Generalized Interval Neutrosophic Rough Sets and its Application in Multi-Attribute Decision Making

Hai-Long Yanga, Yan-Ling Baoa, Zhi-Lian Guob

aCollege of Mathematics and Information Science, Shaanxi Normal University, 710119, Xi’an, PR China
bCollege of Economics, Northwest University of Political Science and Law, 710063, Xi’an, PR China

Abstract. Neutrosophic set (NS) was originally proposed by Smarandache to handle indeterminate and inconsistent information. It is a generalization of fuzzy sets and intuitionistic fuzzy sets. Wang and Smarandache proposed interval neutrosophic sets (INS) which is a special case of NSs and would be extensively applied to resolve practical issues. In this paper, we put forward generalized interval neutrosophic rough sets based on interval neutrosophic relations by combining interval neutrosophic sets with rough sets. We explore the hybrid model through constructive approach as well as axiomatic approach. On one hand, we define generalized interval neutrosophic lower and upper approximation operators through constructive approach. Moreover, we investigate the relevance between generalized interval neutrosophic lower (upper) approximation operators and particular interval neutrosophic relations. On the other hand, we study axiomatic characterizations of generalized interval neutrosophic approximation operators, and also show that different axiom sets of theoretical interval neutrosophic operators make sure the existence of different classes of INRs that yield the same interval neutrosophic approximation operators. Finally, we introduce generalized interval neutrosophic rough sets on two universes and a universal algorithm of multi-attribute decision making based on generalized interval neutrosophic rough sets on two universes. Besides, an example is given to demonstrate the validity of the new rough set model.

1. Introduction

Smarandache [24, 25] introduced neutrosophic sets (NSs) by combining non-standard analysis and a tri-component set. A NS includes three membership functions (truth-membership function, indeterminacy membership function and falsity-membership function), where every function value is a real standard or non-standard subset of the nonstandard unit interval $[0^-, 1^+]$. In a NS, indeterminacy is quantified explicitly, and the three membership functions are independent from each other. Riverain [19] initiated neutrosophic logics by applying the neutrosophic idea to logics. Guo et al. [9, 10] successfully applied NSs to image processing and cluster analysis. Ali and Smarandache [1] studied complex neutrosophic sets.

2010 Mathematics Subject Classification. Primary O159

Keywords. Neutrosophic sets, Interval neutrosophic sets, Rough sets, Generalized interval neutrosophic rough sets, Multi-attribute decision making

Received: In January 2017; Accepted: 28 July 2017

Communicated by Marko Petkovic

Research supported by the National Natural Science Foundation of China (Nos. 61473181 and 11526163) and the Fundamental Research Funds for the Central Universities (Nos. GΚ201702008 and 2016TS034)

Email addresses: yanghailong@snnu.edu.cn (Hai-Long Yang), bao-yanling@163.com (Yan-Ling Bao), gzl_4340163.com (Zhi-Lian Guo)
For the sake of conveniently applying NSs into real world, Wang et al. [28] proposed single valued neutrosophic sets (SVNSs) which is a subclass of neutrosophic sets. Yang et al. [33] studied the single valued neutrosophic relations in detail. Biswas et al. [2] studied TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Majumdar and Samanta [14] explored distance, similarity, and entropy of SVNSs. A subsethood measure of SVNSs based on distance was studied by Şahin and Küçük [22]. Peng et al. [18] proposed some operations of SVNSs from a new point of view and further gave a novel approach to solve decision-making problems based on outranking relations of simplified neutrosophic numbers. Based on the combination of trapezoidal fuzzy numbers and a single valued neutrosophic set, Ye [39] introduced trapezoidal neutrosophic set and explored its application to multiple attribute decision-making. At the same time, Ye [40] also presented a simplified neutrosophic harmonic averaging projection measure and its multiple attribute decision making method with simplified neutrosophic information.

To deal with more complex problems, Wang et al. [27] introduced interval neutrosophic sets (INSs) that take values on the subinterval of [0, 1]. Zhang et al. [44] studied some properties about INSs and their application in multicriteria decision making problems. Subsequently, Zhang et al. [45] proposed an outranking approach for multi-criteria decision-making problems with INSs. Ye [38] proposed correlation coefficients of INSs, and applied it to interval neutrosophic decision-making problems. Liu and Shi [11] gave a generalized hybrid weighted average operator based on interval neutrosophic hesitant set and studied its application to multiple attribute decision making. Liu and Wang [12] proposed interval neutrosophic prioritized OWA operator on the basis of prioritized aggregated operator and prioritized ordered weighted average (POWA) operator and further studied its application to multiple attribute decision making. Ma et al. [13] proposed an interval neutrosophic linguistic multi-criteria group decision-making method and explored its application in selecting medical treatment options. Yang et al. [32] studied linear assignment method for INSs. Şahin [21] introduced cross-entropy measure on INSs and applied it to multicriteria decision making.

Rough set theory was established by Pawlak and it has been proved to be an efficient tool to handle imprecise information. In the development of rough set theory, there are two main methods—constructive approach and axiomatic approach. In the constructive approach, there are many primitive notions such as arbitrary binary relations on the universe, partitions or coverings of the universe, neighborhood systems and so on, then the lower and upper approximation operators can be constructed based on these existed structures [7, 8, 35, 37, 41]. On the other hand, in the axiomatic approach, one always can characterize rough approximation operators by a set of axioms [15, 26, 29, 36, 42, 43, 46].

In recent years, many scholars have focused on the research of combining neutrosophic sets with rough sets. Salama and Broumi [20] investigated the roughness of neutrosophic sets. Broumi and Smarandache [3] put forward rough neutrosophic sets as well as interval neutrosophic rough sets [4]. Yang et al. [34] proposed single valued neutrosophic rough sets which is a hybrid model of single valued neutrosophic sets and rough sets. The study of generalized interval neutrosophic rough sets based on interval neutrosophic relations is still a blank. In the present paper, we shall introduce generalized neutrosophic rough sets based on interval neutrosophic relations and explore the model from both constructive and axiomatic approaches. We also apply the new model to multi-attribute decision making problems.

The rest of the paper is organized as follows. In the next section, we briefly recall some basic notions and operations. In Section 3, we propose generalized interval neutrosophic rough sets based on interval neutrosophic relations through constructive method and some basic properties are explored. We investigate the connection between special interval neutrosophic relations and generalized interval neutrosophic lower (upper) approximation operators. Section 4 illustrates the axiomatic characterizations of generalized interval neutrosophic approximation operators. In Section 5, we introduce generalized interval neutrosophic rough sets on two universes and an algorithm of multi-attribute decision making based on the generalized model. Furthermore, we use an example to demonstrate the validity of the generalized interval neutrosophic rough set model. The last section summarizes the conclusion and gives an outlook for future research.
2. Preliminaries

In this section, we recall some basic notions and propositions which will be used in the paper.

2.1. Interval Numbers and their Operations

Definition 2.1. ([5, 23, 30, 31]). Let \(\bar{a} = [a^l, a^u] = \{x | a^l \leq x \leq a^u\} \), then \(\bar{a} \) is said to be an interval number. If \(0 \leq a^l \leq x \leq a^u \), then \(\bar{a} \) is called a positive interval number.

For any two interval numbers \(\bar{a} = [a^l, a^u] \) and \(\bar{b} = [b^l, b^u] \), the operations between them are given as follows:

1. \(\bar{a} = \bar{b} \iff a^l = b^l, a^u = b^u \);
2. \(\bar{a} + \bar{b} = [a^l + b^l, a^u + b^u] \);
3. \(\bar{a} - \bar{b} = [a^l - b^l, a^u - b^u] \).

Definition 2.2. ([6]). Let \(L^1 = \{[u, v] \in [0, 1] \times [0, 1] | u \leq v \} \) and \(\forall\ [u_1, v_1], [u_2, v_2] \in L^1, [u_1, v_1] \leq [u_2, v_2] \iff u_1 \leq u_2 \) and \(v_1 \leq v_2 \). The tuple \((L^1, \leq_U) \) is referred to as a complete bounded lattice.

It is obvious that the elements in \(L^1 \) are all interval numbers, so we can apply the operations of interval numbers to the elements of \(L^1 \). Thus, the smallest element of \(L^1 \) is \(0_U = [0, 0] \) and the greatest element of \(L^1 \) is \(1_U = [1, 1] \). Besides, the operators \(\wedge \) and \(\vee \) on \((L^1, \leq_U)\) are defined as follows:

\[
[u_1, v_1] \wedge [u_2, v_2] = [\min(u_1, u_2), \min(v_1, v_2)], \quad [u_1, v_1] \vee [u_2, v_2] = [\max(u_1, u_2), \max(v_1, v_2)],
\]

for any \([u_1, v_1], [u_2, v_2] \in L^1 \).

Definition 2.3. ([30]). Let \(\bar{a} = [a^l, a^u] \) and \(\bar{b} = [b^l, b^u] \) be two interval numbers, \(l_\bar{a} = a^u - a^l \) and \(l_\bar{b} = b^u - b^l \), then the degree of possibility of \(\bar{a} \geq_U \bar{b} \) is defined as follows:

\[
p(\bar{a} \geq_U \bar{b}) = \max(1 - \frac{l_\bar{b}}{l_\bar{a} + l_\bar{b}}, 0), 0).
\]

2.2. Neutrosophic Sets and Interval Neutrosophic Sets

Definition 2.4. ([24J]). Let \(U \) be a space of points (objects), with a generic element in \(U \) denoted by \(x \). A NS \(A \) in \(U \) is characterized by a truth-membership function \(T_A \), an indeterminacy-membership function \(I_A \) and a falsity-membership function \(F_A \), where \(\forall x \in U, T_A(x), I_A(x) \) and \(F_A(x) \) are real standard or non-standard subsets of \([0, 1]^*\).

Definition 2.5. ([24J]). Let \(A \) and \(B \) be two NSs in \(U \). If \(\forall x \in U, \inf T_A(x) \leq \inf T_B(x), \sup T_A(x) \leq \sup T_B(x), \inf I_A(x) \geq \inf I_B(x), \sup I_A(x) \geq \sup I_B(x), \inf F_A(x) \geq \inf F_B(x), \sup F_A(x) \geq \sup F_B(x) \), then we say that \(A \) is contained in \(B \), denoted by \(A \subseteq B \).

In order to apply NSs conveniently, Wang et al. proposed INSs as follows.

Definition 2.6. ([27J]). Let \(U \) be a space of points (objects), with a generic element in \(U \) denoted by \(x \), and \(Int[0, 1] \) be the set of all closed subintervals of \([0, 1]\). An INS \(A \) in \(U \) is characterized by a truth-membership function \(T_A \), an indeterminacy-membership function \(I_A \) and a falsity-membership function \(F_A \), where \(\forall x \in U, T_A(x), I_A(x) \) and \(F_A(x) \) are real standard or non-standard subsets of \([0, 1]^*\). The INS \(A \) can be denoted by \(A =\{ (x, T_A(x), I_A(x), F_A(x)) | x \in U \} \) or \(A = (T_A, I_A, F_A) \). \(\forall x \in U, A(x) = (T_A(x), I_A(x), F_A(x)) \), and \((T_A(x), I_A(x), F_A(x))\) is called an interval neutrosophic number.

In this paper, the family of all INSs in \(U \) will be denoted by INS(\(U \)). Let \(A \) be an INS in \(U \). If \(\forall x \in U, \inf T_A(x) = \sup T_A(x) = 0, \inf I_A(x) = \sup I_A(x) = 1 \) and \(\inf F_A(x) = \sup F_A(x) = 1 \), then we say \(A \) is an empty INS, denoted by \(\emptyset \). If \(\forall x \in U, \inf T_A(x) = \sup T_A(x) = 1, \inf I_A(x) = \sup I_A(x) = 0 \) and \(\inf F_A(x) = \sup F_A(x) = 0 \), then we say \(A \) is a full INS, denoted by \(U \). \(\forall \alpha, \beta, \gamma \in Int[0, 1], \alpha, \beta, \gamma \) represents a constant INS satisfying \(T_{\alpha \beta \gamma}(x) = \alpha, I_{\alpha \beta \gamma}(x) = \beta, F_{\alpha \beta \gamma}(x) = \gamma \) for all \(x \in U \).
Definition 2.7. ([27]). Let A and B be two INSs in U. If \(\forall x \in U, T_A(x) \leq_U T_B(x), I_A(x) \geq_U I_B(x), \) and \(F_A(x) \geq_U F_B(x), \) then we say that A is contained in B, denoted by \(A \subseteq B. \)

Definition 2.8. ([27]). Let A be an INS in U. The complement of A is denoted by \(A^c \), and is defined as \(T_{A^c}(x) = F_A(x), I_{A^c}(x) = [1, 1] - I_A(x), \) and \(F_{A^c}(x) = T_A(x). \)

For any \(y \in U, \) an INS \(1_y \) and its complement \(1_{U - \{y\}} \) are given as follows: \(\forall x \in U, \)
\[
T_{1_y}(x) = \begin{cases}
[1, 1], & x = y \\
[0, 0], & x \neq y
\end{cases},
I_{1_y}(x) = F_{1_y}(x) = \begin{cases}
[0, 0], & x = y \\
[1, 1], & x \neq y
\end{cases};
\]
\[
T_{1_{U - \{y\}}}(x) = \begin{cases}
[0, 0], & x = y \\
[1, 1], & x \neq y
\end{cases},
I_{1_{U - \{y\}}}(x) = F_{1_{U - \{y\}}}(x) = \begin{cases}
[1, 1], & x = y \\
[0, 0], & x \neq y
\end{cases}.
\]

Definition 2.9. ([27]). Let A and B be two INSs in U.

1. The union of A and B is an INS \(C \), denoted by \(C = A \cup B \), where
\[
\begin{align*}
T_C(x) &= T_A(x) \vee T_B(x), \\
I_C(x) &= I_A(x) \wedge I_B(x), \\
F_C(x) &= F_A(x) \wedge F_B(x),
\end{align*}
\]
for all \(x \in U. \)

2. The intersection of A and B is an INS \(D \), denoted by \(D = A \cap B \), where
\[
\begin{align*}
T_D(x) &= T_A(x) \wedge T_B(x), \\
I_D(x) &= I_A(x) \vee I_B(x), \\
F_D(x) &= F_A(x) \vee F_B(x),
\end{align*}
\]
for all \(x \in U. \)

It is obvious that \(A \cup B \) is the smallest INS which contains both A and B, and \(A \cap B \) is the largest INS which is contained in both A and B.

Proposition 2.10. Let A and B be two INSs in U, the following properties can be obtained:

1. \(A \cap (A \cup B) = A \);
2. \((A \cup B) \cap (A \cup B) = A \cup B; \)
3. \(A^c = A; \)
4. \((A \cup B)^c = A^c \cap B^c; \)
5. \((A \cap B)^c = A^c \cup B^c. \)

Proof. The results are straightforward by Definitions 2.7–2.9. ~

2.3. Operations for INNs

Definition 2.11. ([44]). Let A = \(\langle [\inf T_A, \sup T_A], [\inf I_A, \sup I_A], [\inf F_A, \sup F_A] \rangle \) and B = \(\langle [\inf T_B, \sup T_B], [\inf I_B, \sup I_B], [\inf F_B, \sup F_B] \rangle \) be two INNs. The operations for A and B are defined based on the Archimedean t-norm and t-conorm as follows:
\[
\begin{align*}
A \oplus B &= \langle [l^{-1}(l(\inf T_A) - l(\inf T_B))), l^{-1}(l(\sup T_A) - l(\sup T_B))], \\
&[k^{-1}(k(\inf I_A) - k(\inf I_B)), k^{-1}(k(\sup I_A) - k(\sup I_B))], \\
&[k^{-1}(k(\inf F_A) - k(\inf F_B)), k^{-1}(k(\sup F_A) - k(\sup F_B))].
\end{align*}
\]

Definition 2.12. ([44]). Let A = \(\langle [\inf T_A, \sup T_A], [\inf I_A, \sup I_A], [\inf F_A, \sup F_A] \rangle \) be an INN. The score function \(s(A) \), accuracy function \(a(A) \), and certainty function \(c(A) \) of the INN A are defined as follows, respectively:

1. \(s(A) = \inf T_A - 1 - \sup I_A - 1 - \sup F_A, \)
2. \(a(A) = \sup (\inf T_A - \inf F_A, \sup T_A - \sup F_A), \)
3. \(c(A) = \inf T_A \)
Definition 2.13. ([44]). Let A and B be two INNs. The order between them is defined as follows:

(1) If $p(s(A)) \geq_{U} s(B)$ > 0.5, then A is greater than B which means A is superior to B, denoted by A > B.

(2) If $p(s(A)) \geq_{U} s(B)$ = 0.5 and $p(a(A)) \geq_{U} a(B)$ > 0.5, then A is greater than B which means A is superior to B, denoted by A > B.

(3) If $p(s(A)) \geq_{U} s(B)$ = 0.5, $p(a(A)) \geq_{U} a(B)$ = 0.5 and $p(c(A)) \geq_{U} c(B)$ > 0.5, then A is greater than B which means A is superior to B, denoted by A > B.

(4) If $p(s(A)) \geq_{U} s(B)$ = 0.5, $p(a(A)) \geq_{U} a(B)$ = 0.5 and $p(c(A)) \geq_{U} c(B)$ = 0.5, then A is equal to B which means A and B are indiscernible, denoted by A ~ B.

2.4. Pawlak rough sets and single valued neutrosophic rough sets

Definition 2.14. ([16, 17]). Let R be an equivalence relation on a non-empty finite universe U. Then the pair (U, R) is referred to as a Pawlak approximation space. ∀X ⊆ U, the lower and upper approximations of X w.r.t. (U, R) are defined as follows:

$\overline{R}(X) = \{ x \in U | [x]_R \subseteq X \}$

$\overline{R}(X) = \{ x \in U | [x]_R \cap X \neq \emptyset \}$

where $[x]_R = \{ y \in U | (x, y) \in R \}$. The pair ($\overline{R}(X), \overline{R}(X)$) is called a Pawlak rough set. \overline{R} and \overline{R} are called lower and upper approximation operators, respectively.

Definition 2.15. ([28]). Let U be a space of points (objects), with a generic element in U denoted by x. A SVNS A in U is described by three membership functions—a truth-membership function T_A, an indeterminacy membership function I_A, and a falsity-membership function F_A, where $\forall x \in U, T_A(x), I_A(x), F_A(x) \in [0, 1]$. The SVNS A can be expressed as $A = \{ (x, T_A(x), I_A(x), F_A(x)) \mid x \in U \}$ or $A = (T_A, I_A, F_A)$. $\forall x \in U, A(x) = (T_A(x), I_A(x), F_A(x))$, and $(T_A(x), I_A(x), F_A(x))$ is referred to as a single valued neutrosophic number.

A SVNS R in $U \times U$ is referred to as a single valued neutrosophic relation (SVNR) in U, denoted by $R = \{(x, y), T_R(x, y), I_R(x, y), F_R(x, y) \mid (x, y) \in U \times U \}$, where $T_R : U \times U \rightarrow [0, 1], I_R : U \times U \rightarrow [0, 1], F_R : U \times U \rightarrow [0, 1]$ represent the truth-membership function, indeterminacy membership function, and falsity-membership function of R, respectively.

Definition 2.16. ([34]). Let R be a SVNR in U, the tuple (U, R) is called a single valued neutrosophic approximation space. $\forall A \in SVNS(U)$, the lower and upper approximations of A w.r.t. (U, R), denoted by $\overline{R}(A)$ and $\overline{R}(A)$, are two SVNS whose membership functions are defined as: $\forall x \in U$,

$T_{\overline{R}(A)}(x) = \bigwedge_{y \in U} (T_R(x, y) \lor T_A(y))$

$I_{\overline{R}(A)}(x) = \bigvee_{y \in U} (1 - I_R(x, y)) \land I_A(y))$

$F_{\overline{R}(A)}(x) = \bigwedge_{y \in U} T_R(x, y) \land F_A(y))$

$T_{\overline{R}(A)}(x) = \bigvee_{y \in U} (I_R(x, y) \lor T_A(y))$

$I_{\overline{R}(A)}(x) = \bigwedge_{y \in U} I_R(x, y) \lor I_A(y))$

$F_{\overline{R}(A)}(x) = \bigvee_{y \in U} (F_R(x, y) \lor F_A(y))$

The pair ($\overline{R}(A), \overline{R}(A)$) is called a single valued neutrosophic rough set of A w.r.t. (U, R). \overline{R} and \overline{R} are referred to as the single valued neutrosophic lower and upper approximation operators, respectively.

3. The Constructive Approach of Generalized Interval Neutrosophic Rough Sets Based on Interval Neutrosophic Relations

3.1. The notion of generalized interval neutrosophic rough sets based on interval neutrosophic relations

Broumi and Smarandache [4] put forward interval neutrosophic rough sets in which the based-relations are equivalence relations. Yang et al. [34] proposed single valued neutrosophic rough set model which is a hybrid model of single valued neutrosophic sets and rough sets. In this subsection, we will present interval neutrosophic relations and generalized interval neutrosophic rough sets based on interval neutrosophic relations.
Definition 3.1. (27). An INS in \(U \times U \) is referred to as an interval neutrosophic relation (INR) in \(U \), denoted by \(R = \{(x, y), T_R(x, y), I_R(x, y), F_R(x, y)\} \) \((x, y) \in U \times U \), where \(T_R : U \times U \rightarrow \text{Int}[0,1], I_R : U \times U \rightarrow \text{Int}[0,1], \) and \(F_R : U \times U \rightarrow \text{Int}[0,1] \) represent the truth-membership function, indeterminacy-membership function, and falsity-membership function of \(R \), respectively.

Let \(R \) be an INR in \(U \). If \(T_R(x, x) = [1, 1] \) and \(I_R(x, x) = F_R(x, x) = [0, 0] \) for all \(x \in U \), then we say \(R \) is reflexive. If \(T_R(x, y) = T_R(y, x), I_R(x, y) = I_R(y, x) \) and \(F_R(x, y) = F_R(y, x) \) for all \(x, y \in U \), then we say \(R \) is symmetric. If \(\bigvee_{y \in U} T_R(x, y) = [1, 1] \) and \(\bigwedge_{y \in U} F_R(x, y) = [0, 0] \) for all \(x \in U \), then we say \(R \) is serial. If \(\bigvee_{y \in U} (T_R(x, y) \ Recommendation

\(A \) \(\in \text{INS}(U) \), the generalized lower and upper approximations of \(A \) w.r.t. \((U, R) \) are two INSs, denoted by \(R(A) \) and \(\overline{R}(A) \), whose membership functions are defined as follows: \(\forall x \in U, \)

\[
T_{R(A)}(x) = \bigwedge_{y \in U} (F_R(x, y) \not\subseteq T_A(y)),
\]

\[
I_{R(A)}(x) = \bigvee_{y \in U} (I_R(x, y) \subseteq I_A(y)),
\]

\[
F_{R(A)}(x) = \bigvee_{y \in U} (T_R(x, y) \not\subseteq F_A(y)),
\]

\[
T_{\overline{R}(A)}(x) = \bigvee_{y \in U} (F_R(x, y) \not\subseteq T_A(y)),
\]

\[
I_{\overline{R}(A)}(x) = \bigwedge_{y \in U} (I_R(x, y) \subseteq I_A(y)),
\]

\[
F_{\overline{R}(A)}(x) = \bigwedge_{y \in U} (T_R(x, y) \not\subseteq F_A(y)).
\]

The pair \((R(A), \overline{R}(A)) \) is called a generalized interval neutrosophic rough set of \(A \) w.r.t. \((U, R) \). \(R \) and \(\overline{R} \) are called the generalized interval neutrosophic lower and upper approximation operators, respectively.

Table 1: The interval neutrosophic relation \(R \).

<table>
<thead>
<tr>
<th>(R)</th>
<th>(x_1)</th>
<th>(x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>([0.1,0.4],[0.2,0.3],[0.7,0.9])</td>
<td>([0.2,0.4],[0.1,0.2],[0.9,1])</td>
</tr>
<tr>
<td>(x_2)</td>
<td>([0.4,0.6],[0.3,0.4],[0.2,0.4])</td>
<td>([0.8,0.9],[0.2,0.3],[0.1])</td>
</tr>
<tr>
<td>(x_3)</td>
<td>([0.8,0.9],[0.1,0.2],[0.1,0.3])</td>
<td>([0.7,0.9],[0.1,0.3],[0.1,0.2])</td>
</tr>
<tr>
<td>(x_4)</td>
<td>([0.5,0.8],[0.3,0.4],[0.2,0.3])</td>
<td>([0,0.1],[0.2,0.4],[0.8,1])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(R)</th>
<th>(x_3)</th>
<th>(x_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>([0.8,1],[0.2,0.4],[0.0,1])</td>
<td>([0,1,0.3],[0.3,0.4],[0.8,1])</td>
</tr>
<tr>
<td>(x_2)</td>
<td>([0.9,1],[0.1,0.3],[0.0,1])</td>
<td>([0.0,1],[0.2,0.3],[0.9,1])</td>
</tr>
<tr>
<td>(x_3)</td>
<td>([0.7,0.8],[0.4,0.6],[0.2,0.3])</td>
<td>([0.9,1],[0.4,0.6],[0.1,0.3])</td>
</tr>
<tr>
<td>(x_4)</td>
<td>([0,0.1],[0.3,0.4],[0.8,0.9])</td>
<td>([0,0.2],[0.1,0.2],[0.8,0.9])</td>
</tr>
</tbody>
</table>

Example 3.3. Let \(U = \{x_1, x_2, x_3, x_4\} \). \(R \in \text{INS}(U \times U) \) is an INR given in Table 1. Assume an INS \(A = \{(x_1, [0.5,0.8],[0.2,0.4],[0.1,0.3]), (x_2, [0.7,0.9],[0.2,0.4],[0.5,0.6]), (x_3, [0.1,0.2],[0.4,0.6],[0.3,0.7]), (x_4, [0.2,0.6],[0.3,0.5],[0.1,0.4])\}. \)

By Definition 3.2, we can obtain the lower and upper approximations of \(A \) w.r.t. \((U, R) \) as follows:

\[
R(A)(x_1) = \{[0.1,0.2],[0.4,0.6],[0.3,0.7]\}, \overline{R}(A)(x_1) = \{[0.2,0.4],[0.2,0.4],[0.3,0.7]\},
\]

\[
R(A)(x_2) = \{[0.1,0.2],[0.4,0.6],[0.5,0.7]\}, \overline{R}(A)(x_2) = \{[0.7,0.9],[0.2,0.4],[0.2,0.4]\},
\]

\[
R(A)(x_3) = \{[0.2,0.3],[0.4,0.6],[0.5,0.7]\}, \overline{R}(A)(x_3) = \{[0.7,0.9],[0.2,0.4],[0.1,0.3]\},
\]

\[
R(A)(x_4) = \{[0.5,0.8],[0.4,0.6],[0.1,0.3]\}, \overline{R}(A)(x_4) = \{[0.5,0.8],[0.2,0.4],[0.2,0.3]\}.
\]
Remark 3.4. (1) If R in Definition 3.2 is an equivalence relation, then

$$T_R(x, y) = \begin{cases} [1, 1], & y \in [x]_R \\ [0, 0], & y \notin [x]_R \end{cases}, \quad I_R(x, y) = F_R(x, y) = \begin{cases} [0, 0], & y \in [x]_R \\ [1, 1], & y \notin [x]_R \end{cases}. $$

By Definition 3.2, we have

$$T_{R(A)}(x) = \bigwedge_{y \in U} (F_R(x, y) \vee T_A(y)) = \bigwedge_{y \in [x]_R} T_A(y),$$

$$I_{R(A)}(x) = \bigvee_{y \in U} (\{[1, 1] - I_R(x, y)\} \bar{\cap} I_A(y)) = \bigvee_{y \in [x]_R} I_A(y),$$

$$F_{R(A)}(x) = \bigvee_{y \in U} (T_R(x, y) \bar{\cap} F_A(y)) = \bigvee_{y \in [x]_R} F_A(y),$$

$$T_{\bar{R}(A)}(x) = \bigwedge_{y \in U} (T_R(x, y) \bar{\cap} T_A(y)) = \bigwedge_{y \in [x]_R} T_A(y),$$

$$I_{\bar{R}(A)}(x) = \bigwedge_{y \in U} (I_R(x, y) \bar{\cap} I_A(y)) = \bigwedge_{y \in [x]_R} I_A(y),$$

$$F_{\bar{R}(A)}(x) = \bigwedge_{y \in U} (F_R(x, y) \bar{\cap} F_A(y)) = \bigwedge_{y \in [x]_R} F_A(y),$$

which means that the interval neutrosophic rough sets proposed in [4] is a special case of the generalized interval neutrosophic rough sets.

(2) If R in Definition 3.2 is degenerated to a single interval neutrosophic relation and A is degenerated to a single valued neutrosophic set, then Definition 3.2 is consistent to the notion of single valued neutrosophic rough sets proposed in [34], which means that the single valued neutrosophic rough sets proposed in [34] is a special case of the generalized interval neutrosophic rough sets.

3.2. The properties of generalized interval neutrosophic approximation operators

Next, we explore the properties of generalized interval neutrosophic lower and upper approximation operators.

Theorem 3.5. Let (U, R) be an interval neutrosophic approximation space. The interval neutrosophic lower and upper approximation operators defined in Definition 3.2 have the following properties: $\forall A, B \in \text{INS}(U), \forall \alpha, \beta, \gamma \in \text{Int}[0, 1]$.

(1) $R(U) = U, R(\emptyset) = \emptyset$;

(2) If $A \subseteq B$, then $R(A) \subseteq R(B)$ and $\overline{R}(A) \subseteq \overline{R}(B)$;

(3) $R(A \cap B) = R(A) \cap R(B), \overline{R}(A \cap B) = \overline{R}(A) \cap \overline{R}(B)$;

(4) $R(A) \cup R(B) = R(A \cup B), \overline{R}(A) \cup \overline{R}(B) = \overline{R}(A \cup B)$;

(5) $R(A') = (R(A))^c, \overline{R}(A') = (\overline{R}(A))^c$;

(6) $R(A \cup \alpha, \beta, \gamma) = R(A) \cup \alpha, \beta, \gamma, \overline{R}(A \cup \alpha, \beta, \gamma) = \overline{R}(A) \cup \alpha, \beta, \gamma$;

(7) $R(\emptyset) = \emptyset \iff R(\alpha, \beta, \gamma) = \emptyset, \overline{R}(\alpha, \beta, \gamma) = \emptyset$.

Proof. (2) and (4) can be obtained straightforwardly from Definition 3.2. We just need to verify (1), (3) and (5)-(7).

(1) By Definition 3.2, we have $\forall x \in U$,

$$T_{R(U)}(x) = \bigwedge_{y \in U} (F_R(x, y) \vee T_U(y)) = \bigwedge_{y \in [1, 1]} [1, 1],$$

$$I_{R(U)}(x) = \bigvee_{y \in U} (\{[1, 1] - I_R(x, y)\} \bar{\cap} I_U(y)) = \bigvee_{y \in [0, 0]} [0, 0],$$

$$F_{R(U)}(x) = \bigvee_{y \in U} (T_R(x, y) \bar{\cap} F_U(y)) = \bigvee_{y \in [0, 0]} [0, 0].$$

Thus, $R(U) = U$.

$$T_{R(\emptyset)}(x) = \bigwedge_{y \in U} (T_R(x, y) \bar{\cap} T_U(y)) = \bigwedge_{y \in [0, 0]} [0, 0],$$

$$I_{R(\emptyset)}(x) = \bigvee_{y \in U} (I_R(x, y) \bar{\cap} I_U(y)) = \bigvee_{y \in [0, 0]} [0, 0].$$
Therefore, \(R(\emptyset) = 0 \).

By Definitions 2.9 and 3.2, we have \(\forall x \in U, \)

\[
T_{R\cap AB}(x) = \bigwedge_{y \in U} (F_R(x, y) \lor T_{AB}(y))
= \bigwedge_{y \in U} (F_R(x, y) \lor (T_A(y) \land T_B(y)))
= (\bigwedge_{y \in U} F_R(x, y) \lor (T_A(y) \land T_B(y))) \land (\bigwedge_{y \in U} F_R(x, y) \lor (T_A(y) \land T_B(y)))
= T_{R/\cap AB}(x) \land T_{R\cap AB}(x)
= T_{R/\cap AB}(x) \land T_{R\cap AB}(x),
\]

\[
I_{R\cap AB}(x) = \bigvee_{y \in U} \left((\lfloor 1, 1 \rfloor - I_R(x, y)) \land \neg I_{AB}(y)\right)
= \bigvee_{y \in U} \left((\lfloor 1, 1 \rfloor - I_R(x, y)) \land \neg I_{AB}(y)\right)
= (\bigvee_{y \in U} \left((\lfloor 1, 1 \rfloor - I_R(x, y)) \land \neg I_{AB}(y)\right)) \lor (\bigvee_{y \in U} \left((\lfloor 1, 1 \rfloor - I_R(x, y)) \land \neg I_{AB}(y)\right))
= I_{R/\cap AB}(x) \lor I_{R\cap AB}(x)
= I_{R/\cap AB}(x) \lor I_{R\cap AB}(x),
\]

\[
F_{R\cap AB}(x) = \bigvee_{y \in U} \left(T_R(x, y) \land \neg F_{AB}(y)\right)
= \bigvee_{y \in U} \left(T_R(x, y) \land \neg F_{AB}(y)\right)
= (\bigvee_{y \in U} \left(T_R(x, y) \land \neg F_{AB}(y)\right)) \lor (\bigvee_{y \in U} \left(T_R(x, y) \land \neg F_{AB}(y)\right))
= F_{R/\cap AB}(x) \lor F_{R\cap AB}(x)
= F_{R/\cap AB}(x) \lor F_{R\cap AB}(x).
\]

Therefore, \(R(A \cap B) = R(A) \cap R(B) \).

Similarly, we can prove that \(R(A \cup B) = R(A) \cup R(B) \).

By Definitions 2.8 and 3.2, we have \(\forall x \in U, \)

\[
T_{R\cap A}(x) = \bigwedge_{y \in U} \left(F_R(x, y) \lor T_A(y)\right)
= \bigwedge_{y \in U} \left(F_R(x, y) \lor T_A(y)\right)
= F_{R/\cap A}(x)
= T_{R/\cap A}(x),
\]

\[
I_{R\cap A}(x) = \bigvee_{y \in U} \left((\lfloor 1, 1 \rfloor - I_R(x, y)) \land \neg I_A(y)\right)
= \bigvee_{y \in U} \left((\lfloor 1, 1 \rfloor - I_R(x, y)) \land \neg I_A(y)\right)
= [1, 1] - \bigwedge_{y \in U} \left(I_R(x, y) \lor I_A(y)\right)
= [1, 1] - \bigwedge_{y \in U} \left(I_R(x, y) \lor I_A(y)\right)
= [1, 1] - I_{R/\cap A}(x)
= I_{R\cap A}(x),
\]

\[
F_{R\cap A}(x) = \bigvee_{y \in U} \left(T_R(x, y) \land \neg F_A(y)\right)
= \bigvee_{y \in U} \left(T_R(x, y) \land \neg F_A(y)\right)
= (\bigvee_{y \in U} \left(T_R(x, y) \land \neg F_A(y)\right)) \lor (\bigvee_{y \in U} \left(T_R(x, y) \land \neg F_A(y)\right))
= T_{R/\cap A}(x)
= F_{R/\cap A}(x).
\]
Theorem 3.6. Let \(R_1 \) and \(R_2 \) be two INRs in \(U \). \(\forall A \in \text{INS}(U) \), we have

(1) \(R_1 \cup R_2(A) = R_1(A) \cap R_2(A) \);

(2) \(R_1 \cap R_2(A) = \overline{R_1(A) \cup R_2(A)} \).

Proof. (1) According to Definitions 2.9 and 3.2, \(\forall x \in U \),

\[
T_{R_1 \cup R_2(A)}(x) = \bigcap_{y \in U} (F_{R_1 \cup R_2}(x, y) \not\supseteq T_A(y)) \\
= \bigcap_{y \in U} ((F_{R_1}(x, y) \not\supseteq F_{R_2}(x, y)) \not\supseteq T_A(y)) \\
= \bigcap_{y \in U} ((F_{R_1}(x, y) \not\supseteq T_A(y)) \cap (F_{R_2}(x, y) \not\supseteq T_A(y))) \\
= \bigcap_{y \in U} (F_{R_1}(x, y) \not\supseteq T_A(y)) \cap (\bigcup_{y \in U} (F_{R_2}(x, y) \not\supseteq T_A(y))) \\
= T_{R_1(A)}(x) \cap T_{R_2(A)}(x) \\
= T_{R_1 \cap R_2(A)}(x).
\]

(6) \(T_{R(A \cup \overline{A})}(x) = \bigcap_{y \in U} (F_R(x, y) \not\supseteq T_{A}(y)) \\
= \bigcap_{y \in U} (F_R(x, y) \not\supseteq T_A(y)) \\
= \bigcap_{y \in U} (F_R(x, y) \not\supseteq T_A(y)) \\
= \bigcap_{y \in U} (F_R(x, y) \not\supseteq T_A(y)) \\
= T_{R(A \cup \overline{A})}(x) = T_{R(A \cup \overline{A})}(x),
\]

Similarly, we can prove that \(\overline{R(A \cap \overline{A})} = \overline{R(A \cap \overline{A})} \).

(7) On one hand, if \(R(\emptyset) = \emptyset \), then by (6), we have \(R(\alpha, \overline{\beta}, \gamma) = R(\emptyset \cup \alpha, \overline{\beta}, \gamma) = R(\emptyset) \cup \alpha, \overline{\beta}, \gamma = \alpha, \overline{\beta}, \gamma \). On the other hand, assume \(R(\alpha, \overline{\beta}, \gamma) = \alpha, \overline{\beta}, \gamma \), take \(\alpha = [0, 1] \) and \(\beta = \gamma = [1, 1] \), i.e. \(\alpha, \beta, \gamma = \emptyset \), then we get \(R(\emptyset) = \emptyset \). So \(R(\emptyset) = \emptyset \iff R(\alpha, \overline{\beta}, \gamma) = \alpha, \overline{\beta}, \gamma \). Similarly, we can prove that \(R(U) = U \iff R(\alpha, \overline{\beta}, \gamma) = \alpha, \overline{\beta}, \gamma \). \(\square \)
Proof. Let R_1.

According to Proposition 2.10 (5) and Theorem 3.5 (5), we have

$\forall x \in U, \quad T_{R_1 \cap R_2}(A)(x) = \bigwedge_{y \in U} (F_{R_1} \cap F_{R_2}(A))(x) \cap T_A(x)$

$\forall x \in U, \quad I_{R_1 \cap R_2}(A)(x) = \bigvee_{y \in U} ([1, 1] - (I_{R_1}(x, y) \cap I_{R_2}(x, y))) \cap I_A(y)$

Consequently, $R_1 \sqcup R_2 = R_3 \cap R_2(A)$.

(2) According to Proposition 2.10 (5) and Theorem 3.5 (5), we have

$R_1 \sqcup R_2(A) = \left(R_1 \sqcup (R_2(A))^c\right)^c$

$= \left(R_1(A)^c \cap R_2(A)^c\right)^c$

$= \left(R_1(A)^c\right)^c \sqcup \left(R_2(A)^c\right)^c$

$= R_1(A) \sqcup R_2(A). \quad \Box$

Theorem 3.7. Let R_1 and R_2 be two INRs in U. $\forall A \in INS(U)$, we have

(1) $R_1(A) \sqcap R_2(A) \subseteq R_1(A) \sqcup R_2(A) \sqsubseteq R_1 \cap R_2(A)$;

(2) $R_1 \sqcap R_2(A) \subseteq R_1(A) \sqcup R_2(A) \sqsubseteq R_1(A) \sqcup R_2(A)$.

Proof. (1) According to Definition 3.2, $\forall x \in U, \quad T_{R_1 \cap R_2}(A)(x) = \bigwedge_{y \in U} (F_{R_1} \cap F_{R_2}(A))(x) \cap T_A(x)$

$\forall x \in U, \quad I_{R_1 \cap R_2}(A)(x) = \bigvee_{y \in U} ([1, 1] - (I_{R_1}(x, y) \cap I_{R_2}(x, y))) \cap I_A(y)$

$\forall x \in U, \quad F_{R_1 \cap R_2}(A)(x) = \bigvee_{y \in U} (T_{R_1} \cap T_{R_2}(A))(x) \cap F_A(x)$
\[F_{R_1 \cap R_2(A)}(x) = \bigvee_{y \in U} (T_{R_1 \cap R_2}((x, y) \alpha) F_A(y)) \]
\[= \bigvee_{y \in U} ((T_{R_1}(x, y) \alpha) \bigwedge T_{R_2}(x, y)) F_A(y)) \]
\[= \bigvee_{y \in U} ((T_{R_1}(x, y) \alpha) \bigwedge (T_{R_2}(x, y) \alpha) F_A(y))) \]
\[\leq_{L_1} (\bigvee_{y \in U} (T_{R_1}(x, y) \alpha) F_A(y))) \bigwedge (\bigvee_{y \in U} (T_{R_2}(x, y) \alpha) F_A(y))) \]
\[= F_{R_1(A)}(x) \bigwedge F_{R_2(A)}(x) \]
\[= F_{R_1(A) \cap R_2(A)}(x) \]

It is obvious that \(R_1(A) \cap R_2(A) \subseteq R_1(A) \cup R_2(A) \). Hence, we get that \(R_1(A) \cap R_2(A) \subseteq R_1(A) \cup R_2(A) \in R_1 \cap R_2(A) \).

(2) According to (1) and Theorem 3.5 (5), we have
\[R_1 \cap R_2(A) = (R_1 \cap R_2(A'))^c \]
\[= (R_1(A')^c \cup R_2(A')^c) \]
\[= (R_1(A')^c \cap (R_2(A')^c) \]
\[= R_1(A) \cap R_2(A). \]
Consequently, \(R_1 \cap R_2(A) \subseteq R_1(A) \cap R_2(A) \subseteq R_1(A) \cup R_2(A) \).

Remark 3.8. Let \(R_1 \) and \(R_2 \) be two INRs in \(U \). \(\forall A \in INS(U) \). If \(R_1 \subseteq R_2 \), then \(R_2(A) \subseteq R_1(A) \) and \(R_2(A) \subseteq R_1(A) \).

Next, we study the relationships between special INRs and generalized interval neutrosophic approximation operators.

Theorem 3.9. Let \((U, R)\) be an interval neutrosophic approximation space. \(R \) and \(\bar{R} \) are the lower and upper approximation operators defined in Definition 3.2, then we have the following results:

1. \(R \) is serial \(\iff \bar{R}(\alpha, \beta, \gamma) = \alpha, \beta, \gamma, \forall \alpha, \beta, \gamma \in \text{Int}[0, 1], \)
\[\iff \bar{R}(\emptyset) = \emptyset, \]
\[\iff \bar{R}(\alpha, \beta, \gamma) = \alpha, \beta, \gamma, \forall \alpha, \beta, \gamma \in \text{Int}[0, 1], \]
\[\iff \bar{R}(U) = U; \]

2. \(R \) is reflexive \(\iff R(A) \subseteq A, \forall A \in INS(U), \)
\[\iff A \subseteq \bar{R}(A), \forall A \in INS(U); \]

3. \(R \) is symmetric \(\iff R(1_{U-\alpha}) = \bar{R}(1_{U-\beta})(x), \forall x, y \in U, \)
\[\iff \bar{R}(1_{U-\alpha}) = \bar{R}(1_{U-\beta})(x), \forall x, y \in U; \]

4. \(R \) is transitive \(\iff R(A) \subseteq R(R(A)), \forall A \in INS(U), \)
\[\iff \bar{R}(\bar{R}(A)) \subseteq \bar{R}(A), \forall A \in INS(U). \]

Proof. According to Theorem 3.5 (5), we can see that \(R \) and \(\bar{R} \) are a pair of dual operators. Thus, we need only to consider the properties of the lower approximation operator.

(1) By Theorem 3.5 (7), it suffices to verify that \(R \) is serial.
\[\iff \bar{R}(\alpha, \beta, \gamma) = \alpha, \beta, \gamma, \forall \alpha, \beta, \gamma \in \text{Int}[0, 1]. \]
\[\iff \text{If } R \text{ is serial, then for any } x \in U, \bigwedge_{y \in U} T_{R}(x, y) = [1, 1] \text{ and } \bigwedge_{y \in U} T_{\bar{R}}(x, y) = [0, 0]. \]
\[\iff x \in U, \bigwedge_{y \in U} T_{R}(x, y) = [1, 1] \text{ and } \bigwedge_{y \in U} T_{\bar{R}}(x, y) = [0, 0]. \]
\[\forall \alpha, \beta, \gamma \in \text{Int}[0, 1], \forall x \in U, \text{ by Definition 3.2, } \]
\[T_{R_{\bar{R}}(\alpha, \beta, \gamma)}(x) = \bigwedge_{y \in U} (T_{R}(x, y) \lor T_{\bar{R}}(y)) \]
\[= \bigwedge_{y \in U} (T_{R}(x, y) \lor \alpha) \]
\[= \bigwedge_{y \in U} T_{R}(x, y) \lor \alpha \]
\[= [0, \alpha]. \]
\[I_{R(\alpha,\beta,\gamma)}(x) = \bigvee_{y \in U} (\{1, 1\} - I_R(x, y)) \bigwedge I_{\alpha,\beta,\gamma}(y) \]
\[= \bigvee_{y \in U} ((\{1, 1\} - I_R(x, y)) \bigwedge \beta) \]
\[= \bigvee_{y \in U} ((\{1, 1\} - I_R(x, y))) \bigwedge \beta \]
\[= (\{1, 1\} - \bigwedge I_R(x, y)) \bigwedge \beta \]
\[= [1, 1] \bigwedge \beta \]
\[= \beta, \]
\[F_{R(\alpha,\beta,\gamma)}(x) = \bigvee_{y \in U} (T_R(x, y) \bigwedge F_{\alpha,\beta,\gamma}(y)) \]
\[= \bigvee_{y \in U} (T_R(x, y) \bigwedge \gamma) \]
\[= \bigvee_{y \in U} T_R(x, y) \bigwedge \gamma \]
\[= [1, 1] \bigwedge \gamma \]
\[= \gamma. \]

Therefore, \(R(\alpha,\beta,\gamma) = \alpha,\beta,\gamma \) for any \(\alpha,\beta,\gamma \in \text{Int}[0, 1] \).

“\(\iff \)” If \(R(\alpha,\beta,\gamma) = \alpha,\beta,\gamma \) for any \(\alpha,\beta,\gamma \in \text{Int}[0, 1] \). Take \(\alpha = [0, 0], \beta = \gamma = [1, 1] \), then we have

\[\bigvee_{y \in U} T_R(x, y) = \bigvee_{y \in U} (T_R(x, y) \bigwedge [1, 1]) \]
\[= \bigvee_{y \in U} (T_R(x, y) \bigwedge F_0(y)) \]
\[= F_{R(0)}(x) \]
\[= [1, 1], \]
\[\bigwedge_{y \in U} I_R(x, y) = \bigwedge_{y \in U} ((\{1, 1\} - I_R(x, y)) \bigwedge [1, 1]) \]
\[= \bigwedge_{y \in U} ((\{1, 1\} - I_R(x, y))) \bigwedge I_0(y) \]
\[= I_{R(0)}(x) \]
\[= [1, 1], \]

which implies that \(\bigwedge_{y \in U} I_R(x, y) = [0, 0] \).

Thus, \(R \) is serial.

(2) “\(\implies \)” If \(R \) is reflexive, then \(T_R(x, x) = [1, 1] \) and \(I_R(x, x) = F_R(x, x) = [0, 0] \) hold for any \(x \in U \). By Definition 3.2, \(\forall A \in \text{INS}(U), \forall x \in U, \)

\[T_{R(A)}(x) = \bigwedge_{y \in U} (F_R(x, y) \bigvee T_A(y)) \]
\[\leq_U; F_R(x, x) \bigvee T_A(x) \]
\[= [0, 0] \bigvee T_A(x) \]
\[= T_A(x), \]
\[I_{R(A)}(x) = \bigvee_{y \in U} ((\{1, 1\} - I_R(x, y)) \bigwedge I_A(y)) \]
\[\geq_U; (\{1, 1\} - I_R(x, x)) \bigwedge I_A(x) \]
\[= ((\{1, 1\} - [0, 0]) \bigwedge I_A(x) \]
\[= I_A(x), \]
\[F_{R(A)}(x) = \bigvee_{y \in U} (T_R(x, y) \neg R(y)) \]
\[\geq_{L} T_R(x, x) \neg R(x) \]
\[= [1, 1] \neg R(x) \]
\[= R(x). \]

Therefore, \(R(A) \in A \).

\[\Longleftrightarrow \text{ If } R(A) \in A \text{ for any } A \in \text{INS}(U), \text{ then } \forall x \in U, \text{ by taking } A = 1_{U-\{x\}}, \text{ we have} \]
\[T_R(x, x) = (T_R(x, x) \neg R(x)) \vee (\bigvee_{y \in U-\{x\}} (T_R(x, y) \neg R(y))) \]
\[= \bigvee_{y \in U} (T_R(x, y) \neg R(y)) \]
\[= F_{R(1_{U-\{x\})}}(x) \]
\[\geq_{L} T_{1_{U-\{x\})}(x) \]
\[= [1, 1]. \]

which implies that \(I_{R(x, x)} = \{0, 0\}, \)
\[F_R(x, x) = (F_R(x, x) \vee \{0, 0\}) \neg \{1, 1\} \]
\[= (F_R(x, x) \vee T_{1_{U-\{x\}}}(x)) \neg (\bigvee_{y \in U-\{x\}} (F_R(x, y) \vee T_{1_{U-\{y\}}}(y))) \]
\[= \bigvee_{y \in U} (F_R(x, y) \vee T_{1_{U-\{y\}}}(y)) \]
\[= T_{R(1_{U-\{x\})}}(x) \]
\[\leq_{L} T_{1_{U-\{x\})}(x) \]
\[= [0, 0]. \]

Thus, \(R \) is reflexive.

Consequently, \(R \) is reflexive \(\iff \) \(R(A) \in A \), \(\forall A \in \text{INS}(U) \).

(3) According to Definition 3.2, \(\forall x, y \in U, \)
\[T_{R(1_{U-\{x\})}}(y) = \bigwedge_{z \in U} (F_R(y, z) \vee T_{1_{U-\{z\}}}(z)) \]
\[= (F_R(x, x) \vee T_{1_{U-\{x\}}}(x)) \neg (\bigwedge_{z \in U-\{x\}} (F_R(y, z) \vee T_{1_{U-\{z\}}}(z))) \]
\[= (F_R(x, x) \vee [0, 0]) \neg [1, 1] \]
\[= F_R(x, x), \]
\[T_{R(1_{U-\{y\})}}(x) = \bigwedge_{z \in U} (F_R(x, z) \vee T_{1_{U-\{z\}}}(z)) \]
\[= (F_R(x, y) \vee T_{1_{U-\{y\}}}(y)) \neg (\bigwedge_{z \in U-\{y\}} (F_R(z, z) \vee T_{1_{U-\{z\}}}(z))) \]
\[= (F_R(x, y) \vee [0, 0]) \neg [1, 1] \]
\[= F_R(x, y), \]
\[I_{R(1_{U-\{y\})}}(x) = \bigwedge_{z \in U} (T_R(x, z) \vee T_{1_{U-\{z\}}}(z)) \]
\[= (([1, 1] - I_R(y, z)) \neg I_{1_{U-\{z\}}}(x)) \vee (\bigvee_{z \in U-\{x\}} (([1, 1] - I_R(y, z)) \neg I_{1_{U-\{z\}}}(z))) \]
\[= (([1, 1] - I_R(y, z)) \neg I_{1_{U-\{x\}}}) \vee [0, 0] \]
\[= [1, 1] - I_R(y, x), \]
\[I_{[U,\cap]}(x) = \bigvee_{z \in U} \left(\left([1, 1] - I_R(x, y) \right) \bar{\bigwedge}_{z \in U} I_{[U,\cap]}(z) \right) \]
\[= \left([1, 1] - I_R(x, y) \right) \bar{\bigwedge}_{z \in U} I_{[U,\cap]}(z) \]
\[= \left([1, 1] - I_R(x, y) \right) \bar{\bigwedge}_{z \in U} I_{[U,\cap]}(z) \]
\[= [1, 1] - I_R(x, y), \]
\[F_{[U,\cap]}(y) = \bigvee_{z \in U} \left(T_R(y, z) \bar{\bigwedge}_{z \in U} F_{[U,\cap]}(z) \right) \]
\[= \left(T_R(y, x) \bar{\bigwedge}_{z \in U} F_{[U,\cap]}(z) \right) \bar{\bigwedge}_{z \in U} \left(T_R(y, z) \bar{\bigwedge}_{z \in U} F_{[U,\cap]}(z) \right) \]
\[= [1, 1] \bigwedge_{z \in U} F_{[U,\cap]}(z) \]
\[= [1, 1] \bigwedge_{z \in U} F_{[U,\cap]}(z) \]
Since \(R \) is symmetric iff \(\forall x, y \in U, T_R(x, y) = T_R(y, x) \), \(I_R(x, y) = I_R(y, x) \) and \(F_R(x, y) = F_R(y, x) \), \(R \) is symmetric iff \(\forall x, y \in U, T_{[U,\cap]}(y) = T_{[U,\cap]}(x), I_{[U,\cap]}(y) = I_{[U,\cap]}(x) \), and \(F_{[U,\cap]}(y) = F_{[U,\cap]}(x) \), which means that \(R \) is symmetric iff \(\forall x, y \in U, \bigwedge_{y \in U} (I_R(x, y) \bar{\bigwedge}_{y \in U} I_R(y, z)) = \bigwedge_{y \in U} (I_R(x, y) \bar{\bigwedge}_{y \in U} I_R(y, z)) \) and \(F_R(x, y) \leq \bigwedge_{y \in U} (F_R(x, y) \bar{\bigwedge}_{y \in U} F_R(y, z)) \) for all \(x, y, z \in U \). According to Definition 3.2, \(\forall x \in U \), we have
\[T_{R_{[A]}}(x) = \bigwedge_{y \in U} (F_R(x, y) \bar{\bigwedge}_{y \in U} T_{R_{[A]})(y)}) \]
\[= \bigwedge_{y \in U} (F_R(x, y) \bar{\bigwedge}_{y \in U} F_R(y, z) \bar{\bigwedge}_{y \in U} T_{[A]}(z))) \]
\[= \bigwedge_{y \in U} (F_R(x, y) \bar{\bigwedge}_{y \in U} F_R(y, z) \bar{\bigwedge}_{y \in U} T_{[A]}(z))) \]
\[= \bigwedge_{y \in U} \left(F_R(x, y) \bar{\bigwedge}_{y \in U} F_R(y, z) \bar{\bigwedge}_{y \in U} T_{[A]}(z))) \right) \]
\[= \bigwedge_{y \in U} \left(F_R(x, y) \bar{\bigwedge}_{y \in U} F_R(y, z) \bar{\bigwedge}_{y \in U} T_{[A]}(z))) \right) \]
\[= \bigwedge_{y \in U} \left(F_R(x, y) \bar{\bigwedge}_{y \in U} F_R(y, z) \bar{\bigwedge}_{y \in U} T_{[A]}(z))) \right) \]
\[= \bigwedge_{y \in U} \left(F_R(x, y) \bar{\bigwedge}_{y \in U} F_R(y, z) \bar{\bigwedge}_{y \in U} T_{[A]}(z))) \right) \]
\[= \bigwedge_{y \in U} \left(F_R(x, y) \bar{\bigwedge}_{y \in U} F_R(y, z) \bar{\bigwedge}_{y \in U} T_{[A]}(z))) \right) \]
\[= \bigwedge_{y \in U} \left(F_R(x, y) \bar{\bigwedge}_{y \in U} F_R(y, z) \bar{\bigwedge}_{y \in U} T_{[A]}(z))) \right) \]
\[= \bigwedge_{y \in U} \left(F_R(x, y) \bar{\bigwedge}_{y \in U} F_R(y, z) \bar{\bigwedge}_{y \in U} T_{[A]}(z))) \right) \]
\[= \bigwedge_{y \in U} \left(F_R(x, y) \bar{\bigwedge}_{y \in U} F_R(y, z) \bar{\bigwedge}_{y \in U} T_{[A]}(z))) \right) \]
\[= \bigwedge_{y \in U} \left(F_R(x, y) \bar{\bigwedge}_{y \in U} F_R(y, z) \bar{\bigwedge}_{y \in U} T_{[A]}(z))) \right) \]
\[= \bigwedge_{y \in U} \left(F_R(x, y) \bar{\bigwedge}_{y \in U} F_R(y, z) \bar{\bigwedge}_{y \in U} T_{[A]}(z))) \right) \]
\[= \bigwedge_{y \in U} \left(F_R(x, y) \bar{\bigwedge}_{y \in U} F_R(y, z) \bar{\bigwedge}_{y \in U} T_{[A]}(z))) \right) \]
\[= \bigwedge_{y \in U} \left(F_R(x, y) \bar{\bigwedge}_{y \in U} F_R(y, z) \bar{\bigwedge}_{y \in U} T_{[A]}(z))) \right) \]
\[= \bigwedge_{y \in U} \left(F_R(x, y) \bar{\bigwedge}_{y \in U} F_R(y, z) \bar{\bigwedge}_{y \in U} T_{[A]}(z))) \right) \]
Proof.

"⇒" Assume $R(A) \in R(R(A))$ for all $A \in \text{INS}(U)$. For any $x, y, z \in U$, let $A = 1_{(u-[\ell])}$, from the proving process of (3), we have

$$
T_R(x, z) = F_{R[1,(u,\ell)])}(x)
$$

$$
\leq_{U} \bigvee_{y \in U} (T_R(x, y) \neg F_A(y))
$$

$$
= F_{R[A]}(x).
$$

Therefore, $R(A) \in R(R(A))$.

"⇐" Suppose L satisfies the axioms (INSL1) and (INSL2). By using L, we define an INR R in U as follows:

$$
T_R(x, y) = F_{L[1,(u,\ell)])}(x),
$$

$$
I_R(x, y) = [1, 1] - I_{L[1,(u,\ell)])}(x),
$$

$$
F_R(x, y) = T_{L[1,(u,\ell)])}(y).
$$

Moreover, we can obtain that for all $A \in \text{INS}(U)$,

$$
A = \bigcap_{y \in U} (1_{(u-[\ell])} \uplus \hat{A}(y)), \text{ where } \hat{A}(x) = (T_A(x), I_A(x), F_A(x)).
$$

In fact, for all $x \in U$, we have

$$
T_{\hat{A}[(u,\ell)]}(x) = \bigwedge_{y \in U} T_{\hat{A}[(u,\ell)]}(y)
$$

$$
= \bigwedge_{y \in U} (T_{\hat{A}[(u,\ell)]}(y) \uplus T_{\hat{A}[(u,\ell)]}(x))
$$

hence, $I_R(x, z) \leq_{U} \bigwedge_{y \in U} (I_R(x, y) \uplus I_R(y, z))$, $F_R(x, y) \geq_{U} T_{\hat{A}[(u,\ell)]}(y)$, $T_R(x, y) \leq_{U} T_{\hat{A}[(u,\ell)]}(x)$.

Therefore, R is transitive. \Box

4. Axiomatic Characterizations of Generalized Interval Neutrosophic Approximation Operators

In this section, we will study the axiomatic characterizations of generalized interval neutrosophic lower and upper approximation operators by restricting a pair of abstract theoretical interval neutrosophic set operators.

Theorem 4.1. Let $L : \text{INS}(U) \rightarrow \text{INS}(U)$ be an interval neutrosophic set operator. Then, there exists an INR R in U such that $L(A) = R(A)$ for all $A \in \text{INS}(U)$ if L satisfies the following axioms (INSL1) and (INSL2) : $\forall A, B \in \text{INS}(U)$, $\alpha, \beta, \gamma \in \text{Int}[0, 1]$,

(INSL1) $L(A \uplus \alpha, \beta, \gamma) = L(A) \uplus \alpha, \beta, \gamma$;

(INSL2) $L(A \cap B) = L(A) \cap L(B)$.

Proof.

"⇒" It is straightforward from Theorem 3.5.

"⇐" Suppose L satisfies axioms (INSL1) and (INSL2). By using L, we define an INR $R = \{(x, y), T_R(x, y), I_R(x, y), F_R(x, y)\}$ as follows:

$$
\forall x, y \in U, T_R(x, y) = F_{L[1,(u,\ell)])}(x),
$$

$$
I_R(x, y) = [1, 1] - I_{L[1,(u,\ell)])}(x),
$$

$$
F_R(x, y) = T_{L[1,(u,\ell)])}(y).
$$

Moreover, we can obtain that for all $A \in \text{INS}(U)$,

$$
A = \bigcap_{y \in U} (1_{(u-[\ell])} \uplus \hat{A}(y)), \text{ where } \hat{A}(x) = (T_A(x), I_A(x), F_A(x)).
$$

In fact, for all $x \in U$, we have

$$
T_{\hat{A}[(u,\ell)]}(x) = \bigwedge_{y \in U} T_{\hat{A}[(u,\ell)]}(y)
$$

$$
= \bigwedge_{y \in U} (T_{\hat{A}[(u,\ell)]}(y) \uplus T_{\hat{A}[(u,\ell)]}(x))
$$
By Definition 3.2, (INSL1) and (INSL2), we have

\[T_{1_{\text{L}_{-1}}}(x) \cup T_{\overline{A_0}}(x) \bar{\wedge} \bigwedge_{y \in U - \{x\}} T_{1_{\text{L}_{-1}}}(x) \leq T_{\overline{A_0}}(x) \]

\[= T_A(x) \bar{\wedge} [1, 1] \]

\[= T_A(x), \]

\[I_{\text{L}_{-1}}(1_{\text{L}_{-1}}(y)) = \bigvee_{y \in U} I_{1_{\text{L}_{-1}}}(1_{\text{L}_{-1}}(y)) \]

\[= \bigvee_{y \in U} (1_{\text{L}_{-1}}(x) \bar{\wedge} I_{\overline{A_0}}(x)) \]

\[= I_{1_{\text{L}_{-1}}}(x) \bar{\wedge} I_{\overline{A_0}}(x) \cup \bigvee_{y \in U - \{x\}} (I_{1_{\text{L}_{-1}}}(x) \bar{\wedge} I_{\overline{A_0}}(x)) \]

\[= I_A(x) \bar{\wedge} [0, 0] \]

\[= I_A(x), \]

and

\[F_{\text{L}_{-1}}(1_{\text{L}_{-1}}(y)) = \bigvee_{y \in U} F_{1_{\text{L}_{-1}}}(1_{\text{L}_{-1}}(y)) \]

\[= \bigvee_{y \in U} (F_{1_{\text{L}_{-1}}}(x) \bar{\wedge} F_{\overline{A_0}}(x)) \]

\[= F_{1_{\text{L}_{-1}}}(x) \bar{\wedge} F_{\overline{A_0}}(x) \cup \bigvee_{y \in U - \{x\}} (F_{1_{\text{L}_{-1}}}(x) \bar{\wedge} F_{\overline{A_0}}(x)) \]

\[= F_A(x) \bar{\wedge} [0, 0] \]

\[= F_A(x), \]

So, \(A = \bigoplus_{y \in U} (1_{\text{L}_{-1}}(y) \cup \overline{A(y)}) \).

By Definition 3.2, (INSL1) and (INSL2), we have

\[T_{\overline{A}(x)} = \bigwedge_{y \in U} (F_R(x, y) \bar{\wedge} T_A(y)) \]

\[= \bigwedge_{y \in U} (T_{\text{L}_{-1}}(y) \bar{\wedge} T_A(y)) \]

\[= \bigwedge_{y \in U} (T_{\text{L}_{-1}}(y) \bar{\wedge} T_{\overline{A_0}}(x)) \]

\[= \bigwedge_{y \in U} (T_{\text{L}_{-1}}(y) \bar{\wedge} T_{\overline{A_0}}(x) \cup \bigvee_{y \in U - \{x\}} (T_{\text{L}_{-1}}(y) \bar{\wedge} T_{\overline{A_0}}(x))) \]

\[= T_{\overline{A}(x)}, \]

\[I_{\overline{A}(x)} = \bigvee_{y \in U} (\{(1, 1) - \{(1, 1) - I_{\text{L}_{-1}}(y)\}(x)) \bar{\wedge} I_A(y)) \]

\[= \bigvee_{y \in U} (I_{\text{L}_{-1}}(y) \bar{\wedge} I_{\overline{A_0}}(x)) \]

\[= \bigvee_{y \in U} (I_{\text{L}_{-1}}(y) \bar{\wedge} I_{\overline{A_0}}(x)) \cup \bigvee_{y \in U - \{x\}} (I_{\text{L}_{-1}}(y) \bar{\wedge} I_{\overline{A_0}}(x)) \]

\[= I_{\overline{A}(x)}, \]

and

\[F_{\overline{A}(x)} = \bigvee_{y \in U} (T_R(x, y) \bar{\wedge} F_A(y)) \]
Let $H: \text{INS}(U) \to \text{INS}(U)$ be an interval neutrosophic set operator. Then, there exists an INR R in

U such that $H(A) = R(A)$ for all $A \in \text{INS}(U)$ iff H satisfies the following axioms (INSH1) and (INSH2): $\forall A, B \in \text{INS}(U), \alpha, \beta, \gamma \in \text{Int}[0, 1],$

(INSH1) $H(A \cap \alpha \beta \gamma) = H(A) \cap \alpha \beta \gamma$;

(INSH2) $H(A \cup B) = H(A) \cup H(B)$.

Proof. " $\Rightarrow "$ Suppose H satisfies axioms (INSH1) and (INSH2). By using H, we define an INR $R = \{(x, y), T_R(x, y), I_R(x, y), F_R(x, y)\}$ as follows:

$T_R(x, y) = I_{H(x)}(x)$, $I_R(x, y) = I_{H(y)}(x)$, $F_R(x, y) = F_{H(y)}(x)$.

Moreover, we can obtain that for all $A \in \text{INS}(U),

$A = \psi (1 \cap A(y))$.

In fact, for all $x \in U$, we have

$T_{y \cap (1 \cap \alpha \gamma)}(x) = \bigvee_{y \in U} T_{y \cap (1 \cap \alpha \gamma)}(x)$

$= \bigvee_{y \in U} (T_1(x) \cap T_{\alpha \gamma}(x))$

$= T_1(x) \cap \bigvee_{y \in U} (T_1(x) \cap T_{\alpha \gamma}(x))$

$= T_A(x) \cup [0, 0]$

$= T_A(x)$,

$I_{y \cap (1 \cap \alpha \gamma)}(x) = \bigwedge_{y \in U} (I_{y \cap (1 \cap \alpha \gamma)}(x))$

$= \bigwedge_{y \in U} (I_1(x) \cup I_{\alpha \gamma}(x))$

$= I_1(x) \cup I_{\alpha \gamma}(x)$

$= I_1(x) \cup I_{\alpha \gamma}(x)$

$= I_A(x) \cap [1, 1]$

$= I_A(x)$,

and

$F_{y \cap (1 \cap \alpha \gamma)}(x) = \bigwedge_{y \in U} (F_1(x) \cap F_{\alpha \gamma}(x))$

$= \bigwedge_{y \in U} (F_1(x) \cap F_{\alpha \gamma}(x))$

$= F_1(x) \cap F_{\alpha \gamma}(x)$

$= F_A(x)$.

Thus, there exists an INR R such that $L(A) = R(A)$. \square

Theorem 4.2. Let $H: \text{INS}(U) \to \text{INS}(U)$ be an interval neutrosophic set operator. Then, there exists an INR R in

U such that $H(A) = R(A)$ for all $A \in \text{INS}(U)$ iff H satisfies the following axioms (INSH1) and (INSH2): $\forall A, B \in \text{INS}(U), \alpha, \beta, \gamma \in \text{Int}[0, 1],$

(INSH1) $H(A \cap \alpha \beta \gamma) = H(A) \cap \alpha \beta \gamma$;

(INSH2) $H(A \cup B) = H(A) \cup H(B)$.

Proof. " $\Rightarrow "$ Suppose H satisfies axioms (INSH1) and (INSH2). By using H, we define an INR $R = \{(x, y), T_R(x, y), I_R(x, y), F_R(x, y)\}$ as follows:

$T_R(x, y) = T_{H(x)}(x)$, $I_R(x, y) = I_{H(y)}(x)$, $F_R(x, y) = F_{H(y)}(x)$.

Moreover, we can obtain that for all $A \in \text{INS}(U), A = \psi (1 \cap A(y))$.

In fact, for all $x \in U$, we have

$T_{y \cap (1 \cap \alpha \gamma)}(x) = \bigvee_{y \in U} T_{y \cap (1 \cap \alpha \gamma)}(x)$

$= \bigvee_{y \in U} (T_1(x) \cap T_{\alpha \gamma}(x))$

$= T_1(x) \cap \bigvee_{y \in U} (T_1(x) \cap T_{\alpha \gamma}(x))$

$= T_A(x) \cup [0, 0]$

$= T_A(x)$,

$I_{y \cap (1 \cap \alpha \gamma)}(x) = \bigwedge_{y \in U} (I_{y \cap (1 \cap \alpha \gamma)}(x))$

$= \bigwedge_{y \in U} (I_1(x) \cup I_{\alpha \gamma}(x))$

$= I_1(x) \cup I_{\alpha \gamma}(x)$

$= I_1(x) \cup I_{\alpha \gamma}(x)$

$= I_A(x) \cap [1, 1]$

$= I_A(x)$,

and

$F_{y \cap (1 \cap \alpha \gamma)}(x) = \bigwedge_{y \in U} (F_1(x) \cap F_{\alpha \gamma}(x))$

$= \bigwedge_{y \in U} (F_1(x) \cap F_{\alpha \gamma}(x))$

$= F_1(x) \cap F_{\alpha \gamma}(x)$

$= F_A(x)$.

So, $A = \psi (1 \cap A(y))$.

By Definition 3.2, (INSH1) and (INSH2), we have

$H(A) = R(A)$.
Therefore, there exists an INR such that $H(A) = \overline{R}(A)$.

Remark 4.3. If $L, H : \text{INS}(U) \rightarrow \text{INS}(U)$ satisfy (INS1), (INS2) and (INSU1), (INSU2), respectively. Then, $L(A) = (H(A^c))^c$ and $H(A) = (L(A))^c$. In this case, L and H are called a pair of dual operators. Furthermore, if L and H are dual operators, then (INS1), (INS2) are equivalent to (INSU1), (INSU2).

Proof. It follows immediately from Theorem 3.5.

Next, we investigate axiomatic characterizations of other special generalized interval neutrosophic approximation operators.
Theorem 4.4. Let \(L, H : \text{INS}(U) \rightarrow \text{INS}(U) \) be a pair of dual operators, then there exists a serial INR \(R \) in \(U \) such that \(L(A) = R(A), H(A) = R(A) \) for all \(A \in \text{INS}(U) \) iff \(L \) satisfies axioms (INSL1), (INSL2) and (INSL6), or equivalently \(H \) satisfies (INSU1), (INSU2) and one of the following equivalent axioms about \(L \):

\[
\begin{align*}
\text{(INSL3)} & \quad L(\emptyset) = \emptyset; \\
\text{(INSU3)} & \quad H(U) = U; \\
\text{(INSL4)} & \quad L(\alpha, \beta, \gamma) = \alpha \bar{\beta}, \gamma, \text{ for all } \alpha, \beta, \gamma \in \text{Int}[0, 1]; \\
\text{(INSU4)} & \quad H(\alpha, \beta, \gamma) = \alpha \bar{\beta}, \gamma, \text{ for all } \alpha, \beta, \gamma \in \text{Int}[0, 1].
\end{align*}
\]

Proof. It follows immediately from Theorems 3.9 (1), 4.1 and 4.2. \(\square \)

Theorem 4.5. Let \(L, H : \text{INS}(U) \rightarrow \text{INS}(U) \) be a pair of dual operators, then there exists a reflexive INR \(R \) in \(U \) such that \(L(A) = R(A), H(A) = R(A) \) for all \(A \in \text{INS}(U) \) iff \(L \) satisfies axioms (INSL1), (INSL2) and (INSL5), or equivalently \(H \) satisfies (INSU1), (INSU2) and (INSU5):

\[
\begin{align*}
\text{(INSL5)} & \quad L(A) \in A; \\
\text{(INSU5)} & \quad A \in H(A).
\end{align*}
\]

Proof. It follows immediately from Theorems 3.9 (2), 4.1 and 4.2. \(\square \)

Theorem 4.6. Let \(L, H : \text{INS}(U) \rightarrow \text{INS}(U) \) be a pair of dual operators, then there exists a symmetric INR \(R \) in \(U \) such that \(L(A) = R(A), H(A) = R(A) \) for all \(A \in \text{INS}(U) \) iff \(L \) satisfies axioms (INSL1), (INSL2) and (INSL6), or equivalently \(H \) satisfies (INSU1), (INSU2) and (INSU6):

\[
\begin{align*}
\text{(INSL6)} & \quad L(1_{U-[\emptyset]}) = L(1_{U-[\emptyset]}), \forall x, y \in U; \\
\text{(INSL6)} & \quad H(1_{U-[\emptyset]}) = H(1_{U-[\emptyset]}), \forall x, y \in U.
\end{align*}
\]

Proof. It follows immediately from Theorems 3.9 (3), 4.1 and 4.2. \(\square \)

Theorem 4.7. Let \(L, H : \text{INS}(U) \rightarrow \text{INS}(U) \) be a pair of dual operators, then there exists a transitive INR \(R \) in \(U \) such that \(L(A) = R(A), H(A) = R(A) \) for all \(A \in \text{INS}(U) \) iff \(L \) satisfies axioms (INSL1), (INSL2) and (INSL7), or equivalently \(H \) satisfies (INSU1), (INSU2) and (INSU7):

\[
\begin{align*}
\text{(INSL7)} & \quad L(A) \subseteq L(L(A)), \forall A \in \text{INS}(U); \\
\text{(INSU7)} & \quad H(H(A)) \subseteq H(A), \forall A \in \text{INS}(U).
\end{align*}
\]

Proof. It follows immediately from Theorems 3.9 (4), 4.1 and 4.2. \(\square \)

5. An Application of Generalized Interval Neutrosophic Rough Sets in Multi-Attribute Decision Making

5.1. An algorithm to medical diagnosis based on generalized interval neutrosophic rough sets

In order to conveniently apply generalized interval neutrosophic rough sets to real world, it is necessary to extend the generalized interval neutrosophic rough sets on one universe in Section 4 to two universes case.

Definition 5.1. Let \(U, V \) be two spaces of points (objects). An INS \(R \) in \(U \times V \) is referred to as an INR from \(U \) to \(V \), denoted by \(R = ((x, y), T_R(x, y), I_R(x, y), F_R(x, y)) | (x, y) \in U \times V \) where \(T_R, I_R, F_R : U \times V \rightarrow Int[0, 1] \) represent the truth-membership function, indeterminacy-membership function and falsity-membership function of \(R \), respectively.
Definition 5.2. Let R be an INR from U to V, the tuple (U, V, R) is referred to as an interval neutrosophic approximation space on two universes. \forall A \in \text{INS}(V)$, the lower and upper approximations of A w.r.t. (U, V, R) are two INRs in U, denoted by $R(A)$ and $\overline{R}(A)$, where $\forall x \in U$:

- $T_{R(A)}(x) = \bigwedge_{y \in V} (F_R(x, y) \vee T_A(y))$,
- $I_{R(A)}(x) = \bigvee_{y \in V} (([1, 1] - I_R(x, y)) \overline{I}_A(y))$,
- $F_{R(A)}(x) = \bigvee_{y \in V} (T_R(x, y) \overline{A}(y))$,
- $T_{\overline{R}(A)}(x) = \bigvee_{y \in V} (T_R(x, y) \overline{A}(y))$,
- $I_{\overline{R}(A)}(x) = \bigwedge_{y \in V} (I_R(x, y) \vee I_A(y))$,
- $F_{\overline{R}(A)}(x) = \bigwedge_{y \in V} (F_R(x, y) \vee F_A(y))$.

The pair $(R(A), \overline{R}(A))$ is referred to as a generalized interval neutrosophic rough set on two universes.

Based on Definition 2.11, we can give the sum of two INRs as follows.

Definition 5.3. Let A and B be two INRs in U, the sum of A and B is defined as:

$$A \oplus B = \{(x, A(x) \oplus B(x)) | x \in U\}.$$

Note that we can compare two interval numbers by Definitions 2.12 and 2.13. Moreover, by Definitions 5.2 and 5.3, we can apply generalized interval neutrosophic rough sets on two universes to multi-attribute decision making problems.

In what follows, we will consider medical diagnosis problems based on generalized interval neutrosophic rough sets on two universes. Suppose that the universe $U = \{x_1, x_2, \cdots, x_m\}$ represents a set of diseases, and the universe $V = \{y_1, y_2, \cdots, y_n\}$ represents a set of symptoms. Let $R \in \text{INR}(U \times V)$ be an INR from U to V, where $\forall (x_i, y_j) \in U \times V$, $R(x_i, y_j)$ represents the degree that the disease x_i ($x_i \in U$) has the symptom y_j ($y_j \in V$). Given a patient A, the symptoms of the patient (also denoted by A) are illustrated by an INS A in the universe V. In the following, we give a six-steps algorithm to diagnose what kind of disease the patient A is suffering from.

Algorithm

Step 1. According to Definition 5.2, we calculate the lower and upper approximations of A, namely $R(A)$ and $\overline{R}(A)$.

Step 2. According to Definition 5.3, we calculate $R(A) \oplus \overline{R}(A)$.

Step 3. According to Definition 2.12, for all $i \in \{1, 2, \cdots, m\}$, we calculate $s((R(A) \oplus \overline{R}(A))(x_i))$, $a((R(A) \oplus \overline{R}(A))(x_i))$, $c((R(A) \oplus \overline{R}(A))(x_i))$, respectively.

Step 4. According to Definition 2.13, for all $i \in \{1, 2, \cdots, m\}$, we compare all the $s((R(A) \oplus \overline{R}(A))(x_i))$, $a((R(A) \oplus \overline{R}(A))(x_i))$, $c((R(A) \oplus \overline{R}(A))(x_i))$.

Step 5. The optimal choice is x_k if there doesn’t exist $i \in \{1, 2, \cdots, k - 1, k + 1, \cdots, m\}$ such that $(R(A) \oplus \overline{R}(A))(x_i) > (R(A) \oplus \overline{R}(A))(x_k)$.

Step 6. If k has several values, then we take every x_k as the optimal choice which means that the patient is suffering from all the diseases $[x_k]$ at the same time.

5.2. An illustrative example

In this subsection, an example for medical diagnosis is illustrated as the demonstration of the established algorithm proposed in Subsection 5.1.

We take into account the medical diagnosis problem partly adopted from [43] and adjust the hesitant fuzzy environment to neutrosophic environment. Let $U = \{x_1, x_2, x_3, x_4\}$ be four diseases (where x_i ($i = 1, 2, 3, 4$) represent “common cold”, “malaria” “typhoid”, and “stomach disease”, respectively), and the
universe \(V = \{y_1, y_2, y_3, y_4, y_5\} \) be five symptoms (where \(y_j \) \((j = 1, 2, 3, 4, 5) \) represent “fever”, “headache”, “stomachache”, “cough”, and “chest-pain”, respectively). Let \(R \) be an INR from \(U \) to \(V \) which is actually a medical knowledge statistic data of the relationship of the disease \(x_i \) \((x_i \in U) \) and the symptom \(y_j \) \((y_j \in V) \). The statistic data is provided in Table 2.

Assume that the symptoms of a patient \(A \) are illustrated by an INS in the universe \(V \) as follows:

\[
A = \{(y_1, [0.8, 0.9], [0.2, 0.3], [0.1, 0.3]), (y_2, [0.7, 0.9], [0.1, 0.2], [0.1, 0.2]), (y_3, [0.7, 0.8], [0.2, 0.4], [0.1, 0.3]), (y_4, [0.1, 0.2], [0.3, 0.4], [0.8, 0.9]), (y_5, [0, 0.1], [0.1, 0.3], [0.8, 1])\}.
\]

Table 2: The interval neutrosophic relation \(R \) between the symptoms and diseases.

<table>
<thead>
<tr>
<th>(R)</th>
<th>(x_1)</th>
<th>(x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1)</td>
<td>([0.4, 0.5], [0.2, 0.3], [0.3, 0.4])</td>
<td>([0.8, 0.9], [0.1, 0.2], [0.1, 0.1])</td>
</tr>
<tr>
<td>(y_2)</td>
<td>([0.5, 0.6], [0.3, 0.4], [0.2, 0.3])</td>
<td>([0.8, 0.9], [0.2, 0.3], [0.1, 0.1])</td>
</tr>
<tr>
<td>(y_3)</td>
<td>([0.1, 0.1], [0.1, 0.2], [0.8, 0.9])</td>
<td>([0.2, 0.3], [0.1, 0.3], [0.7, 0.9])</td>
</tr>
<tr>
<td>(y_4)</td>
<td>([0.7, 0.8], [0.3, 0.4], [0.2, 0.3])</td>
<td>([0.1, 0.1], [0.1, 0.2], [0.8, 1])</td>
</tr>
<tr>
<td>(y_5)</td>
<td>([0.4, 0.5], [0.5, 0.6], [0.6, 0.7])</td>
<td>([0.2, 0.3], [0.1, 0.2], [0.9, 1])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(R)</th>
<th>(x_3)</th>
<th>(x_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_1)</td>
<td>([0.8, 1], [0.2, 0.4], [0.1, 0.1])</td>
<td>([0.1, 0.3], [0.3, 0.4], [0.8, 1])</td>
</tr>
<tr>
<td>(y_2)</td>
<td>([0.9, 1], [0.1, 0.3], [0.1, 0.1])</td>
<td>([0.9, 1], [0.2, 0.3], [0.9, 1])</td>
</tr>
<tr>
<td>(y_3)</td>
<td>([0.7, 0.8], [0.4, 0.6], [0.2, 0.3])</td>
<td>([0.9, 1], [0.4, 0.6], [0.1, 0.3])</td>
</tr>
<tr>
<td>(y_4)</td>
<td>([0.1, 0.1], [0.3, 0.4], [0.8, 0.9])</td>
<td>([0.1, 0.2], [0.1, 0.2], [0.8, 0.9])</td>
</tr>
<tr>
<td>(y_5)</td>
<td>([0.2, 0.2], [0.2, 0.4], [0.7, 1])</td>
<td>([0.1, 0.4], [0.2, 0.5], [0.7, 0.8])</td>
</tr>
</tbody>
</table>

According to Definition 5.2, we can obtain that

\[
\mathcal{R}(A) = \{(x_1, [0.2, 0.3], [0.3, 0.4], [0.7, 0.8]), (x_2, [0.7, 0.9], [0.3, 0.4], [0.1, 0.3]), (x_3, [0.7, 0.8], [0.3, 0.4], [0.1, 0.3]), (x_4, [0.7, 0.8], [0.3, 0.4], [0.1, 0.4])\},
\]

\[
\overline{\mathcal{R}}(A) = \{(x_1, [0.5, 0.6], [0.2, 0.3], [0.2, 0.3]), (x_2, [0.8, 0.9], [0.1, 0.1], [0.1, 0.2]), (x_3, [0.8, 0.9], [0.1, 0.3], [0.1, 0.2]), (x_4, [0.7, 0.8], [0.2, 0.3], [0.1, 0.3])\}.
\]

Let \(k(x) = -\log(x) \), then \(k^{-1}(x) = e^{-x} \), \(l(x) = -\log(1 - x) \), and \(l^{-1}(x) = 1 - e^{-x} \). By Definitions 2.11 and 5.3, we have

\[
\mathcal{R}(A) \equiv \overline{\mathcal{R}}(A) = \{(x_1, [0.60, 0.72], [0.06, 0.12], [0.14, 0.24]), (x_2, [0.94, 0.99], [0.03, 0.12], [0.01, 0.06]), (x_3, [0.94, 0.98], [0.03, 0.12], [0.01, 0.06]), (x_4, [0.91, 0.96], [0.06, 0.12], [0.01, 0.12])\}.
\]

According to Definition 2.13, we can calculate the score functions, accuracy functions, and certainty functions of the INN \((\mathcal{R}(A) \equiv \overline{\mathcal{R}}(A))(x_i) \) \((i = 1, 2, 3, 4) \) as follows:

\[
s((\mathcal{R}(A) \equiv \overline{\mathcal{R}}(A))(x_1)) = 2.24, 2.52, \quad a((\mathcal{R}(A) \equiv \overline{\mathcal{R}}(A))(x_1)) = 0.46, 0.48,
\]

\[
c((\mathcal{R}(A) \equiv \overline{\mathcal{R}}(A))(x_1)) = 0.60, 0.72;
\]

\[
s((\mathcal{R}(A) \equiv \overline{\mathcal{R}}(A))(x_2)) = 2.76, 2.95, \quad a((\mathcal{R}(A) \equiv \overline{\mathcal{R}}(A))(x_2)) = 0.93, 0.93,
\]

\[
c((\mathcal{R}(A) \equiv \overline{\mathcal{R}}(A))(x_2)) = 0.94, 0.99;
\]

\[
s((\mathcal{R}(A) \equiv \overline{\mathcal{R}}(A))(x_3)) = 2.76, 2.95, \quad a((\mathcal{R}(A) \equiv \overline{\mathcal{R}}(A))(x_3)) = 0.92, 0.93,
\]

\[
c((\mathcal{R}(A) \equiv \overline{\mathcal{R}}(A))(x_3)) = 0.94, 0.98;
\]

\[
s((\mathcal{R}(A) \equiv \overline{\mathcal{R}}(A))(x_4)) = 2.67, 2.89, \quad a((\mathcal{R}(A) \equiv \overline{\mathcal{R}}(A))(x_4)) = 0.84, 0.90,
\]

\[
c((\mathcal{R}(A) \equiv \overline{\mathcal{R}}(A))(x_4)) = 0.91, 0.96.
\]

By Definition 2.13, we can compute that

\[
p(s((\mathcal{R}(A) \equiv \overline{\mathcal{R}}(A))(x_2)) \geq 1) = s((\mathcal{R}(A) \equiv \overline{\mathcal{R}}(A))(x_1)) = 1,
\]

\[
p(s((\mathcal{R}(A) \equiv \overline{\mathcal{R}}(A))(x_4)) \geq 1) = s((\mathcal{R}(A) \equiv \overline{\mathcal{R}}(A))(x_1)) = 1,
\]
That is to say, the patient in order to compare. Thus, we can conclude that (R(A) ▷ R(A))(x2) > (R(A) ▷ R(A))(x3) > (R(A) ▷ R(A))(x4) > (R(A) ▷ R(A))(x1).

6. Conclusion

In this paper, we propose the hybrid model—generalized interval neutrosophic rough sets based on interval neutrosophic relations by combining two powerful tools of handling information—interval neutrosophic sets and rough sets. Furthermore, we investigate the generalized interval neutrosophic rough sets from both constructive and axiomatic approaches in detail. Then, generalized interval neutrosophic rough sets on two universes are introduced for wider application of generalized interval neutrosophic rough sets. After that, we provide an algorithm to handle decision making problem in medical diagnosis based on generalized interval neutrosophic rough sets on two universes. Finally, we present a numerical example to demonstrate the validity of the proposed generalized interval neutrosophic rough sets. For the future prospects, we will devote to explore the application of the proposed model to data mining and attribute reduction.

References