Spectral determination of some chemical graphs

Changjiang Bua, Jiang Zhoub, Hongbo Lic

aCollege of Science, Harbin Engineering University, Harbin 150001, PR China
bCollege of Science, Harbin Engineering University, Harbin 150001, PR China
cCollege of Science, Harbin Engineering University, Harbin 150001, PR China

Abstract. Let T_k^n denote the caterpillar obtained by attaching k pendant edges at two pendant vertices of the path P_n and two pendant edges at the other vertices of P_n. It is proved that T_k^n is determined by its signless Laplacian spectrum when $k = 2$ or 3, while T_2^n by its Laplacian spectrum.

1. Introduction

All graphs are simple and undirected in this paper. Let $A(G)$ be the adjacency matrix of G, and $D(G)$ the diagonal matrix of vertex degrees. The matrices $D(G) - A(G)$ and $D(G) + A(G)$ are called the Laplacian matrix and the signless Laplacian matrix of G, respectively. The spectrum of $A(G)$, $D(G) - A(G)$ and $D(G) + A(G)$ are called the A-spectrum, the L-spectrum and the Q-spectrum of G, respectively. The eigenvalues of $D(G) - A(G)$ and $D(G) + A(G)$ are called the L-eigenvalues and the Q-eigenvalues of G, respectively. Since $D(G) - A(G)$ and $D(G) + A(G)$ are real symmetric and positive semi-definite, all their eigenvalues are nonnegative. The largest eigenvalues of $D(G) - A(G)$ and $D(G) + A(G)$ are called the L-index and the Q-index of G, respectively. It is well known that the smallest L-eigenvalue of a graph is 0. The characteristic polynomials of $D(G) - A(G)$ and $D(G) + A(G)$ are called the L-polynomial and the Q-polynomial of G, respectively. We say that G is determined by its L-spectrum (resp. Q-spectrum) if there is no other non-isomorphic graph with the same L-spectrum (resp. Q-spectrum). Two graphs are said to be A-cospectral (resp. L-cospectral, Q-cospectral) if they have the same A-spectrum (resp. L-spectrum, Q-spectrum). As usual, P_n, C_n and K_n denote the path, the cycle and the complete graph of order n, respectively. Let $K_{m,n}$ denote the complete bipartite graph with parts of size m and n.

The problem “which graphs are determined by their spectra?” originates from chemistry. Günthard and Primas [4] raised this question in the context of Hückel’s theory. Since this problem is generally very difficult, van Dam and Haemers [13] proposed a more modest problem, that is “Which trees are determined by their spectra?” Some results for spectral determination of starlike trees can be found in [2,5,6,9,10,14]. Some double starlike trees determined by their L-spectra are given in [7,8]. Some caterpillars determined by their L-spectra are given in [1,11,12].

The theory of graph spectra has many important applications in chemistry, especially in treating hydrocarbons. The molecular graph of a hydrocarbon is a tree with maximal degree 4. Let T_k^n denote the
caterpillar obtained by attaching \(k \) pendant edges at two pendant vertices of \(P_n \) and two pendant edges at the other vertices of \(P_n \). For \(k \leq 3 \), \(T_k^n \) is the molecular graph of certain hydrocarbon. For instance, \(T_3^n \) is the molecular graph of a linear alkane (see Fig.1). In this paper, we prove that \(T_k^n \) is determined by its \(Q \)-spectrum when \(k = 2 \) or 3, while \(T_2^n \) by its \(L \)-spectrum. The graph \(T_2^n \) is shown in Fig.2.

Fig. 1. Some examples for graph \(T_3^n \)

\[T_2^3 \text{ (Ethane)} \quad T_3^3 \text{ (Propane)} \quad T_4^3 \text{ (Butane)} \]

Fig. 2. The graph \(T_2^n \)

2. Preliminaries

In this section, we give some properties which play important role throughout this paper.

Lemma 2.1. [3] For a graph \(G \), the multiplicity of the \(Q \)-eigenvalue 0 of \(G \) is equal to the number of bipartite components of \(G \).

Lemma 2.2. [2] Let \(G \) be a connected graph of order \(n > 1 \), and the maximum degree of \(G \) is \(\Delta \). Let \(q(G) \) be the \(Q \)-index of \(G \). Then \(q(G) \geq \Delta + 1 \), with equality if and only if \(G \) is the star \(K_{1,n-1} \).

Lemma 2.3. [2] For a connected graph \(G \), let \(H \) be a proper subgraph of \(G \). Let \(q(G) \) and \(q(H) \) be the \(Q \)-indices of \(G \) and \(H \), respectively. Then \(q(H) < q(G) \).

Lemma 2.4. [3] Let \(G \) be a graph with \(n \) vertices, \(m \) edges, \(t \) triangles and degree sequence \(d_1, d_2, \ldots, d_n \). Assume that \(q_1, q_2, \ldots, q_n \) are the \(Q \)-eigenvalues of \(G \). Let \(T_k = \sum_{i=1}^n q_i^k \), then

\[
T_0 = n, T_1 = \sum_{i=1}^n d_i = 2m, T_2 = 2m + \sum_{i=1}^n d_i^2, T_3 = 6t + 3 \sum_{i=1}^n d_i^2 + \sum_{i=1}^n d_i^3.
\]
For a graph G, let $\phi_A(G, x)$ be the characteristic polynomial of the adjacency matrix of G, $\phi_Q(G, x)$ be the Q-polynomial of G.

Lemma 2.5. [3] Let G be a graph of order n and size m, $L(G)$ be the line graph of G. Then

$$\phi_A(L(G), x) = (x + 2)^m - n \phi_Q(G, x + 2).$$

A connected graph with n vertices is said to be unicyclic if it has n edges. If the girth of an unicyclic graph is odd (resp. even), then this unicyclic graph is said to be odd (resp. even) unicyclic.

Lemma 2.6. [2] For a connected graph G with m edges, let $L(G)$ be the line graph of G, $\phi_A(L(G), x)$ be the characteristic polynomial of the adjacency matrix of $L(G)$. The following statements hold:

(i) If G is odd unicyclic, then $\phi_A(L(G), -2) = (-1)^m 4$.

(ii) If G is a tree, then $\phi_A(L(G), -2) = (-1)^m (m + 1)$.

(iii) If G is neither odd unicyclic nor a tree, then $\phi_A(L(G), -2) = 0$.

Lemma 2.7. [3] For any bipartite graph, the Q-polynomial coincides with the L-polynomial.

For a graph G with n vertices, let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the eigenvalues of the adjacency matrix of G. For an integer $k \geq 0$, the number $\sum_{i=1}^n \lambda_i^k$ is called the k-th spectral moment of G, denoted by $S_k(G)$. Let $N_k(G)$ denote the number of subgraphs of G isomorphic to a graph F.

Let $K_{1,n-1}$ be a star of order n, U_n be the graph obtained from a cycle C_{n-1} by attaching a pendant vertex to one vertex of C_{n-1}. Let B_4, B_5 be two graphs obtained from two triangles T_1, T_2 by identifying one edge of T_1 with one edge of T_2 and identifying one vertex of T_1 with one vertex of T_2, respectively (see Fig. 3).

![Fig. 3. Four graphs U_4, U_5, B_4, B_5](image)

Lemma 2.8. [15] For any graph G, we have

\[
\begin{align*}
S_3(G) &= 6N_{C_3}(G), \\
S_4(G) &= 2N_{P_5}(G) + 4N_{P_4}(G) + 8N_{C_4}(G), \\
S_5(G) &= 30N_{C_5}(G) + 10N_{U_4}(G) + 10N_{C_4}(G), \\
S_6(G) &= 2N_{P_5}(G) + 12N_{P_4}(G) + 24N_{C_4}(G) + 40N_{C_3}(G) + 6N_{P_3}(G) \\
&\quad + 12N_{K_{1,3}}(G) + 36N_{K_{1,2}}(G) + 24N_{K_{1,1}}(G) + 12N_{U_4}(G) + 12N_{C_4}(G).
\end{align*}
\]

In [11], Shen and Hou proved that the graph T^2_n is determined by its L-spectrum.

Theorem 2.9. [11] Graph T^2_n is determined by its L-spectrum.

3. The spectrum of the corona of two graphs

In order to get our main results, we will give an upper bound for the L-index of graph T^2_n in this section.

Let G be a graph with n vertices, H be a graph with m vertices. The corona of G and H, denoted by $G \circ H$, is the graph with $n + mn$ vertices obtained from G and n copies of H by joining the i-th vertex of G to each vertex in the i-th copy of $H(i = 1, \ldots, n)$. For a graph F, let rF denote the union of r disjoint copies of F.
Let $\mu_i(G)$ (resp. $\eta_i(G)$) denote the i-th largest L-eigenvalue (resp. Q-eigenvalue) of a graph G. If G has distinct L-eigenvalues $\xi_1, \xi_2, \ldots, \xi_n$ (resp. Q-eigenvalue $\eta_1, \eta_2, \ldots, \eta_m$) with multiplicities k_1, k_2, \ldots, k_n (resp. l_1, l_2, \ldots, l_m) for the L-spectrum (resp. Q-spectrum) of G. Let $\phi_L(G, x)$ and $\phi_Q(G, x)$ be the L-polynomial and Q-polynomial of G, respectively. The following theorem is known in the literature, but to make the paper more self-contained we give here the proof.

Theorem 3.1. Let G be a graph with n vertices, H a graph with m vertices. The following statements hold:

(a) $\phi_L(G \circ H, x) = \phi_L(G, x^2)\phi_L(H, x - 1)^n$, i.e., the L-spectrum of $G \circ H$ is $\left((\mu_i(G) + m + 1) \pm \sqrt{(\mu_i(G) + m - 1)^2 + 4m}\right)/2$, $(i = 1, \ldots, m, j = 1, \ldots, n)$.

(b) If H is an r-regular graph, then $\phi_Q(G \circ H, x) = \phi_Q(G, x^2)\phi_Q(H, x - 1)^n$, i.e., the Q-spectrum of $G \circ H$ is $\left((\mu_i(G) + m + 2r + 1) \pm \sqrt{(\mu_i(G) + m - 1)^2 + 4m}\right)/2$, $(i = 1, \ldots, m, j = 1, \ldots, n)$.

Proof. Let $L(G)$ and $L(H)$ be the Laplacian matrices of G and H, respectively. The L-polynomial of $G \circ H$ is

$$
\begin{vmatrix}
(x-m)I_n - L(G) & J_1 & \cdots & J_n \\
J_1 & (x-1)I_m - L(H) \\
\vdots & \ddots & \ddots \\
J_n & \cdots & (x-1)I_m - L(H)
\end{vmatrix},
$$

where $J_k (k = 1, \ldots, n)$ is a $n \times m$ matrix in which each entry of the k-row is 1 and all other entries are 0. Since the row sum of $(x-1)I_m - L(H)$ is $x-1$, we have

$$
\phi_L(G \circ H, x) = \begin{vmatrix}
(x-m) - \frac{m}{x} & J_1 & \cdots & J_n \\
O & (x-1)I_m - L(H) \\
\vdots & \ddots & \ddots \\
O & \cdots & (x-1)I_m - L(H)
\end{vmatrix},
$$

Since the smallest L-eigenvalue of a graph is 0, we get

$$
\phi_L(G \circ H, x) = \prod_{j=1}^{n} [x^2 - (\mu_j(G) + m + 1)x + \mu_j(G)] \prod_{i=1}^{m-1} (x - \mu_i(H) - 1)^n.
$$

So the L-spectrum of $G \circ H$ is

$$
(\mu_i(H) + 1)^m, \left((\mu_i(G) + m + 1) \pm \sqrt{(\mu_i(G) + m - 1)^2 + 4m}\right)/2, (i = 1, \ldots, m, j = 1, \ldots, n).
$$

Hence part (a) holds.

If H is an r-regular graph, then every row sum of the signless Laplacian matrix of H is $2r$. Similar to the above arguments, we can get part (b). \square

Corollary 3.2. The L-index of graph T^2_n is smaller than $\frac{7\sqrt{33}}{2}$.

\[\text{Changjiang Bu et al. / Filomat 26:6 (2012), 1123–1131}\]
Lemma 4.1. Proof. Note that \(T_n^k = P_n \circ 2K_1 \). The \(L \)-spectra of \(P_n \) and \(2K_1 \) are \(2 + 2 \cos \frac{\pi i}{n} (i = 1, \ldots, n) \) and \(0^{(2)} \), respectively. By Theorem 3.1, the \(L \)-spectrum of \(T_n^k \) is
\[
1^{(n)}, \mu_i + 3 \pm \sqrt{(\mu_i + 1)^2 + 8} \quad (i = 1, \ldots, n),
\]
where \(\mu_i = 2 + 2 \cos \frac{\pi i}{n} \). Since the \(L \)-index of \(T_n^k \) is \(\frac{\mu_i + 3 \pm \sqrt{(\mu_i + 1)^2 + 8}}{2} \), by \(\mu_1 < 4 \), we get \(\frac{\mu_i + 3 \pm \sqrt{(\mu_i + 1)^2 + 8}}{2} < \frac{7 + \sqrt{33}}{2} \). \(\square \)

Corollary 3.3. The \(Q \)-index of \(C_n \circ 2K_1 \) is \(\frac{7 + \sqrt{33}}{2} \).

Proof. The \(Q \)-spectra of \(C_n \) and \(2K_1 \) are \(2 + 2 \cos \frac{2\pi i}{n} (i = 1, \ldots, n) \) and \(0^{(2)} \), respectively. By Theorem 3.1, the \(Q \)-spectrum of \(C_n \circ 2K_1 \) is
\[
1^{(n)}, q_i + 3 \pm \sqrt{(q_i + 1)^2 + 8} \quad (i = 1, \ldots, n),
\]
where \(q_i = 2 + 2 \cos \frac{2\pi i}{n} \). Clearly the \(Q \)-index of \(C_n \circ 2K_1 \) is \(\frac{7 + \sqrt{33}}{2} \). \(\square \)

4. Spectral determination of graph \(T_n^k \) and graph \(T_n^2 \)

In this section, we will prove that \(T_n^k \) is determined by its \(Q \)-spectrum when \(k = 2 \) or \(3 \), while \(T_n^2 \) by its \(L \)-spectrum.

It is known that two \(Q \)-cospectral graphs have the same number of vertices and edges. This property also holds for \(A \)-spectrum and \(L \)-spectrum.

Lemma 4.1. Let \(G \) be a graph \(Q \)-cospectral with a tree \(T \) of order \(n \), then one of the following holds:
1. \(G \) is a tree;
2. \(G \) is the union of a tree with \(f \) vertices and \(c \) odd unicyclic graphs, and \(n = 4f \).

Proof. Since \(G \) is \(Q \)-cospectral with a tree of order \(n \), \(G \) is a graph of order \(n \) and size \(n - 1 \). If \(G \) is connected, then \(G \) is a tree. If \(G \) is disconnected, then \(G \) has at least one component which is a tree. From Lemma 2.1 we know that \(G \) has exactly one bipartite component, so \(G \) is the union of a tree and several odd unicyclic graphs. Suppose that \(G \) is the union of a tree of order \(f \) and \(c \) odd unicyclic graphs. By Lemma 2.5, the line graphs of \(G \) and \(T \) have the same \(A \)-spectrum. From Lemma 2.6 we can get \(n = 4f \). \(\square \)

For a graph \(G \) which is \(Q \)-cospectral with \(T_n^2 \), we will show in lemma below that \(G \) and \(T_n^2 \) have the same degree sequence.

Lemma 4.2. Let \(G \) be any graph \(Q \)-cospectral with \(T_n^2 \). Then \(G \) and \(T_n^2 \) have the same degree sequence and \(G \) has no triangles.

Proof. If \(G \) has an isolated vertex, by Lemma 4.1, there exists an integer \(c \) such that \(3n = 4f \), a contradiction. Hence \(G \) has no isolated vertices.

Let \(a_i \) be the number of vertices of degree \(i \) in \(G \) (note, \(a_0 = 0 \)). Let \(\Delta(G) \) be the maximum degree of \(G \). Since \(T_n^2 \) is a tree, by Lemma 2.7, the \(Q \)-index of \(T_n^2 \) equals to its \(L \)-index. From Corollary 3.2 we know that the \(Q \)-index of \(T_n^2 \) is smaller than \(\frac{7 + \sqrt{33}}{2} \). By Lemma 2.2, we have \(\Delta(G) + 1 < \frac{7 + \sqrt{33}}{2} \), so \(\Delta(G) \leq 5 \). By Lemma 2.4, we have
\[
\sum_{i=1}^{5} a_i = 3n, \quad \sum_{i=1}^{5} ia_i = 2(3n - 1) = 6n - 2,
\]
\[
\sum_{i=1}^{5} i^2a_i = 2n + 3^2 \times 2 + 4^2(n - 2) = 18n - 14,
\]
\[\sum_{i=1}^{n} t^3 a_i + 6t(G) = 2n + 3^3 \times 2 + 4^3(n - 2) = 66n - 74, \]

where \(t(G) \) is the number of triangles in \(G \). Solving the above equations, we have

\[a_1 = 2n + t(G) + a_5, \quad a_2 = -3t(G) - 4a_5, \quad a_3 = 2 + 3t(G) + 6a_5, \quad a_4 = n - 2 - t(G) - 4a_5. \]

By \(a_2 = -3t(G) - 4a_5 \geq 0 \), we have \(a_2 = 4a_5 = t(G) = 0 \). So we get

\[a_1 = 2n, \quad a_2 = 0, \quad a_3 = 2, \quad a_4 = n - 2, \]

i.e., \(G \) and \(T_n^2 \) have the same degree sequence. \(\Box \)

For a graph \(G \), let \(u \) and \(v \) be any two vertices of \(G \). We say that \(u, v \) is an adjacent vertex pair if \(u \) and \(v \) are adjacent. If the degrees of \(u \) and \(v \) are \(d(u) \) and \(d(v) \), we say that \(u, v \) is an adjacent vertex pair with degrees \(d(u) \) and \(d(v) \). Let \((i, j) \) denote the number of adjacent vertex pairs with degrees \(i \) and \(j \) in \(G \).

Lemma 4.3. Let \(G \) be any graph Q-cospectral with \(T_n^2 \). Then

\[(1, 3) = 4, \ (1, 4) = 2n - 4, \ (3, 3) = 0, \ (3, 4) = 2, \ (4, 4) = n - 3, \]

i.e., the line graph of \(G \) and the line graph of \(T_n^2 \) have the same degree sequence.

Proof. Let \(L(G) \) and \(L(T_n^2) \) be the line graphs of \(G \) and \(T_n^2 \), respectively. From Lemma 2.5 we know that \(L(G) \) and \(L(T_n^2) \) are A-cospectral. For two adjacent vertices \(v_1, v_2 \) of degrees \(d(v_1), d(v_2) \) in \(G \), the degree of the corresponding vertex \(v_1v_2 \) in \(L(G) \) is \(d(v_1) + d(v_2) - 2 \). We denote this correspond by

\[\text{dend} \sim \text{dend} \rightarrow d(v_1) + d(v_2) - 2. \]

By Lemma 4.2, \(G \) and \(T_n^2 \) have the same degree sequence and \(G \) has no triangles. All possible correspondence for vertex degrees between \(G \) and \(L(G) \) are listed as follows.

\[1 \sim 3 \rightarrow 2, \ 1 \sim 4 \rightarrow 3, \ 3 \sim 3 \rightarrow 4, \ 3 \sim 4 \rightarrow 5, \ 4 \sim 4 \rightarrow 6. \]

Let \(a_i \) be the number of vertices of degree \(i \) in \(G \), then \(a_1 = 2n, a_2 = 0, a_3 = 2, a_4 = n - 2 \). By Lemma 2.8, we have \(N_{C_4}(L(G)) = N_{C_4}(L(T_n^2)) \). Lemma 4.1 implies that \(G \) cannot contain an even cycle. Since \(G \) has no triangles, we have \(N_{C_4}(L(G)) = N_{C_4}(L(T_n^2)) = (n - 2)N_{C_4}(K_4) \). Since \(L(G) \) and \(L(T_n^2) \) are A-cospectral, \(N_{C_4}(L(G)) = N_{C_4}(L(T_n^2)) \). For any graph \(H \) with vertex degrees \(d_1, d_2, \ldots, d_n \), we have

\[N_{C_4}(H) = \sum_{i=1}^{n} \binom{d_i}{2}. \]

From the above equation and Lemma 2.8, we have

\[\begin{align*}
N_{C_4}(L(G)) &= N_{C_4}(L(T_n^2)) = 4 + 3(2n - 4) + 10 \times 2 + 15(n - 3) = 21n - 33, \\
N_{C_4}(L(G)) &= (1, 3) + 3(1, 4) + 6(3, 3) + 10(3, 4) + 15(4, 4). \tag{1}
\end{align*} \]

Considering vertex degrees of \(G \), by \(a_3 = 2 \), we have \(5 \leq (1, 3) + (3, 3) + (3, 4) \leq 6 \). It is easy to see that \((1, 3) + (1, 4) = a_1 = 2n \). Note that \(G \) and \(T_n^2 \) both have \(3n - 1 \) edges. Hence the following facts hold:

\[\begin{align*}
(1, 3) + (1, 4) + (3, 3) + (3, 4) + (4, 4) &= 3n - 1, \\
(1, 3) + (1, 4) &= 2n, \tag{2}
5 \leq (1, 3) + (3, 3) + (3, 4) \leq 6.
\end{align*} \]
Let $x = (1, 3) + (3, 3) + (3, 4)$. From (1) and (2) we can get
$$7(1, 3) + 4(3, 4) = 9x - 18.$$
If $x = 5$, then $(3, 3) = 1, (1, 3) + (3, 4) = 4$. By $7(1, 3) + 4(3, 4) = 27$, we have $(1, 3) = \frac{11}{3}$, a contradiction. Hence $x = 6, (3, 3) = 0, (1, 3) + (3, 4) = 6$. By $7(1, 3) + 4(3, 4) = 36$, we can get
$$(1, 3) = 4, (1, 4) = 2n - 4, (3, 3) = 0, (3, 4) = 2, (4, 4) = n - 3.$$
In this case, $L(G)$ and $L(T_n^2)$ have the same degree sequence. \(\square\)

It is well known that the second smallest L-eigenvalue of a graph is larger than 0 if and only if this graph is connected. Hence if two graphs are L-cospectral, then they have the same number of components.

The coalescence of two graphs M_1 and M_2, denoted by $M_1 \cdot M_2$, is the graph obtained by identifying a vertex of M_1 with a vertex of M_2. For a subgraph W of $K_{d_1} \cdot K_{d_2}$, if two cliques K_{d_1}, K_{d_2} both have edges of W, i.e., the edges of W are distributed in different cliques, we say that W is a double W-subgraph of $K_{d_1} \cdot K_{d_2}$. Let $K_{d_1} \cdot K_{d_2}(W)$ denote the number of double W-subgraphs in $K_{d_1} \cdot K_{d_2}$.

For a subgraph P of a graph H, if the edges of P are distributed in three cliques of H, then P is called a triple P-subgraph of H. Let $|H|^3$ be the number of triple P-subgraphs in H.

Now we will consider the L-spectral determination of graph T_n^2 shown in Fig.2. If $n = 1$, then $T_n^2 = P_3$. It is known that a path is determined by its L-spectrum (see [13]). It is also known that T_n^2 is determined by its L-spectrum (cf. [7, Theorem 3.1]). Hence T_n^2 is determined by its L-spectrum when $n \leq 2$.

Theorem 4.4. Graph T_n^2 is determined by its L-spectrum.

Proof. It is known that T_n^2 is determined by its L-spectrum when $n \leq 2$. So we only consider the case that $n > 2$. Let G be any graph L-cospectral with T_n^2. Since G and T_n^2 have the same number of components, G is a tree. By Lemma 2.7, G is Q-cospectral with T_n^2 and their Q-spectra coincide with their L-spectra. Let $L(G)$ and $L(T_n^2)$ be the line graphs of G and T_n^2, respectively. From Lemma 2.5 we know that $L(G)$ and $L(T_n^2)$ are A-cospectral. Let a_i be the number of vertices of degree i in G. By Lemma 4.2, we have $a_1 = 2n, a_2 = 0, a_3 = 2, a_4 = n - 2$. By Lemma 4.3, we can get $(1, 3) = 4, (1, 4) = 2n - 4, (3, 3) = 0, (3, 4) = 2, (4, 4) = n - 3$. Hence G has two vertices with degree 3, each vertex of degree 3 in G has two pendant vertices and one vertex of degree 4 as its neighbors. Let $N_T(G)$ be the number of subgraphs of G isomorphic to a graph F. Since $L(G)$ and $L(T_n^2)$ are A-cospectral, we have $N_{T_n^2}(L(G)) = N_T(L(T_n^2))$. By Lemma 2.8, we have $N_{C_1}(L(G)) = N_{C_1}(L(T_n^2))$. Note that G is a tree. Lemma 4.2 implies that $N_{C_1}(L(G)) = N_{C_1}(L(T_n^2))$. By Lemma 2.8, we have $N_{P_1}(L(G)) = N_{P_1}(L(T_n^2))$. Let U_4, U_5, B_4, B_5 be the graphs shown in Fig.3. Since G is a tree and G and T_n^2 have the same degree sequence, by Lemma 4.3, we have $N_{K_{1,2}}(L(G)) = N_{K_{1,2}}(L(T_n^2)), N_{C_1}(L(G)) = N_{C_1}(L(T_n^2)) = 0, N_{B_3}(L(G)) = N_{B_3}(L(T_n^2)) = a_4N_{B_4}(K_4)$. Line graphs $L(G)$ and $L(T_n^2)$ can be regarded as the graphs obtained from several complete graphs by some coalescence operations. A vertex of degree $d \geq 3$ in G corresponds to a clique K_d of $L(G)$, two adjacent vertices with degrees $d_1, d_2 \geq 3$ in G corresponds to the coalescence $K_{d_1} \cdot K_{d_2}$ in $L(G)$. By calculating, we have

$$N_{U_4}(L(G)) = N_{U_4}(L(T_n^2)) = a_4N_{U_4}(K_4) \cdot (4, 4)K_4 \cdot K_4 \cdot K_4 \cdot K_4 \cdot K_4 \cdot K_4 \cdot U_4,$$

$$N_{U_5}(L(G)) = N_{U_5}(L(T_n^2)) = (4, 4)K_4 \cdot K_4 \cdot K_4 \cdot K_4 \cdot K_4 \cdot K_4 \cdot (3, 4).$$

$$N_{B_3}(L(G)) = N_{B_3}(L(T_n^2)) = (4, 4)K_4 \cdot K_4 \cdot K_4 \cdot K_4 \cdot K_4 \cdot K_4 \cdot (3, 4).$$

By Lemma 2.8, we get $N_{C_1}(L(G)) = N_{C_1}(L(T_n^2))$. Hence the following facts hold:

$$\begin{align*}
N_{P_1}(L(G)) &= N_{P_1}(L(T_n^2)), N_{P_1}(L(G)) = N_{P_1}(L(T_n^2)), N_{C_1}(L(G)) = N_{C_1}(L(T_n^2)), \\
N_{C_1}(L(G)) &= N_{C_1}(L(T_n^2)), N_{K_{1,2}}(L(G)) = N_{K_{1,2}}(L(T_n^2)), N_{B_3}(L(G)) = N_{B_3}(L(T_n^2)), \\
N_{B_3}(L(G)) &= N_{B_3}(L(T_n^2)), N_{U_4}(L(G)) = N_{U_4}(L(T_n^2)), N_{C_1}(L(G)) = N_{C_1}(L(T_n^2)).
\end{align*}$$

From equations (3) and Lemma 2.8 we get $N_{P_1}(L(G)) = N_{P_1}(L(T_n^2))$.

1129 Changjiang Bu et al. / Filomat 26:6 (2012), 1123–1131
By calculating, we have

\[N_{P_i}(L(G)) = a_iN_{P_i}(K_4) + (4, 4)K_4 \cdot K_4(P_4) + (3, 4)K_4 \cdot K_3(P_4) + (L(G))_{P_i}^3, \]

\[N_{P_i}(L(T_n^2)) = a_iN_{P_i}(K_4) + (4, 4)K_4 \cdot K_4(P_4) + (3, 4)K_4 \cdot K_3(P_4) + (L(T_n^2))_{P_i}^3. \]

Since \(N_{P_i}(L(G)) = N_{P_i}(L(T_n^2)) \), we have \((L(G))_{P_i}^3 = (L(T_n^2))_{P_i}^3)\). If there exist vertices of degree 4 outside the path between two vertices of degree 3 in \(G\), then \((L(G))_{P_i}^3 > (L(T_n^2))_{P_i}^3\), a contradiction. Hence all vertices of degree 4 in \(G\) belong to the path between two vertices of degree 3, i.e., \(G = T_n^2\).

Next we will consider the Q-spectral determination of graph \(T_n^2\).

Theorem 4.5. Graph \(T_n^2\) is determined by its Q-spectrum.

Proof. Let \(G\) be any graph Q-cospectral with \(T_n^2\). First, we show that the corona \(C_g \circ 2K_1\) cannot be a subgraph of \(G\) for any integer \(g \geq 3\). By Lemma 2.7 and Corollary 3.2, the Q-index of \(T_n^2\) is smaller than \(2 + \sqrt{32}\). If there exists an integer \(g\) such that \(C_g \circ 2K_1\) is a subgraph of \(G\), by Corollary 3.3 and Lemma 2.3, the Q-index of \(G\) is larger than or equal to \(2 + \sqrt{32}\), a contradiction. Hence \(C_g \circ 2K_1\) cannot be a subgraph of \(G\).

If \(G\) is connected, then \(G\) is a tree. By Lemma 2.7, \(G\) and \(T_n^2\) have the same L-spectrum. From Theorem 4.4 we can get \(G = T_n^2\).

If \(G\) is disconnected, by Lemma 4.1, \(G\) is the union of a tree and several odd unicyclic graphs. Suppose that \(G_1, \ldots, G_t\) are odd unicyclic components of \(G\), \(T\) is the component of \(G\) which is a tree. Let \(a_i\) be the number of vertices of degree \(i\) in \(G\). By Lemma 4.2, \(a_1 = 2n, a_2 = 0, a_3 = 2, a_4 = n - 2\). By Lemma 4.3, we can get \((1, 3) = 4, (1, 4) = 2n - 4, (3, 3) = 0, (3, 4) = 2, (4, 4) = n - 3\). Since \(C_g \circ 2K_1\) cannot be a subgraph of \(G\) for any integer \(g \geq 3\), we have \(c \leq 2\).

If \(c = 2\), then there are exactly one vertex of degree 3 in the unique cycle of \(G, (i = 1, 2)\). Hence \((3, 4) \geq 4\), a contradiction with \((3, 4) = 2\). If \(c = 1\), then there are at least one vertex of degree 3 in the unique cycle of \(G_1\). By \((3, 4) = 2, (1, 3) = 4\) we know that the star \(K_{1, 3}\) is a component of \(G\), i.e., \(T = K_{1, 3}\). From Lemma 4.1 we can get \(3n = 4 \times 4 = 16\), a contradiction.

Finally we will consider the Q-spectral determination of graph \(T_n^3\).

Theorem 4.6. Graph \(T_n^3\) is determined by its Q-spectrum.

Proof. From Lemma 2.3 we know that the Q-index of \(T_n^3\) is smaller than the Q-index of \(T_n^2\). By Lemma 2.7 and Corollary 3.2, the Q-index of \(T_n^3\) is smaller than \(2 + \sqrt{32}\). Hence the Q-index of \(T_n^3\) is smaller than \(2 + \sqrt{32}\).

Let \(G\) be any graph Q-cospectral with \(T_n^3\). If \(G\) has an isolated vertex, by Lemma 4.1, there exists an integer \(c\) such that \(3n + 2 = 4^c\), a contradiction. Hence \(G\) has no isolated vertices.

Now we show that the corona \(C_g \circ 2K_1\) cannot be a subgraph of \(G\) for any integer \(g \geq 3\). If there exists an integer \(g\) such that \(C_g \circ 2K_1\) is a subgraph of \(G\), by Corollary 3.3 and Lemma 2.3, the Q-index of \(G\) is larger than or equal to \(2 + \sqrt{32}\). But the Q-index of \(T_n^3\) is smaller than \(2 + \sqrt{32}\), a contradiction. Hence \(C_g \circ 2K_1\) cannot be a subgraph of \(G\) for any integer \(g \geq 3\).

If \(G\) is connected, then \(G\) is a tree. By Lemma 2.7, \(G\) and \(T_n^3\) have the same L-spectrum. From Theorem 2.9 we can get \(G = T_n^3\). Next we only consider the case that \(G\) is disconnected. Let \(a_i\) be the number of vertices of degree \(i\) in \(G\), \(\Delta(G)\) be the maximum degree of \(G\). Since \(G\) has no isolated vertices, we have \(a_0 = 0\). Since the Q-index of \(G\) is smaller than \(2 + \sqrt{32}\), by Lemma 2.2, we have \(\Delta(G) + 1 < 2 + \sqrt{32}\), so \(\Delta(G) \leq 5\). Let \(t(G)\) be the number of triangles in \(G\). By Lemma 2.4, we have

\[\sum_{i=1}^{5} a_i = 3n + 2, \quad \sum_{i=1}^{5} a_2 = 2(3n + 1) = 6n + 2, \quad \sum_{i=1}^{5} a_3 = 2n + 2 + 4^2n = 18n + 2, \]

\[\sum_{i=1}^{5} a_i + 6t(G) = 2n + 2 + 4^2n = 66n + 2. \]
Solving the above equations, we have

\[a_1 = 2n + 2 + t(G) + a_5, \quad a_2 = -4a_5 - 3t(G), \quad a_3 = 6a_5 + 3t(G), \quad a_4 = n - t(G) - 4a_5. \]

Since \(a_2 \geq 0 \), we have \(a_5 = t(G) = 0 \). So we get \(a_1 = 2n + 2, \ a_2 = a_3 = 0, \ a_4 = n \). Since \(G \) is disconnected, by Lemma 4.1, \(G \) is the union of a tree and several odd unicyclic graphs. In this case, there exists an integer \(g \) such that \(C_g \circ 2K_1 \) is a subgraph of \(G \). But \(C_g \circ 2K_1 \) can not be a subgraph of \(G \) for any integer \(g \geq 3 \), a contradiction. \(\Box \)

5. Acknowledgments
The authors thank Prof. Dragan Stevanović and the referee for a very careful reading of the paper and for their valuable suggestions.

References