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Abstract. It is consistent with any possible value of the continuum c that every infinite-dimensional Banach
space of density ≤ c condenses onto the Hilbert cube.

Let µ < c be a cardinal of uncountable cofinality. It is consistent that the continuum be arbitrary large,
no Banach space X of density γ, µ < γ < c, condenses onto a compact metric space, but any Banach space
of density µ admits a condensation onto a compact metric space. In particular, for µ = ω1, it is consistent
that c is arbitrarily large, no Banach space of density γ, ω1 < γ < c, condenses onto a compact metric space.

These results imply a complete answer to the Problem 1 in the Scottish Book for Banach spaces:
When does a Banach space X admit a bijective continuous mapping onto a compact metric space?

1. Introduction

The following problem is a reformulation of the well-known problem of Stefan Banach from the Scottish
Book:

Banach Problem. When does a metric (possibly Banach) space X admit a condensation (i.e. a bijective
continuous mapping) onto a compactum (= compact metric space) ?

M. Katetov [6] was one of the first who attacked the Banach problem. He proved that: a countable
regular space has a condensation onto a compactum if, and only if, it is scattered (a space is said to be
scattered if every nonempty subset of it has an isolated point).

Recall that a topological space is Polish if X is homeomorphic to a separable complete metric space and
a topological space X is σ-compact if X is a countable union of compact subsets.

In 1941, A.S. Parhomenko [9] constructed a example of a σ-compact Polish space X such that X does not
have a condensation onto a compact space.

Recall that a space X is called absolute Borel, if X is homeomorphic to a Borel subset of some complete
metrizable space.

In 1976, E.G. Pytkeev [10] proved the following remarkable theorem for separable absolute Borel non-
σ-compact spaces.

Theorem 1.1. Every separable absolute Borel space X condenses onto the Hilbert cube, whenever X is not σ-compact.
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Pytkeev’s result implies that every separable complete non-σ-compact metric space condenses onto the
Hilbert cube. Thus every infinite-dimensional separable complete linear metric space (and, hence, each
infinite-dimensional Banach space) admits a condensation onto a compactum.

It is well known that any locally compact space admits a condensation onto a compact space (Parhomenko’s
Theorem) [9]. Hence, each separable metrizable locally compact space (and thus each finite-dimensional
Banach space) condenses onto a compactum. Thus every separable Banach space admits a condensation
onto a compactum.

The density d(X) of a topological space X is the smallest cardinality of a dense subset of X. Since metrizable
compact spaces have cardinality at most continuum, every metric space admitting a condensation onto a
compactum has density at most continuum.

T.Banakh and A.Plichko [1] proved the following interesting result.

Theorem 1.2. Every Banach space X of density ℵ1 or c admits a condensation onto the Hilbert cube.

Question 1.3. What about intermediate densities between ℵ1 and c ?

It is clear that this question cannot be answered from ZFC alone: its status depends on one’s model of
set theory.

In [2], T. Banakh announces the following results:
(1) It is consistent that the continuum is arbitrarily large and every infinite-dimensional Banach space

of density ≤ c condenses onto the Hilbert cube [0, 1]ω.
(2) It is consistent that the continuum is arbitrarily large and no Banach space of density ℵ1 < d(X) < c

condenses onto a compact metric space.
In this paper we give an independent proof of these results.

2. Main results

Theorem 2.1. ([2]) If for some infinite cardinal κ there is a partition of real line by κ many Borel sets, then any
Banach space of density κ condenses onto the Hilbert cube.

In [4] (Theorem 3.8), W.R. Brian and A.W. Miller proved the following result.

Theorem 2.2. It is consistent with any possible value of c that for every κ ≤ c there is a partition of 2ω into κ closed
sets.

The following theorem is mathematical folklore. It is a corollary of Theorem 2.1 and Theorem 2.2.

Theorem 2.3. It is consistent with any possible value of c that every infinite-dimensional Banach space of density
≤ c condenses onto the Hilbert cube.

Proof. Because ωω can be identified with a co-countable subset of 2ω, the model in Theorem 2.2 has, for
every κ < c, a partition of ωω (and hence the real line, identifying ωω with irrational numbers) into κ Borel
sets. It remain to apply Theorem 2.1.

In fact the proof of Theorem 2.3 (using the Brian-Miller model of set theory) is a minor modification of
the proof of Main Theorem from [1].

Let FIN(κ, 2) be the partial order of finite partial functions from κ to 2, i.e., Cohen forcing.

Proposition 2.4. (Corollary 3.13 in [4]) Suppose M is a countable transitive model of ZFC + GCH. Let κ be any
cardinal of M of uncountable cofinality which is not the successor of a cardinal of countable cofinality. Suppose that
G is FIN(κ, 2)-generic over M, then in M[G] the continuum is κ and for every uncountable γ < κ if F : γω → ωω is
continuous and onto, then there exists a Q ∈ [γ]ω1 such that F(Qω) = ωω.

Note that trivial modifications to the proof of Proposition 3.14 in [4] allow us to replace ω2 with any
cardinal µ of uncountably cofinality.
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Proposition 2.5. Assume that µ is a cardinal of uncountably cofinality. It is consistent that the continuum be
arbitrary large, ωω can be partitioned into µ Borel sets, and ωω is not a condensation of κω whenever µ < κ < c.

Theorem 2.6. Suppose µ is a cardinal of uncountable cofinality. It is consistent that the continuum be arbitrary
large, no Banach space X of density γ, µ < γ < c, condenses onto a compactum, but any Banach space of density µ
admit a condensation onto a compactum.

Proof. Suppose M is a countable transitive model of ZFC + GCH. Let κ > µ be any cardinal of M of
uncountable cofinality which is not the successor of a cardinal of countable cofinality. Suppose that G is
FIN(κ, 2)-generic over M, then in M[G] the continuum is κ and for every uncountable γ < κ if F : γω → ωω

is continuous and onto, then there exists a Q ∈ [γ]µ such that F(Qω) = ωω (Proposition 2.4 (Corollary 3.13 in
[4]) with replacement ω1 with any cardinal µ < κ of uncountably cofinality).

By Proposition 2.5, ωω can be partitioned into µ Borel sets. By Theorem 2.1, any Banach space of density
µ admits a condensation onto the Hilbert cube [0, 1]ω.

The proof of Theorem 3.7 in [8] uses Cohen reals, but the same idea shows that this generic extension
has the property that

(⋆) for every family F of Borel subsets of ωω with size µ < |F | < c, if
⋃
F = ωω then there exists

F0 ∈ [F ]µ with
⋃
F0 = ωω (see Proposition 3.14 in [4]).

Let µ < γ < c. It suffices to note that any Banach space of density γ is homeomorphic to J(γ)ω where J(γ)
is hedgehog of weight γ (Theorem 5.1, Remark and Theorem 6.1 in [11]).

Let f be a condensation from γω onto J(γ)ω [10]. Suppose that 1 is a condensation of J(γ)ω onto a compact
metric space K. Then we have the condensation h = 1 ◦ f : γω → K of γω onto K.

Let
∑
= [γ]ω ∩M. Note that |

∑
| < c since in M |γω| > γ if and only if γ has cofinality ω, but in that case

|γω| = |γ+| < c. Since the forcing is c.c.c.
M[G] |= γω =

⋃
{Yω : Y ∈

∑
}.

For any Y ∈
∑

the continuous image h(Yω) is an analytic set (a Σ1
1 set) and, hence the union of ω1 Borel

sets in K (see Ch.3, § 39, Corollary 3 in [7]), i.e., h(Yω) =
⋃
{B(Y, β) : β < ω1}where B(Y, β) is a Borel subset of

K for each β < ω1. Note that |{B(Y, β) : Y ∈
∑
, β < ω1}| ≤ |

∑
| · ℵ1 = |

∑
|.

Assume that θ = |{B(Y, β) : Y ∈
∑
, β < ω1}| < γ. Consider a function ϕ : {B(Y, β) : Y ∈

∑
, β < ω1} →

∑
such that ϕ(B(Y, β)) = Yξ ∈

∑
where h(Yωξ ) contains in decomposition B(Y, β) (Yξ may be the same for

different B(Y1, β1) and B(Y2, β2)). Then
⋃
{Yξ : ξ ∈ θ} ∈ [γ]≤θ and γω =

⋃
{Yωξ : ξ ∈ θ} is a contradiction.

Thus, γ ≤ θ ≤ |
∑
| < c.

Since K is Polish, there is a continuous surjection p : ωω → K. Given a family F = {p−1(B(Y, β)) : Y ∈∑
, β < ω1} of θ-many Borel sets (µ < θ < c) whose union is ωω. By property (⋆), there is a subfamily
F0 = {Fα : Fα = p−1(B(Yα, βα)), α < µ} of size µ whose union is ωω. Then the family {h(Yωα ) : α < µ} of size
µ whose union is K. Let Q =

⋃
{Yα : α < µ}. Then Q ∈ [γ]µ and h(Qω) = K. Since µ < γ, we obtain a

contradiction with injectivity of the mapping h.

By Theorem 2.6 for µ = ω1 we have the following result.

Theorem 2.7. Suppose M is a countable transitive model of ZFC + GCH. Suppose that G is FIN(c, 2)-generic over
M. No Banach space X of density γ, ℵ1 < γ < c condenses onto a compact metric space.

In [3], W. Brian proved the following result.

Theorem 2.8. Let κ < ℵω, let f : Y→ X be a condensation of a topological space Y onto a Banach space X of density
κ. Then there is a partition of Y into κ Borel sets.

Theorem 2.9. Let n < ω. The following assertions are equivalent:

1. Any Banach space X of density ℵn condenses onto the Hilbert cube;
2. ωω can be partitioned into ℵn Borel sets;
3. ωω is a condensation of ωωn .
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Proof. (2) ⇒ (1) Since there is a partition of ωω into ℵn Borel sets then, by Theorem 2.1 , any Banach space
of weight ℵn admit a condensation onto the Hilbert cube.

(1) ⇒ (2) Since J(ℵn)ω is a condensation of ωωn and J(ℵn)ω admit a condensation onto the Hilbert cube
[0, 1]ω then [0, 1]ω can be partitioned into ℵn Polish sets Bα (Theorem 2.8). Since [0, 1]ω is Polish there is a
continuous surjection p : ωω → [0, 1]ω. Hence, ωω can be partitioned into ℵn Borel sets p−1(Bα).

(2)⇔ (3) By Theorem 3.6 in [4].

By Theorems 2.6 and 2.9 and Theorem 3.2 (and Corollaries 3.3 and 3.4) in [5] we have the following
results for ℵ0 < κ ≤ c.

Corollary 2.10. Given any A ⊆N, there is a forcing extension in which
1. Any Banach space X of density κ ∈ {ℵn : n ∈ A} ∪ {ℵ1,ℵω,ℵω+1 = c} condenses onto the Hilbert cube;
2. No Banach space X of density κ < {ℵn : n ∈ A} ∪ {ℵ1,ℵω,ℵω+1 = c} condenses onto a compact metric space.

Corollary 2.11. Given any finite A ⊆N, there is a forcing extension in which
1. Any Banach space X of density κ ∈ {ℵn : n ∈ A} ∪ {ℵ1} condenses onto the Hilbert cube;
2. No Banach space X of density κ < {ℵn : n ∈ A} ∪ {ℵ1} condenses onto a compact metric space.
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[11] H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981) 247–262.


