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Abstract. This paper is devoted to an infinite system of nonlinear fractional differential equations in
the Banach spaces c0 and `p with p ≥ 1. Existence results are obtained, by using the theory of measure
of noncompactness and a new generalization of Darbo’s fixed point theorem. Some examples are also
included to show the efficiency of our results.

1. Introduction

The interest for studying fractional differential equations is based on the fact that the theory of fractional
differential equations has been applied to various fields such as physics, chemistry, engineering and heat
conduction in material with memory, see for example [14, 15]. Indeed, by applying the theory of fractional
differential equations, we can find numerous applications in economics, geology, viscoelastic materials,
bioengineering, fluid mechanics, chaotic dynamics and polymer science, ect. [4, 10, 13, 17, 20? ? ]. In recent
years, ordinary and partial functional differential equations have been developed by the fractional calculus
techniques and equations of fractional order are more general compared with integer order. The problem
of the existence of solutions for fractional differential equations plays a significant role in the investigation
of these types of equations and it is important to apply original studies in our investigations[1, 2, 5, 7, 12].

The theory of infinite systems of differential equations can be regarded as a particular case of differential
equations in Banach spaces , where the infinite system can be represented as an ordinary differential
equation. Recently, Mursaleen et al. in [11] studied a three point infinite system of fractional differential
equations Dαui(t) = fi(t,u(t)), t ∈ (0,T),

ui(0) = 0, ui(T) = aui(ξ), i = 1, 2, . . .

where Dα is the standard Riemann-Liouville fractional derivative of order 1 < α < 2 and ξ ∈ (0,T) with
aξα−1 < Tα−1. By using the theory of measure of noncopmactness and condensing operators they established
the existence of solutions in sequence spaces c0 and `p. In [12] Mursaleen and Rizvi studied existence results
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for the solution of infinite system of second order differential equations in Banach sequence spaces c0 and
`1 using the idea of Meir-Keeler condensing operators.

Motivated by the above papers, the aim of this work is to study the existence of solutions of the following
infinite system of fractional differential equations

Dα
0+ ui(t) = Fi

(
t, hi(t,u(t)), (Gu)(t)

∫ T

0
1i(s,u(s))ds

)
, t ∈ [0,T] (1)

supplemented with three point boundary conditions

ui(0) = 0, ui(T) = aui(ξ), i = 0, 1, 2, . . . , (2)

where ξ ∈ [0,T], Fi : [0,T] × R × R → R and hi, 1i : [0,T] × D → R (D ∈ {c0, `p}) are continuous functions
and G : A→ C(I,R), A ∈ {C(I, `p),C(I, c0)} is a continuous operator.

The paper is organized as follows. In Section 2, we recall some essential concepts and results which
are used in the main results. In the next two sections, by applying a generalization of Darbo fixed point
theorem together with the technique of measure of noncompactness the existence of solutions is studied,
in sequence space `p in Section 3 and in sequence space c0 in Section 4. Examples illustrating the obtained
results are also presented.

2. Preliminaries

In this section, we firstly introduce some notations and definitions which are used throughout this paper.
For a bounded subset S of a metric space X, Kuratowski [9] defined the function α(S), known as Kuratowski
measure of noncompactness, by the formula

α(S) = inf
{
δ > 0 : S =

n⋃
i=1

Si, diam(Si) ≤ δ for 1 ≤ i ≤ n < ∞
}
.

Another useful measure of noncompactness is the so called Hausdorff measure of noncompactness
defined as

χ(S) = inf{ε > 0 : S has finite ε − net in X}.

Banas and Goebel [3] have presented some basic properties of the Hausdorff measure of noncompactness
χ. Now we assume that E is a real Banach space with norm ‖ · ‖ and zero element θ. If X is a nonempty
subset of E, the closure and the closed convex hull of X will be denoted by X and Convc(X), respectively.
Moreover, let us denote by ME the family of all nonempty and bounded subsets of E and by NE its subfamily
consisting of all relatively compact sets.

Definition 2.1. [3] A mapping µ : ME −→ [0,∞) is called a measure of noncompactness if it satisfies the following
conditions:

(1) The family Kerµ = {X ∈ME : µ(X) = 0} is nonempty and Kerµ ⊆ NE.

(2) X ⊆ Y =⇒ µ(X) ≤ µ(Y).

(3) µ(X) = µ(X).

(4) µ(Conv(X)) = µ(X).

(5) µ(λX + (1 − λ)Y) ≤ λµ(X) + (1 − λ)µ(Y) for λ ∈ [0, 1].

(6) If {Xn} is a sequence of closed sets from ME such that Xn+1 ⊆ Xn for n = 1, 2, . . . and lim
n→∞

µ(Xn) = 0, then⋂
∞

n=1 Xn is nonempty.
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Theorem 2.2. (Darbo [6]). Let Q be a nonempty, closed, bounded and convex subset of a Banach space E and
F : Q −→ Q be a continuous mapping. Assume that there exists a constant k ∈ [0, 1) such that µ(FX) ≤ kµ(X) for
any nonempty subset X of Q, where µ is a measure of noncompact defined in Q. Then F has a fixed point in Q.

Samadi and Ghaemi [18, 19] proved some generalizations of Darbo fixed point theorem. Also, the first
author [17] extended Darbo fixed point theorem and presented the following result which is basic for our
main results.

Theorem 2.3. Let C be a nonempty bounded, closed and convex subset of a Banach space E. Assume T : C −→ C is
a continuous operator satisfying

θ((µ(X)) + f (µ(T(X))) ≤ f (µ(X)) (3)

for all nonempty subset X of C, where µ is an arbitrary measure of noncompactness defined in E, F : (0,∞) −→ R,
θ : (0,∞) −→ (0,∞) and (θ, f ) ∈ ∆. Then T has a fixed point in C.

In Theorem 2.3, ∆ is the set of all pairs (θ, f ) satisfying the following:

(∆1) θ(tn)9 0 for each strictly increasing sequence {tn};

(∆2) f is strictly increasing function;

(∆3) for each sequence {αn} of positive numbers, limn→∞ αn = 0 if and only if limn→∞ f (αn) = −∞.

(∆4) If {tn} is a decreasing sequence such that tn → 0 and θ(tn) < f (tn) − f (tn+1), then we have
∑
∞

n=1 tn < ∞.

The following essential definitions and auxiliary facts in fractional calculus will be needed in our main
results.

Definition 2.4. [8] The fractional order integral of the function y ∈ L1([a, b],R]) of order q ∈ R+ is defined by

Iq
a y(t) =

1
Γ(q)

∫ t

a
(t − s)q−1y(s)ds,

where Γ(·) is the Gamma function.

Definition 2.5. [8] The Riemann-Liouville derivative of order αwith the lower limit zero for a function f : [0,∞) −→
R can be written as

Dα
0+ f (t) =

1
Γ(n − α)

×
dn

dtn

∫ t

0

f (s)
(t − s)α+1−n ds, t > 0,n − 1 < α < n.

The following lemma is the main tool in our investigation.

Lemma 2.6. [11] Let f ∈ C([0,T],R) be a given function and 1 < α < 2. Then the unique solution of

Dα
0+ u(t) = f (t), u(0) = 0, u(T) = au(ξ), ξ ∈ [0,T]

is given by

u(t) =

∫ T

0
k(t, s) f (s)ds

where k(t, s) is the Green’s function, given by k(t, s) =

k1(t, s), 0 ≤ t ≤ ξ,
k2(t, s), ξ ≤ t ≤ T,

and

k1(t, s) =


(t − s)α−1(Tα−1

− aξα−1) − tα−1[(T − s)α−1
− a(ξ − s)α−1], 0 ≤ s ≤ t,

−tα−1[(T − s)α−1
− a(ξ − s)α−1], t ≤ s ≤ ξ,

−(t(T − s)α−1), ξ ≤ s ≤ T,

k2(t, s) =


(t − s)α−1(Tα−1

− aξα−1) − tα−1[(T − s)α−1
− a(ξ − s)α−1], 0 ≤ s ≤ ξ,

(t − s)α−1(Tα−1
− aξα−1) − (t(T − s))α−1, ξ < s ≤ t,

−(t(T − s))α−1, t < s ≤ T.
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3. Solution in sequence space `p

In this section we investigate the solution of the infinite system (1)-(2) in the sequence space `p, the space
of all absolutely p-summable series

`p =
{
x ∈ ω :

∞∑
n=1

|xn|
p < ∞

}
, 1 ≤ p < ∞,

where ω is the space of all complex sequences x = {xn}
∞

n=1. Clearly , `p is a Banach space with norm

‖x‖`p = ‖(xn)‖`p =

 ∞∑
n=1

|xn|
p


1
p

, 1 ≤ p < ∞.

Let us denote by M`p the families of all nonempty bounded subsets of `p. It is well known that in the space
(`p, ‖ · ‖`p ), the Hausdorff measure of noncompactnes χ is defined by the formula [3]:

χ(B) = lim
n−→∞

{
sup
x∈B

{∑
k≥n

|xk|
p
} 1

p
}
, (4)

where B ∈M`p and x(t) = (xi(t))∞i=1 ∈ `p.
By applying Theorem 2.3, the existence of solutions for the infinite system (1)-(2) is studied in the Banach

space (`p, ‖ · ‖`p ). We list the following conditions:

(H1) The functions Fi : [0,T]×R×R→ R and hi : [0,T]× `p → R are continuous and there exists a positive
real number τ > 0 such that:

|Fi(t, x1, x2) − Fi(t, y1, y2)|p ≤ e−τ(|x1 − y1|
p + |x2 − y2|

p),
|hi(t,u(t))|p ≤ e−τ|ui(t)|p,

|hi(t,u(t)) − hi(t, v(t))|p ≤ e−τ|ui(t) − vi(t)|p,

for t ∈ [0,T], x1, x2, y1, y2 ∈ R and u(t) = (ui(t)), v(t) = (vi(t)) ∈ `p where i = 1, 2, 3, . . . .

(H2) The function t→ Fi(t, 0, 0) is bounded on [0,T] such that:

N1 =

∞∑
i=1

∫ T

0
|Fi(s, 0, 0)|pds, lim

n−→∞

∑
k≥n

∫ T

0
|Fk(s, 0, 0)|pds = 0.

(H3) G : C(I, `p)→ C(I,R) is a continuous operator such that:

|(Gx)(t) − (Gu)(t)| ≤ ‖x(t) − u(t)‖`p , |(Gx)(t)| ≤ a + b‖x(t)‖p`p
,

for x,u ∈ C(I, `p) and t ∈ [0,T], where a, b are positive real numbers.

(H4) 1i : [0,T] × `p → R are continuous and there exist continuous functions bi : [0,T]→ R such that

|1i(s,u(s))| ≤ |bi(s)|, q = sup{|bi(s)|; s ∈ [0,T], i ≥ 1},

for u ∈ C(I, `p). Furthermore the series
∑
∞

i=1 bi(t) is uniformly convergent with

b(t) =

∞∑
i=1

bi(t), B = sup{b(t), t ∈ [0,T]}.
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(H5) There exist Bk such that

Bk = sup
{∑

n≥k

∣∣∣∣ ∫ T

0
1n(s,u(s))ds

∣∣∣∣p : s ∈ [0,T]
}
.

Also, as k −→ ∞, Bk −→ 0 and supk Bk = B0.

(H6) There exists a positive solution r0 of the inequality

(
2pT

p
q MpN1 + 2pT

p
q Mpe−2τrpT + e−τ(a + brp)B0T2pT

p
q Mp

) 1
p

≤ r.

Moreover, assume that (T
p
q )

1
p MpT2p < 1.

Remark 3.1. For each i ∈N, the infinite system (1)-(2) has a solution if and only if the integral equation

ui(t) =

∫ T

0
k(t, s)Fi

(
s, hi(s,u(s)), (Gu)(s)

∫ T

0
1i(s,u(s))ds

)
ds,

has a solution, where ki(t, s) = k(t, s) described in Lemma 2.6.

In the following we put M = maxt,s∈[0,T] |k(t, s)|.

Theorem 3.2. Under the assumptions (H1) − (H6), infinite system (1)-(2) has at least one solution u(t) = {ui(t)}∞i=1
such that u(t) ∈ `p for all t ∈ [0,T].

Proof. Let us consider the operator F defined on the space C(I, `p) by the formula

(Fu)(t) =
( ∫ T

0
k(t, s)Fi

(
s, hi(s,u(s)), (Gu)(s)

∫ T

0
1i(s,u(s))ds

)
ds

)
,

for all t ∈ [0,T], where C(I, `p) is the space of all continuous functions on the interval [0,T] with values in
the space `p and equipped with the norm

‖u‖ = sup{‖u(t)‖`p : t ∈ [0,T]}.

Let u be an arbitrary element of C(I, `p) where u(t) = {ui(t)}∞i=1 ∈ `p for all t ∈ [0,T]. Keeping in mind our
assumptions, for any t ∈ I we deduce that

‖(Fu)(t)‖p`p

=

∞∑
i=1

∣∣∣∣ ∫ T

0
k(t, s)Fi

(
s, hi(s,u(s)), (Gu)(s)

∫ T

0
1i(s,u(s))ds

)
ds

∣∣∣∣p
≤

∞∑
i=1

∫ T

0
|k(t, s)|p

∣∣∣∣Fi

(
s, hi(s,u(s)), (Gu)(s)

∫ T

0
1i(s,u(s))ds

)∣∣∣∣pds
( ∫ T

0
ds

) p
q

,
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where q > 1 is a positive number such that 1
p + 1

q = 1. Consequently,

‖(Fu)(t)‖p`p

≤ T
p
q
∑
∞

i=1

∫ T

0 |k(t, s)|p
∣∣∣∣Fi

(
s, hi(s,u(s)), (Gu)(s)

∫ T

0 1i(s,u(s))ds
)∣∣∣∣pds

≤ 2pT
p
q MP ∑

∞

i=1

∫ T

0

∣∣∣∣Fi

(
s, hi(s,u(s)), (Gu)(s)

∫ T

0 1i(s,u(s))ds
)
− Fi(s, 0, 0))

∣∣∣∣pds

+2pMpT
p
q
∑
∞

i=1

∫ T

0 |Fi(s, 0, 0)|pds

≤ 2pT
p
q Mp ∑

∞

i=1

∫ T

0

{
e−τ|hi(s,u(s))|p + e−τ

∣∣∣∣(Gu)(s)
∫ T

0 1i(s,u(s))ds
∣∣∣∣p}ds + 2pT

p
q MPN1

≤ 2pT
p
q Mp ∑

∞

i=1

∫ T

0

{
e−2τ
‖ui(s)‖p + e−τ(a + b‖u(s)‖plp )

∣∣∣∣ ∫ T

0 1i(s,u(s))ds
∣∣∣∣p}ds

+2pT
p
q MPN1

≤ 2pT
p
q Mpe−2τ

‖u‖pT + e−τ(a + b‖u‖p)B0T2pT
p
q Mp + 2pT

p
q MpN1.

(5)

From the above estimate we have

‖Fu‖ ≤
(
2pT

p
q Mpe−2τ

‖u‖pT + e−τ(a + b‖u‖p)B0T2pT
p
q Mp + 2pT

p
q MpN1

) 1
p

. (6)

Now, we show that F is continuous on [0,T]. Let t0 ∈ [0,T] and ε > 0 be arbitrary. In view of the continuity
of k(t, s) there exists δ > 0 such that |t − t0| < δ implies that

|k(t, s) − k(t0, t)|p <
εp(

2pT
p
q N1 + 2pT

p
q e−2τrpT + e−τ(a + brp)B0T2pT

p
q

) . (7)

From (5) and (7) we get

‖(Fu)(t) − (Fu)(t0)‖`p < ε.

Moreover, due to (6) we conclude that F is bounded in the classical supremum norm on C(I, `p) and
transforms C(I, `p) into itself. Due to the last inequality we conclude that F maps the ball Br0 into itself
where r0 is the existing constant in the assumption (H6) and

Br0 = {u ∈ C(I, `p); ‖u‖C(I,`p) ≤ r, u(0) = 0,u(T) = au(ξ)}.

Next we show that F is continuous on the ball Br0 . Let u, v ∈ Br0 and ε > 0 such that ‖u− v‖C(I,`p) < ε. For
all t ∈ [0,T], we have

‖(Fu)(t) − (Fv)(t)‖p`p

=

∞∑
i=1

∣∣∣∣ ∫ T

0
k(t, s)

[
Fi

(
s, hi(s,u(s)), (Gu)(s)

∫ T

0
1i(s,u(s))ds

)
−Fi

(
s, hi(s, v(s)), (Gv)(s)

∫ T

0
1i(s, v(s))ds

)]
ds

∣∣∣∣p
≤ T

p
q

∫ T

0

∞∑
i=1

|k(t, s)|p
∣∣∣∣Fi

(
s, hi(s,u(s)), (Gu)(s)

∫ T

0
1i(s,u(s))ds

)
−Fi

(
s, hi(s, v(s)), (Gv)(s)

∫ T

0
1i(s, v(s))ds

)∣∣∣∣pds

≤ T
p
q Mp

∫ T

0

∞∑
i=1

[
e−τ

(
|hi(s,u(s)) − hi(s, v(s))|p
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+
∣∣∣∣(Gu)(s)

∫ T

0
1i(s,u(s))ds − (Gv)(s)

∫ T

0
1i(s, v(s))ds

∣∣∣∣p)]ds

≤ T
p
q Mp

∫ T

0

[
e−τ

∞∑
i=1

e−τ|vi(s) − ui(s)|p

+2pe−τ|(Gv)(s)|p
( ∫ T

0

∞∑
i=1

|1i(s, v(s)) − 1i(s,u(s))|ds
)p

+2pe−τ|(Gv)(s) − (Gu)(s)|p
( ∫ T

0

∞∑
i=1

|1i(s,u(s))|ds
)p]

ds

≤ T
p
q Mp

∫ T

0

[
e−2τ
‖v − u‖pC(I,`p) + e−τ2p(a + b‖v‖p)p

×

(
lim

k−→∞
×

∫ T

0

k∑
i=1

|1i(s, v(s)) − 1i(s,u(s))|ds
)p

+2pe−τ
(
‖v − u‖C(I,`p)

∫ T

0

∞∑
i=1

|bi(s)|ds
)p]

ds.

As a consequence of Lebesgue dominated convergence theorem, from the above inequality and applying
the continuity of 1 on [0,T] × `p we insert that

‖(Fu)(t) − (Fv)(t)‖plp

≤ T
p
q MpT

{
e−2τε + 2pe−τ(a + b‖v‖p)p

( ∫ T

0
δ1(ε)ds

)p
+ 2pe−τ(εTB)p

}
,

where

δ1(ε) = sup{|1i(t, v) − 1i(t,u)| : u, v ∈ `p, ‖u − v‖C(I,`p) ≤ ε, t ∈ I, i = 1, 2, 3, . . .},

and δ1(ε) −→ 0 as ε → 0. Hence F is continuous on the ball Br0 . Now let X be a nonempty subset of Br0 .
Then, taking into account our assumptions, for arbitrary fixed t ∈ I we have

χ`p ((FX)(t))

= lim
n−→∞

{
sup
u∈X

(∑
i≥n

|Fui(t)|p
) 1

p
}

≤ lim
n−→∞

{
sup
u∈X

(∑
i≥n

∣∣∣∣ ∫ T

0
k(t, s) × Fi

(
s, hi(s,u(s)), (Gu)(s)

∫ T

0
1i(s,u(s))ds

)
ds

∣∣∣∣p) 1
p
}

≤ (T
p
q )

1
p 2p lim

n−→∞

{
sup
u∈X

(∑
i≥n

∫ T

0
|k(t, s)|p

∣∣∣∣Fi

(
s, hi(s,u(s)), (Gu)(s)

∫ T

0
1i(s,u(s))ds

)

−Fi(s, 0, 0)
∣∣∣∣p + |Fi(s, 0, 0)|p

)
ds

) 1
p
}

≤ (T
p
q )

1
p Mp2p lim

n−→∞

{
sup
u∈X

(∑
i≥n

∫ T

0

(
e−τ|hi(s,u(s))|p

+e−τ
∣∣∣∣(Gu)(s)

∫ T

0
1i(s,u(s))ds

∣∣∣∣pds
) 1

p
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≤ 2p(T
p
q )

1
p Mp lim

n−→∞

{
sup
u∈X

( ∫ T

0

(
e−τ

∑
i≥n

|hi(s,u(s))|p

+e−τ(a + b‖u‖p)
∫ T

0

∑
i≥n

|bi(s)|ds
)p

ds
) 1

p
}

≤ 2p(T
p
q )

1
p TMpe−2τ lim

n−→∞

{
sup
u∈X

(∑
i≥n

|ui(t)|p
) 1

p
}
.

Thus, we have

sup
t∈I

χ`p ((FX)(t)) = χC(I,`p)(FX)

≤ sup
t∈I

e−2τMp(T
p
q )

1
p T2p lim

n−→∞

{
sup
u∈X

(∑
i≥n

|ui(t)|p
) 1

p
}
.

By passing to logarithms, we get
ln(χC(I,`p)(FX)) + 2τ ≤ ln(χ(X)).

Now by applying Theorem 2.3 with f (t) = ln(t) and θ(t) = 2τ, we obtain that F has a fixed point and the
proof is completed.

Example 3.3. Now, we investigate the following infinite system of fractional differential equations

D5/4un(t) =

(
e−t−τ−n

) 1
p

2
sin

( (e−t−τ−n
) 1

p

cos
(
|un(t)|

)
2

+ cos
( 1

1 + |x(t)|`p

) ∫ T

0
arctan

( 1
2n e−s

8 + |un(s)
|

)
ds

)
, t ∈ [0,T],

un(0) = 0, un(T) =
4√

2un

(T
3

)
; n = 1, 2, 3, . . .

(8)

Let us observe that the system (8) is a special case of system (1)-(2) if we put

Fn(t, x, y) =

(
e−t−τ−n

) 1
p

sin
(
x + y

)
2

, (Gx)(t) = cos
( 1

1 + |x(t)|`p

)

hn(t,u(t)) =

(
e−t−τ−n

) 1
p

cos
(
|un(t)|

)
2

, 1n(s,u(s)) = arctan
( 1

2n e−s

8 + |un(s)|

)
.

Suppose t ∈ [0,T], x1, x2, y1, y2 ∈ R and u, v ∈ `p. From the definition of Fn and hn, we conclude that

|Fn(t, x1, y1) − Fn(t, x2, y2)|p ≤ e−τ
(
|x1 − y1|

p + |x2 − y2|
p
)
,

|hn(t,u(t))|p ≤ e−τ|un(t)|p,
|hn(t,u(t)) − hn(t, v(t))|p ≤ e−τ|un(t) − vn(t)|p.

Consequently F and h satisfy the assumption (H1). Moreover, |Fi(s, 0, 0)| = 0 and condition (H2) is clearly satisfied.
On the other hand the function

(Gx)(t) = cos
( 1

1 + |x(t)|`p

)
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verifies assumption (H3) with a = 1 and b = 0. To justify assumption (H4), let s ∈ [0,T] and u ∈ C(I, `p). Then we
have

|1n(s,u(s))| =
∣∣∣∣ arctan

( 1
2n e−s

8 + |un(s)|

)∣∣∣∣ < e−s

2n = bn(s) < e−s,

q = sup{|bn(s)|; n > 1, s ∈ [0,T]} ≤ 1.

Furthermore, applying the above inequality we infer that the series
∑
∞

i=1 bn(t) is uniformly convergent on I. Again we
have

Bk = sup
{∑

n≥k

∣∣∣∣ ∫ T

0
1n(s,u(s))ds

∣∣∣∣p : s ∈ [0,T]
}
≤ sup

{
(1 − e−T)

∑
n≥k

1
2n

}p
.

As k −→ ∞ we get
∑

k≥n
1
2n −→ 0. Thus, Bk −→ 0. Finally the existing inequality in assumption (H6) has the form

2pT
p
q Mpe−2τrpT + e−τB0T2pT

p
q Mp

≤ rp.

Thus, for the number r0 we can take r0 = e−τB0T2pT
p
q Mp

/
(1−2pT

p
q Mpe−2τT). Consequently all conditions of Theorem

3.2 are satisfied and thus the system of fractional differential equation (8) has at least one solution in the space C(I, `p).

4. Solution in sequence space c0

Now we investigate the existence of solutions for the infinite system (1)-(2) in the space c0, the space of
sequences converging to zero, equipped with the norm ‖x‖c0 = sup{|xi| : i = 1, 2, . . .}. Let us denote by Mc0

the families of all nonempty bounded subsets of c0. For the Banach space (c0, ‖ · ‖c0 ), the Hausdorff measure
of noncompactnes χ is given by (cf. [3]):

χ(B) = lim
n−→∞

{
sup
u∈B

{
max

k≥n
|uk|

}}
, (9)

where B ∈Mc0 and x(t) = (xi(t))∞i=1 ∈ c0.

We need the following assumptions in the sequel:

(A1) The functions Fn : [0,T]×R×R→ R and hn : [0,T]× c0 → R are continuous functions and there exist
positive real numbers τ > 0 such that

|Fn(t, x1, x2) − Fn(t, x1, x2)| ≤ e−τ(|x1 − y1| + |x2 − y2|),
|hn(t,u(t))| ≤ e−τ sup

n≥1
{|ui(s)|; i ≥ n},

|hn(t,u(t)) − hn(t, v(t))| ≤ e−τ sup
n≥1
{|ui(s) − vi(s)|; i ≥ n}.

for t ∈ [0,T], x1, x2, y1, y2 ∈ R and u(t) = (ui(t)), v(t) = (vi(t)) ∈ c0 where i = 1, 2, 3, . . ..

(A2) The function t→ Fi(t, 0, 0) is bounded on [0,T] i.e

M1 = sup{|Fi(t, 0, 0)|; t ∈ [0,T], i > 1}.

Moreover, lim
i−→∞

Fi(t, 0, 0) = 0.

(A3) G : C(I, c0)→ C(I,R) is a continuous operator such that

|(Gx)(t) − (Gu)(t)| ≤ ‖x(t) − u(t)‖c0 , |(Gx)(t)| ≤ a + b‖x(t)‖c0 ,

for x,u ∈ C(I, c0), t ∈ [0,T], where a, b are positive real numbers.
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(A4) 1n : [0,T] × c0 → R is continous and there exist continuous functions bi : [0,T]→ R such that

|1n(s,u(s))| ≤ |bn(s)|, q = sup{|bn(s)|; s ∈ [0,T]},

for all s ∈ [0,T] and u ∈ C(I, c0). Moreover, lim
n−→∞

∫ T

0
|bn(s)|ds = 0.

(A5) There exists a positive solution r0 of the inequality

e−2τr + e−τ(a + br)qT + M1 ≤ r.

Moreover, assume that TM < 1.

Theorem 4.1. Under assumptions (A1)− (A5), infinite system (1)-(2) has at least one solution u such that u(t) ∈ c0
for all t ∈ [0,T].

Proof. Let us define the operator F on the space C(I, c0) by

(Fu)(t) =

( ∫ T

0
k(t, s)Fi

(
t, hi(s,u(s)), (Gu)(s)

∫ T

0
1i(s,u(s))ds

)
ds

)
for all t ∈ [0,T], where C(I, c0) is the space of all continuous functions on the interval [0,T] with values in
space c0 and eqipped with the norm ‖u‖ = sup{‖u(t)‖c0 : t ∈ [0,T]}.We show that (Fu)(t) ∈ c0. For arbitrarily
fixed t ∈ [0,T], we have

‖(Fu)(t)‖c0

= supn≥1

∣∣∣∣ ∫ T

0 k(t, s)Fn

(
s, hn(s,u(s)), (Gu)(s)

∫ T

0 1n(s,u(s))ds
)
ds

∣∣∣∣
≤ supn≥1

∫ T

0 |k(t, s)|
(∣∣∣∣Fn

(
s, hn(s,u(s)), (Gu)(s)

∫ T

0 1n(s,u(s))ds
)
− Fn(s, 0, 0)

∣∣∣∣
+|Fn(s, 0, 0)|

)
ds

∣∣∣∣ ≤ supn≥1

∫ T

0 |k(t, s)|
(
e−τ|hn(s,u(s))| + e−τ

∣∣∣∣(Gu)(s)
∫ T

0 1n(s,u(s))ds
∣∣∣∣

+|Fn(s, 0, 0)|
)
ds ≤ e−τ supn≥1

∫ T

0 M|hn(s,u(s))|ds

+Me−τ supn≥1

∣∣∣∣(Gu)(s)
∫ T

0 1n(s,u(s))ds| + M supn≥1 |Fn(s, 0, 0)|

≤Me−2τ
∫ T

0 sup{|ui(s)| : i ≥ n}ds + Me−τ(a + b‖u‖)qT + MM1T.

(10)

Consequently,

‖Fu‖ ≤ Te−2τM‖u‖ + Me−τ(a + b‖u‖)qT + MM1T. (11)

We show that Fu continuously transforms the interval [0,T] in to the space c0. Let tt0 ∈ [0,T] and ε > 0 be
arbitrary. By the continuity k(t, s), there exists δ > 0 such that |t − t0| < δ implies that

|k(t, s) − k(t0, s)| <
ε

Te−2τr + e−τ(a + br)qT + TM1
. (12)

Consequently, from (10) and (12) we conclude that ‖(Fu)(t) − (Fu)(t0)‖c0 < ε. Moreover, as a consequence of
(11), the function F maps the ball Br0 into itself where r0 is the existing constant in assumption (A5) and

Br0 = {u ∈ C(I, c0); ‖u‖C(I,c0) ≤ r,u(0) = 0,u(T) = au(ξ)}.
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Now, we prove that F is a continuous operator on Br0 . To do this, let us fix ε > 0 and take arbitrary u, v ∈ Br0

such that ‖u − v‖C(I,c0) < ε. Then, for t ∈ [0,T], we have

‖(Fu)(t) − (Fv)(t)‖c0 ≤ sup
n≥1

∫ T

0
k(t, s)

[
e−τ sup{|ui(s) − vi(s)|; i > n}

+e−τ|(Gu)(s) − (Gv)(s)|
∫ T

0
|1n(s,u(s)))|ds

+e−τ|(Gv)(s)|
∫ T

0
|1n(s,u(s)) − 1n(s, v(s))|ds

]
ds

≤ sup
n≥1

[ ∫ T

0
|k(t, s)|

(
e−τ|u − v|C(I,c0)

+qTe−τ|u − v|C(I,c0) + e−τ|(Gv)(s)|
∣∣∣∣ ∫ T

0
ωT

r0
(1, ε)ds

∣∣∣∣)ds
]
,

where

ωT
r0

(1i, ε) = sup{|1i(t,u) − 1i(t, v)| : t ∈ [0,T],u, v ∈ c0, ‖u − v‖C(I,c0) < ε}.

Moreover, in light of the continuity of 1i on [0,T] × c0, we have ωT
r0

(1i, ε)→ 0. By applying this remark and
the previous inequality, the continuty of F is followed. Now let X be a nonempty subset of Br0 . In view of
the formula (9) and our assumptions, we have

χc0 (FX)(t)

= lim
n−→∞

{
sup
u∈X

(
max

i≥n

∣∣∣∣ ∫ T

0
k(t, s)Fi

(
s, hi(s,u(s)), (Gu)(s)

∫ T

0
1i(s,u(s))ds

)
ds

∣∣∣∣)}
≤ lim

n−→∞

{
sup
u∈X

[
max

i≥n

∫ T

0
|k(t, s)|

(
e−τ|hi(s,u(s))|

+e−2τ
∣∣∣∣(Gu)(s)

∫ T

0
1i(s,u(s))ds

∣∣∣∣ + |Fi(s, 0, 0)|
)
ds

]}
≤ lim

n−→∞

{
sup
u∈X

[
max

i≥n

∫ T

0
|k(t, s)|

(
e−τ sup

i≥n
|ui(s)|

+e−τ(a + b‖u(s)‖c0 )
∫ T

0
|bi(s)|ds + sup

i≥n
|Fi(s, 0, 0)|

)
ds

]}
.

Consequently,

χC(I,c0)(FX) ≤ TMe−2τ sup
t∈I

lim
n−→∞

{
sup
u∈X

(
max

i≥n
|ui(t)|

)}
.

As, MT < 1, by passing to logarithms, we have

2τ + ln(χc(I,c0))(FX) ≤ χc(I,c0)(X).

Thus all conditions of Theorem 2.3 hold true with f (t) = ln(t) and θ(t) = 2τ and Theorem 2.3 implies that F
has a fixed point in the space C(I, c0), which is a solution of the system (1) − (2). The proof is complete.
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Example 4.2. In order to show the applicability of Therem 4.1, the fractional differential system

D5/4un(t) = e−τ−t−n 3

√√√√
e−τ−n−t 5

√∑
k≥n

|uk(t)|
(k2 + 1)10n + 7

√√
1

100
1

1 +
∑

k≥n
|uk(t)|
1+k2

∫ T

0
1n(s,u(s))ds

un(0) = 0, un(T) =
1
2

un

(T
3

)
; n = 1, 2, 3, . . .

(13)

is included, where

Fn(t, x, y) = e−τ−n−t 3
√

5√x + 7
√

y, hn(t,u(t)) = e−τ−n−t
∑
k≥n

|uk(t)|
(k2 + 1)10n

(Gx)(t) =
1

100
×

1

1 +
∑

k≥n
|xk(t)|
(1+k2)

, 1n(s,u(s)) = arctan
(

e−s2−n

8 +
∑
∞

k=n
|uk(s)|

(1+k2)n2

)
,

For all x1, x2, y1, y2 ∈ R, u(t) ∈ c0 and t ∈ [0,T], we have

|Fn(t, x1, y1) − Fn(t, x2, y2)| = e−τ−n−t
[
|

3
√

5
√

x1 + 7
√

y1 −
3
√

5
√

x1 + 7
√

y1|
]

≤ e−τ
[

3
√
|

5
√

x1 + 7
√

y1 −
5
√

x2 −
7
√

y2|
]

≤ e−τ
[ 3
√

5
√
|x1 − x2| +

7
√
|y1 − y2|

]
≤ e−τ

[
|x1 − x2| + |y1 − y2|

]
,

|hn(t,u(t))| ≤ e−τ
π2

6 × 10n sup
n≥1
{|ui(t)|; i ≥ n}

≤ e−τ|u(t)|c0 ,

|hn(t,u(t)) − hn(t, v(t))| ≤ e−τ
π2

6 × 10n |u(t) − v(t)|c0 .

Consequently, the hypothesis (A1) is fulfilled. Furthermore,

M1 = sup{|Fn(t, 0, 0)|; t ∈ [0,T],n ≥ 1} = 0,

and lim
i−→∞

Fi(t, 0, 0) = 0. On the other hand, for all x,u ∈ C(I, c0) and t ∈ [0,T], we have

|(Tx)(t)| ≤ 1, |(Tx)(t) − (Tu)(t)| =
1

100

(∣∣∣∣ 1

1 +
∑

k≥n
|xk(t)|
(1+k2)

−
1

1 +
∑

k≥n
|uk(t)|
(1+k2)

∣∣∣∣)
≤ sup

n≥1
{|xk(t) − uk(t)|; k ≥ n} = |x(t) − u(t)|c0 .

Thus the operator G satisfies condition (A3) with a = 1, b = 0. In this example

1n(s,u(s)) = arctan
(

e−s2−n

8 +
∑
∞

k=n
|uk(s)|

(1+k2)n2

)
verifies condition (A4) with bn(s) = e−s

2n and q = 1
2 . Inconsequently, the existent inequality in condition (A5) has the

form

e−2τr + e−τ
T
2
≤ r.

Obviously, the last inequality has a positive solution. Thus, all conditions of Theorem 4.1 are satisfied and thus the
system (13) has at least one solution in the space C(I, c0).
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