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Abstract. In this paper the intersection problem for a pair of kite-GDDs of type 4u is investigated. The
intersection problem for kite-GDDs is the determination of all pairs (T, s) such that there exists a pair of
kite-GDDs (X,H ,B1) and (X,H ,B2) of the same type T and |B1∩B2| = s. Let J(u) = {s : ∃ a pair of kite-GDDs
of type 4u intersecting in s blocks}; I(u) = {0, 1, . . . , bu − 2, bu}, where bu = 2u(u − 1) is the number of blocks
of a kite-GDD of type 4u. We show that for any positive integer u ≥ 3, J(u) = I(u).

1. Introduction

Let H = {H1,H2, . . . ,Hm} be a partition of a finite set X into subsets (called holes), where |Hi| = ni for
1 ≤ i ≤ m. Let Kn1,n2,...,nm be the complete multipartite graph on X with the i-th part on Hi, and G be a
subgraph of Kn1,n2,...,nm . A holey G-design is a triple (X,H ,B) such that (X,B) is a (Kn1,n2,...,nm ,G)-design. The
hole type (or type) of the holey G-design is {n1,n2, . . . ,nm}. We use an “exponential” notation to describe hole
types: the hole type 1u1

1 1
u2
2 · · · 1

ur
r denotes ui occurrences of 1i for 1 ≤ i ≤ r. Obviously if G is the complete

graph Kk, a holey Kk-design is just a k-GDD. A holey Kk-design with the hole type 1v is called a Steiner system
S(2, k, v). If G is the graph with vertices a, b, c, d and edges ab, ac, bc, cd (such a graph is called a kite) a holey
G-design is said to be a kite-GDD.

A pair of holey G-designs (X,H ,B1) and (X,H ,B2) of the same type is said to intersect in s blocks if
|B1 ∩ B2| = s. The intersection problem for S(2, k, v)’s was first introduced by Kramer and Mesner in [12].
The intersection problem for S(2, 4, v)’s was dealt with by Colbourn et al. [10], apart from three undecided
values for v = 25, 28 and 37. Chang et al. has completely solved the triangle intersection problem for
S(2, 4, v) designs and a pair of disjoint S(2, 4, v)s [7, 8]. Butler and Hoffman [2] completely solved the
intersection problem for 3-GDDs of type 1u. Zhang, Chang and Feng solved the intersection problem for
4-GDDs of type 3u [16] and the intersection problem for 4-GDDs of type 4u [17]. The intersection problem
is also considered for many other types of combinatorial structures. The interested reader may refer to
[1, 3–6, 9, 13–15]

In this paper we focus on the intersection problem for kite-GDDs. Let J(u) = {s : ∃ a pair of kite-GDD of
type 4u intersecting in s blocks}. Throughout this paper we always assume that I(u) = {0, 1, . . . , bu − 2, bu}

for u ≥ 3, where bu = 2u(u − 1) is the number of blocks of a kite-GDD of type 4u.
As the main result of the present paper, we are to prove the following theorem.
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Theorem 1.1. J(u) = I(u) for any integer u ≥ 3.

Obviously J(u) ⊆ I(u). We need to show that I(u) ⊆ J(u).

2. Basic design constructions

Construction 2.1. ([4])(Weighting Construction) Suppose that (X,G,A) is a K-GDD, and letω : X 7−→ Z+∪{0}
be a weight function. For every block A ∈ A, suppose that there is a pair of holey G-designs of type {ω(x) : x ∈ A},
which intersect in bA blocks. Then there exists a pair of holey G-designs of type {

∑
x∈H ω(x) : H ∈ G}, which intersect

in
∑

A∈A bA blocks.

Construction 2.2. (Filling Construction) Let m be nonnegative integers and 1i, a ≡ 0 (mod m) for 1 ≤ i ≤ s.
Suppose that there exists a pair of holey G-designs of type {11, 12, . . . , 1s}, which intersect in b blocks. If there is a
pair of holey G-designs of type m1i/ma1, which intersect in bi blocks for 1 ≤ i ≤ s − 1, and there is a pair of holey
G-designs of type m(1s+a)/m which intersect in bs blocks, then there exists a pair of holey G-designs of type m(

∑s
i=1 1i+a)/m

intersecting in b +
∑s

i=1 bi blocks.

Proof. Let (X,G,A) and (X,G,B) be two holey G-designs of type {11, 12, . . . , 1s} satisfying |A ∩ B| = b. Let
G = {G1,G2, . . . ,Gs}with |Gi| = 1i, 1 ≤ i ≤ s and Y be any given set of length a such that X∩Y = ∅. For 1 ≤ i ≤
s−1, construct a pair of holey G-designs (Gi∪Y,Gi∪{Y},Ci) and (Gi∪Y,Gi∪{Y},Di) of type m1i/ma1 satisfying
|Ci ∩ Di| = bi and construct a pair of holey G-designs (Gs ∪ Y,Gs,Cs) and (Gs ∪ Y,Gs,Ds) of type m(1s+a)/m

satisfying |Cs ∩Ds| = bs. Then (X∪Y, (
⋃s

i=1Gi)∪ {Y},A∪ (
⋃s

i=1 Ci)) and (X∪Y, (
⋃s

i=1Gi)∪ {Y},B∪ (
⋃s

i=1Di))
are two holey G-designs of type m(

∑s
i=1 1i+a)/m. Obviously, the two holey G-designs have b +

∑s
i=1 bi common

blocks.

We quote the following result for later use.

Lemma 2.3. [11]

(1) A 4-GDD of type 1u exists if and only if u ≥ 4, (u− 1)1 ≡ 0 (mod 3), and u(u− 1)12
≡ 0 (mod 12), with the

exception of (1,u) ∈ {(2, 4), (6, 4)}.

(2) A 3-GDD of type 1u exists if and only if u ≥ 3, (u − 1)1 ≡ 0 (mod 2), and u(u − 1)12
≡ 0 (mod 6).

Lemma 2.4. [18] There is a pair of kite-GDD of type 24 intersecting in s blocks, then s ∈ {0, . . . , 4, 6}.

3. Ingredients

Lemma 3.1. J(3) = I(3).

Proof. Take the vertex set X = {0, 1, . . . , 11} and G = {{0, 1, 2, 3}, {4, 5, 10, 11}, {6, 7, 8, 9}}. Let B1 = {[9, 3, 10 −
7], [8, 2, 10−6], [2, 4, 6−3], [6, 5, 1−10], [11, 7, 1−8], [0, 6, 11−8], [4, 8, 3−11], [5, 8, 0−10], [1, 4, 9−5], [7, 4, 0−
9], [3, 7, 5 − 2], [9, 11, 2 − 7]}. B2 = (B1 \ {[9, 3, 10 − 7], [8, 2, 10 − 6]}) ∪ {[9, 3, 10 − 6], [8, 2, 10 − 7]}, B3 =
(B1 \ {[9, 3, 10 − 7], [8, 2, 10 − 6], [2, 4, 6 − 3]}) ∪ {[9, 10, 3 − 6], [8, 2, 10 − 7], [2, 4, 6 − 10]}, B4 = (B2 \ {[6, 5, 1 −
10], [11, 7, 1−8]})∪{[6, 5, 1−8], [11, 7, 1−10]},B5 = (B3\{[6, 5, 1−10], [11, 7, 1−8]})∪{[6, 5, 1−8], [11, 7, 1−10]}.
Then (X,G,Bi) is a kite-GDD of type 43 for i = 1, 2, 3, 4, 5. Consider the following permutations on X.

π0 = (2 3)(4 11 5)(6 8 9 7), π1 = (0 1 2 3)(4 11)(6 7)(8 9), π2 = (0 3)(1 2)(4 5)(6 9 7)(10 11),
π3 = (6 8)(10 11), π4 = (0 2)(1 3)(4 5)(6 8)(10 11), π5 = (4 5),
π6 = (5 10), π7 = π8 = π9 = π10 = π12 = (1).

We have that for each s ∈ I(3) \ {7, 8, 9, 10}, |πsB1 ∩ B1| = s and πsG = G. For each s ∈ {7, 8, 9, 10},
|πsB12−s ∩ B1| = s and πsG = G.

Lemma 3.2. J(4) = I(4).



G. Zhang, Y. An / Filomat 37:7 (2023), 2227–2236 2229

Proof. Take the vertex set X = {0, 1, . . . , 15} and G = {{0, 1, 2, 15}, {3, 4, 13, 14}, {5, 6, 11, 12}, {7,
8, 9, 10}}. Let B1 = [14, 15, 7− 3], [6, 0, 7− 2], [5, 13, 7− 11], [4, 1, 7− 12], [10, 4, 11− 13], [2, 3, 11− 14], [9, 1, 11−
0], [4, 5, 15 − 3], [13, 6, 15 − 8], [12, 14, 8 − 11], [6, 1, 8 − 4], [12, 3, 10 − 0], [2, 12, 13 − 8], [0, 5, 14 − 1], [4, 2, 6 −
10], [5, 2, 10 − 14], [3, 6, 9 − 4], [9, 12, 15 − 11], [13, 0, 9 − 5], [1, 13, 10 − 15], [9, 2, 14 − 6], [0, 3, 8 − 2], [1, 3, 5 −
8], [0, 4, 12 − 1].

Table 1. The blocks of kite-GDD of type 44

i Ai Ci

1 [14,15,7-3],[6,0,7-2] [14,15,7-2],[6,0,7-3]
2 [14,15,7-3],[6,0,7-2],[5,13,7-11] [14,15,7-11],[6,0,7-3],[5,13,7-2]
3 [10,4,11-13],[2,3,11-14] [10,4,11-14],[2,3,11-13]
4 [4,5,15-3],[13,6,15-8] [4,5,15-8],[13,6,15-3]
5 [12,14,8-11],[6,1,8-4] [12,14,8-4],[6,1,8-11]

Then (X,G,Bi) is a kite-GDD of type 44 for i = 1, 2, . . . , 8, where B2 = (B1 \ A1) ∪ C1, B3 = (B1 \ A2) ∪ C2,
B4 = (B2 \ A3) ∪ C3, B5 = (B3 \ A3) ∪ C3, B6 = (B4 \ A4) ∪ C4, B7 = (B5 \ A4) ∪ C4, B8 = (B6 \ A5) ∪ C5.
Consider the following permutations on X.

π0 = (2 15)(3 14 4)(5 11 12 6)(7 8 10), π1 = (0 15)(1 2)(3 13 14 4)(5 12 6)(7 10 8 9),
π3 = (1 15)(4 14)(5 11 6), π2 = (3 14 4)(5 11 12)(8 9),
π4 = (2 15)(6 12)(8 10), π5 = (3 13)(5 12),
π8 = (1 15)(7 9), π6 = (3 14)(11 12),
π7 = (1 15)(8 9), π12 = (2 15),
π14 = (7 8), π13 = (8 10),
π11 = (3 13), π9 = (5 11 12),
π10 = (1 2), π15 = (7 9),
π16 = π17 = π18 = π19 = (1) π20 = π21 = π22 = π24 = (1).

We have that for each s ∈ I(4) \ {16, . . . , 22}, |πsB1 ∩ B1| = s and πsG = G. For each s ∈ {16, . . . , 22},
|πsB24−s ∩ B1| = s and πsG = G.

Lemma 3.3. J(5) = I(5).

Proof. Take the vertex set X = {0, 1, . . . , 19} and G = {{0, 1, 2, 3}, {4, 5, 18, 19}, {6, 7, 16, 17}, {8,
9, 14, 15}, {10, 11, 12, 13}}. Let

B1 : [0, 19, 10 − 6], [9, 1, 10 − 5], [2, 4, 10 − 14], [16, 18, 10 − 17], [5, 0, 7 − 1],
[14, 11, 7 − 10], [9, 4, 7 − 2], [17, 18, 8 − 2], [6, 1, 8 − 5], [11, 16, 8 − 13],
[0, 4, 8 − 12], [5, 16, 15 − 1], [17, 4, 15 − 2], [13, 4, 14 − 18], [8, 19, 7 − 3],
[5, 6, 14 − 19], [3, 4, 12 − 6], [0, 18, 9 − 6], [17, 19, 9 − 3], [16, 3, 14 − 1],
[13, 15, 6 − 2], [14, 12, 2 − 16], [9, 2, 11 − 5], [8, 3, 10 − 15], [6, 4, 11 − 0],
[3, 5, 13 − 18], [1, 19, 11 − 18], [19, 13, 2 − 18], [1, 12, 18 − 6], [16, 19, 12 − 7],
[16, 0, 13 − 9], [12, 0, 15 − 19], [12, 5, 9 − 16], [3, 19, 6 − 0], [2, 5, 17 − 3],
[0, 14, 17 − 12], [15, 7, 18 − 3], [1, 17, 13 − 7], [15, 3, 11 − 17], [4, 16, 1 − 5].

Table 1. The blocks of kite-GDD of type 45

i Ai Ci

1 [0,19,10-6],[9,1,10-5] [0,19,10-5],[9,1,10-6]
2 [5,0,7-1],[14,11,7-10],[9,4,7-2] [5,0,7-2],[14,11,7-1],[9,4,7-10]
3 [2,4,10-14],[16,18,10-17] [2,4,10-17],[16,18,10-14]
4 [17,18,8-2],[6,1,8-5] [17,18,8-5],[6,1,8-2]
5 [11,16,8-13],[0,4,8-12] [11,16,8-12],[0,4,8-13]
6 [5,16,15-1],[17,4,15-2] [5,16,15-2],[17,4,15-1]

Then (X,G,Bi) is a kite-GDD of type 45 for i = 1, 2, . . . , 10, whereB2 = (B1 \A1)∪C1, B3 = (B1 \A2)∪C2,
B4 = (B2 \ A3) ∪ C3, B5 = (B3 \ A3) ∪ C3, B6 = (B4 \ A4) ∪ C4, B7 = (B5 \ A4) ∪ C4, B8 = (B6 \ A5) ∪ C5,
B9 = (B7 \ A5) ∪ C5, B10 = (B8 \ A6) ∪ C6 Consider the following permutations on X.
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π0 = (2 3)(4 19 5)(6 16 17 7)(8 9 15)(10 12)(11 13), π1 = (0 1 3 2)(4 18 19 5)(7 17)(8 14)(10 12 11 13),
π2 = (0 2 1)(4 5)(6 17 16 7)(9 14)(11 13)(18 19), π3 = (4 18 5)(6 16 17)(11 13),
π4 = (0 1 3)(7 16)(8 15)(11 12), π5 = (5 18)(7 16)(8 9 14)(10 12),
π6 = (0 3)(6 17)(8 15)(10 12), π7 = (4 18 19)(8 9)(10 13),
π8 = (7 16 17)(9 15)(11 13), π9 = (8 15)(10 12 11 13),
π10 = (8 15 14)(10 12 13), π11 = (0 2)(7 16),
π12 = (4 19)(7 16), π13 = (9 14)(10 12 13),
π14 = (7 17)(8 15 9), π15 = (4 5)(9 15),
π16 = (4 19)(10 11), π17 = (7 16)(10 11),
π18 = (9 14)(10 13), π19 = (8 14)(10 12),
π20 = (11 13 12), π21 = (10 12 11),
π22 = (0 2), π23 = (4 19),
π24 = (18 19), π25 = (7 16),
π26 = (7 17), π27 = (8 14),
π28 = (8 15), π29 = (10 11),
π30 = π31 = π32 = π33 = π34 = (1), π35 = π36 = π37 = π38 = π40 = (1).

We have that for each s ∈ I(5) \ {30, . . . , 38}, |πsB1 ∩ B1| = s and πsG = G. For each s ∈ {30, . . . , 38},
|πsB40−s ∩ B1| = s and πsG = G.

4. Input designs

For counting J(u) for 6 ≤ u ≤ 14, we may search for a large number of instances of kite-GDDs. However,
to reduce the computation, when 6 ≤ u ≤ 14, we shall first determine the intersection numbers of a pair of
kite-GDDs of type amb1 with the same group set.

Lemma 4.1. Let M1 = {0, 1, . . . , 26, 36} and s ∈ M1. Then there is a pair of kite-GDDs of type 4381 with the same
group set, which intersect in s blocks.

Proof. Take the vertex set X = {0, 1, . . . , 19} and the group set G = {{8, 9, 18, 19}, {10, 11, 16, 17},
{12, 13, 14, 15}, {0, 1, . . . , 7}}. Let

B1 :, [19, 10, 0 − 16], [17, 18, 7 − 19], [15, 16, 6 − 19], [1, 11, 12 − 7], [9, 10, 2 − 17],
[8, 16, 7 − 14], [0, 18, 11 − 7], [17, 19, 5 − 16], [16, 4, 18 − 3], [15, 17, 3 − 19],
[16, 2, 14 − 0], [11, 2, 13 − 17], [12, 10, 3 − 8], [9, 4, 11 − 6], [10, 14, 8 − 0],
[9, 15, 7 − 13], [8, 6, 13 − 18], [1, 19, 13 − 0], [1, 18, 10 − 7], [17, 9, 0 − 15],
[18, 5, 15 − 1], [17, 4, 14 − 5], [16, 3, 13 − 4], [14, 19, 11 − 5], [10, 5, 13 − 9],
[12, 9, 6 − 17], [8, 15, 11 − 3], [19, 16, 12 − 5], [1, 17, 8 − 5], [2, 18, 12 − 0],
[19, 15, 2 − 8], [4, 8, 12 − 17], [15, 10, 4 − 19], [18, 14, 6 − 10], [1, 16, 9 − 5],
[3, 9, 14 − 1].

Then (X,G,B1) is a kite-GDD of type 4381. Consider the following permutations on X.

π0 = (0 3)(1 2)(8 9)(10 17 11)(18 19), π1 = (0 1 2 3)(8 18 19)(10 16 11 17),
π2 = (2 3)(8 19 9)(10 16 17 11), π3 = (1 2)(8 9 18)(10 17 11),
π4 = (0 1)(2 3)(8 9)(11 17), π5 = (0 3)(1 2)(10 16)(18 19),
π6 = (0 3)(8 9 19), π7 = (8 19 18)(11 16),
π8 = (0 2)(9 18 19), π9 = (2 3)(8 18 9),
π10 = (0 3 1 2)(10 11), π11 = (8 19)(11 16),
π12 = (0 3 1)(10 11), π13 = (0 3 2)(10 11),
π14 = (0 1 2)(10 11), π15 = (0 1 2 3),
π16 = (0 1)(10 11), π17 = (0 2)(10 11),
π18 = (16 17), π19 = (1 3 2),
π20 = (0 3 2), π21 = (11 16),
π22 = (10 11), π23 = (0 3),
π24 = (1 2), π25 = (2 3),
π26 = (0 2), π36 = (1).
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We have that for each s ∈M1, |πsB1 ∩ B1| = s and πsG = G.

Lemma 4.2. Let M2 = {0, 1, . . . , 35, 48} and s ∈ M2. Then there is a pair of kite-GDDs of type 43121 with the same
group set, which intersect in s blocks.

Proof. Take the vertex set X = {0, 1, . . . , 23} and the group set G = {{12, 13, 22, 23}, {14, 15, 20, 21},
{16, 17, 18, 19}, {0, 1, . . . , 11}}. Let

B1 : [0, 14, 23 − 5], [22, 11, 21 − 8], [20, 10, 19 − 0], [1, 16, 15 − 11], [13, 2, 14 − 8],
[11, 20, 12 − 8], [23, 9, 21 − 6], [22, 8, 20 − 0], [19, 7, 21 − 3], [18, 6, 20 − 1],

[17, 3, 15 − 10], [16, 5, 14 − 6], [13, 0, 15 − 9], [12, 1, 14 − 4], [11, 19, 13 − 10],

[10, 21, 12 − 7], [1, 23, 17 − 5], [0, 16, 22 − 7], [0, 21, 17 − 6], [23, 2, 20 − 5],

[22, 1, 19 − 6], [2, 18, 21 − 5], [20, 4, 17 − 9], [18, 4, 15 − 8], [16, 7, 13 − 6],

[15, 6, 12 − 5], [14, 11, 18 − 8], [12, 9, 16 − 8], [14, 7, 17 − 11], [15, 5, 19 − 8],

[20, 3, 16 − 2], [17, 10, 22 − 5], [22, 9, 18 − 7], [19, 3, 23 − 11], [1, 21, 13 − 4],

[2, 15, 22 − 6], [3, 14, 22 − 4], [4, 21, 16 − 11], [5, 18, 13 − 3], [6, 23, 16 − 10],

[7, 15, 23 − 4], [17, 13, 8 − 23], [9, 19, 14 − 10], [9, 13, 20 − 7], [12, 0, 18 − 3],

[4, 19, 12 − 3], [23, 10, 18 − 1], [17, 12, 2 − 19].

Then (X,G,B1) is a kite-GDD of type 43121. Consider the following permutations on X.

π0 = (12 13 22 23)(14 20 21)(16 18 17 19), π1 = (13 22)(14 20)(15 21)(16 18 19),
π2 = (14 21 15)(16 18 19 17)(22 23), π3 = (12 22 23)(15 21 20)(17 18 19),
π4 = (12 23)(13 22)(16 18)(20 21), π5 = (12 23 22)(17 19 18)(20 21),
π6 = (14 20)(16 19 18)(22 23), π7 = (13 23)(15 21 20)(18 19),
π8 = (2 7 9 5 10)(8 11), π9 = (0 10 11 2 5)(8 9),
π10 = (0 7 11 10 8 9 2), π11 = (0 8)(5 10 11 7),
π12 = (2 8)(5 11)(9 10), π13 = (2 10 8 11)(7 9),
π14 = (0 7 8 2 9 11), π15 = (0 9 7)(8 10 11),
π16 = (0 8 11 9 5), π17 = (2 10 11)(5 8),
π18 = (0 5 2 8 11), π19 = (0 11)(5 9),
π20 = (0 8 5 10), π21 = (2 11 5 10),
π22 = (0 2 5 7), π23 = (0 2)(8 9),
π24 = (0 9 7 2), π25 = (5 9 8),
π26 = (0 8 10), π27 = (0 10 5),
π28 = (2 9 10), π29 = (0 2 5),
π30 = (0 9 7), π31 = (5 11),
π32 = (5 10), π33 = (9 11),
π34 = (2 7), π35 = (2 9),
π48 = (1).

We have that for each s ∈M2, |πsB1 ∩ B1| = s and πsG = G.

Lemma 4.3. Let M3 = {0, 1, . . . , 53, 64} and s ∈ M3. Then there is a pair of kite-GDDs of type 82121 with the same
group set, which intersect in s blocks.

Proof. Take the vertex set X = {0, 1, . . . , 27} and the group set G = {{0, . . . , 11}, {12, . . . , 19},
{20, . . . , 27}}. Let
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B1 : [0, 27, 14 − 5], [0, 26, 13 − 4], [0, 25, 12 − 6], [24, 12, 1 − 26], [27, 15, 1 − 25]
[2, 14, 23 − 11], [19, 22, 3 − 26], [3, 21, 18 − 5], [2, 22, 18 − 1], [23, 19, 4 − 27],
[26, 17, 4 − 25], [25, 16, 5 − 26], [17, 24, 5 − 23], [6, 23, 15 − 5], [6, 22, 16 − 1],
[12, 27, 7 − 21], [13, 25, 7 − 15], [12, 21, 8 − 23], [13, 24, 8 − 22], [16, 21, 9 − 17],
[15, 22, 9 − 12], [14, 24, 10 − 23], [13, 20, 11 − 21], [14, 26, 11 − 22], [27, 19, 5 − 21],
[26, 6, 18 − 0], [25, 17, 8 − 16], [24, 16, 2 − 17], [25, 15, 10 − 21], [23, 18, 7 − 24],
[22, 17, 10 − 19], [21, 19, 2 − 13], [20, 18, 4 − 24], [20, 17, 6 − 27], [21, 17, 0 − 15],
[24, 0, 19 − 6], [16, 7, 20 − 0], [20, 15, 2 − 25], [20, 14, 3 − 25], [23, 17, 1 − 22],
[24, 18, 9 − 27], [23, 16, 0 − 22], [21, 15, 4 − 16], [25, 19, 9 − 26], [25, 18, 11 − 17],
[22, 14, 7 − 17], [26, 7, 19 − 1], [21, 14, 1 − 20], [22, 13, 5 − 20], [27, 18, 8 − 14],
[24, 15, 11 − 19], [16, 27, 11 − 12], [19, 8, 20 − 9], [13, 23, 9 − 14], [10, 27, 13 − 3],
[26, 16, 10 − 18], [21, 6, 13 − 1], [26, 12, 2 − 27], [8, 26, 15 − 3], [10, 20, 12 − 5],
[25, 14, 6 − 24], [12, 22, 4 − 14], [27, 17, 3 − 24], [12, 23, 3 − 16].

Then (X,G,B1) is a kite-GDD of type 82121. Consider the following permutations on X.

π0 = (0 10 8 4)(2 9 6 7 3)(5 11)(13 16 14)(18 19)(20 22 25)(24 27)
π1 = (0 2 3)(1 6 10 9 5)(4 11)(12 15 14 19 13 18 16 17)(20 22 24 26 23 21 27)
π2 = (0 11 5 3 1 7 2)(4 10)(12 17 13 14 19 16)(15 18)(20 25 22 21)(23 26 27)
π3 = (0 10 11 9 7 5 3 8)(1 4)(2 6)(12 14 13 19 17)(15 16 18)(20 22 23 27 24 21 26 25)
π4 = (0 7 10 3 11 6)(1 5 8 2 4)(12 13 15 16 14 17 18 19)(20 22 27 26)(21 23 24)
π5 = (1 11 4 3 7 2 9)(14 16 17)(20 21)
π6 = (0 2 9 10)(1 3 6)(8 11)(12 16 14)(13 19 18 15 17)(20 21 23)(22 27 24)

π7 = (2 4 3 5)(12 15 14 13)(24 25 27 26) π8 = (4 5)(12 13 14 15)(24 26)(25 27)
π9 = (2 3 4 5)(12 14 15)(24 26 25 27), π10 = (2 5)(3 4)(12 13)(14 15)(24 27 25)
π11 = (4 5)(12 15 13)(24 26 27 25) π12 = (2 5)(13 15)(24 25 26 27)
π13 = (2 5 3 4)(13 14 15)(26 27) π14 = (2 5 4)(12 15 13 14)(24 27)
π15 = (2 3 5)(12 13)(24 25 27) π16 = (2 5)(3 4)(14 15)(24 26)
π17 = (2 3 4 5)(12 14 13 15) π18 = (3 5 4)(12 15 13)(24 27)
π19 = (2 5 4 3)(24 25 26) π20 = (3 5)(24 26 27 25)
π21 = (2 5)(14 15)(24 25) π22 = (2 4)(12 15)(24 26)
π23 = (2 5)(12 14)(24 27) π24 = (3 5 4)(12 15)(25 27)
π25 = (12 15 14)(25 26) π26 = (2 3 5 4)(26 27)
π27 = (2 5 3)(24 25) π28 = (12 15)(13 14)
π29 = (2 5)(12 13 15) π30 = (2 4)(13 14 15)
π31 = (3 4 5)(13 14) π32 = (12 15)(25 26)
π33 = (4 5)(14 15) π34 = (2 5)(12 14)
π35 = (3 5)(12 15) π36 = (2 3)(12 13)
π37 = (3 4)(13 15) π38 = (2 3 4 5)
π39 = (3 4 9 7) π40 = (22 25)
π41 = (26 27) π42 = (24 27)
π43 = (25 26) π44 = (2 5 4)
π45 = (2 4 3) π46 = (13 15)
π47 = (7 9 8) π48 = (0 1)
π49 = (0 3) π50 = (0 2)
π51 = (1 2) π52 = (4 7)
π53 = (8 9) π64 = (1).

We have that for each s ∈M3, |πsB1 ∩ B1| = s and πsG = G.

5. For 6 ≤ u ≤ 14

Lemma 5.1. J(6) = I(6).
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Proof. Take the same set M2 as in Lemma 4.2. Let α ∈ M2. Then there is a pair of kite-GDDs of type
43121 (X,B1) and (X,B2) with the same group set, which intersect in α blocks. Here the subgraph K12 is
constructed on Y ⊂ X. Let β ∈ I(3), By Lemma 3.1, there is a pair of kite-GDDs of type 43 (Y,B′1) and (Y,B′2)
intersecting in β common blocks. Then (X,B1 ∪B

′

1) and (X,B2 ∪B
′

2) are a pair of kite-GDDs of type 46 with
α + β common blocks. Thus we have

J(6) ⊇ {α + β : α ∈M2, β ∈ I(3)} =M2 + I(3) = I(6).

Lemma 5.2. J(8) = I(8).

Proof. Take the same set M3 as in Lemma 4.3. Let α ∈ M3. Then there is a pair of kite-GDDs of type 82121

with the same group set, which intersect in α blocks. Let γ1, γ2 ∈ I(3). By Lemma 3.1, there is a pair of
kite-GDDs of type 43 intersecting in γi common blocks for each i = 1, 2. Let γ3 ∈ I(4). By Lemma 3.2, there
is a pair of kite-GDDs of type 44 with γ3 common blocks. Now applying Construction 2.2, we obtain a pair
of kite-GDDs of type 48 with α +

∑3
i=1 γi common blocks. Thus we have

J(8) ⊇ {α +
3∑

i=1

γi : α ∈M3, γ1, γ2 ∈ I(3), γ3 ∈ I(4)} = I(8).

Lemma 5.3. J(u) = I(u) for u = 7, 10, 13.

Proof. Start from a 4-GDD of type 2u, u = 7, 10, 13, by Lemma 2.3. Give each point of the GDD weight 2.
By Lemma 2.4, there is a pair of kite-GDDs of type 24 with α common blocks, α ∈ {0, . . . , 4, 6}. Then apply
Construction 2.1 to obtain a pair of kite-GDDs of type 4u with

∑b
i=1 αi common blocks, where b = u(u− 1)/3

is the number of blocks of the 4-GDD of type 2u and αi ∈ {0, . . . , 4, 6} for 1 ≤ i ≤ b. Which implies, for
u = 7, 10, 13

J(u) ⊇ {
b∑

i=1

αi : αi ∈ {0, . . . , 4, 6}, 1 ≤ i ≤ b} = b ∗ {0, . . . , 4, 6} = I(u).

Lemma 5.4. J(u) = I(u) for u = 9, 11.

Proof. Start from a 3-GDD of type 33 by Lemma 2.3. Give each point of the GDD weight 4. By Lemma 3.1,
there is a pair of kite-GDDs of type 43 with α common blocks, α ∈ I(3). Then apply Construction 2.1 to
obtain a pair of kite-GDDs of type 123 with

∑9
i=1 αi common blocks, where b = 9 is the number of blocks of

the 3-GDD of type 33 and αi ∈ I(3) for 1 ≤ i ≤ 9.
Let u = 9. By Lemma 3.1, there is a pair of kite-GDDs of type 43 with β j common blocks, where β j ∈ I(3),

1 ≤ j ≤ 3. By Construction 2.2, we have a pair of kite-GDDs of type 49 with
∑9

i=1 αi+
∑3

j=1 β j common blocks,
which implies

J(9) ⊇ {
9∑

i=1

αi +

3∑
j=1

β j : αi ∈ I(3), β j ∈ I(3), 1 ≤ i ≤ 9, 1 ≤ j ≤ 3}

= 9 ∗ {0, . . . , 10, 12} + 3 ∗ {0, . . . , 10, 12} = I(9).

Let u = 11. By Lemma 4.1, there is a pair of kite-GDDs of type 4381 with β j common blocks, where
β j ∈ M1, 1 ≤ j ≤ 2. By Lemma 3.3, there is a pair of kite-GDDs of type 45 with γ common blocks. By
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Construction 2.2, we have a pair of kite-GDDs of type 411 with
∑9

i=1 αi +
∑2

j=1 β j + γ common blocks, which
implies

J(11) ⊇ {
9∑

i=1

αi +

2∑
j=1

β j + γ : αi ∈ I(3), β j ∈M1, γ ∈ I(5), 1 ≤ i ≤ 9, 1 ≤ j ≤ 2}

= 9 ∗ {0, . . . , 10, 12} + 2 ∗ {0, . . . , 24, 36} + {0, . . . , 38, 40} = I(11).

Lemma 5.5. J(u) = I(u) for u = 12, 14.

Proof. Start from a 4-GDD of type 34 by Lemma 2.3. Give each point of the GDD weight 4. By Lemma 3.2,
there is a pair of kite-GDDs of type 44 with α common blocks, α ∈ I(4). Then apply Construction 2.1 to
obtain a pair of kite-GDDs of type 124 with

∑9
i=1 αi common blocks, where b = 9 is the number of blocks of

the 4-GDD of type 34 and αi ∈ I(4) for 1 ≤ i ≤ 9.
Let u = 12. By Lemma 3.1, there is a pair of kite-GDDs of type 43 with β j common blocks, where β j ∈ I(3),

1 ≤ j ≤ 4. By Construction 2.2, we have a pair of kite-GDDs of type 412 with
∑9

i=1 αi +
∑4

j=1 β j common
blocks, which implies

J(12) ⊇ {
9∑

i=1

αi +

4∑
j=1

β j : αi ∈ I(4), β j ∈ I(3), 1 ≤ i ≤ 9, 1 ≤ j ≤ 4}

= 9 ∗ {0, . . . , 22, 24} + 4 ∗ {0, . . . , 10, 12} = I(12).

Let u = 14. By Lemma 4.1, there is a pair of kite-GDDs of type 4381 with β j common blocks, where
β j ∈ M1, 1 ≤ j ≤ 3. By Lemma 3.3, there is a pair of kite-GDDs of type 45 with γ common blocks, where
γ ∈ I(5). By Construction 2.2, we have a pair of kite-GDDs of type 414 with

∑9
i=1 αi +

∑3
j=1 β j + γ common

blocks, which implies

J(14) ⊇ {
9∑

i=1

αi +

3∑
j=1

β j + γ : αi ∈ I(4), β j ∈M1, γ ∈ I(5), 1 ≤ i ≤ 9, 1 ≤ j ≤ 3}

= 9 ∗ {0, . . . , 22, 24} + 3 ∗ {0, . . . , 24, 36} + {0, . . . , 38, 40} = I(14).

6. Proof of Theorem 1.1

First we need the following definition. Let s1 and s2 be two non-negative integers. If X and Y are
two sets of pairs of non-negative integers, then X + Y denotes the set {s1 + s2 : s1 ∈ X, s2 ∈ Y}. If X is a
set of pairs of non-negative integers and h is some positive integer, then h ∗ X denotes the set of all pairs
of non-negative integers which can be obtained by adding any h elements of X together (repetitions of
elements of X allowed).

Lemma 6.1. For any integer u ≡ 0 (mod 3) and u ≥ 15, J(u) = I(u).

Proof. Let u = 3t and t ≥ 5. Start from a 4-GDD of type 6t by Lemma 2.3. Give each point of the GDD
weight 2. By Lemma 2.4, there is a pair of kite-GDDs of type 24 with α common blocks, α ∈ {0, . . . , 4, 6}.
Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 12t with

∑b
i=1 αi common blocks, where

b = 3t(t − 1) is the number of blocks of the 4-GDD of type 6t and αi ∈ {0, . . . , 4, 6} for 1 ≤ i ≤ b.
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By Lemma 3.1, there is a pair of kite-GDDs of type 43 with β j common blocks, where β j ∈ I(3), 1 ≤ j ≤ t.
By Construction 2.2, we have a pair of kite-GDDs of type 43t with

∑b
i=1 αi +

∑t
j=1 β j common blocks, which

implies

J(u) = J(3t) ⊇ {
b∑

i=1

αi +

t∑
j=1

β j : αi ∈ {0, . . . , 4, 6}, β j ∈ I(3), 1 ≤ i ≤ b, 1 ≤ j ≤ t}

= b ∗ {0, . . . , 4, 6} + t ∗ {0, . . . , 10, 12}
= I(3t) = I(u).

Lemma 6.2. For any integer u ≡ 1 (mod 3) and u ≥ 16, J(u) = I(u).

Proof. Let u = 3t + 1 and t ≥ 5. Start from a 4-GDD of type 6t by Lemma 2.3. Give each point of the GDD
weight 2. By Lemma 2.4, there is a pair of kite-GDDs of type 24 with α common blocks, α ∈ {0, . . . , 4, 6}.
Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 12t with

∑b
i=1 αi common blocks, where

b = 3t(t − 1) is the number of blocks of the 4-GDD of type 6t and αi ∈ {0, . . . , 4, 6} for 1 ≤ i ≤ b.
By Lemma 3.2, there is a pair of kite-GDDs of type 44 with β j common blocks, where β j ∈ I(4), 1 ≤ j ≤ t.

By Construction 2.2, we have a pair of kite-GDDs of type 43t+1 with
∑b

i=1 αi +
∑t

j=1 β j common blocks, which
implies

J(u) = J(3t + 1) ⊇ {
b∑

i=1

αi +

t∑
j=1

β j : αi ∈ {0, . . . , 4, 6}, β j ∈ I(4), 1 ≤ i ≤ b, 1 ≤ j ≤ t}

= b ∗ {0, . . . , 4, 6} + t ∗ {0, . . . , 22, 24}
= I(3t + 1) = I(u).

Lemma 6.3. For any integer u ≡ 2 (mod 3) and u ≥ 17, J(u) = I(u).

Proof. Let u = 3t + 2 and t ≥ 5. Start from a 4-GDD of type 6t by Lemma 2.3. Give each point of the GDD
weight 2. By Lemma 2.4, there is a pair of kite-GDDs of type 24 with α common blocks, α ∈ {0, . . . , 4, 6}.
Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 12t with

∑b
i=1 αi common blocks, where

b = 3t(t − 1) is the number of blocks of the 4-GDD of type 6t and αi ∈ {0, . . . , 4, 6} for 1 ≤ i ≤ b.
By Lemma 4.1, there is a pair of kite-GDDs of type 4381 with β j common blocks, where β j ∈ M1,

1 ≤ j ≤ t − 1. By Lemma 3.3, there is a pair of kite-GDDs of type 45 with γ common blocks, where γ ∈ I5.
By Construction 2.2, we have a pair of kite-GDDs of type 43t+2 with

∑b
i=1 αi +

∑t−1
j=1 β j + γ common blocks,

which implies

J(u) = J(3t + 2) ⊇ {
b∑

i=1

αi +

t−1∑
j=1

β j + γ : αi ∈ {0, . . . , 4, 6}, β j ∈M1, γ ∈ I5, 1 ≤ i ≤ b, 1 ≤ j ≤ t}

= b ∗ {0, . . . , 4, 6} + (t − 1) ∗ {0, . . . , 24, 36} + {0, . . . , 38, 40}
= I(3t + 2) = I(u).

Proof of Theorem 1.1: When u ∈ {3, 4, . . . , 14}, the conclusion follows from Lemmas 3.1-3.3, and Lemmas
5.1-5.5. When u ≥ 15, combining the results of Lemmas 6.1-6.3, we complete the proof.
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