Filomat 37:7 (2023), 2237–2249 https://doi.org/10.2298/FIL2307237Z

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A time domain characterization of weak Gabor dual frames on the half real line

Yan Zhang^a, Yun-Zhang Li^b

^aSchool of Mathematics and Information Science, North Minzu University, Yinchuan 750021, P. R. China ^bDepartment of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, P. R. China

Abstract. Due to \mathbb{R}_+ not being a group under addition, $L^2(\mathbb{R}_+)$ admits no traditional Gabor system as $L^2(\mathbb{R})$. Observing that \mathbb{R}_+ is a group under a new addition " \oplus ", we in this paper introduce and characterize a class of weak Gabor dual frames in $L^2(\mathbb{R}_+)$ based on this new group structure. Some examples are also provided.

1. Introduction

In the last decades, frame theory has interested many researchers in pure and applied mathematics [2, 28]. The study of structured frames is an important part in the theory of function space frames. Among them, a Gabor frame for $L^2(\mathbb{R})$ is generated by a translation-and-modulation operator system acting on several functions in $L^2(\mathbb{R})$. Constructing Gabor dual frame pairs with desired properties has been attracting much attention of many mathematicians (see[3–8, 11, 12, 15, 18–20, 26, 27, 30] and references therein). Christensen, R. Y. Kim and H. O. Kim in [5, 6] investigated the constructions of the dual window functions of Gabor frames with the "partition of unity" property. Stoeva in [26] characterized Gabor dual frames pairs with compactly supported window functions. Christensen, Janssen, H. O. Kim and R. Y. Kim in [3] investigated a class of window functions for which approximately dual windows can be calculated explicitly, and presented the explicit estimates for the deviation from perfect reconstruction of the Gaussian and two-sided exponential function. In addition, subspace Gabor analysis and Gabor analysis on local fields have also been studied (see [1, 13–17, 21, 24, 25, 30, 31] and references therein). Recently, Li and Jia in [20] generalized "Gabor dual frame" to "weak Gabor dual frame" (also called weak Gabor bi-frame), and characterized weak Gabor dual pairs on periodic subsets of \mathbb{R} . Observe that a pair of weak Gabor dual frames if they are Bessel sequences in addition.

This paper focuses on Gabor analysis on $L^2(\mathbb{R}_+)$ with $\mathbb{R}_+ = [0, \infty)$. In contrast to \mathbb{R} , \mathbb{R}_+ is not a group under addition. This results in $L^2(\mathbb{R}_+)$ admitting no traditional nontrivial shift invariant system. Thus it does not admit traditional wavelet or Gabor frames. Fortunately, \mathbb{R}_+ is an abelian group under a new

²⁰²⁰ Mathematics Subject Classification. Primary 42C40; Secondary 42C15.

Keywords. Frame; Gabor frame; Gabor dual; Weak Gabor dual; Half real line.

Received: 02 March 2022; Revised: 15 June 2022; Accepted: 16 August 2022

Communicated by Miodrag Spalević

The first author was supported by Natural Science Foundation of Ningxia (grant number 2022AAC05037); National Natural Science Foundation of China (grant number 12061002); Ningxia Excellent Talents Support Program (grant number TJGC2019014); Construction Project of First-Class Disciplines in Ningxia Higher Education (NXYLXK2017B09). The second author is the corresponding author, and was supported by National Natural Science Foundation of China (grant number 11971043).

Email addresses: yzhang@nmu.edu.cn (Yan Zhang), yzlee@bjut.edu.cn (Yun-Zhang Li)

addition " \oplus " defined below. Based on this group structure, a class of wavelet frames for $L^2(\mathbb{R}_+)$ were introduced and investigated ([9, 10]). Motivated by the above works, in this paper, we investigate a class of weak Gabor dual frames for $L^2(\mathbb{R}_+)$.

To proceed, let us first review the addition " \oplus ". We denote by \mathbb{Z} , \mathbb{Z}_+ and \mathbb{N} the set of integers, nonnegative integers and positive integers, respectively; by \mathbb{N}_t the set of $\{0, 1, \dots, t-1\}$ for $t \in \mathbb{N}$; and by $\lfloor y \rfloor$, $\{y\}$ the integer and fractional parts of $y \in \mathbb{R}_+$ respectively. Given 1 , define*addition*and*subtraction* $on <math>\mathbb{N}_p$ by

$$x_1 \oplus x_2 = (x_1 + x_2) \pmod{p} = \begin{cases} x_1 + x_2 & \text{if } x_1 + x_2 < p; \\ x_1 + x_2 - p & \text{if } x_1 + x_2 \ge p \end{cases}$$
(1)

and

$$x_1 \ominus x_2 = (x_1 - x_2) \pmod{p} = \begin{cases} x_1 - x_2 & \text{if } x_1 \ge x_2; \\ x_1 - x_2 + p & \text{if } x_1 < x_2 \end{cases}$$

for $x_1, x_2 \in \mathbb{N}_p$. Every $y \in \mathbb{R}_+$ corresponds to the unique representation:

$$y = \sum_{j=1}^{\infty} y_{-j} p^{j-1} + \sum_{j=1}^{\infty} y_j p^{-j},$$
(2)

where $y_{-i}, y_i \in \mathbb{N}_p$ are defined by

$$y_{-j} = \lfloor p^{1-j}y \rfloor \pmod{p} \text{ and } y_j = \lfloor p^jy \rfloor \pmod{p}$$
(3)

for $j \in \mathbb{N}$. For $\tilde{y} \in \mathbb{R}_+$, we define $\tilde{y}_i, \tilde{y}_{-i}$ similarly. Define *addition* " \oplus " and *subtraction* " \ominus " on \mathbb{R}_+ by

$$y \oplus \tilde{y} = \sum_{j=1}^{\infty} \left(y_{-j} \oplus \tilde{y}_{-j} \right) p^{j-1} + \sum_{j=1}^{\infty} \left(y_j \oplus \tilde{y}_j \right) p^{-j}$$

$$\tag{4}$$

and

$$y \ominus \tilde{y} = \sum_{j=1}^{\infty} \left(y_{-j} \ominus \tilde{y}_{-j} \right) p^{j-1} + \sum_{j=1}^{\infty} \left(y_j \ominus \tilde{y}_j \right) p^{-j}$$
(5)

respectively for $y, \tilde{y} \in \mathbb{R}_+$. Then \mathbb{R}_+ is a group under " \oplus " with the inverse operation " \ominus ", and the opposite of x is $\ominus x = 0 \ominus x$ for $x \in \mathbb{R}_+$. This makes $L^2(\mathbb{R}_+)$ to be closed under translation based on " \ominus ", and the Gabor analysis on $L^2(\mathbb{R}_+)$ possible. Define the *quasi-inner product* on \mathbb{R}_+ by

$$\langle y, \, \tilde{y} \rangle_p = \sum_{j=1}^{\infty} (y_j \tilde{y}_{-j} + y_{-j} \tilde{y}_j) \text{ for } y, \, \tilde{y} \in \mathbb{R}_+, \tag{6}$$

and the binary function

$$\chi(y, \,\tilde{y}) = e^{\frac{2\pi i}{p} \langle y, \,\tilde{y} \rangle_p} \text{ for } y, \,\tilde{y} \in \mathbb{R}_+.$$
(7)

And define the modulation operator $M_{x_0} : L^2(\mathbb{R}_+) \to L^2(\mathbb{R}_+)$ and translation operator $T_{x_0} : L^2(\mathbb{R}_+) \to L^2(\mathbb{R}_+)$ with $x_0 \in \mathbb{R}_+$ respectively by

$$M_{x_0}f(\cdot) = \chi(x_0, \cdot)f(\cdot)$$
 and $T_{x_0}f(\cdot) = f(\cdot \ominus x_0)$

for $f \in L^2(\mathbb{R}_+)$. It is easy to check that they are both unitary operators on $L^2(\mathbb{R}_+)$, that their adjoint operators are given by

$$M_{x_0}^* f(\cdot) = \chi(x_0, \cdot) f(\cdot)$$
 and $T_{x_0}^* f(\cdot) = f(\cdot \oplus x_0)$ for $f \in L^2(\mathbb{R}_+)$,

and that

$$M_y T_{\tilde{y}} f(\cdot) = \chi(y, \tilde{y}) T_{\tilde{y}} M_y f(\cdot) \text{ for } f \in L^2(\mathbb{R}_+) \text{ and } y, \ \tilde{y} \in \mathbb{R}_+$$

Given $L \in \mathbb{N}$, $\mathbf{g} = \{g_l : 1 \le l \le L\} \subset L^2(\mathbb{R}_+)$, and a, b > 0, we define the Gabor system $X(\mathbf{g}, a, b)$ by

$$X(\mathbf{g}, a, b) = \{M_{mb}T_{na}g_l : m, n \in \mathbb{Z}_+, 1 \le l \le L\}.$$
(8)

In [23], a necessary condition and two sufficient conditions for such Gabor systems to be frames for $L^2(\mathbb{R}_+)$ are obtained in the time domain. In this paper, we work under the following general setup:

General setup:
Assumption 1.
$$1 .
Assumption 2. $a = p^s$, $b = p^t \in \Lambda$ with $s + t \le 0$, where
 $\Lambda = \{p^s : s \in \mathbb{Z}\}.$
(9)$$

Observe that *a* and *b* in this general setup are so special. It is because the equation

$$\chi(\alpha x, y) = \chi(x, \alpha y) \tag{10}$$

will be frequently used. But (10) need not hold for all $x, y, \alpha \in \mathbb{R}_+$ by Lemma 2.6 and Examples 2.7, 2.8 below. Fortunately, (10) holds for $x, y \in \mathbb{R}_+$ if $\alpha \in \Lambda$. Obviously, $e^{2\pi i \alpha x \cdot y} = e^{2\pi i x \cdot \alpha y}$ for $x, y, \alpha \in \mathbb{R}$. This demonstrates that Gabor analysis behaves essentially different between on \mathbb{R}_+ and \mathbb{R} . This paper is devoted to characterizing weak Gabor dual frame pairs. Let ζ_E denote the characteristic function of *E* for a measurable subset *E* of \mathbb{R}_+ , and write

$$L_c^{\infty}(\mathbb{R}_+) = \{ f \in L^2(\mathbb{R}_+) : f \in L^{\infty}(\mathbb{R}_+) \text{ and } \operatorname{supp}(f) \text{ is contained in a compact subset of } \mathbb{R}_+ \}.$$
(11)

Then $L_c^{\infty}(\mathbb{R}_+)$ is dense in $L^2(\mathbb{R}_+)$. Given $\mathbf{g} = \{g_l : 1 \le l \le L\}$, $\mathbf{h} = \{h_l : 1 \le l \le L\} \subset L^2(\mathbb{R}_+)$, $(X(\mathbf{g}, a, b), X(\mathbf{h}, a, b))$ is said to be *a pair of weak dual frames* for $L^2(\mathbb{R}_+)$ associated with $L_c^2(\mathbb{R}_+)$ if

$$\langle f, \tilde{f} \rangle = \sum_{l=1}^{L} \sum_{m,n \in \mathbb{Z}_{+}} \langle f, M_{mb} T_{na} g_l \rangle \langle M_{mb} T_{na} h_l, \tilde{f} \rangle \text{ for } f, \tilde{f} \in L^{\infty}_{c}(\mathbb{R}_{+}).$$

$$(12)$$

Observe that the series in (12) is absolutely convergent by the arguments in Lemma 2.9 below. It is easy to check that ($X(\mathbf{g}, a, b), X(\mathbf{h}, a, b)$) is a pair of dual frames for $L^2(\mathbb{R}_+)$ if (12) holds, and $X(\mathbf{g}, a, b), X(\mathbf{h}, a, b)$ are Bessel sequences in $L^2(\mathbb{R}_+)$. Therefore, "weak Gabor dual frames" generalize "Gabor dual frames". Example 3.2 demonstrates that it is a genuine generalization. Our main result is as follows:

Theorem 1.1. Let p, a, b be as in the general setup and \mathbf{g} , $\mathbf{h} \in L^2(\mathbb{R}_+)$. Then $(X(\mathbf{g}, a, b), X(\mathbf{h}, a, b))$ is a pair of weak dual frames for $L^2(\mathbb{R}_+)$ associated with $L^{\infty}_c(\mathbb{R}_+)$ if and only if

$$\sum_{l=1}^{L} \sum_{n \in \mathbb{Z}_{+}} \overline{g_{l}(\cdot \ominus na \oplus \frac{k}{b})} h_{l}(\cdot \ominus na) = b\delta_{k,0}$$
(13)

a.e. on (0, *a*) for $k \in \mathbb{Z}_+$.

Remark 1.2. In Theorem 1.1, if $X(\mathbf{g}, a, b)$ and $X(\mathbf{h}, a, b)$ are Bessel sequences in $L^2(\mathbb{R}_+)$ in addition, then, by a standard argument, $(X(\mathbf{g}, a, b), X(\mathbf{h}, a, b))$ is a pair of dual frames if and only if (13) holds.

Formally, Theorem 1.1 is similar to the " $L^2(\mathbb{R})$ -Gabor dual frames" characterization. But its proof is nontrivial due to " \oplus " and " $\chi(\cdot, \cdot)$ " herein being essentially different from "+" and modulation factor in " $L^2(\mathbb{R})$ -Gabor systems". Section 2 focuses on some properties of " \oplus " and Gabor systems in $L^2(\mathbb{R}_+)$. In particular, from Lemmas 2.2, 2.6 and Examples 2.4-2.8, we know that the distribution law for " \oplus " and multiplication does not hold, and that $\chi(\alpha, \cdot)$ need not equal to $\chi(\cdot, \alpha \cdot)$ for general $\alpha \in \mathbb{R}_+$. This demonstrates that Gabor analysis behaves different between \mathbb{R}_+ and \mathbb{R} . Section 3 gives the proof of Theorem 1.1. Some examples are also provided.

2. Preliminaries

This section is devoted to some properties of " \oplus " and Gabor systems in $L^2(\mathbb{R}_+)$. By a simple computation, we have the following lemma.

Lemma 2.1. (*i*) $[0, 1) \oplus x = [0, 1) \oplus x = [0, 1)$ for $x \in [0, 1)$; (*ii*) $\{ \ominus x : x \in [0, p^J) \} = [0, p^J) \oplus [0, p^J) \oplus [0, p^J) \oplus [0, p^J) \oplus [0, p^J)$ for $J \in \mathbb{Z}$.

The following lemma shows that the distribution law for " \oplus " and multiplication holds if the multipliers belong to Λ .

Lemma 2.2. Let Λ be as in (9), and $\alpha \in \Lambda$. Then

$$\alpha(x \oplus y) = \alpha x \oplus \alpha y \tag{14}$$

and

 $\alpha(x \ominus y) = \alpha x \ominus \alpha y \tag{15}$

for $x, y \in \mathbb{R}_+$.

Proof. Observe that (14) implies (15). Indeed, suppose (14) holds. Then

 $\alpha x = \alpha((x \ominus y) \oplus y) = \alpha(x \ominus y) \oplus \alpha y$

for $x, y \in \mathbb{R}_+$. This leads to (15). Next we prove (14). First we claim that

$$p(x \oplus y) = px \oplus py \text{ for } x, y \in \mathbb{R}_+$$
(16)

implies

$$\alpha(x \oplus y) = \alpha x \oplus \alpha y \text{ for } x, \ y \in \mathbb{R}_+ \text{ and } \alpha \in \Lambda.$$
(17)

Indeed, suppose (16) holds. Then, given $s \in \mathbb{N}$,

$$p^{s}(x \oplus y) = p^{s-1}(px \oplus py)$$
$$= p^{s-2}(p^{2}x \oplus p^{2}y)$$
$$= \cdots$$
$$= p^{s}x \oplus p^{s}y$$

for $x, y \in \mathbb{R}_+$. Thus

$$x \oplus y = p^s(p^{-s}x \oplus p^{-s}y).$$

This implies that, given $s \in \mathbb{N}$,

$$p^{-s}(x \oplus y) = p^{-s}x \oplus p^{-s}y$$

for $x, y \in \mathbb{R}_+$. Therefore, (17) holds. Next we prove (16). Arbitrarily fix $x, y \in \mathbb{R}_+$. We have

$$p(x \oplus y) = p\left(\sum_{j=1}^{\infty} (x_{-j} \oplus y_{-j})p^{j-1} + \sum_{j=1}^{\infty} (x_j \oplus y_j)p^{-j}\right)$$

= $(x_1 \oplus y_1) + \sum_{j=1}^{\infty} (x_{-j} \oplus y_{-j})p^j + \sum_{j=2}^{\infty} (x_j \oplus y_j)p^{1-j}$
= $(x_1 \oplus y_1) + \sum_{j=1}^{\infty} (x_{-j} \oplus y_{-j})p^j + \sum_{j=1}^{\infty} (x_{1+j} \oplus y_{1+j})p^{-j}.$ (18)

Also observe that

$$px = \sum_{j=1}^{\infty} x_{-j}p^j + \sum_{j=1}^{\infty} x_j p^{1-j} \text{ and } py = \sum_{j=1}^{\infty} y_{-j}p^j + \sum_{j=1}^{\infty} y_j p^{1-j}$$

equivalently,

$$px = x_1 + \sum_{j=1}^{\infty} x_{-j} p^j + \sum_{j=1}^{\infty} x_{1+j} p^{-j}$$
(19)

and

$$py = y_1 + \sum_{j=1}^{\infty} y_{-j} p^j + \sum_{j=1}^{\infty} y_{1+j} p^{-j}.$$
(20)

It leads to (16) by (18). The proof is completed. \Box

Remark 2.3. We remark that (14) does not necessarily hold if $\alpha \notin \Lambda$. The following Example 2.4 is a counterexample.

For $\alpha \in \mathbb{R}_+$, we have

$$\alpha(p \oplus p^{-1}) = (\alpha_1 + \alpha_{-2}) + \sum_{j=1}^{\infty} (\alpha_{-j} + \alpha_{-j-2})p^j + (\alpha_{-1} + \alpha_2)p^{-1} + \sum_{j=2}^{\infty} (\alpha_{1+j} + \alpha_{j-1})p^{-j},$$
(21)

$$\alpha p \oplus \alpha p^{-1} = (\alpha_1 \oplus \alpha_{-2}) + \sum_{j=1}^{\infty} (\alpha_{-j} \oplus \alpha_{-j-2}) p^j + (\alpha_{-1} \oplus \alpha_2) p^{-1} + \sum_{j=2}^{\infty} (\alpha_{j-1} \oplus \alpha_{1+j}) p^{-j}$$
(22)

by a simple computation. This leads to the following example.

Example 2.4. $\alpha(p \oplus p^{-1}) \neq \alpha p \oplus \alpha p^{-1}$ for $\alpha \in \mathbb{R}_+$ satisfying

either
$$\alpha_1 + \alpha_{-2} > p \text{ or } \alpha_{-1} + \alpha_2 > p$$

or $\{j \in \mathbb{N} : \alpha_{-j} + \alpha_{-j-2} > p\} \cup \{j \in \mathbb{N} \setminus \{1\} : \alpha_{j-1} + \alpha_{1+j} > p\} \neq \emptyset.$ (23)

The following lemma gives a " \oplus "-based partition of \mathbb{R}_+ .

Lemma 2.5. Let Λ be as in (9). Then, given $\alpha \in \Lambda$ and $\gamma \in \mathbb{R}_+$, $\{[0, \alpha) \oplus \gamma \oplus \alpha k : k \in \mathbb{Z}_+\}$ is a partition of \mathbb{R}_+ .

Proof. By Lemma 2.2 and Lemma 2.1 (*i*), we have

$$[0, \alpha) \oplus \gamma \oplus \alpha k = \alpha ([0, 1) \oplus \alpha^{-1} \gamma \oplus k)$$
$$= \alpha (([0, 1) \oplus \{\alpha^{-1} \gamma\}) \oplus \lfloor \alpha^{-1} \gamma \rfloor \oplus k)$$
$$= \alpha ([0, 1) \oplus (\lfloor \alpha^{-1} \gamma \rfloor \oplus k)).$$

It follows that $\{[0, \alpha) \oplus \gamma \oplus \alpha k : k \in \mathbb{Z}_+\}$ is a partition of \mathbb{R}_+ if and only if $\{[0, 1) \oplus (\lfloor \alpha^{-1} \gamma \rfloor \oplus k) : k \in \mathbb{Z}_+\}$ is a partition of \mathbb{R}_+ . Due to $\lfloor \alpha^{-1} \gamma \rfloor \oplus \mathbb{Z}_+ = \mathbb{Z}_+$ and $\lfloor \alpha^{-1} \gamma \rfloor \oplus k \neq \lfloor \alpha^{-1} \gamma \rfloor \oplus l$ for $k \neq l$ in \mathbb{Z}_+ , this is equivalent to $\{[0, 1) \oplus k : k \in \mathbb{Z}_+\}$ being a partition of \mathbb{R}_+ . It holds since $[0, 1) \oplus k = [0, 1) + k$ and $\{[0, 1) + k : k \in \mathbb{Z}_+\}$ is a partition of \mathbb{R}_+ . The proof is completed. \Box

The following lemma gives a sufficient condition on $\chi(\alpha \cdot, \cdot) = \chi(\cdot, \alpha \cdot)$.

2241

Lemma 2.6. Let Λ be as in (9), and $\alpha \in \Lambda$. Then

$$\langle x, \, \alpha y \rangle_{_{p}} = \langle \alpha x, \, y \rangle_{_{p}} \tag{24}$$

and

$$\chi(\alpha x, y) = \chi(x, \alpha y) \tag{25}$$

for $x, y \in \mathbb{R}_+$.

Proof. Obviously, (24) implies (25) . Next we prove (24). Similarly to the beginning arguments in Lemma 2.2, we only need to prove

$$\langle x, py \rangle_{v} = \langle px, y \rangle_{v} \text{ for } x, y \in \mathbb{R}_{+}.$$
(26)

Now we do this. For $x, y \in \mathbb{R}_+$, we have

$$x = \sum_{j=1}^{\infty} x_{-j} p^{j-1} + \sum_{j=1}^{\infty} x_j p^{-j} \text{ and } y = \sum_{j=1}^{\infty} y_{-j} p^{j-1} + \sum_{j=1}^{\infty} y_j p^{-j},$$
(27)

where $x_i, x_{-i}, y_i, y_{-i} \in \mathbb{N}_p$ for $j \in \mathbb{N}$. This implies that

$$px = \sum_{j=1}^{\infty} x_{-j} p^j + \sum_{j=1}^{\infty} x_j p^{1-j}, \qquad py = \sum_{j=1}^{\infty} y_{-j} p^j + \sum_{j=1}^{\infty} y_j p^{1-j},$$

equivalently,

$$px = x_1 + \sum_{j=1}^{\infty} x_{-j} p^j + \sum_{j=1}^{\infty} x_{1+j} p^{-j}$$
(28)

and

$$py = y_1 + \sum_{j=1}^{\infty} y_{-j} p^j + \sum_{j=1}^{\infty} y_{1+j} p^{-j}.$$
(29)

It follows that

$$\langle px, y \rangle_p = x_1 y_1 + \sum_{j=1}^{\infty} x_{-j} y_{1+j} + \sum_{j=1}^{\infty} x_{1+j} y_{-j}$$
 (30)

by (27) and (28), and

$$\langle x, py \rangle_p = y_1 x_1 + \sum_{j=1}^{\infty} y_{-j} x_{1+j} + \sum_{j=1}^{\infty} y_{1+j} x_{-j}$$
 (31)

by (27) and (29). Combining (30) and (31) leads to (26). The proof is completed. \Box

The following Examples 2.7 and 2.8 show that (25) need not hold if $\alpha \notin \Lambda$.

Example 2.7. Let p = 2, and $x, y \in \mathbb{R}_+$ satisfy

$$\begin{aligned} x_{2j} &= y_{2j} = 0 \text{ for } j \in \mathbb{N}; \quad x_{-2j} = y_{-2j} = 0 \text{ for } 2 \le j \in \mathbb{N}; \quad x_{-2} = x_{-3} = y_{-2} = y_{-3} = 0; \\ x_1 &= x_{-1} = y_1 = y_{-1} = 1; \, x_3 \ne y_3. \end{aligned}$$
(32)

Then $(3x, y)_2 - (x, 3y)_2 = y_3 - x_3 \in \{1, -1\}$ by a standard argument. Thus $\chi(x, 3y) \neq \chi(3x, y)$.

Example 2.8. Let $2 and <math>x, y \in \mathbb{R}_+$ satisfy

$$x_j + x_{j+1} < p, \ y_j + y_{j+1} < p \text{ for } j \in \mathbb{N},$$
(34)

$$x_{-j} + x_{-j+1} < p, \ y_{-j} + y_{-j+1} < p \text{ for } 2 \le j \in \mathbb{N},$$
(35)

$$x_{-1} + x_1 \ge p, \ x_{-2} + x_{-1}
(36)$$

Then $\langle (p+1)x, y \rangle_p - \langle x, (p+1)y \rangle_p = -py_1 + y_2$. This implies that $\chi(x, (p+1)y) \neq \chi((p+1)x, y)$.

The following lemma gives an expression of the inner product of sampling sequences related to two modulation systems.

Lemma 2.9. Let Λ be as in (9), and $b \in \Lambda$. Then, given $g, h \in L^2(\mathbb{R}_+)$,

$$\sum_{m\in\mathbb{Z}_+}\langle f, M_{mb}g\rangle\langle M_{mb}h, f\rangle = \frac{1}{b}\int_{\mathbb{R}_+}\overline{f(x)}h(x)\sum_{k\in\mathbb{Z}_+}\overline{g(x\oplus\frac{k}{b})}f(x\oplus\frac{k}{b})dx$$

for an arbitrary measurable function f on \mathbb{R}_+ with $\sum_{k \in \mathbb{Z}_+} |f(\cdot \oplus \frac{k}{b})|^2 \in L^{\infty}([0, \frac{1}{b})).$

Proof. Arbitrarily fix f satisfying $\sum_{k \in \mathbb{Z}_+} |f(\cdot \oplus \frac{k}{b})|^2 \in L^{\infty}([0, \frac{1}{b}))$. By Lemma 2.5, $\{[0, \frac{1}{b}) \oplus \frac{k}{b} : k \in \mathbb{Z}_+\}$ is a partition of \mathbb{R}_+ . It follows that

$$\begin{split} ||f||^{2} &= \int_{[0,\frac{1}{b})} \sum_{k \in \mathbb{Z}_{+}} |f(x \oplus \frac{k}{b})|^{2} dx \\ &\leq \frac{1}{b} ||\sum_{k \in \mathbb{Z}_{+}} |f(\cdot \oplus \frac{k}{b})|^{2} ||_{L^{\infty}([0,\frac{1}{b}))} \\ &< \infty, \end{split}$$
(37)

and

$$\int_{[0,\frac{1}{b}]} (\sum_{k \in \mathbb{Z}_{+}} |f(x \oplus \frac{k}{b})| |g(x \oplus \frac{k}{b})|)^{2} dx \leq \int_{[0,\frac{1}{b}]} (\sum_{k \in \mathbb{Z}_{+}} |f(x \oplus \frac{k}{b})|^{2}) (\sum_{k \in \mathbb{Z}_{+}} |g(x \oplus \frac{k}{b})|^{2}) dx \\
\leq \|\sum_{k \in \mathbb{Z}_{+}} |f(\cdot \oplus \frac{k}{b})|^{2} \|_{L^{\infty}([0,\frac{1}{b}))} \|g\|^{2} < \infty$$
(38)

which leads to $(\sum_{k \in \mathbb{Z}_+} |f(\cdot \oplus \frac{k}{b})||g(\cdot \oplus \frac{k}{b})|) \in L^1([0, \frac{1}{b}))$. Similarly,

$$\int_{\left[0,\frac{1}{b}\right)} \left(\sum_{k\in\mathbb{Z}_{+}} |f(x\oplus\frac{k}{b})| |h(x\oplus\frac{k}{b})|\right)^2 dx < \infty.$$
(39)

Observe that

$$\chi(mb, x \oplus \frac{k}{b}) = \chi(mb, x)\chi(mb, \frac{k}{b})$$
$$= \chi(mb, x)$$

for $x \in \mathbb{R}_+$ and $m, k \in \mathbb{Z}_+$ by Lemma 2.6. This implies that

$$\langle f, M_{mb}g \rangle = \int_{[0, \frac{1}{b})} \sum_{k \in \mathbb{Z}_{+}} f(x \oplus \frac{k}{b}) \overline{g(x \oplus \frac{k}{b})} \chi(mb, x \oplus \frac{k}{b}) dx$$

$$= \int_{[0, \frac{1}{b})} \left(\sum_{k \in \mathbb{Z}_{+}} f(x \oplus \frac{k}{b}) \overline{g(x \oplus \frac{k}{b})} \right) \overline{\chi(mb, x)} dx$$

$$(40)$$

and

$$\langle f, M_{mb}h \rangle = \int_{[0, \frac{1}{b})} \left(\sum_{k \in \mathbb{Z}_+} f(x \oplus \frac{k}{b}) \overline{h(x \oplus \frac{k}{b})} \right) \overline{\chi(mb, x)} dx.$$
(41)

Since { $\sqrt{b}\chi(mb, \cdot)$: $m \in \mathbb{Z}_+$ } is an orthonormal basis for $L^2([0, \frac{1}{b}))$, we have

$$\sum_{k \in \mathbb{Z}_{+}} \langle f, M_{mb}g \rangle \langle M_{mb}h, f \rangle = \frac{1}{b} \int_{[0, \frac{1}{b})} \mathcal{G}(x) \left(\sum_{k \in \mathbb{Z}_{+}} \overline{f(x \oplus \frac{k}{b})} h(x \oplus \frac{k}{b}) \right) dx \tag{42}$$

by (38)-(41), where

$$\mathcal{G}(\cdot) = \sum_{k \in \mathbb{Z}_+} f(\cdot \oplus \frac{k}{b}) \overline{g(\cdot \oplus \frac{k}{b})}.$$
(43)

From (38) and (39), it follows that

$$|\mathcal{G}(\cdot)|\sum_{k\in\mathbb{Z}_+}|\overline{f(\cdot\oplus\frac{k}{b})}h(\cdot\oplus\frac{k}{b})|\in L^1([0,\frac{1}{b})).$$

Thus

$$\sum_{m \in \mathbb{Z}_{+}} \langle f, M_{mb}g \rangle \langle M_{mb}h, f \rangle = \frac{1}{b} \sum_{k \in \mathbb{Z}_{+}} \int_{[0, \frac{1}{b}]} \mathcal{G}(x) \overline{f(x \oplus \frac{k}{b})} h(x \oplus \frac{k}{b}) dx$$
$$= \frac{1}{b} \int_{\mathbb{R}_{+}} \overline{f(x)} h(x) \sum_{k \in \mathbb{Z}_{+}} \overline{g(x \oplus \frac{k}{b})} f(x \oplus \frac{k}{b}) dx$$

by Lemma 2.5 and the $\frac{1}{b}\mathbb{Z}_+$ -periodicity of $\mathcal{G}(\cdot)$ according to \oplus . The proof is completed. \Box

Lemma 2.10. [29, Theorem 2.2] Let p, a, b be as in the general setup and $h \in L^2(\mathbb{R}_+)$. Suppose

$$B = \frac{1}{b}esssup_{x \in [0, a]} \sum_{k \in \mathbb{Z}_+} |\sum_{n \in \mathbb{Z}_+} h(x \ominus na) \overline{h(x \ominus na \oplus \frac{k}{b})}| < \infty$$
(44)

and

$$A = \frac{1}{b} essinf_{x \in [0, a)} \left[\sum_{n \in \mathbb{Z}_+} |h(x \ominus na)|^2 - \sum_{k \in \mathbb{N}} |\sum_{n \in \mathbb{Z}_+} h(x \ominus na) \overline{h(x \ominus na \oplus \frac{k}{b})}| \right] > 0.$$

$$(45)$$

Then X(h, a, b) is a frame for $L^2(\mathbb{R}_+)$ with bounds A and B. In particular, if (44) is satisfied, then it is a Bessel sequence in $L^2(\mathbb{R}_+)$ with Bessel bound B.

The following lemma reduces the inner product of sampling sequences corresponding to two Gabor systems to an integral.

Lemma 2.11. Let p, a, b be as in the general setup and g, $h \in L^2(\mathbb{R}_+)$. Then, given $x_0 \in \mathbb{R}_+$, we have

$$\sum_{m,n\in\mathbb{Z}_{+}}\langle f, M_{mb}T_{na}g\rangle\langle M_{mb}T_{na}h, f\rangle = \frac{1}{b}\int_{[0,\frac{1}{b})\oplus x_{0}}\langle \gamma(x)F(x), F(x)\rangle\,dx \tag{46}$$

for $f \in L^{\infty}_{c}(\mathbb{R}_{+})$, where

$$\gamma(x) = \left(\sum_{n \in \mathbb{Z}_+} \overline{g(x \ominus na \oplus \frac{k}{b})} h(x \ominus na \oplus \frac{j}{b})\right)_{j \in \mathbb{Z}_+, \, k \in \mathbb{Z}_+} \text{ and } F(x) = \left\{f(x \oplus \frac{k}{b})\right\}_{k \in \mathbb{Z}_+}$$

Proof. Suppose supp $(f) \subset [0, p^J)$ for some $J \in \mathbb{Z}$. Write

$$I(x) = \{(n, k) \in \mathbb{Z}_+^2 : x \ominus na, x \ominus na \oplus \frac{k}{b} \in [0, p^I)\},\tag{47}$$

$$\tilde{I}(x) = \{k \in \mathbb{Z}_+ : x \oplus \frac{\kappa}{h} \in [0, p^J]\}$$

$$\tag{48}$$

for $x \in \mathbb{R}_+$, and

$$I = \{k \in \mathbb{Z}_+ : y, y \oplus \frac{k}{b} \in [0, p^J) \text{ for some } y \in \mathbb{R}_+\}.$$
(49)

Let us estimate (47)-(49). By Lemma 2.1 (ii) and the general setup,

$$\begin{split} I(x) &\subset \ \{(n, \, k) \in \mathbb{Z}_{+}^{2} : \, na \ominus x \in [0, \, p^{J}), \, \frac{k}{b} \in [0, \, p^{J}) \ominus [0, \, p^{J}) \} \\ &= \ \{(n, \, k) \in \mathbb{Z}_{+}^{2} : \, na \in [0, \, p^{J}) \oplus x, \, k \in b[0, \, p^{J}) \} \\ &\subset \ \{(n, \, k) \in \mathbb{Z}_{+}^{2} : \, n \in p^{-s}([0, \, p^{J}) \oplus x), \, k \in [0, \, p^{J+t}) \}. \end{split}$$

This implies that

$$I(x) \subset \{(n, k) \in \mathbb{Z}_{+}^{2} : n \in p^{J-s}([0, 1) \oplus p^{-J}x), k \in [0, p^{J+t})\} \\ \subset \{(n, k) \in \mathbb{Z}_{+}^{2} : n \in p^{J-s}[\lfloor p^{-J}x \rfloor, \lfloor p^{-J}x \rfloor + 1), k \in [0, p^{J+t})\} \\ = \{(n, k) \in \mathbb{Z}_{+}^{2} : n \in [p^{J-s}\lfloor p^{-J}x \rfloor, p^{J-s}(\lfloor p^{-J}x \rfloor + 1)), k \in [0, p^{J+t})\}$$
(50)

by Lemma 2.1 (*i*), Lemma 2.2 and the fact that $[0, 1) \oplus k = [0, 1) + k$ for $k \in \mathbb{Z}_+$. Similarly, we have

$$\widetilde{I}(x) \subset [p^{J+t} \lfloor p^{-J}x \rfloor, p^{J+t} (\lfloor p^{-J}x \rfloor + 1)),$$

$$I \subset [0, p^{J+t}).$$
(51)
(52)

It follows that their cardinalities satisfy

$$\operatorname{card}(I(x)) \le (\lfloor p^{J-s} \rfloor + 1)(\lfloor p^{J+t} \rfloor + 1), \tag{53}$$

$$\operatorname{card}(\tilde{I}(x)) \le \lfloor p^{J+t} \rfloor + 1, \tag{54}$$

$$\operatorname{card}(I) \le \lfloor p^{J+t} \rfloor + 1.$$
 (55)

By (50) and (55),

$$\sum_{k \in \mathbb{Z}_+} |\sum_{n \in \mathbb{Z}_+} \overline{f(\cdot \ominus na)} f(\cdot \ominus na \oplus \frac{k}{b})| \le (\lfloor p^{J-s} \rfloor + 1)(\lfloor p^{J+t} \rfloor + 1) ||f||_{L^{\infty}(\mathbb{R}_+)}^2.$$

This implies that $X(\bar{f}, a, b)$ is a Bessel sequence in $L^2(\mathbb{R}_+)$ by Lemma 2.10. Observe that

$$\langle f, M_{mb}T_{na}g \rangle = \overline{\chi(mb, na)} \langle \bar{g}, M_{mb}T_{\ominus na}\bar{f} \rangle, \langle f, M_{mb}T_{na}h \rangle = \overline{\chi(mb, na)} \langle \bar{h}, M_{mb}T_{\ominus na}\bar{f} \rangle.$$

It follows that the left-hand side of (46) is well defined. Also by (51) and (54),

$$\sum_{k\in\mathbb{Z}_+} |f(\cdot\oplus\frac{k}{b})|^2 \le (\lfloor p^{J+t}\rfloor+1)||f||_{L^{\infty}(\mathbb{R}_+)}^2.$$
(56)

Thus

$$\sum_{m,n\in\mathbb{Z}_{+}} \langle f, M_{mb}T_{na}g \rangle \langle M_{mb}T_{na}h, f \rangle$$

$$= \frac{1}{b} \sum_{n\in\mathbb{Z}_{+}} \int_{\mathbb{R}_{+}} \overline{f(x)}h(x\ominus na) \sum_{k\in\mathbb{Z}_{+}} \overline{g(x\ominus na\oplus\frac{k}{b})}f(x\oplus\frac{k}{b})dx$$
(57)

by Lemma 2.9. By (52), we have

$$\sum_{n \in \mathbb{Z}_{+}} \int_{\mathbb{R}_{+}} |\overline{f(x)}h(x \ominus na)| \sum_{k \in \mathbb{Z}_{+}} |\overline{g(x \ominus na \oplus \frac{k}{b})}f(x \oplus \frac{k}{b})| dx$$

$$\leq ||f||_{L^{\infty}(\mathbb{R}_{+})}^{2} \sum_{k \in [0, p^{j+t}) \cap \mathbb{Z}_{+}} \sum_{n \in \mathbb{Z}_{+}} \int_{[0, p^{j})} |g(x \ominus na \oplus \frac{k}{b})h(x \ominus na)| dx.$$
(58)

Since $[0, p^{J})$ is bounded, there exists a finite subset *E* of \mathbb{Z}_{+} such that $[0, p^{J}) \subset \bigcup_{j \in E} ([0, a) + ja)$. By Lemma 2.2,

$$[0, a) + ja = a([0, 1) + j)$$

= $a([0, 1) \oplus j)$
= $[0, a) \oplus ja$

for $j \in \mathbb{Z}_+$. So $[0, p^J) \subset \bigcup_{j \in E} ([0, a) \oplus ja)$. Thus (58) implies that

$$\begin{split} &\sum_{n\in\mathbb{Z}_{+}}\int_{\mathbb{R}_{+}}\left|\overline{f(x)}h(x\ominus na)\right|\sum_{k\in\mathbb{Z}_{+}}\left|\overline{g(x\ominus na\oplus\frac{k}{b})}f(x\oplus\frac{k}{b})\right|dx\\ &\leq \||f\||^{2}_{L^{\infty}(\mathbb{R}_{+})}\sum_{k\in[0,p^{|t|})\cap\mathbb{Z}_{+}}\sum_{n\in\mathbb{Z}_{+}}\sum_{j\in E}\int_{[0,a)\oplus ja}|g(x\ominus na\oplus\frac{k}{b})h(x\ominus na)|dx\\ &= \||f\||^{2}_{L^{\infty}(\mathbb{R}_{+})}\sum_{k\in[0,p^{|t|})\cap\mathbb{Z}_{+}}\sum_{j\in E}\sum_{n\in\mathbb{Z}_{+}}\int_{[0,a]}|g(x\oplus ja\ominus na\oplus\frac{k}{b})h(x\oplus ja\ominus na)|dx\\ &= \||f\||^{2}_{L^{\infty}(\mathbb{R}_{+})}\sum_{k\in[0,p^{|t|})\cap\mathbb{Z}_{+}}\sum_{j\in E}\sum_{n\in\mathbb{Z}_{+}}\int_{[0,a]}|g(x\ominus na\oplus\frac{k}{b})h(x\ominus na)|dx\\ &= \operatorname{card}(E)\||f\|^{2}_{L^{\infty}(\mathbb{R}_{+})}\sum_{k\in[0,p^{|t|})\cap\mathbb{Z}_{+}}\int_{\mathbb{R}_{+}}|g(x\oplus\frac{k}{b})h(x)|dx\\ &\leq (\lfloor p^{I+1}\rfloor + 1)\operatorname{card}(E)\|f\|^{2}_{L^{\infty}(\mathbb{R}_{+})}\|g\|\|h\||\\ &< \infty. \end{split}$$

$$(59)$$

Also observe that $\{[0, \frac{1}{b}) \oplus x_0 \oplus \frac{j}{b} : j \in \mathbb{Z}_+\}$ is a partition of \mathbb{R}_+ by Lemma 2.5. Collecting (57) and (59) leads to

$$\sum_{m,n\in\mathbb{Z}_{+}}\langle f, M_{mb}T_{na}g\rangle\langle M_{mb}T_{na}h, f\rangle$$

$$= \frac{1}{b}\sum_{n\in\mathbb{Z}_{+}}\sum_{j\in\mathbb{Z}_{+}}\int_{[0,\frac{1}{b})\oplus x_{0}}\overline{f(x\oplus\frac{j}{b})}h(x\oplus na\oplus\frac{j}{b})\sum_{k\in\mathbb{Z}_{+}}\overline{g(x\oplus na\oplus\frac{k}{b})}f(x\oplus\frac{k}{b})dx$$

$$= \frac{1}{b}\int_{[0,\frac{1}{b})\oplus x_{0}}\sum_{j\in\mathbb{Z}_{+}}\sum_{k\in\mathbb{Z}_{+}}\sum_{n\in\mathbb{Z}_{+}}\overline{g(x\oplus na\oplus\frac{k}{b})}h(x\oplus na\oplus\frac{j}{b})f(x\oplus\frac{k}{b})\overline{f(x\oplus\frac{j}{b})}dx$$

$$= \frac{1}{b}\int_{[0,\frac{1}{b})\oplus x_{0}}\langle \gamma(x)F(x), F(x)\rangle dx.$$

The proof is completed. \Box

2246

3. Proof of Theorem 1.1 and examples

Proof of Theorem 1.1: By the polarization identity of inner product, $(X(\mathbf{g}, a, b), X(\mathbf{h}, a, b))$ is a pair of weak dual frames for $L^2(\mathbb{R}_+)$ associated with $L_c^{\infty}(\mathbb{R}_+)$ if and only if

$$\langle f, f \rangle = \sum_{l=1}^{L} \sum_{m,n \in \mathbb{Z}_{+}} \langle f, M_{mb} T_{na} g_l \rangle \langle M_{mb} T_{na} h_l, f \rangle$$

for $f \in L_c^{\infty}(\mathbb{R}_+)$. This is equivalent to

$$b \int_{[0,\frac{1}{b})\oplus x_0} \langle F(x), F(x) \rangle dx = \int_{[0,\frac{1}{b})\oplus x_0} \langle \Gamma(x)F(x), F(x) \rangle dx \text{ for } f \in L^{\infty}_c(\mathbb{R}_+) \text{ and } x_0 \in \mathbb{R}_+$$
(60)

by Lemma 2.11, where

$$\Gamma(x) = \left(\sum_{l=1}^{L} \sum_{n \in \mathbb{Z}_{+}} \overline{g_l(x \ominus na \oplus \frac{k}{b})} h_l(x \ominus na \oplus \frac{j}{b})\right)_{j \in \mathbb{Z}_{+,k} \in \mathbb{Z}_{+}} \text{ and } F(x) = \left\{f(x \oplus \frac{k}{b})\right\}_{k \in \mathbb{Z}_{+}}.$$
(61)

Next we prove the equivalence between (60) and (13). To finish the proof, we first show that (60) holds if and only if

$$\Gamma(\cdot) = bI \text{ a.e. on } (0, \frac{1}{b}) \oplus x_0 \text{ for } x_0 \in \mathbb{R}_+,$$
(62)

where I is the identity operator. Obviously, (62) implies (60). Now suppose (60) holds. Arbitrarily fix $c = \{c_j\}_{j \in \mathbb{Z}_+} \in l_0(\mathbb{Z}_+)$, a finitely supported sequence space defined on \mathbb{Z}_+ , and $E \subset (0, \frac{1}{b}) \oplus x_0$ with |E| > 0. Take f in (60) by

$$F(\cdot) = \frac{1}{\sqrt{|E|}} \zeta_{\bigcup_{k \in \mathbb{Z}_+} (E \oplus \frac{k}{b})}(\cdot)c.$$

Then *f* is well defined, and

$$\frac{b}{|E|}\int_E \langle c,\,c\rangle dx = \frac{1}{|E|}\int_E \langle \Gamma(x)c,\,c\rangle dx.$$

It leads to (62) by [22, Theorem 1.39], and the arbitrariness of *E* and *c*. Thus (60) and (62) are equivalent. Now we finish the proof by showing the equivalence between (62) and (13). Observe that $\{[0, \frac{1}{b}) \oplus x_0 \oplus \frac{k}{b} : k \in \mathbb{Z}_+\}$ is a partition of \mathbb{R}_+ by Lemma 2.5. By the arbitrariness of x_0 in (62), (62) is equivalent to

$$\Gamma(\cdot) = bI$$
 a.e. on \mathbb{R}_+ ,

i.e.

$$\sum_{l=1}^{L} \sum_{n \in \mathbb{Z}_{+}} \overline{g_l(x \ominus na \oplus \frac{k}{b})} h_l(x \ominus na \oplus \frac{j}{b}) = b\delta_{j,k}$$

for a.e. $x \in \mathbb{R}_+$ and $j, k \in \mathbb{Z}_+$. This is in turn equivalent to

$$\sum_{l=1}^{L} \sum_{n \in \mathbb{Z}_{+}} \overline{g_l(x \ominus na \oplus \frac{k}{b})} h_l(x \ominus na) = b\delta_{k,0} \text{ for a.e. } x \in \mathbb{R}_+ \text{ and } k \in \mathbb{Z}_+$$
(63)

due to $\mathbb{Z}_+ \oplus \mathbb{Z}_+ = \mathbb{Z}_+$. Obviously, (63) is equivalent to (13) due to the $a\mathbb{Z}_+$ -periodicity of function $\sum_{l=1}^{L} \sum_{n \in \mathbb{Z}_+} \overline{g_l(x \oplus na \oplus \frac{k}{b})} h_l(x \oplus na)$ with $k \in \mathbb{Z}_+$. The proof is completed. \Box

The following Examples 3.1 and 3.2 are for Theorem 1.1, and Example 3.2 presents an example of weak dual frame pairs which are not dual frame pairs.

Example 3.1. Let p, a, b be as in the general setup, and let L = 2 and $0 < \lambda < 1$. Choose $\{g_1, g_2\}$ and $\{h_1, h_2\} \subset L^2(\mathbb{R}_+)$ such that

 $supp(g_1)$, $supp(h_1) \subset (0, \lambda a)$ and $supp(g_2)$, $supp(h_2) \subset (\lambda a, a)$,

and

$$\overline{g_1(\cdot)}h_1(\cdot) + \overline{g_2(\cdot)}h_2(\cdot) = b \tag{64}$$

a.e. on (0, a). Then

$$\sum_{l=1}^{L} \sum_{n \in \mathbb{Z}_{+}} \overline{g_{l}(\cdot \ominus na \oplus \frac{k}{b})} h_{l}(\cdot \ominus na) = b\delta_{0,k} a.e. on (0, a) for k \in \mathbb{Z}_{+}.$$

by a simple computation. Therefore, $(X(\{g_1, g_2\}, a, b), X(\{h_1, h_2\}, a, b))$ is a pair of weak dual frames for $L^2(\mathbb{R}_+)$ associated with $L_c^{\infty}(\mathbb{R}_+)$ by Theorem 1.1.

Example 3.2. Let p, a, b be as in the general setup, and let L = 2 and $0 < \lambda < 1$. Choose $\{g_1, g_2\}, \{h_1, h_2\} \subset L^2(\mathbb{R}_+)$ such that

$$g_1(x) = A_1 \zeta_{(0,\lambda a)}(x) x^{\tau_1}, \quad h_1(x) = \tilde{A}_1 \zeta_{(0,\lambda a)}(x) x^{-\tau_1}$$

$$g_2(x) = A_2 \zeta_{(\lambda a,a)(x)} x^{-\tau_2}, \quad h_2(x) = \tilde{A}_2 \zeta_{(\lambda a,a)}(x) x^{\tau_2}$$
(65)

on \mathbb{R}_+ , where A_l , \tilde{A}_l and τ_l with l = 1, 2 are constants satisfying $\bar{A}_1\tilde{A}_1 = \bar{A}_2\tilde{A}_2 = b$ and $0 < \tau_1 < \frac{1}{2}$. Then, by Theorem 1.1, $(X(\{g_1, g_2\}, a, b), X(\{h_1, h_2\}, a, b))$ is a pair of weak dual frames for $L^2(\mathbb{R}_+)$ associated with $L^2_c(\mathbb{R}_+)$. But

$$\sum_{n\in\mathbb{Z}_+}|h_1(x\ominus na)|^2=|\tilde{A}_1|^2\zeta_{[0,\,\lambda a)}(x)x^{-2\tau_1}$$

for $x \in (0, a)$ by a simple computation, which implies that $\sum_{n \in \mathbb{Z}_+} |h_1(\cdot \ominus na)|^2 \notin L^{\infty}(\mathbb{R}_+)$. It follows that $X(\{h_1, h_2\}, a, b)$ is not a Bessel sequence in $L^2(\mathbb{R}_+)$ by [29, Lemma 2.2]. Therefore, $(X(\{g_1, g_2\}, a, b), X(\{h_1, h_2\}, a, b))$ is not a pair of dual frames for $L^2(\mathbb{R}_+)$.

Acknowledgements

The authors would like to thank the referees for their valuable suggestions which greatly improves the readability of this article.

References

- O. Ahmad, F. A. Shah, N. A. Sheikh, Gabor frames on non-Archimedean fields, Int. J. Geom. Methods Mod. Phys. 15 (2018) ID. 1850079, 17pp.
- [2] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2016.
- [3] O. Christensen, Augustus J. E. M. Janssen, H. O. Kim, R. Y. Kim, Approximately dual Gabor frames and almost perfect reconstruction based on a class of window functions, Adv. Comput. Math. 44 (2018) 1519–1535.
- [4] O. Christensen, Pairs of dual Gabor frames with compact support and desired frequency localization, Appl. Comput. Harmon. Anal. 20 (2006) 403–410.
- [5] O. Christensen, R. Y. Kim, On dual Gabor frame pairs generated by polynomials, J. Fourier Anal. Appl. 16 (2010) 1–16.
- [6] O. Christensen, H. O. Kim, R. Y. Kim, On entire functions restricted to intervals, partition of unities, and dual Gabor frames, Appl. Comput. Harmon. Anal. 38 (2015) 72–86.
- [7] I. Daubechies, H. J. Landau, Z. Landau, Gabor time-frequency lattices and the Wexler-Raz identity, J. Fourier Anal. Appl. 4 (1995) 437–478.
- [8] L. Debnath, F. A. Shah, Wavelet transforms and their applications, Second edition, Birkhäuser, Springer, New York, 2015.
- Yu. A. Farkov, Orthogonal *p*-wavelets on R₊, in: Wavelets and Splines, St. Petersburg University Press, St. Petersburg, 2005, pp. 4–26.
- [10] Yu. A. Farkov, A. Y. Maksimov, S. A. Stroganov, On biorthogonal wavelets related to the Walsh functions, Int. J. Wavelets Multiresolut. Inf. Process. 9 (2011) 485–499.
- [11] H. G. Feichtinger, T. Strohmer, Gabor Analysis and Algorithms, Theory and Applications, Birkhäuser, Boston, 1998.
- [12] H. G. Feichtinger, T. Strohmer, Advances in Gabor Analysis, Birkhäuser, Boston, 2003.

- [13] J.-P. Gabardo, D. Han, Subspace Weyl-Heisenberg frames, J. Fourier Anal. Appl. 7 (2001) 419-433.
- [14] J.-P. Gabardo, D. Han, Balian-Low phenomenon for subspace Gabor frames, J. Math. Phys. 45 (2004) 3362–3378.
- [15] J.-P. Gabardo, D. Han, The uniqueness of the dual of Weyl-Heisenberg subspace frames, Appl. Comput. Harmon. Anal. 17 (2004) 226–240.
- [16] J.-P. Gabardo, Y.-Z. Li, Density results for Gabor systems associated with periodic subsets of the real line, J. Approx. Theory 157 (2009) 172–192.
- [17] J.-P. Gabardo, D. Han, Y.-Z. Li, Lattice tiling and density conditions for subspace Gabor frames, J. Funct. Anal. 265 (2013) 1170–1189.
- [18] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
- [19] C. Heil, History and evolution of the density theorem for Gabor frames, J. Fourier Anal. Appl. 13 (2007) 113–166.
- [20] Y.-Z. Li, H.-F. Jia, Weak Gabor bi-frames on periodic subsets of the real line, Int. J. Wavelets, Multiresolut. Inf. Process 13(2015) ID. 1550046, 23pp.
- [21] Y.-Z. Li, Y. Zhang, Vector-valued Gabor frames associated with periodic subsets of the real line, Appl. Math. Comput. 253 (2015) 102–115.
- [22] W. Rudin, Real and Complex Analysis, (3rd edition), McGraw-Hill, New York, 1986.
- [23] F. A. Shah, Gabor frames on a half-line, J. Contemp. Math. Anal. 47 (2012) 251-260.
- [24] F. A. Shah, O. Ahmad, Wave packet systems on local fields, J. Geom. Phys. 120 (2017) 5-18.
- [25] F. A. Shah, O. Ahmad, A. Rahimi, Frames associated with shift invariant spaces on local fields, Filomat 32 (2018) 3097-3110.
- [26] D. T. Stoeva, On compactly supported dual windows of Gabor frames, J. Math. Anal. Appl. 505 (2022) ID. 125436, 10 pp.
- [27] J. Wexler, S. Raz, Discrete Gabor expansions, Signal Process. 21 (1990) 207–220.
- [28] R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980.
- [29] Y. Zhang, Y.-Z. Li, The zak transform domain characterizations for Gabor frames on half of line, submitted.
- [30] Y. Zhang, Y.-Z. Li, Rational time-frequency multi-window subspace Gabor frames and their duals, Sci. China Math. 57 (2014) 145–160.
- [31] J. Zhao, Y.-Z. Li, A class of vector-valued subspace weak Gabor duals of type II, Int. J. Wavelets, Multiresolut. Inf. Process 16 (2018) ID. 1850056, 19pp.