Tauberian Theorems for Statistically \((C,1)\)-Convergent Sequences of Fuzzy Numbers

Özer Talo\(^a\), Celal Çakan\(^b\)

\(^a\)Department of Mathematics, Faculty of Art and Sciences, Celal Bayar University, 45040 Manisa, Turkey
\(^b\)Department of Mathematics Education, Faculty of Education, İnönü University, 44280- Malatya, Turkey.

Abstract. In this paper, we have determined necessary and sufficient Tauberian conditions under which statistically convergence follows from statistically \((C,1)\)-convergence of sequences of fuzzy numbers. Our conditions are satisfied if a sequence of fuzzy numbers is statistically slowly oscillating. Also, under additional conditions it is proved that a bounded sequence of fuzzy numbers which is \((C,1)\)-level-convergent to its statistical limit superior is statistically convergent.

1. Introduction and Preliminaries

Let \(K\) be a subset of natural numbers \(\mathbb{N}\) and \(K_n = \{k \leq n : k \in K\}\), The natural density of \(K\) is given by

\[
\delta(K) = \lim_{n \to \infty} \frac{1}{n} |K_n|
\]

if this limit exists, where \(|A|\) denotes the number of elements in \(A\). The concept of statistical convergence was introduced by Fast [9]. A sequence \((x_k)_{k \in \mathbb{N}}\) of (real or complex) numbers is said to be statistically convergent to some number \(l\) if for every \(\epsilon > 0\) we have

\[
\lim_{n \to \infty} \frac{1}{n+1} \left| \{k \leq n : |x_k - l| \geq \epsilon \} \right| = 0.
\]

In this case, we write \(\text{st-} \lim_{k \to \infty} x_k = l\).

A sequence \((x_k)\) is \((C,1)\) convergent to \(\ell\) if \(\lim \sigma_n = \ell\), where

\[
\sigma_n = \frac{1}{n+1} \sum_{k=0}^{n} x_k \quad (n = 0, 1, 2, ...),
\]

(1)
is the first arithmetic mean, also called Cesàro mean (of first order). In this case we write \((C,1)\)-\(\lim_{k \to \infty} x_k = \ell\).

The idea of statistical \((C,1)\)-convergence was introduced in [15] by Moricz. A sequence \((x_k)\) is statistically \((C,1)\)-convergent to \(\ell\) if \(st- \lim \sigma_n = \ell\). In addition to, necessary and sufficient conditions, under which \(st- \lim_{k \to \infty} x_k = \ell\) follows from \(st- \lim \sigma_n = \ell\) are presented in [15] by Moricz.
In this paper, our primary interest is to obtain the results in [15] for sequences of fuzzy numbers. We recall the basic definitions dealing with fuzzy numbers.

A fuzzy number is a fuzzy set on the real axis, i.e. a mapping \(u : \mathbb{R} \rightarrow [0,1] \) which satisfies the following four conditions:

(i) \(u \) is normal, i.e., there exists an \(x_0 \in \mathbb{R} \) such that \(u(x_0) = 1 \).

(ii) \(u \) is fuzzy convex, i.e. \(u[\lambda x + (1 - \lambda)y] \geq \min(u(x), u(y)) \) for all \(x, y \in \mathbb{R} \) and for all \(\lambda \in [0,1] \).

(iii) \(u \) is upper semi-continuous.

(iv) The set \([u]_0 := \{ x \in \mathbb{R} : u(x) > 0 \} \) is compact, where \(\{ x \in \mathbb{R} : u(x) > 0 \} \) denotes the closure of the set \(\{ x \in \mathbb{R} : u(x) > 0 \} \) in the usual topology of \(\mathbb{R} \).

We denote the set of all fuzzy numbers on \(\mathbb{R} \) by \(E^1 \) and called it as the space of fuzzy numbers. \(\alpha \)-level set \([u]_\alpha \) of \(u \in E^1 \) is defined by

\[
[u]_\alpha := \begin{cases}
\{ x \in \mathbb{R} : u(x) \geq \alpha \}, & \text{if } 0 < \alpha \leq 1, \\
\{ x \in \mathbb{R} : u(x) > \alpha \}, & \text{if } \alpha = 0.
\end{cases}
\]

The set \([u]_\alpha \) is closed, bounded and non-empty interval for each \(\alpha \in [0,1] \) which is defined by \([u]_\alpha := [u^- (\alpha), u^+ (\alpha)] \). \(\mathbb{R} \) can be embedded in \(E^1 \), since each \(r \in \mathbb{R} \) can be regarded as a fuzzy number \(\tilde{r} \) defined by

\[
\tilde{r}(x) := \begin{cases}
1, & \text{if } x = r, \\
0, & \text{if } x \neq r.
\end{cases}
\]

Let \(u, v, w \in E^1 \) and \(k \in \mathbb{R} \). Then the operations addition and scalar multiplication are defined on \(E^1 \) as

\[
 u + v = w \iff [w]_\alpha = [u]_\alpha + [v]_\alpha \text{ for all } \alpha \in [0,1] \\
 w^{-\alpha} = u^{-\alpha} + v^{-\alpha} \text{ and } w^{+\alpha} = u^{+\alpha} + v^{+\alpha} \text{ for all } \alpha \in [0,1],
\]

\[
[ku]_\alpha = k[u]_\alpha \text{ for all } \alpha \in [0,1].
\]

Lemma 1.1. [6]

(i) If \(\overline{0} \in E^1 \) is neutral element with respect to \(+\), i.e., \(u + \overline{0} = \overline{0} + u = u \), for all \(u \in E^1 \).

(ii) With respect to \(\overline{0} \), none of \(u \neq \overline{r}, r \in \mathbb{R} \) has opposite in \(E^1 \).

(iii) For any \(a, b \in \mathbb{R} \) with \(a, b \geq 0 \) or \(a, b \leq 0 \), and any \(u \in E^1 \), we have \((a + b)u = au + bu\).

For general \(a, b \in \mathbb{R} \), the above property does not hold.

(iv) For any \(a \in \mathbb{R} \) and any \(u, v \in E^1 \), we have \(au + av = au + av \).

(v) For any \(a, b \in \mathbb{R} \) and any \(u \in E^1 \), we have \(a(bu) = (ab)u \).

Let \(W \) be the set of all closed bounded intervals \(A \) of real numbers with endpoints \(A \) and \(\overline{A} \), i.e., \(A := [\underline{A}, \overline{A}] \). Define the relation \(d \) on \(W \) by

\[
d(A, B) := \max(|\underline{A} - \underline{B}|, |\overline{A} - \overline{B}|).
\]

Then it can be easily observed that \(d \) is a metric on \(W \) and \((W, d) \) is a complete metric space, (cf. Nanda [16]). Now, we may define the metric \(D \) on \(E^1 \) by means of the Hausdorff metric \(d \) as follows

\[
D(u,v) := \sup_{\alpha \in [0,1]} d([u]_\alpha, [v]_\alpha) := \sup_{\alpha \in [0,1]} \max(|[u^- \alpha] - [v^- \alpha]|, |[u^+ \alpha] - [v^+ \alpha]|).
\]

One can see that

\[
D(u, \overline{0}) = \sup_{\alpha \in [0,1]} \max(|u^- \alpha|, |u^+ \alpha|) = \max(|u^- (0)|, |u^+ (0)|).
\]

(2)

Now, we may give:
Proposition 1.2. [6] Let \(u, v, w, z \in E^1 \) and \(k \in \mathbb{R} \). Then,

(i) \((E^1, D) \) is a complete metric space.

(ii) \(D(ku, kv) = |k|D(u, v) \).

(iii) \(D(u + v, w + v) = D(u, w) \).

(iv) \(D(u + v, w + z) \leq D(u, w) + D(v, z) \).

(v) \[|D(u, 0) - D(v, 0)| \leq D(u, v) \leq D(u, 0) + D(v, 0) \].

One can extend the natural order relation on the real line to intervals as follows:

\[A \leq B \text{ if and only if } \bar{A} \leq \bar{B} \text{ and } \overline{A} \leq \overline{B} \]

Also, the partial ordering relation on \(E^1 \) is defined as follows:

\[u \leq v \iff [u]_0 \leq [v]_0 \iff u^- (\alpha) \leq v^- (\alpha) \text{ and } u^+(\alpha) \leq v^+(\alpha) \text{ for all } \alpha \in [0, 1]. \]

We say that \(u < v \) if \(u \leq v \) and there exists \(a_0 \in [0, 1] \) such that \(u^- (a_0) < v^- (a_0) \) or \(u^+(a_0) < v^+(a_0) \). Two fuzzy numbers \(u \) and \(v \) are said to be incomparable if neither \(u \leq v \) nor \(v \leq u \) holds. In this case we use the notation \(u \neq v \).

Following Matloka [14], we give some definitions concerning with the sequences of fuzzy numbers. Nanda [16] introduced Cauchy sequences of fuzzy numbers and showed that every Cauchy sequence of fuzzy numbers is convergent.

A sequence \(u = (u_k) \) of fuzzy numbers is a function \(u \) from the set \(\mathbb{N} \), the set of natural numbers, into the set \(E^1 \). The fuzzy number \(u_k \) denotes the value of the function at \(k \in \mathbb{N} \) and is called as the \(k \)-th term of the sequence. By \(\omega(F) \), we denote the set of all sequences of fuzzy numbers.

A sequence \((u_n) \in \omega(F) \) is said to be convergent to \(u \in E^1 \), if for every \(\varepsilon > 0 \) there exists an \(n_0 = n_0(\varepsilon) \in \mathbb{N} \) such that

\[D(u_n, u) < \varepsilon \text{ for all } n \geq n_0. \]

By \(c(F) \), we denote the set of all convergent sequences of fuzzy numbers.

A sequence \(u = (u_k) \) of fuzzy numbers is said to be Cauchy if for every \(\varepsilon > 0 \) there exists a positive integer \(n_0 \) such that

\[D(u_k, u_m) < \varepsilon \text{ for all } k, m \geq n_0. \]

By \(C(F) \), we denote the set of all Cauchy sequences of fuzzy numbers.

A sequence \((u_n) \in \omega(F) \) is said to be bounded if the set of its terms is a bounded set. That is to say that a sequence \((u_n) \in \omega(F) \) is said to be bounded if there exists \(M > 0 \) such that \(D(u_n, 0) \leq M \) for all \(n \in \mathbb{N} \). By \(\ell_{\infty}(F) \), we denote the set of all bounded sequences of fuzzy numbers.

The level convergence of a sequence of fuzzy numbers given by Fang and Huang [8], as follows: A sequence \((u_n) \) is level-converges to \(\mu \in E^1 \), written as \((l) - \lim_{n \to \infty} u_n = \mu \) if

\[\lim_{n \to \infty} u^- (\alpha) = \mu^- (\alpha) \text{ and } \lim_{n \to \infty} u^+ (\alpha) = \mu^+ (\alpha) \]

for all \(\alpha \in [0, 1] \). Obviously, \(u_n \to \mu \) implies that \((l) - \lim_{n \to \infty} u_n = \mu \) and the converse is not true in general.

Statistical convergence of sequences of fuzzy numbers was introduced by Nuray and Savas [17]. A sequence \((u_k) : k = 0, 1, 2, \ldots \) of fuzzy numbers is said to be statistically convergent to some fuzzy number \(\mu_0 \) if for every \(\varepsilon > 0 \) we have

\[\lim_{n \to \infty} \frac{1}{n+1} \left| \{ k \leq n : D(u_k, \mu_0) \geq \varepsilon \} \right| = 0. \]
In this case we write
\[\text{st-} \lim_{k \to \infty} u_k = \mu_0. \] (3)

The statistical boundedness of a sequence of fuzzy numbers was introduced and studied by Aytar and Pehlivan [4]. The sequence \(u = (u_k) \) is said to be statistically bounded if there exists a real number \(M \) such that the set
\[\{ k \in \mathbb{N} : D(u_k, \overline{0}) > M \} \]
has natural density zero.

Aytar et al. [2] defined the concept of statistical limit superior and limit inferior of statistically bounded sequences of fuzzy numbers. Given \(u = (u_k) \in \mathcal{W}(F) \), define the following sets:
\[A_u = \left\{ \mu \in E^1 : \delta \left(\{ k \in \mathbb{N} : u_k < \mu \} \right) \neq 0 \right\}, \]
\[\overline{A}_u = \left\{ \mu \in E^1 : \delta \left(\{ k \in \mathbb{N} : u_k > \mu \} \right) = 1 \right\}, \]
\[B_u = \left\{ \mu \in E^1 : \delta \left(\{ k \in \mathbb{N} : u_k > \mu \} \right) \neq 0 \right\}, \]
\[\overline{B}_u = \left\{ \mu \in E^1 : \delta \left(\{ k \in \mathbb{N} : u_k < \mu \} \right) = 1 \right\}. \]

If \(u = (u_k) \) is a statistically bounded sequence of fuzzy numbers, then, the notions st- \(\lim \inf \) and st- \(\lim \sup \) is defined as follows:
\[\text{st-} \lim \inf u_k = \inf A_u = \sup \overline{A}_u, \]
\[\text{st-} \lim \sup u_k = \sup B_u = \inf \overline{B}_u. \]

Lemma 1.3. [2] Let \(u = (u_k) \) be a statistically bounded sequence of fuzzy numbers, \(\nu = \text{st-} \lim \inf u_k \) and \(\mu = \text{st-} \lim \sup u_k \). Then, for every \(\varepsilon > 0 \)
\[\delta \left(\{ k \in \mathbb{N} : u_k < \nu - \varepsilon \} \right) = 0 \quad \text{and} \quad \delta \left(\{ k \in \mathbb{N} : u_k > \mu + \varepsilon \} \right) = 0. \]

Basic results on statistical convergence of sequences of fuzzy numbers may be found in [3–5, 13, 18].

The statistical Cesàro convergence of a sequence of fuzzy numbers has been defined in [1]. We say that \((u_k) \) is statistically Cesàro convergent (written statistically (C,1)-convergent) to a fuzzy number \(\mu_0 \) if
\[\text{st-} \lim_{n \to \infty} \sigma_n = \mu_0. \] (4)

Kwon [13] proved that if a sequence \((u_k) \) is bounded, then
\[\text{st-} \lim_{k \to \infty} u_k = \mu_0 \quad \text{implies} \quad \text{st-} \lim_{n \to \infty} \sigma_n = \mu_0. \]

Example 1.4. Let \((u_k) = (u_0, v_0, u_0, v_0, \ldots) \) where
\[u_0(t) = \begin{cases} \frac{2t^2}{3}, & \text{if } t \in [0, 2] \\ 0, & \text{otherwise} \end{cases} \]
and
\[v_0(t) = \begin{cases} \frac{2t^2}{3}, & \text{if } t \in [-2, 0] \\ 0, & \text{otherwise} \end{cases} \]

Then \(\alpha \)-level set of arithmetic means \(\sigma_n \) of \((u_k) \)
\[[\sigma_{2n}]_\alpha = \left[\frac{2n}{2n+1} (\alpha - 1), \frac{2(n+1)}{2n+1} (1-\alpha) \right] \quad \text{and} \quad [\sigma_{2n-1}]_\alpha = [\alpha - 1, 1 - \alpha]. \]

So, \((\sigma_n) \) is convergent to \(w_0 = (u_0 + v_0)/2 \) and hence it is statistically (C,1)-convergent to \(w_0 \). But \((u_n) \) is not statistically convergent.

Our goal is to find (so-called Tauberian) conditions under which the converse implication holds.
2. The Main Results

Firstly we need two lemmas.

Lemma 2.1. Let \((u_n)\) be a sequence of fuzzy numbers which is statistically \((C,1)\)-convergent to a fuzzy number \(\mu_0\). Then for every \(\lambda > 0\),
\[
\text{st-} \lim_{n} \sigma_{\lambda_n} = \mu_0
\]
where by \(\lambda_n\) we denote the integral part of the product \(\lambda n\), in symbol \(\lambda_n := [\lambda n]\).

\[\text{Proof. Case } \lambda > 1.\]

For all \(\varepsilon > 0\),
\[
\{n \leq N : D(\sigma_{\lambda_n}, \mu_0) \geq \varepsilon\} \subseteq \{n \leq \lambda N : D(\sigma_n, \mu_0) \geq \varepsilon\},
\]
whence we find
\[
\frac{1}{N + 1} \left| \{n \leq N : D(\sigma_{\lambda_n}, \mu_0) \geq \varepsilon\} \right| \leq \frac{\lambda}{\lambda N + 1} \left| \{n \leq \lambda N : D(\sigma_n, \mu_0) \geq \varepsilon\} \right|.
\]

Now, (5) follows from the statistical convergence of \((\sigma_n)\) to \(\mu_0\).

Case \(0 < \lambda < 1\). We claim that the same term \(\sigma_m\) can not occur more than \(1 + \lambda^{-1}\) times in the sequence \((\sigma_{\lambda_n})_{n=0,1,2,...}\). In fact, if for some integers \(k\) and \(t\), we have
\[
m = \lambda_k = \lambda_{k+1} = ... = \lambda_{k+t-1} < \lambda_{k+t}
\]
or equivalently
\[
m \leq \lambda k < \lambda(k+1) < ... < \lambda(k+t-1) < m+1 \leq \lambda(k+t)
\]
then
\[
m + \lambda(t-1) \leq \lambda(k+t-1) < m + 1
\]
whence \(\lambda(t-1) < 1\), that is \(t < 1 + \lambda^{-1}\). Consequently,
\[
\frac{1}{N + 1} \left| \{n \leq N : D(\sigma_{\lambda_n}, \mu_0) \geq \varepsilon\} \right| \leq \left(1 + \frac{1}{\lambda}\right) \frac{\lambda N + 1}{\lambda N + 1} \left| \{n \leq \lambda N : D(\sigma_n, \mu_0) \geq \varepsilon\} \right|
\]
\[
\leq \frac{2(\lambda + 1)}{\lambda N + 1} \left| \{n \leq \lambda N : D(\sigma_n, \mu_0) \geq \varepsilon\} \right|
\]
provided \((\lambda N + 1)/(N + 1) \leq 2\lambda\), which is the case if \(N\) is large enough. So, (5) follows from the statistical convergence of \((\sigma_n)\) to \(\mu_0\). \(\square\)

Lemma 2.2. Let \((u_n)\) be a sequence of fuzzy numbers which is statistically \((C,1)\)-convergent to a fuzzy number \(\mu_0\). Then, for every \(\lambda > 1\),
\[
\text{st-} \lim_{n} \frac{1}{\lambda_n - n} \sum_{k=n+1}^{\lambda_n} u_k = \mu_0
\]
and for every \(0 < \lambda < 1\),
\[
\text{st-} \lim_{n} \frac{1}{n - \lambda_n} \sum_{k=n+1}^{n} u_k = \mu_0.
\]
Proof. Case \(\lambda > 1 \). If \(\lambda > 1 \) and \(n \) is large enough in the sense that \(\lambda_n > n \), then
\[
D\left(\frac{1}{\lambda_n - n} \sum_{k=n+1}^{\lambda_n} u_k, \mu_0 \right) \leq \frac{\lambda_n + 1}{\lambda_n - n} D(\sigma_{\lambda_n}, \sigma_n) + D(\sigma_n, \mu_0)
\] (7)

Now (6) follows from (7), Lemma 2.1, the statistical convergence of \((\sigma_n) \) and the fact that for large enough \(n \)
\[
\frac{\lambda - 1}{\lambda - 1} = \frac{\lambda n - 1}{\lambda n - n} < \frac{\lambda n + 1}{\lambda n - n} < \frac{\lambda n + 1}{\lambda n - n - 1} \leq \frac{2\lambda - 1}{\lambda - 1}.
\] (8)

Case \(0 < \lambda < 1 \). This time, we use the following inequality:
\[
D\left(\frac{1}{n - \lambda_n} \sum_{k=\lambda_n+1}^{n} u_k, \mu_0 \right) \leq \frac{\lambda_n + 1}{n - \lambda_n} D(\sigma_{\lambda_n}, \sigma_n) + D(\sigma_n, \mu_0)
\]
provided \(n \) is large enough in the sense that \(\lambda_n < n \); and the following inequality for large enough \(n \),
\[
\frac{\lambda_n + 1}{n - \lambda_n} \leq \frac{2\lambda}{1 - \lambda}.
\] (9)

Now we are ready to give our main results.

Theorem 2.3. Let \((u_k) \) be a sequence of fuzzy numbers which is statistically \((C, 1)\)-convergent to a fuzzy number \(\mu_0 \). Then \((u_k) \) is statistically convergent to \(\mu_0 \) if and only if one of the following two conditions holds: For every \(\varepsilon > 0 \),
\[
\inf \lim \sup_{N \to \infty} \frac{1}{N + 1} \left| \left\{ n \leq N : D\left(\frac{1}{\lambda_n - n} \sum_{k=n+1}^{\lambda_n} u_k, \mu_0 \right) \geq \varepsilon \right\} \right| = 0
\] (10)
or
\[
\inf \lim \sup_{N \to \infty} \frac{1}{N + 1} \left| \left\{ n \leq N : D\left(\frac{1}{n - \lambda_n} \sum_{k=\lambda_n+1}^{n} u_k, \mu_0 \right) \geq \varepsilon \right\} \right| = 0.
\] (11)

Proof. The necessity follows from Lemma 2.2.

Sufficiency. Assume that conditions (4) and one of (10) and (11) are satisfied. In order to prove (3), it is enough to prove that
\[
st- \lim_D (u_n, \sigma_n) = 0.
\]

First, we consider the case \(\lambda > 1 \). Since
\[
D(\sigma_n, u_n) \leq D\left(\frac{1}{\lambda_n - n} \sum_{k=n+1}^{\lambda_n} u_k, \mu_0 \right) + \frac{\lambda_n + 1}{\lambda_n - n} D(\sigma_{\lambda_n}, \sigma_n)
\]
for any \(\varepsilon > 0 \) we have
\[
\left\{ n \leq N : D(\sigma_n, u_n) \geq \varepsilon \right\} \subseteq \left\{ n \leq N : D\left(\frac{1}{\lambda_n - n} \sum_{k=n+1}^{\lambda_n} u_k, \mu_0 \right) \geq \frac{\varepsilon}{2} \right\}
\] (12)
\[
\cup \left\{ n \leq N : D\left(\frac{1}{\lambda_n - n} \sum_{k=n+1}^{\lambda_n} u_k, \mu_0 \right) \geq \frac{\varepsilon}{2} \right\}.
\]

Given any \(\delta > 0 \), by (10) there exists some \(\lambda > 1 \) such that
\[
\lim \sup_{N \to \infty} \frac{1}{N + 1} \left| \left\{ n \leq N : D\left(\frac{1}{\lambda_n - n} \sum_{k=n+1}^{\lambda_n} u_k, \mu_0 \right) \geq \frac{\varepsilon}{2} \right\} \right| \leq \delta.
\] (13)
On the other hand, by Lemma 2.1 and (8), we have
\[
\limsup_{N \to \infty} \frac{1}{N+1} \left| \left\{ n \leq N : \frac{\lambda_n + 1}{\lambda_n - n} D(u_{n}, u_n) \geq \frac{\epsilon}{2} \right\} \right| = 0. \tag{14}
\]

Combining (12) with (14) we get that
\[
\limsup_{N \to \infty} \frac{1}{N+1} \left| \left\{ n \leq N : D(u_{n}, u_n) \geq \epsilon \right\} \right| \leq \delta.
\]
Since \(\delta > 0 \) is arbitrary, we conclude that for every \(\epsilon > 0 \),
\[
\lim_{N \to \infty} \frac{1}{N+1} \left| \left\{ n \leq N : D(u_{n}, u_n) \geq \epsilon \right\} \right| = 0.
\]

Secondly, we consider the case \(0 < \lambda < 1 \). Since
\[
D(u_{n}, u_n) \leq D(\lambda_n u_n) + \frac{\lambda_n + 1}{n - \lambda_n} D(u_{n}, u_n)
\]
for any \(\epsilon > 0 \), we have
\[
\left\{ n \leq N : D(u_{n}, u_n) \geq \epsilon \right\} \subseteq \left\{ n \leq N : \frac{\lambda_n + 1}{n - \lambda_n} D(u_{n}, u_n) \geq \frac{\epsilon}{2} \right\}
\]
\[
\cup \left\{ n \leq N : D\left(\frac{1}{n - \lambda_n} \sum_{k=1}^{n} u_k, u_n\right) \geq \frac{\epsilon}{2} \right\}.
\]
Given any \(\delta > 0 \), by (11) there exist some \(0 < \lambda < 1 \) such that
\[
\limsup_{N \to \infty} \frac{1}{N+1} \left| \left\{ n \leq N : D\left(\frac{1}{n - \lambda_n} \sum_{k=1}^{n} u_k, u_n\right) \geq \frac{\epsilon}{2} \right\} \right| \leq \delta.
\]
Using a similar argument as in the case \(\lambda > 1 \), by Lemma 2.1 and condition (9), we conclude that
\[
\lim_{N \to \infty} \frac{1}{N+1} \left| \left\{ n \leq N : D(u_{n}, u_n) \geq \epsilon \right\} \right| = 0.
\]

A sequence \((u_k)\) of fuzzy numbers is said to be \textit{statistically slowly oscillating} if for every \(\epsilon > 0 \)
\[
\inf_{\lambda > 1} \limsup_{N \to \infty} \frac{1}{N+1} \left| \left\{ n \leq N : \max_{n-k \leq \lambda_n} D(u_k, u_n) \geq \epsilon \right\} \right| = 0 \tag{15}
\]
or equivalently,
\[
\inf_{0 < \lambda < 1} \limsup_{N \to \infty} \frac{1}{N+1} \left| \left\{ n \leq N : \max_{\lambda_n \times \delta \leq n} D(u_k, u_n) \geq \epsilon \right\} \right| = 0. \tag{16}
\]

\textbf{Example 2.4.} The sequence \((u_k)\) where
\[
u_k(t) = \begin{cases} 1 - \frac{r}{\log(k+1)}, & \text{if } 0 \leq t \leq 1 + \log(k+1), \\ 0, & \text{otherwise}, \end{cases}
\]
is statistically slowly oscillating. Because for every \(\epsilon > 0 \) there exist \(n_0 = n_0(\epsilon) \) and \(\lambda = 10^c \) such that for all \(n_0 < n < k \leq \lambda_n \)
\[
D(u_k, u_n) = |\log(k+1) - \log(n+1)| = \log \frac{k+1}{n+1} < \log \lambda = \epsilon.
\]
Therefore, for \(n_0 < N \) the set
\[
\left\{ n_0 < n \leq N : \max_{n < k \leq l} D(u_k, u_n) \geq \varepsilon \right\}
\]
is empty. Consequently, condition (15) is satisfied.

The conditions (15) and (16) are clearly imply the conditions (10) and (11), respectively. This gives rise to the following corollary of Theorem 2.3.

Corollary 2.5. Let \((u_k)\) be a statistically slowly oscillating sequence of fuzzy numbers. Then
\[
\text{st–lim}_n \sigma_n = \mu_0 \text{ implies st–lim}_n u_n = \mu_0. \tag{17}
\]

Condition (15) is satisfied if there exists a constant \(H \) such that
\[
kD(u_k, u_{k-1}) \leq H \tag{18}
\]
for all large enough \(k \), say \(k > N_1 \). In fact, given \(\varepsilon > 0 \), chose \(1 < \lambda < 1 + \varepsilon / H \). Since \(N_1 < n < k \leq \lambda n \), by (18) we have
\[
D(u_k, u_n) \leq \sum_{j=n+1}^{k} D(u_j, u_{j-1}) \leq \sum_{j=n+1}^{k} \frac{H}{j} \leq H \left(\frac{k-n}{n} \right) = H \left(\frac{k}{n} - 1 \right) < H(\lambda - 1) < \varepsilon.
\]
But, for \(N_1 < N \), the set
\[
\left\{ N_1 < n \leq N : \max_{n < k \leq l} D(u_k, u_n) \geq \varepsilon \right\}
\]
is empty. Consequently, condition (15) is satisfied.

Remark 2.6. Kwon [13] proved that if condition (18) is satisfied, then implication (17) holds as well as
\[
\text{st–lim}_n u_n = \mu_0 \text{ implies } \lim_{n \to \infty} u_n = \mu_0.
\]

Definition 2.7. \((u_k)\) is Cesàro level-convergent (written \((C,1)\)-level-convergent) to a fuzzy number \(\mu_0 \), if \(\lim_{n \to \infty} \sigma_n = \mu_0 \) i.e.,
\[
\lim_{n \to \infty} \sigma_n^+(\alpha) = \lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} u_k^+(\alpha) = \mu_0^+(\alpha), \quad \lim_{n \to \infty} \sigma_n^-(\alpha) = \lim_{n \to \infty} \frac{1}{n+1} \sum_{k=0}^{n} u_k^-(\alpha) = \mu_0^-(\alpha)
\]
for all \(\alpha \in [0, 1] \).

Note that level-convergence implies \((C,1)\)-level-convergence. But the converse is not true in general.

Example 2.8. [21] Let
\[
\nu_n^+(\alpha) = 1, \quad \nu_n^-\alpha) = \left\{ \begin{array}{ll}
(\alpha - \frac{1}{2})^{1/(n+1)}, & \text{if } \frac{1}{2} < \alpha \leq 1, \\
0, & \text{if } 0 \leq \alpha \leq \frac{1}{2}
\end{array} \right.
\]
\[
\mu_n^+(\alpha) = \frac{1}{2}, \quad \mu_n^-\alpha) = \left\{ \begin{array}{ll}
\frac{1}{2}, & \text{if } \frac{1}{2} < \alpha \leq 1, \\
0, & \text{if } 0 \leq \alpha \leq \frac{1}{2}
\end{array} \right.
\]
There exists a unique fuzzy number \(\nu_n \in E^1 \) and a unique fuzzy number \(u_0 \in E^1 \) such that \([\nu_n]_E = [\nu_n^+(\alpha), \nu_n^-(\alpha)]\) and \([\mu_0]_E = [\mu_0^+(\alpha), \mu_0^-(\alpha)]\) for all \(\alpha \in [0, 1] \). Let \(u = (u_n) = (\nu_0, \overline{\nu}_1, \overline{\nu}_2, \ldots) \). Since
\[
\lim_{n \to \infty} \sigma_n^+(\alpha) = \mu_0^+(\alpha), \quad \lim_{n \to \infty} \sigma_n^-(\alpha) = \mu_0^-(\alpha)
\]
\((u_n)\) is \((C,1)\)-level-convergent to \(\mu_0 \) but \((u_n)\) is not level-convergent to \(\mu_0 \). Furthermore, since \(D(\sigma_n, \mu_0) = \frac{1}{2} \), \((u_n)\) is not \((C,1)\) convergent to \(\mu_0 \).
In [11, Theorem 5] Fridy and Orhan proved that a sequence of real numbers which is \((C, 1)\)-convergent to its statistical limit superior is statistically convergent. The next theorem is an analogue of that result for sequences of fuzzy numbers.

Theorem 2.9. Let \((u_k)\) be a bounded sequence of fuzzy numbers. Assume that \((u_k)\) is \((C, 1)\)-level-convergent to \(\mu = st - \lim sup u_k\) and there is a number \(\varepsilon_0 > 0\) such that for each \(\varepsilon \in (0, \varepsilon_0)\),

\[
\delta((k \in \mathbb{N} : u_k = \mu + \tau)) = 0, \quad \delta((k \in \mathbb{N} : u_k = \mu - \tau)) = 0.
\]

Then \((u_k)\) is statistically convergent to \(\mu\).

Proof. Since \(\mu = st - \lim sup u_k\), then

\[
\delta((k \in \mathbb{N} : u_k > \mu - \tau)) = 0
\]

for each \(\varepsilon > 0\). Suppose that \((u_k)\) is not statistically convergent to \(\mu\). Then, there is a \(\varepsilon_1 \in (0, \varepsilon_0)\) such that

\[
\delta((k \in \mathbb{N} : u_k < \mu - \tau)) \neq 0.
\]

Define \(m = \mu - \tau\), \(B = \sup_{n} u_n\) and

\[
K' = \{k \in \mathbb{N} : u_k < m\},
K'' = \{k \in \mathbb{N} : m \leq u_k \leq \mu + \tau\},
K''' = \{k \in \mathbb{N} : \mu + \tau < u_k \} \cup \{k \in \mathbb{N} : u_k > m\} \cup \{k \in \mathbb{N} : u_k = \mu + \tau\}.
\]

Since \(\delta(K'') = 0\), \(\delta(K') \neq 0\) and \(\delta(K') = 1 - \delta(K)\) there are infinitely many \(n\) such that

\[
\frac{1}{n+1} |K'_n| \geq d > 0
\]

and for each such \(n\) we have

\[
\sigma_n = \frac{1}{n+1} \sum_{k \in K'_n} u_k + \frac{1}{n+1} \sum_{k \in K''_n} u_k + \frac{1}{n+1} \sum_{k \in K'''_n} u_k
\]

\[
\quad < \frac{m}{n+1} |K'_n| + \frac{\mu + \tau}{n+1} |K''_n| + \frac{B}{n+1} |K'''_n|.
\]

So there is an \(a_0 \in [0, 1]\) such that

\[
\sigma^*_{a_0} < \frac{m^-(a_0)}{n+1} |K'_n| + \frac{\mu^-(a_0) + \varepsilon}{n+1} |K''_n| + \frac{B^-(a_0)}{n+1} |K'''_n| + o(1)
\]

\[
\quad = m^-(a_0) \frac{|K'_n|}{n+1} + (\mu^-(a_0) + \varepsilon) \left(1 - \frac{|K''_n|}{n+1}\right) + o(1)
\]

\[
\quad \leq \mu^-(a_0) - d (\mu^-(a_0) - m^-(a_0)) + \varepsilon (1 - d) + o(1).
\]

Since \(\varepsilon \in (0, \varepsilon_0)\) is arbitrary it follows that

\[
\lim \inf \sigma^*_{a_0} \leq \mu^-(a_0) - d (\mu^-(a_0) - m^-(a_0)) < \mu^-(a_0).
\]

Hence, \((u_k)\) is not \((C, 1)\)-level-convergent to \(\mu\) and this completes the proof. Note that the result can be found also by using the following inequality

\[
\sigma^*_{a_0} < \frac{m^+(a_0)}{n+1} |K'_n| + \frac{\mu^+(a_0) + \varepsilon}{n+1} |K''_n| + \frac{B^+(a_0)}{n+1} |K'''_n|.
\]

The following is a dual result for \(st - \lim inf\).
Theorem 2.10. Let \((u_k)\) be a bounded sequence of fuzzy numbers. Assume that \((u_k)\) is \((C,1)\)-level-convergent to \(v = sl - \liminf u_k\) and there is a number \(\varepsilon_0 > 0\) such that for each \(\varepsilon \in (0, \varepsilon_0)\),
\[
\delta(\{k \in \mathbb{N} : u_k < v - \varepsilon\}) = 0, \quad \delta(\{k \in \mathbb{N} : u_k > v + \varepsilon\}) = 0.
\]
Then, \((u_k)\) is statistically convergent to \(v\).

Acknowledgement

The authors would like to thank the referees for their helpful suggestions.

References