On Weak and Strong Convergence of an Explicit Iteration Process for a Total Asymptotically Quasi-I-Nonexpansive Mapping in Banach Space

Hukmi KIZILTUNCa, Yunus PURTASb

aDepartment of Mathematics, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey
bCelal Bayar University, Manisa, 45100, Turkey

Abstract. In this paper, we introduce a new class of Lipschitzian maps and prove some weak and strong convergence results for explicit iterative process using a more satisfactory definition of self mappings. Our results approximate common fixed point of a total asymptotically quasi-I-nonexpansive mapping T and a total asymptotically quasi-nonexpansive mapping I, defined on a nonempty closed convex subset of a Banach space.

1. Introduction

Let E be a real normed linear space, K a nonempty subset of E and $T : K \to K$ a mapping. Denote by $F(T)$ the set of fixed points of T, that is, $F(T) = \{x \in K : Tx = x\}$ and we denote by $D(T)$ the domain of a mapping T. Throughout this paper, we always assume that E is a real Banach space and $F(T) \neq \emptyset$. Now, we recall the well-known concept and results. A mapping $T : K \to K$ is called asymptotically nonexpansive if there exists a sequence \(\{k_n\} \subset [1, \infty) \) with \(k_n \to 1 \) such that

$$\|T^n x - T^n y\| \leq k_n \|x - y\|$$

for all \(x, y \in K \) and \(n \geq 1 \). A mapping $T : K \to K$ is said asymptotically quasi-nonexpansive if there exists a sequence \(\{k_n\} \subset [1, \infty) \) with $\lim_{n \to \infty} k_n = 1$ such that

$$\|T^n x - p\| \leq k_n \|x - p\|$$

for all $x \in K$, $p \in F(T)$ and $n \geq 1$. Let $T : K \to K$, $I : K \to K$ be two mappings of nonempty subset K of a real normed linear space E. Then T is said asymptotically I-nonexpansive if there exists a sequence \(\{k_n\} \subset [1, \infty) \)
Remark 1.1. If \(F(T) \cap F(I) \neq \emptyset \) then an asymptotically \(I \)-nonexpansive mapping is asymptotically quasi \(I \)-nonexpansive. But, there exists a nonlinear continuous asymptotically quasi \(I \)-nonexpansive mappings which is not asymptotically \(I \)-nonexpansive.

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [3]. They proved that if \(K \) is a nonempty closed convex bounded subset of a real uniformly convex Banach space and \(T : K \rightarrow K \) is an asymptotically nonexpansive mappings, then \(T \) has a fixed point. Liu [5] studied iterative sequences for asymptotically quasi-nonexpansive mappings. The weak and strong convergence of implicit iteration process to a common fixed point of a finite family of \(I \)-asymptotically nonexpansive mappings were studied by Temir [10]. Temir and Gul [11] defined \(I \)-asymptotically quasi-nonexpansive mapping in Hilbert space and they proved convergence theorem for \(I \)-asymptotically quasi-nonexpansive mapping defined in Hilbert space.

A mapping \(T : K \rightarrow K \) is called a total asymptotically nonexpansive mapping (see [1]) if there exist nonnegative real sequences \(\{\mu_n\}, \{l_n\} \) with \(\mu_n, l_n \to 0 \) as \(n \to \infty \) and strictly increasing continuous function \(\phi : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) with \(\phi(0) = 0 \) such that for all \(x, y \in K \),

\[
\|T^n x - T^n y\| \leq \|x - y\| + \mu_n \phi(\|x - y\|) + l_n, \quad n \geq 1. \tag{1}
\]

Let \(T : K \rightarrow K, I : K \rightarrow K \) be two mappings of a nonempty subset \(K \) of a real normed space \(E \). \(T \) is said to be total asymptotically \(I \)-nonexpansive mapping (see [6]) if there exist nonnegative real sequences \(\{\mu_n\}, \{l_n\} \) with \(\mu_n, l_n \to 0 \) as \(n \to \infty \) and strictly increasing continuous function \(\phi : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) with \(\phi(0) = 0 \) such that for all \(x, y \in K \),

\[
\|T^n x - T^n y\| \leq \|I^n x - I^n y\| + \mu_n \phi(\|I^n x - I^n y\|) + l_n, \quad n \geq 1. \tag{2}
\]

Note that if \(I = Id \) (\(Id \) is the identity mapping), then (2) reduces to (1). One can see that if \(\phi(\xi) = \xi \), then (1) reduces to \(\|T^n x - T^n y\| \leq (1 + \mu_n) \|x - y\| + l_n, \quad n \geq 1 \). In addition, if \(l_n = 0 \) for all \(n \geq 1 \), then total asymptotically nonexpansive mappings coincide with asymptotically nonexpansive mappings.
Let K be a nonempty closed subset of a real Banach space E. Then a mapping $T : K \to K$ is called a uniformly L-Lipschitzian mapping if there exists a constant $L > 0$ such that
\[\|T^n x - T^n y\| \leq L \|x - y\| \] \hspace{1cm} (3)
for all $x, y \in K$ and $n \geq 1$.

The class of a total asymptotically nonexpansive mappings was introduced by Alber et al. [1] to unify various definitions of asymptotically nonexpansive mappings. They constructed a scheme which convergences strongly to a fixed point of a total asymptotically nonexpansive mappings. Mukhamedov and Saburov [6] studied strong convergence of an explicit iteration process for a totally asymptotically I-nonexpansive mapping in Banach spaces.

Definition 1.2. [2] Let K be a nonempty closed subset of a real normed linear space E. A mapping $T : K \to K$ is said to be total asymptotically quasi-nonexpansive if $F(T) \neq \emptyset$ and there exist nonnegative real sequences $\{\mu_n\}, \{l_n\}$ with $\mu_n, l_n \to 0$ as $n \to \infty$ and strictly increasing continuous function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ with $\phi(0) = 0$ such that for all $x \in K, p \in F(T)$,
\[\|T^n x - p\| \leq \|x - p\| + \mu_n \phi(\|x - p\|) + l_n, \quad n \geq 1. \] \hspace{1cm} (4)

Definition 1.3. Let $T : K \to K, I : K \to K$ be two mappings of a nonempty closed subset K of a real normed space E. T is said to be total asymptotically quasi-I-nonexpansive if $F(T) \neq \emptyset$ and there exist nonnegative real sequences $\{\mu_n\}, \{l_n\}$ with $\mu_n, l_n \to 0$ as $n \to \infty$ and strictly increasing continuous function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ with $\phi(0) = 0$ such that for all $x \in K, p \in F(T)$,
\[\|T^n x - p\| \leq \|T^n x - p\| + \mu_n \phi(\|T^n x - p\|) + l_n, \quad n \geq 1. \] \hspace{1cm} (5)

Note that if $I = \text{Id}$ (Id is the identity mapping), then (5) reduces to (4). One can see that if $\phi(\xi) = \xi$, then (4) reduces to $\|T^n x - p\| \leq (1 + \mu_n) \|x - p\| + l_n, \quad n \geq 1$. In addition, if $l_n = 0$ for all $n \geq 1$, then total asymptotically quasi-nonexpansive mappings coincide with asymptotically quasi-nonexpansive mappings.

Definition 1.4. Let K be a nonempty closed subset of a real normed linear space E. A mapping $T : K \to K$ is said to be total uniformly L-Lipschitzian if there exist a constant $L > 0$ such that
\[\|T^n x - T^n y\| \leq L \|x - y\| + \mu_n \phi(\|x - y\|) + l_n, \quad n \geq 1. \] \hspace{1cm} (6)

One can see that if $\mu_n = 0$ and $l_n = 0$ for all $n \geq 1$, then (6) reduces to (3).

Example 1.5. Let us consider that \mathbb{R}, the set of real numbers, endowed with the usual topology. Let $K = [0, 1] \subset \mathbb{R}$. The mapping $T : K \to K$ is defined by
\[Tx = \begin{cases} \frac{1}{2}, & x \in \left[0, \frac{3}{4}\right] \\ \frac{x + 1}{\sqrt{2}}, & x \in \left[\frac{1}{2}, 1\right] \end{cases} \]
for all $x \in K$. Let ϕ be a strictly increasing continuous function such that $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ with $\phi(0) = 0$. Let $\{\mu_n\}_{n \geq 1}$ and $\{l_n\}_{n \geq 1}$ in \mathbb{R} be two sequences defined by $\mu_n = \frac{1}{n}$ and $l_n = \frac{1}{n+1}$, for all $n \geq 1$ ($\lim_{n \to \infty} \mu_n = \lim_{n \to \infty} \frac{1}{n} = 0$, $\lim_{n \to \infty} l_n = \frac{1}{n+1} = 0$). Note that $T^n x = \frac{x}{2}$ for all $x \in K$ and $n \geq 2$ and $F(T) = \{\frac{1}{2}\}$. Clearly, T is both uniformly continuous and total asymptotically nonexpansive mapping on K. Also, for all $x, y \in K$ and $L > 0$, we obtain

$$
|T^n x - T^n y| \leq L |x - y|.
$$

(7)

for all $n \geq 1$.

In fact, if $x \in \left[0, \frac{1}{2}\right]$, then $|x - \frac{1}{2}| = |x - Tx|$. Similarly, if $x \in \left[\frac{1}{2}, 1\right]$, then $|x - \frac{1}{2}| = x - \frac{1}{2} \leq x - \frac{\sqrt{2x - x^2}}{\sqrt{3}} = |x - Tx|$. Hence, we get $d(x, F(T)) = |x - \frac{1}{2}| \leq |x - Tx|$. But, T is not Lipschitzian. Indeed, suppose not, i.e., there exists $L > 0$ such that

$$
|Tx - Ty| \leq L |x - y|
$$

for all $x, y \in K$. If we take $x = 1 - \frac{1}{2(1+L)} > \frac{1}{2}$ and $y = 1$, then

$$
\frac{\sqrt{2x - x^2}}{\sqrt{3}} \leq L |1 - x| \iff \frac{\sqrt{2x - x^2}}{\sqrt{3}} \leq \frac{1}{1 + L} = \frac{1}{4 + \sqrt{6} + \sqrt{3}}.
$$

This is a contradiction.

Also, since ϕ is strictly increasing continuous function $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ with $\phi(0) = 0$ and $\mu_n = \frac{1}{n}$, $l_n = \frac{1}{n+1}$, for all $n \geq 1$ and $L > 0$, it follows that we have

$$
L \left(\frac{1}{n} \phi\left(|x - y|\right) + \frac{1}{n+1}\right) \geq 0
$$

(8)

for all $x, y \in K$. Due to (7) and (8), there exists $L > 0$ such that for all $x, y \in K$,

$$
|T^n x - T^n y| \leq L \left[|x - y| + \frac{1}{n} \phi\left(|x - y|\right) + \frac{1}{n+1}\right], \quad n \geq 1.
$$

Then, T is a total uniformly L-Lipschitzian mapping on K.

Mukhamedov and Saburov [6] studied strong convergence of an explicit iteration process for a totally asymptotically L-nonexpansive mapping in Banach spaces. This iteration scheme is defined as follows.

Let K be a nonempty closed convex subset of a real Banach space E. Consider $T : K \to K$ is a total asymptotically quasi L-nonexpansive mapping, where $I : K \to K$ is a total asymptotically quasi-nonexpansive mapping. Then for two given sequences $\{x_n\}, \{\beta_n\}$ in $[0, 1]$ we shall consider the following iteration scheme:

$$
\begin{align*}
\begin{cases}
x_0 \in K, \\
x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T^n y_n, \quad n \geq 0, \\
y_n = (1 - \beta_n) x_n + \beta_n I^n x_n.
\end{cases}
\end{align*}
$$

(9)

Inspired and motivated by this facts, we study the convergence theorems of the explicit iterative scheme involving a total asymptotically quasi-l-nonexpansive mapping in a nonempty closed convex subset of uniformly convex Banach spaces.

In this paper, we will prove the weak and strong convergences of the explicit iterative process (9) to a common fixed point of T and I.
2. Preliminaries

Recall that a Banach space E is said to satisfy Opial condition [7] if, for each sequence $\{x_n\}$ in E such that $\{x_n\}$ converges weakly to x implies that

$$\liminf_{n \to \infty} \|x_n - x\| < \lim_{n \to \infty} \inf \|x_n - y\|$$

for all $y \in E$ with $y \neq x$. It is well known that (see [4]) inequality (10) is equivalent to

$$\limsup_{n \to \infty} \|x_n - x\| < \limsup_{n \to \infty} \|x_n - y\|.$$

Definition 2.1. Let K be a closed subset of a real Banach space E and let $T : K \to K$ be a mapping. T is said to be semiclosed (demisected) at zero, if for each bounded sequence $\{x_n\}$ in K, the conditions x_n converges weakly to $x \in K$ and Tx_n converges strongly to 0 imply $Tx = 0$.

Definition 2.2. Let K be a closed subset of a real Banach space X and let $T : K \to K$ be a mapping. T is said to be semicompact, if for any bounded sequence $\{x_n\}$ in K such that $\|x_n - Tx_n\| \to 0$, $n \to \infty$, then there exists a subsequence $\{x_{n_l}\} \subset \{x_n\}$ such that $x_{n_l} \to x^* \in K$ strongly.

Lemma 2.3. [8] Let X be a uniformly convex Banach space and let b, c be two constant with $0 < b < c < 1$. Suppose that $\{t_n\}$ is a sequence in $[b, c]$ and $\{x_n\}$, $\{y_n\}$ are two sequence in X such that

$$\lim_{n \to \infty} \|t_n x_n + (1 - t_n) y_n\| = d, \quad \limsup_{n \to \infty} \|x_n\| \leq d, \quad \limsup_{n \to \infty} \|y_n\| \leq d,$$

holds some $d \geq 0$. Then $\lim_{n \to \infty} \|x_n - y_n\| = 0$.

Lemma 2.4. [9] Let $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ be three sequences of nonnegative real numbers with $\sum_{n=1}^{\infty} b_n < \infty$, $\sum_{n=1}^{\infty} c_n < \infty$. If the following conditions is satisfied:

$$a_{n+1} \leq (1 + b_n) a_n + c_n, \quad n \geq 1,$$

then the limit $\lim_{n \to \infty} a_n$ exists.

3. Main Results

In this section, we prove the convergence theorems of an explicit iterative scheme (9) for a total asymptotically quasi-I-nonexpansive mapping in Banach spaces. In order to prove our main results, the following lemmas are needed.

Lemma 3.1. Let E be real Banach space and K be a nonempty closed convex subset of E. Let $T : K \to K$ be a total asymptotically quasi-I-nonexpansive mapping with sequences $\{\mu_n\}$, $\{l_n\}$ and $I : K \to K$ be a total asymptotically quasi-nonexpansive mapping with sequences $\{\tilde{\mu}_n\}$, $\{\tilde{l}_n\}$ such that $F = F(T) \cap F(I) \neq \emptyset$. Suppose that there exist M_i, $N_i > 0$, $i = 1, 2$, such that $\phi(\zeta) \leq M_2 \zeta$ for all $\zeta \geq M_1$ and $\phi(\zeta) \leq N_2 \zeta$ for all $\zeta \geq N_1$. Then for any $x, y \in K$ we have

$$\|T^p x - p\| \leq (1 + N_2 \mu_n) \|x - p\| + \phi(N_1) \tilde{\mu}_n + \tilde{l}_n$$

(11)
\[\|T^nx - p\| \leq (1 + M_2\mu_n)(1 + N_2\tilde{\mu}_n)\|x - p\| + (1 + M_2\mu_n)(\phi(N_1)\tilde{\mu}_n + I_n) + \phi(M_1)\mu_n + l_n. \]

(12)

Proof. Since \(\phi, \varphi : \mathbb{R}^+ \to \mathbb{R}^+ \) are strictly increasing continuous functions, it follows that \(\phi(\xi) \leq \phi(M_1) \), \(\varphi(\zeta) \leq \varphi(N_1) \) whenever \(\xi \leq M_1, \zeta \leq N_1 \), respectively. By the hypothesis of lemma we get

\[\phi(\xi) \leq \phi(M_1) + M_2\xi, \quad \varphi(\zeta) \leq \varphi(N_1) + N_2\zeta, \]

(13)

for all \(\xi, \zeta \geq 0 \). Since \(T : K \to K, I : K \to K \) are a total asymptotically quasi-I-nonexpansive mapping and a total asymptotically quasi-nonexpansive mapping, respectively, then from (13) we obtain

\[\|T^nx - p\| \leq (1 + N_2\tilde{\mu}_n)\|x - p\| + \phi(N_1)\tilde{\mu}_n + I_n. \]

Similarly, from (11) and (13) we obtain

\[\|T^nx - p\| \leq (1 + M_2\mu_n)(\|T^nx - p\| + \phi(M_1)\mu_n + l_n) \]

\[\leq (1 + M_2\mu_n)(1 + N_2\tilde{\mu}_n)\|x - p\| + (1 + M_2\mu_n)(\phi(N_1)\tilde{\mu}_n + I_n) + \phi(M_1)\mu_n + l_n. \]

This completes the proof. \(\square \)

Lemma 3.2. Let \(E \) be real Banach space and \(K \) be a nonempty closed convex subset of \(E \). Let \(T : K \to K \) be a total asymptotically quasi-l-nonexpansive mapping with sequences \(\{\mu_n\}, \{l_n\} \) and \(I : K \to K \) be a total asymptotically quasi-nonexpansive mapping with sequences \(\{\tilde{\mu}_n\}, \{\tilde{l}_n\} \) such that \(F = F(T) \cap F(I) \neq \emptyset \). Also, let \(\{\alpha_n\} \) and \(\{\beta_n\} \) are sequences in \([0, 1]\). Suppose that \(\sum_{n=1}^{\infty} \mu_n < \infty, \sum_{n=1}^{\infty} l_n < \infty, \sum_{n=1}^{\infty} \tilde{\mu}_n < \infty, \sum_{n=1}^{\infty} \tilde{l}_n < \infty \) and there exist \(M_i, N_i > 0, i = 1, 2, \) such that \(\phi(\xi) \leq M_2\xi \) for all \(\xi \geq M_1 \) and \(\varphi(\zeta) \leq N_2\zeta \) for all \(\zeta \geq N_1 \). Then sequence \(\{x_n\} \) by (9) is bounded and for each \(p \in F = F(T) \cap F(I) \) the limit \(\lim_{n \to \infty} \|x_n - p\| \) exists.

Proof. Since \(F = F(T) \cap F(I) \neq \emptyset \), for any given \(p \in F \), it follows from (9) and (12) that

\[\|y_n - p\| \leq (1 + N_2\beta_n\tilde{\mu}_n)\|x_n - p\| + \beta_n\left(\phi(N_1)\tilde{\mu}_n + I_n\right). \]

(14)

Using a similar method, from (9), (11) and (14), we have

\[\|x_{n+1} - p\| \leq (1 - \alpha_n)\|x_n - p\| + \alpha_n\|T^ny_n - p\| \]

\[\leq (1 - \alpha_n)\|x_n - p\| + \alpha_n(1 + M_2\mu_n)(1 + N_2\tilde{\mu}_n)\|y_n - p\| + \alpha_n(1 + M_2\mu_n)(\phi(N_1)\tilde{\mu}_n + I_n) + \alpha_n\left(\phi(M_1)\mu_n + l_n\right) \]

\[\leq \left(1 + \alpha_n\left(1 + M_2\mu_n\right)\left(1 + N_2\tilde{\mu}_n\right) - 1\right)\|x_n - p\| + \alpha_n\left(1 + M_2\mu_n\right)\left(\phi(N_1)\tilde{\mu}_n + I_n\right)\left(\beta_n\left(1 + N_2\tilde{\mu}_n\right) + 1\right) + \phi(M_1)\mu_n + l_n. \]

(15)
Defining
\[a_n = \|x_n - p\| \]
\[b_n = a_n \left(1 + M_2 \mu_n \right) \left(1 + N_2 \mu_n \right) \left(1 + N_2 \beta_n \mu_n \right) - 1 \]
\[c_n = a_n \left(1 + M_2 \mu_n \right) \left(\phi(N_1) \mu_n + l_n \right) \left(1 + N_2 \beta_n \mu_n \right) + 1 + \phi(M_1) \mu_n + l_n \]
in (15) we have \(a_{n+1} \leq (1 + b_n) a_n + c_n \). Since \(\sum_{n=1}^{\infty} b_n < \infty \), \(\sum_{n=1}^{\infty} c_n < \infty \), Lemma 2.4 implies the existence of

the limit \(\lim_{n \to \infty} a_n \). This completes the proof.

Theorem 3.3. Let \(E \) be a real Banach space and \(K \) be a nonempty closed convex subset of \(E \). Let \(T : K \to K \) be a total uniformly \(L_1 \)-Lipschitzian asymptotically quasi-I-nonexpansive mapping with sequences \(\{ \mu_n \} \) and \(I : K \to K \) be a total uniformly \(L_2 \)-Lipschitzian asymptotically quasi-nonexpansive mapping with sequences \(\{ \mu_n \} \), \(\{ l_n \} \) such that

\(F = F(T) \cap F(I) \neq \emptyset \). Suppose that \(\sum_{n=1}^{\infty} \mu_n < \infty \), \(\sum_{n=1}^{\infty} l_n < \infty \), \(\sum_{n=1}^{\infty} \mu_n \phi(M_1) < \infty \), \(\sum_{n=1}^{\infty} l_n \phi(M_1) < \infty \) and there exist \(M_i, N_i > 0 \), \(i = 1, 2 \), such that \(\phi(\xi) \leq M_2 \xi \) for all \(\xi \geq M_1 \) and \(\phi(\xi) \leq N_2 \xi \) for all \(\xi \geq N_1 \). Then the sequence \(\{ x_n \} \) by \((9) \), converges strongly to a common fixed point of \(F = F(T) \cap F(I) \) if and only if

\[\lim_{n \to \infty} d(x_n, F) = 0. \]

Proof. For any given \(p \in F \), we have (see (15))

\[\|x_{n+1} - p\| \leq (1 + b_n) \|x_n - p\| + c_n, \quad n \geq 1. \]

(17)

It suffices to show that \(\lim_{n \to \infty} d(x_n, F) = 0 \) implies that \(\{ x_n \} \) converges to a common fixed point of \(T \) and \(I \).

Necessity. Since (17) holds for all \(p \in F \), we obtain from it that

\[d(x_{n+1}, F) \leq (1 + b_n) d(x_n, F) + c_n, \quad n \geq 1. \]

Lemma 2.4 implies that \(\lim_{n \to \infty} d(x_n, F) \) exists. But, \(\lim_{n \to \infty} d(x_n, F) = 0 \). Hence, \(\lim_{n \to \infty} d(x_n, F) = 0 \).

Sufficiency. Let us prove that the sequence \(\{ x_n \} \) converges to a common fixed point of \(T \) and \(I \). Firstly, we show that \(\{ x_n \} \) is a Cauchy sequence in \(E \). In fact, as \(1 + t \leq \exp(t) \) for all \(t > 0 \). For all integer \(m \geq 1 \), we obtain from inequality (17) that

\[\|x_{n+m} - p\| \leq \exp \left(\sum_{i=n}^{n+m-1} b_i \right) \|x_n - p\| + \left(\sum_{i=n}^{n+m-1} c_i \right) \exp \left(\sum_{i=n}^{n+m-1} b_i \right), \]

so that for all integers \(m \geq 1 \) and all \(p \in F \),

\[\|x_{n+m} - x_n\| \leq \|x_{n+m} - p\| + \|x_n - p\| \]

\[\leq \left(1 + \exp \left(\sum_{i=n}^{\infty} b_i \right) \right) \|x_n - p\| + \exp \left(\sum_{i=n}^{\infty} b_i \right) \sum_{i=n}^{\infty} c_i \]

\[\leq A \left(\|x_n - p\| + \sum_{i=n}^{\infty} c_i \right), \]

(18)
for all \(p \in F \), where \(0 < A - 1 = \exp(\sum_{i=n}^{\infty} b_i) < \infty \). Taking the infimum over \(p \in F \) in (18) gives
\[
\|x_{n+m} - x_n\| \leq A \left(d(x_n, F) + \sum_{i=n}^{\infty} c_i \right),
\]
(19)

Now, since \(\lim_{n \to \infty} d(x_n, F) = 0 \) and \(\sum_{i=n}^{\infty} c_i < \infty \), given \(\varepsilon > 0 \), there exists an integer \(n_0 > 0 \) such that for all \(n > n_0 \) we have \(d(x_n, F) < \frac{\varepsilon}{2} \) and \(\sum_{i=n}^{\infty} c_i < \frac{\varepsilon}{2} \). So, for all integers \(n > n_0 \) and \(m \geq 1 \), we obtain (19) that
\[
\|x_{n+m} - x_n\| \leq \varepsilon
\]
which means that \(\{x_n\} \) is a Cauchy sequence in \(E \), and completeness of \(E \) yields the existence of \(x^* \in E \) such that \(x_n \to x^* \) strongly.

Now, we show that \(x^* \) is a common fixed point of \(T \) and \(I \). Suppose that \(x^* \notin F \). Since \(F \) is closed subset of \(E \), one has \(d(x^*, F) > 0 \). However, for all \(p \in F \), we have
\[
\|x^* - p\| \leq \|x_n - x^*\| + \|x_n - p\|.
\]
This implies that
\[
d(x^*, F) \leq \|x_n - x^*\| + d(x_n, F),
\]
so, we obtain \(d(x^*, F) = 0 \) as \(n \to \infty \), which contradicts \(d(x^*, F) > 0 \). Hence, \(x^* \) is a common fixed point of \(T \) and \(I \). This completes the proof.

Lemma 3.4. Let \(E \) be a real uniformly Banach space and \(K \) be a nonempty closed convex subset of \(E \). Let \(T : K \to K \) be a total uniformly \(L_1 \)-Lipschitzian asymptotically quasi-\(I \)-nonexpansive mapping with sequences \(\{\mu_n\}, \{l_n\} \) and \(I : K \to K \) be a total uniformly \(L_2 \)-Lipschitzian asymptotically quasi-\(I \)-nonexpansive mapping with sequences \(\{\mu_n\}, \{l_n\} \) such that \(F = F(T) \cap F(I) \neq \emptyset \). Suppose that \(\sum_{n=1}^{\infty} \mu_n < \infty \), \(\sum_{n=1}^{\infty} l_n < \infty \), \(\sum_{n=1}^{\infty} \tilde{\mu}_n < \infty \), \(\sum_{n=1}^{\infty} \tilde{l}_n < \infty \) and there exist \(M_i, N_i > 0 \), \(i = 1, 2 \), such that \(\phi(\xi) \leq M_2 \xi \) for all \(\xi \geq M_1 \) and \(\phi(\zeta) \leq N_2 \zeta \) for all \(\zeta \geq N_1 \). Assume that \(\{\alpha_n\} \) and \(\{\beta_n\} \) are two sequences in \([0, 1 - l] \), where \(0 < l < 1 \). Then the sequence \(\{x_n\} \) by (9) satisfies the following:
\[
\lim_{n \to \infty} \|x_n - T x_n\| = 0, \tag{20}
\]
\[
\lim_{n \to \infty} \|x_n - I x_n\| = 0. \tag{21}
\]

Proof. By Lemma 3.2, \(\lim_{n \to \infty} \|x_n - p\| \) exists. Assume that, for any \(p \in F = F(T) \cap F(I), \lim_{n \to \infty} \|x_n - p\| = r \). If \(r = 0 \), the conclusion is obvious. Suppose \(r > 0 \).

First, we will prove that
\[
\lim_{n \to \infty} \|x_n - T^nx_n\| = 0, \quad \lim_{n \to \infty} \|x_n - P^nx_n\| = 0. \tag{22}
\]
It follows from (9) that
\[
\|x_{n+1} - p\| = \|(1 - \alpha_n)(x_n - p) + \alpha_n(T^ny_n - p)\| \to r, \tag{23}
\]
as \(n \to \infty \). By means of \(\sum_{n=1}^{\infty} \mu_n < \infty \), \(\sum_{n=1}^{\infty} l_n < \infty \), \(\sum_{n=1}^{\infty} \tilde{\mu}_n < \infty \), \(\sum_{n=1}^{\infty} \tilde{l}_n < \infty \), from (12) and (14) we get

\[
\lim_{n \to \infty} \sup \left\| T^n y_n - p \right\| \leq \lim_{n \to \infty} \sup \left\| y_n - p \right\| \leq \lim_{n \to \infty} \sup \left\| x_n - p \right\| = r. \tag{24}
\]

Hence, using (23), (24) and Lemma 2.3, we obtain

\[
\lim_{n \to \infty} \left\| x_n - T^n y_n \right\| = 0. \tag{25}
\]

From (9) and (25) we have

\[
\lim_{n \to \infty} \left\| x_{n+1} - x_n \right\| = 0. \tag{26}
\]

From (25) and (26) we get

\[
\lim_{n \to \infty} \left\| x_{n+1} - T^n y_n \right\| \leq \lim_{n \to \infty} \left\| x_{n+1} - x_n \right\| + \lim_{n \to \infty} \left\| x_n - T^n y_n \right\| = 0. \tag{27}
\]

On the other hand, from (12) and (14) we have

\[
\left\| x_n - p \right\| \leq \left\| x_n - T^n y_n \right\| + (1 + M_2 \mu_n) \left(1 + N_2 \tilde{\mu}_n \right) \left\| y_n - p \right\| \\
+ (1 + M_2 \mu_n) (\phi(N_1) \tilde{\mu}_n + \tilde{l}_n) + \phi(M_1) \mu_n + l_n \\
\leq \left\| x_n - T^n y_n \right\| + (1 + M_2 \mu_n) \left(1 + N_2 \tilde{\mu}_n \right) \left(1 + N_2 \beta_n \tilde{\mu}_n \right) \left\| x_n - p \right\| \\
+ (1 + M_2 \mu_n) (\phi(N_1) \tilde{\mu}_n + \tilde{l}_n) \left(\beta_n \left(1 + N_2 \tilde{\mu}_n \right) + 1 \right) + \phi(M_1) \mu_n + l_n. \tag{28}
\]

From (28) we obtain

\[
\lim_{n \to \infty} \left\| x_n - p \right\| \leq \lim_{n \to \infty} \left\| x_n - T^n y_n \right\| + \lim_{n \to \infty} \left\| y_n - p \right\| \\
\leq \lim_{n \to \infty} \left\| x_n - T^n y_n \right\| + \lim_{n \to \infty} \left\| x_n - p \right\|. \tag{29}
\]

Then (29) with the squeeze theorem, imply that

\[
\lim_{n \to \infty} \left\| y_n - p \right\| = r.
\]

From (9) we can see that

\[
\left\| y_n - p \right\| = \left\| (1 - \beta_n) (x_n - p) + \beta_n (T^n x_n - p) \right\| \to r, \quad n \to \infty. \tag{30}
\]

Furthermore, from (11) we get

\[
\lim_{n \to \infty} \sup \left\| T^n x_n - p \right\| \leq \lim_{n \to \infty} \sup \left\| x_n - p \right\| = r. \tag{31}
\]

Now, applying Lemma 2.3 to (30) we obtain

\[
\lim_{n \to \infty} \left\| x_n - T^n x_n \right\| = 0. \tag{32}
\]
From (26) and (32) we have
\[
\lim_{n \to \infty} \|x_{n+1} - I^nx_n\| \leq \lim_{n \to \infty} \|x_{n+1} - x_n\| + \lim_{n \to \infty} \|x_n - I^nx_n\| = 0.
\] (33)

It follows from (9) that
\[
\|y_n - x_n\| = \beta_n \|x_n - I^nx_n\|.
\] (34)

Hence, from (32) and (34) we obtain
\[
\lim_{n \to \infty} \|y_n - x_n\| = 0.
\] (35)

Consider
\[
\|x_n - T^nx_n\| \leq \|x_n - T^ny_n\| + L_1 \|y_n - x_n\| + L_1 \left(\mu_n \phi \left(\|x_n - y_n\| \right) \right) + l_n.
\] (36)

Then, from (25), (35) and (36) we obtain
\[
\lim_{n \to \infty} \|x_n - T^nx_n\| = 0.
\] (37)

From (26) and (35) we have
\[
\lim_{n \to \infty} \|x_{n+1} - y_n\| \leq \lim_{n \to \infty} \|x_{n+1} - x_n\| + \lim_{n \to \infty} \|y_n - x_n\| = 0.
\] (38)

Finally, from
\[
\|x_n - Tx_n\| \leq \|x_n - T^nx_n\| + L_1 \|x_n - y_{n-1}\| + L_1 \left(\mu_n \phi \left(\|x_n - y_{n-1}\| \right) \right) + l_n
\]
\[
+ L_1 \|T^{n-1}y_{n-1} - x_n\| + L_1 \left(\mu_n \phi \left(\|T^{n-1}y_{n-1} - x_n\| \right) \right) + l_n,
\] (39)

which with (27), (37) and (38) we get
\[
\lim_{n \to \infty} \|x_n - Tx_n\| = 0.
\] (40)

Similarly, we obtain
\[
\|x_n - Ix_n\| \leq \|x_n - T^nx_n\| + L_2 \|x_n - x_{n-1}\| + L_2 \left(\mu_n \phi \left(\|x_n - x_{n-1}\| \right) \right) + l_n
\]
\[
+ L_2 \|P^{n-1}x_{n-1} - x_n\| + L_2 \left(\mu_n \phi \left(\|P^{n-1}x_{n-1} - x_n\| \right) \right) + l_n,
\] (41)

which with (26), (32) and (33) implies
\[
\lim_{n \to \infty} \|x_n - Ix_n\| = 0.
\] (42)

This completes the proof.
Theorem 3.5. Let E be a real uniformly Banach space satisfying Opial condition and let K be a nonempty closed convex subset of E. Let $C : E \to E$ be an identity mapping. Let $T : K \to K$ be a total uniformly L_1-Lipschitzian asymptotically quasi-I-nonexpansive mapping with sequences $\{\mu_n\}, \{l_n\}$ and $I : K \to K$ be a total uniformly L_2-Lipschitzian asymptotically quasi-nonexpansive mapping with sequences $\{\tilde{\mu}_n\}, \{\tilde{l}_n\}$ such that $F = F(T) \cap F(I) \neq \emptyset$.

Suppose that $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} l_n < \infty$, $\sum_{n=1}^{\infty} \tilde{\mu}_n < \infty$, $\sum_{n=1}^{\infty} \tilde{l}_n < \infty$ and there exist $M_i, N_i > 0, i = 1, 2$, such that $\phi(\xi) \leq M_2 \xi$ for all $\xi \geq M_1$ and $\phi(\zeta) \leq N_2 \zeta$ for all $\zeta \geq N_1$. Assume that $\{\alpha_n\}, \{\beta_n\}$ are two sequences in $[t, 1 - t]$, where $0 < t < 1$. If the mappings $C - T$ and $C - I$ are semiclosed at zero, then the explicit iterative sequence $\{x_n\}$ defined by (9) converges weakly to a common fixed point of T and I.

Proof. Let $p \in F = F(T) \cap F(I)$. By Lemma 3.2, we know that $\lim_{n \to \infty} \|x_n - p\|$ exists and $\{x_n\}$ is bounded. Since E is uniformly convex, then every bounded subset of E is weakly compact. Since $\{x_n\}$ is a bounded sequence in K, then there exists a subsequence $\{x_{n_j}\} \subset \{x_n\}$ such that $\{x_{n_j}\}$ converges weakly to $q_1 \in K$. Thus, from (40) and (42) it follows that

$$\lim_{n_j \to \infty} \|x_{n_j} - Tx_{n_j}\| = 0, \quad \lim_{n_j \to \infty} \|x_{n_j} - Ix_{n_j}\| = 0.$$ \hspace{1cm} (43)

Since the mappings $C - T$ and $C - I$ are semiclosed at zero, we find $Tq_1 = q_1$ and $Iq_1 = q_1$. Namely, $q_1 \in F = F(T) \cap F(I)$.

Finally, let us prove that $\{x_n\}$ converges weakly to q_1. Actually, suppose the contrary, that is, there exists some subsequence $\{x_{n_j}\} \subset \{x_n\}$ such that $\{x_{n_j}\}$ converges weakly to $q_2 \in K$ and $q_1 \neq q_2$. Then by the same method as given above, we can also prove that $q_2 \in F = F(T) \cap F(I)$.

Since $q_1, q_2 \in F = F(T) \cap F(I)$, according to Lemma 3.2 $\lim_{n \to \infty} \|x_n - q_1\|$ and $\lim_{n \to \infty} \|x_n - q_2\|$ exist, we have

$$\lim_{n \to \infty} \|x_n - q_1\| = r_1, \quad \lim_{n \to \infty} \|x_n - q_2\| = r_2,$$ \hspace{1cm} (44)

where $d_1, d_2 \geq 0$. Because of the Opial condition of E, we obtain

$$r_1 = \lim_{n \to \infty} \sup_{n_j \to \infty} \|x_{n_j} - q_1\| < \lim_{n \to \infty} \sup_{n \to \infty} \|x_n - q_1\| = r_2$$

$$r_1 = \lim_{n \to \infty} \sup_{n_j \to \infty} \|x_{n_j} - q_1\| < \lim_{n \to \infty} \sup_{n \to \infty} \|x_n - q_2\|. \hspace{1cm} (45)$$

This is a contradiction. Hence $q_1 = q_2$. This implies that $\{x_n\}$ converges weakly to q. This completes the proof. \hfill \Box

Theorem 3.6. Let E be a real uniformly Banach space and K be a nonempty closed convex subset of E. Let $T : K \to K$ be a total uniformly L_1-Lipschitzian asymptotically quasi-I-nonexpansive mapping with sequences $\{\mu_n\}, \{l_n\}$ and $I : K \to K$ be a total uniformly L_2-Lipschitzian asymptotically quasi-nonexpansive mapping with sequences $\{\tilde{\mu}_n\}, \{\tilde{l}_n\}$ such that $F = F(T) \cap F(I) \neq \emptyset$. Suppose that $\sum_{n=1}^{\infty} \mu_n < \infty$, $\sum_{n=1}^{\infty} l_n < \infty$, $\sum_{n=1}^{\infty} \tilde{\mu}_n < \infty$, $\sum_{n=1}^{\infty} \tilde{l}_n < \infty$ and there exist $M_i, N_i > 0, i = 1, 2$, such that $\phi(\xi) \leq M_2 \xi$ for all $\xi \geq M_1$ and $\phi(\zeta) \leq N_2 \zeta$ for all $\zeta \geq N_1$. Assume that $\{\alpha_n\}, \{\beta_n\}$ are two sequences in $[t, 1 - t]$, where $0 < t < 1$. If at least one mapping of the mappings T and I is semicompact, then the explicit iterative sequence $\{x_n\}$ defined by (9) converges strongly to a common fixed point of T and I.

\hfill \Box
Proof. Without any loss of generality, we may assume that T is semicompact. This with (40) means that there exists a subsequence $\{x_{n_k}\} \subseteq \{x_n\}$ such that $x_{n_k} \to x^*$ strongly and $x^* \in K$. Since T, I are continuous, then from (40) and (42) we find

$$\|x^* - Tx^*\| = \lim_{n_k \to \infty} \|x_{n_k} - Tx_{n_k}\| = 0, \quad \|x^* - Ix^*\| = \lim_{n_k \to \infty} \|x_{n_k} - Ix_{n_k}\| = 0. \tag{46}$$

This shows that $x^* \in F = F(T) \cap F(I)$. According to Lemma 3.2 the limit $\lim_{n \to \infty} \|x_n - x^*\|$ exists. Then

$$\lim_{n \to \infty} \|x_n - x^*\| = \lim_{n_k \to \infty} \|x_{n_k} - x^*\| = 0,$$

which means that $\{x_n\}$ converges to $x^* \in F$. This completes the proof. \(\square\)

References

