Umweltfreundliche Polymer-Succinat-Verkappung auf Silbernanopartikeln für verbesserte Stabilität: eine Studie zu UV-VIS und zum Einfluss elektrochemischer Partikel

Azhar Abbas^{1,2}, Hatem M.A. Amin^{1,5}, Muhammad Akhtar^{3,4}, Muhammad A. Hussain², Christopher Batchelor-McAuley¹, Richard G. Compton¹

- 1- Universität Oxford, Department für Chemie, Labor für Physikalische und Theoretische Chemie, South Parks Road, Oxford, OX1 3QZ, Vereinigtes Königreich
- 2- Universität Sargodha, Department für Chemie, Ibne Sina Block, Sargodha 40100, Pakistan
- 3- Islamia Universität von Bahawalpur, Fakultät für Pharmazie und alternative Medizin, Department für Pharmazie, Bahawalpur 63100, Pakistan
- 4- King's College London, Fakultät für Biowissenschaften und Medizin, Schule für Krebs und Pharmazeutische Wissenschaften, London SE1 9NH, Großbritannien
- 5- Universität Kairo, Fakultät für Naturwissenschaften, Department für Chemie, Gizeh, 12613 Ägypten

ABSTRAKT

Mit einer einfachen grünen Methode werden Silbernanopartikel (Ag Nps) in einer Minute synthetisiert. Die kolloidale Stabilität von zwei Arten von Ag-Nps (nämlich Hydroxypropylcellulose-Succinat (HPC-Suc) - verkappte Silbernanopartikel (Ag Nps @ suc) und Citrat-verkappte Silbernanopartikel (Ag Nps @ cit)) wird unter Verwendung der UV-Vis-Spektrometrie und "Nano-Impact" –Messungen des Einflusses elektrochemischer Partikel untersucht. Ag Nps@suc wurden neu synthetisiert, indem einfach wässrige Lösungen von HPC-Suc und Silbernitrat gemischt und der Sonnenlicht ausgesetzt wurden. Das Wachstum von Ag Nps wurde durch das Einstellen der Expositionszeit gegenüber dem Sonnenlicht gesteuert. Eine lokale Oberflächen-Plasmon-Resonanz (LSPR) - Untersuchung wurde unter Verwendung eines UV-Vis-Spektrophotometers durchgeführt. Die Oberflächenmorphologie, Größe, Elementaranalyse und Zusammensetzung von Ag-NPs@suc wurde durch SEM-EDX bestimmt, während ATR-FTIR dazu verwendet wurde, um jede Art von chemischen Reaktionen zwischen Präkursoren zu untersuchen. Zur Bestimmung der Stabilitäts- und Größenverteilung wurden die Messungen des Zeta-Potential (ZP), der dynamischen Lichtstreuung (DSL) und der Anoden-Partikel-Coulometrie (APC) durchgeführt. Das so

hergestellte Ag Nps@suc zeigte eine enge Größenverteilung mit einem durchschnittlichen Durchmesser von 20 nm. Die Bestimmung der Nanopartikelgröße unter Verwendung der Methode des elektrochemischen Einflusses von Partikeln erfolgt gemäß SEM- und DLS-Techniken. Die Ergebnisse zeigen, dass Ag Nps@cit bei Zugabe von Elektrolyt (100 mM K₂SO₄) zu einer relativ schnellen Clusterbildung neigt. Andererseits zeigt Ag Nps@suc sogar bei hoher Elektrolytkonzentration eine ausgezeichnete Stabilität mit nur ~ 9% Absorptionsabfall während 24 Stunden. Unter Verwendung von KCl-, KBr- und NaCl-Elektrolyten kann die Stabilität des synthetisierten Ag Nps@suc auch positiv mit Ag Nps@cit verglichen werden.

Schlüsselwörter: Silbernanopartikel, Succinat-Verkappungsmittel, Nanopartikelstabilität, UV-Vis-Spektrometrie, Einfluss von Nanopartikel-Elektroden