
Filomat 37:7 (2023), 2141–2150
https://doi.org/10.2298/FIL2307141R

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. The main objective of this paper is to define a sequence of positive linear operators by means of
the squared Szász-Mirakjan basis functions. We estimate the rate of convergence in terms of the modulus
of continuity and the class of Lipschitz functions. Furthermore, we have shown the comparison and
convergence of these operators with the help of some illustrative graphics.

1. Introduction and Preliminaries

The basis of the theory of approximation is the theorem discovered by Weierstrass in 1885. The first
constructive proof of this theorem was given by Bernstein [5] in 1912. He introduced a sequence of
polynomials Bm : C[0, 1]→ C[0, 1] defined by

Bm(h; y) =
m∑

k=0

pm,k(y)h
( k

m

)
, y ∈ [0, 1], (1)

where Bernstein basis function is given by

pm,k(y) =
(
m
k

)
yk(1 − y)m−k, m ∈N.

Later it was discovered that Bernstein polynomials have numerous noteworthy properties, so new applica-
tions and generalizations are being found of it. The aim of these generalizations is to provide appropriate
and powerful tools to application areas such as computer-aided geometric design, numerical analysis and
solutions of differential equations. Szász [16] and Mirakjan [12] generalized the Bernstein polynomials to
an infinite interval as

Sm(h; y) =
∞∑

k=0

sm,k(y)h
( k

m

)
, h ∈ C[0,∞), (2)
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where

sm,k(y) = e−my (my)k

k!
, y ≥ 0.

In the recent past, there is a growing interest in studying the monotonicity and convexity properties of the
sums of squared basis function in approximation theory (see[1, 8, 14, 15, 17]).
Gavrea and Ivan [9] in 2017 considered the rational functions

bm,k(y) =
p2

m,k(y)
m∑

i=0
p2

m,i(y)
(3)

and studied the approximation properties of the positive linear Bernstein-type rational operators Lm :
C[0, 1]→ C[0, 1] defined by

Lm(h; y) =
m∑

k=0

bm,k(y)h
( k

m

)
, m ∈N. (4)

In the present paper, we will define a generalization of the operators (4) to the infinite interval and study
about their convergence and approximation properties. Gavrea and Ivan [8] proved that the sum of the
squared basis function

∞∑
k=0

( e−my(my)k

k!

)2

, y ≥ 0,

is convex of any even order and concave of any odd order.
Holhoş [10] defined the positive linear Szász-Mirakjan type rational operators Tm : C[0,∞) → C[0,∞)

by

Tm(h; y) =
∞∑

k=0

tm,k(y)h
( k

m

)
, m ∈N (5)

where

tm,k(y) =
s2

m,k(y)
∞∑

i=0
s2

m,i(y)
.

We note that the operatorsTm are linear, positive and preserve constants. Abel [2] mentioned without proof
a complete asymptotic expansion of these operators and some estimations of the rate of convergence in
terms of the usual modulus of continuity. Independently, Holhoş [10] presented with proofs an estimate of
the rate of convergence in weighted spaces and a quantitative Voronovskaya type theorem. Explicit upper
bounds were also obtained by Holhoş [10]. Note that these operators extend the class of Szász-Mirakjan
type operators which preserve some polynomial functions [7], [11], [18]. For most recent variants of such
operators, we refere to [3, 4, 6, 13].

This paper is organized as follows. In Section 2, we give some auxiliary results. In Section 3, we prove
the main results wherein we obtain the second central moments and rate of convergence of these operators.
In Section 4, we give some examples with illustrative graphics.
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2. Auxiliary Results

In order to prove the main results, the following function will be the indispensable tool. For m ∈ N and
y ∈ [0,∞) define

1m(y) =

∫ 1

0
e−4myt yt
√

t(1−t)
dt∫ 1

0
e−4myt
√

t(1−t)
dt
. (6)

Integration by parts shows that the integral in (6) are differentiable with respect to parameter y.
Let

Mm = sup
y∈[0,∞)

1m(y), m ∈N. (7)

In order to study the convergence results, we prove the following Lemmas:

Lemma 2.1. The sum of squared Szász-Mirakjan basis function satisfies the following equality

∞∑
k=0

( e−my(my)k

k!

)2

=
1
π

∫ 1

0

e−4mytyt√
t(1 − t)

dt,

for y ∈ [0,∞) and m ∈N.

Proof. Since

e−my
∞∑

k=0

(my)k

k!
eiku = emy(eiu

−1),

by Parseval’s identity, we have
∞∑

k=0

( e−my(my)k

k!

)2

=
1

2π

∫ π

−π
|emy(eiu

−1)
|
2du

=
1

2π

∫ π

−π
e2my(cos u−1)du

=
1
π

∫ π

0
e2my(cos u−1)du

=
1
π

∫ π

0
e−4my sin2( u

2 )du.

Putting u
2 = θ, we get

∞∑
k=0

( e−my(my)k

k!

)2

=
2
π

∫ π
2

0
e−4my sin2 θdθ

and with sin2 θ = t, we have

∞∑
k=0

( e−my(my)k

k!

)2

=
1
π

∫ 1

0

e−4mytyt√
t(1 − t)

dt.
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Lemma 2.2. For all y ∈ [0,∞) and m ≥ 1, the following inequality holds:

m1m(y) ≥
1
8
−

1
8(1 + 2my)

, (8)

where 1m(y) is defined by (6).

Proof. Since 1√
t(1−t)

= (2 arcsin
√

t)′, using integration by parts, we obtain

∫ 1

0

e−4myt√
t(1 − t)

dt =

∫ 1

0
e−4myt(2 arcsin

√
t)′dt

= πe−4my + 8my
∫ 1

0
e−4myt arcsin

√
tdt

= (ϵm(y) + 1)8my
∫ 1

0
e−4myt arcsin

√
tdt, (9)

where

ϵm(y) =
πe−4my

8my
∫ 1

0 e−4myt arcsin
√

tdt

<
πe−4my

8my
∫ 1

0 e−4my arcsin
√

tdt

=
1

2my
, (10)

for y ∈ [0,∞) and m≥ 1.
From (9), using the inequality

arcsin
√

t ≤
t√

t(1 − t)
, t ∈ [0, 1),

we obtain∫ 1

0

e−4myt√
t(1 − t)

dt ≤ (ϵm(y) + 1)8my
∫ 1

0

e−4mytt√
t(1 − t)

dt

1
8(ϵm(y) + 1)

≤ m

∫ 1

0
e−4myt yt
√

t(1−t)
dt∫ 1

0
e−4myt
√

t(1−t)
dt

1
8(ϵm(y) + 1)

≤ m1m(y). (11)

By (10) and (11), we get

m1m(y) ≥
1
8
−

1
8(1 + 2my)

.
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3. Main Results

Theorem 3.1. The second central moments of the operators Tm defined by (5) is given by

Tm((t − y)2; y) = 4y1m(y),

where 1m(y) is defined by equation (6).

Proof. Starting from the equality

e−my
∞∑

k=0

(my)k

k!
e(y− k

m )ueikθ = emy(e(iθ− u
m )
−1)+uy

and differentiating both side with respect to u, we obtain

e−my
∞∑

k=0

(my)k

k!

(
y −

k
m

)
e(y− k

m )ueikθ = ye−myemye(iθ− u
m )+uy(1 − eiθ− u

m ).

Taking u = 0, we get

e−my
∞∑

i=0

(my)k

k!

(
y −

k
m

)
eikθ = yemy(eiθ

−1)(1 − eiθ).

Using Parseval’s equality, we obtain
∞∑

k=0

(
e−my (my)k

k!

)2(
y −

k
m

)2

=
1

2π

∫ π

−π
|yemy(eiθ

−1)(1 − eiθ)|2dθ

=
1
π

∫ π

−π
y2e2my(cosθ−1)(1 − cosθ)dθ

=
4
π

∫ π

0
y2e−4my sin2( θ2 ) sin2(

θ
2

)dθ,

putting θ2 = ϕ, we get

∞∑
k=0

(
e−my (my)k

k!

)2(
y −

k
m

)2

=
8
π

∫ π
2

0
y2e−4my sin2 ϕ sin2 ϕdϕ

and with sin2 ϕ = t, we obtain

∞∑
k=0

(
e−my (my)k

k!

)2(
y −

k
m

)2

=
4
π

∫ 1

0

y2e−4mytt√
t(1 − t)

dt. (12)

Now from (5), (12) and Lemma 2.1, we have

Tm((t − y)2; y) =

4y
∫ 1

0
e−4myt yt
√

t(1−t)
dt∫ 1

0
e−4myt
√

t(1−t)
dt

= 4y1m(y),

which completes the proof.
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Theorem 3.2. The second central moments of the operators Tm defined by (5) possess the following properties:

1
2
·

y
m
≤ Tm((t − y)2; y) ≤ 4pMp ·

y
m
, (13)

for all x ≥ 0 and m ≥ p ≥ 1.

Proof. Since

mTm((t − y)2; y) = 4ym1m(y),

using Lemma 2.2, we have

mTm((t − y)2; y) ≥
y
2
−

y
2(1 + 2my)

⇒ Tm((t − y)2; y) ≥
1
2
·

y
m
. (14)

Since the sequence {mMm}m≥1 is non decreasing, we have

Tm((t − y)2; y) = 4y1m(y)

≤ 4yMm ≤ 4pMp ·
y
m
, (15)

for all m ≥ p ≥ 1. From equations (14) and (15), the proof is completed.

In the approximation of a function by positive linear operators not only the convergence of operators
is required but also the speed of convergence is important. The rate of convergence depends on the
smoothness properties of the function and appropriate tool for estimating the smoothness of function are
represented by the modulus of continuity. We compute the rate of convergence of the constructed operators
in terms of modulus of continuity and class of Lipschitz function:
For any δ > 0 and h ∈ C[a, b], the modulus of continuity ω(h, δ) is defined by

ω(h, δ) = sup
|t−y|≤δ, t,y∈[a,b]

|h(t) − h(y)|. (16)

Also,

|h(t) − h(y)| ≤ ω(h, δ)
(
1 +
|t − y|
δ

)
. (17)

If h is uniformly continuous then it is necessary and sufficient that

lim
δ→0
ω(h, δ) = 0.

Theorem 3.3. For any h ∈ CB[0,∞)(space of all bounded and uniformly continuous functions on [0,∞)), we have
the estimate

|Tm(h; y) − h(y)| ≤
(
1 + 2

√
pMpy

)
· ω

(
h,

1
√

m

)
,

where m ≥ p ≥ 1, Mm is given by (7) and ω(h, .) is the modulus of continuity.

Proof. Since

|Tm(h; y) − h(y)| =
∣∣∣∣∣ ∞∑

k=0

tm,k(y)h
( k

m

)
− h(y)

∣∣∣∣∣
≤

∞∑
k=0

tm,k(y)
∣∣∣∣∣h( k

m

)
− h(y)

∣∣∣∣∣.
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By using Cauchy-Schwartz inequality and equation (17), we get

|Tm(h; y) − h(y)| ≤
∞∑

k=0

tm,k(y)
{
1 +

1
δ

∣∣∣∣∣ k
m
− y

∣∣∣∣∣}ω(h, δ)

≤

{
1 +

1
δ

( ∞∑
k=0

tm,k(y)
( k

m
− y

)2) 1
2
( ∞∑

k=0

tm,k(y)
) 1

2
}
ω(h, δ)

≤

{
1 +

1
δ

(
Tm((. − y)2; y)

) 1
2
(
Tm(1; y)

) 1
2
}
ω(h, δ).

Using the fact that Tm(1; y) = 1 and Theorem 3.2, we have

|Tm(h; y) − h(y)| ≤
{
1 +

1
δ

(
4pMp ·

y
m

) 1
2
}
ω(h, δ),

choosing δ = 1
√

m
, we obtain the result.

From Theorem 3.3, we deduce the following corollary:

Corollary 3.4. For any h ∈ CB[0,∞), the sequence {Tmh}m∈N converges uniformly to h on [0,∞).

The rate of convergence of operatorsTm(h; y) defined by equation (5) in terms of the element of the usual
Lipschitz class LipM(µ) is as follows:
Let h ∈ CB[0,∞), M > 0 and 0 < µ ≤ 1. The class of LipM(µ) is defined as

LipM(µ) = {h : |h(ζ1) − h(ζ2)| ≤M|ζ1 − ζ2|
µ, ζ1, ζ2 ∈ [0,∞)}. (18)

Theorem 3.5. For each h ∈ LipM(µ) (M > 0, 0 < µ ≤ 1), we have

|Tm(h; y) − h(y)| ≤M(δm(y))
µ
2 ,

where δm(y) = Tm((t − y)2; y).

Proof. We prove this theorem by using the definition of Lipschitz function (18) and Hölder’s inequality.

|Tm(h; y) − h(y)| ≤ Tm(|h(t) − h(y)|; y)
≤ MTm(|t − y|µ; y).

Therefore,

|Tm(h; y) − h(y)| ≤ M
∞∑

k=0

tm,k(y)
∣∣∣∣∣ k
m
− y

∣∣∣∣∣µ
≤ M

∞∑
k=0

(tm,k(y))
2−µ

2 (tm,k(y))
µ
2

∣∣∣∣∣ k
m
− y

∣∣∣∣∣µ
≤ M

{( ∞∑
k=0

tm,k(y)
) 2−µ

2
( ∞∑

k=0

tm,k(y)
∣∣∣∣∣ k
m
− y

∣∣∣∣∣2) µ2 }
= M

(
Tm((. − y)2; y)

) µ
2

.

Choosing δm(y) = Tm((. − y)2; y), proof is completed.
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4. Graphical Analysis and Error Estimation

In this section, we will give some numerical examples with illustrative graphics and also compare error
estimation with the help of MATLAB.

Example 4.1. Let h(y) = ye−3y and m ∈ {10, 20, 30}. The convergence of the operator Tm(h; y) towards the function
h(y) and the absolute error |Tm(h; y) − h(y)| is shown in Figure 1 and 2, respectively. Also, the absolute error of the
operators at certain points is computed in the Table 1.
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Figure 1:
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Figure 2:

Table 1: Absolute Error of the operators Tm(h; y) with function h(y) = ye−3y

y For m = 5 For m = 10 For m = 20
1.0 0.0104 0.0058 0.0030
1.2 0.0180 0.0056 0.0028
1.4 0.0095 0.0048 0.0024
1.6 0.0077 0.0037 0.0018
1.8 0.0059 0.0028 0.0013
2.0 0.0044 0.0020 0.0009

Example 4.2. Let h(y) = y2 sin (4πy) and m ∈ {20, 30, 50}. The convergence of the operators Tm(h; y) towards the
function h(y) and the absolute error of the operators with the function is shown in Figure 3 and 4, respectively. In
Table 2, we compute the absolute error of the operators at a certain point in the interval.

Table 2: Absolute Error of the operators Tm(h; y) with function h(y) = y2 sin (4πy)

y For m = 20 For m = 30 For m = 50
0.2 0.0180 0.0134 0.0087
0.4 0.0963 0.0735 0.0491
0.6 0.2313 0.1787 0.1205
0.8 0.2688 0.2050 0.1342
1.0 0.0369 0.0594 0.0703
1.2 0.7923 0.7234 0.5885

From these examples, we observe that approximation of h(y) by Tm(h; y) becomes better when we take
larger values of m.
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Example 4.3. Let h(y) = y3e−y2 . The comparison of convergence of Szász Mirakjan rational type operators T10(h; y)
(pink), T20(h; y) (red) and Szász Mirakjan operators S10(h; y) (blue), S20(h; y) (green) towards the function h(y)
(black–) is illustrated in Figure 5. The Absolute Error for these operators is shown in Figure 6. From these figures, it
is clear our constructed operatorTm(h; y) gives a better approximation to h(y) than classical Szász Mirakjan operators
Sm(h; y).
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Table 3: Absolute Error of the defined operators Tm(h; y) and Szász operators Sm(h; y) with the function h(y) = y3e−y2
for m = 10 and

m = 20
y T10(h; y) S10(h; y) T20(h; y) S20(h; y)

1.0 0.0407 0.0585 0.0216 0.0326
1.5 0.0223 0.0513 0.0112 0.0281
2.0 0.0268 0.0279 0.0152 0.0187
2.5 0.0252 0.0389 0.0128 0.0213
3.0 0.0086 0.0173 0.0037 0.0076
3.5 0.0017 0.0047 0.0006 0.0015



S. Rahman et al. / Filomat 37:7 (2023), 2141–2150 2150

References

[1] U. Abel, W. Gawronski, T. Neuschel, Complete monotonicity and zeros of sums of squared Baskakov functions, Applied
Mathematics and Computation, 258 (2015) 130–137.

[2] U. Abel, Voronovskaja type theorems for positive linear operators related to squared fundamental functions, in: CONSTRUCTIVE
THEORY OF FUNCTIONS, Sozopol 2019, (B. Draganov, K. Ivanov, G. Nikolov and R. Uluchev, Eds.), pp. 1âe“21, Prof. Marin
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