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Abstract. We develop a new technique to mathematically analyze and numerically simulate the weak
periodic solution to a class of semilinear periodic parabolic equations with discontinuous coefficients. We
reformulate our problem into a minimization problem via a least-squares cost function. By using variational
calculus theory, we establish the existence of an optimal solution and based on the Lagrangian method, we
calculate the derivative of our cost function. To illustrate the validity and efficiency of our proposed method,
we present some numerical examples with different periods of time and diverse choices of discontinuous
coefficients.

1. Statement of the problem

In these last decades, a huge interest has been given to the studies of partial differential equations not
only for the linear case but also they are involving nonlinear terms. Diverse methods have been investigated
to examine the existence, uniqueness, regularity and stability of the considered solution of such problems.
We mainly refer the interesting readers to see the works [1, 2, 4, 12, 13, 16, 20, 24].

The purpose of this work is to study a semilinear periodic parabolic equation with discontinuous
coefficients whose model is

∂tu − div(A(t, x)∇u) + 1(t, x,u) = f (t, x) in QT
u(0, ·) = u(T, ·) in Ω
u(t, x) = 0 on ΣT,

(1)

where Ω is an open regular bounded subset of RN, with smooth boundary ∂Ω, T > 0 is the period,
QT =]0,T[×Ω, ΣT =]0,T[×∂Ω, f is a measurable function, periodic in time with period T and belonging
to certain Lebesgue space, A(t, x) =

(
ai j(t, x)

)
1≤i, j≤N

is a periodic bounded matrix, and 1 : QT × R → R is a

Carathéodory function periodic with respect to T and satisfying some assumptions.
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To enrich the discussion, we refer the readers to see the book by Hess [19] for a comprehensive introduc-
tion to periodic parabolic equations with regular data. In [3] Amann was also studied periodic parabolic
equations with regular data. He proved the existence of classical periodic solutions by the mean of the sub
and super solution technique. In [21] Lions established the existence and uniqueness of weak solutions to a
class of periodic parabolic equations with Leray-Lions type operators. Their proof was based on the theory
of maximal monotone operators in Banach spaces. The work [14] by Deuel and Hess was interested in the
quasilinear case with an additional lower order term. The authors showed the existence and established
the regularity property of weak periodic solutions via the techniques of sub- and super-solutions. Recently,
Alaa et al generalized the work [14] by considering the same equation but with L1 data. Based on the
truncation method, they proved the existence of a weak periodic solution which is called SOLA solution
(Solution Obtained as the Limit of Approximation). Let us mention that all the above cited works are dedi-
cated to present a theoretical analysis of periodic partial differential equations. However, the consideration
of numerical simulations of periodic parabolic problems is by far more limited in the literature. In the
following, we propose to refer the readers to some interesting works on the same subject. We start with the
work of Carasso [6] in which the author was based on the least squares approach to numerically simulate
some periodic solutions. Lust et al [23] proposed an iterative algorithm to construct numerically the peri-
odic solutions to an ordinary differential system when the period is unknown. In [26] another approach
was investigated. The authors started by formulating a nonlinear heat conduction periodic problem to
an evolutionary equation in a suitable Banach space. They proved the existence of a periodic solution by
using semigroup theory and fixed point theorems. Thereafter, they based on Newton’s method to present
some numerical simulations of the periodic solutions of such problems. Let us remark that all the early
mentioned works are focused on the numerical simulations of periodic parabolic equations with continuous
coefficients.

In this work, we build a new iterative method to numerically construct the periodic solution of (1). We
start by formulating the periodic problem (1) into an optimization problem via the introduction of a least
squares criterion. Therefore, we establish the existence of an optimal solution to the optimization problem
which leads to affirm that the considered problem is well-posed. Thereafter, we follow Lagrange’s method
to calculate the gradient of the considered cost function through the introduction of an auxiliary problem
called the adjoint equation. Based on the derivative of the cost function, we develop an iterative algorithm
to solve numerically the considered optimization problem.

We have organized the rest of this paper as follows: In Section 2, we state the necessary hypothesis and
we define the notion of a weak periodic solution to (1). Section 3 is devoted to formulating questions about
the existence of weak periodic solution of (1) into an equivalent minimization problem. We will introduce
a least-squares cost function and therefore we show the existence of an optimal solution to the considered
minimization problem. Thereafter, we compute the gradient of the cost function via the Lagrange method.
We reserve Section 4 to discretize our problem into a finite element problem. Based on the derivative of the
cost function, we will present a numerical algorithm to solve numerically the minimization problem. In
Section 5, we validate our theoretical study by making some numerical examples.

2. Mathematical Background and Definitions

Let us start this section by imposing the necessary hypothesis to solve (1).

2.1. Assumptions

Throughout this work, we assume that A =
(
ai j

)
1≤i, j≤N

is an elliptic bounded matrix periodic with respect

to the time, namely

(A1)
(
ai j

)
1≤i, j≤N

are measurable functions periodic and belonging to L∞(QT)N

(A2) there exists α > 0 such that

A(t, x)ξ · ξ ≥ α|ξ|2, for a.e (t, x) ∈ QT and for all ξ ∈ RN. (2)
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(A3) f is a measurable function periodic and belonging to L2(QT).

(A4) 1 : QT ×R→ R is a Carathéodory function periodic and satisfying

s 7→ 1(t, x, s) is an increasing function for a.e (t, x) ∈ QT, (3)
1(t, x, s)s ≥ 0 for a.e (t, x) ∈ QT and for all s ∈ R. (4)

(A5) There exists a nonnegative function H belonging to L2 (QT) and a nonnegative constant β such that

|1(t, x, s)| ≤ H(t, x) + β|s| for a.e (t, x) ∈ QT and for all s ∈ R. (5)

(A6) s 7→ 1(t, x, s) is differentiable such that ∂s1(t, x, s) belongs to L∞(QT).

2.2. Functional framework and definition
For the reader’s convenience, we will use the following notation

V = H1
0(Ω), H = L2(Ω), V∗ = H−1(Ω).

To introduce the functional framework involving our work, we set

XT := L2(0,T;V),

we equipped with the following norm

∥u∥XT :=
(∫

QT

|∇u|2 dx dt
) 1

2

.

Furthermore, we set

X
∗

T := L2(0,T;V∗),

the dual space of XT. The above spaces lead to define the following functional space

WT := {u ∈ XT, ∂tu ∈ X∗T},

we equipped with the following norm

∥u∥WT := ∥u∥XT + ∥∂tu∥X∗T .

Throughout this paper, we will denote by ⟨·, ·⟩ the duality pairing betweenV∗ andV and we introduce the
notion of weak periodic solution to clarify in which sense we want to solve problem (1).

Definition 2.1. We call weak periodic solution to (1) all measurable function u : QT → R that satisfies

u ∈ WT, u(0, x) = u(T, x) inH,∫ T

0

〈
∂tu, φ

〉
dt +

∫
QT

A(t, x)∇u.∇φ dx dt +
∫

QT

1(t, x,u)φ dx dt =
∫

QT

fφ dx dt,
(6)

for every test function φ ∈ XT.

Remark 2.2. From assumptions (A1)-(A5), we verify easily that all the terms of (6) are well defined. Moreover, by
using the continuous embeddingV ↪→H ↪→ V∗, we know that

WT ↪→ C([0,T];H),

which means that the periodic condition makes a sense in Definition 2.1.

Let us mention that the existence and uniqueness of a weak periodic solution to problem (1) can be achieved
via monotone operators theory see Theorem 1.1 p.316 of [21]. In this work, we consider a new approach
based on the minimization of a cost function which helps us to simulate numerically the periodic solution
of (1).
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3. Optimization problem

In this section, we formulate the problem of the existence of a weak periodic solution to (1) into a
minimization problem. First of all, we introduce the following least-squares cost function

J(v) =
1
2

∫
Ω

(u(T, x) − v(x))2 dx, (7)

where u presents the weak solution to the following initial boundary value problem
∂tu − div (A(t, x)∇u) + 1(t, x,u) = f (t, x) in QT
u(0, x) = v(x) in Ω
u(t, x) = 0 on ΣT.

(8)

Furthermore, from the result of Theorem 3.1 p. 282 in [25] we assure that for any v ∈ H, problem (8) has a
unique weak solution u which satisfying the following variational formulation

u ∈ WT, u(0, x) = v(x) inH,∫ T

0

〈
∂tu, φ

〉
dt +

∫
QT

A(t, x)∇u.∇φ dx dt +
∫

QT

1(t, x,u)φ dx dt =
∫

QT

fφ dx dt,
(9)

for all φ ∈ XT. As a result, we conclude that the cost function J is well-defined for all v ∈H. Thus, we are
in the setting to introduce the following minimization problem Find v∗ ∈ Nad

J(v∗) = min
v∈Nad

J(v), (10)

where Nad designates the set of admissible functions which will be constructed in the next section. A
further interesting result is that the corresponding minimum of the cost function J coincides with u the
weak periodic solution of (1). On the other hand, when the cost functionJ goes to zero the solution u of the
initial problem (8) satisfies the periodic condition u(0, ·) = u(T, ·) in Ω. Which leads to deduce that we have
reached the equivalence between the periodic parabolic problem (1) and the optimization problem (10).

3.1. Existence of an optimal solution

In this section, we aim to establish that the minimization problem (10) has at least one optimal solution
inNad. We start by introducing the set

Nad := {v ∈ H1(Ω), ∥v∥H1(Ω) ≤ C}, (11)

where C is a nonnegative constant. We consider onNad the topology defined by the strong convergence in
H. We would like to mention that the choice ofH can seem to be consistent for Nad. But for our case, this
choice does not guarantee the existence of an optimal solution to the minimization problem (10). Among
the obtained advantages through the consideration of (11), we find a very interesting compactness result.
More specifically, the Rellich-Kondrachov injection [5] allows us to ensure that

Nad
compact
↪→ H.

Consequently the existence of an optimal solution to (10) requires only the lower semi-continuity of the
cost function J onH.

Theorem 3.1. Assume that (A1)-(A5) hold true. Then, there exists at least one solution in Nad to the optimization
problem (10).
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Proof. From the previous discussion, we found that the existence of an optimal solution to (10) requires the
lower semi-continuity of J on Nad. To do this, we consider (vn) a sequence inH such that (vn) converges
to v strongly inH. We recall that

J(vn) =
1
2

∫
Ω

(un(T, x) − vn(x))2 dx, (12)

where un is the unique weak solution to the following initial boundary value problem
∂tun − div(A(t, x)∇un) + 1(t, x,un) = f in QT
un(0, ·) = vn(·) in Ω
un = 0 on ΣT.

(13)

We multiply the first equation of (13) by un and we integrate over QT, one gets

1
2

∫
Ω

|un(T)|2 dx +
∫

QT

A(t, x)∇un.∇un dx dt +
∫

QT

1(t, x,un)un dx dt =
∫

QT

f un dx dt +
1
2

∫
Ω

|vn|
2 dx. (14)

Thanks to (2),(4) and by applying Hölder’s inequality, the relation (14) becomes

α

∫
QT

|∇un|
2 dx dt +

∫
QT

1(t, x,un)un dx dt ≤ ∥ f ∥L2(QT)∥un∥L2(QT) + ∥vn∥
2
H. (15)

By using the strong convergence of (vn) inH, we derive that (vn) is bounded inH. Furthermore, by using
Young’s inequality in the right-hand side of (15) and with the helps of (4), we conclude that (un) is bounded
inXT. From the growth assumption (5), one may get the existence of a nonnegative constant C independent
of n such that∫

QT

∣∣∣1(t, x,un)
∣∣∣2 dx dt ≤ C

(
∥H∥2L2(QT) + β

2
∥un∥

2
L2(QT)

)
. (16)

Thanks to the continuous embedding XT ↪→ L2(QT) and by employing the boundness of (un) in L2(QT),
we can derive from (16) that

(
1(t, x,un)

)
is bounded in L2(QT). On the other hand, by using the equation

satisfied by (un), we deduce that (∂tun) is bounded X∗T. From Rellich-Kondrachov injection [5], we know
that

V
compact
↪→ H ↪→ V∗.

Then, by applying Aubin’s compactness result (see e.g [21]), we deduce the existence of a measurable
function u ∈ XT and a subsequence of (un) still denoted by (un) for simplicity such that

un → u strongly in L2(QT) and a.e. in QT.

As a result, we obtain that 1(t, x,un) converge to 1(t, x,u) almost everywhere in QT. Then, the above results
yield the following convergences

vn → v strongly inH and a.e. in QT,

un → u strongly in L2(QT) and a.e. in QT,

∇un ⇀ ∇u weakly in L2(QT)N,

∂tun ⇀ ∂tu weakly in X∗T,

1(t, x,un)→ 1(t, x,u) strongly in L2(QT).



H. Alaa et al. / Filomat 37:7 (2023), 2151–2164 2156

The latter convergence result is obtained via the application of Lebesgue dominated theorem. By using
these convergences, we pass to the limit as n→ +∞ in the weak formulation of (13), we get

u ∈ WT, u(0, x) = v(x) inH,∫ T

0

〈
∂tu, φ

〉
dt +

∫
QT

A(t, x)∇u.∇φ dx dt +
∫

QT

1(t, x,u)φ dx dt =
∫

QT

fφ dx dt,
(17)

for all φ ∈ XT. Which is equivalent to say that the limit u is a weak solution to the problem (17). On the
other hand, by using the fact that (17) has a unique solution, one may deduce that

lim
n→∞
J(vn) = J(v).

Which implies that J is continuous on H and therefore lower semi-continuous on H. Furthermore, a
direct application of the theory of variations calculus [17] permits us to achieve the existence of an optimal
solution to (10).

3.2. Derivative of the cost function
Since we are looking to solve numerically the optimization problem (10), we propose to use a numerical

method based on the gradient of the cost function J . Hence, this section tackles the computation of the
derivative ofJ with respect to the state variable. We will follow Lagrangian’s approach which guarantees
a rapid derivative of J . The following theorem sum up the main result of this section.

Theorem 3.2. We assume that (A1)-(A6) holds. Then, the cost function J is differentiable for all v ∈ H. Further-
more, we have

J
′(v).η =

∫
Ω

(
v − u(T) − p(0)

)
η dx, (18)

for all η ∈H. Where u is the solution to the state equation (8) and p is the solution to the following adjoint equation
∂tp + div(A∗(t, x)∇p) = ∂s1(t, x,u) in QT
p(T) = v − u(T) in Ω
p = 0 in ΣT,

(19)

with A∗ is the transpose matrix of A.

Proof. First of all, we define the Lagrangian L as follows

L(u, p, v, σ) :=
1
2

∫
Ω

(u(T) − v)2 dx +
∫ T

0

〈
∂tu, p

〉
dt +

∫
QT

A(t, x)∇u.∇p dx dt +
∫

QT

1(t, x,u)p dx dt

−

∫
QT

f p dx dt +
∫
Ω

σ(u(0) − v) dx.

for all (u, p, v, σ) ∈ WT ×WT ×H×H. At this stage, the variables u, p and v are independents. We mention
that the main objective of adding the auxiliary function σ is to recover the initial boundary condition of the
adjoint equation and its value will be discussed later. We start the computation by deriving the Lagrangian
Lwith respect to u. For all φ ∈ WT, we obtain〈

∂L
∂u
, φ

〉
=

∫
Ω

φ(T)(u(T) − v) dx +
∫ T

0

〈
∂tφ, p

〉
dt +

∫
QT

A(t, x)∇φ.∇p dx dt

+

∫
QT

∂s1(t, x,u)φp dx dt +
∫
Ω

σφ(0) dx.
(20)



H. Alaa et al. / Filomat 37:7 (2023), 2151–2164 2157

Through integration by part, one gets∫ T

0

〈
∂tφ, p

〉
dt = −

∫ T

0

〈
∂tp, φ

〉
dt +

∫
Ω

(
p(T)φ(T) − p(0)φ(0)

)
dx, (21)∫

QT

A(t, x)∇φ.∇p dx dt = −
∫ T

0

〈
div(A∗(t, x)∇p, φ

〉
dt, (22)

where A∗ is the transpose matrix of A. From (21) and (22) equation (20) becomes〈
∂L
∂u
, φ

〉
=

∫
Ω

φ(T)(u(T) − v) dx −
∫ T

0

〈
∂tp, φ

〉
dt +

∫
Ω

(
p(T)φ(T) − p(0)φ(0)

)
dx −

∫ T

0

〈
div(A∗(t, x)∇p, φ

〉
dt

+

∫
QT

∂s1(t, x,u)φp dx dt +
∫
Ω

σφ(0) dx,

(23)

To deduce the expression of the adjoint equation, we look for the equation satisfied by p ∈ WT for which
the equality (23) vanishes for all φ ∈ WT. From (23), it comes that p satisfies in QT the following equation

∂tp + div
(
A∗(t, x)∇p

)
= ∂s1(t, x,u) in QT. (24)

To obtain the initial condition p in Ω, we fix σ = p(0) in (23), we conclude that

p(T) = v − u(T) in Ω. (25)

According to(24) and (25), we deduce that p satisfies the following adjoint equation
∂tp + div(A∗(t, x)∇p) = ∂s1(t, x,u) in QT
p(T) = v − u(T) in Ω
p = 0 in ΣT.

Let η ∈H, we derive the Lagrangian Lwith respect to v, we obtain〈
∂L
∂v
, η

〉
= −

∫
Ω

(u(T) − v)η dx −
∫
Ω

p(0)η dx =
∫
Ω

(
v − u(T) − p(0)

)
η dx.

As we can see, to deduce the expression of the derivative of J , we will take u as the solution to the state
equation (9). Thus, we get

L(u, p, v, σ) = J(v).

We therefore have

J
′(v).η =

∫
Ω

(
v − u(T) − p(0)

)
η dx,

where p(0) is the solution to the adjoint equation (19) computed at the initial period t = 0 and u(T) is the
solution to the state equation (8) evaluated at the final period T.

4. The finite element approximation

All over this section we consider that Ω is a bounded convex N-polyhedron, that is a bounded interval
if N = 1, a convex polygon if N = 2 and a convex polyhedron if N = 3. For h > 0, we consider Th a regular
triangulation of Ω, Th covers Ω exactly. We have the P1 finite element space as shown below:

Vh =
{
vh ∈ C

0(Ω), vh is affine on every N-simplex of Th

}
.
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Vh is a finite dimensional subspace ofV = H1(Ω). The finite element approximation of problem (10) reads:

 Find v∗h ∈ N
h
ad

Jh(v∗h) = min
vh∈N

h
ad

Jh(vh), (26)

whereNh
ad := {vh ∈ Vh, ∥vh∥H1(Ω) ≤ C} is the set of admissible functions,

and

Jh(vh) =
1
2

∫
Ω

(uh(T, x) − vh(x))2 dx, (27)

with uh is the solution to the following initial problem


uh(0, x) = vh(x) a.e. x ∈ Ω
d
dt

∫
Th

uh(t, x)ϕh(x) dx +
∫
Th

A(t, x)∇uh(t, x).∇ϕh(x) dx +
∫
Th

1(t, x,u)ϕh(x)dx =
∫
Th

f (t, x)ϕh(x) dx

∀t ∈]0,T[,∀ϕh ∈ Vh.

(28)

According to the previous paragraph, the expression of the differential of Jh is given by:

J
′

h(vh)(x) = vh(x) − ph(0, x) − uh(T, x), (29)

where ph is a solution of the adjoint model:


ph(T, x) = vh(x) − uh(T, x) a.e. x ∈ Ω
d
dt

∫
Th

ph(t, x)ϕh(x) dx −
∫
Th

A∗(t, x)∇ph(t, x).∇ϕh(x) dx =
∫
Th

∂s1(t, x,u)ϕh(x) dx

∀t ∈]0,T[,∀ϕh ∈ Vh,

(30)

where uh is the solution of (28).

5. Numerical simulations

We have also performed numerical simulations with the software FreeFem ++ ([18]) in two spatial
dimensions. For a bounded domain Ω of R2 with smooth boundary and fix µ > 0 a step of descent. Our
algorithm reads as follows, (see Algorithm 1). We use an implicit method in time to solve the equation
(28). In the same way, we used an implicit method in time for the resolution of the linear retrograde adjoint
equation (30).
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Algorithm 1
Input: a mesh Th which gives a triangulation of Ωh (a polygonal approximation of Ω) and an initial
estimate u0

0 ∈ Vh (for example a constant C0). Compute J0
h = Jh(u0

0)
For k = 0, ..., kmax − 1;
Solve the state equation

uk
h(0, x) = uk

0(x) a.e. x ∈ Ω,
d
dt

∫
Th

uk
h(t, x)ϕh(x) dx +

∫
Th

A(t, x)∇uk
h(t, x).∇ϕh(x) dx +

∫
Th

1(t, x,u)ϕh(x) dx =
∫
Th

f (t, x)ϕh(x) dx

∀t ∈]0,T[,∀ϕh ∈ Vh.

(31)

Compute the value of uk
h(T, x);

Solve the adjoint equation
pk

h(T, x) = uk
0(x) − uk

h(T, x) a.e. x ∈ Ω,
d
dt

∫
Th

pk
h(t, x)ϕh(x) dx −

∫
Th

A∗(t, x)∇pk
h(t, x).∇ϕh(x) dx =

∫
Th

∂s1(t, x,u)(t, x)ϕh(x) dx

∀t ∈]0,T[,∀ϕh ∈ Vh.

(32)

Update the new initial function uk+1
0 and a new value of Jh by computing

uk+1
0 (x) = (1 − µ)uk

0(x) + µ(pk
h(0, x) + pk

h(T, x)).

J
k+1
h = Jh(uk+1

0 ).

Output: ukmax
h ,J

kmax
h .

5.1. A numerical simulation

In view to reinforce our method, we computed the numerical solution reached in the coming two
examples:

5.1.1. Example: A radial test case with regular coefficients
We consider the problem (1) on the unit disc Ω of R2 with:

Ω =
{
(x, y) ∈ R2 : x2 + y2 < 1

}
,

and

A(x, y) =
1√

1 + x2 + y2

(
1 0
0 1

)
.

Let r =
√

x2 + y2 and

u(x, y) = 1 − r2, f (t, x, y) = 2
2 + r2

(1 + r2)
3
2

, 1(t, x,u) = 0.

Then u is the exact solution of (1) with T = 1.
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Table 1: L2 error and mesh characteristics for Example 5.1.1
Nb vertices 3633 14003 31564

hmin 0.025 0.012 0.008
hmax 0.053 0.032 0.019

L2 error 0.09032 0.09035 0.09037
Jh 8.719.e − 05 8.719.e − 05 8.718.e − 05

The Table 1, gives the number of vertices in the mesh Th as well as the minimum and maximum length
of the edges of the used triangulation. we present also
L2 error =

∥∥∥u − ukmax
h

∥∥∥
L2(Ωh) and Jh = J

kmax
h obtained for kmax = 100 and different value of the mesh size h .

The initial estimate is taken u0
h = 1. The solutions corresponding to the initial ukmax

h (0, ·) and the final time
ukmax

h (T, ·) are shown respectively in Figure (1) and Figure (2).
Figure 3 shows objective function Jh value decreases along with the increase of the iteration number.

Figure 1: Output initial ukmax
h (0, ·).

Figure 2: Output initial ukmax
h (T, ·).
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Figure 3: The decrease of the objective function Jh according to the number of iterations.

5.1.2. Example: Numerical simulation with a discontinuous matrix

To illustrate our method in the case of a discontinuous elliptic matrix, we computed the numerical
solution obtained on the unit disc Ω in R2 for the values

A(x, y) =
( √(

1 + x2 + y2) 0
0

√(
1 + x2 + y2) )

by taking

u(t, x) = cos(πt)
(
1 − x2

− y2
)
, 1(t, x,u) = Arctan(u), T = 2

f (t, x, y) =
(
1 + x2 + y2

)
sin(πt)

Table 2: L2-error and mesh characteristics for Example 5.1.2
Nb vertices 162 601 934

hmin 0.295212 0.131497 0.110537
hmax 0.48218 0.250919 0.219081

L2 error 9.22117 × 10−3 9.26387 × 10−3 9.29288 × 10−3

Jh 4.70111 × 10−3 4.72577 × 10−3 4.74206 × 10−3

The Table 2, gives the number of vertices in the mesh Th as well as the minimum and maximum length
of the edges of the used triangulation. We present also L2 error =

∥∥∥u − ukmax
h

∥∥∥
L2(Ωh) and Jh = J

kmax
h obtained

for kmax = 90 and different value of the mesh size h . The initial estimate is taken u0
h = 1. The solutions

corresponding to the initial ukmax
h (0, ·) and the final time ukmax

h (T, ·) are shown respectively in Figure 4 and 5.
Figure 6 shows objective function Jh value decreases along with the increase of the iteration number.
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Figure 4: Output initial ukmax
h (0, ·).

Figure 5: Output initial ukmax
h (T, ·).

Figure 6: The decrease of the objective function Jh according to the number of iterations.
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Conclusions

We have considered a semilinear periodic parabolic equation with a discontinuous coefficient. We have
proposed a new method to theoretically analyze and numerically simulate the weak periodic solution to the
studied problem. Our method was based on the introduction of a least-squares criterion. The consideration
of this cost function points out in the formulation of the periodic problem into an equivalent optimization
problem. We have proved that the minimization problem has at least one optimal solution in a suitable
set of admissible functions. By following the Lagrangian approach, we have computed the derivative of
the cost function with respect to the state variable and then we have presented an iterative algorithm to
solve the minimization problem. After that, we have used the finite element method to discretize the
equations of our problem. Finally, we have made some numerical examples to show the efficiency and the
robustness of our proposed method. In view of the obtained numerical results, we have concluded that
the presented method gives more feasibility concerning the numerical simulations of periodic solutions to
semilinear parabolic equations with discontinuous coefficients. In addition, the obtained numerical results
confirmed the theoretical analysis presented in this work. As a conclusion, the proposed method proves
great promise as a numerical tool for the simulation of the periodic solution to a partial differential equation
with discontinuous coefficient.
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