Filomat 37:7 (2023), 2227–2236 https://doi.org/10.2298/FIL2307227Z

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

The intersection problem for kite-GDDs

Guizhi Zhang^a, Yonghong An^b

^a School of Mathematics and Statistics, Hulunbuir University, Hulunbuir 021008, P. R. China ^bCollege of Continuing Education, Hulunbuir University, Hulunbuir 021008, P. R. China

Abstract. In this paper the intersection problem for a pair of kite-GDDs of type 4^u is investigated. The intersection problem for kite-GDDs is the determination of all pairs (T, s) such that there exists a pair of kite-GDDs $(X, \mathcal{H}, \mathcal{B}_1)$ and $(X, \mathcal{H}, \mathcal{B}_2)$ of the same type T and $|\mathcal{B}_1 \cap \mathcal{B}_2| = s$. Let $J(u) = \{s : \exists a \text{ pair of kite-GDDs} \text{ of type } 4^u \text{ intersecting in } s \text{ blocks}\}$; $I(u) = \{0, 1, \dots, b_u - 2, b_u\}$, where $b_u = 2u(u - 1)$ is the number of blocks of a kite-GDD of type 4^u . We show that for any positive integer $u \ge 3$, J(u) = I(u).

1. Introduction

Let $\mathcal{H} = \{H_1, H_2, \dots, H_m\}$ be a partition of a finite set X into subsets (called *holes*), where $|H_i| = n_i$ for $1 \le i \le m$. Let K_{n_1,n_2,\dots,n_m} be the complete multipartite graph on X with the *i*-th part on H_i , and G be a subgraph of K_{n_1,n_2,\dots,n_m} . A *holey* G-design is a triple $(X, \mathcal{H}, \mathcal{B})$ such that (X, \mathcal{B}) is a $(K_{n_1,n_2,\dots,n_m}, G)$ -design. The *hole type* (or *type*) of the holey G-design is $\{n_1, n_2, \dots, n_m\}$. We use an "exponential" notation to describe hole types: the hole type $g_1^{u_1}g_2^{u_2}\cdots g_r^{u_r}$ denotes u_i occurrences of g_i for $1 \le i \le r$. Obviously if G is the complete graph K_k , a holey K_k -design is just a k-GDD. A holey K_k -design with the hole type 1^v is called a *Steiner system* S(2, k, v). If G is the graph with vertices a, b, c, d and edges ab, ac, bc, cd (such a graph is called a kite) a holey G-design is said to be a *kite-GDD*.

A pair of holey *G*-designs $(X, \mathcal{H}, \mathcal{B}_1)$ and $(X, \mathcal{H}, \mathcal{B}_2)$ of the same type is said to *intersect in s blocks* if $|\mathcal{B}_1 \cap \mathcal{B}_2| = s$. The intersection problem for S(2, k, v)'s was first introduced by Kramer and Mesner in [12]. The intersection problem for S(2, 4, v)'s was dealt with by Colbourn et al. [10], apart from three undecided values for v = 25, 28 and 37. Chang et al. has completely solved the triangle intersection problem for S(2, 4, v) designs and a pair of disjoint S(2, 4, v)s [7, 8]. Butler and Hoffman [2] completely solved the intersection problem for 4-GDDs of type 3^u [16] and the intersection problem for 4-GDDs of type 4^u [17]. The intersection problem is also considered for many other types of combinatorial structures. The interested reader may refer to [1, 3–6, 9, 13–15]

In this paper we focus on the intersection problem for kite-GDDs. Let $J(u) = \{s : \exists a \text{ pair of kite-GDD of type } 4^u \text{ intersecting in } s \text{ blocks}\}$. Throughout this paper we always assume that $I(u) = \{0, 1, \dots, b_u - 2, b_u\}$ for $u \ge 3$, where $b_u = 2u(u - 1)$ is the number of blocks of a kite-GDD of type 4^u .

As the main result of the present paper, we are to prove the following theorem.

²⁰²⁰ Mathematics Subject Classification. Primary 05B05; Secondary 05B30; 05C51

Keywords. kite-GDD; group divisible design; intersection number

Received: 03 March 2022; Revised: 10 June 2022; Accepted: 28 June 2022

Communicated by Paola Bonacini

Supported by the National Natural Science Foundation of China (Grant No. 11601137; 12261032) and the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region (Grant Nos. NJZZ21052).

Email addresses: zgz_hlbr@163.com (Guizhi Zhang), anyh1979@126.com (Yonghong An)

Theorem 1.1. J(u) = I(u) for any integer $u \ge 3$.

Obviously $J(u) \subseteq I(u)$. We need to show that $I(u) \subseteq J(u)$.

2. Basic design constructions

Construction 2.1. ([4])(Weighting Construction) Suppose that $(X, \mathcal{G}, \mathcal{A})$ is a K-GDD, and let $\omega : X \mapsto Z^+ \cup \{0\}$ be a weight function. For every block $A \in \mathcal{A}$, suppose that there is a pair of holey G-designs of type $\{\omega(x) : x \in A\}$, which intersect in b_A blocks. Then there exists a pair of holey G-designs of type $\{\sum_{x \in H} \omega(x) : H \in \mathcal{G}\}$, which intersect in $\sum_{A \in \mathcal{A}} b_A$ blocks.

Construction 2.2. (Filling Construction) Let *m* be nonnegative integers and $g_i, a \equiv 0 \pmod{m}$ for $1 \le i \le s$. Suppose that there exists a pair of holey G-designs of type $\{g_1, g_2, \ldots, g_s\}$, which intersect in *b* blocks. If there is a pair of holey G-designs of type $m^{g_i/m}a^1$, which intersect in b_i blocks for $1 \le i \le s - 1$, and there is a pair of holey G-designs of type $m^{(g_s+a)/m}$ which intersect in b_s blocks, then there exists a pair of holey G-designs of type $m^{(\sum_{i=1}^s g_i+a)/m}$ intersecting in $b + \sum_{i=1}^s b_i$ blocks.

Proof. Let $(X, \mathcal{G}, \mathcal{A})$ and $(X, \mathcal{G}, \mathcal{B})$ be two holey *G*-designs of type $\{g_1, g_2, \ldots, g_s\}$ satisfying $|\mathcal{A} \cap \mathcal{B}| = b$. Let $\mathcal{G} = \{G_1, G_2, \ldots, G_s\}$ with $|G_i| = g_i, 1 \le i \le s$ and *Y* be any given set of length *a* such that $X \cap Y = \emptyset$. For $1 \le i \le s-1$, construct a pair of holey *G*-designs $(G_i \cup Y, \mathcal{G}_i \cup \{Y\}, C_i)$ and $(G_i \cup Y, \mathcal{G}_i \cup \{Y\}, \mathcal{D}_i)$ of type $m^{g_i/m}a^1$ satisfying $|C_i \cap \mathcal{D}_i| = b_i$ and construct a pair of holey *G*-designs $(G_s \cup Y, \mathcal{G}_s, C_s)$ and $(G_s \cup Y, \mathcal{G}_s, \mathcal{D}_s)$ of type $m^{(g_s+a)/m}$ satisfying $|C_s \cap \mathcal{D}_s| = b_s$. Then $(X \cup Y, (\bigcup_{i=1}^s \mathcal{G}_i) \cup \{Y\}, \mathcal{A} \cup (\bigcup_{i=1}^s C_i))$ and $(X \cup Y, (\bigcup_{i=1}^s \mathcal{G}_i) \cup \{Y\}, \mathcal{B} \cup (\bigcup_{i=1}^s \mathcal{D}_i)))$ are two holey *G*-designs of type $m^{(\sum_{i=1}^s g_i+a)/m}$. Obviously, the two holey *G*-designs have $b + \sum_{i=1}^s b_i$ common blocks.

We quote the following result for later use.

Lemma 2.3. [11]

(1) *A* 4-GDD of type g^u exists if and only if $u \ge 4$, $(u - 1)g \equiv 0 \pmod{3}$, and $u(u - 1)g^2 \equiv 0 \pmod{12}$, with the exception of $(g, u) \in \{(2, 4), (6, 4)\}$.

(2) A 3-GDD of type g^u exists if and only if $u \ge 3$, $(u - 1)g \equiv 0 \pmod{2}$, and $u(u - 1)g^2 \equiv 0 \pmod{6}$.

Lemma 2.4. [18] There is a pair of kite-GDD of type 2^4 intersecting in s blocks, then $s \in \{0, ..., 4, 6\}$.

3. Ingredients

Lemma 3.1. J(3) = I(3).

Proof. Take the vertex set $X = \{0, 1, ..., 11\}$ and $\mathcal{G} = \{\{0, 1, 2, 3\}, \{4, 5, 10, 11\}, \{6, 7, 8, 9\}\}$. Let $\mathcal{B}_1 = \{[9, 3, 10 - 7], [8, 2, 10 - 6], [2, 4, 6 - 3], [6, 5, 1 - 10], [11, 7, 1 - 8], [0, 6, 11 - 8], [4, 8, 3 - 11], [5, 8, 0 - 10], [1, 4, 9 - 5], [7, 4, 0 - 9], [3, 7, 5 - 2], [9, 11, 2 - 7]\}$. $\mathcal{B}_2 = (\mathcal{B}_1 \setminus \{[9, 3, 10 - 7], [8, 2, 10 - 6]\}) \cup \{[9, 3, 10 - 6], [8, 2, 10 - 7]\}, \mathcal{B}_3 = (\mathcal{B}_1 \setminus \{[9, 3, 10 - 7], [8, 2, 10 - 6]\}) \cup \{[9, 3, 10 - 6], [8, 2, 10 - 7]\}, \mathcal{B}_3 = (\mathcal{B}_1 \setminus \{[9, 3, 10 - 7], [8, 2, 10 - 6], [2, 4, 6 - 3]\}\}) \cup \{[6, 5, 1 - 8], [11, 7, 1 - 10]\}, \mathcal{B}_5 = (\mathcal{B}_3 \setminus \{[6, 5, 1 - 10], [11, 7, 1 - 8]\}) \cup \{[6, 5, 1 - 8], [11, 7, 1 - 10]\}$. Then $(X, \mathcal{G}, \mathcal{B}_i)$ is a kite-GDD of type 4^3 for i = 1, 2, 3, 4, 5. Consider the following permutations on X.

 $\begin{array}{ll} \pi_0 = (2\ 3)(4\ 11\ 5)(6\ 8\ 9\ 7), & \pi_1 = (0\ 1\ 2\ 3)(4\ 11)(6\ 7)(8\ 9), & \pi_2 = (0\ 3)(1\ 2)(4\ 5)(6\ 9\ 7)(10\ 11), \\ \pi_3 = (6\ 8)(10\ 11), & \pi_4 = (0\ 2)(1\ 3)(4\ 5)(6\ 8)(10\ 11), & \pi_5 = (4\ 5), \\ \pi_6 = (5\ 10), & \pi_7 = \pi_8 = \pi_9 = \pi_{10} = \pi_{12} = (1). \end{array}$

We have that for each $s \in I(3) \setminus \{7, 8, 9, 10\}$, $|\pi_s \mathcal{B}_1 \cap \mathcal{B}_1| = s$ and $\pi_s \mathcal{G} = \mathcal{G}$. For each $s \in \{7, 8, 9, 10\}$, $|\pi_s \mathcal{B}_{12-s} \cap \mathcal{B}_1| = s$ and $\pi_s \mathcal{G} = \mathcal{G}$. \Box

Lemma 3.2. J(4) = I(4).

Proof. Take the vertex set $X = \{0, 1, ..., 15\}$ and $\mathcal{G} = \{\{0, 1, 2, 15\}, \{3, 4, 13, 14\}, \{5, 6, 11, 12\}, \{7, 8, 9, 10\}\}$. Let $\mathcal{B}_1 = [14, 15, 7-3], [6, 0, 7-2], [5, 13, 7-11], [4, 1, 7-12], [10, 4, 11-13], [2, 3, 11-14], [9, 1, 11-0], [4, 5, 15-3], [13, 6, 15-8], [12, 14, 8-11], [6, 1, 8-4], [12, 3, 10-0], [2, 12, 13-8], [0, 5, 14-1], [4, 2, 6-10], [5, 2, 10-14], [3, 6, 9-4], [9, 12, 15-11], [13, 0, 9-5], [1, 13, 10-15], [9, 2, 14-6], [0, 3, 8-2], [1, 3, 5-8], [0, 4, 12-1].$

Table 1. The blocks of kite-GDD of type 4^4

		, <u>,</u>
i	A_i	C_i
1	[14,15,7-3],[6,0,7-2]	[14,15,7-2],[6,0,7-3]
2	[14,15,7-3],[6,0,7-2],[5,13,7-11]	[14,15,7-11],[6,0,7-3],[5,13,7-2]
3	[10,4,11-13],[2,3,11-14]	[10,4,11-14],[2,3,11-13]
4	[4,5,15-3],[13,6,15-8]	[4,5,15-8],[13,6,15-3]
5	[12,14,8-11],[6,1,8-4]	[12,14,8-4],[6,1,8-11]

Then $(X, \mathcal{G}, \mathcal{B}_i)$ is a kite-GDD of type 4⁴ for i = 1, 2, ..., 8, where $\mathcal{B}_2 = (\mathcal{B}_1 \setminus A_1) \cup C_1$, $\mathcal{B}_3 = (\mathcal{B}_1 \setminus A_2) \cup C_2$, $\mathcal{B}_4 = (\mathcal{B}_2 \setminus A_3) \cup C_3$, $\mathcal{B}_5 = (\mathcal{B}_3 \setminus A_3) \cup C_3$, $\mathcal{B}_6 = (\mathcal{B}_4 \setminus A_4) \cup C_4$, $\mathcal{B}_7 = (\mathcal{B}_5 \setminus A_4) \cup C_4$, $\mathcal{B}_8 = (\mathcal{B}_6 \setminus A_5) \cup C_5$. Consider the following permutations on *X*.

$\pi_0 = (215)(3144)(511126)(7810),$	$\pi_1 = (015)(12)(313144)(5126)(71089)$
$\pi_3 = (115)(414)(5116),$	$\pi_2 = (3144)(51112)(89),$
$\pi_4 = (215)(612)(810),$	$\pi_5 = (313)(512),$
$\pi_8 = (115)(79),$	$\pi_6 = (314)(1112),$
$\pi_7 = (115)(89),$	$\pi_{12} = (215),$
$\pi_{14} = (78),$	$\pi_{13} = (810),$
$\pi_{11} = (313),$	$\pi_9 = (51112),$
$\pi_{10} = (12),$	$\pi_{15} = (79),$
$\pi_{16} = \pi_{17} = \pi_{18} = \pi_{19} = (1)$	$\pi_{20} = \pi_{21} = \pi_{22} = \pi_{24} = (1).$

We have that for each $s \in I(4) \setminus \{16, \ldots, 22\}$, $|\pi_s \mathcal{B}_1 \cap \mathcal{B}_1| = s$ and $\pi_s \mathcal{G} = \mathcal{G}$. For each $s \in \{16, \ldots, 22\}$, $|\pi_s \mathcal{B}_{24-s} \cap \mathcal{B}_1| = s$ and $\pi_s \mathcal{G} = \mathcal{G}$. \Box

Lemma 3.3. J(5) = I(5).

6

Proof. Take the vertex set $X = \{0, 1, ..., 19\}$ and $\mathcal{G} = \{\{0, 1, 2, 3\}, \{4, 5, 18, 19\}, \{6, 7, 16, 17\}, \{8, 9, 14, 15\}, \{10, 11, 12, 13\}\}$. Let

[5,16,15-1],[17,4,15-2]

\mathcal{B}_1 :	[0,19,10 -	· 6],	[9, 1, 10 – 5],	[2,4,10) – 14],	[16, 18, 10 - 12	7], [5	,0,7-1],
	[14, 11, 7 -	· 10],	[9,4,7-2],	[17, 18,	8-2],	[6,1,8-5],	[1	1,16,8-13],
	[0, 4, 8 - 12]	2],	[5, 16, 15 – 1],	[17,4,1	15 – 2],	[13, 4, 14 - 18]], [8	,19,7 – 3],
	[5,6,14 - 3	19],	[3, 4, 12 – 6],	[0, 18, 9	9 – 6],	[17, 19, 9 - 3],	[1	6,3,14 – 1],
	[13, 15, 6 -	· 2],	[14, 12, 2 – 16],	[9,2,1]	l – 5],	[8, 3, 10 - 15],	[6	,4,11 – 0],
	[3,5,13 - 3	18],	[1, 19, 11 – 18],	[19, 13,	2 – 18],	[1, 12, 18 - 6],	[1	6,19,12-7],
	[16,0,13-	· 9],	[12, 0, 15 – 19],	[12, 5, 9	9 – 16],	[3, 19, 6 – 0],	[2	, 5, 17 – 3],
	[0,14,17 -	· 12],	[15,7,18-3],	[1,17,1	l3 – 7],	[15, 3, 11 - 17]], [4	, 16, 1 – 5].
			Table 1. The bl	ocks of l	cite-GDD	of type 4 ⁵		
	i		A_i			C_i		
	1		0,19,10-6],[9,1,10	-5]	[0,1	9,10-5],[9,1,10-6	6]	
	2	[5,0,2	7-1],[14,11,7-10],[9	9,4,7-2]	[5,0,7-2]	,[14,11,7-1],[9,4	,7-10]	
	3	[2	,4,10-14],[16,18,10)-17]	[2,4,1	0-17],[16,18,10-	14]	
	4		[17,18,8-2],[6,1,8-	5]	[17]	,18,8-5],[6,1,8-2]	
	5	[11,16,8-13],[0,4,8-	12]	[11,1	6,8-12],[0,4,8-1	3]	

Then $(X, \mathcal{G}, \mathcal{B}_i)$ is a kite-GDD of type 4^5 for i = 1, 2, ..., 10, where $\mathcal{B}_2 = (\mathcal{B}_1 \setminus A_1) \cup C_1$, $\mathcal{B}_3 = (\mathcal{B}_1 \setminus A_2) \cup C_2$, $\mathcal{B}_4 = (\mathcal{B}_2 \setminus A_3) \cup C_3$, $\mathcal{B}_5 = (\mathcal{B}_3 \setminus A_3) \cup C_3$, $\mathcal{B}_6 = (\mathcal{B}_4 \setminus A_4) \cup C_4$, $\mathcal{B}_7 = (\mathcal{B}_5 \setminus A_4) \cup C_4$, $\mathcal{B}_8 = (\mathcal{B}_6 \setminus A_5) \cup C_5$, $\mathcal{B}_9 = (\mathcal{B}_7 \setminus A_5) \cup C_5$, $\mathcal{B}_{10} = (\mathcal{B}_8 \setminus A_6) \cup C_6$ Consider the following permutations on *X*.

[5,16,15-2],[17,4,15-1]

$\pi_0 = (23)(4195)(616177)(8915)(1012)(1113),$	$\pi_1 = (0132)(418195)(717)(814)(10121113),$
$\pi_2 = (021)(45)(617167)(914)(1113)(1819),$	$\pi_3 = (4185)(61617)(1113),$
$\pi_4 = (013)(716)(815)(1112),$	$\pi_5 = (518)(716)(8914)(1012),$
$\pi_6 = (03)(617)(815)(1012),$	$\pi_7 = (41819)(89)(1013),$
$\pi_8 = (71617)(915)(1113),$	$\pi_9 = (815)(10121113),$
$\pi_{10} = (81514)(101213),$	$\pi_{11} = (02)(716),$
$\pi_{12} = (419)(716),$	$\pi_{13} = (914)(101213),$
$\pi_{14} = (717)(8159),$	$\pi_{15} = (45)(915),$
$\pi_{16} = (419)(1011),$	$\pi_{17} = (716)(1011),$
$\pi_{18} = (914)(1013),$	$\pi_{19} = (814)(1012),$
$\pi_{20} = (111312),$	$\pi_{21} = (101211),$
$\pi_{22} = (02),$	$\pi_{23} = (419),$
$ \pi_{24} = (1819), $	$\pi_{25} = (716),$
$ \pi_{26} = (717), $	$\pi_{27} = (814),$
$ \pi_{28} = (815), $	$\pi_{29} = (1011),$
$\pi_{30} = \pi_{31} = \pi_{32} = \pi_{33} = \pi_{34} = (1),$	$\pi_{35} = \pi_{36} = \pi_{37} = \pi_{38} = \pi_{40} = (1).$

We have that for each $s \in I(5) \setminus \{30, \ldots, 38\}$, $|\pi_s \mathcal{B}_1 \cap \mathcal{B}_1| = s$ and $\pi_s \mathcal{G} = \mathcal{G}$. For each $s \in \{30, \ldots, 38\}$, $|\pi_s \mathcal{B}_{40-s} \cap \mathcal{B}_1| = s$ and $\pi_s \mathcal{G} = \mathcal{G}$. \Box

4. Input designs

For counting J(u) for $6 \le u \le 14$, we may search for a large number of instances of kite-GDDs. However, to reduce the computation, when $6 \le u \le 14$, we shall first determine the intersection numbers of a pair of kite-GDDs of type $a^m b^1$ with the same group set.

Lemma 4.1. Let $M_1 = \{0, 1, ..., 26, 36\}$ and $s \in M_1$. Then there is a pair of kite-GDDs of type 4^38^1 with the same group set, which intersect in s blocks.

Proof. Take the vertex set $X = \{0, 1, ..., 19\}$ and the group set $G = \{\{8, 9, 18, 19\}, \{10, 11, 16, 17\}, \{12, 13, 14, 15\}, \{0, 1, ..., 7\}\}$. Let

 \mathcal{B}_1 :, [19, 10, 0 - 16], [17, 18, 7 - 19], [15, 16, 6 - 19], [1, 11, 12 - 7],[9, 10, 2 - 17],[8, 16, 7 – 14], [0,18,11 – 7], [17, 19, 5 - 16], [16, 4, 18 - 3],[15, 17, 3 - 19], [16, 2, 14 - 0],[11, 2, 13 - 17], [12, 10, 3 - 8],[9,4,11-6], [10, 14, 8 - 0],[9, 15, 7 – 13], [8,6,13 – 18], [1, 19, 13 – 0], [1, 18, 10 - 7], [17, 9, 0 - 15],[17, 4, 14 – 5], [16, 3, 13 – 4], [18, 5, 15 – 1], [14, 19, 11 - 5], [10, 5, 13 - 9],[12,9,6-17], [19, 16, 12 - 5], [1,17,8-5], [8, 15, 11 – 3], [2, 18, 12 - 0],[19, 15, 2 - 8],[4, 8, 12 - 17], [15, 10, 4 - 19], [18, 14, 6 - 10], [1,16,9-5], [3,9,14-1].

Then $(X, \mathcal{G}, \mathcal{B}_1)$ is a kite-GDD of type $4^{3}8^{1}$. Consider the following permutations on *X*.

$\pi_0 = (0 \ 3)(1$	2)(8 9)(10 17 11)(18 19),	$\pi_1 = (0\ 1\ 2\ 3)(8\ 18\ 19)(10\ 16\ 11\ 17),$
$\pi_2 = (2 \ 3)(8$	19 9)(10 16 17 11),	$\pi_3 = (1\ 2)(8\ 9\ 18)(10\ 17\ 11),$
$\pi_4 = (0 \ 1)(2$	3)(8 9)(11 17),	$\pi_5 = (0\ 3)(1\ 2)(10\ 16)(18\ 19),$
$\pi_6 = (0\ 3)(8$	9 19),	$\pi_7 = (8 \ 19 \ 18)(11 \ 16),$
$\pi_8 = (0\ 2)(9$	18 19),	$\pi_9 = (2\ 3)(8\ 18\ 9),$
$\pi_{10} = (0\ 3\ 1$	2)(10 11),	$\pi_{11} = (8 \ 19)(11 \ 16),$
$\pi_{12} = (0\ 3\ 1)$	(10 11),	$\pi_{13} = (0\ 3\ 2)(10\ 11),$
$\pi_{14} = (0\ 1\ 2)$	(10 11),	$\pi_{15} = (0\ 1\ 2\ 3),$
$\pi_{16} = (0 \ 1)(1 \ 1)$	10 11),	$\pi_{17} = (0\ 2)(10\ 11),$
$\pi_{18} = (16\ 17$),	$\pi_{19} = (1 \ 3 \ 2),$
$\pi_{20} = (0.3.2)$,	$\pi_{21} = (11\ 16),$
$\pi_{22} = (10\ 11$),	$\pi_{23} = (0 \ 3),$
$\pi_{24} = (1 \ 2),$		$\pi_{25} = (2 \ 3),$
$\pi_{26} = (0 \ 2),$		$\pi_{36} = (1).$

We have that for each $s \in M_1$, $|\pi_s \mathcal{B}_1 \cap \mathcal{B}_1| = s$ and $\pi_s \mathcal{G} = \mathcal{G}$. \Box

Lemma 4.2. Let $M_2 = \{0, 1, ..., 35, 48\}$ and $s \in M_2$. Then there is a pair of kite-GDDs of type $4^3 12^1$ with the same group set, which intersect in s blocks.

Proof. Take the vertex set $X = \{0, 1, ..., 23\}$ and the group set $G = \{\{12, 13, 22, 23\}, \{14, 15, 20, 21\}, \{16, 17, 18, 19\}, \{0, 1, ..., 11\}\}$. Let

\mathcal{B}_1 :	[0, 14, 23 – 5],	[22, 11, 21 – 8],	[20, 10, 19 – 0],	[1, 16, 15 – 11],	[13, 2, 14 – 8],
	[11,20,12-8],	[23,9,21-6],	[22, 8, 20 - 0],	[19,7,21 – 3],	[18, 6, 20 – 1],
	[17, 3, 15 – 10],	[16, 5, 14 - 6],	[13, 0, 15 – 9],	[12, 1, 14 - 4],	[11, 19, 13 – 10],
	[10, 21, 12 – 7],	[1,23,17-5],	[0, 16, 22 – 7],	[0, 21, 17 - 6],	[23, 2, 20 – 5],
	[22, 1, 19 – 6],	[2, 18, 21 – 5],	[20, 4, 17 – 9],	[18, 4, 15 – 8],	[16,7,13-6],
	[15, 6, 12 – 5],	[14, 11, 18 – 8],	[12,9,16-8],	[14,7,17 – 11],	[15, 5, 19 – 8],
	[20, 3, 16 – 2],	[17, 10, 22 – 5],	[22, 9, 18 – 7],	[19, 3, 23 – 11],	[1,21,13-4],
	[2, 15, 22 – 6],	[3, 14, 22 – 4],	[4,21,16 – 11],	[5, 18, 13 – 3],	[6,23,16-10],
	[7, 15, 23 – 4],	[17, 13, 8 – 23],	[9, 19, 14 – 10],	[9, 13, 20 – 7],	[12, 0, 18 – 3],
	[4, 19, 12 – 3],	[23, 10, 18 – 1],	[17, 12, 2 – 19].		

Then $(X, \mathcal{G}, \mathcal{B}_1)$ is a kite-GDD of type $4^3 12^1$. Consider the following permutations on X.

$\pi_0 = (12132223)(142021)(16181719),$	$\pi_1 = (1322)(1420)(1521)(161819),$
$\pi_2 = (142115)(16181917)(2223),$	$\pi_3 = (122223)(152120)(171819),$
$\pi_4 = (1223)(1322)(1618)(2021),$	$\pi_5 = (122322)(171918)(2021),$
$\pi_6 = (1420)(161918)(2223),$	$\pi_7 = (1323)(152120)(1819),$
$\pi_8 = (279510)(811),$	$\pi_9 = (0101125)(89),$
$\pi_{10} = (071110892),$	$\pi_{11} = (08)(510117),$
$\pi_{12} = (28)(511)(910),$	$\pi_{13} = (210811)(79),$
$\pi_{14} = (0782911),$	$\pi_{15} = (097)(81011),$
$\pi_{16} = (081195),$	$\pi_{17} = (21011)(58),$
$\pi_{18} = (052811),$	$\pi_{19} = (011)(59),$
$\pi_{20} = (08510),$	$\pi_{21} = (211510),$
$\pi_{22} = (0257),$	$\pi_{23} = (02)(89),$
$\pi_{24} = (0972),$	$\pi_{25} = (598),$
$\pi_{26} = (0810),$	$\pi_{27} = (0105),$
$\pi_{28} = (2910),$	$\pi_{29} = (025),$
$\pi_{30} = (097),$	$\pi_{31} = (511),$
$\pi_{32} = (510),$	$\pi_{33} = (911),$
$\pi_{34} = (27),$	$\pi_{35} = (29),$
$\pi_{48} = (1).$	

We have that for each $s \in M_2$, $|\pi_s \mathcal{B}_1 \cap \mathcal{B}_1| = s$ and $\pi_s \mathcal{G} = \mathcal{G}$. \Box

Lemma 4.3. Let $M_3 = \{0, 1, ..., 53, 64\}$ and $s \in M_3$. Then there is a pair of kite-GDDs of type $8^2 12^1$ with the same group set, which intersect in s blocks.

Proof. Take the vertex set $X = \{0, 1, ..., 27\}$ and the group set $\mathcal{G} = \{\{0, ..., 11\}, \{12, ..., 19\}, \{20, ..., 27\}\}$. Let

\mathcal{B}_1 :	[0, 27, 14 - 5],	[0, 26, 13 – 4],	[0,25,12-6],	[24, 12, 1 – 26],	[27, 15, 1 – 25]
	[2, 14, 23 – 11],	[19, 22, 3 – 26],	[3,21,18-5],	[2,22,18-1],	[23, 19, 4 – 27],
	[26, 17, 4 – 25],	[25, 16, 5 – 26],	[17,24,5 – 23],	[6,23,15-5],	[6,22,16-1],
	[12, 27, 7 – 21],	[13, 25, 7 – 15],	[12, 21, 8 – 23],	[13, 24, 8 – 22],	[16,21,9-17],
	[15,22,9-12],	[14, 24, 10 - 23],	[13, 20, 11 – 21],	[14, 26, 11 – 22],	[27, 19, 5 – 21],
	[26, 6, 18 – 0],	[25, 17, 8 – 16],	[24, 16, 2 – 17],	[25, 15, 10 – 21],	[23, 18, 7 – 24],
	[22, 17, 10 – 19],	[21, 19, 2 – 13],	[20, 18, 4 - 24],	[20, 17, 6 – 27],	[21, 17, 0 – 15],
	[24, 0, 19 – 6],	[16,7,20-0],	[20, 15, 2 – 25],	[20, 14, 3 – 25],	[23, 17, 1 – 22],
	[24, 18, 9 – 27],	[23, 16, 0 – 22],	[21, 15, 4 – 16],	[25, 19, 9 – 26],	[25, 18, 11 – 17],
	[22, 14, 7 – 17],	[26,7,19-1],	[21, 14, 1 – 20],	[22, 13, 5 – 20],	[27, 18, 8 – 14],
	[24, 15, 11 – 19],	[16, 27, 11 – 12],	[19, 8, 20 – 9],	[13, 23, 9 – 14],	[10, 27, 13 – 3],
	[26, 16, 10 – 18],	[21, 6, 13 – 1],	[26, 12, 2 – 27],	[8, 26, 15 – 3],	[10, 20, 12 – 5],
	[25, 14, 6 – 24],	[12, 22, 4 – 14],	[27, 17, 3 – 24],	[12, 23, 3 – 16].	

Then $(X, \mathcal{G}, \mathcal{B}_1)$ is a kite-GDD of type $8^2 12^1$. Consider the following permutations on *X*.

 $\pi_0 = (0\ 10\ 8\ 4)(2\ 9\ 6\ 7\ 3)(5\ 11)(13\ 16\ 14)(18\ 19)(20\ 22\ 25)(24\ 27)$ $\pi_1 = (0\ 2\ 3)(1\ 6\ 10\ 9\ 5)(4\ 11)(12\ 15\ 14\ 19\ 13\ 18\ 16\ 17)(20\ 22\ 24\ 26\ 23\ 21\ 27)$ $\pi_2 = (0\ 11\ 5\ 3\ 1\ 7\ 2)(4\ 10)(12\ 17\ 13\ 14\ 19\ 16)(15\ 18)(20\ 25\ 22\ 21)(23\ 26\ 27)$ $\pi_3 = (0\ 10\ 11\ 9\ 7\ 5\ 3\ 8)(1\ 4)(2\ 6)(12\ 14\ 13\ 19\ 17)(15\ 16\ 18)(20\ 22\ 23\ 27\ 24\ 21\ 26\ 25)$ $\pi_4 = (0\ 7\ 10\ 3\ 11\ 6)(1\ 5\ 8\ 2\ 4)(12\ 13\ 15\ 16\ 14\ 17\ 18\ 19)(20\ 22\ 27\ 26)(21\ 23\ 24)$ $\pi_5 = (1\ 11\ 4\ 3\ 7\ 2\ 9)(14\ 16\ 17)(20\ 21)$ $\pi_6 = (0\ 2\ 9\ 10)(1\ 3\ 6)(8\ 11)(12\ 16\ 14)(13\ 19\ 18\ 15\ 17)(20\ 21\ 23)(22\ 27\ 24)$ $\pi_7 = (2 4 3 5)(12 15 14 13)(24 25 27 26)$ $\pi_8 = (4\ 5)(12\ 13\ 14\ 15)(24\ 26)(25\ 27)$ $\pi_9 = (2\ 3\ 4\ 5)(12\ 14\ 15)(24\ 26\ 25\ 27),$ $\pi_{10} = (2\ 5)(3\ 4)(12\ 13)(14\ 15)(24\ 27\ 25)$ $\pi_{11} = (4\ 5)(12\ 15\ 13)(24\ 26\ 27\ 25)$ $\pi_{12} = (2\ 5)(13\ 15)(24\ 25\ 26\ 27)$ $\pi_{13} = (2\ 5\ 3\ 4)(13\ 14\ 15)(26\ 27)$ $\pi_{14} = (2\ 5\ 4)(12\ 15\ 13\ 14)(24\ 27)$ $\pi_{16} = (2\ 5)(3\ 4)(14\ 15)(24\ 26)$ $\pi_{15} = (2\ 3\ 5)(12\ 13)(24\ 25\ 27)$ $\pi_{17} = (2\ 3\ 4\ 5)(12\ 14\ 13\ 15)$ $\pi_{18} = (3\ 5\ 4)(12\ 15\ 13)(24\ 27)$ $\pi_{20} = (3\ 5)(24\ 26\ 27\ 25)$ $\pi_{19} = (2\ 5\ 4\ 3)(24\ 25\ 26)$ $\pi_{21} = (2\ 5)(14\ 15)(24\ 25)$ $\pi_{22} = (2 \ 4)(12 \ 15)(24 \ 26)$ $\pi_{23} = (2\ 5)(12\ 14)(24\ 27)$ $\pi_{24} = (3\ 5\ 4)(12\ 15)(25\ 27)$ $\pi_{26} = (2\ 3\ 5\ 4)(26\ 27)$ $\pi_{25} = (12\ 15\ 14)(25\ 26)$ $\pi_{28} = (12\ 15)(13\ 14)$ $\pi_{27} = (2\ 5\ 3)(24\ 25)$ $\pi_{29} = (2\ 5)(12\ 13\ 15)$ $\pi_{30} = (2 \ 4)(13 \ 14 \ 15)$ $\pi_{31} = (3 4 5)(13 14)$ $\pi_{32} = (12\ 15)(25\ 26)$ $\pi_{33} = (4\ 5)(14\ 15)$ $\pi_{34} = (2\ 5)(12\ 14)$ $\pi_{35} = (3\ 5)(12\ 15)$ $\pi_{36} = (2\ 3)(12\ 13)$ $\pi_{38} = (2\ 3\ 4\ 5)$ $\pi_{37} = (3 \ 4)(13 \ 15)$ $\pi_{39} = (3 4 9 7)$ $\pi_{40} = (22\ 25)$ $\pi_{42} = (24\ 27)$ $\pi_{41} = (26\ 27)$ $\pi_{43} = (25\ 26)$ $\pi_{44} = (2\ 5\ 4)$ $\pi_{45} = (2 4 3)$ $\pi_{46} = (13\ 15)$ $\pi_{47} = (798)$ $\pi_{48} = (0\ 1)$ $\pi_{49} = (0.3)$ $\pi_{50} = (0.2)$ $\pi_{51} = (1\ 2)$ $\pi_{52} = (4.7)$ $\pi_{53} = (8.9)$ $\pi_{64} = (1).$

We have that for each $s \in M_3$, $|\pi_s \mathcal{B}_1 \cap \mathcal{B}_1| = s$ and $\pi_s \mathcal{G} = \mathcal{G}$. \Box

5. For $6 \le u \le 14$

Lemma 5.1. J(6) = I(6).

Proof. Take the same set M_2 as in Lemma 4.2. Let $\alpha \in M_2$. Then there is a pair of kite-GDDs of type 4^312^1 (X, \mathcal{B}_1) and (X, \mathcal{B}_2) with the same group set, which intersect in α blocks. Here the subgraph K_{12} is constructed on $Y \subset X$. Let $\beta \in I(3)$, By Lemma 3.1, there is a pair of kite-GDDs of type 4^3 (Y, \mathcal{B}'_1) and (Y, \mathcal{B}'_2) intersecting in β common blocks. Then (X, $\mathcal{B}_1 \cup \mathcal{B}'_1$) and (X, $\mathcal{B}_2 \cup \mathcal{B}'_2$) are a pair of kite-GDDs of type 4^6 with $\alpha + \beta$ common blocks. Thus we have

$$J(6) \supseteq \{ \alpha + \beta : \alpha \in M_2, \beta \in I(3) \} = M_2 + I(3) = I(6).$$

Lemma 5.2. J(8) = I(8).

Proof. Take the same set M_3 as in Lemma 4.3. Let $\alpha \in M_3$. Then there is a pair of kite-GDDs of type $8^2 12^1$ with the same group set, which intersect in α blocks. Let $\gamma_1, \gamma_2 \in I(3)$. By Lemma 3.1, there is a pair of kite-GDDs of type 4^3 intersecting in γ_i common blocks for each i = 1, 2. Let $\gamma_3 \in I(4)$. By Lemma 3.2, there is a pair of kite-GDDs of type 4^4 with γ_3 common blocks. Now applying Construction 2.2, we obtain a pair of kite-GDDs of type 4^8 with $\alpha + \sum_{i=1}^{3} \gamma_i$ common blocks. Thus we have

$$J(8) \supseteq \{ \alpha + \sum_{i=1}^{3} \gamma_{i} : \alpha \in M_{3}, \gamma_{1}, \gamma_{2} \in I(3), \gamma_{3} \in I(4) \} = I(8)$$

Lemma 5.3. J(u) = I(u) for u = 7, 10, 13.

Proof. Start from a 4-GDD of type 2^u , u = 7, 10, 13, by Lemma 2.3. Give each point of the GDD weight 2. By Lemma 2.4, there is a pair of kite-GDDs of type 2^4 with α common blocks, $\alpha \in \{0, ..., 4, 6\}$. Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 4^u with $\sum_{i=1}^{b} \alpha_i$ common blocks, where b = u(u - 1)/3 is the number of blocks of the 4-GDD of type 2^u and $\alpha_i \in \{0, ..., 4, 6\}$ for $1 \le i \le b$. Which implies, for u = 7, 10, 13

$$J(u) \supseteq \{\sum_{i=1}^{b} \alpha_i : \alpha_i \in \{0, \dots, 4, 6\}, 1 \le i \le b\} = b * \{0, \dots, 4, 6\} = I(u)$$

Lemma 5.4. J(u) = I(u) for u = 9, 11.

Proof. Start from a 3-GDD of type 3^3 by Lemma 2.3. Give each point of the GDD weight 4. By Lemma 3.1, there is a pair of kite-GDDs of type 4^3 with α common blocks, $\alpha \in I(3)$. Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 12^3 with $\sum_{i=1}^{9} \alpha_i$ common blocks, where b = 9 is the number of blocks of the 3-GDD of type 3^3 and $\alpha_i \in I(3)$ for $1 \le i \le 9$.

Let u = 9. By Lemma 3.1, there is a pair of kite-GDDs of type 4^3 with β_j common blocks, where $\beta_j \in I(3)$, $1 \le j \le 3$. By Construction 2.2, we have a pair of kite-GDDs of type 4^9 with $\sum_{i=1}^{9} \alpha_i + \sum_{j=1}^{3} \beta_j$ common blocks, which implies

$$J(9) \supseteq \{\sum_{i=1}^{9} \alpha_i + \sum_{j=1}^{3} \beta_j : \alpha_i \in I(3), \beta_j \in I(3), 1 \le i \le 9, 1 \le j \le 3\}$$

= 9 * {0, ..., 10, 12} + 3 * {0, ..., 10, 12} = I(9).

Let u = 11. By Lemma 4.1, there is a pair of kite-GDDs of type $4^{3}8^{1}$ with β_{j} common blocks, where $\beta_{j} \in M_{1}$, $1 \le j \le 2$. By Lemma 3.3, there is a pair of kite-GDDs of type 4^{5} with γ common blocks. By

Construction 2.2, we have a pair of kite-GDDs of type 4^{11} with $\sum_{i=1}^{9} \alpha_i + \sum_{j=1}^{2} \beta_j + \gamma$ common blocks, which implies

$$J(11) \supseteq \{\sum_{i=1}^{9} \alpha_{i} + \sum_{j=1}^{2} \beta_{j} + \gamma : \alpha_{i} \in I(3), \beta_{j} \in M_{1}, \gamma \in I(5), 1 \le i \le 9, 1 \le j \le 2\}$$

= 9 * {0, ..., 10, 12} + 2 * {0, ..., 24, 36} + {0, ..., 38, 40} = I(11).

Lemma 5.5. J(u) = I(u) for u = 12, 14.

Proof. Start from a 4-GDD of type 3^4 by Lemma 2.3. Give each point of the GDD weight 4. By Lemma 3.2, there is a pair of kite-GDDs of type 4^4 with α common blocks, $\alpha \in I(4)$. Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 12^4 with $\sum_{i=1}^{9} \alpha_i$ common blocks, where b = 9 is the number of blocks of the 4-GDD of type 3^4 and $\alpha_i \in I(4)$ for $1 \le i \le 9$.

Let u = 12. By Lemma 3.1, there is a pair of kite-GDDs of type 4^3 with β_j common blocks, where $\beta_j \in I(3)$, $1 \le j \le 4$. By Construction 2.2, we have a pair of kite-GDDs of type 4^{12} with $\sum_{i=1}^{9} \alpha_i + \sum_{j=1}^{4} \beta_j$ common blocks, which implies

$$J(12) \supseteq \{\sum_{i=1}^{9} \alpha_i + \sum_{j=1}^{4} \beta_j : \alpha_i \in I(4), \beta_j \in I(3), 1 \le i \le 9, 1 \le j \le 4\}$$

= 9 * {0, ..., 22, 24} + 4 * {0, ..., 10, 12} = I(12).

Let u = 14. By Lemma 4.1, there is a pair of kite-GDDs of type $4^{3}8^{1}$ with β_{j} common blocks, where $\beta_{j} \in M_{1}$, $1 \le j \le 3$. By Lemma 3.3, there is a pair of kite-GDDs of type 4^{5} with γ common blocks, where $\gamma \in I(5)$. By Construction 2.2, we have a pair of kite-GDDs of type 4^{14} with $\sum_{i=1}^{9} \alpha_{i} + \sum_{j=1}^{3} \beta_{j} + \gamma$ common blocks, which implies

$$J(14) \supseteq \{\sum_{i=1}^{9} \alpha_{i} + \sum_{j=1}^{3} \beta_{j} + \gamma : \alpha_{i} \in I(4), \beta_{j} \in M_{1}, \gamma \in I(5), 1 \le i \le 9, 1 \le j \le 3\}$$

= 9 * {0,..., 22, 24} + 3 * {0,..., 24, 36} + {0,..., 38, 40} = I(14).

6. Proof of Theorem 1.1

First we need the following definition. Let s_1 and s_2 be two non-negative integers. If X and Y are two sets of pairs of non-negative integers, then X + Y denotes the set $\{s_1 + s_2 : s_1 \in X, s_2 \in Y\}$. If X is a set of pairs of non-negative integers and h is some positive integer, then h * X denotes the set of all pairs of non-negative integers which can be obtained by adding any h elements of X together (repetitions of elements of X allowed).

Lemma 6.1. For any integer $u \equiv 0 \pmod{3}$ and $u \ge 15$, J(u) = I(u).

Proof. Let u = 3t and $t \ge 5$. Start from a 4-GDD of type 6^t by Lemma 2.3. Give each point of the GDD weight 2. By Lemma 2.4, there is a pair of kite-GDDs of type 2^4 with α common blocks, $\alpha \in \{0, ..., 4, 6\}$. Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 12^t with $\sum_{i=1}^{b} \alpha_i$ common blocks, where b = 3t(t-1) is the number of blocks of the 4-GDD of type 6^t and $\alpha_i \in \{0, ..., 4, 6\}$ for $1 \le i \le b$.

2234

By Lemma 3.1, there is a pair of kite-GDDs of type 4^3 with β_j common blocks, where $\beta_j \in I(3)$, $1 \le j \le t$. By Construction 2.2, we have a pair of kite-GDDs of type 4^{3t} with $\sum_{i=1}^{b} \alpha_i + \sum_{j=1}^{t} \beta_j$ common blocks, which implies

$$J(u) = J(3t) \supseteq \{ \sum_{i=1}^{b} \alpha_i + \sum_{j=1}^{t} \beta_j : \alpha_i \in \{0, \dots, 4, 6\}, \beta_j \in I(3), 1 \le i \le b, 1 \le j \le t \}$$

= $b * \{0, \dots, 4, 6\} + t * \{0, \dots, 10, 12\}$
= $I(3t) = I(u).$

Lemma 6.2. For any integer $u \equiv 1 \pmod{3}$ and $u \ge 16$, J(u) = I(u).

Proof. Let u = 3t + 1 and $t \ge 5$. Start from a 4-GDD of type 6^t by Lemma 2.3. Give each point of the GDD weight 2. By Lemma 2.4, there is a pair of kite-GDDs of type 2^4 with α common blocks, $\alpha \in \{0, ..., 4, 6\}$. Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 12^t with $\sum_{i=1}^{b} \alpha_i$ common blocks, where b = 3t(t - 1) is the number of blocks of the 4-GDD of type 6^t and $\alpha_i \in \{0, ..., 4, 6\}$ for $1 \le i \le b$.

By Lemma 3.2, there is a pair of kite-GDDs of type 4^4 with β_j common blocks, where $\beta_j \in I(4)$, $1 \le j \le t$. By Construction 2.2, we have a pair of kite-GDDs of type 4^{3t+1} with $\sum_{i=1}^{b} \alpha_i + \sum_{j=1}^{t} \beta_j$ common blocks, which implies

$$J(u) = J(3t+1) \supseteq \{ \sum_{i=1}^{b} \alpha_i + \sum_{j=1}^{t} \beta_j : \alpha_i \in \{0, \dots, 4, 6\}, \beta_j \in I(4), 1 \le i \le b, 1 \le j \le t \}$$

= b * {0, ..., 4, 6} + t * {0, ..., 22, 24}
= I(3t+1) = I(u).

Lemma 6.3. For any integer $u \equiv 2 \pmod{3}$ and $u \ge 17$, J(u) = I(u).

Proof. Let u = 3t + 2 and $t \ge 5$. Start from a 4-GDD of type 6^t by Lemma 2.3. Give each point of the GDD weight 2. By Lemma 2.4, there is a pair of kite-GDDs of type 2^4 with α common blocks, $\alpha \in \{0, ..., 4, 6\}$. Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 12^t with $\sum_{i=1}^{b} \alpha_i$ common blocks, where b = 3t(t - 1) is the number of blocks of the 4-GDD of type 6^t and $\alpha_i \in \{0, ..., 4, 6\}$ for $1 \le i \le b$.

By Lemma 4.1, there is a pair of kite-GDDs of type $4^{3}8^{1}$ with β_{j} common blocks, where $\beta_{j} \in M_{1}$, $1 \leq j \leq t - 1$. By Lemma 3.3, there is a pair of kite-GDDs of type 4^{5} with γ common blocks, where $\gamma \in I_{5}$. By Construction 2.2, we have a pair of kite-GDDs of type 4^{3t+2} with $\sum_{i=1}^{b} \alpha_{i} + \sum_{j=1}^{t-1} \beta_{j} + \gamma$ common blocks, which implies

$$J(u) = J(3t+2) \supseteq \{ \sum_{i=1}^{b} \alpha_i + \sum_{j=1}^{t-1} \beta_j + \gamma : \alpha_i \in \{0, \dots, 4, 6\}, \beta_j \in M_1, \gamma \in I_5, 1 \le i \le b, 1 \le j \le t \}$$

= b * {0, ..., 4, 6} + (t - 1) * {0, ..., 24, 36} + {0, ..., 38, 40}
= I(3t + 2) = I(u).

Proof of Theorem 1.1: When $u \in \{3, 4, ..., 14\}$, the conclusion follows from Lemmas 3.1-3.3, and Lemmas 5.1-5.5. When $u \ge 15$, combining the results of Lemmas 6.1-6.3, we complete the proof. \Box

References

- [1] E. J. Billington and D. L. Kreher, The intersection problem for small G-designs, Australas. J. Combin., 12 (1995), 239-258.
- [2] R. A. R. Butler and D. G. Hoffman, Intersections of group divisible triple systems, Ars Combin, 34(1992), 268-288.
- [3] Y. Chang, T. Feng, and G. Lo Faro, *The triangle intersection problem for S*(2, 4, *v*) *designs*, Discrete Math., 310(2010), 3194-3205.
- [4] Y. Chang, T. Feng, G. Lo Faro, and A. Tripodi, The fine triangle intersection problem for kite systems, Discrete Math., 312(2012), 545-553.
- [5] Y. Chang, T. Feng, G. Lo Faro, and A. Tripodi, *Enumerations of* $(K_4 e)$ -designs with small orders, Quaderni di Matematica (special volume to the memory of Lucia Gionfriddo), in press.
- [6] Y. Chang, T. Feng, G. Lo Faro, and A. Tripodi, *The fine triangle intersection problem for* (K₄ e)-designs, Discrete Math., 311 (2011), 2442-2462.
- [7] Y. Chang, T. Feng, and G. Lo Faro, *The triangle intersection problem for S*(2,4, *v*) *designs*, Discrete Math., 310(2010), 3194-3205.
- [8] Y. Chang, T. Feng, G. Lo Faro and A. Tripodi, The triangle intersection numbers of a pair of disjoint S(2, 4, v)s, Discrete Math., 310(2010), 3007-3017.
- [9] Y. Chang and G. Lo Faro, The flower intersection problem for Kirkman triple systems, J. Statist. Plann. Inference, 110(2003), 159-177.
- [10] C. J. Colbourn, D. G. Hoffman, and C. C. Lindner, Intersections of S(2, 4, v) designs, Ars Combin., 33(1992), 97-111.
- [11] G. Ge, Group divisible designs, in: CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz, eds), CRC Press, (2007), 255-260.
- [12] E. S. Kramer and D. M. Mesner, Intersections among Steiner systems, J. Combin. Theory A, 16(1974), 273-285.
- [13] G. Zhang, Y. Chang, and T. Feng, The flower intersection problem for S(2,4, v)s, Discrete Math., 315-316(2014), 75-82.
- [14] G. Zhang, Y. Chang, and T. Feng, The fine triangle intersection problem for minimum kite coverings, Advances in Mathematics (China), 42(5)(2013), 676-690.
- [15] G. Zhang, Y. Chang, and T. Feng, The fine triangle intersections for maximum kite packings, Acta Mathematica Sinica, English Series, 29(5)(2013), 867-882.
- [16] G. Zhang, Y. An, and T. Feng, The intersection problem for PBD(4,7*), Utilitas Mathematics, 107(2018), 317-337.
- [17] G. Zhang, Y. An, The intersection problem for S(2, 4, v)s with a common parallel class, Util. Math., 114(2020),147-165.
- [18] Y. An and G. Zhang The Intersection Problem for Kite-GDDs of Type 2^u, J. Mathematical Research with Appl., 41(6)(2021), 551-564.