Filomat 37:7 (2023), 2187–2197 https://doi.org/10.2298/FIL2307187C

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Hypersurfaces of metallic Riemannian manifolds as *k*-almost Newton-Ricci solitons

Majid Ali Choudhary^a, Mohd. Danish Siddiqi^b, Oğuzhan Bahadır^c, Siraj Uddin^d

^aDepartment of Mathematics, School of Sciences, Maulana Azad National Urdu University, Hyderabad, India
 ^bDepartment of Mathematics, College of Science, Jazan University, Jazan, Kingdom of Saudi Arabia
 ^cDepartment of Mathematics, Faculty of Arts and Sciences, K.S.U Kahramanmaras, Turkey
 ^dDepartment of Mathematics, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract. This research investigates *k*-Almost Newton-Ricci solitons (*k*-ANRS) embedded in a metallic Riemannian manifold \mathcal{M}^n having the potential function ψ . Furthermore, we prove geodesic and minimal conditions for hypersurfaces of metallic Riemannian manifolds. Beside this, we have explained some applications of metallic Riemannian manifold admitting *k*-Almost Newton-Ricci solitons.

1. Background

The Ricci flow theory was developed in 1982 by Richard S. Hamilton, which he presented in his groundbreaking work, was an exploration of a Riemannian manifold (M, g) [36]

$$\frac{\partial}{\partial t}g(t)=-2Ric(g(t)),\quad g(0)=g_0,$$

in this equation, *Ric* indicates the Ricci tensor, while *t* indicates time. It is helpful in smoothing out singularities in a metric to deform it.

Assume *V* represents any vector field on *M* and identify the Lie derivative along *V* with the notation \mathcal{L}_V . Then, Ricci soliton on (M, g) is presented by (g, V, λ) and it can be viewed as an extension of Einstein metric and obeying

$$\frac{1}{2}\mathcal{L}_V g + Ric + \lambda g = 0,$$

 λ is some real scalar. One also notices that a Ricci soliton becomes

- shrinking provided $\lambda < 0$,
- steady with $\lambda = 0$,

Keywords. Riemannian manifolds, Einstein manifold, Ricci solitons, Metallic structure

(1)

²⁰²⁰ Mathematics Subject Classification. 53B25; 53C25; 53C40; 53C15

Received: 19 February 2022; Accepted: 10 April 2022

Communicated by Mića S. Stanković

Email addresses: majid_alichoudhary@yahoo.co.in (Majid Ali Choudhary), msiddiqi@jazanu.edu.sa (Mohd. Danish Siddiqi), oguzbaha@gmail.com (Oğuzhan Bahadır), siraj.ch@gmail.com (Siraj Uddin)

• expanding for $\lambda > 0$.

Moreover, ψ describes any smooth function by $\psi : M \to \mathcal{R}$ and V be standing for the gradient of potential function $-\psi$. In this case, q will be termed as *gradient Ricci soliton*. Also, (1) reduces to

$$\nabla \nabla \psi = Ric + \lambda g,\tag{2}$$

wherein $\nabla \nabla \psi$ denotes the *Hessian* of ψ . The Einstein manifold with constant potential function [14] results in the trivial gradient Ricci soliton [23].

According to Pigola et al. [40], in (1), taking the constant λ and rewriting it as a smooth function in $\lambda \in C^{\infty}(M)$ produces almost Ricci soliton on manifold (M, g), which can be written as (g, V, λ) . Cantino and Mazzieri ([15], [16]) reported it to be evolved from the Ricci-Bourguignon flow. Equation (1) can be used to define an almost Ricci soliton. Many geometers have conducted substantial research on the aforesaid solitons. Researchers in [9] investigated the properties of isometric immersions in solitons of this sort and Wylie [45] demonstrated compactness qualities. [22] examined the immersed almost Ricci soliton under P_k (Newton transformation) with second order differential operator L_k for $0 \le k \le n$, referred as *k*-ANRS. In [42], Siddiqi also discussed Ricci-Bourguignon almost solitons. For further literature, we refer ([3],[15], [17]-[19],[25],[27], [43],[41]) and the references therein.

On the other side, the very initial work about golden structure on a Riemannian manifold was carried out in [13] and it gave birth to new ideas about golden mean. This notion was further extended to metallic means by [35] producing golden mean as particular case. In the recent past, a plenty of good results have been established by different researchers regarding metallic means family. For further study, one may refer to ([4],[6],[7], [21],[30]-[32]). Also, an extensive work on warped product manifolds endowed with metallic structure has been carried out in [5] (see also [33], [32]). The preceding literature served as inspiration for the current article. We investigate *k*-almost Newton-Ricci solitons on the hypersurface of metallic Riemannian manifolds in this framework.

2. Metallic Riemannian manifolds

([13], [28], [2]) For Riemannian manifold $(\overline{\mathcal{M}}^m, g)$ and real numbers $a_1, \ldots, a_n, (1, 1)$ -tensor field F produces a polynomial structure when P(F) = 0, in this case

$$P(V) := V^n + a_n V^{n-1} + \dots + a_2 V + a_1 I,$$
(3)

with *I* being used for identity transformation defined on $\Gamma(TM)$.

A (1, 1)-tensor field φ defined on \mathcal{M} yields a metallic structure such that

 $\varphi^2 = p\varphi + qI, \forall p, q \in \mathbb{N}^*.$

The following relation also holds

$$q(U, \varphi V) = q(\varphi U, V), \quad \forall U, V \in \Gamma(T\mathcal{M}).$$

A metallic Riemannian manifold $\overline{\mathcal{M}}$ satisfies (4).

Using φU in place of U

 $g(\varphi U, \varphi V) = pg(U, \varphi V) + qg(U, V).$

It is noted that metallic structure reduces to golden when p = q = 1 ([13], [34]). Also, *F* describes an almost product structure on $(\overline{\mathcal{M}}^m, g)$ provided $F^2 = I$ with $F \neq \pm I$ [2]. Furthermore, $(\overline{\mathcal{M}}, d)$ becomes almost product Riemannian manifold provided

$$q(FU, V) = q(U, FV).$$

For further details on metallic structures, we refer [35].

2188

(4)

Definition 2.1. [4] (*i*) The linear connection ∇ on metallic Riemannian manifold ($\overline{\mathcal{M}}, g, \varphi$) is φ -connection if

$$\nabla \varphi = 0. \tag{5}$$

(ii) ($\overline{\mathcal{M}}$, g, φ) represents locally metallic Riemannian manifold provided the Levi-Civita connection of g denoted by $\overline{\nabla}$ satisfies (5).

One has the decomposition

$$T_x\overline{\mathcal{M}} = T_x\mathcal{M} \oplus T_x^{\perp}\mathcal{M}, \ x \in \mathcal{M}.$$

When $(\overline{M} = M_1 \times M_2, F)$ stands for locally Riemannian product manifold, M_1 and M_2 possessing constant sectional curvatures c_1 and c_2 , resp. One can write [4]

$$\mathcal{R}(v_1, v_2)v_3 = \frac{1}{4}(c_1 + c_2)[g(v_2, v_3)v_1 - g(v_1, v_3)v_2 + g(Fv_2, v_3)Fv_1 - g(Fv_1, v_3)Fv_2] + \frac{1}{4}(c_1 - c_2)[g(Fv_2, v_3)v_1 - g(Fv_1, v_3)v_2 + g(v_2, v_3)Fv_1 - g(v_1, v_3)Fv_2].$$
(6)

In view of almost product structure and (6), we achieve [20]

$$\mathcal{R}(v_{1}, v_{2})v_{3} = \frac{1}{4}(c_{1} + c_{2})[g(v_{2}, v_{3})v_{1} - g(v_{1}, v_{3})v_{2}] \\ + \frac{1}{4}(c_{1} + c_{2})\left\{\frac{4}{(2\sigma_{p,q} - p)^{2}}[g(\varphi v_{2}, v_{3})\varphi v_{1} - g(\varphi v_{1}, v_{3})\varphi v_{2}] \right. \\ + \frac{p^{2}}{(2\sigma_{p,q} - p)^{2}}[g(v_{2}, v_{3})v_{1} - g(v_{1}, v_{3})v_{2}] \\ + \frac{2p}{(2\sigma_{p,q} - p)^{2}}[g(\varphi v_{1}, v_{3})v_{2} + g(v_{1}, v_{3})\varphi v_{2}] \\ - g(\varphi v_{2}, v_{3})v_{1} - g(v_{2}, v_{3})\varphi v_{1}]\right\} \\ \pm \frac{1}{2}(c_{1} - c_{2})\left\{\frac{1}{2\sigma_{p,q} - p}[g(v_{2}, v_{3})\varphi v_{1} - g(v_{1}, v_{3})\varphi v_{2}] \right. \\ + \frac{1}{2\sigma_{p,q} - p}[g(\varphi v_{2}, v_{3})v_{1} - g(\varphi v_{1}, v_{3})v_{2}] \\ + \frac{p}{2\sigma_{p,q} - p}[g(v_{1}, v_{3})v_{2} - g(v_{2}, v_{3})v_{1}]\right\}.$$
(7)

Example 2.2. (Clifford algebras) Assume that $\sum_{k=1}^{m} (\mu^k)^2$ stands for the positive definite form of \mathbb{R}^m and $C^{\gamma}(n)$ be the real Clifford algebra of this positive definite form [38]. Then, taking view of Clifford product, one observes that standard base of \mathbb{R}^m satisfies:

$$\begin{cases} E_k^2 = 1 & , \quad k = l \\ E_k E_l + E_l E_k = 0 & , \quad k \neq l \end{cases}$$

Taking $\varphi_i = \frac{1}{2} \left(p + \sqrt{p^2 + 4q} E_i \right)$ produces

$$\begin{cases} \varphi_k, \quad metallic \ structure \quad , \quad k=l \\ \varphi_k \varphi_l + \varphi_l \varphi_k = p \left(\varphi_k + \varphi_l\right) - \frac{p^2}{2} \quad , \quad k \neq l, \end{cases}$$

 E_1 and E_2 are orthonormal basis vectors of \mathbb{R}^2_2 [38]:

$$1 = I_2$$
, $E_1 \simeq \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $E_2 \simeq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$,

and thus we obtain

$$(i) \varphi_{1} = \frac{1}{2} \left(p + \sqrt{p^{2} + 4q} E_{1} \right) = \begin{pmatrix} \frac{p + \sqrt{p^{2} + 4q}}{2} & 0\\ 0 & \frac{p - \sqrt{p^{2} + 4q}}{2} \end{pmatrix}$$
$$= \begin{pmatrix} \sigma_{p,q} & 0\\ 0 & p - \sigma_{p,q} \end{pmatrix}$$
$$(ii) \varphi_{2} = \frac{1}{2} \left(p + \sqrt{p^{2} + 4q} E_{2} \right) = \frac{1}{2} \begin{pmatrix} p & \sqrt{p^{2} + 4q}\\ \sqrt{p^{2} + 4q} & p \end{pmatrix}$$

Example 2.3. Assume (2n + m)-dimensional affine space \mathbb{R}_n^{2n+m} equipped with $(x_1, \ldots, x_n, y_1, \ldots, y_n, z_1, \ldots, z_m)$. Further, let g and ϑ be the semi-Riemannian metric and tensor field given by

$$g = \begin{pmatrix} -\sigma_{p,q}\delta_{ij} & 0 & 0\\ 0 & \sigma_{p,q}\delta_{ij} & 0\\ 0 & 0 & (p - \sigma_{p,q})\delta_{ij} \end{pmatrix},$$
$$\vartheta = \frac{1}{2} \begin{pmatrix} p\delta_{ij} & (2\sigma_{p,q} - p)\delta_{ij} & 0\\ (2\sigma_{p,q} - p)\delta_{ij} & p\delta_{ij} & 0\\ 0 & 0 & \sigma_{p,q}\delta_{ij} \end{pmatrix}$$

 $\sigma_{p,q} = \frac{p + \sqrt{p^2 + 4q}}{2}$ and ϑ defines a metallic structure on \mathbb{R}_n^{2n+m} .

3. k-almost Newton-Ricci soliton

Let us identify by $\overline{\mathcal{M}}^{n+1}$, any metallic Riemannian manifold and immerse an oriented and connected hypersurface $f : \mathcal{M}^n \longrightarrow \overline{\mathcal{M}}^{n+1}$ into $\overline{\mathcal{M}}^{n+1}$. Then \mathcal{M}^n represents an *k*-ANRS, for some $0 \le k \le m$, provided ([16], [22])

$$Ric + P_k \circ Hessian\psi = \lambda g, \tag{8}$$

where ψ and λ both are smooth functions on \mathcal{M}^n and

$$P_k \circ Hessian\psi(U, W) = g(P_k \nabla_U \nabla_{\psi}, W), \tag{9}$$

 $U, W \in \mathcal{X}(\mathcal{M})$. Placing k = 0, (8) gives a gradient almost Ricci soliton. P_k means k-th Newton transformation such that $P_0 = I$ (identity operator).

According to the Gauss equation,

$$(\bar{\mathcal{R}}(U,W)Z)^T = g(BW,Z)BU + \mathcal{R}(U,W)Z - g(BU,Z)BW$$
(10)

 $\forall U, W, Z \in \mathcal{X}(\mathcal{M}^n)$. In this situation, ()^{*T*} is used to indicate the tangential components of some vector field of $\mathcal{X}(\mathcal{M}^n)$ along \mathcal{M}^n . Moreover, the shape operator *B* satisfies

$$g(h(U,W),\alpha) = g(B_{\alpha}U,W), \tag{11}$$

here α means the normal vector field on \mathcal{M}^n . We also fix $\overline{\mathcal{R}}$ (resp. \mathcal{R}) to denote Riemannian curvature tensor of $\overline{\mathcal{M}}^{n+1}$ (resp. \mathcal{M}^n). Further, ρ of \mathcal{M}^n is

$$\sum_{i,j}^{n} g(\bar{R}(E_i, E_j)E_j, E_i) = \rho - n^2 H^2 + ||B||^2,$$
(12)

2190

||B|| means the Hilbert-Schmidt norm and $\{E_1, \ldots, E_n\}$ indicates orthonormal frame on T(M). Thus, for locally Riemannian product manifold $\overline{\mathcal{M}}^{n+1}$, we have the identity

$$\rho = \frac{1}{8}(c_1 + c_2)\frac{n(n-1)}{p^2 + 4q} \{2p^2 + 4q + \frac{2}{n(n-1)}[tr^2\varphi - ||\varphi||^2] - \frac{4p}{n}tr\varphi\} + \frac{1}{8}\frac{(n-1)}{\sqrt{p^2 + 4q}}(c_1 - c_2)(4tr\varphi - 2np) + \frac{n^2}{2}H^2 - \frac{||B||^2}{2}.$$
(13)

There exist *n* algebraic invariants corresponding to *B* of M^n , that are the elementary symmetric functions ρ_k of its principal curvatures r_1, \ldots, r_m , and are given by

$$\rho_0 = 1, \quad \rho_k = \sum_{i_1 < \dots < i_k} r_1 \dots r_n.$$
(14)

Denote with H_k , the *k*-th mean curvature of the immersion and define it as $\binom{n}{k}H_k = \rho_k$. If k = 0, we have $H_1 = \frac{1}{n}tr(A) = H$, tr stands for trace. The Newton transformation $P_k : \mathcal{X}(\mathcal{M}^n) \longrightarrow \mathcal{X}(\mathcal{M}^n)$ of \mathcal{M}^n is defined by putting $P_0 = I$, $0 \le k \le m$, by

$$P_k = \sum_{j=0}^k (-1)^{k-j} {m \choose j} H_j A^{k-j},$$
(15)

 B^j represents *j* times composition of *B* with itself ($B^0 = I$). Take $\mathcal{L}_k : C^{\infty}(\mathcal{M}^n) \longrightarrow C^{\infty}(\mathcal{M}^n)$ described with

$$\mathcal{L}_k u = tr(P_k \circ Hessian \ u). \tag{16}$$

If we take k = 0, then there is the Laplacian operator. \mathcal{L}_0 . Also, we turn up

$$div_{\mathcal{M}}(P_k \nabla u) = \sum_{i=1}^m g((\nabla_{E_i} P_k) \nabla_u, E_i) + \sum_{i=1}^m g(P_k(\nabla_{E_i} \nabla_u), E_i)$$

= $g(div_{\mathcal{M}} P_k, \nabla_u) + \mathcal{L}_k u,$ (17)

where

$$div_{\mathcal{M}}P_k = tr(\nabla P_k) = \sum_{i=1}^m (\nabla_{E_i}P_k)E_i.$$
(18)

If $\overline{\mathcal{M}}^{n+1}$ has constant sectional curvatures, (17) has the following shape

$$\mathcal{L}_k u = div_{\mathcal{M}}(P_k \nabla u), \tag{19}$$

because $div_{\mathcal{M}}P_k = 0$ (also refer [39]).

Since the s.f.f. of M^n is trace-less, which is produced as

$$\Phi = BHI, \qquad tr(\Phi) = 0, \tag{20}$$

$$|\Phi|^2 = tr(\Phi^2) = ||B||^2 - mH^2 \ge 0.$$
(21)

 $|\Phi|^2 = 0 \Leftrightarrow \mathcal{M}^n$ is totally umbilical.

Let us use the maximal principle to obtain our results (for more information, check [24]). As a result, for every $s \ge 1$, we use the expression

$$\mathcal{L}^{s}(L) = \left\{ u : \mathcal{M}^{n} \longrightarrow \mathcal{R}; \int_{\mathcal{M}} |u|^{s} dL < +\infty \right\}.$$
(22)

Lemma 3.1. Assume \mathcal{M}^n denotes non-compact, complete, oriented Riemannian manifold and for smooth vector field U, $div_{\mathcal{M}}U$ keeps sign on \mathcal{M}^n unchanged. Then $|U| \in \mathcal{L}^1(\mathcal{M})$ implies $div_{\mathcal{M}}U = 0$.

Theorem 1.2 [10] is extended in the following manner.

Theorem 3.2. Consider (g, ψ, λ, k) denotes a complete k-ANRS on hypersurface \mathcal{M}^n of metallic Riemannian manifold $\overline{\mathcal{M}}^{n+1}$ of constant sectional curvatures c_1 and c_2 and $p.f. \psi : \mathcal{M}^n \longrightarrow \mathcal{R}$ s.t. $|\nabla \psi| \in \mathcal{L}^1(\mathcal{M})$. When

- 1. $\lambda > 0, c_1 + c_2 \le 0, c_1 c_2 \le 0 \implies \mathcal{M}^n$ can not be minimal,
- 2. $c_1 c_2 < 0, \lambda \ge 0, c_1 + c_2 < 0 \implies \mathcal{M}^n$ can not be minimal,
- 3. \mathcal{M}^n is minimal, $c_1 c_2 = 0$, $\lambda \ge 0$, $c_1 + c_2 = 0 \implies \mathcal{M}^n$ will be isometric to \mathbb{R}^n .

Proof. Since c_1 and c_2 are the constant sectional curvatures of the ambient space, then from (19) we can see that the operator \mathcal{L}_k is of the divergent kind. Furthermore, *B* is bounded on \mathcal{M}^n , so (15) indicates P_k has a bounded norm implying

$$\left|P_{k}\nabla\psi\right| \leq \left|P_{k}\right|\left|\nabla\psi\right| \in \mathcal{L}^{1}(\mathcal{M}).$$

$$\tag{23}$$

To prove (1) and (2), consider on contrary that \mathcal{M}^n is minimal. In that situation, (13) together with $c_1 - c_2 \le 0$, $c_1 + c_2 \le 0$ and $c_1 - c_2 < 0$, $c_1 + c_2 < 0$ shows that $\rho \le 0$ ($\rho < 0$). Thus, contraction on (8) produces $\mathcal{L}_r \psi = n\lambda - \rho > 0$ in both cases, and that contradicts Lemma 3.1 establishing assertions (1) and (2).

Next, since c_1 and c_2 are the constant sectional curvatures of the ambient space and M^n is minimal, then equation (13) becomes

$$\rho = -\frac{\|B\|^2}{2} \le 0. \tag{24}$$

Next, $\lambda \ge 0 \implies \mathcal{L}_r(\psi) = n\lambda - \rho \ge 0$. Taking $\mathcal{L}_r u = div_{\mathcal{M}}(P_k \nabla u)$ and $|P_k \nabla \psi| \in \mathcal{L}^1(\mathcal{M})$, Lemma (3.1) contributed once more $\mathcal{L}_r \psi = 0$ on \mathcal{M}^n . Therefore $0 \ge \rho = n\lambda \ge 0$, $\implies \rho = \lambda = 0$ establishing $||B||^2 = 0$. Hence *k*-ANRS \mathcal{M}^n is geodesic and flat. \Box

Recall the following result corresponding to Theorem 3 of [48].

Lemma 3.3. Assume M^n stands for complete Riemannian manifold with non-negative smooth subharmonic function u. Assume $u \in \mathcal{L}^s(\mathcal{M})$, then u is constant $\forall s > 1$.

Thus, one writes:

Theorem 3.4. When (g, ψ, λ, k) denotes complete k-ANRS on hypersurface \mathcal{M}^n of $\overline{\mathcal{M}}^{n+1}$, P_k is bounded from above (in the sense of quadratic forms) and $\psi \in \mathcal{L}^s(\mathcal{M})$, $\forall s > 1$. Then

1. $K_{\mathcal{M}} \leq 0, \lambda > 0 \implies \mathcal{M}^n$ is not minimal,

2. $\lambda \ge 0, K_M < 0 \implies \mathcal{M}^n$ will not be minimal,

3. \mathcal{M}^n is minimal, $\lambda \ge 0$, $K_{\mathcal{M}} \le 0 \implies \mathcal{M}^n$ will be flat and totally geodesic.

Proof. Let \mathcal{M}^n is minimal. Then, (12) with given hypothesis results $\rho \leq 0$ and contraction of (8) implies

$$\mathcal{L}_k \psi = n\lambda - \rho > 0. \tag{25}$$

Since P_k has been considered bounded from above, therefore

 $\omega \Delta \psi \ge \mathcal{L}_k \psi > 0, \tag{26}$

in above case, ω indicates any positive constant. As a result of Lemma 3.3, ψ is constant, which is not appropriate, establishing (1). (2) and (3) are simply found in light of the evidence of Theorem 3.2.

The next result extends Theorem 1.5 [9] for $U = \nabla \psi$. We also provide the terms for an *k*-ANRS on hypersurface of metallic Riemannian manifold to be totally umbilical, provided s.f.f. of \mathcal{M}^n is bounded. Thus, one has

Theorem 3.5. If (g, ψ, λ, k) be a complete k-ANRS on hypersurface \mathcal{M}^n of $\overline{\mathcal{M}}^{n+1}$ of sectional curvatures c_1 and c_2 , with bounded s.f.f. and potential function $\psi : \mathcal{M}^n \longrightarrow \mathcal{R}$ s.t. $|\nabla \psi| \in \mathcal{L}^1(\mathcal{M})$. Therefore, for

1.
$$\lambda \geq \frac{(n-1)(c_1+c_2)D_1\sqrt{p^2+q^2}-(n-1)(c_1-c_2)D_2(p^2+q^2)}{8n(p^2+q^2)\sqrt{p^2+q^2}}$$
, \mathcal{M}^n is totally geodesic with $\lambda = \frac{(c_1+c_2)D_1\sqrt{p^2+q^2}-(c_1-c_2)D_2(p^2+q^2)}{8(p^2+q^2)\sqrt{p^2+q^2}} \Big[\frac{(n-1)}{n}\Big]$,
and $\rho = \frac{n(n-1)(c_1+c_2)D_1\sqrt{p^2+q^2}-(n-1)(c_1-c_2)D_2(p^2+q^2)}{8n(p^2+q^2)\sqrt{p^2+q^2}}$,
2. \mathcal{M}^n is compact and $\lambda \geq \frac{(c_1+c_2)D_1\sqrt{p^2+q^2}-(n-1)(c_1-c_2)D_2(p^2+q^2)+\frac{H^2}{2}}{8n(p^2+q^2)\sqrt{p^2+q^2}}$, \mathcal{M}^n is isometric to a Euclidean sphere,

3.
$$\lambda \geq \frac{[(c_1+c_2)D_1\sqrt{p^2+q^2-(n-1)(c_1-c_2)D_2(p^2+q^2)+\frac{H^2}{2}}][\frac{(n-1)}{n}]}{8(p^2+q^2)\sqrt{p^2+q^2}}[\frac{(n-1)}{n}], \mathcal{M}^n \text{ is totally umbilical. Particularly, } \rho = n(n-1)K_{\mathcal{M}} \text{ is constant, } K_{\mathcal{M}} = \frac{(c_1+c_2)D_1\sqrt{p^2+q^2}-(n-1)(c_1-c_2)D_2(p^2+q^2)+\frac{H^2}{2}}{8n(p^2+q^2)\sqrt{p^2+q^2}} \text{ is the sectional curvature of } \mathcal{M}^n.$$

Proof. Using (8) and (13), one derives

$$\mathcal{L}_{r}\psi = n\lambda - \left[\frac{(c_{1}+c_{2})D_{1}\sqrt{p^{2}+q^{2}}-(c_{1}-c_{2})D_{2}(p^{2}+q^{2})}{8(p^{2}+q^{2})\sqrt{p^{2}+q^{2}}}\right] \left[\frac{(n-1)}{n}\right] - \frac{n^{2}}{2}H^{2} + \frac{\|B\|^{2}}{2},$$
(27)

where $D_1 = (p^2 + 4q)[2p^2 + 4q\frac{2}{n(n-1)}(tr^2\varphi - ||\varphi||^2) - \frac{4p}{n}tr\varphi]$ and $D_2 = (4tr\varphi - 2np).$

On λ , simply obtain that $\mathcal{L}_r \psi$ is non-negative function on \mathcal{M}^n . Lemma 3.1 implies $\mathcal{L}_k \psi$ vanishes identically. Thus, (27) makes \mathcal{M}^n totally geodesic and we turn up to

$$\lambda = \frac{(c_1 + c_2)D_1\sqrt{p^2 + q^2} - (c_1 - c_2)D_2(p^2 + q^2)}{8(p^2 + q^2)\sqrt{p^2 + q^2}} \left[\frac{(n-1)}{n}\right].$$
(28)

Additionally, (13) implies

$$\rho = \frac{(c_1 + c_2)D_1\sqrt{p^2 + q^2} - (c_1 - c_2)D_2(p^2 + q^2)}{8(p^2 + q^2)\sqrt{p^2 + q^2}} \left[\frac{(n-1)}{n}\right],$$

completing proof of (1). If \mathcal{M}^n is compact, being totally geodesic results ambient space must be \mathcal{S}^{n+1} isometric to $\overline{\mathcal{M}}^{n+1}$, completing (2). From equation (27), we have

$$\mathcal{L}_{k}\psi = n \left[\lambda - (n-1) \frac{(c_{1}+c_{2})D_{1}\sqrt{p^{2}+q^{2}} - (n-1)(c_{1}-c_{2})D_{2}(p^{2}+q^{2})}{8n(p^{2}+q^{2})\sqrt{p^{2}+q^{2}}} \right] + |\Phi|^{2}.$$
(29)

Now, Theorem (3.5) (1) entails.

Corollary 3.6. When (g, ψ, λ, k) be complete k-ANRS on hypersurface \mathcal{M}^n of $\overline{\mathcal{M}}^{n+1}$, then \mathcal{M}^n admits the steady *k*-ANRS.

As a result of our assumption on λ , we get $\mathcal{L}_k \psi \ge 0$. We get $\mathcal{L}_k \psi = 0$ from Lemma (3.1). This demonstrates that \mathcal{M}^n is completely umbilical. As a result, it implies that κ be constant, so \mathcal{M}^n has a constant sectional curvature.

$$K_{\mathcal{M}} = \frac{(c_1 + c_2)D_1\sqrt{p^2 + q^2} - (n-1)(c_1 - c_2)D_2(p^2 + q^2) + \frac{H^2}{2}}{8n(p^2 + q^2)\sqrt{p^2 + q^2}}.$$

This relation together with (29) gives

$$\lambda = \frac{\left[(c_1 + c_2)D_1 \sqrt{p^2 + q^2} - (n-1)(c_1 - c_2)D_2(p^2 + q^2) + \frac{H^2}{2}\right]}{8(p^2 + q^2) \sqrt{p^2 + q^2}} \left[\frac{(n-1)}{n}\right]$$

= $(n-1)K_{\mathcal{M}}$, (30)

establishing $\rho = n(n-1)K_{\mathcal{M}}$. \Box

Theorem 1.6 [9] states that if a minimal immersed nontrivial almost Ricci soliton \mathcal{M}^n in S^{n+1} satisfies $\rho \ge n(n \ge 2)$ and ||B|| obtains its maximum, then S^n will be isometric. Now, with help of Theorem 3.5, one obtains

Corollary 3.7. Assume that the data (g, ψ, λ, k) be complete k-ANRS on hypersurface \mathcal{M}^n of metallic Riemannian manifold $\overline{\mathcal{M}}^{n+1}$ of constant sectional curvatures c_1 and c_2 . Then

1. $\lambda \geq \frac{(n-1)H^2}{2} \implies L^m$ will be isometric to S^m .

2. ||B|| obtains maximum, $\lambda \ge \frac{(n-1)H^2}{2}$, $\rho \ge n(n-2) \implies \mathcal{M}^n$ will be isometric to \mathcal{S}^n .

Proof. (2) We turn up through Simon's formula [44].

$$\Delta ||B||^2 - ||\nabla B||^2 = (2n - ||B||^2)||B||^2 \ge 0.$$
(31)

In addition, for $\rho \ge m(m-2)$, the immersion is minimal, therefore (13) turns to be

$$\frac{\|B\|^2}{2} = n(n-1) - \rho \le n.$$

We can deduce from Hopf's strong maximum principle and equation (31) that $\nabla B = 0$ on $\overline{\mathcal{M}}^{n+1}$. Thus, Proposition 1 [37] deduces that \mathcal{M}^n is compact, and the result follows from Theorem 3.5. \Box

Theorem 3.8. Let (g, ψ, λ, k) be complete k-ANRS on hypersurface \mathcal{M}^n of metallic Riemannian manifold $\overline{\mathcal{M}}^{n+1}$ of constant sectional curvatures c_1 and c_2 and $\psi \in \mathcal{L}^s(\mathcal{M})$, $\forall s > 1$. For

 $1. \ \lambda \geq \frac{(c_1+c_2)D_1\sqrt{p^2+q^2}-(c_1-c_2)D_2(p^2+q^2)}{8(p^2+q^2)\sqrt{p^2+q^2}} \left[\frac{(n-1)}{n}\right], \ \mathcal{M}^n \ is \ totally \ geodesic \ with \ \lambda = \frac{(n-1)(c_1+c_2)D_1\sqrt{p^2+q^2}-(n-1)(c_1-c_2)D_2(p^2+q^2)}{8n(p^2+q^2)\sqrt{p^2+q^2}}, \ and \ the \ scalar \ curvature \ \rho = \frac{n(c_1+c_2)D_1\sqrt{p^2+q^2}-(c_1-c_2)D_2(p^2+q^2)}{8(p^2+q^2)\sqrt{p^2+q^2}} \left[\frac{(n-1)}{n}\right], \ 2. \ \lambda \geq (n-1)\frac{[(c_1+c_2)D_1\sqrt{p^2+q^2}-(n-1)(c_1-c_2)D_2(p^2+q^2)+\frac{H^2}{2}]}{8n(p^2+q^2)\sqrt{p^2+q^2}}, \ \mathcal{M}^n \ is \ totally \ umbilical. \ Particularly, \ \rho = n(n-1)K_{\mathcal{M}} \ is \ constant, \ where \ K_{\mathcal{M}} = \frac{(c_1+c_2)D_1\sqrt{p^2+q^2}-(n-1)(c_1-c_2)D_2(p^2+q^2)+\frac{H^2}{2}}{8n(p^2+q^2)\sqrt{p^2+q^2}} \ is \ the \ sectional \ curvature \ of \ \mathcal{M}^n.$

Proof. The hypothesis on λ and equation (27) give

$$\mathcal{L}_{r}\psi = n\lambda - \left[\frac{(c_{1}+c_{2})D_{1}\sqrt{p^{2}+q^{2}-(c_{1}-c_{2})D_{2}(p^{2}+q^{2})}}{8(p^{2}+q^{2})\sqrt{p^{2}+q^{2}}}\right]\frac{(n-1)}{n}$$
$$-\frac{n^{2}}{2}H^{2} + \frac{\|B\|^{2}}{2}$$
$$\geq 0.$$
(32)

As P_k is bounded from above, therefore $\omega \Delta \psi \ge \mathcal{L}_k \psi \ge 0$ in the case of a positive constant ω We conclude that ψ is constant using Lemma 3.3. As a result, $\mathcal{L}_n \psi = 0$, and equation (32) proves that \mathcal{M}^n is totally geodesic.

$$\lambda = \frac{(c_1 + c_2)D_1\sqrt{p^2 + q^2} - (c_1 - c_2)D_2(p^2 + q^2)}{8(p^2 + q^2)\sqrt{p^2 + q^2}} \left[\frac{(n-1)}{n}\right]$$

and the scalar curvature

$$\rho = \frac{n(c_1 + c_2)D_1\sqrt{p^2 + q^2} - (c_1 - c_2)D_2(p^2 + q^2)}{8(p^2 + q^2)\sqrt{p^2 + q^2}} \left[\frac{(n-1)}{n}\right]$$

establishing (1). Assertion (2) follows through process of Theorem 3.5. \Box

4. Some Applications

As an application, we obtain the following results for golden Riemannian manifold $\overline{\mathcal{M}}$ ($p = q = 1, \sigma = \frac{1+\sqrt{5}}{2}$ ([20],[35])).

Theorem 4.1. Consider complete k-ANRS (g, ψ, λ, k) on hypersurface \mathcal{M}^n of golden Riemannian manifold $\overline{\mathcal{M}}^{n+1}$ of constant sectional curvatures c_1 and c_2 with bounded B and p.f. $\psi : \mathcal{M}^n \longrightarrow \mathcal{R}$ s.t. that $|\nabla \psi| \in \mathcal{L}^1(\mathcal{M})$. We have

1. $\lambda > 0$, $c_1 + c_2 \le 0$, $c_1 - c_2 \le 0 \implies \mathcal{M}^n$ is not minimal,

2. $c_1 - c_2 < 0$, $\lambda \ge 0$, $c_1 + c_2 < 0 \implies \mathcal{M}^n$ will not be minimal.

3. \mathcal{M}^n be minimal, $\lambda \ge 0$, $c_1 - c_2 = 0$, $c_1 + c_2 = 0 \implies \mathcal{M}^n$ will be isometric to \mathbb{R}^n .

This generalizes Theorem 1.2 of [10] to golden Riemannian manifold. Next, we have:

Theorem 4.2. Assume (g, ψ, λ, k) be complete k-ANRS on hypersurface \mathcal{M}^n of golden Riemannian manifold $\overline{\mathcal{M}}^{n+1}$ and $\psi \in \mathcal{L}^s(\mathcal{M}), \forall s > 1$. If

- 1. $\lambda > 0, K_{\mathcal{M}} \leq 0, \implies \mathcal{M}^n$ is not minimal,
- 2. $K_{\mathcal{M}} < 0, \lambda \ge 0 \implies \mathcal{M}^n$ will not be minimal,

3. \mathcal{M}^n be minimal, $\lambda \ge 0$, $K_{\mathcal{M}} \le 0 \implies \mathcal{M}^n$ will be flat and totally geodesic.

Next result generalizes the Theorem 1.5 of [9] for $U = \nabla \psi$.

Theorem 4.3. If (g, ψ, λ, k) be complete k-ANRS on hypersurface \mathcal{M}^n of golden Riemannian manifold $\overline{\mathcal{M}}^{n+1}$ of constant sectional curvatures c_1 and c_2 , with bounded s.f.f. and $\psi : \mathcal{M}^n \longrightarrow \mathcal{R}$ satisfies $|\nabla \psi| \in \mathcal{L}^1(\mathcal{M})$. When

1.
$$\lambda \geq \frac{(c_1+c_2)D_1\sqrt{2}-2(c_1-c_2)D_2}{16\sqrt{2}} \left[\frac{(n-1)}{n}\right]$$
, \mathcal{M}^n is totally geodesic with
 $\lambda = \frac{(c_1+c_2)D_1\sqrt{2}-2(c_1-c_2)D_2}{16\sqrt{2}} \left[\frac{(n-1)}{n}\right]$,
and $\rho = \frac{n(c_1+c_2)D_1\sqrt{2}-2(c_1-c_2)D_2}{16\sqrt{2}} \left[\frac{(n-1)}{n}\right]$,
2. \mathcal{M}^n is compact and $\lambda \geq \frac{(c_1+c_2)D_1\sqrt{2}-2(n-1)(c_1-c_2)D_2+\frac{H^2}{2}}{16n\sqrt{2}}$, \mathcal{M}^n will be isometric to a Euclidean sphere,
3. $\lambda \geq \frac{[(c_1+c_2)D_1\sqrt{2}-2(n-1)(c_1-c_2)D_2+\frac{H^2}{2}]}{16n\sqrt{2}}(n-1)$, \mathcal{M}^n is totally umbilical. Particularly, $\rho = n(n-1)K_M$ is constant, in

this case,
$$K_{\mathcal{M}} = \frac{(c_1+c_2)D_1\sqrt{2}-2(n-1)(c_1-c_2)D_2+\frac{H^2}{2}}{16n\sqrt{2}}$$
 is the sectional curvature of \mathcal{M}^n .

Theorem (4.3) (1) produces the following.

Corollary 4.4. If (g, ψ, λ, k) be complete k-ANRS on hypersurface \mathcal{M}^n of golden Riemannian manifold $\overline{\mathcal{M}}^{n+1}$, then \mathcal{M}^n admits the steady k-ANRS.

Corollary 4.5. Let (g, ψ, λ, k) denotes complete k-ANRS on hypersurface \mathcal{M}^n of golden Riemannian manifold $\overline{\mathcal{M}}^{n+1}$ of constant sectional curvatures c_1 and c_2 . We notice

1.
$$\lambda \geq \frac{(n-1)H^2}{2} \Longrightarrow L^m$$
 will be isometric to \mathcal{S}^m ,

2195

2. ||B|| obtains its maximum, $\rho \ge n(n-2)$, $\lambda \ge \frac{(n-1)H^2}{2} \implies \mathcal{M}^n$ is isometric to \mathcal{S}^n .

Theorem 4.6. Assume (q, ψ, λ, k) be complete k-ANRS on hypersurface \mathcal{M}^n of $\overline{\mathcal{M}}^{n+1}$ of constant sectional curvatures c_1 and c_2 and $\psi \in \mathcal{L}^s(\mathcal{M})$, $\forall s > 1$. For

1. $\lambda \geq \frac{(c_1+c_2)D_1\sqrt{2}-2(c_1-c_2)D_2}{16\sqrt{2}} \left[\frac{(n-1)}{n}\right], \mathcal{M}^n$ is totally geodesic with $\lambda = \frac{(c_1+c_2)D_1\sqrt{2}-2(c_1-c_2)D_2}{16\sqrt{2}} \left[\frac{(n-1)}{n}\right],$ and $\rho = \frac{n(c_1+c_2)D_1\sqrt{2}-2(c_1-c_2)D_2}{16\sqrt{2}} \left[\frac{(n-1)}{n}\right],$ 2. $\lambda \geq \frac{[(c_1+c_2)D_1\sqrt{2}-2(n-1)(c_1-c_2)D_2+\frac{H^2}{2}]}{16\sqrt{2}} \left[\frac{(n-1)}{n}\right], \mathcal{M}^n$ is totally umbilical. Particularly, $\rho = n(n-1)K_M$ will be constant, where $K_M = \frac{(c_1+c_2)D_1\sqrt{2}-2(n-1)(c_1-c_2)D_2+\frac{H^2}{2}}{16n\sqrt{2}}$ is the sectional curvature of \mathcal{M}^n .

Remark. The following cases can also be analyzed in the same manner [35]:

- the silver ratio $(p = 2, q = 1, \sigma_{2,1} = 1 + \sqrt{2})$
- the *bronze ratio* $(p = 3, q = 1, \sigma_{3,1} = \frac{3 + \sqrt{13}}{2})$
- the copper ratio $(p = 1, q = 2, \sigma_{1,2} = 2)$
- the nickel ratio $(p = 1, q = 3, \sigma_{1,3} = \frac{1+\sqrt{13}}{2})$
- the subtle mean $(p = 4, q = 1, \sigma_{4,1} = 2 + \sqrt{5})$ etc.

Acknowledgments

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. G: 775-130-1441. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

References

- [1] L.J. Alías, D. Impera, M. Rigoli, Hypersurfaces of constant higher order mean curvature in warped products. Trans. Amer. Math. Soc. 365(2), 591-621 (2013)
- O. Bahadir, S. Uddin, Slant submanifolds of golden Riemannian manifolds. J. Math. Ext. 13(4), 1-10 (2019)
- [3] A.M. Blaga, C. Özgür, Almost η -Ricci and almost η -Yamabe solitons with torse-forming potential vector field, https://arxiv.org/pdf/2003.12574.pdf.
- [4] A. M. Blaga, C. E. Hretcanu, Invariant, anti-invariant and slant submanifolds of a metallic Riemannian manifold, Novi Sad J. Math. 48 (2018), 57-82.
- [5] A. M. Blaga, C. E. Hretcanu, Remarks on metallic warped product manifolds, Facta Universitatis, 33(2) (2018), 269-277.
- [6] A. M. Blaga, A. Nannicini, On curvature tensors of Norden and metallic pseudo-Riemannian manifold, Complex manifolds, 6(1) (2019), 150-159.
- [7] A. M. Blaga, A. Nannicini, On the geometry of generalized metallic pseudo-Riemannian structures, Rivista di Matematica della Universita di Parma, 11(1) (2020), 69-87.
- C. Baikoussis, D.E. Blair, Finite type integral submanifold of the contact manifold $R^{2n+1}(-3)$. Bull. Ints. Math. Acad. Sincia. 19(4) (1991), 327-350.
- [9] A. Barros, J.N. Gomes, Jr.E. Ribeiro, Immersion of almost Ricci solitons into a Riemannian manifold. Mat. Contemp., 40 (2011), 91-102.
- [10] A. Barros, and Jr. E. Ribeiro, Some characterizations for compact almost Ricci solitons. Proc. Amer. Math. Soc. 140 (2012), 1033-1040.
- [11] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow Mathematical Journal, 42 (2000), 125-138.
- [12] B. Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, Leuven, 1990.
- [13] M. Crasmareanu, C. Hretcanu, Golden differential geometry, Chaos Solitons and Fractals, 38(5) (2008), 1229-1238.
- [14] G. Catino, Generalized quasi-Einstein manifolds with harmonic Weyl tensor. Math. Z. 271 (2012), 751–756.

- [15] G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, L. Mazzieri, The Ricci-Bourguignon flow. Pacific J. Math. 287 (2017), 337-370.
- [16] G. Catino, L. Mazzieri, Gradient Einstein solitons. Nonlinear Anal. 132 (2016), 66-94.
- [17] J. T. Cho, K. Kimura, Ricci solitons and Real hypersurfaces in a complex space form. Tohoku Math. J. 61 (2009), 205–212.
- [18] J. T. Cho, Almost contact 3-manifolds and Ricci solitons. Int. J. Geom. Methods Mod. Phys. 10(1) (2013), 1220022 (7 pages).
- [19] J. T. Cho, R. Sharma, Contact geometry and Ricci solitons. Int. J. Geom. Methods Mod. Phys. 7(6) (2010), 951–960.
- [20] M.A.Choudhary, A.M. Blaga, Generalized Wintgen inequality for slant submanifolds in metallic Riemannian space forms. J. Geom. 112(2), 26 (2021). https://doi.org/10.1007/s00022-021-00590-7.
- [21] M.A. Choudhary, K.S. Park, Optimization on slant submanifolds of golden Riemannian manifolds using generalized normalized δ-Casorati curvatures, J. Geom., 111(2) (2020), https://doi.org/10.1007/s00022-020-00544-5.
- [22] A. W. Cunha, E.L. de Lima, H.F. de Lima, r-Almost Newton-Ricci soliton immersed into a Riemannian manifold. J. Math. Anal. App. 464 (2018), 546–556.
- [23] H. Cao, D. Zhou, On complete gradient shrinking Ricci solitons. J. Differ. Geom. 85 (2010), 175-185.
- [24] A. Caminha, P. Sousa, F. Camargo, Complete foliations of space forms by hypersurfaces. Bull. Braz. Math. Soc. 41 (2010), 339–353.
 [25] H. Cao, Recent progress on Ricci solitons. Adv. Lect. Math. (ALM) 11 (2009), 1–38.
- [26] B. Chow, P. Lu, L. Ni., Hamilton's Ricci Flow, Grad. Stud. Math., AMS, Providence, 77 (2010).
- [27] U.C.De, M.D. Siddiqi, S.K. Chaubey, r-Almost Newton-Ricci solitons on Legendrian submanifolds of Sasakian space forms, Period Math Hung (2021). https://doi.org/10.1007/s10998-021-00394-x.
- [28] S. I. Goldberg, K. Yano, Polynomial structures on manifolds, Kodai Math. Sem. Rep., 22 (1970), 199-218.
- [29] I. V. Guadalupe, L. Rodriguez, Normal curvature of surfaces in space forms, Pacific J. Math., 106 (1983), 95-103.
- [30] C. E. Hretcanu, A. M. Blaga, Hemi-slant submanifolds in metallic Riemannian manifolds, Carpathian J. Math., 35(1) (2019), 59-68.
- [31] C. E. Hretcanu, A. M. Blaga, Slant and semi-slant submanifolds in metallic Riemannian manifolds, Journal of Function Spaces, (2018), Article ID 2864263, 13 pages.
- [32] C. E. Hretcanu, A. M. Blaga, Warped product pointwise bi-slant submanifolds in metallic Riemannian manifolds, arXiv:2002.10909v2.
- [33] C. E. Hretcanu, A. M. Blaga, Warped product submanifolds in metallic and Golden Riemannian manifolds, Tamkang J. Math., 51(3) (2020), 161-186.
- [34] C. Hretcanu, M. Crasmareanu, Applications of the golden ratio on Riemannian manifolds, Turkish J. Math., 33 (2009), 179-191.
- [35] C. Hretcanu, M. Crasmareanu, Metallic structures on Riemannian manifolds, Revista de la Union Matematica Argentina, 54 (2013), 15-27.
- [36] R.S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz. CA, 1986), Contemp. Math. 71 (Amer. Math. Soc., 1988), 237–262.
- [37] H.B. Lawson, Local rigidity theorems for minimal hypersurfaces. Ann. of Math. 89 (1969), 187–197.
- [38] P. Lounesto, Clifford Algebras and Spinors, Cambridge University Press, United Kingdom, 2001.
- [39] Y.G. Oh, Volume minimization of Lagrangian submanifolds under Hamiltonian deformations. Math. Zeit. 212 (1993), 175–192.
- [40] S. Pigola, M. Rigoli, M. Rimoldi, A. Setti, Ricci almost solitons. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), 757–799.
- [41] M.D. Siddiqi, Ricci ρ-soliton and geometrical structure in a dust fluid and viscous fluid spacetime. Bulg. J. Phys. 46 (2019), 163–173.
- [42] M.D. Siddiqi, Newton-Ricci-Bourguignon almost solitons on Lagraigian submanifolds of complex space form, Acta Universitatis Apulensis, 63(2020), 81-96.
- [43] M.D. Siddiqi, S. A. Siddiqui, S. K. Chaubey, r-Almost Newton-Yamabe solitons on Legendrian submanifolds of Sasakian space forms, Balkan Journal of Geometry and Its Applications, 26 (1),(2021), 93-105.
- [44] J. Simons, Minimal varieties in Riemannian manifolds. Ann. of Math. 88 (1968), 62–105.
- [45] W. Wylie, Complete shrinking Ricci solitons have finite fundamental group. Proc. Amer. Math. Soc. 136 (2008), 1803–1806.
- [46] H.W. Xu, J. Gu, Rigidity of Einstein manifolds with positive scalar curvature. Math. Ann., 358 (2014), 169–193.
- [47] K. Yano, M. Kon, Structures on manifolds. Series in Pure Mathematics Vol 3 (World Scientific, Singapore, 1984)
- [48] S.T. Yau, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J., 25 (1976), 659–670.