. Therefore the relation (13) is satisfied, and by
Theorem 2.4, we deduce

i(A,BRn0
∩ P,P) = 0. (14)

Then by (11) and (14) we conclude that

i(A, (BRn0
\ BR3 ) ∩ P,P) = i(A,BRn0

∩ P,P) − i(A,BR3 ∩ P,P) = −1.

This means thatA has at least one fixed point x̃ on (BRn0
\ BR3 ) ∩ P, which is a positive solution of problem

(1),(2). Taking into account thatAmay have fixed points on (∂BRn0
∪ ∂BR3 ) ∩ P, then the solution x̃ satisfies

R3 ≤ ‖x̃‖ ≤ Rn0 . �
We can also obtain existence results for multiple positive solutions by imposing various conditions

similar to (I5) − (I8).

Theorem 3.5. We assume that (I1) − (I4) hold and there exist R4 > R5 > R1 > 0 such that (I5), (I8) and

(I9) There exists a function p5 ∈ C((0, 1); [0,∞)) ∩ L1(0, 1) with
∫ 1

0 p5(t) dt > 0 such that f (t,u) ≤ p5(t)R5 for all
u ∈ [R1tα−1,R5] and t ∈ (0, 1),

hold. Besides, we suppose that r(T1) ≥ 1, r(T4) > 1 and ‖T5‖ < 1, where T5x(t) =
∫ 1

0 G(t, s)p5(s)x(s) ds for
t ∈ [0, 1] and x ∈ P. Then the boundary value problem (1),(2) has at least two positive solutions x1 and x2 with
R1 ≤ ‖x1‖ < R5 < ‖x2‖.

Proof. We will show that for any x ∈ ∂BR5 ∩P, we haveAx , λx for all λ ≥ 1. If not, there exist x0 ∈ ∂BR5 ∩P
and λ0 ≥ 1 such thatAx0 = λ0x0. Then we obtain

x0(t) ≤ λ0x0(t) = Ax0(t) =

∫ 1

0
G(t, s) f (s, x0(s)) ds

≤

∫ 1

0
G(t, s)p5(s)R5 ds = R5(T5Id)(t) ≤ R5‖T5‖ < R5, ∀ t ∈ [0, 1],

where Id(t) = t for all t ∈ [0, 1]. So we deduce ‖x0‖ < R5, which is a contradiction, because x0 ∈ ∂BR5 ∩ P.
Therefore, by Theorem 2.5 we conclude

i(A,BR5 ∩ P,P) = 1. (15)

By the proof of Theorem 3.3 we obtain that

i(A,BR1 ∩ P,P) = 0, (16)

orA has a fixed point on ∂BR1 ∩ P.
By the proof of Theorem 3.4, we deduce that there exists Rn0 > R4 such that

i(A,BRn0
∩ P,P) = 0, (17)

orA has a fixed point on ∂BRn0
∩ P.

IfA has no fixed points on (∂BR1 ∪ ∂BRn0
) ∩ P, then by the relations (15)-(17) we conclude

i(A, (BRn0
\ BR5 ) ∩ P,P) = −1, and i(A, (BR5 \ BR1 ) ∩ P,P) = 1.

Therefore the operatorA has at least two fixed points x1 ∈ (BRn0
\BR5 )∩P and x2 ∈ (BR5 \BR1 )∩P, which are

positive solutions for problem (1),(2). Because A may have fixed points on (∂BRn0
∪ ∂BR1 ) ∩ P, we deduce

that the solutions x1, x2 of problem (1),(2) satisfy R1 ≤ ‖x1‖ < R5 < ‖x2‖ ≤ Rn0 . �
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Theorem 3.6. We assume that (I1) − (I4) hold and there exist R2 > R6 > R3 > 0 such that (I6), (I7) and

(I10) There exist c ∈ (0, 1) and a function p6 ∈ C((0, 1); [0,∞)) ∩ L1(0, 1) with
∫ 1

0 p6(t) dt > 0 such that f (t,u) ≥
p6(t)R6 for all t ∈ [c, 1) and u ∈ [cα−1R6,R6],

hold. Besides, we suppose that r(T2) < 1, r(T3) ≤ 1 and
∫ 1

c J(s)p6(s) ds > 1. Then the boundary value problem (1),(2)
has at least two positive solutions x1 and x2 with R3 ≤ ‖x1‖ < R6 < ‖x2‖.

Proof. For any x ∈ ∂BR6 ∩ P, we have x(t) ≥ tα−1
‖x‖ = tα−1R6 ≥ cα−1R6 for all t ∈ [c, 1]. Then we deduce

‖Ax‖ = max
t∈[0,1]

∫ 1

0
G(t, s) f (s, x(s)) ds ≥ max

t∈[0,1]

∫ 1

0
tα−1 J(s) f (s, x(s)) ds

≥ max
t∈[0,1]

tα−1
∫ 1

c
J(s) f (s, x(s)) ds =

∫ 1

c
J(s) f (s, x(s)) ds

≥

∫ 1

c
J(s)p6(s)R6 ds > R6 = ‖x‖.

Hence ‖Ax‖ > ‖x‖ for all x ∈ ∂BR6 ∩ P. This last inequality implies thatAx 6≤ x for all x ∈ ∂BR6 ∩ P, and then
we obtain (see [7])

i(A,BR6 ∩ P,P) = 0. (18)

By the proof of Theorem 3.3 we deduce that there exists R̃2 > R2 such that

i(A,BR̃2
∩ P,P) = 1. (19)

By the proof of Theorem 3.4 we conclude that

i(A,BR3 ∩ P,P) = 1, (20)

orA has a fixed point on ∂BR3 ∩ P.
IfA has no fixed points on ∂BR3 ∩ P, then by the relations (18)-(20) we obtain

i(A, (BR̃2
\ BR6 ) ∩ P,P) = 1, and i(A, (BR6 \ BR3 ) ∩ P,P) = −1.

Hence the operator A has at least two fixed points x1 ∈ (BR̃2
\ BR6 ) ∩ P and x2 ∈ (BR6 \ BR3 ) ∩ P, which are

positive solutions for problem (1),(2). Because A may have fixed points on ∂BR3 ∩ P, we deduce that the
solutions x1, x2 of problem (1),(2) satisfy R3 ≤ ‖x1‖ < R6 < ‖x2‖ < R̃2. �

4. An example

Let α = 5/2 (n = 3), m = 2, β0 = 5/4, β1 = 1/2, β2 = 4/3, H1(t) = {0, t ∈ [0, 1/3); 1, t ∈ [1/3, 1]}, H2(t) = t
for all t ∈ [0, 1], a1 = 1, a2 = 1/2.

We consider the fractional differential equation

D5/2
0+

x(t) + f (t, x(t)) = 0, t ∈ (0, 1), (21)

with the boundary conditions

x(0) = x′(0) = 0, D5/4
0+

x(1) = D1/2
0+

x
(1

3

)
+

1
2

∫ 1

0
D4/3

0+
x(t) dt. (22)
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We obtain ∆ ≈ 0.40939289 , 0. We also deduce

11(t, s) =
1

Γ(5/2)

{
t3/2(1 − s)1/4

− (t − s)3/2, 0 ≤ s ≤ t ≤ 1,
t3/2(1 − s)1/4, 0 ≤ t ≤ s ≤ 1,

121(t, s) =

{
t(1 − s)1/4

− (t − s), 0 ≤ s ≤ t ≤ 1,
t(1 − s)1/4, 0 ≤ t ≤ s ≤ 1,

122(t, s) =
1

Γ(7/6)

{
t1/6(1 − s)1/4

− (t − s)1/6, 0 ≤ s ≤ t ≤ 1,
t1/6(1 − s)1/4, 0 ≤ t ≤ s ≤ 1,

F(s) =
1
∆

 1
3 (1 − s)1/4

−

(
1
3 − s

)
+ 1

2Γ(13/6) [(1 − s)1/4
− (1 − s)7/6], 0 ≤ s < 1

3 ,
1
3 (1 − s)1/4 + 1

2Γ(13/6) [(1 − s)1/4
− (1 − s)7/6], 1

3 ≤ s ≤ 1,
G(t, s) = 11(t, s) + t3/2F(s), t, s ∈ [0, 1],
J(s) = 1

Γ(5/2) (1 − s)1/4(1 − (1 − s)5/4) + F(s), s ∈ [0, 1].

We have F(s) ≥ 0, for all s ∈ [0, 1]. We mention here that the function 122 has negative values in the vicinity
of t = 1.

We consider the function

f (t,u) =


10(t − 1

4 )2t−1/3u−1/5 + (t − 1
3 )2(1 − t)−1/4u, (t,u) ∈ (0, 1) × (0, 1],[

10(t − 1
4 )2t−1/3 + (t − 1

3 )2(1 − t)−1/4
]

cos2 π(u−1)
7 , (t,u) ∈ (0, 1) × (1, 64],

5
2 (t − 1

4 )2t−1/3u1/3 + 1
8 (t − 1

3 )2(1 − t)−1/4u1/2, (t,u) ∈ (0, 1) × (64,∞).

For any 0 < r < R, we obtain the inequality f (t,u) ≤ φr,R(t) for all (t,u) ∈ (0, 1) × [rt3/2,R], where φr,R(t), t ∈
(0, 1) is defined by

φr,R(t) =



10(t − 1
4 )2t−1/3(rt3/2)−1/5 + (t − 1

3 )2(1 − t)−1/4R, 0 < R ≤ 1,
max

{
10(t − 1

4 )2t−1/3 + (t − 1
3 )2(1 − t)−1/4;

10(t − 1
4 )2t−1/3(rt3/2)−1/5 + (t − 1

3 )2(1 − t)−1/4
}
, 1 < R ≤ 64,

max
{

5
2 (t − 1

4 )2t−1/3R1/3 + 1
8 (t − 1

3 )2(1 − t)−1/4R1/2,

10(t − 1
4 )2t−1/3(rt3/2)−1/5 + (t − 1

3 )2(1 − t)−1/4
}
, R > 64.

The above function φr,R ∈ C((0, 1); [0,∞)) ∩ L1(0, 1), and so the assumptions (I1) − (I4) are satisfied.
We choose R1 = 1, R2 = 64 and the functions

p1(t) = 10(t − 1
4 )2t−1/3 + (t − 1

3 )2(1 − t)−1/4, t ∈ (0, 1),
p2(t) =

p1(t)
3 , t ∈ (0, 1).

We have the inequalities f (t,u) ≥ p1(t)u for all (t,u) ∈ (0, 1) × (0, 1], and f (t,u) ≤ p2(t)u for all (t,u) ∈

(0, 1)× [64,∞). Evidently, p1, p2 ∈ C((0, 1); [0,∞))∩L1(0, 1),
∫ 1

0 p1(t) dt ≈ 1.88182 > 0,
∫ 1

0 p2(t) dt ≈ 0.62727 > 0,
and so assumptions (I5) and (I6) are also satisfied.

We define the linear operators T1, T2 : P→ P, where P = {x ∈ C[0, 1], x(t) ≥ t3/2
‖x‖, ∀ t ∈ [0, 1]}, by

T1x(t) =

∫ 1

0
G(t, s)p1(s)x(s) ds,

T2x(t) =

∫ 1

0
G(t, s)p2(s)x(s) ds =

1
3
T1x(t), t ∈ [0, 1], x ∈ P.

We will show that r(T1) ≥ 1 and r(T2) < 1. We denote by Id(t) = t, ∀ t ∈ [0, 1], and ζ(t) = t3/2, ∀ t ∈ [0, 1].
Then we find

T1ζ(t) =

∫ 1

0
G(t, s)p1(s)ζ(s) ds =

∫ 1

0
G(t, s)p1(s)s3/2 ds

≥

∫ 1

0
t3/2 J(s)p1(s)s3/2 ds =

(∫ 1

0
J(s)p1(s)s3/2 ds

)
ζ(t),
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and therefore

T
n
1 ζ(t) = T1(T n−1

1 ζ)(t) ≥
(∫ 1

0
J(s)p1(s)s3/2 ds

)n

ζ(t).

The last inequality gives us

r(T1) = lim
n→∞

n
√
‖T n

1 ‖ ≥ lim
n→∞

n

√(∫ 1

0
J(s)p1(s)s3/2 ds

)n

max
t∈[0,1]

ζ(t)

=

∫ 1

0
J(s)p1(s)s3/2 ds ≈ 1.70534,

and then r(T1) > 1.
On the other hand, we obtain

(T1Id)(t) =

∫ 1

0
G(t, s)p1(s) ds ≤

∫ 1

0
J(s)p1(s) ds ≈ 2.41727, ∀ t ∈ [0, 1],

and so ‖T1Id‖ < 2.418. Therefore we find

r(T2) =
1
3

r(T1) ≤
1
3
‖T1‖ =

1
3
‖T1Id‖ < 1.

Then 0 < 1
3 < r(T2) < 1 < r(T1). By Theorem 3.3 we conclude that problem (21),(22) has at least one positive

solution x(t), t ∈ [0, 1], which satisfies the inequality x(t) ≥ t3/2
‖x‖ for all t ∈ [0, 1].
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