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Abstract. In this paper, we study an element which is both group invertible and Moore-Penrose invertible
to be partial isometry by discussing the existence of solutions in a definite set of some given constructive
equations.

1. Introduction

Throughout this paper, R will denote an associative ring with unity. Recall that the group inverse [1] of
a ∈ R is the element x ∈ R which satisfies

xax = x, a = axa, ax = xa.

The element x above is unique if it exists and is denoted by a♯. The set of all group invertible elements of
R is denoted by R♯. In a ring R, an involution ∗ : R → R is an anti-isomorphism which satisfies (a∗)∗ = a,
(a+ b)∗ = a∗ + b∗ and (ab)∗ = b∗a∗ for all a, b ∈ R. R is called a ∗-ring if R is a ring with an involution ∗. In what
follows, R is a ∗-ring. An element a ∈ R is said to be Moore-Penrose invertible if the following equations:

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax and (4) (xa)∗ = xa

have a common solution. Such a solution is unique if it exists, and is denoted by a† as usual. The set of all
Moore-Penrose invertible elements of R will be denoted by R†. The notion of Moore-Penrose inverse (or
MP-inverse) has been investigated by many authors (see, for example, [1, 11, 13, 14]).

An element a ∈ R is said to be EP, if a ∈ R† ∩ R♯ and a† = a♯. The set of all EP elements of R will be
denoted by REP. Mosić et al. in [4, Theorem 2.1] gave some necessary and sufficient conditions for an
element a of R to be EP. Patrćio and Puystjens in [8, Proposition 2] proved that for a MP-invertible element
a ∈ R, a ∈ REP if and only if aa† = a†a. It is known by [15, Theorem 7.3] that a ∈ R is EP if and only if a is
group invertible and (aa♯)∗ = aa♯. More results on EP elements can also be found in [2, 6, 9, 10, 12, 16]. An
element a ∈ R satisfying aa∗a = a is called a partial isometry. It is proven that a is a partial isometry if and
only if a ∈ R† and a∗ = a†. We write by RPI to denote the set of all partial isometries of R. More results on
partial isometries can also be found in [3, 5, 7, 17].

Motivated by the above results, this work is intended to provide some equivalent conditions for an
element to be an EP element and partial isometry in rings with involution by using solutions of some
equations.
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2. Some characterizations of partial isometry elements

It is known that if a is a partial isometry, then we have (a†)∗a†(a†)∗ = aa†(a†)∗. Hence we can construct the
following equation:

(a†)∗x(a†)∗ = ax(a†)∗. (1)

Using the equation (1), we can characterize the partial isometry as follows.

Lemma 2.1. Suppose a ∈ R♯ ∩ R†, then a† ∈ R♯ and (a†)♯ = (aa♯)∗a(aa♯)∗.

Proof. According to the definition of the group inverse, the result can be checked directly.

Theorem 2.2. Suppose a ∈ R♯ ∩ R†, then a ∈ RPI if and only if Equation (1) has at least one solution in χa =

{a, a♯, a†, a∗, (a♯)∗, (a†)∗}.

Proof. ”⇒ ” Assume a ∈ RPI, then a† = a∗. Hence x = a† is a solution to the equation.
”⇐ ” (1) If x = a is a solution, then a2(a†)∗ = (a†)∗a(a†)∗. Post-multiply it by a∗a♯, it gives that a2(a†)∗a∗a♯ =

(a†)∗a(a†)∗a∗a♯. Simplify it, we can obtain a = (a†)∗ and a ∈ RPI.
(2) If x = a♯ is a solution, then one has (a†)∗a♯(a†)∗ = aa♯(a†)∗. Post-multiply it by a∗a, we have (a†)∗a♯a = a.

Pre-multiply it by aa∗, it gives aa∗a = a, and consequently, a ∈ RPI.
(3) If x = a† is a solution, then (a†)∗a†(a†)∗ = aa†(a†)∗, that is, (a†)∗a†(a†)∗ = (a†)∗. Post-multiply it by a∗a, we

have (a†)∗ = a, and consequently, we can obtain a ∈ RPI.
(4) If x = a∗ is a solution, then (a†)∗a∗(a†)∗ = aa∗(a†)∗, which implies that (a†)∗ = a. That is, a† = a∗, and

then, we have a ∈ RPI.
(5) If x = (a♯)∗ is a solution, one deduces that (a†)∗(a♯)∗(a†)∗ = a(a♯)∗(a†)∗. It gives a†a♯a† = a†a♯a∗. Pre-

multiply it by a†a3, then we have a† = a∗, and consequently, a ∈ RPI.
(6) If x = (a†)∗ is a solution, then ((a†)∗)3 = a((a†)∗)2. That is, (a†)3 = (a†)2a∗. Post-multiply it by (a♯)∗, it

gives that

(a†)3(a♯)∗ = (a†)2a∗(a♯)∗

= (a†)2(a♯a)∗

= (a†)2(aa†)(a♯a)∗

= (a†)2(a♯aaa†)∗

= (a†)2(aa†)∗

= (a†)2.

Pre-multiply it by ((a†)♯)2, we can obtain a†(a♯)∗ = a†(a†)♯ = a†(aa♯)∗a(aa♯)∗. That is, a♯(a†)∗ = aa♯a∗aa♯(a†)∗.
Post-multiply it by a∗a, it gives that a♯a = aa♯a∗a. Pre-multiply it by a, then we have a = aa∗a, i.e. a ∈ RPI.

Modify Equation (1) to

(a†)∗x(a†)∗ = xa(a†)∗. (2)

Theorem 2.3. Suppose a ∈ R♯ ∩ R†, then a ∈ RPI if and only if Equation (2) has at least one solution in χa =

{a, a♯, a†, a∗, (a♯)∗, (a†)∗}.

Proof. ”⇒ ” As a ∈ RPI, we have a† = a∗. And then, we can obtain x = a is a solution.
” ⇐ ” (1) If x = a is a solution, then (a†)∗a(a†)∗ = a2(a†)∗. Post-multiply it by a∗a♯, it gives that (a†)∗ = a,

and hence a ∈ RPI.
(2) If x = a♯ is a solution, one has that (a†)∗a♯(a†)∗ = a♯a(a†)∗. Then post-multiply the equality by a∗a, and it

follows (a†)∗a♯a = a. Note that the left side of this equality can be rewrited as (a†)∗a♯a = [(a†)∗a†a]a♯a = (a†)∗.
Hence, we can obtain (a†)∗ = a, and consequently, a ∈ RPI.
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(3) If x = a† is a solution, then (a†)∗a†(a†)∗ = a†a(a†)∗. Post-multiply it by a∗aa♯, then we can obtain
(a†)∗a†(a†)∗a∗aa♯ = a†a(a†)∗a∗aa♯. That is, (a†)∗a♯ = a†a. Then, it implies that (a♯)∗a† = a†a and consequently,
a†aaa† = [(a♯)∗a†]aa† = (a♯)∗a† = a†a. Pre-multiply it by a♯a, it follows that a♯aa†a = a♯aa†aaa† and a♯a = aa†.
Hence, we can obtain a ∈ REP. Note that (a†)∗a♯ = a†a. Pre-multiply it by a, by a ∈ REP, it gives that (a†)∗ = a,
and thus a ∈ RPI.

(4) If x = a∗ is a solution, one concludes that (a†)∗a∗(a†)∗ = a∗a(a†)∗, which forces that (a†)∗ = a∗a(a†)∗.
Post-multiply it by a∗aa♯, it implies that aa♯ = a∗a. Pre-multiply it by a, it gives that a = aa∗a, and thus a ∈ RPI.

(5) If x = (a♯)∗ is a solution, then (a†)∗(a♯)∗(a†)∗ = (a♯)∗a(a†)∗. Post-multiply it by a∗, this leads to (a†)∗(a♯)∗ =
(a♯)∗a2a†. Taking an involution of the above equality, we obtain that a♯a† = aa†a∗a♯. Post-multiply it by
a†a, it gives that a♯a†a†a = aa†a∗a♯a†a = aa†a∗a♯ = a♯a†. Pre-multiply it by a2, then we have aa†a†a = aa†

and aa† = a†aaa†. This implies that aR = a†aR ⊂ a†R, and a ∈ REP by [17, Lemma 2.3]. As a♯a† = aa†a∗a♯,
pre-multiply it by a and post-multiply it by a2, we have a = aa∗a.

(6) If x = (a†)∗ is a solution, we have a†a∗a† = (a†)3. Post-multiply it by a(aa♯)∗, it gives that a†a∗ = a†a†.
Pre-multiply it by (aa♯)∗a, we can obtain a∗ = a†. The proof is completed.

3. More characterizations of partial isometry elements

In what follows, we will consider more characterizations of partial isometry elements in terms of the
structure of the solution of the equations with two unknown elements. We modify Equation (1) to

(a†)∗x(a†)∗ = ay(a†)∗. (3)

Theorem 3.1. The general solution of equation (3) is given as the formx = p + u − a†auaa†

y = a†(a†)∗p + z − a†azaa†,
(4)

where p, u and z are any elements in rings.

Proof. By checking the equation directly, we obtain that the equation (4) is the solution of the equation (3).
Indeed, taking x = p + u − a†auaa† into the left side of the equation (3), it follows that the left is equal to
(a†)∗(p + u − a†auaa†)(a†)∗ = (a†)∗p(a†)∗. Moreover, putting y = a†(a†)∗p + z − a†azaa† into the right side of the
equation (3), then we obtain that the right is equal to a(a†(a†)∗p + z − a†azaa†)(a†)∗ = (a†)∗p(a†)∗.

Next, we will prove that all solution of the equation (3) have the form of the equation (4). Now, let x = x0
and y = y0 be the solution of the equation (3). It means (a†)∗x0(a†)∗ = ay0(a†)∗. Note that

a∗ay0aa† = a∗(ay0(a†)∗)a∗ = a∗(a†)∗x0(a†)∗a∗ = a†ax0aa†.

Then x0 = a∗ay0aa† + x0 − a∗ay0aa† = a∗ay0aa† + x0 − a†ax0aa†. Set p = a∗ay0aa† and u = x0. Then, x0 =

p + u − a†auaa†. Moreover, since a†(a†)∗p = a†
(
a†
)∗ (

a∗ay0aa†
)
= a†aa†ay0aa† = a†ay0aa†, we have y0 =

a†ay0aa† + y0 − a†ay0aa† = a†
(
a†
)∗

p + y0 − a†ay0aa†. Set z = y0. Then y0 = a†(a†)∗p + z − a†azaa†. The proof is
completed.

Next, some characterizations of partial isometry elements will be given in terms of the particular
solutions of equations.

Corollary 3.2. Let a ∈ R♯ ∩ R†. Then a ∈ RPI if and only if the general solution of equation (3) is given as the formx = p + u − a†auaa†

y = a†ap + z − a†azaa†,
(5)

where p, u and z are any elements in rings.
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Proof. ”⇒ ” Assume that a ∈ RPI,then a† = a∗. It means that

y = a†(a†)∗p + z − a†azaa† = a†ap + z − a†azaa†.

” ⇐ ” If (5) is the solution of the equation (3), then, by taking the solution (5) into the equation (3), the
equation is still an equality. It follows that

(a†)∗(p + u − a†auaa†)(a†)∗ = a(a†ap + z − a†azaa†)(a†)∗

(a†)∗p(a†)∗ + (a†)∗u(a†)∗ − (a†)∗a†auaa†(a†)∗ = ap(a†)∗ + az(a†)∗ − azaa†(a†)∗

(a†)∗p(a†)∗ + (a†)∗u(a†)∗ − (a†)∗u(a†)∗ = ap(a†)∗ + az(a†)∗ − az(a†)∗

(a†)∗p(a†)∗ = ap(a†)∗.

Since p is an any element in a ring, one can see that (a†)∗a†(a†)∗ = aa†(a†)∗, by taking p = a†. This gives that
(a†)∗a†(a†)∗ = (a†)∗. Giving an involution of the above equality, it leads to a† = a†(a†)∗a†. Pre-multiply it by
a, we have aa† = aa†(a†)∗a†, giving that aa† = (a†)∗a†. Furthermore, post-multiply it by a, and we obtain
aa†a = (a†)∗a†a, that is a = (a†)∗. Again taking involution of the above equality, we obtain that a∗ = a† and
a ∈ RPI.

Corollary 3.3. Let a ∈ R♯ ∩R†. Then a ∈ RPI
∩REP if and only if the general solution of the equation (3) is given as

followsx = p + u − a†auaa†

y = aa†p + z − a†azaa†,
(6)

where p, u and z are any elements in rings.

Proof. ”⇒ ” As a ∈ RPI
∩ REP, then we have a† = a∗ = a♯. By Theorem 3.1, we can obtain the equation (6).

”⇐ ” Since (6) is the general solution of the equation (3), then we obtain that

(a†)∗(p + u − a†auaa†)(a†)∗ = a(aa†p + z − a†azaa†)(a†)∗.

It leads to (a†)∗p(a†)∗ = a2a†p(a†)∗. Taking p = a♯, and thus (a†)∗a♯(a†)∗ = aa♯(a†)∗. So, we can obtain a ∈ RPI

(See the proof (2) of Theorem 2.3 ).

To multiply the equality (3) by a† on the left, we get the following equation

a†ax(a†)∗ = a†(a†)∗y(a†)∗. (7)

Theorem 3.4. The general solution of equation (7) is given as the formx = p + u − a†auaa†

y = a∗ap + z − a†azaa†,
(8)

where p, u and z are any elements in rings.

Proof. By checking the equation directly, we can obtain the equation (8) is the solution of the equation
(7). Indeed, taking x = p + u − a†auaa† into the left side of the equation (7), it follows that the left is
equal to a†a(p + u − a†auaa†)(a†)∗ = a†ap(a†)∗ + a†au(a†)∗ − a†auaa†(a†)∗ = a†ap(a†)∗. Moreover, the right is
a†(a†)∗(a∗ap + z − a†azaa†)(a†)∗ = a†ap(a†)∗.

Now, set x = x0 and y = y0 to be the solution of equation(7). It means that

a†ax0(a†)∗ = a†(a†)∗y0(a†)∗.

Note that a†(a†)∗y0aa† = (a†(a†)∗y0(a†)∗)a∗ = a†ax0(a†)∗a∗ = a†ax0aa†. Then, one can see that x0 = a†(a†)∗y0aa† +
x0−a†(a†)∗y0aa† = a†(a†)∗y0aa†+x0−a†ax0aa†. Here, we set p = a†(a†)∗y0aa† and u = x0. Then, x0 = p+u−a†auaa†.
Furthermore, note that a∗ap = a∗a(a†(a†)∗y0aa†) = a∗(a†)∗y0aa† = a†ay0aa†, this leads to y0 = a∗ap+y0−a†ay0aa†.
Set z = y0. Then y0 = a∗ap + z − a†azaa†. The proof is completed.
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Corollary 3.5. Let a ∈ R♯ ∩ R†. Then a ∈ RPI if and only if the general solution of equation (7) can be given by (5).

Proof. ”⇒ ” As a ∈ RPI, then we have a∗ = a†. By Theorem 3.4, we can obtain the equation (5) is the solution
of the equation (7).

” ⇐ ” Assume that the general solution of equation (7) can be given by (5). Substitute the solution (5)
into equation a†ax(a†)∗ = a†(a†)∗y(a†)∗, then we can obtain

a†a(p + u − a†auaa†)(a†)∗ = a†(a†)∗(a†ap + z − a†azaa†)(a†)∗

a†ap(a†)∗ = a†(a†)∗a†ap(a†)∗

a†ap(a†)∗ = a†(a†)∗p(a†)∗

Taking p = a†, one can see a†aa†(a†)∗ = a†(a†)∗a†(a†)∗, that is a†(a†)∗ = a†(a†)∗a†(a†)∗. Post-multiply it by
a∗, which can be simplified as a† = a†(a†)∗a†. Then pre-multiply it by a, we get aa† = (a†)∗a†. Moreover,
post-multiply it by a, it leads to a = (a†)∗. We can obtain a∗ = a†, and consequently, a ∈ RPI.

As we know, assume that a ∈ RPI, then a∗ = a†. It is immediate that a† = a†aa† = a†(a†)∗a∗ = a†(a†)∗a†, so
we can obtain the following equation

x = x(a†)∗a†. (9)

Theorem 3.6. Let a ∈ R♯ ∩ R†, then a ∈ RPI if and only if equation (9) has at least a solution in χa =

{a, a♯, a†, a∗, (a♯)
∗

, (a†)∗}.

Proof. ”⇒ ” Obviously, x = a† is a solution.
” ⇐ ” (1) If x = a is a solution, it leads to a = a(a†)∗a†. Post-multiply it by a, we get a2 = a(a†)∗. Pre-

multiply it by a♯, then a = aa♯(a†)∗. Again post-multiply it by a∗a, it gives aa∗a = a, and hence we can obtain
a ∈ RPI.

(2) If x = a∗ is a solution, then it follows that a∗ = a∗(a†)∗a† = a†aa† = a†, and consequently, a ∈ RPI.
(3) If x = a† is a solution, then we have a† = a†(a†)∗a†. Pre-multiply it by a, one can see aa† = (a†)∗a†.

Post-multiply it by a, we can obtain a = (a†)∗. Therefore, a∗ = a† and a ∈ RPI.
(4) If x = a♯ is a solution, then a♯ = a♯(a†)∗a†. Post-multiply it by aa∗a, we get aa♯a∗a = a♯a. Pre-multiply it

by a, it leads to aa∗a = a. Thus, it gives a ∈ RPI.
(5) If x = (a†)∗ is a solution, then (a†)∗ = (a†)∗(a†)∗a†. It means that a† = (a†)∗a†a†. Post-multiply it by

a(aa♯)∗, we have (aa♯)∗ = (a†)∗a†. And pre-multiply it by a∗, it leads to a∗ = a† and a ∈ RPI.
(6) If x = (a♯)

∗

is a solution, then (a♯)
∗

= (a♯)
∗

(a†)∗a†, we obtain that a♯ = (a†)∗a†a♯. Pre-multiply it by aa∗

and simplify it, then it gives aa∗a♯ = a♯. Post-multiply it by a2, we get aa∗a = a, and hence a ∈ RPI.

Inspired by equation (9), we can rewrite it as follows

x = y(a†)∗a† (10)

Theorem 3.7. The general solution of equation (10) is given as the formx = p
(
a†
)∗

a†

y = p + z − zaa†,
(11)

where p and z are any elements in rings.

Proof. By checking the equation (10) directly, we can obtain the equation (11) is the solution of the equation
(10). Indeed, we have

(p + z − zaa†)(a†)∗a† = p(a†)∗a† + z(a†)∗a† − zaa†(a†)∗a†

= p(a†)∗a† + z(a†)∗a† − z(a†)∗a†

= p(a†)∗a†.
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Now, let x = x0 and y = y0 be the solution of equation(10), then we can obtain

x0 = y0

(
a†
)∗

a† = y0

(
a†aa†

)∗
a† = y0aa†

(
a†
)∗

a†

Write p = y0aa†. Then we have x0 = p(a†)∗a†. Moreover, y0 = y0aa† + y0 − y0aa† = p + z − zaa†, where
z = y0.

We know that, when a ∈ RPI, then it gives a† = a†aa† = a†(a†)∗a†. Hence, we can obtain a†
(
a†
)∗

a†

is MP-invertible, and (a†(a†)∗a†)† = a. In what follows, we will consider the generalized invertibility of
a†(a†)∗a†.

Lemma 3.8. Let a ∈ R†. Then a†
(
a†
)∗

a† ∈ R† and
(
a†
(
a†
)∗

a†
)†
= aa∗a.

Proof. By checking the definition of MP-inverse directly, we can obtain the result. Indeed,

a†(a†)∗a† · aa∗a = a†(a†)∗a∗a = a†aa†a = a†a
aa∗a · a†(a†)∗a† = aa∗(a†)∗a† = aa†aa† = aa†

aa∗a · a†(a†)∗a† · aa∗a = aa† · aa∗a = aa∗a
a†(a†)∗a† · aa∗a · a†(a†)∗a† = a†a · a†(a†)∗a† = a†(a†)∗a†.

The proof is completed.

Corollary 3.9. Let a ∈ R†. Then a ∈ REP if and only if a†(a†)∗a† ∈ REP.

Proof. Check the proof of Lemma 3.8, we have that

a†(a†)∗a†aa∗a = aa∗aa†(a†)∗a† ⇔ a†a = aa†.

It means that a ∈ REP if and only if a†(a†)∗a† ∈ REP.

Next, we will give a characterization of EP elements in terms of the invertible element in rings.

Theorem 3.10. Let a ∈ R†. Then a ∈ REP if and only if u = a†(a†)∗a† + 1 − a†a ∈ R−1 and u−1 = aa∗a + 1 − a†a.

Proof. ”⇒ ” By Lemma 3.8, it is easy to check that

(a†(a†)∗a† + 1 − a†a)(aa∗a + 1 − a†a) = a†(a†)∗a†aa∗a + 1 − a†a = 1.

Moreover, as a ∈ REP, we have aa† = a†a, and then,

(aa∗a + 1 − a†a)(a†(a†)∗a† + 1 − a†a) = aa∗aa†(a†)∗a† + 1 − a†a = aa† + 1 − a†a = 1.

”⇐ ” If u−1u = 1, then (aa∗a + 1 − a†a)(a†(a†)∗a† + 1 − a†a) = 1. This gives that aa∗aa†(a†)∗a† + 1 − a†a = 1.
By Lemma 3.8, we have aa† + 1 − a†a = 1. That is aa† = a†a, and hence a ∈ REP.
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