WIENER-TYPE INVARIANTS OF SOME GRAPH OPERATIONS

S. Hossein-Zadeh, A. Hamzeh and A. R. Ashrafi

Abstract

Let \(d(G, k) \) be the number of pairs of vertices of a graph \(G \) that are at distance \(k \), \(\lambda \) a real number, and \(W_{\lambda}(G) = \sum_{k \geq 1} d(G, k)k^\lambda \). \(W_\lambda(G) \) is called the Wiener-type invariant of \(G \) associated to real number \(\lambda \). In this paper, the Wiener-type invariants of some graph operations are computed. As immediate consequences, the formulae for reciprocal Wiener index, Harary index, hyper-Wiener index and Tratch-Stankevich-Zefirov index are calculated. Some upper and lower bounds are also presented.

1 Introduction

In this paper, we only consider simple graphs. Suppose \(G \) is a simple graph. As usual, the distance between the vertices \(u \) and \(v \) of \(G \) is denoted by \(d_G(u, v) \) (\(d(u, v) \) for short). It is defined as the length of a minimum path connecting them. Let \(d(G, k) \) be the number of pairs of vertices of a graph \(G \) that are at distance \(k \), \(\lambda \) a real number, and \(W_\lambda(G) = \sum_{k \geq 1} d(G, k)k^\lambda \). \(W_\lambda(G) \) is called the Wiener-type invariant of \(G \) associated to real number \(\lambda \), see [3] for details. Note that \(d(G, 0) \) and \(d(G, 1) \) represent the number of vertices and edges, respectively. The case of \(\lambda = 1, -1 \) and \(-2\) are called the classical Wiener index [21], reciprocal Wiener index [16] and Harary index [2] and [17], respectively. The quantities \(WW = \frac{1}{2}[W_1 + W_2] \) and \(TSZ = \frac{1}{6}W_3 + \frac{1}{2}W_2 + \frac{1}{3}W_1 \) are the so-called hyper-Wiener index and Tratch-Stankevich-Zefirov index [4].

The Cartesian product \(G \times H \) of graphs \(G \) and \(H \) is a graph such that \(V(G \times H) = V(G) \times V(H) \), and any two vertices \((a, b) \) and \((u, v) \) are adjacent in \(G \times H \) if and only if either \(a = u \) and \(b \) is adjacent with \(v \), or \(b = v \) and \(a \) is adjacent with \(u \), see [7] for details. The join \(G = G_1 + G_2 \) of graphs \(G_1 \) and \(G_2 \) with disjoint vertex sets \(V_1 \) and \(V_2 \) and edge sets \(E_1 \) and \(E_2 \) is the graph union \(G_1 \cup G_2 \) together with all the

*This research was supported in part by a grant from IPM (No. 87200113).

2000 Mathematics Subject Classifications. 05C12, 05C76.

Key words and Phrases. Wiener-type invariant, Cartesian product, join, symmetric difference, composition, disjunction.

Received: August 3, 2009

Communicated by Dragan Stevanović
edges joining V_1 and V_2. The composition $G = G_1[G_2]$ of graphs G_1 and G_2 with disjoint vertex sets V_1 and V_2 and edge sets E_1 and E_2 is the graph with vertex set $V_1 \times V_2$ and $u = (u_1, v_1)$ is adjacent with $v = (u_2, v_2)$ whenever $(u_1 \text{ is adjacent with } u_2)$ or $(u_1 = u_2 \text{ and } v_1 \text{ is adjacent with } v_2)$ [7, p. 185] The disjunction $G \vee H$ of graphs G and H is the graph with vertex set $V(G) \times V(H)$ and (u_1, v_1) is adjacent with (u_2, v_2) whenever $u_1u_2 \in E(G)$ or $v_1v_2 \in E(H)$. The symmetric difference $G \oplus H$ of two graphs G and H is the graph with vertex set $V(G) \times V(H)$ and $E(G \oplus H) = \{(u_1, u_2)(v_1, v_2) \mid u_1v_1 \in E(G) \text{ or } u_2v_2 \in E(H) \text{ but not both}\}$.

The first Zagreb index was originally defined as $M_1(G) = \sum_{u \in V(G)} d(u)^2$. The first Zagreb index can be also expressed as a sum over edges of G, $M_1(G) = \sum_{uv \in E(G)} |d(u) + d(v)|$, where $d(x)$ denotes the degree of vertex x in G. We refer the reader to [18] for the proof of this fact and for more information on Zagreb index.

Throughout this paper, C_n, P_n, K_n and S_n denote the cycle, path, complete and star graphs on n vertices. Also, $K_{m,n}$ denotes the complete bipartite graph. The complement of a graph G is a graph H on the same vertices such that two vertices of H are adjacent if and only if they are not adjacent in G. The graph H is usually denoted by \overline{G}. Our other notations are standard and taken mainly from [1, 6, 20].

2 Main Results

In this section, some exact formulae for the Wiener-type invariants of the Cartesian product, composition, join, disjunction and symmetric difference of graphs are presented. We begin with the following crucial lemma related to distance properties of some graph operations.

Lemma 2.1. Let G and H be graphs. Then we have:

(a) $|V(G \times H)| = |V(G \vee H)| = |V(G)[H]| = |V(G \oplus H)| = |V(G)| \cdot |V(H)|$,

(b) $|E(G \times H)| = |E(G)| \cdot |V(H)| + |V(G)| \cdot |E(H)|$,

(c) $|E(G + H)| = |E(G)| + |E(H)| + |V(G)| \cdot |V(H)|$,

(d) $|E(G[H])| = |E(G)| \cdot |V(H)|^2 + |E(H)| \cdot |V(G)|$,

(e) $|E(G \vee H)| = |E(G)| \cdot |V(H)|^2 + |E(H)| \cdot |V(G)|^2 - 2|E(G)| \cdot |E(H)|$,

(f) $|E(G \oplus H)| = |E(G)| \cdot |V(H)|^2 + |E(H)| \cdot |V(G)|^2 - 4|E(G)| \cdot |E(H)|$.

(b) $G \times H$ is connected if and only if G and H are connected.

(c) If (a, c) and (b, d) are vertices of $G \times H$ then $d_{G \times H}((a, c), (b, d)) = d_G(a, b) + d_H(c, d)$.

(d) The Cartesian product, join, composition, disjunction and symmetric difference of graphs are associative and all of them are commutative except from composition.
Proof. The parts (a–e) are consequences of definitions and some well-known results of the book of Imrich and Klavžar, [7]. For the proof of (f–h) we refer to [11]. □

The Wiener index of the Cartesian product graphs was studied in [5, 19]. In [14], Klavžar, Rajapakse and Gutman computed the Szeged index of the Cartesian product graphs. The present authors, [8, 9, 10, 11, 12, 13, 22], computed some exact formulae for the hyper-Wiener, vertex PI, edge PI, the first Zagreb, the second Zagreb, the edge Wiener and the edge Szeged indices of some graph operations. The aim of this section is to continue this program for computing the Wiener-type invariants for five graph operations.

It is easy to see that $W_{\lambda}(G) = \sum_{k=1}^{l} d(G,k)k^{\lambda}$, where $l = \text{diam}(G)$ denotes diameter of the graph G. Define $\alpha(k, r) = \sum_{i=1}^{k} i^{r}$. In the following simple lemma, we compute W_{λ} for five classes of known graphs.

Lemma 2.2. The following statements are hold:
1) $W_{\lambda}(P_{n}) = n\alpha(n - 1, \lambda) - \alpha(n - 1, \lambda + 1)$,
2) $W_{\lambda}(K_{n}) = \binom{n}{2}$,
3) $W_{\lambda}(S_{n}) = (n - 1) + \binom{n-1}{2}2^{\lambda}$,
4) $W_{\lambda}(K_{m,n}) = mn + 2^{\lambda}(\binom{m}{2} + \binom{n}{2})$,
5) $W_{\lambda}(C_{n}) = \begin{cases} \frac{n\alpha(n-1, \lambda)}{2} + \frac{n\alpha(n, \lambda)}{2} & \text{if } n \text{ is even} \\ \frac{n\alpha(n-1, \lambda)}{2} + \frac{n\alpha(n, \lambda)}{2} & \text{if } n \text{ is odd} \end{cases}$

Proposition 2.3. Let G and H be connected graphs. Then $W_{\lambda}(G+H) = |E(G)| + |E(H)| + |V(G)||V(H)| + 2^{\lambda}(|E(G)| + |E(H)|)$.

Proof. By Lemma 2.1, we have:

\[
W_{\lambda}(G + H) = \sum_{k=1}^{2} d(G + H, k)k^{\lambda} \\
= d(G + H, 1) + d(G + H, 2)2^{\lambda} \\
= |E(G)| + |E(H)| + |V(G)||V(H)| + 2^{\lambda}(|E(G)| + |E(H)|),
\]
Corollary 2.4. The reciprocal Wiener index of \(G + H \) is computed as follows:

\[
W_{-1}(G + H) = |E(G)| + |E(H)| + |V(G)||V(H)| + \frac{1}{2}(|E(G)| + |E(H)|).
\]

Corollary 2.5. The Harary index of \(G + H \) is computed as follows:

\[
W_{-2}(G + H) = |E(G)| + |E(H)| + |V(G)||V(H)| + \frac{1}{4}(|E(G)| + |E(H)|).
\]

Corollary 2.6. The Tratch-Stankevich-Zefirov index of \(G + H \) is computed as follows:

\[
TSZ(G + H) = |E(G)| + |E(H)| + |V(G)||V(H)| + 4(|E(G)| + |E(H)|).
\]

Corollary 2.7. (See [11, Theorem 2]) Let \(G \) and \(H \) be graphs. Then \(WW(G + H) = \frac{1}{2}|V(G)|^2 + \frac{1}{2}|V(H)|^2 - 2|E(G)| - 2|E(H)| - \frac{1}{2}|V(G)| - \frac{1}{2}|V(H)| + |V(G)||V(H)| \).

Corollary 2.8. (see [11, Corollary of Theorem 2].) Suppose \(G_1, G_2, \ldots, G_n \) are graphs. Then

\[
W_{\lambda}(G_1 + G_2 + \cdots + G_n) = (1 - 2^\lambda) \sum_{i=1}^{n} |E(G_i)| + \sum_{1 \leq i < j \leq n} |V(G_i)||V(G_j)| + 2^\lambda \sum_{i=1}^{n} |V(G_i)|^2
\]

In particular,

\[
WW(G_1 + \cdots + G_n) = \sum_{i=1}^{n} \left(3 \left(\frac{|V_i|}{2} \right) - 2|E_i| \right) + \frac{1}{2} \sum_{i \neq j, i, j = 1}^{n} |V_i||V_j|
\]

and \(WW(nG) = \frac{n}{2}(n^2 + 2n)|V(G)|^2 - 2n|E(G)| - \frac{4n}{2}|V(G)| \), where \(nG \) denotes the join of \(n \) copy of \(G \).

Proof. By a simple calculation,

\[
W_{\lambda}(G_1 + G_2 + \cdots + G_n) = \sum_{i=1}^{n} |E(G_i)| + \sum_{1 \leq i < j \leq n} |V(G_i)||V(G_j)| + 2^\lambda \sum_{i=1}^{n} |E(G_i)|
\]

\[
= (1 - 2^\lambda) \sum_{i=1}^{n} |E(G_i)| + \sum_{1 \leq i < j \leq n} |V(G_i)||V(G_j)| + 2^\lambda \sum_{i=1}^{n} |V(G_i)|^2,
\]

as desired. ■

Consider a complete \(n \)-partite graph \(G = K_{m_1, m_2, \ldots, m_n} \) containing \(v = |V(G)| \) vertices, Figure 1. By definition, in this graph the set of vertices can be partitioned into subsets \(V_1, V_2, \ldots, V_n \) of \(V \) such that for every \(i, 1 \leq i \leq n \), there is no edge between the vertices of \(V_i \).
By the previous corollary, one can see that

\[
W_{\lambda}(K_{m_1, m_2, \ldots, m_n}) = \sum_{1 \leq i < j \leq n} m_i m_j + 2^\lambda \sum_{i=1}^{n} \binom{m_i}{2}.
\]

Proposition 2.9. Let \(G \) and \(H \) be graphs. Then \(W_{\lambda}(G \vee H) = |E(G)||V(H)|^2 + |E(H)||V(G)|^2 - 2|E(G)||E(H)| + 2^\lambda (|V(G)||E(\bar{H})| + |V(H)||E(\bar{G})| + 2|E(\bar{G})||E(H)|).\)

Proof. By Lemma 2.1 and definition of disjunction,

\[
W_{\lambda}(G \vee H) = \sum_{k=1}^{2} d(G \vee H, k)k^\lambda \\
= d(G \vee H, 1) + d(G \vee H, 2)2^\lambda \\
= |E(G)||V(H)|^2 + |E(H)||V(G)|^2 - 2|E(G)||E(H)| \\
+ 2^\lambda (|V(G)||E(\bar{H})| + |V(H)||E(\bar{G})| + 2|E(\bar{G})||E(H)|),
\]

proving the result. \(\blacksquare \)

Corollary 2.10. The reciprocal Wiener index of \(G \vee H \) is computed as follows:

\[
W_{-1}(G \vee H) = |E(G)||V(H)|^2 + |E(H)||V(G)|^2 - 2|E(G)||E(H)| \\
+ \frac{1}{2} (|V(G)||E(\bar{H})| + |V(H)||E(\bar{G})| + 2|E(\bar{G})||E(H)|).
\]

Corollary 2.11. The Harary index of \(G \vee H \) is computed as follows:

\[
W_{-2}(G \vee H) = |E(G)||V(H)|^2 + |E(H)||V(G)|^2 - 2|E(G)||E(H)| \\
+ \frac{1}{4} (|V(G)||E(\bar{H})| + |V(H)||E(\bar{G})| + 2|E(\bar{G})||E(H)|).
\]
Corollary 2.13. The Tratch-Stankevich-Zefirov index of $G \vee H$ is computed as follows:

$$TSZ(G \vee H) = |E(G)||V(H)|^2 + |E(H)||V(G)|^2 - 2|E(G)||E(H)| + 4|V(G)||E(H)| + |V(H)||E(H)||E(H)| + 2|E(G)||E(H)||E(H)|.$$

Corollary 2.14. Let G and H be graphs. Then $WW(G \vee H) = 3(|V(G)||V(H)|^2) + 4|E(G)||E(H)| - 2|V(H)||E(G)| - 2|V(G)||E(H)|.$

Proposition 2.14. Let G and H be graphs. Then the Wiener-type invariant of the symmetric difference of G and H is: $W_{\lambda}(G \oplus H) = 2^{\lambda}(2|E(G)||E(H)| + |V(H)||E(G)| + |V(G)||E(H)| + 2|E(H)||E(G)|) + |E(G)||V(H)|^2 + |E(H)||V(G)|^2 - 4|E(G)||E(H)|.$

Proof. By Lemma 2.1 and definition of symmetric difference of two graphs, we have:

$$W_{\lambda}(G \oplus H) = \sum_{k=1}^{2} d(G \oplus H, k)k^{\lambda}$$

$$= d(G \oplus H, 1) + d(G \oplus H, 2)2^{\lambda}$$

$$= |E(G)||V(H)|^2 + |E(H)||V(G)|^2 - 4|E(G)||E(H)|$$

$$+ 2^{\lambda}(2|E(G)||E(H)| + |V(H)||E(G)| + |V(G)||E(H)|)$$

$$+ 2|E(H)||E(G)|,$$

proving the result. \[\square\]

Corollary 2.15. The reciprocal Wiener index of $G \oplus H$ is computed as follows:

$$W_{-1}(G \oplus H) = |E(G)||V(H)|^2 + |E(H)||V(G)|^2 - 4|E(G)||E(H)|$$

$$+ \frac{1}{2}(2|E(G)||E(H)|) + |V(H)||E(G)| + |V(G)||E(H)|$$

$$+ 2|E(H)||E(G)|.$$

Corollary 2.16. The Harary index of $G \oplus H$ is computed as follows:

$$W_{-2}(G \oplus H) = |E(G)||V(H)|^2 + |E(H)||V(G)|^2 - 4|E(G)||E(H)|$$

$$+ \frac{1}{4}(2|E(G)||E(H)|) + |V(H)||E(G)| + |V(G)||E(H)|$$

$$+ 2|E(H)||E(G)|.$$

Corollary 2.17. The Tratch-Stankevich-Zefirov index of $G \oplus H$ is computed as follows:

$$\frac{1}{6}W_{3}(G \oplus H) + \frac{1}{2}W_{2}(G \oplus H) + \frac{1}{3}W_{1}(G \oplus H) =$$
\[W_{\lambda}(G[H]) = \sum_{k=1}^{2} d_1(G[H], k) k^\lambda + \sum_{k=1}^{d_G} d_2(G[H], k) k^\lambda \]

Proving the result. \[\Box\]

Corollary 2.20. The reciprocal Wiener index of \(G[H] \) is computed as follows:

\[W_{-1}(G[H]) = |V(H)|^2 W_{-1}(G) + |V(G)||E(H)| + \frac{1}{2} |V(G)||E(H)|. \]

Corollary 2.21. The Harary index of \(G[H] \) is computed as follows:

\[W_{-2}(G[H]) = |V(H)|^2 W_{-2}(G) + |V(G)||E(H)| + \frac{1}{4} |V(G)||E(H)|. \]

Corollary 2.22. The Tratch-Stankevich-Zefirov index of \(G[H] \) is computed as

\[TSZ(G[H]) = |V(H)|^2 TSZ(G) + |V(G)||E(H)| + 4|V(G)||E(H)|. \]

Corollary 2.23. (See [11, Theorem 3].) Let \(G \) and \(H \) be graphs and \(G \) be connected.

Then \(WW(G[H]) = |V(H)|^2 WW(G) + \frac{|V(G)|}{2} (WW(2H) - |V(H)|^2). \)

3 Bounds on Wiener-Type Invariants of Graphs

In this section, some bounds on Wiener-type invariants of graphs are computed. We also find necessary and sufficient conditions for sharpness of these bounds.

Proposition 3.1. Let \(G \) be a graph with exactly \(n \) vertices and \(m \) edges. If \(\lambda \geq 0 \) then

\[2^{\lambda - 1} M_1 + m(1 - 2^\lambda) + \lambda \left(\binom{n}{2} - \frac{1}{2} M_1 \right) \geq W_{\lambda}(G) \geq 2^{\lambda - 1} M_1 + m(1 - 2^\lambda) + 3^\lambda \left(\binom{n}{2} - \frac{1}{2} M_1 \right) \]
and if \(\lambda \leq 0 \) then

\[
2^{\lambda - 1}M_1 + m(1 - 2^{\lambda}) + l^\lambda \left(\binom{n}{2} - \frac{1}{2}M_1 \right) \leq W_\lambda(G) \leq 2^{\lambda - 1}M_1 + m(1 - 2^{\lambda}) + 3^\lambda \left(\binom{n}{2} - \frac{1}{2}M_1 \right).
\]

Moreover, if \(G \) is triangle and quadrangle free then the equalities hold if and only if \(\text{diam}(G) = 3 \).

Proof. Suppose \(\lambda \geq 0 \). By definition and [23, Eqs. 4 and 5],

\[
W_\lambda(G) = \sum_{k=1}^l d(G, k)k^\lambda
\]

\[
= d(G, 1) + 2^\lambda d(G, 2) + \sum_{k \geq 3} d(G, k)k^\lambda
\]

\[
\geq m + 2^\lambda \left(\frac{1}{2}M_1 - m \right) + 3^\lambda \sum_{k \geq 3} d(G, k)
\]

\[
= 2^{\lambda - 1}M_1 + m(1 - 2^{\lambda}) + 3^\lambda \left(\binom{n}{2} - \frac{1}{2}M_1 \right),
\]

as desired. On the other hand,

\[
W_\lambda(G) = \sum_{k=1}^l d(G, k)k^\lambda
\]

\[
= d(G, 1) + 2^\lambda d(G, 2) + \sum_{k \geq 3} d(G, k)k^\lambda
\]

\[
\leq 2^{\lambda - 1}M_1 + m(1 - 2^{\lambda}) + l^\lambda \left(\binom{n}{2} - \frac{1}{2}M_1 \right).
\]

The second part is an immediate consequence of above inequalities.

Proposition 3.2. Let \(G \) and \(H \) be graphs and \(R \) and \(S \) defined as follows:

\[
R = \frac{1}{2}|V(G)||M_1(H)(2^\lambda - d^\lambda)| + \frac{1}{2}|V(H)||M_1(G)(2^\lambda - d^\lambda)|
\]

\[+ 4|E(G)||E(H)|(2^\lambda - d^\lambda) + d^\lambda \left(\frac{|V(G)||V(H)|}{2} \right)
\]

\[+ (1 - 2^\lambda)|V(G)||E(H)| + (1 - 2^\lambda)|V(H)||E(G)|,
\]

\[
S = \frac{1}{2}|V(G)||M_1(H)(2^\lambda - 3^\lambda)| + \frac{1}{2}|V(H)||M_1(G)(2^\lambda - 3^\lambda)|
\]

\[+ 4|E(G)||E(H)|(2^\lambda - 3^\lambda) + 3^\lambda \left(\frac{|V(G)||V(H)|}{2} \right)
\]

\[+ (1 - 2^\lambda)|V(G)||E(H)| + (1 - 2^\lambda)|V(H)||E(G)|.
\]
If \(\lambda \geq 0 \) then \(R \geq W_\lambda(G \times H) \geq S \) and if \(\lambda \leq 0 \) then \(S \geq W_\lambda(G \times H) \geq R \). Moreover, if \(G \times H \) is triangle and quadrangle free then the equalities hold if and only if \(\text{diam}(G \times H) = 3 \).

Proof. Suppose \(\lambda \geq 0 \). By Lemma 2.1 and [8, Theorem 1], we have:

\[
W_\lambda(G \times H) \geq 2^{\lambda-1}M_1(G \times H) + 3^\lambda \left(\frac{m_{G \times H}}{2} - \frac{1}{2}M_1(G \times H) \right) + (1 - 2^\lambda)m_{G \times H}
\]

\[
= 2^{\lambda-1}(|V(G)|M_1(H) + |V(H)|M_1(G) + 8|E(G)||E(H)|)
\]

\[
+ 3^\lambda \left(\frac{|V(G)||V(H)|}{2} - \frac{1}{2}|V(G)|M_1(H) + 8|E(G)||E(H)| \right)
\]

\[
+ (1 - 2^\lambda)(|V(G)||E(H)| + |V(H)||E(G)|) - \frac{1}{2}3^\lambda|V(H)|M_1(G)
\]

\[
= \frac{1}{2}|V(G)||M_1(H)(2^\lambda - 3^\lambda) + \frac{1}{2}|V(H)|M_1(G)(2^\lambda - 3^\lambda)
\]

\[
+ 4|E(G)||E(H)|(2^\lambda - 3^\lambda) + 3^\lambda \left(\frac{|V(G)||V(H)|}{2} \right)
\]

\[
+ (1 - 2^\lambda)|V(G)||E(H)| + (1 - 2^\lambda)|V(H)||E(G)|.
\]

Let \(d \) denote the diameter of \(G \times H \). Then

\[
W_\lambda(G \times H) \leq \frac{1}{2}|V(G)||M_1(H)(2^\lambda - d^\lambda) + \frac{1}{2}|V(H)||M_1(G)(2^\lambda - d^\lambda)
\]

\[
+ 4|E(G)||E(H)|(2^\lambda - d^\lambda) + d^\lambda \left(\frac{|V(G)||V(H)|}{2} \right)
\]

\[
+ (1 - 2^\lambda)|V(G)||E(H)| + (1 - 2^\lambda)|V(H)||E(G)|.
\]

We now assume that \(\lambda \leq 0 \). Then,

\[
W_\lambda(G \times H) \leq \frac{1}{2}|V(G)||M_1(H)(2^\lambda - 3^\lambda) + \frac{1}{2}|V(H)||M_1(G)(2^\lambda - 3^\lambda)
\]

\[
+ 4|E(G)||E(H)|(2^\lambda - 3^\lambda) + 3^\lambda \left(\frac{|V(G)||V(H)|}{2} \right)
\]

\[
+ (1 - 2^\lambda)|V(G)||E(H)| + (1 - 2^\lambda)|V(H)||E(G)|
\]

and,

\[
W_\lambda(G \times H) \geq \frac{1}{2}|V(G)||M_1(H)(2^\lambda - d^\lambda) + \frac{1}{2}|V(H)||M_1(G)(2^\lambda - d^\lambda)
\]

\[
+ 4|E(G)||E(H)|(2^\lambda - d^\lambda) + d^\lambda \left(\frac{|V(G)||V(H)|}{2} \right)
\]

\[
+ (1 - 2^\lambda)|V(G)||E(H)| + (1 - 2^\lambda)|V(H)||E(G)|,
\]

which completes our argument.

Acknowledgement. We are greatly indebted to the referees for their corrections and helpful remarks.
References

Department of Mathematics, Faculty of Science, University of Kashan, Kashan 87317−51167, Iran
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395−5746, Tehran, Iran
E-mail: ashrafi@kashanu.ac.ir