The intersection problem for kite-GDDs

Guizhi Zhang ${ }^{\text {a }}$, Yonghong An ${ }^{\text {b }}$
${ }^{a}$ School of Mathematics and Statistics, Hulunbuir University, Hulunbuir 021008, P. R. China
${ }^{b}$ College of Continuing Education, Hulunbuir University, Hulunbuir 021008, P. R. China

Abstract

In this paper the intersection problem for a pair of kite-GDDs of type 4^{u} is investigated. The intersection problem for kite-GDDs is the determination of all pairs (T, s) such that there exists a pair of kite-GDDs $\left(X, \mathcal{H}, \mathcal{B}_{1}\right)$ and $\left(X, \mathcal{H}, \mathcal{B}_{2}\right)$ of the same type T and $\left|\mathcal{B}_{1} \cap \mathcal{B}_{2}\right|=s$. Let $J(u)=\{s: \exists$ a pair of kite-GDDs of type 4^{u} intersecting in s blocks $\} ; I(u)=\left\{0,1, \ldots, b_{u}-2, b_{u}\right\}$, where $b_{u}=2 u(u-1)$ is the number of blocks of a kite-GDD of type 4^{u}. We show that for any positive integer $u \geq 3, J(u)=I(u)$.

1. Introduction

Let $\mathcal{H}=\left\{H_{1}, H_{2}, \ldots, H_{m}\right\}$ be a partition of a finite set X into subsets (called holes), where $\left|H_{i}\right|=n_{i}$ for $1 \leq i \leq m$. Let $K_{n_{1}, n_{2}, \ldots, n_{m}}$ be the complete multipartite graph on X with the i-th part on H_{i}, and G be a subgraph of $K_{n_{1}, n_{2}, \ldots, n_{m}}$. A holey G-design is a triple $(X, \mathcal{H}, \mathcal{B})$ such that (X, \mathcal{B}) is a $\left(K_{n_{1}, n_{2}, \ldots, n_{m}}, G\right)$-design. The hole type (or type) of the holey G-design is $\left\{n_{1}, n_{2}, \ldots, n_{m}\right\}$. We use an "exponential" notation to describe hole types: the hole type $g_{1}^{u_{1}} g_{2}^{u_{2}} \cdots g_{r}^{u_{r}}$ denotes u_{i} occurrences of g_{i} for $1 \leq i \leq r$. Obviously if G is the complete graph K_{k}, a holey K_{k}-design is just a k-GDD. A holey K_{k}-design with the hole type 1^{v} is called a Steiner system $S(2, k, v)$. If G is the graph with vertices a, b, c, d and edges $a b, a c, b c, c d$ (such a graph is called a kite) a holey G-design is said to be a kite-GDD.

A pair of holey G-designs $\left(X, \mathcal{H}, \mathcal{B}_{1}\right)$ and $\left(X, \mathcal{H}, \mathcal{B}_{2}\right)$ of the same type is said to intersect in slocks if $\left|\mathcal{B}_{1} \cap \mathcal{B}_{2}\right|=s$. The intersection problem for $S(2, k, v)$'s was first introduced by Kramer and Mesner in [12]. The intersection problem for $S(2,4, v)$'s was dealt with by Colbourn et al. [10], apart from three undecided values for $v=25,28$ and 37. Chang et al. has completely solved the triangle intersection problem for $S(2,4, v)$ designs and a pair of disjoint $S(2,4, v) s[7,8]$. Butler and Hoffman [2] completely solved the intersection problem for 3-GDDs of type g^{u}. Zhang, Chang and Feng solved the intersection problem for 4 -GDDs of type 3^{u} [16] and the intersection problem for 4-GDDs of type 4^{u} [17]. The intersection problem is also considered for many other types of combinatorial structures. The interested reader may refer to [1, 3-6, 9, 13-15]

In this paper we focus on the intersection problem for kite-GDDs. Let $J(u)=\{s: \exists$ a pair of kite-GDD of type 4^{u} intersecting in s blocks $\}$. Throughout this paper we always assume that $I(u)=\left\{0,1, \ldots, b_{u}-2, b_{u}\right\}$ for $u \geq 3$, where $b_{u}=2 u(u-1)$ is the number of blocks of a kite-GDD of type 4^{u}.

As the main result of the present paper, we are to prove the following theorem.

[^0]Theorem 1.1. $J(u)=I(u)$ for any integer $u \geq 3$.
Obviously $J(u) \subseteq I(u)$. We need to show that $I(u) \subseteq J(u)$.

2. Basic design constructions

Construction 2.1. ([4])(Weighting Construction) Suppose that $(X, \mathcal{G}, \mathcal{A})$ is a $K-G D D$, and let $\omega: X \longmapsto Z^{+} \cup\{0\}$ be a weight function. For every block $A \in \mathcal{A}$, suppose that there is a pair of holey G-designs of type $\{\omega(x): x \in A\}$, which intersect in b_{A} blocks. Then there exists a pair of holey G-designs of type $\left\{\sum_{x \in H} \omega(x): H \in \mathcal{G}\right\}$, which intersect in $\sum_{A \in \mathcal{A}} b_{A}$ blocks.

Construction 2.2. (Filling Construction) Let m be nonnegative integers and $g_{i}, a \equiv 0(\bmod m)$ for $1 \leq i \leq s$. Suppose that there exists a pair of holey G-designs of type $\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$, which intersect in b blocks. If there is a pair of holey G-designs of type $m^{g_{i} / m} a^{1}$, which intersect in b_{i} blocks for $1 \leq i \leq s-1$, and there is a pair of holey G-designs of type $m^{\left(g_{s}+a\right) / m}$ which intersect in b_{s} blocks, then there exists a pair of holey G-designs of type $m^{\left(\sum_{i=1}^{s} g_{i}+a\right) / m}$ intersecting in $b+\sum_{i=1}^{s} b_{i}$ blocks.

Proof. Let $(X, \mathcal{G}, \mathcal{A})$ and $(X, \mathcal{G}, \mathcal{B})$ be two holey G-designs of type $\left\{g_{1}, g_{2}, \ldots, g_{s}\right\}$ satisfying $|\mathcal{A} \cap \mathcal{B}|=b$. Let $\mathcal{G}=\left\{G_{1}, G_{2}, \ldots, G_{s}\right\}$ with $\left|G_{i}\right|=g_{i}, 1 \leq i \leq s$ and Y be any given set of length a such that $X \cap Y=\emptyset$. For $1 \leq i \leq$ $s-1$, construct a pair of holey G-designs $\left(G_{i} \cup Y, \mathcal{G}_{i} \cup\{Y\}, C_{i}\right)$ and $\left(G_{i} \cup Y, \mathcal{G}_{i} \cup\{Y\}, \mathcal{D}_{i}\right)$ of type $m^{g_{i} / m} a^{1}$ satisfying $\left|\mathcal{C}_{i} \cap \mathcal{D}_{i}\right|=b_{i}$ and construct a pair of holey G-designs $\left(G_{s} \cup Y, \mathcal{G}_{s}, \mathcal{C}_{s}\right)$ and $\left(G_{s} \cup Y, \mathcal{G}_{s}, \mathcal{D}_{s}\right)$ of type $m^{\left(g_{s}+a\right) / m}$ satisfying $\left|C_{s} \cap \mathcal{D}_{s}\right|=b_{s}$. Then $\left(X \cup Y,\left(\bigcup_{i=1}^{s} \mathcal{G}_{i}\right) \cup\{Y\}, \mathcal{A} \cup\left(\bigcup_{i=1}^{s} C_{i}\right)\right)$ and $\left(X \cup Y,\left(\bigcup_{i=1}^{s} \mathcal{G}_{i}\right) \cup\{Y\}, \mathcal{B} \cup\left(\bigcup_{i=1}^{s} \mathcal{D}_{i}\right)\right)$ are two holey G-designs of type $m^{\left(\sum_{i=1}^{s} g_{i}+a\right) / m}$. Obviously, the two holey G-designs have $b+\sum_{i=1}^{s} b_{i}$ common blocks.

We quote the following result for later use.
Lemma 2.3. [11]
(1) A 4-GDD of type g^{u} exists if and only if $u \geq 4,(u-1) g \equiv 0(\bmod 3)$, and $u(u-1) g^{2} \equiv 0(\bmod 12)$, with the exception of $(g, u) \in\{(2,4),(6,4)\}$.
(2) A 3-GDD of type g^{u} exists if and only if $u \geq 3,(u-1) g \equiv 0(\bmod 2)$, and $u(u-1) g^{2} \equiv 0(\bmod 6)$.

Lemma 2.4. [18] There is a pair of kite-GDD of type 2^{4} intersecting in sblocks, then $s \in\{0, \ldots, 4,6\}$.

3. Ingredients

Lemma 3.1. $J(3)=I(3)$.
Proof. Take the vertex set $X=\{0,1, \ldots, 11\}$ and $\mathcal{G}=\{\{0,1,2,3\},\{4,5,10,11\},\{6,7,8,9\}\}$. Let $\mathcal{B}_{1}=\{[9,3,10-$ 7], $[8,2,10-6],[2,4,6-3],[6,5,1-10],[11,7,1-8],[0,6,11-8],[4,8,3-11],[5,8,0-10],[1,4,9-5],[7,4,0-$ 9], $[3,7,5-2],[9,11,2-7]\} . \quad \mathcal{B}_{2}=\left(\mathcal{B}_{1} \backslash\{[9,3,10-7],[8,2,10-6]\}\right) \cup\{[9,3,10-6],[8,2,10-7]\}, \mathcal{B}_{3}=$ $\left(\mathcal{B}_{1} \backslash\{[9,3,10-7],[8,2,10-6],[2,4,6-3]\}\right) \cup\{[9,10,3-6],[8,2,10-7],[2,4,6-10]\}, \mathcal{B}_{4}=\left(\mathcal{B}_{2} \backslash\{[6,5,1-\right.$ $10],[11,7,1-8]\}) \cup\{[6,5,1-8],[11,7,1-10]\}, \mathcal{B}_{5}=\left(\mathcal{B}_{3} \backslash\{[6,5,1-10],[11,7,1-8]\}\right) \cup\{[6,5,1-8],[11,7,1-10]\}$. Then $\left(X, \mathcal{G}, \mathcal{B}_{i}\right)$ is a kite-GDD of type 4^{3} for $i=1,2,3,4,5$. Consider the following permutations on X.

$$
\begin{array}{lll}
\pi_{0}=(23)(4115)(6897), & \pi_{1}=(0123)(411)(67)(89), & \pi_{2}=(03)(12)(45)(697)(1011), \\
\pi_{3}=(68)(1011), & \pi_{4}=(02)(13)(45)(68)(1011), & \pi_{5}=(45), \\
\pi_{6}=(510), & \pi_{7}=\pi_{8}=\pi_{9}=\pi_{10}=\pi_{12}=(1) . &
\end{array}
$$

We have that for each $s \in I(3) \backslash\{7,8,9,10\},\left|\pi_{s} \mathcal{B}_{1} \cap \mathcal{B}_{1}\right|=s$ and $\pi_{s} \mathcal{G}=\mathcal{G}$. For each $s \in\{7,8,9,10\}$, $\left|\pi_{s} \mathcal{B}_{12-s} \cap \mathcal{B}_{1}\right|=s$ and $\pi_{s} \mathcal{G}=\mathcal{G}$.

Lemma 3.2. $J(4)=I(4)$.

Proof. Take the vertex set $X=\{0,1, \ldots, 15\}$ and $\mathcal{G}=\{\{0,1,2,15\},\{3,4,13,14\},\{5,6,11,12\},\{7$,
$8,9,10\}\}$. Let $\mathcal{B}_{1}=[14,15,7-3],[6,0,7-2],[5,13,7-11],[4,1,7-12],[10,4,11-13],[2,3,11-14],[9,1,11-$ $0],[4,5,15-3],[13,6,15-8],[12,14,8-11],[6,1,8-4],[12,3,10-0],[2,12,13-8],[0,5,14-1],[4,2,6-$ 10], $[5,2,10-14],[3,6,9-4],[9,12,15-11],[13,0,9-5],[1,13,10-15],[9,2,14-6],[0,3,8-2],[1,3,5-$ 8], [0, 4, 12-1].

Table 1. The blocks of kite-GDD of type 4^{4}

i	A_{i}	C_{i}
1	$[14,15,7-3],[6,0,7-2]$	$[14,15,7-2],[6,0,7-3]$
2	$[14,15,7-3],[6,0,7-2],[5,13,7-11]$	$[14,15,7-11],[6,0,7-3],[5,13,7-2]$
3	$[10,4,11-13],[2,3,11-14]$	$[10,4,11-14],[2,3,11-13]$
4	$[4,5,15-3],[13,6,15-8]$	$[4,5,15-8],[13,6,15-3]$
5	$[12,14,8-11],[6,1,8-4]$	$[12,14,8-4],[6,1,8-11]$

Then $\left(X, \mathcal{G}, \mathcal{B}_{i}\right)$ is a kite-GDD of type 4^{4} for $i=1,2, \ldots, 8$, where $\mathcal{B}_{2}=\left(\mathcal{B}_{1} \backslash A_{1}\right) \cup C_{1}, \mathcal{B}_{3}=\left(\mathcal{B}_{1} \backslash A_{2}\right) \cup C_{2}$, $\mathcal{B}_{4}=\left(\mathcal{B}_{2} \backslash A_{3}\right) \cup C_{3}, \mathcal{B}_{5}=\left(\mathcal{B}_{3} \backslash A_{3}\right) \cup C_{3}, \mathcal{B}_{6}=\left(\mathcal{B}_{4} \backslash A_{4}\right) \cup C_{4}, \mathcal{B}_{7}=\left(\mathcal{B}_{5} \backslash A_{4}\right) \cup C_{4}, \mathcal{B}_{8}=\left(\mathcal{B}_{6} \backslash A_{5}\right) \cup C_{5}$. Consider the following permutations on X.

$$
\begin{array}{ll}
\pi_{0}=(215)(3144)(511126)(7810), & \pi_{1}=(015)(12)(313144)(5126)(71089), \\
\pi_{3}=(115)(414)(5116), & \pi_{2}=(3144)(51112)(89), \\
\pi_{4}=(215)(612)(810), & \pi_{5}=(313)(512), \\
\pi_{8}=(115)(79), & \pi_{6}=(314)(1112), \\
\pi_{7}=(115)(89), & \pi_{12}=(215), \\
\pi_{14}=(78), & \pi_{13}=(810), \\
\pi_{11}=(313), & \pi_{9}=(51112), \\
\pi_{10}=(12), & \pi_{15}=(79), \\
\pi_{16}=\pi_{17}=\pi_{18}=\pi_{19}=(1) & \pi_{20}=\pi_{21}=\pi_{22}=\pi_{24}=(1) .
\end{array}
$$

We have that for each $s \in I(4) \backslash\{16, \ldots, 22\},\left|\pi_{s} \mathcal{B}_{1} \cap \mathcal{B}_{1}\right|=s$ and $\pi_{s} \mathcal{G}=\mathcal{G}$. For each $s \in\{16, \ldots, 22\}$, $\left|\pi_{s} \mathcal{B}_{24-s} \cap \mathcal{B}_{1}\right|=s$ and $\pi_{s} \mathcal{G}=\mathcal{G}$.

Lemma 3.3. $J(5)=I(5)$.
Proof. Take the vertex set $X=\{0,1, \ldots, 19\}$ and $\mathcal{G}=\{\{0,1,2,3\},\{4,5,18,19\},\{6,7,16,17\},\{8$, $9,14,15\},\{10,11,12,13\}\}$. Let

$\mathcal{B}_{1}:$	$[0,19,10-6]$,	$[9,1,10-5]$,	$[2,4,10-14]$,	$[16,18,10-17]$,	$[5,0,7-1]$,
	$[14,11,7-10]$,	$[9,4,7-2]$,	$[17,18,8-2]$,	$[6,1,8-5]$,	$[11,16,8-13]$,
	$[0,4,8-12]$,	$[5,16,15-1]$,	$[17,4,15-2]$,	$[13,4,14-18]$,	$[8,19,7-3]$,
	$[5,6,14-19]$,	$[3,4,12-6]$,	$[0,18,9-6]$,	$[17,19,9-3]$,	$[16,3,14-1]$,
	$[13,15,6-2]$,	$[14,12,2-16]$,	$[9,2,11-5]$,	$[8,3,10-15]$,	$[6,4,11-0]$,
	$[3,5,13-18]$,	$[1,19,11-18]$,	$[19,13,2-18]$,	$[1,12,18-6]$,	$[16,19,12-7]$,
	$[16,0,13-9]$,	$[12,0,15-19]$,	$[12,5,9-16]$,	$[3,19,6-0]$,	$[2,5,17-3]$,
	$[0,14,17-12]$,	$[15,7,18-3]$,	$[1,17,13-7]$,	$[15,3,11-17]$,	$[4,16,1-5]$.

Table 1. The blocks of kite-GDD of type 4^{5}

i	A_{i}	C_{i}
1	$[0,19,10-6],[9,1,10-5]$	$[0,19,10-5],[9,1,10-6]$
2	$[5,0,7-1],[14,11,7-10],[9,4,7-2]$	$[5,0,7-2],[14,11,7-1],[9,4,7-10]$
3	$[2,4,10-14],[16,18,10-17]$	$[2,4,10-17],[16,18,10-14]$
4	$[17,18,8-2],[6,1,8-5]$	$[17,18,8-5],[6,1,8-2]$
5	$[11,16,8-13],[0,4,8-12]$	$[11,16,8-12],[0,4,8-13]$
6	$[5,16,15-1],[17,4,15-2]$	$[5,16,15-2],[17,4,15-1]$

Then $\left(X, \mathcal{G}, \mathcal{B}_{i}\right)$ is a kite-GDD of type 4^{5} for $i=1,2, \ldots, 10$, where $\mathcal{B}_{2}=\left(\mathcal{B}_{1} \backslash A_{1}\right) \cup C_{1}, \mathcal{B}_{3}=\left(\mathcal{B}_{1} \backslash A_{2}\right) \cup C_{2}$, $\mathcal{B}_{4}=\left(\mathcal{B}_{2} \backslash A_{3}\right) \cup C_{3}, \mathcal{B}_{5}=\left(\mathcal{B}_{3} \backslash A_{3}\right) \cup C_{3}, \mathcal{B}_{6}=\left(\mathcal{B}_{4} \backslash A_{4}\right) \cup C_{4}, \mathcal{B}_{7}=\left(\mathcal{B}_{5} \backslash A_{4}\right) \cup C_{4}, \mathcal{B}_{8}=\left(\mathcal{B}_{6} \backslash A_{5}\right) \cup C_{5}$, $\mathcal{B}_{9}=\left(\mathcal{B}_{7} \backslash A_{5}\right) \cup C_{5}, \mathcal{B}_{10}=\left(\mathcal{B}_{8} \backslash A_{6}\right) \cup C_{6}$ Consider the following permutations on X.

```
\pi
\pi
\pi
\pi
\pi
\pi
\pi}12=(419)(716)
\pi
\pi
\pi
\pi}\mp@subsup{\pi}{20}{=(11 13 12),
\pi}22=(02)
\pi}24=(1819)
\pi}26=(717)
\pi}28=(815)
\pi}\mp@subsup{\pi}{30}{}=\mp@subsup{\pi}{31}{}=\mp@subsup{\pi}{32}{}=\mp@subsup{\pi}{33}{}=\mp@subsup{\pi}{34}{}=(1)
\pi
\pi
\pi}\mp@subsup{\pi}{7}{}=(41819)(89)(1013)
\pi
\pi
\pi
\pi
\pi
\pi
\pi
\pi}\mp@subsup{\pi}{23}{}=(419)
\pi}25=(716)
\pi}27=(814)
<
\pi
\pi}35=\mp@subsup{\pi}{36}{}=\mp@subsup{\pi}{37}{}=\mp@subsup{\pi}{38}{}=\mp@subsup{\pi}{40}{}=(1)
```

We have that for each $s \in I(5) \backslash\{30, \ldots, 38\},\left|\pi_{s} \mathcal{B}_{1} \cap \mathcal{B}_{1}\right|=s$ and $\pi_{s} \mathcal{G}=\mathcal{G}$. For each $s \in\{30, \ldots, 38\}$, $\left|\pi_{s} \mathcal{B}_{40-s} \cap \mathcal{B}_{1}\right|=s$ and $\pi_{s} \mathcal{G}=\mathcal{G}$.

4. Input designs

For counting $J(u)$ for $6 \leq u \leq 14$, we may search for a large number of instances of kite-GDDs. However, to reduce the computation, when $6 \leq u \leq 14$, we shall first determine the intersection numbers of a pair of kite-GDDs of type $a^{m} b^{1}$ with the same group set.
Lemma 4.1. Let $M_{1}=\{0,1, \ldots, 26,36\}$ and $s \in M_{1}$. Then there is a pair of kite-GDDs of type $4^{3} 8^{1}$ with the same group set, which intersect in sblocks.

Proof. Take the vertex set $X=\{0,1, \ldots, 19\}$ and the group set $\mathcal{G}=\{\{8,9,18,19\},\{10,11,16,17\}$, $\{12,13,14,15\},\{0,1, \ldots, 7\}\}$. Let

$\mathcal{B}_{1}:$,	$[19,10,0-16]$,	$[17,18,7-19]$,	$[15,16,6-19]$,	$[1,11,12-7]$,	$[9,10,2-17]$,
$[8,16,7-14]$,	$[0,18,11-7]$,	$[17,19,5-16]$,	$[16,4,18-3]$,	$[15,17,3-19]$,	
$[16,2,14-0]$,	$[11,2,13-17]$,	$[12,10,3-8]$,	$[9,4,11-6]$,	$[10,14,8-0]$,	
$[9,15,7-13]$,	$[8,6,13-18]$,	$[1,19,13-0]$,	$[1,18,10-7]$,	$[17,9,0-15]$,	
$[18,5,15-1]$,	$[17,4,14-5]$,	$[16,3,13-4]$,	$[14,19,11-5]$,	$[10,5,13-9]$,	
$[12,9,6-17]$,	$[8,15,11-3]$,	$[19,16,12-5]$,	$[1,17,8-5]$,	$[2,18,12-0]$,	
$[19,15,2-8]$,	$[4,8,12-17]$,	$[15,10,4-19]$,	$[18,14,6-10]$,	$[1,16,9-5]$,	
$[3,9,14-1]$.					

Then $\left(X, \mathcal{G}, \mathcal{B}_{1}\right)$ is a kite-GDD of type $4^{3} 8^{1}$. Consider the following permutations on X.

$$
\begin{aligned}
& \pi_{0}=(03)(12)(89)(101711)(1819), \quad \pi_{1}=(0123)(81819)(10161117), \\
& \pi_{2}=(23)(8199)(10161711), \quad \pi_{3}=(12)(8918)(101711), \\
& \pi_{4}=(01)(23)(89)(1117), \quad \pi_{5}=\left(\begin{array}{ll}
0 & 3
\end{array}\right)(12)(1016)(1819) \text {, } \\
& \pi_{6}=(03)(8919), \quad \pi_{7}=(81918)(1116), \\
& \pi_{8}=(02)(91819), \quad \pi_{9}=(23)(8189), \\
& \pi_{10}=\left(\begin{array}{lll}
0 & 3 & 1
\end{array}\right)(1011), \quad \pi_{11}=\left(\begin{array}{ll}
8 & 19
\end{array}\right)\left(\begin{array}{ll}
11 & 16
\end{array}\right), \\
& \pi_{12}=\left(\begin{array}{lll}
0 & 3 & 1
\end{array}\right)\left(\begin{array}{ll}
10 & 11
\end{array}\right), \quad \pi_{13}=\left(\begin{array}{ll}
0 & 3
\end{array}\right)(1011), \\
& \pi_{14}=\left(\begin{array}{lll}
0 & 1 & 2
\end{array}\right)\left(\begin{array}{lll}
10 & 11
\end{array}\right), \quad \pi_{15}=\left(\begin{array}{lll}
0 & 1 & 2
\end{array}\right), \\
& \pi_{16}=(01)(1011), \quad \pi_{17}=\left(\begin{array}{ll}
0 & 2
\end{array}\right)(1011), \\
& \pi_{18}=\left(\begin{array}{ll}
16 & 17
\end{array}\right), \quad \pi_{19}=\left(\begin{array}{ll}
1 & 3
\end{array}\right), \\
& \pi_{20}=\left(\begin{array}{lll}
0 & 3 & 2
\end{array}\right), \quad \pi_{21}=\left(\begin{array}{ll}
11 & 16
\end{array}\right), \\
& \pi_{22}=(1011), \quad \pi_{23}=\left(\begin{array}{ll}
0 & 3
\end{array}\right), \\
& \pi_{24}=(12), \quad \pi_{25}=\left(\begin{array}{ll}
2 & 3
\end{array}\right), \\
& \pi_{26}=\left(\begin{array}{ll}
0 & 2
\end{array}\right) \quad \pi_{36}=(1) .
\end{aligned}
$$

We have that for each $s \in M_{1},\left|\pi_{s} \mathcal{B}_{1} \cap \mathcal{B}_{1}\right|=s$ and $\pi_{s} \mathcal{G}=\mathcal{G}$.

Lemma 4.2. Let $M_{2}=\{0,1, \ldots, 35,48\}$ and $s \in M_{2}$. Then there is a pair of kite-GDDs of type $4^{3} 12^{1}$ with the same group set, which intersect in s blocks.

Proof. Take the vertex set $X=\{0,1, \ldots, 23\}$ and the group set $\mathcal{G}=\{\{12,13,22,23\},\{14,15,20,21\}$, $\{16,17,18,19\},\{0,1, \ldots, 11\}\}$. Let

$\mathcal{B}_{1}:$	$[0,14,23-5]$,	$[22,11,21-8]$,	$[20,10,19-0]$,	$[1,16,15-11]$,	$[13,2,14-8]$,
	$[11,20,12-8]$,	$[23,9,21-6]$,	$[22,8,20-0]$,	$[19,7,21-3]$,	$[18,6,20-1]$,
	$[17,3,15-10]$,	$[16,5,14-6]$,	$[13,0,15-9]$,	$[12,1,14-4]$,	$[11,19,13-10]$,
	$[10,21,12-7]$,	$[1,23,17-5]$,	$[0,16,22-7]$,	$[0,21,17-6]$,	$[23,2,20-5]$,
	$[22,1,19-6]$,	$[2,18,21-5]$,	$[20,4,17-9]$,	$[18,4,15-8]$,	$[16,7,13-6]$,
	$[15,6,12-5]$,	$[14,11,18-8]$,	$[12,9,16-8]$,	$[14,7,17-11]$,	$[15,5,19-8]$,
	$[20,3,16-2]$,	$[17,10,22-5]$,	$[22,9,18-7]$,	$[19,3,23-11]$,	$[1,21,13-4]$,
	$[2,15,22-6]$,	$[3,14,22-4]$,	$[4,21,16-11]$,	$[5,18,13-3]$,	$[6,23,16-10]$,
	$[7,15,23-4]$,	$[17,13,8-23]$,	$[9,19,14-10]$,	$[9,13,20-7]$,	$[12,0,18-3]$,
	$[4,19,12-3]$,	$[23,10,18-1]$,	$[17,12,2-19]$.		

Then $\left(X, \mathcal{G}, \mathcal{B}_{1}\right)$ is a kite-GDD of type $4^{3} 12^{1}$. Consider the following permutations on X.

$$
\begin{array}{ll}
\pi_{0}=(12132223)(142021)(16181719), & \pi_{1}=(1322)(1420)(1521)(161819), \\
\pi_{2}=(142115)(16181917)(2223), & \pi_{3}=(122223)(152120)(171819), \\
\pi_{4}=(1223)(1322)(1618)(2021), & \pi_{5}=(122322)(171918)(2021), \\
\pi_{6}=(1420)(161918)(2223), & \pi_{7}=(1323)(152120)(1819), \\
\pi_{8}=(279510)(811), & \pi_{9}=(0101125)(89), \\
\pi_{10}=(071110892), & \pi_{11}=(08)(510117), \\
\pi_{12}=(28)(511)(910), & \pi_{13}=(210811)(79), \\
\pi_{14}=(0782911), & \pi_{15}=(097)(81011), \\
\pi_{16}=(081195), & \pi_{17}=(21011)(58), \\
\pi_{18}=(052811), & \pi_{19}=(011)(59), \\
\pi_{20}=(08510), & \pi_{21}=(211510), \\
\pi_{22}=(0257), & \pi_{23}=(02)(89), \\
\pi_{24}=(0972), & \pi_{25}=(598), \\
\pi_{26}=(0810), & \pi_{27}=(0105), \\
\pi_{28}=(2910), & \pi_{29}=(025), \\
\pi_{30}=(097), & \pi_{31}=(511), \\
\pi_{32}=(510), & \pi_{35}=(29), \\
\pi_{34}=(27), &
\end{array}
$$

We have that for each $s \in M_{2},\left|\pi_{s} \mathcal{B}_{1} \cap \mathcal{B}_{1}\right|=s$ and $\pi_{s} \mathcal{G}=\mathcal{G}$.

Lemma 4.3. Let $M_{3}=\{0,1, \ldots, 53,64\}$ and $s \in M_{3}$. Then there is a pair of kite-GDDs of type $8^{2} 12^{1}$ with the same group set, which intersect in sblocks.

Proof. Take the vertex set $X=\{0,1, \ldots, 27\}$ and the group set $\mathcal{G}=\{\{0, \ldots, 11\},\{12, \ldots, 19\}$, $\{20, \ldots, 27\}\}$. Let

$\mathcal{B}_{1}:$	$[0,27,14-5]$,	$[0,26,13-4]$,	$[0,25,12-6]$,	$[24,12,1-26]$,	$[27,15,1-25]$
	$[2,14,23-11]$,	$[19,22,3-26]$,	$[3,21,18-5]$,	$[2,22,18-1]$,	$[23,19,4-27]$,
	$[26,17,4-25]$,	$[25,16,5-26]$,	$[17,24,5-23]$,	$[6,23,15-5]$,	$[6,22,16-1]$,
	$[12,27,7-21]$,	$[13,25,7-15]$,	$[12,21,8-23]$,	$[13,24,8-22]$,	$[16,21,9-17]$,
	$[15,22,9-12]$,	$[14,24,10-23]$,	$[13,20,11-21]$,	$[14,26,11-22]$,	$[27,19,5-21]$,
	$[26,6,18-0]$,	$[25,17,8-16]$,	$[24,16,2-17]$,	$[25,15,10-21]$,	$[23,18,7-24]$,
	$[22,17,10-19]$,	$[21,19,2-13]$,	$[20,18,4-24]$,	$[20,17,6-27]$,	$[21,17,0-15]$,
	$[24,0,19-6]$,	$[16,7,20-0]$,	$[20,15,2-25]$,	$[20,14,3-25]$,	$[23,17,1-22]$,
	$[24,18,9-27]$,	$[23,16,0-22]$,	$[21,15,4-16]$,	$[25,19,9-26]$,	$[25,18,11-17]$,
	$[22,14,7-17]$,	$[26,7,19-1]$,	$[21,14,1-20]$,	$[22,13,5-20]$,	$[27,18,8-14]$,
	$[24,15,11-19]$,	$[16,27,11-12]$,	$[19,8,20-9]$,	$[13,23,9-14]$,	$[10,27,13-3]$,
	$[26,16,10-18]$,	$[21,6,13-1]$,	$[26,12,2-27]$,	$[8,26,15-3]$,	$[10,20,12-5]$,
	$[25,14,6-24]$,	$[12,22,4-14]$,	$[27,17,3-24]$,	$[12,23,3-16]$.	

Then $\left(X, \mathcal{G}, \mathcal{B}_{1}\right)$ is a kite-GDD of type $8^{2} 12^{1}$. Consider the following permutations on X.

```
\pi
\pi}25=(1215 14)(25 26) 筀6 = (2 3 5 4)(26 27)
\pi}27=(253)(24 25) 岴 = (12 15)(13 14)
```



```
\pi
\pi
\pi
\pi
\pi
\pi
\pi}43=(25 26) 䏓 = (2 5 4)
\pi
\pi
\pi
\pi
\pi
```

We have that for each $s \in M_{3},\left|\pi_{s} \mathcal{B}_{1} \cap \mathcal{B}_{1}\right|=s$ and $\pi_{s} \mathcal{G}=\mathcal{G}$.

5. For $6 \leq u \leq 14$

Lemma 5.1. $J(6)=I(6)$.

Proof. Take the same set M_{2} as in Lemma 4.2. Let $\alpha \in M_{2}$. Then there is a pair of kite-GDDs of type $4^{3} 12^{1}\left(X, \mathcal{B}_{1}\right)$ and $\left(X, \mathcal{B}_{2}\right)$ with the same group set, which intersect in α blocks. Here the subgraph K_{12} is constructed on $Y \subset X$. Let $\beta \in I(3)$, By Lemma 3.1, there is a pair of kite-GDDs of type $4^{3}\left(Y, \mathcal{B}_{1}^{\prime}\right)$ and $\left(Y, \mathcal{B}_{2}^{\prime}\right)$ intersecting in β common blocks. Then $\left(X, \mathcal{B}_{1} \cup \mathcal{B}_{1}^{\prime}\right)$ and $\left(X, \mathcal{B}_{2} \cup \mathcal{B}_{2}^{\prime}\right)$ are a pair of kite-GDDs of type 4^{6} with $\alpha+\beta$ common blocks. Thus we have

$$
J(6) \supseteq\left\{\alpha+\beta: \alpha \in M_{2}, \beta \in I(3)\right\}=M_{2}+I(3)=I(6)
$$

Lemma 5.2. $J(8)=I(8)$.
Proof. Take the same set M_{3} as in Lemma 4.3. Let $\alpha \in M_{3}$. Then there is a pair of kite-GDDs of type $8^{2} 12^{1}$ with the same group set, which intersect in α blocks. Let $\gamma_{1}, \gamma_{2} \in I(3)$. By Lemma 3.1, there is a pair of kite-GDDs of type 4^{3} intersecting in γ_{i} common blocks for each $i=1,2$. Let $\gamma_{3} \in I(4)$. By Lemma 3.2, there is a pair of kite-GDDs of type 4^{4} with γ_{3} common blocks. Now applying Construction 2.2, we obtain a pair of kite-GDDs of type 4^{8} with $\alpha+\sum_{i=1}^{3} \gamma_{i}$ common blocks. Thus we have

$$
J(8) \supseteq\left\{\alpha+\sum_{i=1}^{3} \gamma_{i}: \alpha \in M_{3}, \gamma_{1}, \gamma_{2} \in I(3), \gamma_{3} \in I(4)\right\}=I(8) .
$$

Lemma 5.3. $J(u)=I(u)$ for $u=7,10,13$.
Proof. Start from a 4-GDD of type $2^{u}, u=7,10,13$, by Lemma 2.3. Give each point of the GDD weight 2 . By Lemma 2.4, there is a pair of kite-GDDs of type 2^{4} with α common blocks, $\alpha \in\{0, \ldots, 4,6\}$. Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 4^{u} with $\sum_{i=1}^{b} \alpha_{i}$ common blocks, where $b=u(u-1) / 3$ is the number of blocks of the 4-GDD of type 2^{u} and $\alpha_{i} \in\{0, \ldots, 4,6\}$ for $1 \leq i \leq b$. Which implies, for $u=7,10,13$

$$
J(u) \supseteq\left\{\sum_{i=1}^{b} \alpha_{i}: \alpha_{i} \in\{0, \ldots, 4,6\}, 1 \leq i \leq b\right\}=b *\{0, \ldots, 4,6\}=I(u) .
$$

Lemma 5.4. $J(u)=I(u)$ for $u=9,11$.
Proof. Start from a 3-GDD of type 3^{3} by Lemma 2.3. Give each point of the GDD weight 4 . By Lemma 3.1, there is a pair of kite-GDDs of type 4^{3} with α common blocks, $\alpha \in I(3)$. Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 12^{3} with $\sum_{i=1}^{9} \alpha_{i}$ common blocks, where $b=9$ is the number of blocks of the 3-GDD of type 3^{3} and $\alpha_{i} \in I(3)$ for $1 \leq i \leq 9$.

Let $u=9$. By Lemma 3.1, there is a pair of kite-GDDs of type 4^{3} with β_{j} common blocks, where $\beta_{j} \in I(3)$, $1 \leq j \leq 3$. By Construction 2.2, we have a pair of kite-GDDs of type 4^{9} with $\sum_{i=1}^{9} \alpha_{i}+\sum_{j=1}^{3} \beta_{j}$ common blocks, which implies

$$
\begin{aligned}
J(9) & \supseteq\left\{\sum_{i=1}^{9} \alpha_{i}+\sum_{j=1}^{3} \beta_{j}: \alpha_{i} \in I(3), \beta_{j} \in I(3), 1 \leq i \leq 9,1 \leq j \leq 3\right\} \\
& =9 *\{0, \ldots, 10,12\}+3 *\{0, \ldots, 10,12\}=I(9) .
\end{aligned}
$$

Let $u=11$. By Lemma 4.1, there is a pair of kite-GDDs of type $4^{3} 8^{1}$ with β_{j} common blocks, where $\beta_{j} \in M_{1}, 1 \leq j \leq 2$. By Lemma 3.3, there is a pair of kite-GDDs of type 4^{5} with γ common blocks. By

Construction 2.2, we have a pair of kite-GDDs of type 4^{11} with $\sum_{i=1}^{9} \alpha_{i}+\sum_{j=1}^{2} \beta_{j}+\gamma$ common blocks, which implies

$$
\begin{aligned}
J(11) & \supseteq\left\{\sum_{i=1}^{9} \alpha_{i}+\sum_{j=1}^{2} \beta_{j}+\gamma: \alpha_{i} \in I(3), \beta_{j} \in M_{1}, \gamma \in I(5), 1 \leq i \leq 9,1 \leq j \leq 2\right\} \\
& =9 *\{0, \ldots, 10,12\}+2 *\{0, \ldots, 24,36\}+\{0, \ldots, 38,40\}=I(11) .
\end{aligned}
$$

Lemma 5.5. $J(u)=I(u)$ for $u=12,14$.
Proof. Start from a 4-GDD of type 3^{4} by Lemma 2.3. Give each point of the GDD weight 4. By Lemma 3.2, there is a pair of kite-GDDs of type 4^{4} with α common blocks, $\alpha \in I(4)$. Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 12^{4} with $\sum_{i=1}^{9} \alpha_{i}$ common blocks, where $b=9$ is the number of blocks of the 4-GDD of type 3^{4} and $\alpha_{i} \in I(4)$ for $1 \leq i \leq 9$.

Let $u=12$. By Lemma 3.1, there is a pair of kite-GDDs of type 4^{3} with β_{j} common blocks, where $\beta_{j} \in I(3)$, $1 \leq j \leq 4$. By Construction 2.2, we have a pair of kite-GDDs of type 4^{12} with $\sum_{i=1}^{9} \alpha_{i}+\sum_{j=1}^{4} \beta_{j}$ common blocks, which implies

$$
\begin{aligned}
J(12) & \supseteq\left\{\sum_{i=1}^{9} \alpha_{i}+\sum_{j=1}^{4} \beta_{j}: \alpha_{i} \in I(4), \beta_{j} \in I(3), 1 \leq i \leq 9,1 \leq j \leq 4\right\} \\
& =9 *\{0, \ldots, 22,24\}+4 *\{0, \ldots, 10,12\}=I(12) .
\end{aligned}
$$

Let $u=14$. By Lemma 4.1, there is a pair of kite-GDDs of type $4^{3} 8^{1}$ with β_{j} common blocks, where $\beta_{j} \in M_{1}, 1 \leq j \leq 3$. By Lemma 3.3, there is a pair of kite-GDDs of type 4^{5} with γ common blocks, where $\gamma \in I(5)$. By Construction 2.2, we have a pair of kite-GDDs of type 4^{14} with $\sum_{i=1}^{9} \alpha_{i}+\sum_{j=1}^{3} \beta_{j}+\gamma$ common blocks, which implies

$$
\begin{aligned}
J(14) & \supseteq\left\{\sum_{i=1}^{9} \alpha_{i}+\sum_{j=1}^{3} \beta_{j}+\gamma: \alpha_{i} \in I(4), \beta_{j} \in M_{1}, \gamma \in I(5), 1 \leq i \leq 9,1 \leq j \leq 3\right\} \\
& =9 *\{0, \ldots, 22,24\}+3 *\{0, \ldots, 24,36\}+\{0, \ldots, 38,40\}=I(14) .
\end{aligned}
$$

6. Proof of Theorem 1.1

First we need the following definition. Let s_{1} and s_{2} be two non-negative integers. If X and Y are two sets of pairs of non-negative integers, then $X+Y$ denotes the set $\left\{s_{1}+s_{2}: s_{1} \in X, s_{2} \in Y\right\}$. If X is a set of pairs of non-negative integers and h is some positive integer, then $h * X$ denotes the set of all pairs of non-negative integers which can be obtained by adding any h elements of X together (repetitions of elements of X allowed).

Lemma 6.1. For any integer $u \equiv 0(\bmod 3)$ and $u \geq 15, J(u)=I(u)$.
Proof. Let $u=3 t$ and $t \geq 5$. Start from a 4-GDD of type 6^{t} by Lemma 2.3. Give each point of the GDD weight 2. By Lemma 2.4, there is a pair of kite-GDDs of type 2^{4} with α common blocks, $\alpha \in\{0, \ldots, 4,6\}$. Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 12^{t} with $\sum_{i=1}^{b} \alpha_{i}$ common blocks, where $b=3 t(t-1)$ is the number of blocks of the 4-GDD of type 6^{t} and $\alpha_{i} \in\{0, \ldots, 4,6\}$ for $1 \leq i \leq b$.

By Lemma 3.1, there is a pair of kite-GDDs of type 4^{3} with β_{j} common blocks, where $\beta_{j} \in I(3), 1 \leq j \leq t$. By Construction 2.2, we have a pair of kite-GDDs of type $4^{3 t}$ with $\sum_{i=1}^{b} \alpha_{i}+\sum_{j=1}^{t} \beta_{j}$ common blocks, which implies

$$
\begin{aligned}
J(u)=J(3 t) & \supseteq\left\{\sum_{i=1}^{b} \alpha_{i}+\sum_{j=1}^{t} \beta_{j}: \alpha_{i} \in\{0, \ldots, 4,6\}, \beta_{j} \in I(3), 1 \leq i \leq b, 1 \leq j \leq t\right\} \\
& =b *\{0, \ldots, 4,6\}+t *\{0, \ldots, 10,12\} \\
& =I(3 t)=I(u)
\end{aligned}
$$

Lemma 6.2. For any integer $u \equiv 1(\bmod 3)$ and $u \geq 16, J(u)=I(u)$.
Proof. Let $u=3 t+1$ and $t \geq 5$. Start from a 4-GDD of type 6^{t} by Lemma 2.3. Give each point of the GDD weight 2. By Lemma 2.4, there is a pair of kite-GDDs of type 2^{4} with α common blocks, $\alpha \in\{0, \ldots, 4,6\}$. Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 12^{t} with $\sum_{i=1}^{b} \alpha_{i}$ common blocks, where $b=3 t(t-1)$ is the number of blocks of the 4-GDD of type 6^{t} and $\alpha_{i} \in\{0, \ldots, 4,6\}$ for $1 \leq i \leq b$.

By Lemma 3.2, there is a pair of kite-GDDs of type 4^{4} with β_{j} common blocks, where $\beta_{j} \in I(4), 1 \leq j \leq t$. By Construction 2.2, we have a pair of kite-GDDs of type $4^{3 t+1}$ with $\sum_{i=1}^{b} \alpha_{i}+\sum_{j=1}^{t} \beta_{j}$ common blocks, which implies

$$
\begin{aligned}
J(u)=J(3 t+1) & \supseteq\left\{\sum_{i=1}^{b} \alpha_{i}+\sum_{j=1}^{t} \beta_{j}: \alpha_{i} \in\{0, \ldots, 4,6\}, \beta_{j} \in I(4), 1 \leq i \leq b, 1 \leq j \leq t\right\} \\
& =b *\{0, \ldots, 4,6\}+t *\{0, \ldots, 22,24\} \\
& =I(3 t+1)=I(u) .
\end{aligned}
$$

Lemma 6.3. For any integer $u \equiv 2(\bmod 3)$ and $u \geq 17, J(u)=I(u)$.
Proof. Let $u=3 t+2$ and $t \geq 5$. Start from a 4-GDD of type 6^{t} by Lemma 2.3. Give each point of the GDD weight 2. By Lemma 2.4, there is a pair of kite-GDDs of type 2^{4} with α common blocks, $\alpha \in\{0, \ldots, 4,6\}$. Then apply Construction 2.1 to obtain a pair of kite-GDDs of type 12^{t} with $\sum_{i=1}^{b} \alpha_{i}$ common blocks, where $b=3 t(t-1)$ is the number of blocks of the 4-GDD of type 6^{t} and $\alpha_{i} \in\{0, \ldots, 4,6\}$ for $1 \leq i \leq b$.

By Lemma 4.1, there is a pair of kite-GDDs of type $4^{3} 8^{1}$ with β_{j} common blocks, where $\beta_{j} \in M_{1}$, $1 \leq j \leq t-1$. By Lemma 3.3, there is a pair of kite-GDDs of type 4^{5} with γ common blocks, where $\gamma \in I_{5}$. By Construction 2.2, we have a pair of kite-GDDs of type $4^{3 t+2}$ with $\sum_{i=1}^{b} \alpha_{i}+\sum_{j=1}^{t-1} \beta_{j}+\gamma$ common blocks, which implies

$$
\begin{aligned}
J(u)=J(3 t+2) & \supseteq\left\{\sum_{i=1}^{b} \alpha_{i}+\sum_{j=1}^{t-1} \beta_{j}+\gamma: \alpha_{i} \in\{0, \ldots, 4,6\}, \beta_{j} \in M_{1}, \gamma \in I_{5}, 1 \leq i \leq b, 1 \leq j \leq t\right\} \\
& =b *\{0, \ldots, 4,6\}+(t-1) *\{0, \ldots, 24,36\}+\{0, \ldots, 38,40\} \\
& =I(3 t+2)=I(u) .
\end{aligned}
$$

Proof of Theorem 1.1: When $u \in\{3,4, \ldots, 14\}$, the conclusion follows from Lemmas 3.1-3.3, and Lemmas 5.1-5.5. When $u \geq 15$, combining the results of Lemmas 6.1-6.3, we complete the proof.

References

[1] E. J. Billington and D. L. Kreher, The intersection problem for small G-designs, Australas. J. Combin., 12 (1995), 239-258.
[2] R. A. R. Butler and D. G. Hoffman, Intersections of group divisible triple systems, Ars Combin, 34(1992), 268-288.
[3] Y. Chang, T. Feng, and G. Lo Faro, The triangle intersection problem for $S(2,4, v)$ designs, Discrete Math., 310(2010), 3194-3205.
[4] Y. Chang, T. Feng, G. Lo Faro, and A. Tripodi, The fine triangle intersection problem for kite systems, Discrete Math., 312(2012), 545-553.
[5] Y. Chang, T. Feng, G. Lo Faro, and A. Tripodi, Enumerations of ($K_{4}-e$)-designs with small orders, Quaderni di Matematica (special volume to the memory of Lucia Gionfriddo), in press.
[6] Y. Chang, T. Feng, G. Lo Faro, and A. Tripodi, The fine triangle intersection problem for ($K_{4}-e$)-designs, Discrete Math., 311 (2011), 2442-2462.
[7] Y. Chang, T. Feng, and G. Lo Faro, The triangle intersection problem for $S(2,4, v)$ designs, Discrete Math., 310(2010), 3194-3205.
[8] Y. Chang, T. Feng, G. Lo Faro and A. Tripodi , The triangle intersection numbers of a pair of disjoint S(2, 4,v)s, Discrete Math., 310(2010), 3007-3017.
[9] Y. Chang and G. Lo Faro, The flower intersection problem for Kirkman triple systems, J. Statist. Plann. Inference, 110(2003), 159-177.
[10] C. J. Colbourn, D. G. Hoffman, and C. C. Lindner, Intersections of S $(2,4, v)$ designs, Ars Combin., 33(1992), 97-111.
[11] G. Ge, Group divisible designs, in: CRC Handbook of Combinatorial Designs (C. J. Colbourn and J. H. Dinitz, eds), CRC Press, (2007), 255-260.
[12] E. S. Kramer and D. M. Mesner, Intersections among Steiner systems, J. Combin. Theory A, 16(1974), 273-285.
[13] G. Zhang, Y. Chang, and T. Feng, The flower intersection problem for S(2,4,v)s, Discrete Math., 315-316(2014), 75-82.
[14] G. Zhang, Y. Chang, and T. Feng, The fine triangle intersection problem for minimum kite coverings, Advances in Mathematics (China), 42(5)(2013), 676-690.
[15] G. Zhang, Y. Chang, and T. Feng, The fine triangle intersections for maximum kite packings, Acta Mathematica Sinica, English Series, 29(5)(2013), 867-882.
[16] G. Zhang, Y. An, and T. Feng, The intersection problem for $P B D\left(4,7^{*}\right)$, Utilitas Mathematics,107(2018), 317-337.
[17] G. Zhang, Y. An, The intersection problem for $S(2,4, v) s$ with a common parallel class, Util. Math., 114(2020),147-165.
[18] Y. An and G. Zhang The Intersection Problem for Kite-GDDs of Type 2 ${ }^{u}$, J. Mathematical Research with Appl., 41(6)(2021), 551-564.

[^0]: 2020 Mathematics Subject Classification. Primary 05B05; Secondary 05B30; 05C51
 Keywords. kite-GDD; group divisible design; intersection number
 Received: 03 March 2022; Revised: 10 June 2022; Accepted: 28 June 2022
 Communicated by Paola Bonacini
 Supported by the National Natural Science Foundation of China (Grant No. 11601137; 12261032) and the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region (Grant Nos. NJZZ21052).

 Email addresses: zgz_hlbr@163.com (Guizhi Zhang), anyh1979@126.com (Yonghong An)

