On Equitorsion Concircular Tensors of Generalized Riemannian Spaces

Milan Zlatanovića, Irena Hinterleitnerb, Marija Najdanovićc

aFaculty of Sciences and Mathematics, University of Niš, Serbia
bDepartment of Mathematics, Faculty of Civil Engineering, Brno University of Technology, Czech Republic
cFaculty of Sciences and Mathematics, University of Niš, Serbia and College of Vocational Studies, Krusevac, Serbia

Abstract. In this paper we consider concircular vector fields of manifolds with non-symmetric metric tensor. The subject of our paper is an equitorsion concircular mapping. A mapping $f : \mathbf{GR}_N \rightarrow \mathbf{GR}_N$ is an equitorsion if the torsion tensors of the spaces \mathbf{GR}_N and \mathbf{GR}_N are equal.

For an equitorsion concircular mapping of two generalized Riemannian spaces \mathbf{GR}_N and \mathbf{GR}_N, we obtain some invariant curvature tensors of this mapping Z_{θ}, $\theta = 1, 2, \ldots, 5$, given by equations (3.14, 3.21, 3.28, 3.31, 3.38). These quantities are generalizations of the concircular tensor Z given by equation (2.5).

1. Introduction

The use of non-symmetric basic tensors and non-symmetric connection became especially actual after appearance of the works of A. Einstein \cite{2}-\cite{4} related to the Unified Field Theory (UFT). Remark that in the UFT the symmetric part g_{ij} of the basic tensor g_{ij} is related to gravitation, and antisymmetric one \bar{g}_{ij} to electromagnetism.

A generalized Riemannian space \mathbf{GR}_N in the sense of Eisenhart’s definition \cite{5} is a differentiable N-dimensional manifold, equipped with non-symmetric basic tensor g_{ij}.

Let us consider two N-dimensional generalized Riemannian spaces \mathbf{GR}_N and \mathbf{GR}_N with basic tensors g_{ij} and \bar{g}_{ij} respectively. Generalized Christoffel symbols of the first kind of the spaces \mathbf{GR}_N and \mathbf{GR}_N are given by

\begin{equation}
\Gamma_{i,jk} = \frac{1}{2}(g_{jk,i} - g_{ik,j} + g_{ik,j}), \quad \Gamma_{i,jk} = \frac{1}{2}((\bar{g}_{jk,i} - \bar{g}_{ik,j} + \bar{g}_{ik,j}))\end{equation}

where, for example, $g_{ijk} = \partial g_{ij}/\partial x^k$. Connection coefficients of these spaces are generalized Christoffel symbols of the second kind $\tilde{\Gamma}_{jk} = g^{il} \Gamma_{p,jk}$ and $\tilde{\Gamma}_{jk} = \bar{g}^{il} \Gamma_{p,jk}$ respectively, where $(g^{ij}) = (g_{ij})^{-1}$ and ij denotes symmetrization with division of the indices i and j. Generally the generalized Christoffel symbols

\textit{2010 Mathematics Subject Classification. Primary 53B05; Keywords. geodesic mapping, generalized Riemannian space, equitorsion geodesic mapping, concircular vector field, equitorsion concircular mapping}

\textit{Received: 21 May 2013; Accepted: 22 September 2013}

\textit{Communicated by Ljubica Velimirović}

\textit{The first author gratefully acknowledge support from the research project 174012 of the Serbian Ministry of Science and FAST-S-13-2088 of the Brno University of Technology}

\textit{Email addresses:} zlatmilan@yahoo.com (Milan Zlatanović), Hinterleitner.Irena@seznam.cz (Irena Hinterleitner), marijanath@yahoo.com (Marija Najdanović)
are not symmetric, i.e. $\Gamma_{jk}^i \neq \Gamma_{kj}^i$. We suppose that $g = \det(g_{ij}) \neq 0$, $\overline{g} = \det(\overline{g}_{ij}) \neq 0$, $\psi = \det(\psi_{ij}) \neq 0$, $\overline{\psi} = \det(\overline{\psi}_{ij}) \neq 0$.

A diffeomorphism $f : \text{GR}_N \to \overline{\text{GR}}_N$ is a conformal mapping if for the basic tensors g_{ij} and \overline{g}_{ij} of these spaces the condition
$$\overline{g}_{ij} = e^{2\psi} g_{ij}$$
is satisfied, where ψ is an arbitrary function of x, and the spaces are considered in the common system of local coordinates x^ℓ.

In this case for the Christoffel symbols of the first kind of the spaces GR_N and $\overline{\text{GR}}_N$ the relation
$$\overline{\Gamma}_{i,j,k} = e^{2\psi}(\Gamma_{i,j,k} + g_{ij}\psi_k - g_{jk}\psi_i + g_{ik}\psi_j)$$
is satisfied and for the Christoffel symbols of the second kind we have
$$\overline{\Gamma}^{i}_{jk} = \Gamma^{i}_{jk} + g^{ip}(g_{jp}\psi_k - g_{jk}\psi_p + g_{pk}\psi_j),$$
where $\psi_{jk} = \partial \psi / \partial x^k$. Let us denote $\psi_{hk} = \psi_{hk}$ and $\psi_{ij} = g^{ip}\psi_{pj}$. Now, from (1.4) we have
$$\overline{\Gamma}^{i}_{jk} = \Gamma^{i}_{jk} + g^{ip}(g_{jp}\psi_k - g_{jk}\psi_p + g_{pk}\psi_j) + g^{ip}(g_{jp}\psi_k - g_{jk}\psi_p + g_{pk}\psi_j),$$
i.e.
$$\overline{\Gamma}^{i}_{jk} = \Gamma^{i}_{jk} + \delta^{i}_{j} \psi_{k} + \delta^{i}_{k} \psi_{j} - \psi^{l}g_{lp} + \xi^{i}_{jk},$$
where
$$\xi^{i}_{jk} = g^{ip}(g_{jp}\psi_k - g_{jk}\psi_p + g_{pk}\psi_j) = -\xi^{i}_{kj}, \quad \psi^{i} = \frac{1}{N}(\overline{\Gamma}^{i}_{pp} - \Gamma^{i}_{pp}).$$
and ij denotes an antisymmetrisation with division. In the corresponding points $M(x)$ and $\overline{M}(x)$ of a conformal mapping we can put
$$\overline{\Gamma}^{i}_{jk} = \Gamma^{i}_{jk} + P_{jk}^{i} \quad (i, j, k = 1, \ldots, N),$$
where P_{jk}^{i} is the deformation tensor of the connection Γ of GR_N according to the conformal mapping $f : \text{GR}_N \to \overline{\text{GR}}_N$.

Notice that in GR_N we have
$$\overline{\Gamma}^{p}_{p} = 0, \quad (\text{eq. (2.10) in [14]}).$$

Based on the non-symmetry of the connection in a generalized Riemannian space one can define four kinds of covariant derivatives. For example, for a tensor a_{ij}^{d} in GR_N we have
$$a^{d}_{ij,m} = a^{d}_{jm} + \Gamma^{p}_{jm} a^{d}_{ip} - \Gamma^{p}_{jm} a^{d}_{ip}, \quad a^{d}_{ij,m} = a^{d}_{jm} + \Gamma^{p}_{jm} a^{d}_{ip} - \Gamma^{p}_{jm} a^{d}_{ip},$$
$$a^{d}_{ij,m} = a^{d}_{jm} + \Gamma^{p}_{jm} a^{d}_{ip} - \Gamma^{p}_{jm} a^{d}_{ip}, \quad a^{d}_{ij,m} = a^{d}_{jm} + \Gamma^{p}_{jm} a^{d}_{ip} - \Gamma^{p}_{jm} a^{d}_{ip}.$$
In the case of the space \mathcal{GR}_N we have five independent curvature tensors [24]:

\[
\begin{align*}
K^i_{\frac{1}{2}jmn} &= \Gamma^i_{jmn} - \Gamma^i_{jm,n} + \Gamma^j_{mni} - \Gamma^j_{mni} + \Gamma^j_{mni} - \Gamma^j_{mni}, \\
K^i_{\frac{3}{2}jmn} &= \frac{1}{2}(\Gamma^i_{jmn} - \Gamma^i_{jm,n} + \Gamma^m_{jni} - \Gamma^m_{jni}), \\
K^i_{\frac{4}{2}jmn} &= \frac{1}{2}(\Gamma^i_{jmn} - \Gamma^i_{jm,n} + \Gamma^m_{jni} - \Gamma^m_{jni}), \\
K^i_{\frac{5}{2}jmn} &= \frac{1}{2}(\Gamma^i_{jmn} - \Gamma^i_{jm,n} + \Gamma^m_{jni} - \Gamma^m_{jni}).
\end{align*}
\]

We use the conformal mapping $f : \mathcal{GR}_N \to \mathcal{GR}_{\bar{N}}$ to obtain the tensors $\overline{K}^i_{\theta jmn}$ ($\theta = 1, ..., 5$), where for example

\[
\overline{K}^i_{\theta jmn} = \bar{\Gamma}^i_{jmn} - \bar{\Gamma}^i_{jm,n} + \bar{\Gamma}^m_{jni} - \bar{\Gamma}^m_{jni}.
\]

(1.9)

2. Concircular vector field

In 1940. K. Yano [23] considered the conformal mapping $\bar{g}_{ij} = \psi^2 g_{ij}$ of two Riemannian spaces. In this case, he proved that geodesics are invariant under this mapping if and only if

\[
\psi^2 g_{ij} = \omega g_{ij},
\]

(2.1)

where $;\psi$ is a covariant derivative, g_{ij} a symmetric metric tensor, ω an invariant and ψ_i is a gradient vector.

When N. S. Sinyukov studied geodesic mappings of symmetric spaces [18], he wrote this condition in terms of $\xi = e^{-\psi}$. It is easy to see that the formula (2.1) transforms to

\[
\xi_{ij} = \rho g_{ij},
\]

(2.2)

where $\rho = -\omega e^{-\psi}$, $\xi_{ij} = \xi_i$. The vector field ξ_i, was called concircular vector field by K. Yano [23]. In the case when $\rho = \text{const.}$, ξ is called convergent, and in the case $\rho = B\xi + C$, $(B, C = \text{const.})$, ξ is called special concircular. A space with concircular vector field was called equidistant space by N.S. Sinyukov.

Definition 2.1. [1] A generalized Riemannian space \mathcal{GR}_N with a non-symmetric metric tensor g_{ij} is called an equidistant space, if its adjoint Riemannian space \mathcal{R}_N is an equidistant space, i.e. if there exists a non-vanishing one-form $\psi \in \mathcal{GR}_N$, $\psi_i \neq 0$ satisfying

\[
\psi_{ij} = \rho g_{ij},
\]

(2.3)

where $;\psi$ denotes the covariant derivative with respect to the symmetric part of the connection of the space \mathcal{GR}_N. For $\rho \neq 0$ equidistant spaces belong to the primary type, and for $\rho \equiv 0$ to the particular.

The following definition is a consequence of the previous definition

Definition 2.2. A Concircular mapping $f : \mathcal{GR}_N \to \mathcal{GR}_{\bar{N}}$ is a conformal mapping if the following equation is valid

\[
\psi_{ij} = \psi_{ij} - \psi_i \psi_j = \omega g_{ij},
\]

(2.4)

where $\psi_i = \frac{1}{N}(\Gamma^i_{\theta jmn} - \Gamma^i_{\theta jm,n})$, ω is an invariant, and $;\psi$ is the covariant derivative with respect to the connection $\Gamma^i_{\theta jmn}$.

In the case of a concircular mapping \(f : \mathbb{R}_N \rightarrow \overline{\mathbb{R}}_N \) of two Riemannian spaces \(\mathbb{R}_N \) and \(\overline{\mathbb{R}}_N \), we have an invariant geometric object

\[
Z^i_{jmn} = R^i_{jmn} - \frac{R}{N(N-1)}(\delta^i_m g_{jn} - \delta^i_n g_{jm}),
\]

where \(R^i_{jmn} \) is the Riemann-Christoffel curvature tensor of the space \(\mathbb{R}_N \), \(R_{jm} \) the Ricci tensor and \(R \) the scalar curvature. The object \(Z^i_{jmn} \) is called the concircular curvature tensor.

\[3. \text{ Equitorsion concircular curvature tensors}\]

For a concircular mapping \(f : GR_N \rightarrow \overline{GR}_N \), it is not possible to find a generalization of the concircular curvature tensor. For that reason, we define a special concircular mapping.

Definition 3.1. A concircular mapping \(f : GR_N \rightarrow \overline{GR}_N \) is **equitorsion** if the torsion tensors of the spaces \(GR_N \) and \(\overline{GR}_N \) are equal at corresponding points.

According to (1.7), this means that

\[
\Gamma^i_{jk} - \Gamma^i_{kj} = \sigma^i_{jk} = 0.
\]

\[3.1. \text{ Equitorsion concircular curvature tensor of the first kind}\]

Using (1.7), we get a relation between the first kind curvature tensors of the spaces \(GR_N \) and \(\overline{GR}_N \):

\[
\overline{R}^i_{jmn} = K^i_{jmn} + P^i_{jm} - P^i_{jn} + P^i_{mn} - P^p_{jm} P^i_{pn} - 2 \delta^i_m g^p_{jn} + (\delta^p_m g^i_{jn} - \delta^i_n g^p_{jm}) \Delta \psi + \psi_p \delta^i_m \Gamma^p_{jm} - \psi_p \delta^i_n \Gamma^p_{jn} - 2 \psi^p g^i_{jm} \Gamma^p_{jn} - 2 \psi^p g^i_{jn} \Gamma^p_{jm} + \psi^p g^m_{jn} \Gamma^p_{jm} - \psi^p g^m_{jm} \Gamma^p_{jn},
\]

where we denoted

\[
\psi^p = g^{p1} \psi_{1p}, \quad \Delta \psi = g^{m1} \psi_m = \psi_p \psi^p.
\]

Contracting with respect to the indices \(i \) and \(n \) in (3.3) we get

\[
\overline{R}^i_{jm} = K^i_{jm} - 2(N-1) \omega g^j_{jm} - (N-1) \Delta \psi g^j_{jm} + (N-2) \psi^p g^i_{jm} \Gamma^p_{jm} + 2 \psi^p \Gamma^p_{jm},
\]

In case of concircular mappings, it is easy to prove the following formula

\[
\overline{\rho}^i_{j1} = e^{-2\psi} g^{ij}.
\]

In (3.5) multiplying by \(g^m_{jm} \) and contracting with respect to the indices \(j \) and then \(m \) we get

\[
\omega = \frac{1}{2N(1-N)}(e^{2\psi} \overline{K} - K) - \frac{1}{2} \Delta \psi,
\]

where \(\overline{K} = \overline{\rho}^i_{j1} \overline{K}^j_{1p} \), and \(K = \rho^i_{j1} \psi_{1p} \) are scalar curvatures of the first kind of the spaces \(GR_N \) and \(\overline{GR}_N \) respectively. From (3.7), we have
It is easy to see that for concircular mappings the following formula is valid
\[g^{\mu}_{\nu} g_{\mu \nu} = \tilde{g}^{\mu}_{\nu} \tilde{g}_{\mu \nu}. \]

(3.9)

From (1.2) follows
\[\psi_i = \frac{1}{2N} \left(\frac{\partial}{\partial x^i} \ln \tilde{g} - \frac{\partial}{\partial x^j} \ln g \right), \]

\[\text{where } g = \det (g_{ij}), \quad \tilde{g} = \det (\tilde{g}_{ij}). \]

(3.10)

From (3.1) and (3.10) we obtain
\[\Gamma_{j, mn} \psi^j = \frac{1}{2N} \Gamma_{j, mn} \tilde{g}^{\mu}_{\nu} \frac{\partial}{\partial x^\rho} \ln \tilde{g} - \frac{1}{2N} \Gamma_{j, mn} g^{\mu}_{\nu} \frac{\partial}{\partial x^\rho} \ln g \]

and
\[\Gamma_{j, mn} \psi^j = \frac{1}{2N} \Gamma_{j, mn} \tilde{g}^{\mu}_{\nu} \frac{\partial}{\partial x^\rho} \ln \tilde{g} - \frac{1}{2N} \Gamma_{j, mn} g^{\mu}_{\nu} \frac{\partial}{\partial x^\rho} \ln g. \]

(3.11)

(3.12)

Taking into account (3.10), (3.11), (3.12), we can write the relation (3.3) in the form
\[\overline{Z}_{1, jmn} = Z_{1, jmn}, \]

(3.13)

where
\[Z_{1, jmn} = \frac{K_{1, jmn}}{N(N-1)} \left(\delta_{ij} g_{mn} - \delta_{im} g_{jn} \right) \]
\[+ \frac{1}{2N} \left(-\delta_{ij} \Gamma_{mn}^{\rho} + 2\delta_{ij} \Gamma_{mn}^{\rho} + \delta_{ij} \Gamma_{mn}^{\rho} + 2\delta_{ij} g_{mn} \Gamma_{ij}^{\rho} - \delta_{ij} g_{mn} \Gamma_{ij}^{\rho} + g_{mn} \Gamma_{ij}^{\rho} \right) \frac{\partial}{\partial x^\rho} \ln g, \]

(3.14)

and analogously for the geometrical object \(\overline{Z}_{1, jmn} \in G\overline{R}_N \). The tensor \(Z_{1, jmn} \) is an invariant of equitorsion concircular mappings, and one can call it the equitorsion concircular curvature tensor of the first kind. So, the following theorem is proved:

Theorem 3.1. Let the generalized Riemannian spaces GR\(_N\) and G\(\overline{R}_N\) be defined by virtue of their non-symmetric basic tensors \(g_{ij} \) and \(\tilde{g}_{ij} \), respectively. The equitorsion concircular curvature tensor of the first kind \(Z_{1, jmn} \) (3.14) is an invariant of the equitorsion concircular mapping \(f : GR_N \to G\overline{R}_N \).

3.2. Equitorsion concircular curvature tensor of the second kind

For the second kind curvature tensors of the spaces GR\(_N\) and G\(\overline{R}_N\) we get the relation
\[K_{2, jmn} = K_{2, jmn}^i + p_{j, in}^i - p_{j, in}^m - p_{i, jm}^n - p_{i, jm}^m - p_{j, in}^m \]

\[+ 2\delta_{ij} \omega g_{mn} - 2\delta_{ij} \omega g_{mn} + (\delta_{im} g_{jn} - \delta_{jn} g_{im}) \Delta \psi. \]

(3.15)

i.e., using (1.5, 1.7, 2.4) one obtains
\[K_{2, jmn} = K_{2, jmn}^i + 2\delta_{ij} \omega g_{mn} - (N-1) \Delta \psi g_{mn}. \]

(3.16)

Contracting with respect to the indices \(i \) and \(n \) in (3.16) we get
\[K_{2, jmn} = K_{2, jmn} - 2(N-1) \omega g_{mn} - (N-1) \Delta \psi g_{mn}. \]

(3.17)

In the previous equation multiplying by \(g^{mn} \) and contracting with respect to \(j \) and then to \(m \), we get
\[\Delta \psi K_{2} = \frac{K}{2} + 2N(1 - N) \omega + N(1 - N) \Delta \psi, \]

(3.18)
where $\overline{K} = \frac{2}{3}K_{n^p}$, and $\overline{K} = g^{\overline{p}q}\overline{K}_{n^q}$ are scalar curvatures of the second kind of the spaces GR_N and GR_N respectively. From (3.18), we have

$$\omega = \frac{1}{2N(1 - N)} \left(e^{2\omega} \overline{K} - \frac{1}{2} K \right) - \frac{1}{2} \Delta \psi.$$

(3.19)

And finally, taking into account (3.10, 3.11, 3.12), we can write the relation (3.16) in the form

$$\overline{Z}_{ijmn}^i = Z_{ijmn}^i,$$

(3.20)

where

$$Z_{ijmn}^i = \frac{K_{ijmn}}{2} - \frac{1}{N(N - 1)} K(\delta^i_n g_{jm} - \delta^i_m g_{jn})$$

(3.21)

and analogously for $\overline{Z}_{ijmn}^i \in \text{GR}_N$. The tensor Z_{ijmn}^i is an invariant of equitorsion concircular mappings, and one can call it the equitorsion concircular curvature tensor of the second kind. So, we have:

Theorem 3.2. Starting from the curvature tensor $K^i_{jn^p}$, one obtains an invariant tensor Z^i_{ijmn} with respect to the equitorsion concircular mapping $f : \text{GR}_N \rightarrow \text{GR}_N$ in the form (3.21).

3.3. Equitorsion concircular curvature tensor of the third kind

In the case of the third kind curvature tensors of the spaces GR_N and GR_N we get the relation

$$\overline{K}_{ijmn}^i = K_{ijmn}^i + P^{i}_{jmnp} - P^{i}_{jmnp} + P^{i}_{jmnp} - P^{i}_{jmnp},$$

$$+ P^{i}_{jmnp} \Gamma^{i}_{jmnp} - P^{i}_{jmnp} \Gamma^{i}_{jmnp} + P^{i}_{jmnp} \Gamma^{i}_{jmnp} - 2 P^{i}_{jmnp} \Gamma^{i}_{jmnp},$$

(3.22)

i.e., using (1.5, 1.7, 2.4) one obtains

$$\overline{K}_{ijmn}^i = K_{ijmn}^i + 2 \delta^i_n \omega g_{jm} - 2 \delta^i_m \omega g_{jm} + (\delta^i_n g_{jm} - \delta^i_m g_{jm}) \Delta \psi$$

$$- 2 \psi^i_{jmnp} \Gamma^{i}_{jmnp} + \psi^i_{jmnp} \Gamma^{i}_{jmnp} - 2 \psi^i_{jmnp} \Gamma^{i}_{jmnp} + \psi^i_{jmnp} \Gamma^{i}_{jmnp} + \psi^i_{jmnp} \Gamma^{i}_{jmnp} + 2 \psi^i_{jmnp} \Gamma^{i}_{jmnp} + 2 \psi^i_{jmnp} \Gamma^{i}_{jmnp},$$

(3.23)

Contracting (3.23) with respect to the indices i and n, the previous equation becomes

$$\overline{K}_{ijmn}^i = K_{ijmn}^i - 2(1 - N) \omega g_{jm} - (1 - N) \Delta \psi g_{jm} + (N - 1) \psi^i_{jmnp} \Gamma^{i}_{jmnp} + 2 \psi^i_{jmnp} \Gamma^{i}_{jmnp},$$

(3.24)

Multiplying (3.24) by $g^{jm}_{n^p}$ and contracting we get

$$e^{2\omega} K = K + 2N(1 - N) \omega + N(1 - N) \Delta \psi,$$

(3.25)

where $\overline{K} = g^{mn}_{n^q}$, and $K = g^{mn}_{n^q} K_{n^q}$ are scalar curvatures of the third kind of the spaces GR_N and GR_N respectively. From (3.25), we have

$$\omega = \frac{1}{2N(1 - N)} \left(e^{2\omega} \overline{K} - \frac{1}{3} R \right) - \frac{1}{2} \Delta \psi,$$

(3.26)

Finally,

$$\overline{Z}_{ijmn}^i = Z_{ijmn}^i$$

(3.27)
where
\[Z^{i}_{jmn} = K^{i}_{jmn} - \frac{1}{N(N-1)} K(C_{i}^{j} g_{jm} - C_{i}^{m} g_{jn}) \]
\[+ \frac{1}{2N} (2\delta_{i}^{j} \Gamma_{jm}^{\nu} - \delta_{i}^{j} \Gamma_{jm}^{\nu} + 2\delta_{m}^{j} \Gamma_{jm}^{ir} - \delta_{m}^{j} \Gamma_{jm}^{ir} - g_{jm}^{\nu} \Gamma_{mn}^{\nu} - 2g_{jm}^{\nu} g_{mn}^{\nu} \Gamma_{ij}^{\nu} - g_{jm}^{\nu} g_{mn}^{\nu}) \frac{\partial}{\partial x^{\nu}} \ln g. \] (3.28)

And analogously for \(Z^{i}_{jmn} \) of the space \(\mathcal{GR}_{N} \). The tensor \(Z^{i}_{jmn} \) is an invariant of equitorsion concircular mappings, and one can call it the **equitorsion concircular curvature tensor of the third kind**. Now we have proved

Theorem 3.3. From the curvature tensor \(K^{i}_{jmn} \) we obtain an invariant tensor \(Z^{i}_{jmn} \) according to the equitorsion concircular mapping \(f : \mathcal{GR}_{N} \rightarrow \mathcal{GR}_{N} \) in the form (3.28).

3.4. Equitorsion concircular curvature tensor of the fourth kind

For curvature tensors of the fourth kind we get
\[K^{i}_{jmn} = \frac{1}{N(N-1)} K(C_{i}^{j} g_{jm} - C_{i}^{m} g_{jn}) \] (3.29)
i.e.
\[K^{i}_{jmn} = K^{i}_{jmn} + 2\delta_{i}^{j} \omega g_{jn} - 2\delta_{i}^{j} \omega g_{jm} + (\delta_{i}^{j} g_{jm} - \delta_{i}^{j} g_{jm}) \Delta \psi. \] (3.30)

Using the same procedure like in the previous cases, in this case an invariant object of the equitorsion concircular mapping is in the form
\[Z^{i}_{jmn} = K^{i}_{jmn} - \frac{1}{N(N-1)} K(C_{i}^{j} g_{jm} - C_{i}^{m} g_{jn}) \] (3.31)
where \(K^{i}_{jmn} \) is the Ricci curvature tensor of the fourth kind and \(K \) a scalar curvature of the fourth kind. The object \(Z^{i}_{jmn} \) is a tensor and we call it **equitorsion concircular curvature tensor of the fourth kind** of the equitorsion mapping. So, the next theorem is valid:

Theorem 3.4. From the curvature tensor \(K^{i}_{jmn} \) one obtains an invariant tensor \(Z^{i}_{jmn} \) (3.31) of the equitorsion mapping of generalized Riemannian spaces.

3.5. Equitorsion concircular curvature tensor of the fifth kind

For the curvature tensors of the fifth kind of the spaces \(\mathcal{GR}_{N} \) and \(\mathcal{GR}_{N} \) we have
\[K^{i}_{jmn} = \frac{1}{N(N-1)} K(C_{i}^{j} g_{jm} - C_{i}^{m} g_{jn}) \] (3.32)
i.e.
\[K^{i}_{jmn} = K^{i}_{jmn} + 2\delta_{i}^{j} \omega g_{jn} - 2\delta_{i}^{j} \omega g_{jm} + (\delta_{i}^{j} g_{jm} - \delta_{i}^{j} g_{jm}) \Delta \psi. \] (3.33)

Contracting with respect to the indices \(i, n \) and denoting
\[K^{i}_{jmn} = K^{i}_{jmn}, \quad K^{i}_{jmn} = K^{i}_{jmn}, \] (3.34)
we obtain
\[K^{i}_{jmn} = K^{i}_{jmn} - 2(N - 1) \omega g_{jm} - (N - 1) \Delta \psi g_{jm}. \] (3.35)
wherefrom, multiplying by $\overline{g}^{jm} = e^{-2\psi} g_{jm}$ and contracting with respect to the indices j and m one obtains
\[
\omega = \frac{1}{2N(1 - N)} (e^{2\psi} \overline{K} - \overline{K}) - \frac{1}{2} \Delta \psi.
\] (3.36)

After eliminating ω from (3.33) we can write
\[
\overline{Z}^{i}_{jmn} = Z^{i}_{jmn},
\] (3.37)

where
\[
Z^{i}_{jmn} = K^{i}_{jmn} - \frac{1}{N(N - 1)} R^{i}_{jm} (\delta^{j}_{n} - \delta^{j}_{m}).
\] (3.38)

The object Z^{i}_{jmn} is an invariant of the concircular equitorsion mapping. We call it \textbf{equitorsion concircular curvature tensor of the fifth kind}. So, the following theorem is proved:

Theorem 3.5. Starting from the curvature tensor K^{i}_{jmn}, we obtain an invariant tensor Z^{i}_{jmn} (3.38) of the equitorsion concircular mapping $f : \text{GR}_{N} \rightarrow \text{G\textbar{R}}_{N}$.

4. Concluding remarks

For $g_{ij}(x) = g_{ji}(x)$ the space GR_{N} reduces to the Riemannian space R_{N}. The curvature tensors K_{θ}, $\theta = 1, \ldots, 5$ in a generalized Riemannian space reduce to the single curvature tensor R in Riemannian space (in the symmetric case).

In the case of equitorsion concircular mapping of the Riemannian spaces (in the symmetric case) Z^{i}_{θ}, ($\theta = 1, \ldots, 5$), given by the formulas (3.14, 3.21, 3.28, 3.31, 3.38) reduce to the concircular curvature tensor \cite{18, 23}
\[
Z^{i}_{jmn} = R^{i}_{jmn} - \frac{R}{N(N - 1)} (\delta^{j}_{n} g_{jm} - \delta^{j}_{m} g_{jn}).
\] (4.1)

All these new quantities can be quite interesting for further investigation.

References

\[11\] Minčić, S. M., Ricci identities in the space of non-symmetric affine connection, Mat. Vesnik, 10(25), (1973), 161–172.

