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Abstract. Let R be a unital ∗-ring and let a, b,w ∈ R. In this paper, we give some new characterizations
on w-core inverses in R. In particular, it is shown that a is w-core invertible if and only if it is w(aw)n−1-
core invertible for any positive integer n, in which case, the representations of the w-core inverse and
the w(aw)n−1-core inverse of a are both presented. We further characterize w-core inverses by Hermitian
elements (or projections) and units.

1. Introduction

The notion of the core inverse, firstly introduced by Baksalary and Trenkler in complex matrices [1],
and subsequently generalized by Rakić et al. to the case of elements in rings with involution [18], has
been intensively investigated by a number of scholars. Further, the core inverse was extended to several
new classes of generalized inverses such as the core-EP inverse of square complex matrices [17], the DMP
inverse of square complex matrices [12], the pseudo core inverse of ∗-ring elements [9] and the e-core
inverse of ∗-ring elements [15]. Moreover, their properties and characterizations have been studied (see,
e.g., [7, 8, 21, 23, 24]). In 2022, Zhu et al. [25] introduced a new type of generalized inverses, called w-core
inverses, extending Moore-Penrose inverses, core inverses and core-EP inverses.

The initial goal of this paper is to give several new characterizations for w-core inverses. The paper
is organized as follows. In Section 2, several characterizations and expressions for w-core inverses are
established. It is shown that the existence of the w-core inverse of a coincides with the existence of its
w(aw)n−1-core inverse for any positive integer n. We further characterize w-core inverses by properties of
the left and right annihilators and ideals in a ring. As applications, the results on the core inverse in [11]
and the Moore-Penrose inverse in [19] are special cases of Theorem 2.15. In Section 3, it is proved that a
is w-core invertible if and only if there exists a unique Hermitian element (or projection) p ∈ R such that
pa = 0 and u = (aw)n + p ∈ R−1 for all integers n ≥ 1.

Let us now recall fundamental concepts on several well-known generalized inverses in rings. Let R be
an associative ring with unity 1. An element a ∈ R is called (von Neumann) regular if there exists some
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x ∈ R such that axa = a. Such an x is called an inner inverse or a {1}-inverse of a, and is denoted by a−. We
denote by the symbol a{1} the set of all inner inverses of a. An element a ∈ R is called group invertible (see,
e.g., [2]) if there exists some x ∈ R such that axa = a, xax = x and ax = xa. Such an x is called a group inverse
of a. It is unique if it exists, and is denoted by a#. The symbols R− and R# will stand for the sets of all regular
elements and group invertible elements in R.

Let a, d ∈ R. An element a is called left invertible along d [22] if there exists some x ∈ R such that xad = d
and x ∈ Rd. Such an element x is called a left inverse of a along d, and is denoted by a∥dl . Dually, an element
a is called right invertible along d if there exists some x ∈ R such that dax = d and x ∈ dR. Such an element
x is called a right inverse of a along d, and is denoted by a∥dr . Specially, an element a is invertible along d
if and only if it is left and right invertible along d [22], or equivalently, if there exists some x ∈ R such that
xad = d = dax and x ∈ dR ∩ Rd [13]. Such an element x is called an inverse of a along d. It is unique if it
exists, and is denoted by a∥d. We denote by the symbols R∥dl , R∥dr and R∥d the sets of all left invertible, right
invertible and invertible elements along d in R, respectively. More results on the inverse along an element
can be referred to [3, 4, 6].

Let R be a unital ∗-ring, that is a ring R with unity 1 and an involution ∗ : a 7→ a∗ satisfying (x∗)∗ = x,
(xy)∗ = y∗x∗ and (x + y)∗ = x∗ + y∗ for all x, y ∈ R. Throughout this article, any ring R considered is assumed
to be a unital ∗-ring (unless otherwise noted).

An element a ∈ R is said to be Moore-Penrose invertible [16] if there exists some x ∈ R such that

(i) axa = a, (ii) xax = x, (iii) (ax)∗ = ax, (iv) (xa)∗ = xa.

Such an x is called a Moore-Penrose inverse of a. It is unique if it exists, and is denoted by a†. Generally, if a
and x satisfy the equations (i) and (iii), then x is called a {1, 3}-inverse of a, and is denoted by a(1,3). If a and x
satisfy the equations (i) and (iv), then x is called a {1, 4}-inverse of a, and is denoted by a(1,4). We denote by
the symbols a{1, 3} and a{1, 4} the sets of all {1, 3}-inverses and {1, 4}-inverses of a. In general, we denote by
R{1,3}, R{1,4} and R† the sets of all {1, 3}-invertible, {1, 4}-invertible and Moore-Penrose invertible elements in
R, respectively. It is well known that a is Moore-Penrose invertible if and only if it is both {1, 3}-invertible
and {1, 4}-invertible.

Following [18], an element a ∈ R is called core invertible if there exists some x ∈ R such that axa = a,
xR = aR and Rx = Ra∗. Such an x is called a core inverse of a. It is unique if it exists, and is denoted by a #O.
In [18], they also derived that the core inverse x of a satisfies the following five equations

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) xa2 = a, (5) ax2 = x.

As usual, we denote by R #O the set of all core invertible elements in R. It is shown in [20] that a is core
invertible if and only if it is both group invertible and {1, 3}-invertible. Various equivalent characterizations
for the existence of core inverses in rings with involution can be found in [5, 18, 20].

Let a,w ∈ R. An element a is called w-core invertible [25] if there exists some x ∈ R such that awx2 = x,
xawa = a and (awx)∗ = awx. Such an x is called a w-core inverse of a. It is unique if it exists, and is denoted
by a #O

w. We denote by R #O
w the set of all w-core invertible elements in R. It is proved that a ∈ R #O

w if and only if
w ∈ R∥a and a ∈ R{1,3}. Moreover, a #O

w = w∥aa(1,3). According to [25], the 1-core inverse is just the core inverse. It
is also shown that the existence of the a∗-core inverse of a coincides with the existence of its Moore-Penrose
inverse. More results on w-core inverses can be referred to [25, 26].

2. New characterizations for w-core inverses

In this section, we aim to give several characterizations for w-core inverses. In Proposition 2.2 below, we
plan to characterize the w-core inverse by equations with higher powers. The following auxiliary lemma is
given in order to derive the result.

Lemma 2.1. Let a,w ∈ R and let n ≥ 1 be an integer. If a ∈ R #O
w, then

(i) awa #O
w = (aw)n(a #O

w)n.
(ii) a #O

waw = (a #O
w)n(aw)n.
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Proof. As a ∈ R #O
w, then aw(a #O

w)2 = a #O
w and a #O

wawa = a.
(i) Since aw(a #O

w)2 = a #O
w, we have awa #O

w = aw · aw(a #O
w)2 = (aw)2(a #O

w)2 = (aw)2
· aw(a #O

w)2
· a #O

w = (aw)3(a #O
w)3 = · · · =

(aw)n(a #O
w)n.

(ii) Since a #O
wawa = a, we have a #O

waw = a #O
w · a

#O
wawa ·w = (a #O

w)2(aw)2 = (a #O
w)2
· a #O

wawa ·waw = (a #O
w)3(aw)3 = · · · =

(a #O
w)n(aw)n.

Suppose a ∈ R #O
w. We remark the fact that awa #O

w = aww∥aa(1,3) = aa(1,3) is idempotent by [25, Theorem 2.9].
Hence, awa #O

w = (awa #O
w)n for any positive integer n.

Proposition 2.2. Let a,w ∈ R. Then the following conditions are equivalent:
(i) a ∈ R #O

w.
(ii) There exists some x ∈ R such that a = (awx)nxawa, awx2 = x and aw(awx)nx = (aw(awx)nx)∗ for any positive

integer n.
(iii) There exists some x ∈ R such that a = (awx)nxawa, awx2 = x and aw(awx)nx = (aw(awx)nx)∗ for some

positive integer n.
(iv) There exists some y ∈ R such that a = (aw)nyn+1awa, awy2 = y and (aw)nyn = ((aw)nyn)∗ for any positive

integer n.
(v) There exists some y ∈ R such that a = (aw)nyn+1awa, awy2 = y and (aw)nyn = ((aw)nyn)∗ for some positive

integer n.
In this case, a #O

w = (awx)nx = (aw)nyn+1.

Proof. To begin with, (ii)⇒ (iii) and (iv)⇒ (v) are obvious.
(i) ⇒ (ii) Suppose a ∈ R #O

w. Then there exists an x such that awx2 = x, xawa = a and (awx)∗ = awx,
whence x = awx2 = (awx)nx for any positive integer n. Also, we have a = xawa = (awx)nxawa and
aw(awx)nx = awx = (aw(awx)nx)∗ for any positive integer n.

(iii)⇒ (i) Set r = (awx)nx, then
(1) rawa = (awx)nxawa = a.
(2) awr = aw(awx)nx = (awr)∗.
(3) Since a = (awx)nxawa, we have (awx)nxawx = (awx)nxaw(awx2) = ((awx)nxawa)wx2 = awx2 = x, and

hence awr2 = aw(awx)nx(awx)nx = aw · (awx)nxawx · (awx)n−1x = (awx)nx = r.
Hence, a ∈ R #O

w and a #O
w = (awx)nx.

(i)⇒ (iv) Suppose a ∈ R #O
w. We have awy2 = y, yawa = a and (awy)∗ = awy for some y ∈ R. It follows from

Lemma 2.1 that (aw)nyn = ((aw)nyn)∗ and a = yawa = awy2awa = awy · yawa = (aw)nyn
· yawa = (aw)nyn+1awa

for any positive integer n.
(v)⇒ (i) It is clear for the case of n = 1. For the case of n ≥ 2, set z = (aw)nyn+1, then
(1) zawa = (aw)nyn+1awa = a.
(2) awz = aw(aw)nyn+1 = (aw)n

· awy2
· yn−1 = (aw)nyn = (awz)∗.

(3) As a = (aw)nyn+1awa, then (aw)n−1 = (aw)nyn+1(aw)n. Thus, awz2 = aw · (aw)nyn+1(aw)n
· yn+1 =

(aw)nyn+1 = z.
Hence, a ∈ R #O

w and a #O
w = (aw)nyn+1.

Lemma 2.3. Let a, d ∈ R. Then
(i) [22, Theorem 2.3] a ∈ R∥dl if and only if d ∈ Rdad. In this case, a∥dl = sd, where s ∈ R satisfies d = sdad.
(ii) [22, Theorem 2.4] a ∈ R∥dr if and only if d ∈ dadR. In this case, a∥dr = dt, where t ∈ R satisfies d = dadt.
(iii) [14, Theorem 2.2] a ∈ R∥d if and only if d ∈ dadR ∩ Rdad. In this case, a∥d = dt = sd, where t, s ∈ R satisfy

d = dadt = sdad.
(iv) [28, Lemma 3.3 (4)] a is invertible along d with inverse y if and only if a is right invertible along d with a

right inverse x and a is left invertible along d with a left inverse z. In this case, y = x = z.

Lemma 2.4. [27, Lemma 2.2] Let a ∈ R. We have the following results:
(i) a ∈ R{1,3} if and only if a ∈ Ra∗a. In particular, if xa∗a = a for some x ∈ R, then x∗ is a {1, 3}-inverse of a.
(ii) a ∈ R{1,4} if and only if a ∈ aa∗R. In particular, if aa∗y = a for some y ∈ R, then y∗ is a {1, 4}-inverse of a.
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Lemma 2.5. [14, Theorem 2.1] Let a,w ∈ R. Then the following conditions are equivalent:
(i) w ∈ R∥a.
(ii) a ∈ awR and aw ∈ R#.
(iii) a ∈ Rwa and wa ∈ R#.
In this case, w∥a = (aw)#a = a(wa)#.

Lemma 2.6. [25, Lemma 2.2] For any a,w ∈ R, if x ∈ R is the w-core inverse of a, then awxa = a and xawx = x.

In [25, Theorem 2.9], Zhu et al. showed that a ∈ R #O
w implies that w∥a and a(1,3) both exist. We also claim

that if a ∈ R #O
w, then w∥a and (aw)(1,3) both exist. Indeed, a ∈ R #O

w gives a ∈ R{1,3} and a ∈ awaR. Consequently,
it follows from Lemma 2.4 that a ∈ Ra∗a, and hence aw ∈ Ra∗aw ⊆ R(aw)∗aw, i.e., aw ∈ R{1,3}. One may ask
if the converse statement holds. The following theorem shows the accuracy of this assumption, and gives
more existence characterizations on the w-core inverse.

Theorem 2.7. Let a,w ∈ R. Then the following conditions are equivalent:
(i) a ∈ R #O

w.
(ii) w∥a exists and a ∈ R{1,3}.
(iii) w∥a exists and aw ∈ R{1,3}.
(iv) w∥a exists and awa ∈ R{1,3}.
(v) w∥a exists and w∥aw ∈ R{1,3}.
In this case, a #O

w = w∥aa(1,3) = w∥aw(aw)(1,3) = a(awa)(1,3) = (aw)#(w∥aw)(1,3).

Proof. (i)⇔ (ii) follows from [25, Theorem 2.9].
(ii)⇒ (iii) by the implication above and (i)⇔ (ii).
(iii)⇒ (ii) As w∥a exists, then a ∈ awaR by Lemma 2.3, and therefore, a = awat for some t ∈ R. It follows

from aw ∈ R{1,3} that aw ∈ R(aw)∗aw, whence a = awat ∈ R(aw)∗awat = R(aw)∗a = Rw∗a∗a ⊆ Ra∗a. This gives
a ∈ R{1,3} by Lemma 2.4.

(ii)⇔ (iv) is analogous to (ii)⇔ (iii).
(i)⇒ (v) Let x = awa #O

w. Then x is a {1, 3}-inverse of w∥aw. Indeed, we have
(1) w∥awx = w∥awawa #O

w = awa #O
w = (w∥awx)∗.

(2) Note that w∥a ∈ aR. Then there exists some z ∈ R such that w∥a = az, and hence w∥awxw∥aw =
awa #O

ww∥aw = awa #O
wazw = azw = w∥aw by Lemma 2.6.

(v)⇒ (i) By Lemma 2.5, one knows that w ∈ R∥a implies aw ∈ R#. Suppose y = (aw)#(w∥aw)(1,3). Then, by
Lemma 2.5, y = (aw)#((aw)#aw)(1,3). We next show that y is the w-core inverse of a.

We have

(1) yawa = (aw)#((aw)#aw)(1,3)awa
= (aw)#(aw)#aw((aw)#aw)(1,3)(aw)#(aw)2a
= (aw)#((aw)#aw((aw)#aw)(1,3)(aw)#aw)awa
= (aw)#(aw)#awawa
= (aw)#awa
= w∥awa
= a.

(2) awy = aw(aw)#((aw)#aw)(1,3)

= ((aw)#aw)((aw)#aw)(1,3)

= (awy)∗.
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(3) awy2 = aw(aw)#((aw)#aw)(1,3)(aw)#((aw)#aw)(1,3)

= (aw)#aw((aw)#aw)(1,3)(aw)#aw(aw)#((aw)#aw)(1,3)

= (aw)#((aw)#aw)(1,3)

= y.

We next show that w(aw)(1,3)
∈ a{1, 3} for any (aw)(1,3)

∈ (aw){1, 3}. Indeed, aw(aw)(1,3) = (aw(aw)(1,3))∗, and
aw(aw)(1,3)a = aw(aw)(1,3)awat = awat = a by (iii) ⇒ (ii). Similarly, wa(awa)(1,3)

∈ a{1, 3} for any (awa)(1,3)
∈

(awa){1, 3}.
Hence, a #O

w = w∥aa(1,3) = w∥aw(aw)(1,3) = w∥awa(awa)(1,3) = a(awa)(1,3) = (aw)#(w∥aw)(1,3).

Suppose a ∈ R #O
w. By Theorem 2.7, we have awa ∈ R{1,3}, and hence awa ∈ R−. Applying Theorem 2.7, the

following representation of the w-core inverse in R can be obtained.

Proposition 2.8. Let a,w ∈ R with a ∈ R #O
w. Then a #O

w = a(awa)−aa(1,3).

Proof. It follows from a ∈ R #O
w that awa = awa(awa)−awa for all (awa)− ∈ (awa){1} by the illustration above.

Again by a ∈ R #O
w, then w∥a exists by Theorem 2.7 (i) ⇒ (ii). So, a ∈ awaR, and a = awat for some t ∈ R.

Post-multiplying the equation awa = awa(awa)−awa by t yields a = awa(awa)−a, which gives w∥a = a(awa)−a
by Lemma 2.3 (iv). We hence get a #O

w = w∥aa(1,3) = a(awa)−aa(1,3) by Theorem 2.7.

We conclude that a ∈ R #O
w implies that awa ∈ R− and a ∈ R{1,3} from Proposition 2.8. However, the converse

does not hold in general. A counterexample is given as follows.

Example 2.9. Let R be the ring of all 2 × 2 complex matrices and let the involution ∗ be the transpose. Take

A =
[
1 i
0 0

]
,W =

[
0 1
0 0

]
∈ R. Then AWA =

[
0 0
0 0

]
. So, AWA ∈ R−. We also have A∗A =

[
1 i
i −1

]
, and whence

rank(A∗A) = rank(A). Note that C(A∗A) ⊆ C(A) (C(A) denotes the row space of A). Then C(A∗A) = C(A), so
that A ∈ R{1,3}. But A < AWAR ∩ RAWA. It follows that W < R∥A, and consequently A < R #O

W .

Suppose that a ∈ R #O
w and n is a positive integer. Then (aw)n

∈ R{1,3}. Indeed, from a ∈ R #O
w with the w-core

inverse y, it follows that (aw)nyn = ((aw)nyn)∗ by Proposition 2.2. Also, a = awya = (aw)nyna in terms of
Lemmas 2.1 and 2.6. This guarantees (aw)n = (aw)nyn(aw)n. A natural question is under what conditions
(aw)n

∈ R{1,3} can imply a ∈ R #O
w.

Theorem 2.10. Let a,w ∈ R. Then the following conditions are equivalent:
(i) a ∈ R #O

w.
(ii) a ∈ R{1,3}, a ∈ (aw)naR ∩ Ra(wa)n for any positive integer n.
(iii) a ∈ R{1,3}, a ∈ (aw)naR ∩ Ra(wa)n for some positive integer n.
(iv) (aw)n

∈ R{1,3}, a ∈ (aw)naR ∩ Ra(wa)n for any positive integer n.
(v) (aw)n

∈ R{1,3}, a ∈ (aw)naR ∩ Ra(wa)n for some positive integer n.

Proof. (ii)⇒ (iii) and (iv)⇒ (v) are clear.
(i)⇒ (ii) Since a ∈ R #O

w, we have w ∈ R∥a and a ∈ R{1,3} by Theorem 2.7, thus, a ∈ awaR ∩ Rawa by Lemma
2.3. Given a ∈ awaR, then there exists some t ∈ R such that a = awat = aw(awat)t = (aw)2at2 = (aw)2(awat)t2 =
(aw)3at3 = · · · = (aw)natn

∈ (aw)naR for any positive integer n. Dually, as a ∈ Rawa, then there exists some
s ∈ R such that a = sawa = s(sawa)wa = s2a(wa)2 = s2(sawa)(wa)2 = s3a(wa)3 = · · · = sna(wa)n

∈ Ra(wa)n for
any positive integer n. So, a ∈ (aw)naR ∩ Ra(wa)n for any positive integer n.

(iii) ⇒ (iv) Given a ∈ (aw)naR ⊆ awaR, then a ∈ (aw)naR for any positive integer n by the implication
(i) ⇒ (ii). Therefore, there exists some b ∈ R such that a = (aw)nab for any positive integer n. As
a ∈ R{1,3}, then a ∈ Ra∗a by Lemma 2.4, and whence (aw)n

∈ Ra∗(aw)n for any positive integer n. Hence,
(aw)n

∈ R((aw)nab)∗(aw)n = R(ab)∗((aw)n)∗(aw)n
⊆ R((aw)n)∗(aw)n, which implies (aw)n

∈ R{1,3}. Similarly, we
can also obtain a ∈ Ra(wa)n for any positive integer n.
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(v)⇒ (i) To prove a ∈ R #O
w, it is sufficient to show that w∥a exists and a ∈ R{1,3} by Theorem 2.7. Suppose

a ∈ (aw)naR ∩ Ra(wa)n for some positive integer n. Then a ∈ awaR ∩ Rawa, i.e., w∥a exists, and a = (aw)nab
for some b ∈ R. By (aw)n

∈ R{1,3}, then (aw)n
∈ R((aw)n)∗(aw)n. These imply a = (aw)nab ∈ R((aw)n)∗(aw)nab =

R((aw)n)∗a = R(w(aw)n−1)∗a∗a ⊆ Ra∗a, namely a ∈ R{1,3}. As a consequence, a ∈ R #O
w.

Next, several basic properties of group inverses are presented.

Lemma 2.11. Let a ∈ R# and let n be a positive integer. Then
(i) a# = an−1(a#)n.
(ii) an

∈ R#. In this case, (an)# = (a#)n.

For any positive integer n, if a ∈ (aw)naR ∩ Ra(wa)n, then we have a ∈ a(w(aw)n−1)aR ∩ Ra(w(aw)n−1)a.
This ensures w(aw)n−1

∈ R∥a by Lemma 2.3.

Corollary 2.12. Let a,w ∈ R and let n be a positive integer. Then the following conditions are equivalent:
(i) a ∈ R #O

w.
(ii) a ∈ R #O

w(aw)n−1 .
(iii) a ∈ R{1,3}, w(aw)n−1

∈ R∥a.
(iv) (aw)n

∈ R{1,3}, w(aw)n−1
∈ R∥a.

In this case, a #O
w = (aw)n−1a #O

w(aw)n−1 , a #O

w(aw)n−1 = ((aw)#)n−1a #O
w.

Proof. The equivalences follow from Theorems 2.7 and 2.10. From Lemmas 2.5, 2.11 and Theorem 2.7, we
get that a #O

w = w∥aa(1,3) = (aw)#aa(1,3) and a #O

w(aw)n−1 = (w(aw)n−1)∥aa(1,3) = ((aw)n)#aa(1,3) = ((aw)#)naa(1,3). Conse-

quently, a #O
w = (aw)n−1((aw)#)naa(1,3) = (aw)n−1a #O

w(aw)n−1 and a #O

w(aw)n−1 = ((aw)#)n−1(aw)#aa(1,3) = ((aw)#)n−1a #O
w.

Several notations are presented as follows:

a0 = {x ∈ R | ax = 0} and 0a = {x ∈ R | xa = 0}.

Existence criteria for several types of generalized inverses, such as group inverses, Moore-Penrose
inverses, {1, 3}-inverses, {1, 4}-inverses and core inverses are given in terms of properties of annihilators and
ideals of certain elements, which have been widely concerned by scholars. In 1976, Hartwig [10] obtained
that a ∈ R# if and only if R = aR ⊕ a0 if and only if R = Ra ⊕ 0a. Also, he showed that a ∈ R{1,3} if and only if
R = aR⊕(a∗)0 if and only if R = Ra∗⊕0a. Dually, a ∈ R{1,4} if and only if R = a∗R⊕a0 if and only if R = Ra⊕0(a∗).
Note that a ∈ R† if and only if a ∈ R{1,3} ∩ R{1,4}. Accordingly, a ∈ R† if and only if R = aR ⊕ (a∗)0 = a∗R ⊕ a0.
Xu et al. [20] gave that a ∈ R #O if and only if a ∈ R{1,3} ∩ R#. Hence, he derived that a ∈ R #O if and only if
R = aR ⊕ (a∗)0 = aR ⊕ a0 according to the aforementioned results. Motivated by these, we consider whether
the w-core inverse can also be described by annihilators and ideals in a ring.

Lemma 2.13. [26, Proposition 2.4] Let a,w ∈ R. Then a ∈ awaR ∩ Ra∗a if and only if a ∈ R(awa)∗a.

Theorem 2.14. Let a,w ∈ R. Then the following conditions are equivalent:
(i) a ∈ R #O

w.
(ii) a ∈ R(awa)∗a ∩ Rawa.
(iii) R = R(awa)∗ ⊕ 0a = Raw ⊕ 0a.
(iv) R = R(awa)∗ + 0a = Raw + 0a.

Proof. (i)⇔ (ii) follows directly from Lemmas 2.3 (iii), 2.4, 2.13 and Theorem 2.7.
(ii)⇒ (iii) As a ∈ R(awa)∗a, then there exists some h ∈ R such that a = h(awa)∗a, which gives (1−h(awa)∗)a =

0, i.e., 1−h(awa)∗ ∈ 0a. For any r ∈ R, we write r = rh(awa)∗+r(1−h(awa)∗) ∈ R(awa)∗+ 0a. Let y ∈ R(awa)∗∩ 0a.
Then ya = 0 and y = l(awa)∗ for some l ∈ R. Hence, y = l(wa)∗a∗ = l(wa)∗(h(awa)∗a)∗ = l(wa)∗a∗awah∗ =
yawah∗ = 0. Therefore, R = R(awa)∗ ⊕ 0a.

Given a ∈ Rawa, then a = sawa for some s ∈ R, which implies (1 − saw)a = 0, i.e., 1 − saw ∈ 0a. For
any r′ ∈ R, then r′ can be written as r′ = r′saw + r′(1 − saw) ∈ Raw + 0a. Since a ∈ R(awa)∗a, we have
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a = h(awa)∗a = h(wa)∗a∗a ∈ Ra∗a by the implication above, which guarantees that a ∈ R{1,3} and a(1,3) = wah∗

by Lemma 2.4. These give a = a(wah∗)a = awah∗a. Let y′ ∈ Raw ∩ 0a. Then y′a = 0 and y′ = l′aw for some
l′ ∈ R, so that y′ = l′(awah∗a)w = (l′aw)ah∗aw = y′ah∗aw = 0. As a consequence, R = Raw ⊕ 0a.

(iii)⇒ (iv) is obvious.
(iv) ⇒ (ii) It follows from R = R(awa)∗ + 0a that Ra = R(awa)∗a. Similarly, we have Ra = Rawa since

R = Raw + 0a. So, a ∈ R(awa)∗a ∩ Rawa.

Let n ≥ 2 be an integer. It was proved in [25, Theorem 2.26] that a ∈ R #O
w if and only if a ∈ R((aw)∗)na ∩

R(aw)n−1a. Applying this, we give another characterization of the w-core inverse based on properties of
annihilators and ideals of certain elements as follows.

Theorem 2.15. Let a,w ∈ R and let n ≥ 2 be an integer. Then the following conditions are equivalent:
(i) a ∈ R #O

w.
(ii) a ∈ R((aw)∗)na ∩ R(aw)n−1a.
(iii) R = R((aw)∗)n

⊕
0a = R(aw)n−1

⊕
0a.

(iv) R = R((aw)∗)n + 0a = R(aw)n−1 + 0a.
In this case, a #O

w = (aw)n−1x∗, where x ∈ R satisfies a = x((aw)∗)na.

Proof. (i)⇔ (ii) by [25, Theorem 2.26].
The equivalences of the conditions (ii)-(iv) are similar to the equivalences of the conditions (ii)-(iv) in

Theorem 2.14.
Next, we give the representation of a #O

w. Given a ∈ R((aw)∗)na ∩ R(aw)n−1a, then a = x((aw)∗)na =
x((aw)n−1)∗w∗a∗a ∈ Ra∗a for some x ∈ R. Consequently, it follows from Lemma 2.4 that a ∈ R{1,3} and
w(aw)n−1x∗ ∈ a{1, 3}. Using Theorem 2.7, we get a #O

w = w∥aa(1,3) = w∥aw(aw)n−1x∗ = w∥awaw(aw)n−2x∗ =
(aw)n−1x∗.

Observe that Theorem 2.15 is not valid in general for the case of n = 1. One can see the counterexample
in [25, Remark 2.27].

Remark 2.16. The representation of a #O
w can be expressed by another way. It follows from Theorem 2.15 (i)⇒

(ii) that a ∈ R((aw)∗)na∩R(aw)n−1a. Hence, there is some x ∈ R such that a = x((aw)∗)na and aw = x((aw)∗)naw.
Note also that aw ∈ R((aw)∗)naw ∩ R(aw)n. Then, by [11, Theorem 2.10], aw ∈ R #O and (aw) #O = (aw)n−1x∗.
Therefore, a #O

w = (aw) #O = (aw)n−1x∗ by [25, Theorem 2.26].

As shown in [25] that a ∈ R† if and only if a ∈ R #O
a∗ , which is equivalent to a ∈ R(aa∗)na ∩ R(aa∗)n−1a

for all integers n ≥ 2 by Theorem 2.15, i.e., a ∈ R(aa∗)n+1a ∩ R(aa∗)na for all integers n ≥ 1. We state that
a ∈ R(aa∗)n+1a ∩ R(aa∗)na can be reduced to a ∈ R(aa∗)na. Indeed, a ∈ R(aa∗)na implies that there exists some
c ∈ R such that a = c(aa∗)na = caa∗(aa∗)n−1a = c(c(aa∗)na)a∗(aa∗)n−1a = (c2(aa∗)n−1)(aa∗)n+1a ∈ R(aa∗)n+1a. In
another word, a ∈ R† if and only if a ∈ R(aa∗)na.

Set w = 1 and w = a∗ in Theorem 2.15, respectively, then several corollaries for the core inverse and the
Moore-Penrose inverse can be obtained in a ring R.

Corollary 2.17. [11, Proposition 2.9 and Theorem 2.10] Let a,w ∈ R and let n ≥ 2 be an integer. Then the
following conditions are equivalent:

(i) a ∈ R #O.
(ii) a ∈ R(a∗)na ∩ Ran.
(iii) R = R(a∗)n

⊕
0a = Ran−1

⊕
0a.

(iv) R = R(a∗)n + 0a = Ran−1 + 0a.

Corollary 2.18. [19, Theorems 3.1 and 3.11] Let a,w ∈ R and let n ≥ 1 be an integer. Then the following conditions
are equivalent:

(i) a ∈ R†.
(ii) a ∈ R(aa∗)na.
(iii) R = R(aa∗)n

⊕
0a.

(iv) R = R(aa∗)n + 0a.
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3. Characterizations for w-core inverses by Hermitian elements and units in a ring

An element p ∈ R is called Hermitian if p∗ = p. In addition, we call p a projection if p also satisfies p = p2.
We call a ∈ R invertible if there exists an x ∈ R such that ax = xa = 1. Such an x is called an inverse of a. It is
unique if it exists, and is denoted by a−1. By the symbol R−1 we denote the set of all invertible elements (or
units) in R.

Li and Chen [11] derived the characterization for core inverses by Hermitian elements or projections in
a ring, that is, a ∈ R #O if and only if there exists a Hermitian element (or a projection) q ∈ R such that qa = 0
and an + q ∈ R−1 for all integers n ≥ 1.

Recently, Zhu et al. [25, Theorem 2.30] showed the characterization for w-core inverses, namely, a ∈ R #O
w if

and only if there exists a (unique) Hermitian element (or a projection) p ∈ R such that pa = 0 and aw+p ∈ R−1.
A natural question is that whether the characterization above holds if the index of aw extends from 1 to an
arbitrary positive integer n. The following theorem shows that the hypothesis is valid.

Theorem 3.1. Let a,w ∈ R and let n ≥ 2 be an integer. Then the following conditions are equivalent:
(i) a ∈ R #O

w.
(ii) There exists a unique projection p ∈ R such that pa = 0 and u = (aw)n + p ∈ R−1.
(iii) There exists a projection p ∈ R such that pa = 0 and u = (aw)n + p ∈ R−1.
(iv) There exists a Hermitian element p ∈ R such that pa = 0 and u = (aw)n + p ∈ R−1.
In this case, a #O

w = (aw)n−1u−1.

Proof. (ii)⇒ (iii) and (iii)⇒ (iv) are clear.
(i)⇒ (ii) As a ∈ R #O

w, then awa #O
wa = a by Lemma 2.6, and hence (1 − awa #O

w)a = 0. Set p = 1 − awa #O
w, then

p2 = p = p∗ and pa = 0. By Lemma 2.1, we have

u((a #O
w)n + 1 − a #O

waw) = ((aw)n + 1 − awa #O
w)((a #O

w)n + 1 − a #O
waw)

= (aw)n(a #O
w)n + (aw)n(1 − a #O

waw) + (1 − awa #O
w)(a #O

w)n + (1 − awa #O
w)(1 − a #O

waw)
= awa #O

w + 0 + 0 + 1 − awa #O
w

= 1.

Similarly, it is easy to check ((a #O
w)n + 1 − a #O

waw)u = 1, and whence u = (aw)n + p ∈ R−1.
Next, we show that such p is unique. Let p, q satisfy pa = 0 = qa, (aw)n + p ∈ R−1 and (aw)n + q ∈ R−1.

Since (1 − p)((aw)n + p) = (aw)n, we have 1 − p = (aw)n((aw)n + p)−1. Thus, q(1 − p) = q(aw)n((aw)n + p)−1 = 0,
which implies q = qp. Similarly, we can get p = pq. Consequently, p = p∗ = (pq)∗ = q∗p∗ = qp = q.

(iv)⇒ (i) Suppose that there exists a Hermitian element p ∈ R such that pa = 0 and u = (aw)n + p ∈ R−1.
Then u∗ = ((aw)n)∗ + p ∈ R−1. Post-multiplying the equation u = (aw)n + p by a yields ua = (aw)na.
Then a = u−1(aw)na ∈ R(aw)n−1a. Again, post-multiplying the equation u∗ = ((aw)n)∗ + p by a yields
u∗a = ((aw)n)∗a = ((aw)∗)na. Then a = (u∗)−1((aw)∗)na ∈ R((aw)∗)na, so that, a ∈ R((aw)∗)na ∩ R(aw)n−1a. By
Theorem 2.15, we get a ∈ R #O

w and a #O
w = (aw)n−1u−1.

Remark 3.2. We give another representation of a #O
w in Theorem 3.1. Assume that there exists a projection

p ∈ R such that pa = 0 and u = (aw)n + p ∈ R−1 in Theorem 3.1. Then (1 − p)u = (aw)n, and we hence get
1 − p = (aw)nu−1. According to Theorem 3.1 (iv)⇒ (i), one gets that w∥a = u−1(aw)n−1a by Lemma 2.3, and
w(aw)n−1u−1

∈ a{1, 3}. This in turn gives a #O
w = w∥aa(1,3) = (u−1(aw)n−1a)(w(aw)n−1u−1) = u−1(aw)n−1((aw)nu−1) =

u−1(aw)n−1(1 − p) by Theorem 2.7, that is, a #O
w = u−1(aw)n−1(1 − p).

Applying Theorem 3.1, Remark 3.2 and [25, Theorem 2.30], one can get the following corollary.

Corollary 3.3. Let a,w ∈ R and let n ≥ 1 be an integer. Then the following conditions are equivalent:
(i) a ∈ R #O

w.
(ii) There exists a unique projection p ∈ R such that pa = 0 and u = (aw)n + p ∈ R−1.
(iii) There exists a projection p ∈ R such that pa = 0 and u = (aw)n + p ∈ R−1.
(iv) There exists a Hermitian element p ∈ R such that pa = 0 and u = (aw)n + p ∈ R−1.
For the case of n = 1, a #O

w = u−1awu−1 = u−1(1 − p).
For the case of n ≥ 2, a #O

w = (aw)n−1u−1 = u−1(aw)n−1(1 − p).
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Proof. It suffices to prove a #O
w = u−1awu−1 for the case of n = 1. Suppose pa = 0 and u = aw + p ∈ R−1. Then

paw = 0, and therefore, aw ∈ R #O in terms of [11, Theorem 3.4], which implies aw ∈ R#. Besides, we also obtain
ua = awa and u∗a = (aw)∗a. These ensure a = u−1awa = u−1awaw(aw)#a = aw(aw)#a = awaw(aw)#(aw)#a ∈
awaR ∩ Rawa and a = (u∗)−1(aw)∗a = (u∗)−1w∗a∗a ∈ Ra∗a since u ∈ R−1. Consequently, from Lemmas 2.3 and
2.4, it follows that w ∈ R∥a and a ∈ R{1,3}. Moreover, w∥a = u−1a and a(1,3) = wu−1. So, a #O

w = w∥aa(1,3) = u−1awu−1

by Theorem 2.7.
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