Filomat 37:7 (2023), 2165–2172 https://doi.org/10.2298/FIL2307165K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Subgroups of products of para τ -discrete semitopological groups

Vikesh Kumar^a, Brij Kishore Tyagi^b

^aDepartment of Mathematics, University of Delhi, Delhi-110007, India ^bDepartment of Mathematics, Atma Ram Sanatan Dharma College, University of Delhi, Delhi-110021, India

Abstract. In this article we define a new class of topological spaces called para τ -discrete spaces and give an internal characterization of a subgroup of product of para τ -discrete semitopological groups having character less than or equal to τ . Also we give a partial solution of an open problem posed by Sánchez [5, Problem 3.8].

1. Introduction

A semitopological group is a group endowed with a topology such that the right and left translations are continuous, and a paratopological group is a group endowed with a topology for which multiplication is continuous. If, additionally, the inversion in a paratopological group is continuous, then it is called a topological group.

A space *X* is regular if it is T_1 and for every closed subset $F \subseteq X$ and for every $x \notin F$, there exist disjoint open sets *M*, *N* such that $F \subseteq M$ and $x \in N$.

In [5], Sánchez obtained the following theorem: Let *G* be a regular semitopological group. Then *G* admits a homeomorphic embedding as a subgroup into a product of metrizable semitopological groups if and only if *G* has property (*) and countable index of regularity. A semitopological group *G* has property (*) if for every open neighborhood *U* of the identity *e* in *G*, the family { $Ux : x \in G$ } has an open basic refinement which is dominated by a countable family γ of open neighborhoods of *e* and σ -discrete with respect to γ . Also, a regular semitopological group *G* has a countable index of regularity, if for every neighborhood *U* of the identity *e* in *G*, there is a neighborhood *V* of *e* and a countable family γ of neighborhoods of *e* such that $\bigcap_{W \in \gamma} VW^{-1} \subseteq U$ (see[7]).

Notice that both the above notions require a countable family γ of neighborhoods of *e*. So the question still remains when a semitopological group satisfies weaker properties than the above, can *G* be embedded into a product of some semitopological groups?

For this purpose we introduce a new class of topological spaces called para τ -discrete spaces. This class contains the class of metric spaces. Then an analogue of Sánchez's theorem mentioned above is obtained in Section 3.

In Section 4, we answer partially a question [5, Problem 3.8] posed by Sánchez.

Received: 22 February 2022; Revised: 29 June 2022; Accepted: 24 July 2022

Communicated by Ljubiša D.R. Kočinac

²⁰²⁰ Mathematics Subject Classification. Primary 54H11; Secondary 54B10, 54A25

Keywords. Semitopological group, paratopological group, index of regularity, basic refinement, regular, character, para τ -discrete space

The first author is supported by CSIR-JRF Sr. No.: DEC19C06467, Ref.No.: 15/12/2019(ii) EU-V, File No.: 09/045(1814)/2020-EMR-I, for carrying out this research work.

Email addresses: vkmath94@gmail.com (Vikesh Kumar), brijkishore.tyagi@gmail.com (Brij Kishore Tyagi)

2. Preliminaries

Let $\tau \ge \omega$ be a cardinal number and let γ be a family of subsets of a set X. Then γ is said to be τ -family if its cardinality $|\gamma|$ is less than or equal to τ . A family \mathcal{U} of subsets of a set X is decomposable as a τ -union if there is an index set I and subfamilies \mathcal{U}_i , $i \in I$ of \mathcal{U} such that $\mathcal{U} = \bigcup \{\mathcal{U}_i : i \in I\}$ and $|I| \le \tau$.

Let *G* be a semitopological group with identity *e*. We denote by N(e) the family of open neighborhoods of *e* in *G*.

A family \mathcal{U} of subsets of *G* is called τ -discrete if it is a τ -union of discrete families.

A family \mathcal{U} of subsets of *G* is called discrete with respect to a family $\gamma \subseteq \mathcal{N}(e)$, if for each $x \in G$, there is a $V \in \gamma$ such that xV intersects at most one element of \mathcal{U} . Also, we say that a family \mathcal{U} of subsets of *G* is τ -discrete with respect to a family $\gamma \subseteq \mathcal{N}(e)$, if \mathcal{U} can be decomposed as a τ -union of families which are discrete with respect to γ . A family \mathcal{U} of subsets of *G* is dominated by a family $\gamma \subseteq \mathcal{N}(e)$ if for each $U \in \mathcal{U}$ and $x \in U$ there is a $V \in \gamma$ such that $xV \subseteq U$.

A semitopological (paratopological) group *G* is called τ -balanced if for each $U \in \mathcal{N}(e)$, there exists a τ -family $\gamma \subseteq \mathcal{N}(e)$ such that for each $x \in G$ we can find $V \in \gamma$ with $xVx^{-1} \subseteq U$, such a family γ is usually called subordinated to *U*. A subset $U \subseteq G$ is called τ -good, if there is a τ -family $\gamma \subseteq \mathcal{N}(e)$ such that for each $x \in U$ there is a $V \in \gamma$ such that $xV \subseteq U$. It is clear that τ -good sets are open in *G*. Denote by $\mathcal{N}^*(e)$ the family of open neighborhoods of *e* in *G* that are τ -good. We say that *G* is locally τ -good if the family $\mathcal{N}^*(e)$ is a local base at *e* in *G*.

Let *X* be a topological space and \mathcal{U} be a cover of it, then we say that a refinement \mathcal{V} of \mathcal{U} is basic if for every $U \in \mathcal{U}$ and $x \in U$ there exists a $V \in \mathcal{V}$ such that $x \in V \subseteq U$.

Definition 2.1. A topological space X is called para τ -discrete, if it has a base \mathcal{B} which is τ -discrete, that is, $\mathcal{B} = \bigcup \{\mathcal{V}_i : i \in I\}$, where $|I| \leq \tau$ and each \mathcal{V}_i is a discrete family, is a base for the topology of X.

Since each σ -discrete family is τ -discrete, it follows from the Bing metrization theorem that the class of metric spaces is contained in the class of para τ -discrete spaces.

Theorem 2.2. Let X be a para τ -discrete space. Then every open cover of X has an open τ -discrete basic refinement.

Proof. Let \mathcal{U} be an open cover of X and \mathcal{B} be a τ -discrete base of X. Put $\mathcal{V} = \{V \in \mathcal{B} : V \subseteq U \text{ for some } U \in \mathcal{U}\}$. Clearly, \mathcal{V} is open τ -discrete basic refinement of \mathcal{U} . \Box

Theorem 2.3. Let X be a topological space with character $\chi(X) \le \tau$. If every open cover of X has an open τ -discrete basic refinement, then X is para τ -discrete space.

Proof. For every $x \in X$, we can assume that $\{B_{\alpha}(x) : \alpha \in \tau\}$ is a local base at x. Put $\mathcal{U}_{\alpha} = \{B_{\alpha}(x) : x \in X\}$ for every $\alpha \in \tau$. Let \mathcal{V}_{α} be an open τ -discrete basic refinement of \mathcal{U}_{α} , for all $\alpha \in \tau$. Then $\mathcal{B} = \bigcup_{\alpha \in \tau} \mathcal{V}_{\alpha}$ is τ -discrete. To show that \mathcal{B} is a base for X, let O be an open set in X and $x \in O$. Then there exists an $\alpha \in \tau$ such that $x \in B_{\alpha}(x) \subseteq O$. Since \mathcal{V}_{α} is a basic refinement of \mathcal{U}_{α} and $x \in B_{\alpha}(x) \in \mathcal{U}_{\alpha}$, there exists a $V \in \mathcal{V}_{\alpha}$ such that $x \in V \subseteq B_{\alpha}(x)$. Thus $x \in V \subseteq O$ and $V \in \mathcal{B}$. Therefore, X is a para τ -discrete space. \Box

Definition 2.4. A semitopological group has property (τ^*) if for every $U \in \mathcal{N}(e)$, the family { $Ux : x \in G$ } has an open basic refinement which is dominated by a τ -family $\gamma \subseteq \mathcal{N}(e)$ and τ -discrete with respect to γ .

Theorem 2.5. Let G be a semitopological group with character $\chi(G) \leq \tau$. Then G is para τ -discrete if and only if G has property (τ^*).

Proof. Assume that *G* is para τ -discrete. Let $U \in \mathcal{N}(e)$. Then by Theorem 2.2, the family $\{Ux : x \in G\}$ has an open τ -discrete basic refinement \mathcal{V} . Since the character $\chi(G) \leq \tau$, there is a local base $\gamma \subseteq \mathcal{N}(e)$ at the identity *e* and this is a τ -family. Thus \mathcal{V} is τ -discrete with respect to the τ -family γ and dominated by γ .

Conversely, assume that *G* has property (τ^*) . Let $\{U_\alpha : \alpha \in \tau\}$ be a local base at the identity *e* in *G*. Then for each $\alpha \in \tau$, the family $\mathcal{U}_\alpha = \{U_\alpha x : x \in G\}$ has an open basic refinement \mathcal{V}_α which is dominated by a τ -family $\gamma_\alpha \subseteq \mathcal{N}(e)$ and τ -discrete with respect to γ_α . Put $\mathcal{B} = \bigcup_{\alpha \in \tau} \mathcal{V}_\alpha$. Then \mathcal{B} is τ -discrete family with respect to $\bigcup_{\alpha \in \tau} \gamma_{\alpha}$. Since $\{U_{\alpha}x : x \in G, \alpha \in \tau\}$ is a base for *G*, \mathcal{B} is a base for *G*. Indeed, let *O* be an open set in *G* and $x \in O$, then there is an $\alpha \in \tau$ such that $x \in U_{\alpha}x \subseteq O$. Since \mathcal{V}_{α} is a basic refinement of \mathcal{U}_{α} , there is a $V \in \mathcal{V}_{\alpha}$ such that $x \in V \subseteq U_{\alpha}x$. This implies that $x \in V \subseteq O$ and $V \in \mathcal{B}$. Therefore, \mathcal{B} is a τ -discrete base and hence *G* is a para τ -discrete space. \Box

Theorem 2.6. If a semitopological group G has property (τ^*), then every subgroup of G has property (τ^*) as well.

Proof. Let *H* be a subgroup of *G* and *W* be an open neighborhood of the identity *e* in *H*. Then there exists an open neighborhood *U* of *e* in *G* such that $W = U \cap H$. Since *G* has property (τ^*), the family { $Ux : x \in G$ } has an open basic refinement \mathcal{V} which is dominated by a τ -family $\gamma \subseteq \mathcal{N}(e)$ and τ -discrete with respect to γ .

Consider $\mathcal{V}_1 = \{O \in \mathcal{V} : O \subseteq Uh$ for some $h \in H\}$ and put $\mathcal{V}_H = \{O \cap H : O \in \mathcal{V}_1\}$. We claim that \mathcal{V}_H is an open basic refinement of $\{Wh : h \in H\}$. Indeed, let $h_1 \in Wh = (U \cap H)h$ for some $h \in H$. Since \mathcal{V} is a basic refinement of $\{Ux : x \in G\}$ and $h_1 \in Uh$, there exists an $O \in \mathcal{V}$ such that $h_1 \in O \subseteq Uh$. This implies that $O \in \mathcal{V}_1$ and $h_1 \in O \cap H \subseteq Uh \cap H = Uh \cap Hh = (U \cap H)h = Wh$. Thus \mathcal{V}_H is open basic refinement of $\{Wh : h \in H\}$. To prove that, \mathcal{V}_H is dominated by $\gamma_H = \{V \cap H : V \in \gamma\}$, let $h \in O \cap H \in \mathcal{V}_H$. Since \mathcal{V} is dominated by γ_H there is a $V \in \gamma$ such that $hV \subseteq O$. This implies that $h(V \cap H) \subseteq O \cap H$. Thus \mathcal{V}_H is dominated by γ_H . Since \mathcal{V} is τ -discrete with respect to γ . Therefore, \mathcal{V}_H is τ -discrete with respect to γ_H .

Theorem 2.7. Let $\{G_i : i \in I \text{ and } |I| \le \tau\}$ be a family of semitopological groups with character $\chi(G_i) \le \tau$. If each G_i has property (τ^*) , then $G = \prod_{i \in I} G_i$ has property (τ^*) as well.

Proof. Let *U* be an open basic set containing the identity *e* in *G*. Put $U = \prod_{i \in I} U_i$. There exists a finite subset *J* of *I* such that $U_i = G_i$ for every $i \notin J$. Put $J = \{i_1, i_2, ..., i_r\}$. Let $K = \{1, 2, ..., r\}$. First we show that the family $\mathcal{V} = \{Ug : g \in G\}$ has an open basic refinement which is τ -discrete with respect to a τ -family and also dominated by the τ -family. Since G_{i_k} has property (τ^*) for all $k \in K$, the family $\mathcal{V}_{i_k} = \{U_{i_k}x : x \in G_{i_k}\}$ of G_{i_k} has an open basic refinement \mathcal{W}_{i_k} , which is τ -discrete with respect to a τ -family $\gamma_{i_k} \subseteq \mathcal{N}(e_{i_k})$ and dominated by γ_{i_k} . For each $k \in K$, we can put $\mathcal{W}_{i_k} = \bigcup_{\alpha \in \tau} \mathcal{W}_{i_k}(\alpha)$, where $\mathcal{W}_{i_k}(\alpha)$ is discrete with respect to γ_{i_k} . Let $A \in \tau^r$. Put

$$\mathcal{W}(A) = \left\{ p_J^{-1}(W_1 \times \cdots \times W_r) : W_1 \in \mathcal{W}_{i_1}(A(1)), \dots, W_r \in \mathcal{W}_{i_r}(A(r)) \right\}.$$

and

$$\gamma_{U} = \left\{ p_{J}^{-1}(O_{1} \times \cdots \times O_{r}) : O_{1} \in \gamma_{i_{1}}, ..., O_{r} \in \gamma_{i_{r}} \right\}.$$

Here p_J is the projection map from G onto $G_J = \prod_{j \in J} G_j$. Clearly, γ_U is a τ -family. We claim that $\mathcal{W}(A)$ is discrete with respect to γ_U . Let $g = (g_i) \in G$. Since for each $k \in K$, the family $\mathcal{W}_{i_k}(A(k))$ is discrete with respect to γ_{i_k} . Therefore, there exists $O_k \in \gamma_{i_k}$ such that $g_{i_k}O_k$ meets at most one element of $\mathcal{W}_{i_k}(A(k))$. Let $V = p_J^{-1}(O_1 \times \cdots \times O_k)$. Then gV intersects at most one element of $\mathcal{W}(A)$. Let $\mathcal{W}_U = \bigcup_{A \in \tau^r} \mathcal{W}(A)$. Clearly, \mathcal{W}_U is τ -discrete with respect to γ_U .

Let $g = (g_i) \in G$ and $y = (y_i) \in Ug$. Then $y_{i_k} \in U_{i_k}g_{i_k}$ for all $k \in K$. Since \mathcal{W}_{i_k} is open basic refinement of the family \mathcal{V}_{i_k} for each $k \in K$, there exists a $W_k \in \mathcal{W}_{i_k}$ such that $y_{i_k} \in W_k \subseteq U_{i_k}g_{i_k}$. Let $W = p_J^{-1}(W_1 \times \cdots \times W_r)$. Then $y \in W \subseteq \prod_{i \in J} U_i g_i$. This proves that the family \mathcal{W}_U is an open basic refinement of the family \mathcal{V} .

Now we show that the family \mathcal{W}_U is dominated by the family γ_U . Let $W_k \in \mathcal{W}_{i_k}$ for every $k \in K$ and $y = (y_i) \in p_J^{-1}(W_1 \times ..., \times W_r)$. Then $y_{i_k} \in W_k$ for each $k \in K$. Since \mathcal{W}_{i_k} is dominated by γ_{i_k} for each $k \in K$, there is a $O_k \in \gamma_{i_k}$ such that $y_{i_k}O_k \subseteq W_k$. This implies that

$$(y_i)p_I^{-1}(O_1 \times, ..., \times O_r) \subseteq p_I^{-1}(W_1 \times, ..., \times W_r).$$

By [2, Theorem 2.2.13], $\chi(G) \leq \tau$. Let \mathcal{B} be a local base at the identity e in G with $|\mathcal{B}| \leq \tau$. Let O be any open in G containing the identity e. Let $\mathcal{W} = \bigcup \{\mathcal{W}_U : U \in \mathcal{B}\}$ and $\gamma = \bigcup \{\gamma_U : U \in \mathcal{B}\}$. Clearly, γ is a τ -family. Also \mathcal{W} is open basic refinement of $\{Og : g \in G\}$ which is τ -discrete with respect to γ and dominated by γ . Thus, G has property (τ^*). \Box **Theorem 2.8.** Let G be a semitopological group with identity e. If for every $U \in \mathcal{N}(e)$, the family $\{Ux : x \in G\}$ has an open basic refinement dominated by a τ -family. Then G is τ -balanced and locally τ -good.

Proof. Let $U \in \mathcal{N}(e)$ and the family $\{Ux : x \in G\}$ has an open basic refinement \mathcal{V} which is dominated by a τ -family $\gamma \subseteq \mathcal{N}(e)$. Let $g \in G$. Then there exists an $O \in \mathcal{V}$ such that $g \in O \subseteq Ug$. Since \mathcal{V} is dominated by γ , there is a $V \in \gamma$ such that $gV \subseteq O$. Therefore, $gV \subseteq O \subseteq Ug$. Thus G is τ -balanced. Since \mathcal{V} is a basic refinement, there exists a $V \in \mathcal{V}$ such that $e \in V \subseteq U$. Since \mathcal{V} is dominated by the τ -family γ , the set V is τ -good. Thus, \mathcal{V} is a local base at the identity e consisting of τ -good sets. Therefore, G is locally τ -good. \Box

Corollary 2.9. Each semitopological group G with property (τ^*) is τ -balanced and locally τ -good.

3. Characterizations of subgroups of products of para τ -discrete semitopological groups

Let \mathcal{P} be a topological (or algebraic) property. Recall that a semitopological group G is *projectively*- \mathcal{P} or *range*- \mathcal{P} if for every neighborhood U of the identity element in G, there exists a continuous homomorphism $p: G \to H$ onto a semitopological group H with property \mathcal{P} such that $p^{-1}(V) \subseteq U$, for some neighborhood V of the identity element of H (see[6, 7]).

Proposition 3.1. ([1, Theorem 3.4.21]) Let \mathcal{P} be a class of semitopological groups, τ an infinite cardinal number, and $G \ a \ T_1$ semitopological group, which is range- \mathcal{P} and has a base \mathcal{B} of open neighborhoods of identity element such that $|\mathcal{B}| \leq \tau$. Then G is topologically isomorphic to a subgroup of a product of a family $\{H_a : a \in \mathcal{A}\}$ of semitopological groups such that $H_a \in \mathcal{P}$, for each $a \in \mathcal{A}$, and $|\mathcal{A}| \leq \tau$.

Lemma 3.2. ([4]) Let G be a semitopological group with identity e. Suppose that a family $\gamma \subseteq N(e)$ satisfies the following conditions:

- (a) for every $U \in \gamma$ and $x \in U$, there exists a $V \in \gamma$ such that $xV \subseteq U$;
- (b) γ is subordinated to U, for each $U \in \gamma$.

Then the set $N = \bigcap \{U \cap U^{-1} : U \in \gamma\}$ is an invariant subgroup of G. Further, UN = NU = U for each $U \in \gamma$.

Theorem 3.3. Let G be a T_1 semitopological group with character $\chi(G) \leq \tau$. Then G admits a homeomorphic embedding as a subgroup into a product $\prod_{i \in I} H_i$, $|I| \leq \tau$, of para τ -discrete semitopological groups H_i with character less than or equal to τ if and only if G has property (τ^*).

Proof. First suppose that *G* is topologically isomorphic to a subgroup of a product $H = \prod_{i \in I} H_i$, where $|I| \le \tau$ and each H_i is para τ -discrete semitopological group having character $\chi(H_i) \le \tau$. By Theorem 2.5, each H_i has property (τ^*). It follows from Theorems 2.6 and 2.7 that *G* has property (τ^*).

Conversely, assume that *G* has property (τ^*). By Proposition 3.1, it is sufficient to show that *G* is projectively para τ -discrete with character less than or equal to τ . Let $U_0 \in \mathcal{N}(e)$. We need to find a continuous homomorphism $p : G \to H$ onto a para τ -discrete semitopological group *H* with character $\chi(H) \leq \tau$ such that $p^{-1}(V_0) \subseteq U_0$ for some $V_0 \in \mathcal{N}(e_H)$.

We will construct by induction a sequence $\{\gamma_n : n \in \omega\}$ similarly as in Sánchez [5] such that for each $n \in \omega$:

- (i) $\gamma_n \subseteq \mathcal{N}^*(e)$ and $|\gamma_n| \leq \tau$;
- (ii) $\gamma_n \subseteq \gamma_{n+1}$;
- (iii) γ_n is closed under finite intersections;
- (iv) for every $U \in \gamma_n$ and $x \in U$, there exists a $V \in \gamma_{n+1}$ such that $xV \subseteq U$;
- (v) the family γ_{n+1} is subordinated to *U*, for each $U \in \gamma_n$;
- (vi) for each $U \in \gamma_n$, the family $\{Ux : x \in G\}$ has an open basic refinement \mathcal{V}_U which is τ -discrete with respect to γ_{n+1} and dominated by γ_{n+1} .

By Corollary 2.9, *G* is locally τ -good, that is, the family $\mathcal{N}^*(e)$ is a local base at the identity *e* in *G*. Then there exists a $U_0^* \in \mathcal{N}^*(e)$ such that $U_0^* \subseteq U_0$. Put $\gamma_0 = \{U_0^*\}$. Suppose that for some $n \in \omega$, we have defined families $\gamma_0, \ldots \gamma_n$ satisfying (i)-(vi). By Corollary 2.9, *G* is τ -balanced. Since γ_n is a τ -family, we can find a τ -family $\lambda_{n,1} \subseteq \mathcal{N}^*(e)$ subordinated to every $U \in \gamma_n$. As $\gamma_n \subseteq \mathcal{N}^*(e)$, there exists a τ -family $\lambda_{n,2} \subseteq \mathcal{N}^*(e)$ such that for each $U \in \gamma_n$ and $x \in U$, there exists a $V \in \lambda_{n,2}$ satisfying $xV \subseteq U$. Since *G* has property (τ^*), so for every $U \in \gamma_n$, the family { $Ux : x \in G$ } has an open basic refinement \mathcal{V}_U which is τ -discrete with respect to a τ -family $\lambda_U \subseteq \mathcal{N}^*(e)$ and dominated by λ_U . Let γ_{n+1} be the minimal family contained in $\mathcal{N}^*(e)$ and containing $\gamma_n \cup \bigcup_{i=1}^2 \lambda_{n,i} \cup \bigcup_{U \in \gamma_n} \lambda_U$ and closed under finite intersections. Clearly, γ_{n+1} satisfies (i)-(vi). This finishes our construction.

Put $\gamma = \bigcup_{n \in \omega} \gamma_n$. Clearly, γ is a τ -family. By (vi), for each $U \in \gamma$, the family \mathcal{V}_U is an open basic refinement of { $Ug : g \in G$ } which is dominated by γ and τ -discrete with respect to γ . By Lemma 3.2, $N = \bigcap \{V \cap V^{-1} : V \in \gamma\}$ is an invariant subgroup of G. Consider the abstract group G/N. Let $p : G \to G/N$ be the canonical homomorphism. Put $\mathcal{B} = \{p(V) : V \in \gamma\}$. Then the family \mathcal{B} satisfies the following properties:

- 1. for each $O, P \in \mathcal{B}$, there exists a $Q \in \mathcal{B}$ such that $Q \subseteq O \cap P$;
- 2. for all $O \in \mathcal{B}$ and $o \in O$, there exists a $P \in \mathcal{B}$ such that $oP \subseteq O$;
- 3. \mathcal{B} is subordinated to each $O \in \mathcal{B}$.

Indeed, the statement (1) follows from the fact that γ is closed under finite intersections. The statements (2) and (3) follow from (iv) and (v), respectively.

Put H = G/N. The statements (1)-(3) imply that there is a topology \mathcal{T} on H such that (H, \mathcal{T}) is a semitopological group and the family \mathcal{B} is a local base at e_H , where e_H is the identity of H. Since γ is a τ -family. So \mathcal{B} is a τ -family. This implies that the character $\chi(H) \leq \tau$.

Let us show that *H* has property (τ^*) . Let $p(U) \in \mathcal{B}, (U \in \gamma)$ be a basic open set in *H*. It is sufficient to show that the cover $\{p(U)h : h \in H\}$ has an open basic refinement which is dominated by \mathcal{B} and τ -discrete with respect to \mathcal{B} . By (vi), the cover $\{Ug : g \in G\}$ has an open basic refinement \mathcal{V}_U which is dominated by γ and τ -discrete with respect to γ . We claim that the family $p(\mathcal{V}_U) = \{p(P) : P \in \mathcal{V}_U\}$ is an open basic refinement of the family $\{p(U)h : h \in H\}$ and it is dominated by $\mathcal{B} = p(\gamma)$. Let $P \in \mathcal{V}_U$ and $y \in p(P)$. Then we have an $x \in P$ such that p(x) = y. Since \mathcal{V}_U is dominated by γ , there is a $V \in \gamma$ such that $xV \subseteq P$. Therefore, $y \in yp(V) \subseteq p(P)$. Hence p(P) is open in *H*. Let $p(U)h_1 \in \{p(U)h : h \in H\}$ and $y \in p(U)h_1$. Choose $g_1, x \in G$ such that $p(U)h_1 = p(Ug_1)$ and y = p(x) with $x \in Ug_1$. Since \mathcal{V}_U is an open basic refinement of $\{Ug : g \in G\}$, there is a $P \in \mathcal{V}_U$ such that $x \in P \subseteq Ug_1$. Therefore, $y \in p(P) \subseteq p(U)h_1$. Hence $p(\mathcal{V}_U)$ is an open basic refinement of $\{p(U)h : h \in H\}$.

Now we will show that $p(\mathcal{V}_U)$ is dominated by \mathcal{B} . Let $P \in \mathcal{V}_U$ and $y \in p(P)$. Then we can find an $x \in P$ such that p(x) = y. Since \mathcal{V}_U is dominated by γ , so there is a $V \in \gamma$ such that $xV \subseteq P$. Hence, $yp(V) \subseteq p(P)$. Therefore, $p(\mathcal{V}_U)$ is dominated by \mathcal{B} .

We claim that $p(\mathcal{V}_U)$ is τ -discrete with respect to \mathcal{B} . Indeed, since \mathcal{V}_U is τ -discrete with respect to γ , we can put $\mathcal{V}_U = \bigcup_{\alpha \in \tau} \mathcal{V}_\alpha$, where each \mathcal{V}_α is discrete with respect to γ . Fix $\alpha \in \tau$. Let $y \in H$. Then we have $x \in G$ such that p(x) = y. Since \mathcal{V}_α is discrete with respect to γ , there is a $V \in \gamma$ such that xVmeets at most one element of \mathcal{V}_α . Suppose that for some $P \in \mathcal{V}_\alpha$ we have that $p(P) \cap yp(V) \neq \emptyset$. Let $h \in p(P) \cap yp(V) \neq \emptyset$. Then we can find a $g \in P$ such that p(g) = h. Since \mathcal{V}_α is dominated by γ , there is a $W \in \gamma$ such that $gW \subseteq P$. Therefore, $h \in hp(W) \subseteq p(P)$ and $hp(W) \cap yp(V) \neq \emptyset$. So $gWN \cap xVN \neq \emptyset$. By Lemma 3.2, $gW \cap xV \neq \emptyset$. Thus $P \cap xV \neq \emptyset$. Since xV meets at most one element of \mathcal{V}_α . Hence yp(V) meets at most one element of $p(\mathcal{V}_\alpha) = \{p(P) : P \in \mathcal{V}_\alpha\}$. Thus we have proved $p(\mathcal{V}_\alpha)$ is discrete with respect to \mathcal{B} . Therefore, $p(\mathcal{V}_U) = \bigcup_{\alpha \in \tau} p(\mathcal{V}_\alpha)$ is τ -discrete with respect to \mathcal{B} .

Let $W \in \mathcal{N}(e_H)$. Consider the cover $\mathcal{W} = \{Wh : h \in H\}$. Let $y \in Wh$ for some $h \in H$. Then we can find a $U \in \gamma$ such that $y \in p(U)y \subseteq Wh$. Since $p(\mathcal{V}_U)$ is an open basic refinement of $\{p(U)h : h \in H\}$, there exists a $P \in \mathcal{V}_U$ such that $y \in p(P) \subseteq p(U)y$. Hence $y \in p(P) \subseteq Wh$. Let us take $\mathcal{V} = \bigcup_{U \in \gamma} p(\mathcal{V}_U)$. Then it follows that \mathcal{V} is an open basic refinement of \mathcal{W} . Also \mathcal{V} is dominated by \mathcal{B} and τ -discrete with respect to \mathcal{B} . Thus we have proved that H is a semitopological group with character $\chi(H) \leq \tau$ having property (τ^*) . By Theorem 2.5, H is para τ -discrete.

Finally, $V_0 = p(U_0^*)$ is an open neighborhood of e_H in H and $p^{-1}(V_0) = U_0^* \subseteq U_0$. Therefore, G is a projectively para τ -discrete with character less than or equal to τ . \Box

The index of regularity Ir(G) of a regular semitopological group is defined as a minimum cardinal number κ such that for every neighborhood U of the identity e in G, one can find a neighborhood V of e and a family γ of neighborhoods of e in G such that $\bigcap_{W \in \gamma} VW^{-1} \subseteq U$ and $|\gamma| \leq \kappa$ ([7]).

Proposition 3.4. Let G be a regular semitopological group with character $\chi(G) \le \tau$, then $Ir(G) \le \tau$.

Proof. Let γ be a local base at the identity e of G with $|\gamma| \leq \tau$. Let $U \in \mathcal{N}(e)$. By regularity of G, there will be $V \in \mathcal{N}(e)$ such that $\overline{V} \subseteq U$. Let $x \in G \setminus U$. By regularity of G, there exist disjoint open sets M and N in G such that $\overline{V} \subseteq M$ and $x \in N$. Thus $V \cap N = \emptyset$ and $e \in x^{-1}N \cap V$. Then there is a $W \in \gamma$ such that $e \in W \subseteq x^{-1}N \cap V$. This implies that $xW \subseteq N$ and $xW \cap V = \emptyset$. Thus, $x \notin VW^{-1}$, which gives $\bigcap_{V \in \gamma} VW^{-1} \subseteq U$. \Box

Theorem 3.5. Let G be a regular semitopological group with character $\chi(G) \leq \tau$. Then G admits a homeomorphic embedding as a subgroup into a product $\prod_{i \in I} H_i$, $|I| \leq \tau$, of regular para τ -discrete semitopological groups H_i with character less than or equal to τ if and only if G has property (τ^*).

Proof. Suppose that *G* is topologically isomorphic to a subgroup of a product $H = \prod_{i \in I} H_i$, where $|I| \le \tau$ and each H_i is regular para τ -discrete semitopological group having character $\chi(H_i) \le \tau$. By Theorem 2.5, each H_i has property (τ^*). It follows from Theorems 2.6 and 2.7 that *G* has property (τ^*).

Conversely, assume that *G* has property (τ^*). By Proposition 3.1, it is sufficient to show that *G* is projectively regular para τ -discrete with character less than or equal to τ . Let $U_0 \in \mathcal{N}(e)$. We need to find a continuous homomorphism $p : G \to H$ onto a regular para τ -discrete semitopological group *H* with character $\chi(H) \leq \tau$ such that $p^{-1}(V_0) \subseteq U_0$ for some $V_0 \in \mathcal{N}(e_H)$.

We will construct by induction a sequence $\{\gamma_n : n \in \omega\}$ similarly as in Theorem 3.3 satisfying the properties (i) to (vi) and the following:

(vii) for each $U \in \gamma_n$, there exists a $V \in \gamma_{n+1}$ such that $\bigcap_{W \in \gamma_{n+1}} VW^{-1} \subseteq U$;

By Corollary 2.9, *G* is locally τ -good, that is, the family $N^*(e)$ is a local base at the identity *e* in *G*. Then there exists a $U_0^* \in N^*(e)$ such that $U_0^* \subseteq U_0$. Put $\gamma_0 = \{U_0^*\}$. Suppose that for some $n \in \omega$, we have defined families $\gamma_0, \ldots \gamma_n$ satisfying (i)-(vii). By Corollary 2.9, *G* is τ -balanced. Since γ_n is a τ -family, we can find a τ -family $\lambda_{n,1} \subseteq N^*(e)$ subordinated to every $U \in \gamma_n$. As $\gamma_n \subseteq N^*(e)$, there exists a τ -family $\lambda_{n,2} \subseteq N^*(e)$ such that for each $U \in \gamma_n$ and $x \in U$, there exists a $V \in \lambda_{n,2}$ satisfying $xV \subseteq U$. Since *G* has property (τ^*), so for every $U \in \gamma_n$, the family $\{Ux : x \in G\}$ has an open basic refinement \mathcal{V}_U which is τ -discrete with respect to a τ -family $\lambda_U \subseteq N^*(e)$ and dominated by λ_U . By Proposition 3.4, $Ir(G) \leq \tau$, we can find a τ -family $\lambda_{n,3} \subseteq N^*(e)$ such that for every $U \in \gamma_n$, there exists a $V \in \lambda_{n,3}$ satisfying $\bigcap_{W \in \lambda_{n,3}} VW^{-1} \subseteq U$. Let γ_{n+1} be the minimal family contained in $N^*(e)$ and containing $\gamma_n \cup \bigcup_{i=1}^3 \lambda_{n,i} \cup \bigcup_{U \in \gamma_n} \lambda_U$ and closed under finite intersections. Clearly, γ_{n+1} satisfies (i)-(vii). This finishes our construction.

Put $\gamma = \bigcup_{n \in \omega} \gamma_n$. Clearly, γ is a τ -family. By (vi), for each $U \in \gamma$, the family \mathcal{V}_U is an open basic refinement of $\{Ug : g \in G\}$ which is dominated by γ and τ -discrete with respect to γ . By Lemma 3.2, $N = \bigcap \{V \cap V^{-1} : V \in \gamma\}$ is an invariant subgroup of G. By (vii) we have that for each $U \in \gamma$, there is a $V \in \gamma$ such that $\bigcap_{W \in \gamma} VW^{-1} \subseteq U$. It follows from (iii) and (vii) that $\bigcap_{V \in \gamma} VV^{-1} \subseteq U$, for every $U \in \gamma$. So that $N = \bigcap_{V \in \gamma} VV^{-1}$. Consider the abstract group G/N. Let $p : G \to G/N$ be the canonical homomorphism. Put $\mathcal{B} = \{p(V) : V \in \gamma\}$. Then the family \mathcal{B} as in preceding Theorem 3.3 generates a topology \mathcal{T} on H = G/N such that (H, \mathcal{T}) is a semitopological group and the family \mathcal{B} is a local base at the identity e_H , and character $\chi(H) \leq \tau$.

We show that the semitopological group (H, \mathcal{T}) is Hausdorff. Take $y \in H \setminus \{e_H\}$. Then there is a $x \in G \setminus N$ such that p(x) = y. Since $x \notin N = \bigcap_{V \in \gamma} VV^{-1}$, there exists a $V \in \gamma$ such that $x \notin VV^{-1}$, Equivalently, $xV \cap V = \emptyset$. It follows from Lemma 3.2 that $xVN \cap VN = \emptyset$, so that $yp(V) \cap p(V) = \emptyset$. Since H is a homogeneous space. Thus H is Hausdorff.

Let $p(U) \in \mathcal{B}, (U \in \gamma)$ be a local neighborhood of the identity e_H in H. Then there is a $V \in \gamma$ such that $\bigcap_{W \in \gamma} VW^{-1} \subseteq U$. We claim that $\overline{p(V)} \subseteq p(U)$. Let $y \in H \setminus p(U)$. Then there is a $x \in G \setminus U$ such that p(x) = y. Since $x \notin U$, there is a $W \in \gamma$ such that $x \notin VW^{-1}$. Thus $xW \cap V = \emptyset$. By Lemma 3.2, $xWN \cap VN = \emptyset$. Hence

 $yp(W) \cap p(V) = \emptyset$. This implies that $y \notin \overline{p(V)}$. Therefore $\overline{p(V)} \subseteq p(U)$. Since *H* is a homogeneous space, we conclude that *H* is regular.

We have shown that *H* has property (τ^*) in Theorem 3.3. By Theorem 2.5, *H* is para τ -discrete semitopological group. Thus we have proved that *H* is a regular para τ -discrete semitopological group with character $\chi(H) \leq \tau$.

Finally, $V_0 = p(U_0^*)$ is an open neighborhood of e_H in H and $p^{-1}(V_0) = U_0^* \subseteq U_0$. Therefore, G is a projectively regular para τ -discrete with character less than or equal to τ .

A semitopological group *G* is called τ -narrow if for every neighborhood *U* of the identity *e* in *G*, there exists a subset $A \subseteq G$ with $|A| \leq \tau$ such that AU = G = UA (see [1, p. 286]).

Proposition 3.6. If G is projectively τ -narrow semitopological group, then G is τ -narrow.

Proof. Let *U* be an open neighborhood of the identity e_G in *G*. Since *G* is projectively τ -narrow semitopological group, there exists a continuous homomorphism *f* from *G* onto a τ -narrow semitopological group *H* such that $f^{-1}(V) \subseteq U$, for some open neighborhood *V* of the identity e_H in *H*. Since *H* is τ -narrow and *V* is an open neighborhood of e_H , there is a subset $D \subseteq H$ with $|D| \leq \tau$ such that DV = H = VD. Choose a subset $A \subseteq G$ such that f(A) = D and $|A| \leq \tau$.

We show that AU = G = UA. Clearly, $AU \subseteq G$. Let $g \in G$. Then there is a $d \in D$ and a $v \in V$ such that f(g) = dv. We can find an $a \in A$ with f(a) = d. Thus f(g) = f(a)v, or equivalently, $f(a^{-1}g) = v$. Thus $a^{-1}g \in f^{-1}(V) \subseteq U$. This implies that $g \in aU \subseteq AU$, So $G \subseteq AU$. Thus we have proved that G = AU. Similarly, G = UA. \Box

Example 3.7. The Sorgenfrey line is a para c-discrete semitopological group. Since $\mathcal{B} = \{[x, x+r) : x \in \mathbb{R}, r > 0\} = \bigcup \{\mathcal{V}_{x,r} : x \in \mathbb{R} \text{ and } r > 0\}$ where $\mathcal{V}_{x,r} = \{[x, x+r)\}$, is a c-discrete base for Sorgenfrey line. Therefore, Sorgenfrey line is para c-discrete. Let $U \in \mathcal{N}(0)$. By Theorem 2.2, the family $\{U + x : x \in \mathbb{R}\}$ has an open c-discrete basic refinement \mathcal{V} (say). Since $\gamma = \{[0, r) : r > 0\}$ is a local base at the identity 0 of cardinality c. Thus \mathcal{V} is c-discrete with respect to c-family γ . Let $V \in \mathcal{V}$ and $v \in V$. Then there exists $W \in \gamma$ such that $v + W \subseteq V$. Hence \mathcal{V} is dominated by c-family γ . Therefore, Sorgenfrey line has property (c^*), but it does not have property (ω^*) [5, Example 3.5]. Note that, the property (*)[5] and property (ω^*) are same.

In other way, since Sorgenfrey line is para c-discrete semitopological group. Thus, by Theorem 2.5, it has property (c^*). If Sorgenfrey line has property (ω^*). By Theorem 2.5, Sorgenfrey line is para ω -discrete. Thus it has a σ -discrete base, which is not possible. Therefore, Sorgenfrey line does not have property (ω^*).

4. On problem of Sánchez

We refer the reader to [5] for basic notations of semitopological group with property (*).

Definition 4.1. ([5, Definition 2.3]) A semitopological group *G* has property (*) if for every $U \in \mathcal{N}(e)$, the family $\{Ux : x \in G\}$ has an open basic refinement which is dominated by a countable family $\gamma \subseteq \mathcal{N}(e)$ and σ -discrete with respect to γ .

In 2017, Sánchez posed the following question.

Question 4.2. ([5, Problem 3.8]) Let G be a regular paratopological group such that for every $U \in N(e)$, the family $\{Ux : x \in G\}$ has an open basic refinement \mathcal{U} which is σ -discrete with respect to countable family γ . Does G have property (*)? What if, additionally, G is ω -balanced?

The following theorem answers the above Question partially.

Theorem 4.3. Let G be a first-countable paratopological group such that for every $U \in N(e)$, the family $\{Ux : x \in G\}$ has an open basic refinement \mathcal{U} which is σ -discrete with respect to countable family γ . Then G has property (*).

Acknowledgements

The authors are grateful to the referee for the valuable remarks and useful suggestions.

References

- [1] A.V. Arhangel'skii, M.G. Tkachenko, Topological Groups and Related Structures, Atlantis Ser. Math., vol. I. Atlantis Press/World Scientific, Paris/Amsterdam, 2008.
- [2] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [3] G.I. Katz, Isomorphic mapping of topological groups to direct product of groups satisfying the first axiom of countability, Uspekhi Mat. Nauk 8 (1953) 107–113 (in Russian).
- [4] I. Sánchez, Projectively first-countable semitopological group, Topology Appl. 204 (2016) 246-252.
- [5] I. Sánchez, Subgroups of products of metrizable semitopological groups, Monatsh Math. 183 (2017) 191–199.
 [6] L.-H. Xie, Y.-Y. Jin, Subgroups of products of strongly metrizable semitopological groups, Topology Appl. 252 (2019) 72–80.
- [7] M.G. Tkachenko, Embedding paratopological groups into topological products, Topology Appl. 156 (2009) 1298–1305.