Filomat 37:7 (2023), 2183–2186 https://doi.org/10.2298/FIL2307183O

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Note on the Banach Problem 1 of condensations of Banach spaces onto compacta

Alexander V. Osipov^a

^aKrasovskii Institute of Mathematics and Mechanics, Ural Federal University, Ural State University of Economics, Yekaterinburg, Russia

Abstract. It is consistent with any possible value of the continuum c that every infinite-dimensional Banach space of density $\leq c$ condenses onto the Hilbert cube.

Let $\mu < \mathfrak{c}$ be a cardinal of uncountable cofinality. It is consistent that the continuum be arbitrary large, no Banach space X of density γ , $\mu < \gamma < \mathfrak{c}$, condenses onto a compact metric space, but any Banach space of density μ admits a condensation onto a compact metric space. In particular, for $\mu = \omega_1$, it is consistent that \mathfrak{c} is arbitrarily large, no Banach space of density γ , $\omega_1 < \gamma < \mathfrak{c}$, condenses onto a compact metric space.

These results imply a complete answer to the Problem 1 in the Scottish Book for Banach spaces: *When does a Banach space X admit a bijective continuous mapping onto a compact metric space?*

1. Introduction

The following problem is a reformulation of the well-known problem of Stefan Banach from the Scottish Book:

Banach Problem. When does a metric (possibly Banach) space X admit a condensation (i.e. a bijective continuous mapping) onto a compactum (= compact metric space) ?

M. Katetov [6] was one of the first who attacked the Banach problem. He proved that: a countable regular space has a condensation onto a compactum if, and only if, it is scattered (a space is said to be *scattered* if every nonempty subset of it has an isolated point).

Recall that a topological space is *Polish* if *X* is homeomorphic to a separable complete metric space and a topological space *X* is σ -compact if *X* is a countable union of compact subsets.

In 1941, A.S. Parhomenko [9] constructed a example of a σ -compact Polish space X such that X does not have a condensation onto a compact space.

Recall that a space *X* is called *absolute Borel*, if *X* is homeomorphic to a Borel subset of some complete metrizable space.

In 1976, E.G. Pytkeev [10] proved the following remarkable theorem for separable absolute Borel non- σ -compact spaces.

Theorem 1.1. Every separable absolute Borel space X condenses onto the Hilbert cube, whenever X is not σ -compact.

²⁰²⁰ Mathematics Subject Classification. Primary 57N20; Secondary 54C10, 54E99

Keywords. Banach problem, condensation, metric compact space, density

Received: 07 March 2022; Revised: 06 December 2022; Accepted: 08 December 2022

Communicated by Ljubiša D.R. Kočinac

Email address: OAB@list.ru (Alexander V. Osipov)

Pytkeev's result implies that every separable complete non- σ -compact metric space condenses onto the Hilbert cube. Thus every infinite-dimensional separable complete linear metric space (and, hence, each infinite-dimensional Banach space) admits a condensation onto a compactum.

It is well known that any locally compact space admits a condensation onto a compact space (Parhomenko's Theorem) [9]. Hence, each separable metrizable locally compact space (and thus each finite-dimensional Banach space) condenses onto a compactum. Thus every separable Banach space admits a condensation onto a compactum.

The *density* d(X) of a topological space X is the smallest cardinality of a dense subset of X. Since metrizable compact spaces have cardinality at most continuum, every metric space admitting a condensation onto a compactum has density at most continuum.

T.Banakh and A.Plichko [1] proved the following interesting result.

Theorem 1.2. Every Banach space X of density \aleph_1 or c admits a condensation onto the Hilbert cube.

Question 1.3. What about intermediate densities between \aleph_1 and c?

It is clear that this question cannot be answered from ZFC alone: its status depends on one's model of set theory.

In [2], T. Banakh announces the following results:

(1) It is consistent that the continuum is arbitrarily large and every infinite-dimensional Banach space of density $\leq \mathfrak{c}$ condenses onto the Hilbert cube $[0, 1]^{\omega}$.

(2) It is consistent that the continuum is arbitrarily large and **no** Banach space of density $\aleph_1 < d(X) < \mathfrak{c}$ condenses onto a compact metric space.

In this paper we give an independent proof of these results.

2. Main results

Theorem 2.1. ([2]) If for some infinite cardinal κ there is a partition of real line by κ many Borel sets, then any Banach space of density κ condenses onto the Hilbert cube.

In [4] (Theorem 3.8), W.R. Brian and A.W. Miller proved the following result.

Theorem 2.2. It is consistent with any possible value of c that for every $\kappa \leq c$ there is a partition of 2^{ω} into κ closed sets.

The following theorem is mathematical folklore. It is a corollary of Theorem 2.1 and Theorem 2.2.

Theorem 2.3. *It is consistent with any possible value of* c *that every infinite-dimensional Banach space of density* $\leq c$ *condenses onto the Hilbert cube.*

Proof. Because ω^{ω} can be identified with a co-countable subset of 2^{ω} , the model in Theorem 2.2 has, for every $\kappa < \mathfrak{c}$, a partition of ω^{ω} (and hence the real line, identifying ω^{ω} with irrational numbers) into κ Borel sets. It remain to apply Theorem 2.1. \Box

In fact the proof of Theorem 2.3 (using the Brian-Miller model of set theory) is a minor modification of the proof of Main Theorem from [1].

Let $FIN(\kappa, 2)$ be the partial order of finite partial functions from κ to 2, i.e., Cohen forcing.

Proposition 2.4. (Corollary 3.13 in [4]) Suppose *M* is a countable transitive model of ZFC + GCH. Let κ be any cardinal of *M* of uncountable cofinality which is not the successor of a cardinal of countable cofinality. Suppose that *G* is FIN(κ , 2)-generic over *M*, then in *M*[*G*] the continuum is κ and for every uncountable $\gamma < \kappa$ if $F : \gamma^{\omega} \to \omega^{\omega}$ is continuous and onto, then there exists a $Q \in [\gamma]^{\omega_1}$ such that $F(Q^{\omega}) = \omega^{\omega}$.

Note that trivial modifications to the proof of Proposition 3.14 in [4] allow us to replace ω_2 with any cardinal μ of uncountably cofinality.

Proposition 2.5. Assume that μ is a cardinal of uncountably cofinality. It is consistent that the continuum be arbitrary large, ω^{ω} can be partitioned into μ Borel sets, and ω^{ω} is not a condensation of κ^{ω} whenever $\mu < \kappa < \mathfrak{c}$.

Theorem 2.6. Suppose μ is a cardinal of uncountable cofinality. It is consistent that the continuum be arbitrary large, no Banach space X of density γ , $\mu < \gamma < c$, condenses onto a compactum, but any Banach space of density μ admit a condensation onto a compactum.

Proof. Suppose *M* is a countable transitive model of *ZFC* + *GCH*. Let $\kappa > \mu$ be any cardinal of *M* of uncountable cofinality which is not the successor of a cardinal of countable cofinality. Suppose that *G* is *FIN*(κ , 2)-generic over *M*, then in *M*[*G*] the continuum is κ and for every uncountable $\gamma < \kappa$ if $F : \gamma^{\omega} \to \omega^{\omega}$ is continuous and onto, then there exists a $Q \in [\gamma]^{\mu}$ such that $F(Q^{\omega}) = \omega^{\omega}$ (Proposition 2.4 (Corollary 3.13 in [4]) with replacement ω_1 with any cardinal $\mu < \kappa$ of uncountably cofinality).

By Proposition 2.5, ω^{ω} can be partitioned into μ Borel sets. By Theorem 2.1, any Banach space of density μ admits a condensation onto the Hilbert cube $[0, 1]^{\omega}$.

The proof of Theorem 3.7 in [8] uses Cohen reals, but the same idea shows that this generic extension has the property that

(*) for every family \mathcal{F} of Borel subsets of ω^{ω} with size $\mu < |\mathcal{F}| < \mathfrak{c}$, if $\bigcup \mathcal{F} = \omega^{\omega}$ then there exists $\mathcal{F}_0 \in [\mathcal{F}]^{\mu}$ with $\bigcup \mathcal{F}_0 = \omega^{\omega}$ (see Proposition 3.14 in [4]).

Let $\mu < \gamma < c$. It suffices to note that any Banach space of density γ is homeomorphic to $J(\gamma)^{\omega}$ where $J(\gamma)$ is hedgehog of weight γ (Theorem 5.1, Remark and Theorem 6.1 in [11]).

Let *f* be a condensation from γ^{ω} onto $J(\gamma)^{\omega}$ [10]. Suppose that *g* is a condensation of $J(\gamma)^{\omega}$ onto a compact metric space *K*. Then we have the condensation $h = g \circ f : \gamma^{\omega} \to K$ of γ^{ω} onto *K*.

Let $\overline{\Sigma} = [\gamma]^{\omega} \cap M$. Note that $|\Sigma| < \mathfrak{c}$ since in $M |\gamma^{\omega}| > \gamma$ if and only if γ has cofinality ω , but in that case $|\gamma^{\omega}| = |\gamma^{+}| < \mathfrak{c}$. Since the forcing is c.c.c.

 $M[G] \models \gamma^{\omega} = \bigcup \{ Y^{\omega} : Y \in \Sigma \}.$

For any $Y \in \Sigma$ the continuous image $h(Y^{\omega})$ is an analytic set (a Σ_1^1 set) and, hence the union of ω_1 Borel sets in *K* (see Ch.3, § 39, Corollary 3 in [7]), i.e., $h(Y^{\omega}) = \bigcup \{B(Y, \beta) : \beta < \omega_1\}$ where $B(Y, \beta)$ is a Borel subset of *K* for each $\beta < \omega_1$. Note that $|\{B(Y, \beta) : Y \in \Sigma, \beta < \omega_1\}| \le |\Sigma| \cdot \aleph_1 = |\Sigma|$.

Assume that $\theta = |\{B(Y,\beta) : Y \in \Sigma, \beta < \omega_1\}| < \gamma$. Consider a function $\phi : \{B(Y,\beta) : Y \in \Sigma, \beta < \omega_1\} \rightarrow \Sigma$ such that $\phi(B(Y,\beta)) = Y_{\xi} \in \Sigma$ where $h(Y_{\xi}^{\omega})$ contains in decomposition $B(Y,\beta)$ (Y_{ξ} may be the same for different $B(Y_1,\beta_1)$ and $B(Y_2,\beta_2)$). Then $\bigcup \{Y_{\xi} : \xi \in \theta\} \in [\gamma]^{\leq \theta}$ and $\gamma^{\omega} = \bigcup \{Y_{\xi}^{\omega} : \xi \in \theta\}$ is a contradiction. Thus, $\gamma \leq \theta \leq |\Sigma| < c$.

Since *K* is Polish, there is a continuous surjection $p : \omega^{\omega} \to K$. Given a family $\mathcal{F} = \{p^{-1}(B(Y,\beta)) : Y \in \Sigma, \beta < \omega_1\}$ of θ -many Borel sets ($\mu < \theta < c$) whose union is ω^{ω} . By property (\star), there is a subfamily $\mathcal{F}_0 = \{F_\alpha : F_\alpha = p^{-1}(B(Y_\alpha, \beta_\alpha)), \alpha < \mu\}$ of size μ whose union is ω^{ω} . Then the family $\{h(Y_\alpha^{\omega}) : \alpha < \mu\}$ of size μ whose union is *K*. Let $Q = \bigcup \{Y_\alpha : \alpha < \mu\}$. Then $Q \in [\gamma]^{\mu}$ and $h(Q^{\omega}) = K$. Since $\mu < \gamma$, we obtain a contradiction with injectivity of the mapping *h*. \Box

By Theorem 2.6 for $\mu = \omega_1$ we have the following result.

Theorem 2.7. Suppose *M* is a countable transitive model of ZFC + GCH. Suppose that G is FIN($\mathfrak{c}, 2$)-generic over *M*. No Banach space X of density γ , $\aleph_1 < \gamma < \mathfrak{c}$ condenses onto a compact metric space.

In [3], W. Brian proved the following result.

Theorem 2.8. Let $\kappa < \aleph_{\omega}$, let $f : Y \to X$ be a condensation of a topological space Y onto a Banach space X of density κ . Then there is a partition of Y into κ Borel sets.

Theorem 2.9. Let $n < \omega$. The following assertions are equivalent:

- 1. Any Banach space X of density \aleph_n condenses onto the Hilbert cube;
- 2. ω^{ω} can be partitioned into \aleph_n Borel sets;
- 3. ω^{ω} is a condensation of ω_n^{ω} .

Proof. (2) \Rightarrow (1) Since there is a partition of ω^{ω} into \aleph_n Borel sets then, by Theorem 2.1, any Banach space of weight \aleph_n admit a condensation onto the Hilbert cube.

(1) \Rightarrow (2) Since $J(\aleph_n)^{\omega}$ is a condensation of ω_n^{ω} and $J(\aleph_n)^{\omega}$ admit a condensation onto the Hilbert cube $[0,1]^{\omega}$ then $[0,1]^{\omega}$ can be partitioned into \aleph_n Polish sets B_{α} (Theorem 2.8). Since $[0,1]^{\omega}$ is Polish there is a continuous surjection $p : \omega^{\omega} \rightarrow [0,1]^{\omega}$. Hence, ω^{ω} can be partitioned into \aleph_n Borel sets $p^{-1}(B_{\alpha})$.

(2) \Leftrightarrow (3) By Theorem 3.6 in [4]. \Box

By Theorems 2.6 and 2.9 and Theorem 3.2 (and Corollaries 3.3 and 3.4) in [5] we have the following results for $\aleph_0 < \kappa \leq \mathfrak{c}$.

Corollary 2.10. *Given any* $A \subseteq \mathbb{N}$ *, there is a forcing extension in which*

- 1. Any Banach space X of density $\kappa \in \{\aleph_n : n \in A\} \cup \{\aleph_1, \aleph_\omega, \aleph_{\omega+1} = c\}$ condenses onto the Hilbert cube;
- 2. No Banach space X of density $\kappa \notin \{\aleph_n : n \in A\} \cup \{\aleph_1, \aleph_{\omega}, \aleph_{\omega+1} = c\}$ condenses onto a compact metric space.

Corollary 2.11. *Given any finite* $A \subseteq \mathbb{N}$ *, there is a forcing extension in which*

- *1.* Any Banach space X of density $\kappa \in \{\aleph_n : n \in A\} \cup \{\aleph_1\}$ condenses onto the Hilbert cube;
- 2. No Banach space X of density $\kappa \notin \{\aleph_n : n \in A\} \cup \{\aleph_1\}$ condenses onto a compact metric space.

Acknowledgement

I would like to thank William Brian and Taras Banakh for several valuable comments.

References

- T.O. Banakh, A.M. Plichko, On a problem of "Scottish Book" concerning condensations of metric spaces onto compacta, Matematychni Studii 8 (1997) 119–122.
- [2] T.O. Banakh, Mini-conference dedicated to the 85th anniversary of the first record in the Scottish Book, https://www.youtube.com/watch?v=x51gZonZivw
- [3] W. Brian, Covering versus partitioning with Polish spaces, Fundamenta Mathematicae 260 (2023) 21-39.
- [4] W.R. Brian, A.W. Miller, Partitions of 2^{ω} and completely ultrametrizable spaces, Topology and its Applications 184 (2015) 61–71.
- [5] W. Brian, Partitioning the real line into Borel sets, arXiv:2112.00535
- [6] M. Katetov, On mappings of countable spaces, Colloquium Mathematicum 2 (1949) 30-33.
- [7] K. Kuratowski, Topology I, Academic Press, New York, 1966.
- [8] A.W. Miller, Infinite combinatorics and definability, Annals of Pure and Applied Logic 41 (1989) 179–203.
- [9] A.S. Parhomenko, Über eineindeutige stetige Abbildungen auf kompakte Raume, Izv. Akad. Nauk SSSR Ser. Mat. 5 (1941) 225–232.
- [10] E.G. Pytkeev, Upper bounds of topologies, Math. Notes 20 (1976) 831-837.
- [11] H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981) 247–262.