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Abstract. In this paper, we introduce the definition of the generalized reduced biquaternions and propose
a real representation of a generalized reduced biquaternion matrix. By using the real matrix representation,
we discuss the least-squares problems of the classic generalized reduced biquaternion matrix equation
AXC = B. The least-squares solution to the above matrix equation is formulated by a least-squares real
solution of its corresponding real matrix equation. Furthermore, two numerical examples are given to
illustrate our results.

1. Introduction

Let R be the real number field, and 0 , u, v ∈ R. We define the generalized reduced biquaternion
algebra QGR as a commutative 4-dimensional Clifford algebra satisfying:

QGR = {q = q1 + q2i + q3 j + q4k : q1, q2, q3, q4 ∈ R}, (1)

where
i2 = u, j2 = v, k2 = i jk = uv,

i j = ji = k, jk = kj = vi, ki = ik = uj.

When u = −1, v = 1, QGR is the reduced biquaternion algebra QR, which was first introduced in [21]. As a
special case of generalized reduced biquaternions, the reduced biquaternions has been extensively studied
and applied to many problems in various areas (see, for example, [4–7, 17–20, 23]). In [5], they studied
the functions of reduced biquaternion variables and obtained the generalized Cauchy-Riemann conditions.
[17] proposed a simplified reduced biquaternion polar form which is successfully applied for processing
color images. In [18], they developed several algorithms for calculating the eigenvalues, eigenvectors and
the singular value decompositions of reduced biquaternion matrices. As applications, they applied the
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results into the processing of color images in the digital media. Two types of multistate Hopfield neu-
ral networks based on reduced biquaternions were investigated in [7]. Moreover, [9, 10] discussed some
algebraic properties of reduced biquaternion matrices as well as the generalized Sylvester/Stein matrix
equations by means of real/complex representations. As efficient methods, the real/complex representation
methods have been widely used in the study of many kinds of quaternions. This is one of standard and
popular ways to investigate the fundamental properties of different kinds of quaternions, like the Hamilton
quaternions, split quaternions, biquaternions, the generalized quaternions, and so on (see, for example,
[8–16, 22, 24]). Motivated by the above works, we aim to deal with the following least-squares problem by
the real representation method.

In this paper, we discuss the least-squares problem for matrix equation AXC = B over the reduced
biquaternions, that is, given A ∈ Qm×n

GR ,B ∈ Qm×q
GR ,C ∈ Qp×q

GR , find X ∈ Qn×p
GR such that

||AXC − B||F = min
X0∈Qn×p

GR

||AX0C − B||F,

where the Frobenius norm || · ||F is defined in next section.

2. Main results

In this section, we first propose a new real representation of a generalized reduced biquaternion matrix,
and then we use this real representation to solve our least-squares problem.

For a given generalized reduced biquaternion matrix A = A1 + A2i + A3 j + A4k, A1, . . . ,A4 ∈ Rm×n, we
define the real representation AR of A as

AR =


A1 uA2 vA3 uvA4
A2 A1 vA4 vA3
A3 uA4 A1 uA2
A4 A3 A2 A1

 . (2)

The above real representation has the following properties:

Proposition 2.1. Let A,B ∈ Qm×n
GR ,C ∈ Qn×p

GR , k ∈ R. Then

(A + B)R = AR + BR, (AC)R = ARCR, (kB)R = kBR, (3)

Rm
−1ARRn = AR, Qm

−1ARQn = AR, Sm
−1ARSn = AR, (4)

where

Rn =


0 uIn 0 0
In 0 0 0
0 0 0 uIn
0 0 In 0

 , Qn =


0 0 vIn 0
0 0 0 vIn
In 0 0 0
0 In 0 0

 , Sn =


0 0 0 uvIn
0 0 vIn 0
0 uIn 0 0
In 0 0 0

 ,
In is the identity matrix of order n, and 0’s stand for zero matrices with appropriate sizes. In particular,
when u = −1, v = 1,

AR =


A1 −A2 A3 −A4
A2 A1 A4 A3
A3 −A4 A1 −A2
A4 A3 A2 A1

 . (5)

is the real representation of the reduced biquaternion matrix A. Now using this real representation, we can
define the Frobenius norm of the generalized reduced biquaternion matrix A as

||A||F ≡
1
2
||AR
||F. (6)

To solve the mentioned least-squares problem, we need the following useful result.
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Lemma 2.2. Let A ∈ Qm×n
GR ,B ∈ Qm×q

GR ,C ∈ Qp×q
GR . Then

min
X0∈Qn×p

GR

||AX0C − B||F =
1
2

min
Y0∈R4n×4p

||ARY0CR
− BR

||F.

Proof. Assume that X,Y are the least-squares solutions to the generalized reduced biquaternion matrix
equations

AXC = B (7)

and

ARYCR = BR, (8)

separately, i.e.,
||AXC − B||F = min

X0∈Qn×p
GR

||AX0C − B||F.

||ARYCR
− BR

||F = min
Y0∈R4n×4p

||ARY0CR
− BR

||F.

It follows from (3) and (6) that

min
X0∈Qn×p

GR

||AX0C − B||F =
1
2

min
X0∈Qn×p

GR

||ARX0
RCR
− BR

||F ≥
1
2

min
Y0∈R4n×4p

||ARY0CR
− BR

||F. (9)

Conversely, for Y, by (4), we have

||ARYCR
− BR

||F = ||(Rm
−1ARRn)Y(Rp

−1CRRq) − (Rm
−1BRRq)||F,

||ARYCR
− BR

||F = ||(Qm
−1ARQn)Y(Qp

−1CRQq) − (Qm
−1BRQq)||F,

||ARYCR
− BR

||F = ||(Sm
−1ARSn)Y(Sp

−1CRSq) − (Sm
−1BRSq)||F.

Simplifying the right hand-sides of the above three equations gives

||ARYCR
− BR

||F = ||AR(RnYRp
−1)CR

− BR
||F,

||ARYCR
− BR

||F = ||AR(QnYQp
−1)CR

− BR
||F,

||ARYCR
− BR

||F = ||AR(SnYSp
−1)CR

− BR
||F.

Now we construct a new matrix as

Y =
1
4

(Y + RnYRp
−1 +QnYQp

−1 + SnYSp
−1). (10)

Then

||ARYCR
− BR

||F ≤ ||AR
YCR

− BR
||F

≤
1
4

(||ARYCR
− BR

||F + ||AR(RnYRp
−1)CR

− BR
||F

+ ||AR(QnYQp
−1)CR

− BR
||F + ||AR(SnYSp

−1)CR
− BR

||F)

= ||ARYCR
− BR

||F,

which implies

||ARYCR
− BR

||F = ||AR
YCR

− BR
||F = min

Y0∈R4n×4p
||ARY0CR

− BR
||F. (11)
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That is,Y is also a least-squares solution to (8).
Next we prove there exists X such that XR = Y. Assume that

Y =


Z11 Z12 Z13 Z14
Z21 Z22 Z23 Z24
Z31 Z32 Z33 Z34
Z41 Z42 Z43 Z44

 ∈ R4n×4p, Zst ∈ R
n×p, s, t = 1, 2, 3, 4.

and then replace it in (10), which produces another representation forY:

Y =


Ẑ1 uẐ2 vẐ3 uvẐ4

Ẑ2 Ẑ1 vẐ4 vẐ3

Ẑ3 uẐ4 Ẑ1 uẐ2

Ẑ4 Ẑ3 Ẑ2 Ẑ1

 ,
with

Ẑ1 = 1
4 (Z11 + Z22 + Z33 + Z44), Ẑ2 = 1

4 ( 1
u Z12 + Z21 +

1
u Z34 + Z43),

Ẑ3 = 1
4 ( 1

v Z13 +
1
v Z24 + Z31 + Z42), Ẑ4 = 1

4 ( 1
uv Z14 +

1
v Z23 +

1
u Z32 + Z41).

Now, we construct a generalized reduced biquaternion matrix X byY:

X = Ẑ1 + Ẑ2i + Ẑ3 j + Ẑ4k =
1
4

[
In Ini In j Ink

]
Y


Ip

1
u Ipi
1
v Ip j
1

uv Ipk


.

Clearly XR = Y. Hence, by (11),
1
2 min

Y0∈R4n×4p
||ARY0CR

− BR
||F =

1
2 ||A

R
YCR

− BR
||F = 1

2 ||A
R
X

RCR
− BR

||F

= ||AXC − B||F

≥ min
X0∈Qn×p

GR

||AX0C − B||F.

(12)

Combing (9) and (12), we have

1
2

min
Y0∈R4n×4p

||ARY0CR
− BR

||F = min
X0∈Qn×p

GR

||AX0C − B||F.

Next we solve the least-squares problem by using real representation method.

Theorem 2.3. Let A ∈ Qm×n
GR ,B ∈ Qm×q

GR ,C ∈ Qp×q
GR .

(a) If X ∈ Qn×p
GR is a least-squares solution to the matrix equation (7), then Y = XR is a least-squares solution to the

matrix equation (8).

(b) If Y ∈ R4n×4p is a least-squares solution to the matrix equation (8), then

X =
1

16

[
In Ini In j Ink

]
(Y +QnYQ−1

p + RnYR−1
p + SnYS−1

p )


Ip

1
u Ipi
1
v Ip j
1

uv Ipk

 (13)

is a least-squares solution to the matrix equation (7).



Y. Tian et al. / Filomat 37:3 (2023), 863–870 867

Proof. Assume that X is a least-squares solution to (7), i.e.,

||AXC − B||F = min
X0∈Qn×p

GR

||AX0C − B||F.

It follows from (3) and Lemma 2.2 that

||ARXRCR
− BR

||F = 2||AXC − B||F = 2 min
X0∈Qn×p

GR

||AX0C − B||F = min
Y0∈R4n×4p

||ARY0CR
− BR

||F.

Thus, Y = XR is a least-squares solution to (8), i.e., (a) follows.
Suppose Y is a solution to (8). Then ||ARYCR

− BR
||F = min

Y0∈R4n×4p
||ARY0CR

− BR
||F. Similar to the proof of

Lemma 2.2, we can prove

||ARYCR
− BR

||F = ||AR(QnYQ−1
p )CR

− BR
||F,

||ARYCR
− BR

||F = ||AR(RnYR−1
p )CR

− BR
||F,

||ARYCR
− BR

||F = ||AR(SnYS−1
p )CR

− BR
||F.

(14)

Thus, it is easy to verify that QnYQ−1
p , RnYR−1

p , and SnYS−1
p are also solutions to (8). If we set

Y =
1
4

(Y +QnYQ−1
p + RnYR−1

p + SnYS−1
p ). (15)

Then we have

||ARYCR
− BR

||F ≤ ||AR
YCR

− BR
||F

≤
1
4 (||ARYCR

− BR
||F + ||AR(QnYQ−1

p )CR
− BR

||F

+||AR(RnYR−1
p )CR

− BR
||F + ||AR(SnYS−1

p )CR
− BR

||F)

= ||ARYCR
− BR

||F.

Therefore, ||ARYCR
− BR

||F = ||AR
YCR

− BR
||F, that is,Y is also a solution to (8).

Let

Y =


Z11 Z12 Z13 Z14
Z21 Z22 Z23 Z24
Z31 Z32 Z33 Z34
Z41 Z42 Z43 Z44

 ∈ R4n×4p, Zst ∈ R
n×p, s, t = 1, 2, 3, 4, (16)

and submit it in (15), we obtain

Y =


Ẑ1 uẐ2 vẐ3 uvẐ4

Ẑ2 Ẑ1 vẐ4 vẐ3

Ẑ3 uẐ4 Ẑ1 uẐ2

Ẑ4 Ẑ3 Ẑ2 Ẑ1

 ,
with

Ẑ1 = 1
4 (Z11 + Z22 + Z33 + Z44), Ẑ2 = 1

4 ( 1
u Z12 + Z21 +

1
u Z34 + Z43),

Ẑ3 = 1
4 ( 1

v Z13 +
1
v Z24 + Z31 + Z42), Ẑ4 = 1

4 ( 1
uv Z14 +

1
v Z23 +

1
u Z32 + Z41).

Now, we construct a generalized reduced biquaternion matrix X byY as follows:

X = Ẑ1 + Ẑ2i + Ẑ3 j + Ẑ4k =
1
4

[
In Ini In j Ink

]
Y


Ip

1
u Ipi
1
v Ip j
1

uv Ipk


. (17)
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Clearly, XR = Y. This means that XR = Y is a solution to (8), i.e.,

||ARXRCR
− BR

||F = min
Y0∈R4n×4p

||ARY0CR
− BR

||F. (18)

It follows from Lemma 2.2 and (18) that

||AXC − B||F =
1
2
||ARXRCR

− BR
||F = min

X0∈Qn×p
GR

||AX0C − B||F.

Hence X given by (17) is a solution to (7).

In the special case: u = −1 and v = 1, by Theorem 2.3, we have the following corollary for the least-
squares solutions to the matrix equation (7) over the reduced biquaternions.

Corollary 2.4. Let A ∈ Qm×n
R ,B ∈ Qm×q

R ,C ∈ Qp×q
R . Then

(a) If X ∈ Qn×p
R is a least-squares solution to the reduced biquaternion matrix equation

AXC = B, (19)

then Y = XR
∈ R4n×4p is a least-squares solution to the real matrix equation

ARYCR = BR. (20)

(b) If Y ∈ R4n×4p is a least-squares solution to the real matrix equation (20), then

X =
1

16

[
In Ini In j Ink

]
(Y +QnYQ−1

p + RnYR−1
p + SnYS−1

p )


Ip
−Ipi
Ip j
−Ipk


is a least-squares solution to the reduced biquaternion matrix equation (19), where

Rt =


0 −It 0 0
It 0 0 0
0 0 0 −It
0 0 It 0

 , Qt =


0 0 It 0
0 0 0 It
It 0 0 0
0 It 0 0

 , St =


0 0 0 −It
0 0 It 0
0 −It 0 0
It 0 0 0

 , t = n, p.

Example 2.5. Given the generalized biquaternion matrices

A =
[

i 1 + j
−1 + j −k

]
, B =

[
−2 + 4i + 3k

2 − 2i + j − 2k

]
.

Find the least-squares solution of the generalized biquaternion matrix equation

AX = B (21)

with u = 1, v = 1.

By Theorem 2.3, we consider the real matrix equation ARY = BR with

AR =



0 1 1 0 0 1 0 0
−1 0 0 0 1 0 0 −1
1 0 0 1 0 0 0 1
0 0 −1 0 0 −1 1 0
0 1 0 0 0 1 1 0
1 0 0 −1 −1 0 0 0
0 0 0 1 1 0 0 1
0 −1 1 0 0 0 −1 0


, BR =



−2 4 0 3
2 −2 1 −2
4 −2 3 0
−2 2 −2 1
0 3 −2 4
1 −2 2 −2
3 0 4 −2
−2 1 −2 2


.
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Since rank (AR) = rank (AR,BR) = 8, the real matrix equation

ARY = BR

has a unique least-squares solution

Y =



7 −6 6 −4
0 0 4 −3
−6 7 −4 6
0 0 −3 4
6 −4 7 −6
4 −3 0 0
−4 6 −6 7
−3 4 0 0


.

By direct computation, we obtain

X =
1
16

[
I2 I2i I2 j I2k

]
(Y +Q2YQ−1

2 + R2YR−1
2 + S2YS−1

2 )


I2
I2i
I2 j
I2k



=
[

7 − 6i + 6 j − 4k 4 j − 3k
]T

is the least-squares solution to the generalized reduced biquaternion matrix equation AX = B.

Example 2.6. Find the least-squares solution of the reduced biquaternion matrix equation (21) with u = −1, v = 1.

By Corollary 2.4, we consider the corresponding real matrix equation

ARY = BR, (22)

with

AR =



0 1 −1 0 0 1 0 0
−1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 1
0 0 −1 0 0 −1 1 0
0 1 0 0 0 1 −1 0
1 0 0 1 −1 0 0 0
0 0 0 1 1 0 0 1
0 −1 1 0 0 0 −1 0


, BR =



−2 −4 0 −3
2 2 1 2
4 −2 3 0
−2 2 −2 1
0 −3 −2 −4
1 2 2 2
3 0 4 −2
−2 1 −2 2


.

Since rank (AR) = rank (AR,BR) = 8, the matrix equation (22) has a unique solution

Y =



1 −6 0 −4
4 0 0 −3
6 1 4 0
0 4 3 0
0 −4 1 −6
0 −3 4 0
4 0 6 1
3 0 0 4


.
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By direct computation, we have that

X =
1

16

[
I2 I2i I2 j I2k

]
(Y +Q2YQ−1

2 + R2YR−1
2 + S2YS−1

2 )


I2
−I2i
I2 j
−I2k


=
[

1 + 6i + 4k 4 + 3k
]T

is the least-squares solution to the reduced biquaternion matrix equation AX = B.
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