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Abstract. This paper introduces and focuses on two pairs of concepts in two main sections. The first
section aims to examine the relation between the concepts of strong Jp-convergence with respect to a
modulus function f and Jp-statistical convergence, where Jp is a power series method. The second section
introduces the notions of f -Jp-statistical convergence and f -strong Jp-convergence and discusses some
possible relations among them.

1. Introduction and Preliminaries

The concept of statistical convergence was initially presented by Fast [10] and Steinhaus [25] indepently
and it has received much attention over the last three decades. Especially the papers [6, 8, 12–14, 16, 22, 24]
has provided major contributions on this concept to be an important field of occupation for the researchers.
In fact, the idea of statistical convergence is based on density of subsets of natural numbers. More details
including some new kinds of densities and corresponded types of statistical convergence can be found in
several studies, for instance in [2–4, 9, 17, 20, 21].

Strong Cesàro convergence with respect to a modulus function was introduced by Maddox [19]. Connor
[7] extended this idea by replacing Cesàro matrix with a nonnegative regular matrix A and he proved that
A-statistical convergence involves strong A-summability with respect to a modulus and further these
notions are equivalent for bounded sequences. Connor also established the relationship between statistical
convergence and strong Cesàro convergence in his earlier paper [6]: A real sequence is strongly Cesàro
convergent if and only if it is statistical convergent and bounded. Khan and Orhan [15] improved this result
by repla-
cing the boundedness condition with a strictly weaker condition called uniform integrability. Ünver and
Orhan [27] has recently introduced the notions of statistical convergence, strong convergence and uniform
integrability of a sequence defined by a power series method and established the similar relationship in the
power series method setting.

By using the modulus functions, Aizpuru et al. [1] introduced the concept of f -statistical convergence
which depends on the other new concept of f -density of natural numbers (where f is a modulus function).
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It is shown that statistical convergence encompasses f -statistical convergence. León-Saavedra et. al. [18]
defined the notion of f -strongly convergence by means of modulus functions. They proved that if a
sequence is f -strongly convergent then it is f -statistically convergent and uniformly integrable, and the
converse statement is true when f is compatible modulus function. Such type of modulus functions are
those for which the concepts of statistical convergence and f -statistical convergence are equivalent.

The present paper is motivated by the above-mentioned papers and it is divided into two main sections.
In both of them, we will consider the power series method Jp, that is a sequence-to-function transformation.

The second section introduces the concept of strong Jp-convergence with respect to a modulus function
and examines its relation with Jp -statistical convergence. We show that Jp-statistical convergence strictly
includes strong Jp-convergence with respect to a modulus f , and these two concepts are equivalent in the
context of f -Jp -uniformly integrable sequences.

In the third section we first define the concepts of f -Jp-density, f -Jp-statistical convergence and f -strong
Jp-convergence. We prove some relations between them. For instance, we prove that f -Jp -statistical con-
vergence ( f -strong Jp-convergence) implies Jp -statistical convergence (strong Jp-convergence) and converse
statements are true when f is a compatible modulus function. Also we will prove that when f is com-
patible, any real sequence is f -strongly Jp -convergent if and only if it is f -Jp-statistically convergent and
Jp-uniformly integrable. Our methods are in line with a variation of that used by Aizpuru et al. [1] and
León-Saavedra et. al. [18] with some changes.

Now let us recall the basic concepts and facts used throughout the paper.
LetN0 be set of non-negative integers. Suppose throughout that the sequence

(
pk

)
, k ∈N0, is a sequence

of non-negative numbers with p0 > 0, that

Pn =

n∑
k=0

pk →∞ (n→∞) (1)

and that

p (t) =

∞∑
k=0

pktk < ∞ for 0 < t < 1 (2)

(in other words p (t) has radius of convergence R = 1). Let x = (xk) , k ∈ N0, be a sequence of real numbers.
Then the power series method Jp is defined as follows:

xk → L
(
Jp

)
, that is (xk) is summable to the number L by the power series method Jp (or (xk) is said to be

Jp-convergent to L) if

px (t) =

∞∑
k=0

pktkxk

is convergent for 0 < t < 1 and

lim
t→1−

px (t)
p (t)

= L.

We say that the Jp-method is regular if xk → L implies xk → L
(
Jp

)
. It is known that the condition (1) or

equivalently the condition p (t) → ∞ (as t→ 1−) ensures the regularity of the method Jp (see, [5]). So, by
the assumption (1), we only consider regular Jp-methods.

A set E ⊂N0 is said to have usual (or natural) density δ (E) , if the limit

δ (E) = lim
n→∞

|E (n)|
n + 1
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exists, where E (n) = {k ≤ n : k ∈ E} and |E| denotes the cardinality of the set E [11]. The number sequence
(xk) is said to be statistically convergent to the number L, and denoted by st-lim x = L, if for each ε > 0,

lim
n→∞

1
n + 1

|{k ≤ n : |xk − L| ≥ ε}| = 0,

i.e. δ (Eε) = 0, where Eε = {k ∈N0 : |xk − L| ≥ ε} and hereafter this set will always be denoted by Eε.
The ideas of strong convergence, density and statistical convergence with respect to general power series

methods, namely, in the case p (t) =
∑
∞

k=0 pktk has radius of convergence R ∈ (0,∞], are introduced by Ünver
and Orhan [27] and they called them as Pp-strong convergence, Pp-density and Pp-statistical convergence,
respectively. Note that if 0 < R < ∞ then it is sufficient to consider the case R = 1, since we may replace(
pk

)
with

(
pkRk

)
(see [5], Remark 3.6.3). For the sake of simplicity, in this paper, we only deal with the case

R = 1, and note that similar ideas can be adapted to the case R = ∞. So we will use the notation Jp instead
of Pp.

A real sequence x = (xk) is said to be strongly Jp-convergent to the number L if

lim
t→1−

1
p (t)

∞∑
k=0

pktk
|xk − L| = 0.

Denote the set of all strongly Jp-convergent sequences by w
(
Jp

)
, and by w0

(
Jp

)
if L = 0.

Let E ⊂N0 be any set. If the limit

δJp (E) = lim
t→1−

1
p (t)

∑
k∈E

pktk

exits, then δJp (E) is called Jp-density of E. From the definition it is clear that if δJp (E) exists, then 0 ≤ δJp (E) ≤ 1
and δJp (E) = 1 − δJp (N0\E). If E is finite, then δJp (E) = 0. Also if E1 ⊂ E2 and δJp (Ei) (i = 1, 2) exist, then
δJp (E1) ≤ δJp (E2) . Note that Jp-density and natural density of any E ⊂ N0 need not to be equal to each
other. For instance, let (pk) = (1, 0, 1, 0, . . .). Then p (t) =

∑
∞

k=0 t2k = 1/
(
1 − t2

)
for 0 < t < 1. Now if

E = {2k + 1 : k ∈N0}, then δJp (E) = 1/2 but δ (E) = 0 (see [27]). Also note that in case pk = 1 for all k,
Jp-density is called Abel density introduced by Ünver in [26].

The sequence x = (xk) is said to be Jp-statistically convergent to L if for any ε > 0

lim
t→1−

1
p (t)

∑
k∈Eε

pktk = 0,

that is δJp (Eε) = 0 for any ε > 0. In this case, we write stJp -lim x = L. The set of all Jp-statistically convergent
sequences will be denoted by stJp . Note that regularity of Jp-method requires the regularity of Jp-statistical
convergence, i.e. lim x = L implies stJp -lim x = L. However, the converse is not true in general. For example,
let (pk) = (1, 0, 1, 0, . . .) and (xk) = (0, 1, 0, 1, . . .), then stJp -lim x = 0, but x is not convergent. On the other
hand, statistical convergence and Jp-statistical convergence are incompatible methods.

Ünver and Orhan also defined the concept of uniform integrability of sequences with respect to a power
series method: The sequence (xk) is Jp-uniformly integrable if there exists t0 ∈ [0, 1) such that

lim
c→∞

sup
t∈[t0,1)

1
p (t)

∑
|xk |≥c

pktk
|xk| = 0.

Any bounded sequence is Jp-uniformly integrable but not conversely (see [27], Example 2). This notion and
the following result will play a key role to obtain more general results in the second and third sections.

Theorem 1.1. [27] Let x = (xk) be a real sequence. Then the following are equivalent.
(i) x is strongly Jp-convergent to L.
(ii) x is Jp-statistically convergent to L and Jp-uniformly integrable.
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Recall that a modulus function ([23]) f is a function from [0,+∞) to [0,+∞) such that (i) f (x) = 0 if and
only if x = 0, (ii) f

(
x + y

)
≤ f (x) + f

(
y
)

for all x, y ≥ 0, (iii) f is increasing, and (iv) f is continuous from the
right at zero. A modulus function can be bounded or unbounded. Some examples of modulus functions
are f (x) = xp (0 < p ≤ 1), f (x) = log(x + 1), f (x) = x + log(x + 1) and f (x) = x/(1 + x).

2. Strong Jp-Convergence with respect to a Modulus and Jp-Statistical Convergence

In this section, we first extend the notion of strong Jp-convergence by using a modulus function in the
same way as Connor [7]. Then we present a relationship between this notion and the notion of Jp-statistical
convergence.

Definition 2.1. Let f be a modulus function and x = (xk) be a sequence of real numbers. The sequence x is
said to be strongly Jp-convergent with respect to the modulus function f if

lim
t→1−

1
p (t)

∞∑
k=0

pktk f (|xk − L|) = 0.

The set of all strongly Jp-convergent sequences with respect to the modulus function f is denoted by w
(
Jp, f

)
.

In particular, when L = 0, we prefer to write w0

(
Jp, f

)
instead of w

(
Jp, f

)
.

Note that if f (x) = x, then the sets w
(
Jp, f

)
and w0

(
Jp, f

)
are reduced to w

(
Jp

)
and w0

(
Jp

)
, respectively.

Theorem 2.2. For any modulus f , strongly Jp-convergence implies strongly Jp-convergence with respect to f (to the
same limit), i.e. w

(
Jp

)
⊂ w

(
Jp, f

)
.

Proof. Assume that x ∈ w
(
Jp

)
with limit L. Then

px(t) =
1

p (t)

∞∑
k=0

pktk
|xk − L| → 0

(
t→ 1−

)
.

Let ε > 0. By the continuity of f from right at t = 0, we can select a number δ with the property 0 < δ < 1
such that f (t) < ε for all 0 < t ≤ δ. Let

yk := |xk − L| and px( f , t) :=
1

p (t)

∞∑
k=0

pktk f
(
yk

)
.

Then

px( f , t) =
1

p (t)

∞∑
k=0
yk≤δ

pktk f
(
yk

)
+

1
p (t)

∞∑
k=0
yk>δ

pktk f
(
yk

)
=: Σ1 + Σ2.

If yk ≤ δ, then f
(
yk

)
< ε and hence Σ1 < ε. Now let yk > δ and [t] be the integral part of the number t. Since

yk <
(
yk/δ

)
<

[(
yk/δ

)
+ 1

]
, we have

f
(
yk

)
≤

[ yk

δ
+ 1

]
f (1) ≤ 2 f (1)

yk

δ
.

Then from the properties of the modulus function (iii) and (ii) we obtain Σ2 ≤ 2 f (1) δ−1px(t). Hence, we get

px( f , t) < ε + 2 f (1) δ−1px(t).

Letting t→ 1− in this inequality, we conclude that x ∈ w
(
Jp, f

)
.
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The following characterization concerning the ideals in `∞, where as usual `∞ is the set of all bounded
sequences, was given in [7], and it will be useful for the proof of our next result.

Lemma 2.3. Let x ∈ `∞ and M be an ideal in `∞. Then x belongs to the closure of M if and only if χEε,0 ∈ M
for all ε > 0, where χE denotes the characteristic function of the set E and Eε,0 := {k ∈N0 : |xk| ≥ ε} .

Lemma 2.4. Let f be any modulus function. Then w0

(
Jp, f

)
∩ `∞ is an ideal in `∞. In particular, w0

(
Jp

)
∩ `∞

is an ideal in `∞.

Proof. Let x ∈ w0

(
Jp, f

)
and y ∈ `∞. Since y ∈ `∞, there is a M ∈ Z+ such that

∣∣∣yk

∣∣∣ ≤ M for each k ∈ N0.

Hence, we have f
(∣∣∣xkyk

∣∣∣) ≤ f (M |xk|) ≤M f (|xk|) for all k, thus we obtain

1
p (t)

∞∑
k=0

pktk f
(∣∣∣xkyk

∣∣∣) ≤ M
p (t)

∞∑
k=0

pktk f (|xk|) .

Letting t→ 1− in this inequality, we conclude that xy ∈ w0

(
Jp, f

)
. This completes the proof of lemma.

Lemma 2.5. w0

(
Jp

)
∩ `∞ is a closed ideal in `∞.

Proof. From the Lemma 2.4, it is enough to prove that w0

(
Jp

)
∩ `∞ is closed in `∞. Let x = (xk) be any

sequence in the closure of w0

(
Jp

)
∩ `∞. Then there exists a sequence (xn) in w0

(
Jp

)
∩ `∞ such that∥∥∥x(n)

− x
∥∥∥
∞

= sup
k

∣∣∣x(n)
k − x

∣∣∣→ 0 (n→∞).

For any ε > 0, choose any N ∈N such that
∥∥∥x(N)

− x
∥∥∥
∞
< ε. Then we have

1
p (t)

∞∑
k=0

pktk
|xk| ≤

1
p (t)

∞∑
k=0

pktk
∣∣∣x(N)

k − xk

∣∣∣ +
1

p (t)

∞∑
k=0

pktk
∣∣∣x(N)

k

∣∣∣
≤ ε +

1
p (t)

∞∑
k=0

pktk
∣∣∣xN

k

∣∣∣ .
Hence we get x ∈ w0

(
Jp

)
by letting t→ 1− in this inequality. So w0

(
Jp

)
∩ `∞ is a closed ideal in `∞.

Theorem 2.6. Let f be any modulus function. Then w
(
Jp, f

)
∩ `∞ = w

(
Jp

)
∩ `∞.

Proof. It is sufficient to prove that w0

(
Jp, f

)
∩ `∞ = w0

(
Jp

)
∩ `∞. We have w0

(
Jp

)
∩ `∞ ⊂ w0

(
Jp, f

)
∩ `∞ from

Theorem 2.2. Now let x ∈ w0

(
Jp, f

)
∩ `∞ and ε > 0. Define the sequence y =

(
yk

)
by

yk =

{
1
xk

, |xk| ≥ ε
0 , otherwise.

Since y ∈ `∞, we have xy = χEε,0 ∈ w0

(
Jp, f

)
∩ `∞ from Lemma 2.4. Thus

lim
t→1−

1
p (t)

∞∑
k=0

pktk f
(
χEε,0 (k)

)
= 0. (3)

Since

1
p (t)

∞∑
k=0

pktk f
(
χEε,0 (k)

)
=

f (1)
p (t)

∞∑
k=0

pktkχEε,0 (k) , (4)
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according to the definition of modulus function and characteristic function, we have χEε,0 ∈ w0

(
Jp

)
from (3)

and (4). Hence χEε,0 ∈ w0

(
Jp

)
∩ `∞. Thus, we have x ∈ w0

(
Jp

)
∩ `∞ by Lemma 2.3 and Lemma 2.5. This

completes the proof.

Motivated by [27] we can give the following definition.

Definition 2.7. Let f be any modulus function. Then a sequence (xk) is said to be f -Jp-uniformly integrable if there
exists t0 ∈ [0, 1) such that

lim
c→∞

sup
t∈[t0,1)

1
p (t)

∑
f (|xk |)≥c

pktk f (|xk|) = 0.

The following theorem is an extension of Theorem 1.1 and it characterizes strongly Jp-convergence with
respect to a modulus via Jp-statistically convergence.

Theorem 2.8. Let f be any modulus function and x = (xk) be a real sequence. Then the following are equivalent.
(i) x is strongly Jp-convergent to L with respect to f .
(ii) x is Jp-statistically convergent to L and f -Jp-uniformly integrable.

Proof. (i)⇒ (ii). Let x ∈ w
(
Jp, f

)
with limit L, that is

lim
t→1−

1
p (t)

∞∑
k=0

pktk f (|xk − L|) = 0.

Then for any given ε > 0, we have

1
p (t)

∞∑
k=0

pktk f (|xk − L|) ≥
1

p (t)

∑
k∈Eε

pktk f (|xk − L|)

≥
f (ε)
p (t)

∑
k∈Eε

pktk,

since f is increasing. If we take the limit for t → 1− in this inequality, we get stJp -lim x = L. Letting
yk := f (|xk|), one can get from Theorem 1.1 that x is f -Jp-uniformly integrable.
(ii) ⇒ (i). Assume that stJp -lim x = L and x is f -Jp-uniformly integrable. Let ε > 0. First observe that if
|xk − L| ≥ ε implies that f (|xk − L|) ≥ f (ε). On the other hand, limε→0+ f (ε) = 0 since f is continuous at zero.
This implies that any Jp-statistically convergent sequence satisfies the condition

lim
t→1−

1
p (t)

∑
k∈E′ε

pktk = 0 (5)

where E′ε =
{
k ∈N0 : f (|xk − L|) ≥ f (ε)

}
. Now, f -Jp-uniformly integrability and (5) imply by Theorem 1.1

that x is strongly Jp-convergent to L with respect to f . This completes the proof.

Remark 2.9. The condition of f -Jp-uniformly integrability can not be omitted in Theorem 2.8. Indeed, let
f (x) = x and define

(
pk

)
and an unbounded sequence x = (xk) by

pk =

{
1
k , k = 2 j + 1
1 , k = 2 j , j = 0, 1, 2, . . .

and

xk =

{
k , k = 2 j + 1 or k = 0, j = 0, 1, 2, . . .
1
k , k = 2 j, j = 1, 2, . . .
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respectively. In this case,

p(t) =

∞∑
k=0

pktk =
1
2

ln
(1 + t

1 − t

)
+

1
1 − t2

for 0 < t < 1 and then we get δJp (E1) = 1 and δJp (E2) = 0 for the sets E1 :=
{
2 j : j ∈N0

}
and E2 :={

2 j + 1 : j ∈N0
}
. Since

{k ∈N0 : |xk| ≥ ε} ⊂ E2 ∪ {finite set}

for all ε > 0, we have δJp ({k ∈N0 : |xk| ≥ ε}) = 0. Hence stJp -lim x = 0. However, since

lim
t→1−

1
p (t)

∞∑
k=0

pktk
|xk| = lim

t→1−

1
p (t)

∑
k∈E1

pktk
|xk| +

∑
k∈E2

pktk
|xk|


= lim

t→1−

1
p (t)

(
− ln

(
1 − t2

)
+

t
1 − t2

)
= 1 , 0,

x is not strongly Jp-convergent to the number L = 0 with respect to f . On the other hand, for any t0 ∈ [0, 1)
we have

sup
t∈[t0,1)

1
p (t)

∑
|xk |≥c

pktk
|xk| = sup

t∈[t0,1)

1
p (t)

 ∑
|x2k |≥c

p2kt2k
|x2k| +

∑
|x2k+1 |≥c

p2k+1t2k+1
|x2k+1|


≥ sup

t∈[t0,1)

c
p (t)

(
− ln

(
1 − t2

)
+

t
1 − t2

)
= lim

t→1−

c
p (t)

(
− ln

(
1 − t2

)
+

t
1 − t2

)
= c→∞, (c→∞)

where we can replace sup with limt→1− , since the ratio c
p(t)

(
− ln

(
1 − t2

)
+ t

1−t2

)
is an increasing function of t

on the interval [t0, 1) . Thus (xk) is not f -Jp-uniformly integrable.

3. f -Strong Jp-Convergence and f -Jp-Statistical Convergence

Let f be any unbounded modulus function. The f -density of a set E ⊂N0 is defined by

δ f (E) = lim
n→∞

f (|E (n)|)
f (n + 1)

if the limit exists. A sequence x = (xk) is said to be f -statically convergent to L if for each ε > 0

δ f (Eε) = lim
n→∞

f (|{k ≤ n : |xk − L| ≥ ε}|)
f (n + 1)

= 0

(see, [1]). It is also known from [1] that any f -statistically convergent sequence is also statistically convergent
but not conversely. We also recall that a sequence x = (xk) is said to be f -strongly Cesàro convergent to L if

lim
n→∞

f

 n∑
k=0

|xk − L|


f (n + 1)

= 0

(see, [18]). We remark here that if f is bounded modulus function, then these definitions hold only for
trivial cases (for empty set and constant sequences).

Throughout this section, we only consider the unbounded modulus functions as in [1] and [18]. We first
define the concept of f -Jp-density of subsets ofN0 and f -Jp-statistically convergence for any real sequence.
After that some inclusion relations will be investigated.
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Definition 3.1. Let f be an unbounded modulus function and E ⊂N0. If the limit

δ f
Jp

(E) := lim
t→1−

1
f
(
p (t)

) f

∑
k∈E

pktk


exits, then δ f

Jp
(E) is called f -Jp-density of E.

Definition 3.2. Let f be an unbounded modulus function and x = (xk) be a sequence of real numbers. The
sequence (xk) is said to be f -Jp-statistically convergent to L if for any ε > 0,

lim
t→1−

1
f
(
p (t)

) f

∑
k∈Eε

pktk

 = lim
t→1−

1
f
(
p (t)

) f

 ∞∑
k=0

pktkχEε (k)

 = 0,

that is δ f
Jp

(Eε) = 0 for each ε > 0. In this case we write f -stJp-lim x = L.

If f (x) = x in these definitions, then we have the concepts of Jp-density and Jp-statistical convergence,
respectively. It is clear that 0 ≤ δ f

Jp
(E) ≤ 1 for any E ⊂ N0. If E is any finite set, then δ f

Jp
(E) = 0. For this, let

E =
{
n( j) : j = 1, 2, . . . , k; for some k ∈N

}
. Then f

(∑
j∈E p jt j

)
≤

∑k
j=1 f

(
pn( j)tn( j)

)
≤

∑k
j=1 f

(
pn( j)

)
for 0 < t < 1.

From this, we have

0 ≤
1

f
(
p (t)

) f

∑
j∈E

p jt j

 ≤ 1
f
(
p (t)

) k∑
j=1

f
(
pn( j)

)
→ 0

(
as t→ 1−

)
.

Hence δ f
Jp

(E) = 0. Therefore, if lim xk = L, then f -stJp-lim xk = L. In other words, f -Jp-statistical convergence
is regular.

If δ f
Jp

(E) = 0, then δ f
Jp

(N0\E) = 1. Indeed, since

1 =

f

 ∞∑
k=0

pktk


f
(
p (t)

) ≤

f

∑
k∈E

pktk


f
(
p (t)

) +

f

∑
N0\E

pktk


f
(
p (t)

) ≤

f

∑
k∈E

pktk


f
(
p (t)

) + 1,

by taking limit as t → 1−, we deduce that δ f
Jp

(N0\E) = 1. On the other hand, analogously to f -density, the
converse is not true in general. For instance, let f (x) = log (1 + x), (pk) = (1, 1, 1, . . .) and E = {2k : k ∈N0} .
Then

δ f
Jp

(N0\E) = lim
t→1−

log
(
1 + t/(1 − t2)

)
log (1 + 1/(1 − t))

= 1

and

δ f
Jp

(E) = lim
t→1−

log
(
1 + 1/(1 − t2)

)
log (1 + 1/(1 − t))

= 1.

This also means that the sequence (χE (k)) is not f -Jp-statistical convergent.
The following example exhibits that the concepts of f -Jp-statistical convergence and f -statistical conver-

gence can not be compared.
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Example 3.3. Let f (x) = log (1 + x), Jp-method be determined by the sequence

pk =

{
1 , k = n2

0 , otherwise , n ∈N0

and consider the sequence x = (xk) defined by

xk =

{
0 , k = n2

1 , otherwise , n ∈N0.

Then for any ε > 0, observe that

lim
t→1−

1
f
(
p (t)

) f

∑
|xk |≥ε

pktk

 = 0.

Hence, f -stJp-lim x = 0. Also we know from Example 2.1 in [1] that x is not f -statistically convergent. On
the other hand, for the same

(
pk

)
, if we take f (x) = x and consider the sequence x = (xk) defined by

xk =

{
1 , k = n2

0 , otherwise , n ∈N0.

we see that x is f -statistically convergent to 0, but not f -Jp-statistically convergent.

Note that for any unbounded modulus f and E ⊂N0, δ f
Jp

(E) = 0 implies δJp (E) = 0. Indeed, if δ f
Jp

(E) = 0
then for each n ∈Nwe can choose δn with 0 < δn < 1 such that if 0 < t < 1 − δn, then

f

∑
k∈E

pktk

 < 1
n

f
(
p (t)

)
≤

1
n

n f
(1

n
p (t)

)
= f

(1
n

p (t)
)
. (6)

From this, we get
∑

k∈E pktk
≤ (1/n)p (t) for the same t’s, hence δJp (E) = 0. This observation leads naturally

to the following corollary.

Corollary 3.4. Let f , 1 be unbounded modulus functions and (xk) be a sequence of real numbers. Then,
(i) f -Jp-statistical convergence implies Jp-statistical convergence with the same limit.
(ii) f -Jp-statistical limit is unique whenever it exists.
(iii) If f -stJp-lim xk = L and 1-stJp-lim xk = M then L = M.

Definition 3.5. A sequence (xk) of real numbers is said to be f -strongly Jp-convergent to L if

lim
t→1−

1
f
(
p (t)

) f

 ∞∑
k=0

pktk
|xk − L|

 = 0.

Theorem 3.6. If (xk) is f -strongly Jp-convergent to L, then (xk) is strongly Jp-convergent to L.

Proof. Assume that (xk) is f -strongly Jp-convergent to L. Then for each n ∈ N, there exists an δ = δ (n) with
0 < δ < 1 such that if 0 < t < 1 − δ then

f

 ∞∑
k=0

pktk
|xk − L|

 < 1
n

f
(
p (t)

)
≤ f

(1
n

p (t)
)
.

from (6). Since f is increasing, we have

∞∑
k=0

pktk
|xk − L| ≤

1
n

p (t) (7)
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for all t ∈ (1 − δ, 1) . Now for any ε > 0 choose n0 ∈ N such that (1/n0) < ε. Since the inequality is valid for
all n ∈N, it is also valid for n0. Hence

∞∑
k=0

pktk
|xk − L| ≤

1
n0

p (t) < εp (t)

for all t ∈ (1 − δ, 1) , where δ depends on n0 and so depends on ε. From this, we obtain that (xk) is strongly
Jp-convergent to L. This completes the proof.

Now as in [18] we define the idea of compatible modulus in a slightly modified form.

Definition 3.7. [18] Let f be a modulus function. We say that f is compatible provided for any ε > 0 there
exist ε̃ > 0 and x0 = x0 (ε) such that f (xε̃)

f (x) < ε for all x ≥ x0.

For example, f (x) = x + log(x + 1), 1(x) = x/
√

1 + x and h(x) = x/(log x + e2) are unbounded compatible
modulus functions, where logarithm is to the natural base e. Inded, for the last one, let ε > 0 and choose
any ε̃ > 0 such that 2ε̃ < ε. Since

lim
x→∞

xε̃/(log (xε̃) + e2)
x/(log x + e2)

= ε̃,

there exist x0 = x0 (ε) such that h(xε̃)
h(x) < ε for all x ≥ x0. On the other hand the unbounded modulus function

f (x) = log(x + 1) is not compatible modulus (see [18]). Here, we present a new example of unbounded
modulus function that is not compatible. Consider the function f (x) = log(log(x + e)) defined on the
interval [0,∞) . The modulus function properties hold for this function. In particular, (ii) property of
subadditivity can be checked by showing that f (x) /x is decreasing on [0,∞) . Now, let 0 < ε < 1. Then,
since limx→∞

f (xε̃)
f (x) = 1 for all ε̃ > 0, we can not find any ε̃ > 0 such that f (xε̃)

f (x) < ε for sufficiently large x. So
we obtain that f is not compatible.

Theorem 3.8. Let f be a compatible modulus function. If (xk) is Jp-statistically convergent to L, then (xk) is
f -Jp-statistically convergent to L.

Proof. Let f be a compatible modulus function and stJp -lim x = L. Since f is compatible for any given ε > 0,

there exist ε̃ > 0 and t0 = t0 (ε) such that f (tε̃)
f (t) < ε for all t > t0. Also the assumption p (t) → ∞ (t → 1−)

implies that there exists δ1 = δ1 (t0) (thus δ1 = δ1 (ε)) such that for all t ∈ (1 − δ1, 1) we have p (t) > t0.Hence,

we obtain that
f(p(t)ε̃)
f(p(t)) < ε for all t ∈ (1 − δ1, 1). Now, let σ > 0 and fix ε̃. Since stJp -lim x = L, there exists

δ2 > 0 such that

∞∑
k=0

pktkχEσ(k) < p (t) ε̃

for all t ∈ (1 − δ2, 1). Since f is increasing, we get

1
f
(
p (t)

) f

 ∞∑
k=0

pktkχEσ(k)

 < f
(
p (t) ε̃

)
f
(
p (t)

) < ε

for all t ∈ (1 − δ0, 1) , where δ0 = min {δ1, δ2} . Thus, f -stJp -lim x = L and this completes the proof.

With the same manner we can prove the following.

Theorem 3.9. Let f be a compatible modulus function. If (xk) is strongly Jp-convergent to L, then (xk) is f -strongly
Jp-convergent to L.
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Theorem 3.10. Let f be a modulus function.
(i) If all Jp-statistically convergent sequences are f -Jp-statistically convergent, then f must be compatible.
(ii) If all strongly Jp-convergent sequences are f -strongly Jp-convergent, then f must be compatible.

Proof. Let (xk) be any sequence such that it is Jp-statistically convergent to L , but not f -Jp-statistically
convergent to L. Then there exists ε0 > 0 and a constant α > 0 such that

lim sup
t→1−

1
f
(
p (t)

) f

 ∞∑
k=0

pktkχEε (k)

 ≥ α.
Thus, there exists a sequence (tn) with tn ∈ (0, 1) for all n and tn → 1− such that

1
f
(
p (tn)

) f

 ∞∑
k=0

pktk
nχEε(k)

 ≥ α.
On the other hand, by the assumption stJp -lim x = L, for all ε > 0 there exist δ > 0 such that

∞∑
k=0

pktkχEε(k) < p (t) ε

for all t ∈ (1 − δ, 1) . Since f is increasing, we have

f

 ∞∑
k=0

pktkχEε(k)

 < f
(
p (t) ε

)
for all t ∈ (1 − δ, 1) . In particular for all tn ∈ (1 − δ, 1), we have

0 < α ≤
1

f
(
p (tn)

) f

 ∞∑
k=0

pktk
nχEε(k)

 < f
(
p (tn) ε

)
f
(
p (tn)

) .
Thus, f is not compatible and this completes proof of (i). Since the proof of (ii) is similar to that of (i), we
omit it.

Corollary 3.11. Let f be an unbounded modulus. Then the following statments are equivalent.
(i) All Jp-statistically convergent sequences are f -Jp-statistically convergent.
(ii) For any E ⊂N0 if δJp (E) = 0, then δ f

Jp
(E) = 0.

(iii) f is compatible.

Theorem 3.12. Let x = (xk) be a real sequence and f be a compatible modulus. Then the following are equivalent.
(i) x is f -strongly Jp-convergent to L.
(ii) x is f -Jp-statistically convergent to L and Jp-uniformly integrable.

Proof. (ii)⇒ (i). Let x be f -Jp-statistically convergent to L and Jp-uniformly integrable. Then from Corollary
3.4, x is Jp-statistically convergent to L. By Theorem 1.1, x is strongly Jp-convergent to L. Finally, since f is a
compatible modulus, x is f -strongly Jp-convergent to L by Theorem 3.9.
(i)⇒ (ii). Assume that x is f -strongly Jp-convergent to L. Then applying Theorem 3.6 and Theorem 1.1 we
obtain that x is Jp-uniformly integrable. Now prove that x is f -Jp-statistically convergent to L. Let ε > 0 and
choose any n ∈N such that (1/n) < ε. Since Eε ⊂ E1/n we have

1
f
(
p (t)

) f

∑
k∈Eε

pktk

 ≤ 1
f
(
p (t)

) f

 ∑
k∈E1/n

pktk
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and so it is enough to prove that

lim
t→1−

1
f
(
p (t)

) f

 ∑
k∈E1/n

pktk

 = 0 (8)

for any n ∈N. Hence for any n ∈N, we can write

f

 ∞∑
k=0

pktk
|xk − L|

 ≥ f

 ∑
k∈E1/n

pktk
|xk − L|

 ≥ f

1
n

∑
k∈E1/n

pktk


≥

1
n

f

 ∑
k∈E1/n

pktk

 .
From this, we have

1
f
(
p (t)

) f

 ∑
k∈E1/n

pktk

 ≤ n
f
(
p (t)

) f

 ∞∑
k=0

pktk
|xk − L|


Thus, by the assumption we obtain (8) and this completes the proof.

Note that in the second part of proof, the modulus function f need not to be compatible. This part is
valid for any unbounded modulus function. On the other hand, Remark 2.9 also shows that the condition
of Jp-uniform integrability cannot be omitted in Theorem 3.12.
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