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Abstract. In this paper, we propose the first hyperbolic-logarithmic kernel function for Semidefinite
programming problems. By simple analysis tools, several properties of this kernel function are used to
compute the total number of iterations. We show that the worst-case iteration complexity of our algorithm
for large-update methods improves the obtained iteration bounds based on hyperbolic [24] as well as classic
kernel functions. For small-update methods, we derive the best known iteration bound.

1. Introduction

In this paper, we deal with the semidefinite programming (SDP) problem given in the following standard
form

(P) min{〈C,X〉 : 〈Ai,X〉 = bi, i = 1, ...,m, X ∈ Sn
+},

and its dual problem

(D) max{bty :
m∑

i=1

yiAi + S = C, S ∈ Sn
+},

where b ∈ Rm, C,Ai ∈ S
n are given, and y ∈ Rm, X,S ∈ Sn. Here Sn

+ denotes the cone of positive semidef-
inite matrices in the real space of (n × n) symmetrical matrices Sn. We assume that the Ai’s are linearly
independent. Interior point methods (IPMs) provide a powerful approach for solving SDP problems. The
pioneering works in this direction are due to Alizadeh [1, 2] and Nesterov and Nemirovskii [14], we can
find a comprehensive list of publications on this topic in the SDP homepage maintained by Alizadeh [1].
Most IPMs for SDP can be viewed as natural extensions of IPMs for linear programming (LP) and have
similar polynomial complexity results. However, obtaining a valid search direction in the SDP case is much
more difficult than in the LP case.

IPMs for LP and SDP are generally based on the logarithmic kernel function [10, 21] with complexity
O(n log n

ε ), for large-update methods and O(
√

n log n
ε ) for small-update methods, where n is the size of the

problem and ε is the accuracy parameter. Kernel functions play an important role in design and complexity
analysis of interior point algorithms for solving convex optimization problems. In each iteration of these
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methods, the search direction is determined and the distance between the current point and the central
path is measured by a proximity function which is typically induced from a kernel function.
In the last two decades, many new kernel functions have been introduced with the ultimate goal to find a
kernel function that improves the complexity analysis of linear and also nonlinear optimization problems.
Kernel functions were introduced first in 2001 by Peng et al. [15–17]. The authors proposed new variants
of IPMs for LP and SDP problems based on a class of self-regular kernel functions with a non logarithmic
barrier term. They improved the iteration bound for large-update methods from the classical iteration
bound O(n log n

ε ) to O(
√

n log n log n
ε ), which almost closes the gap between the iteration bounds for large-

and small-update methods. After [15–17], researchers looked for other kernel functions with even better
bounds, may be even better than the bound for small-update methods, since in practice large-update behave
much more efficient than small-update methods.

In 2005, Wang et al. [25] presented a primal-dual interior point algorithm for SDP problems based on a
simple non self-regular kernel function which was first introduced in [6] for LP. Later on, Qian et al. [20]
proposed a new kernel function with simple algebraic expression and established the iteration complexity
as O(n

3
4 log n

ε ) for large-update methods for SDP. In 2004, Bai et al [4] introduced first new kernel function
with a trigonometric barrier term. The IPM with this function has been further analyzed by El Ghami et al
[11] in 2012. They established the iterations complexity as O(n

3
4 log n

ε ) for large-update methods.
Since then, a number of various kernel functions with a trigonometric barrier term has been proposed

and analyzed. For these, we refer the reader to [7, 12, 13, 19]. The authors in [7, 19] are the first to reach
the best known complexity bound for large-update methods for trigonometric kernel functions. In 2014,
Peyghami et al [18] and Cai et al. [8] proposed a new kernel function with trigonometric-logarithmic
barrier term for LP, which has O(n

2
3 log n

ε ) complexity bounds for large-update methods. This improves the
complexity bounds obtained in [11].

Motivated by their works, the purpose of this paper is to deal with the primal-dual IPMs for SDP based
on a new kind of kernel functions. Compared to the existing ones, the proposed function has a hyperbolic-
logarithmic barrier term. Furthermore, we present a primal-dual IPM for SDP based on this new kernel
function. The obtained iteration bound for large-update methods, namely, O

(
n

2
3 log n

ε

)
, improves the

classical iteration complexity with a factor n
1
3 . For small-update methods, we derive the iteration bound

O

(√
n log n

ε

)
, which matches the currently best known iteration bound for small-update methods.

Note that, kernel function with a hyperbolic barrier term was recently introduced, for the first time,
by Touil and Chikouche [24]. They established that the complexity bound is O

(
n

3
4 log n

ε

)
for large-update

methods. The obtained iteration bound is not as good as the best existing ones, but it is of interest that it
belongs to a new class that so far has not been investigated.
The paper is organized as follows. In section 2, we recall some fundamental concepts about central path and
search direction for SDP. The new kernel function and some of its properties as well as the corresponding
barrier function are described in section 3. The estimate of the step size and the decrease behavior of the
new barrier function are discussed in section 4, where we present the iteration bound of our algorithm for
large- and small-update methods. Finally, some conclusions and remarks follow in section 5.
Let us finish this introduction with some notations used in the whole paper: The set of all (n × n) matrices
with real entries is denoted byRn×n.Given M ∈ Rn×n,Mt denotes the transpose of M.Sn

++ denotes the cone of
positive definite matrices inSn. The scalar product of two matrices A and B inSn is the trace of their product

i.e., 〈A,B〉 =tr(AB) =
n∑

i, j=1
ai jbi j. For any M ∈ Sn,we denote by λi(M), i = 1, ...,n, the eigenvalues of the matrix

M. The diagonal matrix with diagonal entries λi(M), i = 1, ...n, is denoted by dia1(λ1(M), ..., λn(M)). The

Frobenius norm of M ∈ Sn is ‖M‖ = 〈M,M〉
1
2 =

√
n∑

i, j=1
m2

i j =

√
n∑

i=1
λ2

i (M). For any M ∈ Sn
++, the expression

M
1
2 denotes its symmetric square root. Finally, if f (x) ≥ 0 is a real valued function of a real nonnegative

variable, the notation f (x) = O(1(x)) means that f (x) ≤ C1(x) for some positive constant C and f (x) = Θ(1(x))
means that C11(x) ≤ f (x) ≤ C21(x) for two positive constants C1 and C2.
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2. Preliminaries

2.1. Framework of kernel-based IPMs for SDP
We assume that the problems (P) and (D) satisfy the interior point condition (IPC), i.e., there exists

(X0, y0,S0) such that

〈Ai,X0
〉 = bi, i = 1, ...,m, X0

∈ S
n
++,

m∑
i=1

y0
i Ai + S0 = C, S0

∈ S
n
++.

It is well known that finding an optimal solution of (P) and (D) is equivalent to solve the following system

〈Ai,X〉 = bi, i = 1, ...,m, X ∈ Sn
+,

m∑
i=1

yiAi + S = C,S ∈ Sn
+, XS = 0. (1)

The core idea of primal-dual IPMs is to replace the complementarity condition XS = 0 by the parameterized
equation XS = µI, where µ > 0.

Under the IPC, the modified system has a unique solution denoted by (Xµ, yµ,Sµ), for each µ > 0. The set
of all solutions (Xµ, yµ,Sµ),with µ > 0 is known as the central path or central trajectory [23, 26]. The principal
idea of IPMs is to follow this central path and approach the optimal set as µ goes to zero. As is well known,
the definition of search directions for SDP requires some symmetrization scheme. In this paper, we use the
scheme due to Nesterov and Todd (NT) [22], which uses the positive definite matrix

P =
[
X

1
2

(
X

1
2 SX

1
2

)− 1
2 X

1
2

]− 1
2

=
[
S−

1
2

(
S

1
2 XS

1
2

) 1
2 S−

1
2

]− 1
2

.

The matrix P can be used to scale X and S to the same matrix V because

V =
1
√
µ

PXP =
1
√
µ

P−1SP−1. (2)

Obviously the matrices P and V are symmetric and positive definite.
For fixed µ > 0, a direct application of the Newton method to the system (1) with the parameterized

equation XS = µI instead of XS = 0, gives
〈Ai,DX〉 = 0, i = 1, ...,m,
m∑

i=1
∆yiAi + DS = 0,

DX + DS = V−1
− V,

(3)

where

Ai =
1
√
µ

P−1AiP−1, i = 1, ...,m,DX =
1
√
µ

P∆XP,DS =
1
√
µ

P−1∆SP−1. (4)

The solution of (3) defines the (scaled) NT search direction (DX,∆y,DS).
Now, we define the matrix function ψ(V) obtained from ψ(t).

Definition 2.1. Let V ∈ Sn
++ and

V = Qtdia1(λ1(V), λ2(V), ..., λn(V))Q,

where Q is any orthonormal matrix (Qt = Q−1) that diagonalizes V.
The matrix function ψ(V) : Sn

++ → S
n is defined by

ψ(V) = Qtdia1(ψ(λ1(V)), ψ(λ2(V)), ..., ψ(λn(V)))Q.
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Remark 2.2. In this paper, when we use the function ψ(.) and its first three derivatives ψ′(.), ψ′′(.), and ψ′′′(.)
without any specification, it denotes a matrix function if the argument is a matrix and a univariate function (from R
to R) if the argument is in R.

Corresponding to our kernel function, we define the proximity (barrier) function Ψ(V) : Sn
++ → R+ as

follows

Φ
(
X,S;µ

)
:= Ψ (V) := tr

(
ψ (V)

)
=

n∑
i=1

ψ (λi (V)) . (5)

Just as in [9], we replace the right-hand side in the last equation of (3) by −ψ′(V), we get
〈Ai,DX〉 = 0, i = 1, ...,m,
m∑

i=1
∆yiAi + DS = 0,

DX + DS = −ψ′(V).

(6)

It is easy to verify that this system has a unique solution (DX,∆y,DS). From (4), having DX and DS, we can
compute ∆X and ∆S.

Due to the orthogonality of ∆X and ∆S, it is trivial to see that DX and DS are orthogonal, and so,
〈DX,DS〉 = 0. Then, we can easily verify that the matrix function ψ(V) determines in a natural way an
interior point algorithm.

DX = DS = 0n×n ⇔ ψ′(V) = 0n×n ⇔ V = I⇔ Ψ(V) = 0⇔ XS = µI,

i.e., if and only if X = Xµ and S = Sµ, as it should. Otherwise Ψ (V) > 0. Thus we conclude that ∆X,∆y
and ∆S all vanish if and only if V = I, that is, if and only if (X, y,S) = (Xµ, yµ,Sµ). Otherwise, we will use
(∆X,∆y,∆S) as the new search direction. The new iterate (X+, y+,S+) is given by

X+ = X + α∆X, y+ = y + α∆y,S+ = S + α∆S, (7)

where α denotes the default step size, α ∈ (0, 1], which has to be chosen appropriately.
For the analysis of the interior point algorithm, we define the norm-based proximity measure σ(V), as

follows

σ(V) =
1
2
‖DX + DS‖ =

1
2

∥∥∥ψ′ (V)
∥∥∥ =

1
2

√
tr

(
ψ′ (V)2

)
. (8)

2.2. The primal-dual interior point algorithm for SDP
In general, each kernel function gives rise to a primal-dual interior point algorithm. For the description

of our algorithm, it is clear that closeness of (X, y,S) to (Xµ, yµ,Sµ) is measured by the value of Ψ(V) with τ
as a threshold value: if Ψ(V) ≤ τ, then we decrease µ to µ+ := (1 − θ)µ, for some fixed θ ∈]0, 1[, and solve
the Newton system (6) to obtain the unique search direction (∆X,∆y,∆S). Then, we apply (7) to get the new
iterate. This procedure is repeated until we find a new iterate (X+, y+,S+) that is Ψ(V) ≤ τ and then we let
µ := µ+ and (X, y,S) := (X+, y+,S+). Then, µ is again reduced by the factor (1− θ) and we solve the Newton
system targeting at the new µ+−center, and so on. This process is repeated until µ is small enough, say until
nµ < ε for a certain accuracy parameter ε, at this stage we have found an ε−optimal solution of (P) and (D).
The algorithm of primal-dual IPM based on our kernel function is given in Algorithm 1.

3. Properties of the new proximity function

In this section, we introduce the new kernel function and study its properties, which are essential to our
complexity analysis.
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Algorithm 1 : Primal-dual algorithm for SDP
Input
a threshold parameter τ ≥ 1;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ ∈]0, 1[;
a kernel function ψ(t);
(X0, y0,S0) satisfy the IPC and µ0 = 1 such that Φ

(
X0,S0;µ0

)
≤ τ;

begin
X : = X0; y : = y0; S : = S0;µ : = µ0;
while nµ ≥ ε do

begin (outer iteration)
µ : = (1 − θ)µ;
while Φ(X,S;µ) = Ψ(V) > τ do

begin (inner iteration)
Solve system (6) and use (4) to obtain (∆X,∆y,∆S);
Choose a suitable step size α;
(X, y,S) := (X, y,S) + α(∆X,∆y,∆S);
V := 1

√
µ (PXSP−1)

1
2 ;

end while (inner iteration)
end while (outer iteration)

3.1. Some technical results
Let us define the new kernel function as

ψ (t) =

(
1 +

2 coth(1)

sinh2(1)

)
t2
− 1
2

+ coth2(t) − log t − coth2(1), ∀t > 0. (9)

We have
lim
t→0+

ψ (t) = lim
t→+∞

ψ (t) = +∞,

and the first three derivatives of the function ψ on ]0,+∞[ are

ψ′(t) =

(
1 +

2 coth(1)

sinh2(1)

)
t −

1
t
−

2 coth(t)

sinh2(t)
, (10)

ψ′′(t) =

(
1 +

2 coth(1)

sinh2(1)

)
+ 2

(
3 coth2(t) − 1

sinh2(t)

)
+

1
t2 > 1 +

2 coth(1)

sinh2(1)
, (11)

and

ψ′′′(t) = −8
coth t

sinh2(t)

(
3 coth2(t) − 2

)
−

2
t3 < 0, (12)

where
coth(t) > 1, ∀t > 0.

The kernel function ψ(t) is twice differentiable and one can easily verify that ψ(1) = ψ′(1) = 0. This implies
that ψ(t) is completely defined by its second derivative as follows

ψ (t) =

t∫
1

ξ∫
1

ψ′′ (ζ) dζdξ. (13)

In what follows, we develop some technical lemmas on the new kernel function.
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Lemma 3.1. Let ψ(t) be the function defined in (9). Then, we have

2t coth(t) − 1 > 0, ∀t > 0. (14)

ψ′(t) =

(
1 +

2 coth(1)

sinh2(1)

)
t −

1
t
−

2 coth(t)

sinh2(t)
> 0, ∀t > 1. (15)

Proof. (14) is proven in [24, Lemma 3.2].
For the inequality (15), ψ′(t) can be written as follows

ψ′(t) = 2
(

t coth(1)

sinh2(1)
−

coth(t)

sinh2(t)

)
+ t − 1

t

> 2
(

t coth(1)

sinh2(1)
−

coth(t)

sinh2(t)

)
, ∀t > 1.

Thus, ψ′(t) > 0, ∀t > 1, since sinh (respectively coth) is positive and increasing (respectively decreasing) in
]0,+∞[ then in ]1,+∞[, this implies that

coth t
sinh2(t)

<
coth 1

sinh2(t)
<

coth 1

sinh2(1)
<

t coth 1

sinh2(1)
, ∀t > 1.

Thus, the inequality (15) is a direct consequence, which completes the proof.

Lemma 3.2. Let ψ (t) be the function defined in (9), then we have

(i) ψ (t) is convex exponentially for all t > 0 ; that is

ψ(
√

t1t2) ≤
1
2

(ψ(t1) + ψ(t2)), ∀t1, t2 > 0.

(ii) ψ′′(t) is monotonically decreasing, ∀t > 0.

(iii) tψ′′(t) − ψ′(t) > 0, ∀t > 0.

Proof. For (i), by Lemma 2.1 in [9], it suffices to show that tψ′′(t) +ψ′(t) ≥ 0, ∀t > 0. Indeed, using (10), (11)
and (14) of Lemma 3.1, we have

tψ′′(t) + ψ′(t) = 2t
(
1 +

2 coth(1)

sinh2(1)

)
+

2

sinh2(t)

(
3 coth2(t) − coth t − 1

)
= 2t

(
1 +

2 coth(1)

sinh2(1)

)
+

2t
sinh4(t)

+
2 coth t
sinh2(t)

(2t coth t − 1) > 0.

(ii) follows immediately since ψ′′′(t) < 0, ∀t > 0, from (12).
For the item (iii), using (10) and (11), we have

tψ′′(t) − ψ′(t) = 2t
(
1 +

2 coth(1)

sinh2(1)

)
+

2

sinh2(t)

(
3 coth2(t) + coth t − 1

)
> 0.

This completes the proof.

Lemma 3.3. For ψ(t), we have

(i) 2(t − 1)2
≤ ψ(t) ≤

(
ψ′(t)

2

)2

, ∀t > 0.
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(ii) ψ(t) ≤
1
2
ψ′′(1)(t − 1)2, ∀t ≥ 1.

Proof. Using (13) and (11), we have

ψ(t) ≥
(
1 +

2 coth 1

sinh2 1

) t∫
1

ξ∫
1

dζdξ =

(
1 +

2 coth 1

sinh2 1

)
(t − 1)2,

and

ψ(t) ≤
sinh2 1

2 coth 1 + sinh2 1

t∫
1

ξ∫
1

ψ′′(ξ)ψ′′(ζ)dζdξ =
sinh2 1

2 coth 1 + sinh2 1

ψ′(t)2

2
, ∀t > 0.

This gives (i) by using the inequality 2 coth 1 > sinh2 1.
For (ii), since ψ(1) = ψ′(1) = 0, and by using Taylor’s theorem, we have

ψ(t) =
1
2
ψ′′(1)(t − 1)2 +

ψ′′′(ξ)
3!

(t − 1)3,

where 1 < ξ < t. The result follows since ψ′′′(t) < 0.

Lemma 3.4. Let % : [0,+∞[ → [1,+∞[ be the inverse function of ψ (t) for t ≥ 1 and ρ : [0,+∞[ → ]0, 1] be the

inverse function of −
1
2
ψ′ (t) for 0 < t ≤ 1, then

(i) 1 +

√
2z

ψ′′(1)
≤ % (z) ≤ 1 +

√
z
2
, ∀z ∈ [0,+∞[.

(ii) coth t ≤
√

2 (z + 1)
1
3 , z = −

1
2
ψ′ (t) ≥ 0, ∀t ∈]0, 1].

Proof. For (i), let z ≥ 0 and let t ∈ [1,+∞[ such that z = ψ(t), then % (z) = t. By (ii) of Lemma 3.3, we have

z ≤
1
2
ψ′′(1)(t − 1)2,

this implies that

t − 1 ≥

√
2z

ψ′′(1)
.

For the second hand, we use (i) of Lemma 3.3, we have z = ψ (t) ≥ 2 (t − 1)2 , then we obtain

t ≤ 1 +

√
z
2
.

For (ii), let z ≥ 0 and let t ∈]0, 1] such that z = −
1
2
ψ′ (t) , for t ∈ ]0, 1] , then ρ (z) = t. So, by (10) , we have

2z = −ψ′(t) = −

(
1 +

2 coth(1)

sinh2(1)

)
t +

1
t

+
2 coth(t)

sinh2(t)
.

Using the hyperbolic equation, we have

2 coth t
(
coth2(t) − 1

)
=

2 coth t
sinh2 t

= 2z +
2 coth 1

sinh2 1
t + t −

1
t

≤ 2
(
z +

coth 1

sinh2 1

)
,
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this implies
coth3 t
cosh2 t

≤ z +
coth 1

sinh2 1
, ∀t ∈]0, 1].

Since cosh is positive and increasing in ]0,+∞[ then in ]0, 1], we obtain

coth3 t ≤ z cosh2 1 + coth3 1,

hence (ii) is obtained by observing that cosh2 1 < 2
√

2 and coth 1 <
√

2.

3.2. Growth behavior of the proximity function Ψ(V)
Note that, at the start of each outer iteration of the algorithm, just before the update of µ with the factor

(1 − θ) ,we have Ψ (V) ≤ τ.After updating µ in an outer iteration, all the eigenvalues of V are divided by the
factor

√
1 − θ, which in general leads to an increase of the value of Ψ(V). Then during the inner iteration,

the value of the proximity function decreases until its value gets back to the situation in which Ψ (V) ≤ τ.
In this section, we derive an estimate for the effect of updating the barrier parameter µ on the value of the
proximity function during an iteration. We start with an important theorem which is valid for all kernel
functions ψ(t) that are strictly convex and satisfies (ii) and (iii) of Lemma 3.2.

Theorem 3.5. ([25]) Let % be as defined in Lemma 3.4. Then, for any V ∈ Sn
++ and β > 1, we have

Ψ
(
βV

)
≤ nψ

(
β%

(
Ψ (V)

n

))
.

Corollary 3.6. Let θ be such that 0 < θ < 1. If Ψ(V) ≤ τ, then

Ψ
(
βV

)
≤

ψ′′(1)
4(1 − θ)

(
θ
√

2n +
√
τ
)2
, β =

1
√

1 − θ
> 1.

Proof. Using (ii) of Lemma 3.3 for t ≥ 1, we have

ψ(t) ≤
1
2
ψ′′(1)(t − 1)2.

Consequently, by the above Theorem, we get

Ψ
(
βV

)
≤

n
2
ψ′′(1)

(
β%

(
Ψ (V)

n

)
− 1

)2

.

Hence, from (i) of Lemma 3.4, we have

Ψ(βV) ≤
n
2
ψ′′(1)

β
1 +

√
Ψ(V)

n

2

 − 1


2

.

Since β = 1
√

1−θ
, then

Ψ
(
βV

)
≤

nψ′′(1)
2(1 − θ)

(√
Ψ(V)

2n + 1 −
√

1 − θ
)2

≤
ψ′′(1)

4(1 − θ)

(
θ
√

2n +
√

Ψ(V)
)2
.

The last inequality is obtained from the fact that 1 −
√

1 − θ =
θ

1 +
√

1 − θ
≤ θ.

By the assumption Ψ (V) ≤ τ just before the µ−update and from (11), we have

Ψ
(
βV

)
≤

ψ′′(1)
4(1 − θ)

(
θ
√

2n +
√
τ
)2

=: Ψ0. (16)
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Obviously, Ψ0 is an upper bound of Ψ
(
βV

)
, the value of Ψ(V) after the µ−update.

The following Lemma gives a lower bound on the norm-based proximity measure σ(V), in terms of
Ψ (V) .

Lemma 3.7. Let σ(V) be defined by (8). Then, for any V ∈ Sn
++, we have

σ(V) ≥
√

Ψ(V).

Proof. From (i) of Lemma 3.3, we have for all t > 0

ψ (t) ≤
(
ψ′(t)

)2

4
,

using (8) and (5), we obtain

σ(V)2 =
1
4

tr
(
ψ′ (V)2

)
=

1
4

n∑
i=1

ψ′ (λi (V))2
≥

n∑
i=1

ψ (λi (V)) .

Remark 3.8. Throughout the paper, we assume that τ ≥ 1.Using the above lemma and the assumption that Ψ(V) ≥ τ,
we have σ(V) ≥ 1.

4. Analysis and complexity of the algorithm

4.1. Computation of displacement step

The choice of the step size α is another crucial issue in the analysis of the algorithm. In this section, we
compute a default step size α, such that the proximity function is decreasing during an inner iteration and
give the complexity results of the algorithm.
Using (7), (4) and (2) for fixed µ, we get

X+ = X + α∆X = X + α
√
µP−1DXP−1 =

√
µP−1(V + αDX)P−1,

S+ = S + α∆S = S + α
√
µPDSP =

√
µP(V + αDS)P.

So, by (2), we have V+ = V + αDX = V + αDS.

This implies that the eigenvalues of V+ are the same as those of the matrix ((V+αDX)
1
2 (V+αDS)(V+αDX)

1
2 )

1
2 .

Let f (α) = Ψ (V+) −Ψ (V) = Ψ

((V + αDX)
1
2 (V + αDS) (V + αDX)

1
2
) 1

2
 −Ψ (V) .

Throughout the paper, we assume that the step size α satisfied

V + αDX ∈ S
n
++ and V + αDS ∈ S

n
++.

Due to the following proposition which is a consequence of the exponentially convexity property of ψ

Proposition 4.1. ([9]) For any X1,X2 ∈ S
n
++, we have

Ψ

((
X

1
2
1 X2X

1
2
1

) 1
2
)
≤

1
2

(Ψ (X1) + Ψ (X2)) ,

it follows that

Ψ (V+) ≤
1
2

(Ψ(V + αDX) + Ψ(V + αDS)) .
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Therefore, f (α) ≤ f1(α), where

f1 (α) =
1
2

(Ψ(V + αDX) + Ψ(V + αDS)) −Ψ (V) . (17)

Obviously, we have f (0) = f1 (0) = 0. Taking the first two derivatives of f1(α) with respect to α, we get

f ′1 (α) =
1
2

tr
(
ψ′(V + αDX)DX + ψ′(V + αDS)DS

)
,

f ′′1 (α) =
1
2

tr
(
ψ′′(V + αDX)D2

X + ψ′′(V + αDS)D2
S

)
.

This gives, using the last equality of (6) and from (8)

f ′1 (0) = −
1
2

tr
((
ψ′ (V)

)2
)

= −2σ(V)2. (18)

Below we use the following notation, σ(V) := σ.
From Lemmas 4.1-4.4 in [4], we have the following Lemmas 4.2-4.4, since ψ(t) is a kernel function and ψ′′(t)
is monotonically decreasing (see also [6, 9, 25]).

Lemma 4.2. Let f1(α) as defined in (17), one has

f ′′1 (α) ≤ 2σ2ψ′′(λmin(V) − 2ασ).

Lemma 4.3. We have f ′1(α) ≤ 0 if the step size α satisfies the inequality

ψ′ (λmin (V)) − ψ′ (λmin (V) − 2ασ) ≤ 2σ. (19)

Lemma 4.4. Let ρ be as defined in Lemma 3.4. Then the step size

α∗ :=
ρ (σ) − ρ (2σ)

σ
,

is the largest possible solution of inequality (19). And then,

α∗ ≥
1

ψ′′
(
ρ (2σ)

) .
Now, we give a suitable step-size α for Algorithm 1.

Lemma 4.5. Let ρ and α∗ be as defined in Lemma 4.4. If Ψ(V) ≥ τ ≥ 1, then we have

α∗ ≥
1

8 + 24 (2σ + 1)
4
3 + 8 (2σ + 1)

2
3

.

Proof. Using (11) , (14) and (ii) of Lemma 3.4 with t = ρ (2σ) ∈]0, 1], we obtain

ψ′′(t) =

(
1 +

2 coth 1

sinh2 1

)
+ 2

(
3 coth2 t − 1

sinh2 t

)
+

1
t2

= 1 + 2 coth 1(coth2 1 − 1) + 2(3 coth2 t − 1)(coth2 t − 1) +
1
t2

≤ 1 + 2 coth 1(coth2 1 − 1) + 2(3 coth2 t − 1)(coth2 t − 1) + 4 coth2(t)
≤ 1 + 2 coth3 1 + 6 coth4 t + 4 coth2 t
≤ 1 + 4

√
2 + 6 coth4 t + 4 coth2 t

≤ 8 + 24 (2σ + 1)
4
3 + 8 (2σ + 1)

2
3 ,

application of Lemma 4.4 yields the desired inequality.

Denoting

ᾱ =
1

8 + 24 (2σ + 1)
4
3 + 8 (2σ + 1)

2
3

, (20)

we have that ᾱ is the default step size in the algorithm and that ᾱ ≤ α∗.
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4.2. Decreasing of Ψ(V) during an inner iteration

Lemma 4.6. ([25]) Let 1 be a twice differentiable convex function with 1(0) = 0, 1′ (0) < 0, which attains its (global)
minimum at t∗ > 0. If 1′′ is increasing for t ∈ [0, t∗], then

1 (t) ≤
1′ (0)

2
t, 0 ≤ t ≤ t∗.

As a direct consequence, we get the following lemma.

Lemma 4.7. If the step size α is such that α ≤ α∗, then

f (α) ≤ −ασ2.

Proof. It’s easy to verify that f1 (α) satisfies the conditions of Lemma 4.6, then

f (α) ≤ f1(α) ≤
f ′1 (0)

2
α, for all 0 ≤ α ≤ α∗.

The result follows from (18).

We can obtain the upper bound for the decreasing value of the proximity in the inner iteration by the
following theorem.

Theorem 4.8. Let ᾱ as in (20) and Ψ(V) ≥ 1. Then

f (ᾱ) ≤ −
(Ψ(V))

1
3

130
. (21)

Proof. Since ᾱ ∈ [0, α∗] , we obtain thanks to Lemma 4.7 and Remark 3.8

f (ᾱ) ≤ −
σ2

8
(
1 + 3 (2σ + 1)

4
3 + (2σ + 1)

2
3
)

= −
σ2

8

 1

σ
4
3

+ 3
(
2 +

1
σ

) 4
3

+
(2
σ

+
1
σ2

) 2
3
 σ 4

3

≤ −
σ

2
3

8

 1

σ
4
3

+ 3
(
2 +

1
σ

) 4
3

+
(2
σ

+
1
σ2

) 2
3


≤ −
σ

2
3

8
(
1 + 3(3)

4
3 + 3

2
3

) ≤ − σ 2
3

130
.

Hence, from Lemma 3.7, we get

f (ᾱ) ≤ −

(√
Ψ(V)

) 2
3

130

= −
(Ψ(V))

1
3

130
,

which completes the proof.
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4.3. Iteration bound of our algorithm
We need to count how many inner iterations are required to return to the situation where Ψ (V) ≤ τ

after µ−update. We define the value of Ψ (V) after µ−update as Ψ0, and the subsequent values in the same
outer iteration are denoted as Ψk, k = 1, ...,K, where K denotes the total number of inner iterations in the
outer iteration. By the definition of f (α) and according to (21) , for k = 0, ...,K − 1, we obtain

Ψk+1 ≤ Ψk −
(Ψk(V))

1
3

130
.

Lemma 4.9. ([9]) Suppose t0, t1, ..., tk be a sequence of positive numbers such that

tk+1 ≤ tk − βt1−γ
k , k = 0, 1, ...,K − 1,

where β > 0 and 0 < γ ≤ 1. Then K ≤

 tγ0
βγ

 .
Letting tk = Ψk, β =

1
130

and γ =
2
3
, we can get that the total number of inner iterations K in the outer

iteration satisfies
K ≤ 195 Ψ

2
3
0 ,

where Ψ0 is the value of Ψ (V) after the µ−update in an outer iteration.
Now, we derive the complexity bounds for large and small-update methods.

Theorem 4.10. Let Ψ0 be the value defined in (16) and let τ ≥ 1. Then, the total number of iterations to obtain an
approximation solution with nµ ≤ ε is bounded by

K
θ

log
n
ε
≤

[
195 Ψ

2
3
0

] [ 1
θ

log
n
ε

]
.

Proof. Recall that Ψ0 is the upper bound according to (16).An upper bound for the total number of iterations
is obtained by multiplying the upper bound K by the number of outer iterations, which is bounded above
by 1

θ (log n
ε ) (see [9]), that gives the result thanks to the above lemma.

Large-update methods use τ = O (n) and θ = Θ (1) . We then easily verify that the right-hand side
expression is

O

(
n

2
3 log

n
ε

)
.

For small-update methods one has τ = O (1) and θ = Θ
(

1
√

n

)
. The iteration bound then becomes

O

(
√

n log
n
ε

)
.

5. Conclusions and remarks

In this paper, we have introduced a new kernel function, which is a combination of the classic kernel
function and a hyperbolic barrier term, and presented various properties of this new kernel function. We
have showed that the large-update IPM based on this kernel function has O

(
n

2
3 log n

ε

)
iteration bound

in the worst-case. This bound improves the complexity of the IPMs based on hyperbolic as well as
classic kernel functions significantly, but still needs to be improved so that it meets at least the so far best
known complexity result for large-update IPMs, i.e., O

(√
n log n log n

ε

)
. For small-update methods, we

have obtained O
(√

n log n
ε

)
iteration bound which matches the currently best known iteration bound.
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Some interesting topics for forthcoming works are: The extension to linear programming (LP), second-
order cone programming (SOCP), and Convex quadratic semidefinite programming (CQSDP). Find a
parameterized hyperbolic kernel function to improve the complexity bound for large-update IPMs. Fur-
thermore, numerical tests to investigate the behavior of the algorithm so as to be compared with other
approaches.
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