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Preface

General decomposition problems hold a central place in the general struc-

ture theory of semigroups, as they look for different ways to break a semi-

group into parts, with as simple a structure as possible, in order to ex-

amine these parts in detail, as well as the relationships between the parts

within the whole semigroup. The main problem is to determine whether the

greatest decomposition of a given type exists, the decomposition having the

finest components, and to give a characterization and construction of this

greatest decomposition. Another important issue is whether a given type of

decomposition is atomic, in the sense that the components of the greatest

decomposition of the given type cannot further be broken down by decom-

position of the same type. In semigroup theory only five types of atomic

decompositions are known so far. The atomicity of semilattice decomposi-

tions was proved by Tamura [Osaka Math. J. 8 (1956) 243–261], of ordinal

decompositions by Lyapin [Semigroups, Fizmatgiz, Moscow, 1960], of the

so-called U-decompositions by Shevrin [Dokl. Akad. Nauk SSSR 138 (1961)

796–798], of orthogonal decompositions by Bogdanović and Ćirić [Israel J.

Math 90 (1995) 423–428], whereas the atomicity of subdirect decompositions

follows from a more general result of universal algebra proved by Birkhoff

[Bull. AMS 50 (1944) 764–768]. Semilattice decompositions of semigroups

were first defined and studied by A. H. Clifford [Annals of Math. 42 (1941)

1037–1049]. Later T. Tamura and N. Kimura [Kodai Math. Sem. Rep. 4

(1954) 109–112] proved the existence of the greatest semilattice decompo-

sition of an arbitrary semigroup, and as we have already noted, while T.

Tamura [Osaka Math. J. 8 (1956) 243–261] proved the atomicity of semilat-

tice decompositions. The theory of the greatest semilattice decompositions

of semigroups has been developed from the middle of the 1950s to the middle
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of the 1970s by T. Tamura, M. S. Putcha, M. Petrich, and others. For a long

time after that there were no new results in this area. In the mid of 1990s,

the authors of this book initiated the further development of this theory

by introducing completely new ideas and methodology. The purpose of this

book is to give an overview of the main results on semilattice decompositions

of semigroups which appeared in the last 15 years, as well as to connect them

with earlier results.

The structure of the book is as follows. The first three chapters of the

book provide an introduction to the basic concepts of semigroup theory, var-

ious types of regularity and the concepts of simple, 0-simple, Archimedean

and 0-Archimedean semigroups. Chapter 4 develops the general theory of

the greatest semilattice decompositions of semigroups, using the methodol-

ogy that was built by the authors. This methodology is based on the compu-

tation of the principal radicals of a semigroup, which is an iterative process

that, in general, may consist of infinitely many iterations. For this reason,

later this chapter discusses the various cases where the greatest semilattice

decompositions can be achieved by methods that involve only finitely many

iterations.

The first effective construction of the smallest semilattice congruence

on a semigroup, provided by T. Tamura [Semigroup Forum 4 (1972) 255–

261], was based on the arrow relation →, which was defined as a natural

generalization of the division relation. Namely, two elements a and b of

a semigroup are said to be in the relation →, written as a → b, if the

element b divides some power of the element a. If each pair of elements

of a semigroup is in that relation, then this semigroup is said to satisfy

the famous Archimedean property, which Archimedes proved for natural

numbers, and such a semigroup is called an Archimedean semigroup. In

the above mentioned paper, T. Tamura proved that the smallest semilattice

congruence on a semigroup can be constructed as the symmetric opening of

the transitive closure of the arrow relation, whereas M. S. Putcha [Trans.

Amer. Math. Soc. 189 (1974), 93–106] showed that these two operations

can be permuted, i.e., the smallest semilattice congruence can be computed

as the transitive closure of the symmetric opening of the arrow relation.

In Chapter 4 the authors discuss various situations where the transitive

closure of the arrow relation can be computed in a finite number of steps, and

in Chapter 5 they consider the situation when the arrow relation is transitive.
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Semigroups with the latter property are actually semigroups that can be

represented as a semilattice of Archimedean semigroups. Chapter 5 also

deals with various special types of semilattices of Archimedean semigroups.

A particular case of Archimedean semigroups are semigroups in which each

element divides a fixed power of any other element, and such semigroups are

called k-Archimedean. The semilattices of k-Archimedean semigroups and

many of their special cases are studied in Chapter 6.

A very important special case of semilattices of Archimedean semigroups

are semilattices of completely Archimedean semigroups, or equivalently, se-

milattices of nil-extensions of completely simple semigroups. At a scientific

conference held back in 1977, L. N. Shevrin announced that a semigroup can

be decomposed into a semilattice of completely Archimedean semigroups if

and only if each of its elements has a regular power, and each of its regular

elements is completely regular (i.e., belongs to a subgroup of this semigroup).

However, this result along with other related results was published with proof

17 years later [Mat. Sbornik 185 (8) (1994) 129–160, 185 (9) (1994) 153–176].

In the meantime, other authors have studied these decompositions building

their own methodology, for example J. L. Galbiati and M. L. Veronesi [Rend.

Ist. Lomb. Cl. Sc. (A) 116 (1982) 180–189; Riv. Mat. Univ. Parma (4) 10

(1984) 319–329], and others. The first author of this book began his research

in this area in 1985, and later the other two authors joined him. In a series

of papers, the authors of this book built their own methodology, which not

only led to the same results announced by L. N. Shevrin, but also provided

some significant improvements. A complete theory of the decompositions of

a semigroup into a semilattice of completely Archimedean semigroups was

presented for the first time in the book by the first two authors [Semigroups,

Prosveta, Nǐs, 1993]. Chapter 7 of this book outlines not only these results,

but also many results obtained later.

The authors wish to express their gratitude to Professors Petar Protić,

Predrag Stanimirović and Jelena Ignjatović, for their valuable comments and

suggestions.

Nǐs, On Saint Petka, 2011

Authors
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Chapter 1

Introduction

In this chapter we will outline the basic notions and results of the theory

of semigroups which will be used in the main part of this book. Also, we

will present some basic notions of general lattice theory and the theory of

Boolean algebra. For more details, we refer to special monographs from

these areas.

1.1 The Definition of a Semigroup

Let S be a non-empty set. The mapping ◦ from a Cartesian product S×S
into a set S, which to every ordered pair (a, b) of elements of S associates

an element of S, denoted by a ◦ b, we call a binary operation on the set S,

or a (binary) operation of S. An ordered pair (S, ◦) is called a groupoid.

A binary operation ◦ of a groupoid (S, ◦) is associative if (a ◦ b) ◦ c =

a ◦ (b ◦ c), for all a, b, c ∈ S. Then, the pair (S, ◦) is a semigroup.

For the sake of simplicity, we introduce the following agreement: the

operation of a groupoid we will denote by ”·”, and refer to it as the multipli-

cation or the product, and the element a · b we will call the multiplication of

elements a and b. Without any loss of generality, the pair (S, ·) we will, for

short, denote as S, so instead of ”the goupoid (S, ·)” we will simply say ”the

goupoid S”. As a substitution for the term ”a · b” we use the term ”ab”. In

the case when we use some different symbols for the notation of operations,

we will stress this additionally.

1



2 CHAPTER 1. INTRODUCTION

Often, it is not easy to determine that some binary operation on a

groupoid S is associative. A. H. Clifford and G. B. Preston in their book

”The algebraic theory of semigroups I” give Light’s associativity test for finite

groupoids. The procedure is consists of: Let (S, ·) be a groupoid. We define

for S two new binary operations ∗ and ◦ with

x ∗ y = x · (a · y), x ◦ y = (x · a) · y, x, y ∈ S,

where a ∈ S is a fixed element. It is evident that associativity hold in S if

and only if both operations ∗ and ◦ are equal on S, for every a ∈ S.

This procedure we will shown on an example. Let the groupoid (S, ·) be
given by Cayley’s table

· α β

α α α
β β α

.

Then for a = α the product a · y is in the first row (αα), and for α = β the

product a · y is in the second row (βα).

Now, the given table extends to the right side first by the first row, then

by the second row, and does all the multiplications with the elements from

S. In this way we obtain the operation ∗ for both elements of the groupoid

S. Similarly, the given table extends down throught columns from S. Then

we obtain the operation ◦ for all the elements of S.

· α β α α β α

α α α α α α α

β β α β β α β

α α α
β β α
α α α
α α α

Now, it is easy to see that for a = α the tables for ∗ and ◦ do not coincide,

because

β ∗ β = β · (α · β) = β · α = β, β ◦ β = (β · α) · β = β · β = α,

as we can see in the extended table. Thus, the given table does not define a

semigroup.

By Z+ we denote the set of all positive integers.
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Theorem 1.1 Every semigroup S satisfies the general associative law, i.e.

for every n ∈ Z+, a product of n elements from S does not depend on the

positioning of the parentheses.

Proof. Let a1, a2, . . . , an ∈ S and let

a1a2 · · · an = a1(a2(a3 · · · (an−1an) . . .)).

The statement of the theorem immediately follows for n = 1 and n = 2.

Also, it is true for n = 3, by supposition, because S is a semigroup.

Assume n > 3 and that the statement of the theorem holds for some

r < n. Assume that u ∈ S is equal to the product of elements a1, a2, . . . , an
with an arbitrary disposition of parentheses. Then the element u we can

write as u = vw, where v is the product of elements a1, a2, . . . , ar and w is

the product of elements ar+1, ar+2, . . . , an, (with some disposition of paren-

theses), where 1 ≤ r < n. Using induction we obtain that v = a1a2 · · · ar
and w = ar+1ar+2 · · · an and

u = (a1a2 · · · ar)(ar+1ar+2 · · · an) = (a1(a2 · · · ar))(ar+1ar+2 · · · an)
= a1((a2 · · · ar)(ar+1ar+2 · · · an)) = a1(a2 · · · arar+1ar+2 · · · an)
= a1a2 · · · an.

for r > 1, and u = vw = a1(a2 · · · an) = a1a2 · · · an, for r = 1. This proves

the theorem.

Namely, the general associative law says that the product of n elements

of a semigroup is not dependent on the order in which we calculate this

product, while it is dependent on the order in which we write the elements

in this product, from left to right. By Theorem 1.1, in a semigroup S we

can omit all the parentheses in products of elements from S, so the product

of elements a1, a2, . . . , an ∈ S, in this order, we will simply denote with

a1a2 · · · an, n ∈ Z+. If ai = a, for every i ∈ {1, 2, . . . , n}, then the product

a1a2 · · · an we denote as an, and it is called the n-th power of the element

a ∈ S. If A is a non-empty subset of a semigroup S, then the set

√
A = {x ∈ S | (∃n ∈ Z+)xn ∈ A}

we call the radical of set A.

Let S be a semigroup. Elements a, b ∈ S commute if ab = ba. If A is a

non-empty subset of a semigroup S, then with C(A) we denote the set of all
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the elements of S which commute with every element of A. The set C(S) we

call the center of a semigroup S, and its elements are the central elements of

S. A semigroup S is commutative if all of its elements commute with each

other. A semigroup S is anti-commutative if for all a, b ∈ S, from ab = ba it

follows that a = b.

If S is an arbitrary semigroup, then we define a binary operation ∗ on

S, with: a ∗ b = ba. The set S with such a defined operation is a semigroup,

which we call a dual semigroup of a semigroup S, and we denote it by
←−
S . A

semigroup need not be commutative, i.e. the value of a product depends on

the order of elements which are in the product, and as a consequence of this in

terms corresponding to the semigroup, for its subsets or for its elements, very

often we use terms ”left” or ”right”. The dual of a term which corresponding

to a semigroup, or its subsets or its elements, is the term which we obtain

when the word ”left” is replaced with the word ”right” and conversely, every

product ab we replace with ba.

An element a of a semigroup S is idempotent if a2 = a. The set of all

idempotents of a semigroup S we denote by E(S). A semigroup in which all

the elements are idempotents is a band. A commutative band is a semilattice.

A semilattice S is a chain if ab = a or ab = b, for all a, b ∈ S.

Let S be a semigroup and let a ∈ S. An element e ∈ S is a left (right)

identity of element a if ea = a (ae = a), and e is an identity of element

a if ae = ea = a. If e ∈ S is an identity (left identity, right identity) for

all the elements of S, then e is an identity (left identity, right identity) of

a semigroup S. By definition, every (left, right) identity of a semigroup is

an idempotent of S. It is easy to prove that a semigroup has exactly one

identity. A semigroup which has an identity is a semigroup with an identity

or monoid.

Let S be a semigroup and let e be an element which is not contained in

S. On the set S ∪ {e} we define multiplication with: ae = ea = a, a ∈ S,

ee = e, and the product of the elements from S stays the same. Then,

the set S ∪ {e} with such a defined multiplication is a semigroup with the

identity e, which we call the identity extension of a semigroup S by e. If S

is a semigroup, then with S1 we denote a semigroup obtained from S in the

following way: if S has an identity, then S = S1, if S has no identity, then

S1 is an identity extension of S by 1. The identity element of a semigroup S

we usually denote with e or 1. Using the identity extension of a semigroup,

we extend the definition of the power in the semigroup: if S is a semigroup

and if a is an element of S, then a0 is the identity of the monoid S1.
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Let S be a semigroup and let z ∈ S. An element z is a left (right) zero of

S if za = z (az = z), for every a ∈ S, and z is a zero of S if z is both the left

and right zero of S. Every (left, right) zero of a semigroup is an idempotent.

Thus, a semigroup whose every element is left (right) zero is a band, which

we call left (right) zero band. Hence, a semigroup S is a left (right) zero band

if ab = a (ab = b), for all a, b ∈ S. It is evident that a semigroup has exactly

one zero. A semigroup which has a zero we call a semigroup with a zero.

Let S be a semigroup and let z be an element which is not contained in

S, on the set S ∪ {z} we define multiplication with: az = za = z, a ∈ S,

zz = z, and the product of elements from S stays the same, then, the set

S ∪{z} with such a defined multiplication is a semigroup with zero z, which

we call the zero extension of a semigroup S by z. If S is a semigroup, then

S0 denotes a semigroup obtained from S in the following way: if S has a

zero, then S = S0, if S has no zero, then S0 is a zero extension of S by 0.

The zero of a semigroup we often denote with 0, and very often the term

”{0}” we replace with the term ”0”. According to the previous notations,

with S = S0 we denote a semigroup S with zero 0. If S = S0 and if A ⊆ S,

then we use the notations A0 = A ∪ 0, A• = A − 0. If S = S0, then the

element a ∈ S• is a divisor of zero if there is an element b ∈ S• such that

ab = 0 or ba = 0. A semigroup S = S0 which has no divisors of zero, i.e. if

S• is a subsemigroup of S, is called a semigroup without a zero divisor.

A partial (binary) operation on a non-empty set S is a mapping of a

non-empty subset of S × S into S. A non-empty set with a partial binary

operation is a partial groupoid. If S is a partial groupoid with a partial

operation ”·”, and for arbitrary x, y, z ∈ S, the product x · (y · z) is defined
if and only if the product (x · y) · z is defined, and where these products

are equal, then S is a partial semigroup. It is evident that every subset of

a semigroup is a partial semigroup. On the other hand, if Q is a partial

semigroup and if 0 is an element which is not contained in Q, then the set

Q ∪ {0} with a operation ”·” defined with:

x · y =

{
xy, if x, y, xy ∈ Q
0, otherwise

,

where xy is a product in Q, is a semigroup which we denote as Q0, and we

refer to it as a zero extension of a partial semigroup Q.

If X is a non-empty set, then with P(X) we denote the partitive set of

the set X, i.e. the set of all the subsets of X. Let S be a semigroup. On the
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partitive set of a semigroup S we define a multiplication with:

AB = { x ∈ S | (∃a ∈ A)(∃b ∈ B) x = ab }, A,B ∈ P(S).

Then, under this operation the set P(S) is a semigroup which we call a

partitive semigroup of a semigroup S. It is evident that P(S) is a semigroup

with zero ∅ (the empty set), without a divisor of zero. Definitions and

notations which we use for the multiplication of elements of a semigroup S,

we will also use for the multiplication of elements of a semigroup P(S). For

an element a of a semigroup S, in terms of the products of subsets of S,

often the term ”{a}” will be replaced with the term ”a”.

A non-empty subset T of a semigroup S is a subsemigroup of S if T is

closed under an operation of S, i.e. if ab ∈ T , for all a, b ∈ T . If T is a

subsemigroup of a semigroup S, then we say that S is an over semigroup of

T . It is evident that the intersection of an arbitrary family of subsemigroups

of a semigroup S, if it is non-empty, is also a subsemigroup of S. Thus, if

A is a non-empty subset of S, then the intersection of all the subsemigroups

of S containing A is a subsemigroup of S, which we denote by ⟨A⟩, and

which we call a subsemigroup of S generated by A. A semigroup ⟨A⟩, under
the set inclusion, is the smallest subsemigroup of S containing A. If A =

{a1, a2, . . . , an}, then instead ⟨{a1, a2, . . . , an}⟩ we write ⟨a1, a2, . . . , an⟩, and
we say that ⟨A⟩ is generated by elements a1, a2, . . . , an. A subsemiogroup

⟨a⟩ of a semigroup S generated by the one element subset {a} of S we call

a monogenic or a cyclic subsemigroup of S. If A is a subset of a semigroup

S such that ⟨A⟩ = S, then we say that A generates a semigroup S and A is

a generating set of a semigroup S. The elements from A we call generator

elements or generators of S. A semigroup generated by its one element

subset we call a monogenic or a cyclic semigroup. The proof of the following

statement is elementary, so we will omit it.

Lemma 1.1 Let A be a non-empty subset of a semigroup S. Then

⟨A⟩ = ∪n∈Z+An.

Let A be a non-empty subset of a semigroup S. An element a ∈ S has a

decomposition into a product of elements from A if there are a1, a2, . . . , an ∈
A such that a = a1a2 · · · an. According to Lemma 1.1, A is a set of generators

of a semigroup S if and only if every element of S has a decomposition into a

product of elements from A. An element a ∈ S has a unique decomposition
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into a product of elements from A, if from a = a1a2 · · · an and a = b1b2 · · · bm,
ai, bj ∈ A, it follows that n = m and ai = bi, for every i ∈ {1, 2, . . . , n}.

Exercises

1. If e is a left identity (left zero) and f is a right identity (right zero) of a semigroup
S, then e = f and e is a unit (zero) of S.

2. Prove that a subsemigroup of a monogenic semigroup need not be monogenic.

3. A semigroup S is a left zero band if and only if its dual semigroup is a right zero
band.

4. Give an example of (finite) semigroup in which the set of all idempotents is not
a subsemigroup.

5. Give examples of semigroups with zero, and with or without a zero divisor.

1.2 Semigroups of Relations and Mappings

Let A be a non-empty set. Every subset of a Cartesian product A × A

(including the empty set) is a (binary) relation on A. The set ∆A =

{(a, a) | a ∈ A} is an identical relation (diagonal or equality relation) on A.

The set ωA = A×A is a universal (full) relation on A. If there is no danger

of confusion (if we know the set), then the identical and universal relation

we denote by ∆ and ω for short, respectively. The empty subset of A×A we

call the empty relation on A. If ξ is a binary relation on A, and if (a, b) ∈ ξ,

then we say that a and b are in the relation ξ, and often the term ”(a, b) ∈ ξ”

we replace with the term ”aξb”.

Let A be a non-empty set and let B(A) be the set of all binary relations

in A. For α, β ∈ B(A), a product of relations α and β is the relation αβ in

A defined by:

αβ = {(a, b) ∈ A×A | (∃x ∈ A) (a, x) ∈ α ∧ (x, b) ∈ β}.

The set B(A) with such a defined multiplication is a semigroup which we

call a semigroup of (binary) relations in the set A. For n ∈ Z+, by ξn we

denote the n-th power of the relation ξ in A in a semigroup B(A).
Let A be a non-empty set and let ξ ∈ B(A). The set domξ = {a ∈

A | (∃b ∈ A) aξb} we call a domain of relation ξ. The set ranξ = {b ∈
A | (∃a ∈ A) aξb} we call a range of relation ξ. For a ∈ S is aξ = {x ∈
A | aξx}, ξa = {x ∈ A |xξa}, and for X ⊆ A is Xξ = ∪{aξ | a ∈ X},
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ξX = ∪{ξa | a ∈ X}. The relation ξ−1 = {(a, b) ∈ A × A | bξa} is an

inverse relation of a relation ξ. It is evident that dom(ξ−1) = ranξ, and

ran(ξ−1) = domξ. The relation {(a, b) ∈ A × A | (a, b) /∈ ξ} is a converse

relation of ξ.

Let A be a non-empty set. An element ϕ ∈ B(A) is a partial mapping

(partial transformation) of a set A if |aϕ| = 1, for every a ∈ domϕ (by |X|
we denote the cardinality of the set X), i.e. if for every a ∈ domϕ there

exists a unique b ∈ A such that (a, b) ∈ ϕ. Using this definition, the empty

relation on A is a partial mapping in the set A. A set PT (A) of all the

partial mappings in the set A is a subsemigroup of a semigroup B(A), which
we call a semigroup of partial mappings (transformations) of the set A. For

φ,ψ ∈ PT (A), dom(φψ) = [ranφ ∩ domψ]φ−1, ran(φψ) = [ranφ ∩ domψ]ψ,

the following condition holds

a(φψ) = (aφ)ψ, for every a ∈ dom(φψ),

which we use as a definition of a multiplication of partial mappings.

Let φ and ψ be a partial mappings of a set A such that φ ⊆ ψ. Then

domφ ⊆ domψ and ranφ ⊆ ranψ. If we introduce notions X = ranφ,

Y = domψ, then we say that φ is a restriction of ψ on X, in notation,

φ = ψ/X, and that ψ is an extension of φ on Y .

Let X and Y be non-empty sets. If ϕ is a partial mapping of some set

such that domϕ = X and ranϕ ⊆ Y , then we say that ϕ is a mapping of the

set X into the set Y (or ϕ maps X into Y ), and we write ϕ : X 7→ Y . Based

on the definition of partial mapping, for every x ∈ X there exists a unique

y ∈ Y such that (x, y) ∈ ϕ, and then we write y = xϕ and ϕ : x 7→ y, and

we say that ϕ maps x into y. If ϕ : X 7→ Y , and if X = Y , then we say that

ϕ is a mapping of the set X (into itself). If ϕ : X 7→ Y , U ⊆ X and V ⊆ Y ,

then the set Uϕ = {y ∈ Y | (∃u ∈ U)uϕ = y} is an image of the subset U

(under a mapping ϕ), and the set V ϕ−1 = {x ∈ X |xϕ ∈ V } is an inverse

image of the subset V (under a mapping ϕ).

Let X and Y be non-empty sets and ϕ : X 7→ Y . A mapping ϕ is an

injection (injective, one-to-one) if for a, b ∈ X from aϕ = bϕ it follows a = b.

A mapping ϕ is a surjection (surjective, onto) if Xϕ = Y , i.e. if for every

y ∈ Y there exists x ∈ X such that xϕ = y. If ϕ is a surjection, then we say

that ϕ is a mapping of X onto Y , or that maps X onto Y . A mapping ϕ is

a bijection (bijective) if ϕ is both one-to-one and onto.

A mapping iX : X 7→ X of a non-empty set X defined by xiX = x, x ∈ X

is an identical mapping of a set X. Let X and Y be non-empty sets and let
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φ : X 7→ Y . If there exists ψ : Y 7→ X such that φψ = iX and ψφ = iY ,

then ψ is an inverse mapping of φ. Let a mapping φ be a partial mapping

of some set A. If ψ is an inverse mapping of φ, then ψ = φ−1, where φ−1 is

an inverse relation of φ. Conversely, if φ−1 is a partial mapping of a set A,

then φ−1 : Y 7→ X and φ−1 is an inverse mapping of φ. The proof of the

following lemma is elementary.

Lemma 1.2 Let X and Y be non-empty sets. A mapping φ : X 7→ Y has

an inverse mapping if and only if φ is a bijective mapping.

Let X be a non-empty set. For a mapping φ on a set X, we use two types

of notations. First one, a right notation of mapping: φ : x 7→ xφ, x ∈ X.

In this case we say that φ is a mapping of X right writing. A product of

mappings α and β of a set X right writing is a mapping αβ of a set X which

is defined by

x(αβ) = (xα)β, x ∈ X.

A set Tr(X) of all the mappings of a set X right writing with a previous

multiplication is a semigroup which we call a full semigroup of transformation

(mapping) of a set X right writing. A semigroup Tr(X) is a subsemigroup

of a semigroup PT (X). The second way, a left notation of mapping: φ :

x 7→ φx, x ∈ X. In this case we say that φ is a mapping of X left writing.

A product of mappings α and β of a set X left writing is a mapping αβ of

a set X which is defined by

(αβ)x = α(βx), x ∈ X.

A set Tl(X) of all the mappings of a set X left writing with a previous

multiplication is a semigroup which we call a full semigroup transformation

(mapping) of a set X left writing. It is clear that semigroups Tr(X) and

Tl(X) are dual. Thus, we usually discuss only one of these semigroups,

most often a semigroup Tr(X), so this semigroup is called a full semigroup

transformation (mapping) of a set X, for short.

Let a be an element of a semigroup S. A mapping λa ∈ Tr(X) defined by

xλa = ax, x ∈ S, is an inner left translation of a semigroup S. A mapping

ρa ∈ Tr(X) defined by xρa = xa, x ∈ S, is an inner right translation of a

semigroup S.

Except (partial) mappings, some other types of relations are very in-

teresting, especially partial ordering and equivalence relations. Let A be a

non-empty set. A relation ξ in a set A is:
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• reflexive, if aξa, for every a ∈ A, i.e. if ∆ ⊆ ξ;

• symmetric, if for a, b ∈ A, from aξb it follows bξa, i.e. if ξ ⊆ ξ−1;

• anti-symmetric, if for a, b ∈ A, from aξb and bξa it follows a = b, i.e.

if ξ ∩ ξ−1 ⊆ ∆;

• transitive, if for a, b, c ∈ A, from aξb and bξc it follows aξc, i.e. if

ξ2 ⊆ ξ.

A reflexive and transitive relation is a quasi-order. A reflexive, anti-symme-

tric and transitive relation is a partial ordering. A reflexive, symmetric and

transitive relation is an equivalence relation or equivalence, for short. There

will be more talk of partial ordering in Section 1.5. Here we will discuss

equivalence relations.

Let ξ be a binary relation on a set A. The relations ξl and ξr on A

defined by:

aξlb ⇔ aξ = bξ, aξrb ⇔ ξa = ξb, a, b ∈ A,

are equivalences on A.

Let ξ be an equivalence relation on a set A. Elements a, b ∈ A are ξ-

equivalent if aξb. A set aξ we call the equivalence class of an element a, or

ξ-class of an element a. It is evident that a ∈ aξ. The set of all ξ-classes we

denote by A/ξ and call it the factor set of a set A. A mapping ξ♮ : a 7→ aξ of

a set A onto a factor set A/ξ is a natural mapping of A determined with an

equivalence ξ. Let A and B be non-empty sets and ϕ : A 7→ B. A relation

kerϕ = {(x, y) ∈ A × A |xϕ = yϕ} in A we call the kernel of mapping ϕ. A

connection between equivalences and mappings gives the following lemma,

whose proof is elementary, so it is omitted.

Lemma 1.3 Let A be a non-empty set. If ϕ is a mapping on a set A into

a set B, then kerϕ is an equivalence relation on A.

Also, if ξ is an equivalence on A, then ker(ξ♮) = ξ.

The family {Ai | i ∈ I} of subsets on a set A is a partition of A if Ai ̸= ∅,
for every i ∈ I, A = ∪i∈IAi, and for all i, j ∈ I, Ai = Aj or Ai∩Aj = ∅. The
following lemma, whose proof is elementary, gives us a connection between

partitions of A and equivalences on that set.
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Lemma 1.4 Let ω = {Ai | i ∈ I} be a partition of a set A. Then the relation

ξω on A defined by

aξωb ⇔ (∃i ∈ I) a, b ∈ Ai, a, b ∈ A,

is an equivalence relation on a set A.

Conversely, let ξ be an equivalence on a set A. Then a family ωξ =

{aξ | a ∈ A} is a partition of A.

Also, mappings ω 7→ ξω and ξ 7→ ωξ are mutually inverse bijections

from the set of all partitions of A onto the set of all equivalences on A, and

conversely.

Let A be a non-empty set. An intersection of an arbitrary family of

transitive relations on A, if it is not empty, is also a transitive relation on

A. If ξ is a binary relation on the set A, an intersection of all transitive

relations on A containing ξ is a transitive relation, denoted by ξ∞. It is easy

to prove that ξ∞ = ∪n∈Z+ξn. The relation ξ∞ we call the transitive closure

of ξ. An intersection of an arbitrary family of equivalences on A is not

empty, because it contains the identical relation on A, and this intersection

is an equivalence on A. If ξ is a relation on A, then the intersection of all

equivalences containing ξ we call the equivalence relation generated by ξ, and

we denote it by ξe. It is evident that ξe = (ξ ∩ ξ−1 ∪∆)∞.

A mapping ν which every semigroup S joins with some relation on S, we

call the type of relation and denote by νS . Then we say that νS is a relation

of type ν on a semigroup S. If a semigroup is fixed, then the term ”νS” we

replace with ”ν”. If ν is some type of relation and if νS is an equivalence,

for every semigroup S, then we say that ν is a type of equivalence relation.

Let ν be a type of equivalence relation. A semigroup S is ν-simple if νS is a

universal relation on S, i.e. if S has only one νS-class.

Exercises

1. The empty relation on a set A is a zero of a semigroup B(A).
2. Let ϕ ∈ PT (A). Then kerϕ = ϕϕ−1.

3. For ϕ ∈ PT (A), the element a ∈ domϕ is a fix point of the partial mapping ϕ if
aϕ = a. The set of all fix points of the partial mapping ϕ we denote by fixϕ. Prove
that ϕ is an idempotent of PT (A) if and only if fixϕ = ranϕ.

4. For an infinite countable set A, S = {α ∈ Tr(A) |A−Aα is the infinite set} is a

subsemigroup of Tr(A) which we call Baer-Levi’s semigroup. Prove that Baer-Levi’s

semigroup has no idempotents.
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1.3 Congruences and Homomorphisms

Let ξ be an equivalence relation on a semigroup S. A relation ξ is a left

(right) congruence if for all a, b, c ∈ S, aξb implies caξcb (acξbc). A relation

ξ is a congruence relation if it is both a left and right congruence relation.

The following lemma follows immediately:

Lemma 1.5 An equivalence relation ξ on a semigroup S is a congruence if

and only if for all a, b, c, d ∈ S, aξb and cξd imply acξbd.

It is evident that the intersection of an arbitrary family of congruences

on a semigroup S is also a congruence on S. Here we determine that for an

arbitrary relation ξ on S, the intersection of all congruences on S containing ξ

is a congruence relation on S, which we call the congruence relation generated

by ξ, and denote by ξ#.

Let ξ be an equivalence on a semigroup S. Then we define ξ♭ by

ξ♭ = {(a, b) ∈ S × S | (∀x, y ∈ S1) (xay, xby) ∈ ξ}.

The important characteristic of a relation ξ♭ is outlined in the following

theorem:

Theorem 1.2 Let ξ be an equivalence relation on a semigroup S. Then the

relation ξ♭ is a congruence on S contained in ξ.

Also, for an arbitrary congruence η on S contained in ξ is η ⊆ ξ♭.

Proof. It is clear that ξ♭ is an equivalence on S. Also, if (a, b) ∈ ξ♭ and

c ∈ S, then (xcay, xcby) ∈ ξ, for all x, y ∈ S1. Hence, (ca, cb) ∈ ξ♭. Similarly,

we have that (ac, bc) ∈ ξ♭. Thus, ξ♭ is a congruence. It is clear that ξ♭ ⊆ ξ.

Let η be an arbitrary congruence on S contained in ξ. Assume (a, b) ∈ η.

Since η is a congruence, then (xay, xby) ∈ η, for all x, y ∈ S1, whence

(xay, xby) ∈ ξ, for all x, y ∈ S1, so (a, b) ∈ ξ♭. Therefore, η ⊆ ξ♭.
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Let S and T be semigroups. A mapping ϕ : S 7→ T is a homomorphism if

(aϕ)(bϕ) = (ab)ϕ, for all a, b ∈ S. Let ϕ be a homomorphism of a semigroup

S into a semigroup T . If ϕ is one-to-one, then ϕ is a monomorphism or

embedding, and then we say that S can be embeddable into T . If ϕ is onto,

then ϕ is an epimorphism. If ϕ is bijective, then ϕ is an isomorphism and

then semigroups S and T are isomorphic, in notation S ∼= T . It is easy

to prove that an inverse mapping of isomorphism is also an isomorphism.

Namely, two semigroups are isomorphic if and only if we can obtain one of

them from another by different notations of the elements. So, if semigroups

are isomorphic then we mean that they are the same. A homomorphism

of a semigroup S into itself is an endomorphism, and an isomorphism of S

into itself is an automorphism. If ϕ is a homomorphism of a semigroup S

into a semigroup T , then Sϕ is a subsemigroup of T . A semigroup T is a

homomorphic image of a semigroup S, if there exists an epimorphism of S

onto T . A semigroup T divides a semigroup S, and T is a divisor of S if T

is a homomorphic image of some subsemigroup of S.

Let A be a subsemigroup of semigroups S and T . A homomorphism

ϕ : S 7→ T is an A-homomorphism if aϕ = a, for every a ∈ A.

Let S and T be semigroups. A mapping ϕ : S 7→ T is an anti-homomor-

phism if (ab)ϕ = (bϕ)(aϕ), for all a, b ∈ S. A bijective anti-homomorphism

we call anti-isomorphism. Semigroups S and T are anti-isomorphic if there

is an anti-isomorphism of S onto T . It is evident that semigroups S and T

are anti-isomorphic if and only if S is isomorphic onto a semigroup
←−
T .

A mapping ϕ : S 7→ T is a partial homomorphism of partial semigroup S

into a partial semigroup T if for all a, b ∈ S the following holds: if a product

ab is defined in S, then a product (aϕ)(bϕ) is defined in T and holds (ab)ϕ =

(aϕ)(bϕ). A bijective partial homomorphism is a partial isomorphism.

Let ξ be a congruence on a semigroup S. Then the factor set S/ξ by the

multiplication defined with: (aξ)(bξ) = (ab)ξ, is a semigroup which we call

a factor semigroup, or factor for short, of a semigroup S under a congruence

ξ. A theorem immediately follows which gives a connection between congru-

ences and homomorphisms, and it is known as Homomorphism’s theorem.

Theorem 1.3 If ξ is a conguence on a semigroup S, then ξ♮ is a homomor-

phism of S onto S/ξ.

Conversely, if ϕ is a homomorphism of a semigroup S into a semigroup

T , then kerϕ is a congruence on S and a mapping Φ : S/kerϕ 7→ T defined

by: (akerϕ)Φ = aϕ, a ∈ S, is an isomorphism.
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For congruence ξ, a homomorphism ξ♮ is called the natural homomor-

phism induced by congruence ξ, while for homomorphism ϕ, a congruence

kerϕ is called the kernel of homomorphism ϕ. According to Homomorphism’s

theorem, we will make no difference between terms ”factor” and ”homomor-

phic image”.

Theorem 1.4 Let ξ and η be congruences on a semigroup S and let ξ ⊆ η.

Then

η/ξ = {(aξ, bξ) ∈ S/ξ × S/ξ | (a, b) ∈ η}

is a congruence on S/ξ and (S/ξ)/(η/ξ) ∼= S/η.

Proof. Let ϕ : S/ξ 7→ S/η be a mapping defined by: (aξ)ϕ = aη. For

aξ, bξ ∈ S/ξ, we have that [(aξ)(bξ)]ϕ = [(ab)ξ]ϕ = (ab)η = (aη)(bη) =

[(aξ)ϕ][(bξ)ϕ]. Hence, ϕ is a homomorphism. Also, (aξ)ϕ = (bξ)ϕ if and

only if aη = bη, i.e. (a, b) ∈ η. Thus, kerϕ = η/ξ, so η/ξ is a congruence and

by means of Theorem 1.3 we obtain that (S/ξ)/(η/ξ) ∼= S/η.

Let {Ai | i ∈ I} be a family of sets and let A =
∏
i∈I Ai be a Cartesian

product of family {Ai | i ∈ I}. The elements from A we denote by (ai)i∈I
(ai ∈ Ai, for every i ∈ I), or (ai) for short if the index set is well known.

For i ∈ I, the mapping πi : A 7→ A defined with: aπi = ai, if a = (aj)j∈I , we

call the i-th projection, and the element ai we call the i-th coordinate of an

element a.

Let {Si | i ∈ I} be a family of semigroups and let S be a Cartesian product

of family {Si | i ∈ I}. We define the multiplication on S a componentwise,

i.e. (ai)i∈I(bi)i∈I = (aibi)i∈I , for (ai)i∈I , (bi)i∈I ∈ S. Then S along with

this multiplication is a semigroup, and for every i ∈ I, a projection πi is an

epimorphism. Every semigroup isomorphic to a semigroup S we call a direct

product of the family of semigroups {Si | i ∈ I}.
A semigroup S is a subdirect product of the family of semigroups {Si | i ∈

I}, if S is isomorphic to some subsemigroup T of a direct product
∏
i∈I Si

such that the following holds: Tπi = Si, for every i ∈ I.

A congruence ξ on a semigroup S divides elements a and b from S if a

and b are in different ξ-classes, i.e. if (a, b) /∈ ξ. A family {ξi | i ∈ I} of

non-identical congruences on a semigroup S divides elements from S if for

every pair of different elements a and b from S there is a congruence from

this family which divide it. It is easy to prove:



1.3. CONGRUENCES AND HOMOMORPHISMS 15

Lemma 1.6 A family {ξi | i ∈ I} of non-identical congruences on a semi-

group S divides elements from S if and only if ∩i∈Iξi = ∆.

Theorem 1.5 Let a semigroup S be a subdirect product of a family of semi-

groups {Si | i ∈ I}. Then, the family {ξi | i ∈ I} of congruences on S which

corresponds to congruences kerπi, i ∈ I, is the family of congruences on S

which divide elements from S.

Conversely, if {ξi | i ∈ I} is a family of non-identical congruences on a

semigroup S which divides elements from S, then S is a subdirect product of

the family of semigroups {S/ξi | i ∈ I}.

Proof. Let {ξi | i ∈ I} be a family of non-identical congruences on a semi-

group S. We define a mapping ϕ : S 7→
∏
i∈I Si, with aϕ = (aξi)i∈I , a ∈ S.

It is easy to prove that ϕ is a homomorphism and (Sϕ)πi = S/ξi, for every

i ∈ I. If a, b ∈ S are some different elements, then there is i ∈ I such that

(a, b) /∈ ξi, i.e. aξi ̸= bξi, so aϕ ̸= bϕ. Thus, ϕ is a monomorphism. Hence,

S is a subdirect product of the family {S/ξi | i ∈ I}.
The converse follows immediately.

According to the Homomorphism theorem, we can present Theorem 1.5

in a different way.

Corollary 1.1 Let S be a semigroup and let {Si | i ∈ I} be a family of

semigroups. Then S is a subdirect product of the family {Si | i ∈ I} if and

only if the following conditions hold

(i) for every i ∈ I there exists an epimorphism φi of S onto Si;

(ii) for a, b ∈ S, a ̸= b, there is i ∈ I such that aϕi ̸= bφi.

According to Corollary 1.1 we determine

Corollary 1.2 Let a semigroup S be a subdirect product of a family of semi-

groups {Sα |α ∈ Y }, and for every α ∈ Y , let Sα be a subdirect product of

a family of semigroups {Tαi | i ∈ Iα}. Then S is a subdirect product of the

family of semigroups {Tαi | i ∈ Iα, α ∈ Y }.

On a Cartesian product I × Λ of the non-empty sets I and Λ we define

a multiplication by

(i, λ)(j, µ) = (i, µ), i, j ∈ I, λ, µ ∈ Λ.
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Then I×Λ with this multiplication is a band, I×Λ is isomorphic to a direct

product of a left zero and a right zero band. Every semigroup isomorphic

to a direct product of a left zero and a right zero band we call a rectangular

band.

Let C be a class of semigroups. A congruence ξ on a semigroup S is a

C-congruence on S if the factor S/ξ is from class C. Decomposition of a semi-

group S which corresponds to a C-congruence we call the C-decomposition

of a semigroup S, and a corresponding factor semigroup we call the C-

homomorphic image of S.

If C is a class of bands, then we have band congruence, band decomposi-

tion and a band homomorphic image. If C is a class of semilattices, then we

have semilattice congruence, semilattice decomposition and a semilattice ho-

momorphic image. If C is a class of rectangular bands, then we have matrix

congruence and matrix decomposition, and if C is a class of left (right) zero

bands, then we have left (right) zero band congruence and left (right) zero

band decomposition.

A congruence ξ on a semigroup S is a band congruence if and only if

aξa2, for every a ∈ S, i.e. if and only if every ξ-class of S is a subsemigroup

of S. Let ξ be a band congruence on a semigroup S and let B = S/ξ.

For i ∈ B, let Si = i(ξ♮)−1. Then Si is a subsemigroup of S, for every

i ∈ B, S = ∪i∈BSi, and for all i, j ∈ B is SiSj ⊆ Sij , and then we say

that S is a band B of semigroups Si, i ∈ B. The semigroups Si, i ∈ B

are components of this band decomposition. If C is a class of semigroups

and if for every i ∈ B, Si belongs to C, then we say that S is a band B of

semigroups Si, i ∈ B, from C. If B is a semilattice (chain, rectangular band,

left zero band, right zero band), then S is a semilattice (chain, rectangular

band or matrix, left zero band, right zero band) B of semigroups Si, i ∈ B.

When ξ is the smallest band (semilattice) congruence on S, S/ξ will be

called a greatest band (semilattice) homomorphic image of S. By analogy,

we introduce definitions for some other types of bands and semilattices.

Exercises

1. Every semigroup S can be embeddable into a semigroup Tr(S1).

2. Let φ and ψ be homomorphisms of a semigroup S onto semigroups T and U ,
respectively, such that kerφ ⊆ kerψ. Then, there is a unique homomorphism θ of T
onto U such that φθ = ψ.

3. If ξ is a relation on a semigroup S, then ξ# = (ξc)c = [ξc∪ (ξc)−1∪∆S ]
∞, where

ξc = {(e, f) | (∃x, y ∈ S1)(∃a, b ∈ S) (a, b) ∈ ξ, e = xay, f = xby}.
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4. A semigroup S is subdirectly irreducible if whenever S is a subdirect product of
the family of semigroups {Si | i ∈ I}, then πi is an isomorphism, for some i ∈ I.

The following conditions on a semigroup S are equivalent:

(a) S is subdirectly irreducible;
(b) the intersection of an arbitrary family of non-identical congruences on S is a

non-identical congruence on S;
(c) S has the smallest non-identical congruence.

5. Every semigroup is a subdirect product of subdirectly irreducible semigroups.
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1.4 Maximal Subgroups and Monogenic
Semigroups

A semigroup S is a group if S has an identity e and for every a ∈ S there

exists b ∈ S such that ab = ba = e. The element b is unique in a group G

with such properties, we denote it by a−1 and call the group inverse of a,

or the inverse of a in a group G. A subsemigroup G of a semigroup S is a

subgroup of S, if G is a group. It is easy to prove that a non-empty subset G

of a semigroup S is a subgroup of S if and only if aG = Ga = G, for every

a ∈ G.

A subgroup G of a semigroup S is a maximal subgroup of S if there is

no subgroup H of S such that G ⊂ H. The following theorem describes a

maximal subgroup of a semigroup.

Theorem 1.6 Let e be an idempotent of a semigroup S. Then there exists

a maximal subgroup of S with an identity e, which we denote by Ge, and

Ge = {a ∈ S | a = ea = ae, (∃a′ ∈ S) e = aa′ = a′a}
= {a ∈ S | a ∈ eS ∩ Se, e ∈ aS ∩ Sa}.

Proof. It is evident that every subgroup of S with an identity e is contained

in the first set and one is contained in the second. The first set is a subgroup
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of S with an identity e. Let a be an element of the second set. Then

a = ex = ye, e = az = wa, for some x, y, z, w ∈ S. From this it follows ea =

eex = ex = a, and similarly ae = a. Furthermore, eze = eeze = ewaze =

ewee = ewe, whence e = ee = aze = a(eze) and e = ee = ewa = (ewe)a.

Thus, e = aa′ = a′a, where a′ = eze = ewe, so the element a belongs to the

first set.

Theorem 1.7 If e and f are two different idempotents from a semigroup

S, then Ge ∩Gf = ∅.

Proof. Assume a ∈ Ge ∩Gf . Then a = ea = ae = fa = af , e = aa′ = a′a

and f = aa′′ = a′′a, for some a′, a′′ ∈ S. Hence e = aa′ = faa′ = fe =

a′′ae = a′′a = f . Thus, from e ̸= f it follows Ge ∩Gf = ∅.

If S is a semigroup with an identity e, an element a ∈ S is invertible

if there is b ∈ S such that ab = ba = e. Then a maximal subgroup Ge is

called the group of identity, and all of its elements are invertible elements of

a semigroup S.

Lemma 1.7 An element a of a semigroup S with an identity is invertible

if and only if aS = Sa = S.

The following result is very useful for further work and it is known as

Munn’s lemma.

Lemma 1.8 Let S be a semigroup and let x be an element of S such that

xn belongs to a subgroup G of S for some n ∈ Z+. If e is the identity of G,

then

(1) ex = xe ∈ Ge;

(2) xm ∈ Ge, for any m ∈ Z+, m ≥ n.

Proof. (1) Let y be an inverse element of the element xn in G. Then

ex = yxn+1 = yxxn = yxxne = yxxnxny = yx2n+1y,

and similarly we prove that xe = yx2n+1y. Thus, ex = xe. Since ey = ye =

y, then

xy = xey = exy = yxnxy = yxxny = yxe = yex = yx,
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whence by induction we obtain that xky = yxk, for every k ∈ Z+. Assume

z = xn−1y = yxn−1. Then zxe = yxn−1xe = yxne = e, and similarly

exz = e. Furthermore, e(ex) = (ex)e = ex, so ex = xe ∈ Ge.

(2) Let m ∈ Z+, m > n. Assume r ∈ Z+ such that nr > m, and assume

that y is an inverse of the element xn in Ge. Then x
nr−myr = yrxnr−m, and

if assume that w = xnr−myr, then we have

wxm = yrxnr−mxm = yrxnr = (yxn)r = e.

In a similar way we prove that xmw = e. On the other hand, exm =

exnxm−n = xnxm−n = xm, and similarly xme = xm. Thus, by Theorem 1.6,

xm ∈ Ge.

Let S be a semigroup. The cardinality |S| of a semigroup S we call the

order of a semigroup S. If |S| is a finite number, then we say that S is a finite

order or a finite semigroup. Otherwise, we say that S is an infinite order or

an infinite semigroup. A semigroup S is trivial if |S| = 1. For an element

a ∈ S, the order of element a is the order of a monogenic subsemigroup

⟨a⟩ of S. The order of an element a we denote by r(a). If ⟨a⟩ is a finite

semigroup, then the order of a is finite, otherwise, the order of a is infinite.

An element a of a semigroup S is periodic if there are m,n ∈ Z+, such

that am = am+n. Let a be a periodic element of a semigroup S. The set {m ∈
Z+ | (∃n ∈ Z+) am = am+n} is a subset of integers, so it has the smallest

element which we call the index of the element a (index of a semigroup ⟨a⟩)
and denote by i(a). The smallest element of the set {n ∈ Z+ | ai(a) = ai(a)+n}
we call the period of the element a (period of a semigroup ⟨a⟩) and denote it

by p(a).

Theorem 1.8 Let a be an element of a semigroup S.

If a is not a periodic element, then the order of a is infinite and the

monogenic subsemigroup ⟨a⟩ of S is isomorphic to the additive semigroup

(Z+,+) of integers.

If a is a periodic element, then the order r(a) = i(a) + p(a) − 1 of a is

finite, Ka = {ai(a), ai(a)+1, . . . , ai(a)+p(a)−1} is a maximal subgroup of ⟨a⟩,
and Ka is a monogenic group whose order is p(a).

Proof. If a is non-periodic, then it is evident that the order of a is infi-

nite and the mapping ϕ : Z+ 7→ ⟨a⟩ defined by nϕ = an, n ∈ Z+ is an

isomorphism.
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Let a be a periodic element. According to the definition of an index

and the period of an element, it is clear that a, a2, a3, . . . , ai(a)+p(a)−1 are

different. Assume an arbitrary n ∈ Z+. Then n = kp(a) + m, 0 ≤ k, 0 ≤
m ≤ p(a) − 1, so ai(a)+n = ai(a)+kp(a)+m = ai(a)+m ∈ Ka. Hence, ⟨a⟩ = {a,
a2, . . . , ai(a)+p(a)−1}, and the order of ⟨a⟩ is r(a) = i(a) + p(a) − 1. It is

evident that Ka is isomorphic to the additive group of the rest of integers

modulo p(a), that the order of Ka is p(a) and that Ka is a maximal subgroup

of ⟨a⟩.

Based on the previous theorems, monogenic semigroups are isomorphic

if and only if they are the same index and the same period. A monogenic

semigroup with an index i and period p we denote by M(i, p).

A semigroup S is periodic if each of its elements is periodic.

Exercises

1. Denote as S(X) the set of all bijective mappings of the set X. Then S(X) is a
group of identity of monoid Tr(X).

The group S(X) we call the symmetric group or the group of permutations of X.

2. Every group can be embeddable into the group of permutations of some set.

3. An element a of a semigroup S is periodic if and only if there exists n ∈ Z+ such
that an ∈ E(S).

4. Every finite semigroup is periodic.

5. An infinite monogenic semigroup is a subdirect product of finite monogenic

semigroups.
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1.5 Ordered Sets and Lattices

Let us once again be reminded that a reflexive, antisymmetric and tran-

sitive relation on a set A is a partial ordering on A. Usually, we denote it

by ≤. A set A supplied with partial ordering is a partially ordered set. The

notion poset will be used as a synonym for the notion ”partially ordered set”.
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If partial ordering ≤ on a set A is linear, i.e. if for all a, b ∈ A is a ≤ b or

b ≤ a, then A is a linear partially ordered set or a chain. If ≤ is a partial

ordering on a set A, then by < we denote a relation on A defined by:

a < b ⇔ a ≤ b ∧ a ̸= b, a, b ∈ A,

and by ≥ and > we denote the inverse relations of ≤ and <, respectively.

Let A and B be ordered sets and φ : A 7→ B. A mapping φ is an isotone

(save order) if for a, b ∈ A, from a ≤ b it follows that aφ ≤ bφ. A mapping

φ is antitone if for a, b ∈ A, from a, b ∈ A it follows that aφ ≥ bφ. The

ordered sets A and B are isomorphic if there is a bijection φ : A 7→ B such

that for every x, y ∈ A holds

x ≤ y ⇔ φ(x) ≤ φ(y).

Let A be an ordered set. An element a ∈ A is a minimal (maximal)

element of the set A if there is no x ∈ A such that x < a (x > a), i.e. if for

x ∈ A, from x ≤ a (x ≥ a) it follows that x = a. An element a ∈ A is the

smallest (the biggest) element of a set A if a ≤ x (a ≥ x), for every x ∈ A.

The smallest (the biggest) element of a set A, if it exists there, is a minimal

(maximal) element of a set A, while the opposite does not hold. A set A

can have a lot of minimal (maximal) elements, while it can have only one

smallest (biggest) element.

Let X be a non-empty subset of an ordered set A. An element a ∈ A is

an upper bound (a lower bound) of a set X if x ≤ a (x ≥ a), for every x ∈ X.

An element a ∈ A is a least upper bound or join (a greatest lower bound or

meet) of the set X, in notation a = ∨X (a = ∧X), if the following holds:

(i) a is an upper (lower) bound of a set X;

(ii) if b ∈ A is an upper (lower) bound of a set X, then a ≤ b (a ≥ b).

If X = {xi | i ∈ I}, then we write ∨i∈Ixi (∧i∈Ixi) instead of ∨X (∧X), and

if I = {1, 2, . . . , n}, n ∈ Z+, n ≥ 2, then we write

x1 ∨ x2 ∨ · · · ∨ xn (x1 ∧ x2 ∧ · · · ∧ xn),

instead of ∨i∈Ixi (∧i∈Ixi).
An ordered set A is an upper (lower) semilattice if every two-element

subsets of A have a join (a meet). Using induction in that case we prove

that every finite subset of A has a join (a meet). For infinite subsets of A
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it does not hold. An ordered set A is a lattice if A is both an upper and a

lower semilattice.

If A is an upper (lower) semilattice, then the mapping ∨ : A × A 7→ A

(∧ : A×A 7→ A) defined by

(1) ∨ : (a, b) 7→ a ∨ b, a, b ∈ A, (∧ : (a, b) 7→ a ∧ b, a, b ∈ A),

is an associative and commutative operation on the set A. Using this lower

semilattice (upper semilattice, lattice) we can define it in some other way.

We would like to remind the reader that we use the term semilattice in the

theory of semigroups for a commutative band. Here we give an explanation

of the connection between this term and the term for lower semilattice. If

S is a semigroup, then the relation ≤ of the set E(S) of all the idempotents

of S, defined by

e ≤ f ⇔ ef = fe = e, e, f ∈ E(S),

is a partial order which we call a natural partial order on E(S). If S is a

band, then we have an order on S. If S is a commutative band, then under its

natural order S is a lower semilattice. Conversely, if A is a lower semilattice,

then under the operation ∧, A is a commutative band. The operations ∨
and ∧ we call a union and an intersection, respectively.

Now, we give an another definition of a lattice: If L is a non-empty set

and if ∧ and ∨ are binary operations on the set L which satisfies the following

conditions:

(L1) idempotent: x ∧ x = x, x ∨ x = x;

(L2) commutative: x ∧ y = y ∧ x, x ∨ y = y ∨ x;
(L3) associative: x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∨ (y ∨ z) = (x ∨ y) ∨ z;
(L4) absorption: x ∧ (x ∨ y) = x, x ∨ (x ∧ y) = x;

for all x, y, z ∈ L, then L is a lattice. If L is a lattice in the sense of the first

definition, then under the operations ∧ and ∨ defined by (1) L is a lattice in

the sense of the second definition. Conversely, if L is a lattice in the sense

of the second definition, then on L we define an order by

a ≤ b ⇔ a ∧ b = a, a, b ∈ L,

or, equivalently, by

a ≤ b ⇔ a ∨ b = b, a, b ∈ L,
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and under this order the set L is a lattice in the sense of the first definition.

So, for a lattice we can use both definitions.

Also, we immediately prove that the definitions of a chain, as a linear

order set and as a semilattice for which is xy = x or xy = y, for all x, y, are

equivalent.

A subset K of a lattice L is a sublattice of L if x ∧ y, x ∨ y ∈ K, for all

x, y ∈ K. If L is a lattice and a, b ∈ L such that a ≤ b, then the interval [a, b]

of a lattice L is a sublattice of L defined by: [a, b] = {x ∈ L | a ≤ x ≤ b}.
Let L andK be lattices and ϕ : L 7→ K. A mapping ϕ is a homomorphism

of lattice L into a lattice K if (a∨ b)ϕ = aϕ∨ bϕ and (a∧ b)ϕ = aϕ∧ bϕ, for
all a, b ∈ L. A mapping ϕ is a monomorphism or embedding of a lattice L

into K if ϕ is homomorphism and one-to-one, and then we say that a lattice

L can be embedded into K. A mapping ϕ is an isomorphism of lattices L

and K if ϕ is a homomorphism and bijection.

Theorem 1.9 Let L1 = (L1,≤1) and L2 = (L2,≤2) be lattices and let

φ : L1 7→ L2 be a bijection. Then the following conditions are equivalent

(i) φ is an isomorphism of lattice order sets L1 and L2;

(ii) for all x, y ∈ L1 the following holds

φ(x ∧1 y) = φ(x) ∧2 φ(y), φ(x ∨1 y) = φ(x) ∨2 φ(y).

Proof. (i)⇒(ii) Let x, y ∈ L1. If we want to prove the equation φ(x∧1y) =

φ(x)∧2φ(y), we should prove that φ(x∧1y) is a meet of the set {φ(x), φ(y)}.
Since x ∧1 y ≤1 x and x ∧1 y ≤1 y and since φ is isotone, we have that

φ(x ∧1 y) ≤2 φ(x) and φ(x ∧1 y) ≤2 φ(y), i.e. φ(x ∧1 y) ≤2 φ(x) ∧2 φ(y).

Suppose that for any a ∈ L2, a ≤2 φ(x) and a ≤2 φ(y). Since φ is isotone,

then it follows that φ−1(a) ≤1 x and φ−1(a) ≤1 y, whence φ
−1(a) ≤1 x∧1 y.

From this we obtain that a ≤2 φ(x∧1 y). Therefore, φ(x∧1 y) is the greatest

lower bound of the set {φ(x), φ(y)}.
Similarly, we prove that φ(x ∨1 y) = φ(x) ∨2 φ(y).

(ii)⇒(i) Let x ≤1 y, for some x, y ∈ L1. Then x ∧1 y = x, so we have

φ(x) = φ(x ∧1 y) = φ(x) ∧2 φ(y),

whence φ(x) ≤2 φ(y), i.e. φ is an isotone mapping.

Now, let a ≤2 b, for some a, b ∈ L2, where x = φ−1(a) and y = φ−1(b).

Since

φ(x ∧1 y) = φ(x) ∧2 φ(y) = a ∧2 b = a,
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then it follows that

φ−1(a) ∧1 φ
−1(b) = x ∧1 y = φ−1(φ(x ∧1 y)) = φ−1(a).

Hence, φ−1(a) ≤1 φ
−1(b), so φ−1 is an isotone mapping.

Lemma 1.9 Any isotone bijection with an isotone inverse is a lattice iso-

morphism.

Proof. Let L1 and L2 be lattices and let φ : L1 → L2 be an isotone

bijection with the isotone inverse φ−1 : L2 → L1. Let x, y ∈ L1. If we want

to prove the equation φ(x∧ y) = φ(x)∧φ(y), we should prove that φ(x∧ y)
is a meet of the set {φ(x), φ(y)}. Since x ∧ y ≤ x and x ∧ y ≤ y and since

φ is isotone, we have that φ(x ∧ y) ≤ φ(x) and φ(x ∧ y) ≤ φ(y), whence

φ(x ∧ y) ≤ φ(x) ∧ φ(y).
Suppose that a ∈ L2 and let a ≤ φ(x) and a ≤ φ(y). Since φ−1 is

isotone, then φ−1(a) ≤ x and φ−1(a) ≤ y, whence φ−1(a) ≤ x ∧ y. Hence

a ≤ φ(x ∧ y). Therefore, φ(x ∧ y) is the greatest lower bound of the set

{φ(x), φ(y)}, i.e. φ(x ∧ y) ≤ φ(x) ∧ φ(y). Thus, φ(x ∧ y) = φ(x) ∧ φ(y).
Similarly, throught duality we can prove φ(x ∨ y) = φ(x) ∨ φ(y).
According to Theorem 1.9, φ is a lattice isomorphism.

Let {Li | i ∈ I} be a family of lattices. On a Cartesian product L =∏
i∈I Li we define the binary operations ∨ and ∧ by means of coordinates,

i.e. by

(xi)i∈I ∨ (yi)i∈I = (xi ∨ yi)i∈I , (xi)i∈I ∧ (yi)i∈I = (xi ∧ yi)i∈I ,

for (xi)i∈I , (yi)i∈I ∈ L. Then L with such a defined operation is a lattice and

every lattice isomorphic to L we call a direct product of lattices Li, i ∈ I.

Just like in the theory of semigroups, a projection πi is a homomorphism of a

lattice L onto a lattice Li. Every lattice L is isomorphic to a direct product∏
i∈I Li, where for some i ∈ I a lattice Li is isomorphic to L and |Lj | = 1,

for every j ∈ I, j ̸= i. This decomposition we call a trivial decomposition

into a direct product of lattices. A lattice L is directly indecomposable if L

only has a trivial decomposition into a direct product of lattices.

A lattice L is distributive for a meet (for a join) if

(2) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), (x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)),
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for all x, y, z ∈ L. It is easy to prove that a lattice L is distributive for a

meet if and only if it is distributive for a join, so a lattice for which one of

the conditions from (2) holds we call a distributive lattice.

An element 0 ∈ L is a zero of a lattice L if x ∧ 0 = 0, x ∨ 0 = x, for

every x ∈ L. If a lattice L has a zero, then it is unique and it is the smallest

element in L, and conversely, if a lattice L has the smallest element, then it

is the zero in L. An element 1 ∈ L is an identity of a lattice L if x ∧ 1 = x,

x∨1 = 1, for every x ∈ L. If a lattice L has an identity, then it is unique and

it is the greatest element in L, and conversely, if a lattice L has the greatest

element, then it is an identity in L. If a lattice L has a zero (an identity),

then we denote it by 0 (1). A lattice with a zero and an identity we call a

bounded lattice.

A lattice L is complete for a join (complete for a meet) if for every A ⊆ L

there exists ∨A (∧A), and a lattice is complete if it is both complete for a

join and for a meet. If a lattice L is complete for a join (complete for a

meet), then ∨L (∧L) is an identity (a zero) of a lattice L. If a lattice L is

complete for a join (for a meet) and has a zero (identity), then we can prove

that L is also complete for a meet (for a join).

By means of the inductive method, we prove that in a distributive lattice

L, for every a ∈ L and every finite subset {xi | i ∈ I} of L the following holds:

a ∧ (∨i∈Ixi) = ∨i∈I(a ∧ xi), a ∨ (∧i∈Ixi) = ∧i∈I(a ∨ xi).

If {xi | i ∈ I} is an infinite subset, previous equations in distributive lattices

do not hold. For this reason we introduce the following definitions: a lattice

L is complete for a join (for a meet), i.e. it is infinitely distributive for a

meet (for a join) if for every a ∈ L and every subset {xi | i ∈ I} of L the

following holds:

a ∧ (∨i∈Ixi) = ∨i∈I(a ∧ xi), (a ∨ (∧i∈Ixi) = ∧i∈I(a ∨ xi)).

A lattice L is infinitely distributive if it is both infinitely distributive for a

join and for a meet.

Let L be a lattice with a zero 0 and an identity 1. An element y ∈ L is

a complement of an element x ∈ L if x ∧ y = 0 and x ∨ y = 1. In that case,

the element x is a complement of y, i.e. the relation ”to be a complement”

is symmetric. If L is a distributive lattice with a zero and an identity,

then every element from L has only one complement, and a complement of

x ∈ L we denote by x′. Boolean algebra is a bounded distributive lattice



26 CHAPTER 1. INTRODUCTION

in which every element has a complement. An example of Boolean algebra

is a partitive set P(A) of all the subsets of the set A, under the operations

of sets union and sets intersection. The Boolean algebra P(A) we call the

Boolean algebra of all the subsets of the set A.

We immediately prove the following lemma:

Lemma 1.10 Let L be a distributive lattice with a zero 0 and an identity 1,

and B(L) be the set of all the elements from L which have a complement.

Then B(L) is a Boolean algebra.

If B is an arbitrary sublattice of L which is a Boolean algebra with a zero

0 and an identity 1, then B ⊂ B(L).

The Boolean algebra B(L) we call the greatest Boolean subalgebra of a

distributive lattice L.

Theorem 1.10 Every complete Boolean algebra is infinitely distributive.

Proof. Let B be a complete Boolean algebra, let a ∈ B and let {xi | i ∈ I}
be a subset of B. Assume u = ∨i∈I(a ∧ xi). For every i ∈ I is a ∧ xi ≤
a ∧ (∨i∈Ixi), whence

u = ∨i∈I(a ∧ xi) ≤ a ∧ (∨i∈Ixi).

On the other hand, a ∧ xi ≤ u, for every i ∈ I, so

xi = 1 ∧ xi = (a ∧ xi) ∨ (a′ ∧ xi) ≤ u ∨ a′,

for every i ∈ I. Now, we determine that ∨i∈Ixi ≤ u ∨ a′, whence

a ∧ (∨i∈I) ≤ a ∧ (u ∨ a′) = (a ∧ u) ∨ (a ∧ a′) = a ∧ u ≤ u.

Thus, B is infinitely distributive for a meet. Similarly, we prove that B is

infinitely distributive for a join.

Let L be a lattice with a zero 0. An element a ∈ L, a ̸= 0, is an atom of

a lattice L if there is no x ∈ L such that 0 < x < a, i.e. if a is a minimal

element in the ordered set L − {0}. A lattice L with a zero is atomic if for

every x ∈ L, x ̸= 0, there exists an atom a ∈ L such that a ≤ x.
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Theorem 1.11 Let B be a complete Boolean algebra with the set of atoms

A. Then B is atomic if and only if for every x ∈ B there is Ax ⊆ A such

that x = ∨Ax.
Also, the set Ax is uniquely determined.

Proof. Let B be an atomic Boolean algebra and let x ∈ B. Let Ax be the

set of all the atoms contained in the interval [0, x], and let y = ∨Ax. Let

z = y′ ∧ x. If z ̸= 0, then there exists b ∈ A such that b ≤ z. Since z ≤ x,

then b ≤ x, so b ∈ Ax, thus it follows that b ≤ ∨Ax = y, i.e. b ∧ y = b. On

the other hand,

b = b ∧ z = b ∧ y ∧ z = b ∧ y ∧ y′ ∧ x = 0,

that contradicts the definition of atoms. Thus, z = 0, whence

x = x ∧ 1 = x ∧ (y ∨ y′) = (x ∧ y) ∨ (x ∧ y′) = (x ∧ y) ∨ 0 = x ∧ y,

so x ≤ y. Since y ≤ x, then x = y, i.e. x = ∨Ax.
The converse follows immediately.

Now, we will prove the second part of the theorem. Assume that ∨P =

∨Q, for some P,Q ⊆ A. Assume a ∈ P . Then a ≤ ∨P = ∨Q, i.e. a ∧
(∨Q) = a. If a /∈ Q, then a ∧ b = 0, for every b ∈ Q, because a and b are

atoms. According to Theorem 1.10 we have that B is infinitely distributive,

so a = a ∧ (∨Q) = ∨b∈Q(a ∧ b) = 0, which is a contradiction based on the

definition of atoms. Thus, a ∈ Q, so P ⊆ Q. Similarly we prove the converse

inclusion. Therefore, P = Q.

Corollary 1.3 Let B be a complete Boolean algebra. Then B is atomic if

and only if B is isomorphic to a Boolean algebra of subsets of some set.

Proof. If B is a complete Boolean algebra with a set of atoms A, then B

is isomorphic to a Boolean algebra P(A).

Conversely, the Boolean algebra P(A) of all the subsets of a non-empty

set A is atomic and atoms in P(A) are singleton sets {a}, a ∈ A.

At the end of this section we give the Axiom of choice and without the

proof of its most famous equivalent - Zorn’s lemma.
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Axiom of choice 1

If A is a non-empty set, then there exists a mapping ψ : P(A) 7→ A such

that Xψ ∈ X, for every non-empty subset X of A.

Lemma 1.11 (Zorn’s lemma) Let A be an ordered set with the property

that every chain in A has an upper bound. Then for every element x ∈ A

there exists at least one maximal element a ∈ A such that x ≤ a.

More about the Axiom of choice and its equivalents, about the ordered

sets, the reader can find in the books by M. R. Tasković [1], [2]. For more

on the lattice theory, we suggest books by G. Birkhof [1], G. Grätzer [1] and

G. Szász [2].

The radicals R(ϱ) and T (ϱ) of a binary relation ϱ on a semigroup S are

defined as follows:

(a, b) ∈ R(ϱ) ⇔ (∃m,n ∈ Z+) amϱbn, (a, b) ∈ T (ϱ) ⇔ (∃n ∈ Z+) anϱbn.

Consider the mappings R : ϱ 7→ R(ϱ) and T : ϱ 7→ T (ϱ) on the lattice

B(S) of all binary relations on S. For an arbitrary ϱ ∈ B(S) we have that

ϱ ⊆ T (ϱ) ⊆ R(ϱ), which means that T and R are extensive mappings.

Furthermore, for ϱ1, ϱ2 ∈ B(S), ϱ1 ⊆ ϱ2 implies T (ϱ1) ⊆ T (ϱ2) and R(ϱ1) ⊆
R(ϱ2). The mappings satisfying such a condition are called isotone. Also,

T (T (ϱ)) = T (ϱ) and R(R(ϱ)) = R(ϱ), for each ϱ ∈ B(S), so T and R are

idempotent mappings. Finally, we have that R(T (ϱ)) = T (R(ϱ)) = R(ϱ),

for each ϱ ∈ B(S), i.e. RT = TR = R in the semigroup of mappings on

B(S). Recall that extensive, isotone and idempotent mappings on lattices

are known as closure mappings. Thus, the previous observations can be

summarized by the following lemma:

Lemma 1.12 Let S be a semigroup. Then the mappings R : ϱ 7→ R(ϱ) and

T : ϱ 7→ T (ϱ) are closure mappings on the lattice B(S) of all the binary

relations on S and RT = TR = R.

1One example of the axiom of choice can be found in The Mountain Wreath in 1847
written by the great Serbian poet Petar Petrović Njegoš and published in serbian in Vienna.

The verse (2310) in Vasa D. Mihailović’s translation is cited here:

”Various tree - barks, wings, and speed of feet, and the array of seeming disorder,
always follow some definite order”.
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Exercises

1. The set E(A) of all the equivalence relations on the set A, ordered by inclusion,
is a lattice, where ξ ∧ η = ξ ∩ η and ξ ∨ η = (ξ ∪ η)e, for all ξ, η ∈ E(A). The lattice
E(A) is complete and it has the identity ωA and the zero ∆A.

The lattice E(A) we call the lattice of equivalences on A.

2. Let ξ, η ∈ E(A). Then ξ∨η = (ξη)∞. If ξη = ηξ, then ξη ∈ E(A) and ξ∨η = ξη.

3. The set Con(S) of all congruences on a semigroup S, ordered by inclusion, is a
lattice, where ξ ∧ η = ξ ∩ η and ξ ∨ η = (ξ ∪ η)#, for all ξ, η ∈ Con(S). The lattice
Con(S) is complete and it has the identity ωS and the zero ∆S .

The lattice Con(S) we call the lattice of congruences on S.

4. Let L be a lattice. Then for all a, b, c ∈ L, from a ≤ c it follows that a∨ (b∧ c) ≤
(a ∨ b) ∧ c.
5. A lattice L is modular if for all a, b, c ∈ L, from a ≤ c it follows that a∨ (b∧ c) =
(a ∨ b) ∧ c. Prove that the lattice L is modular if and only if a ∨ (b ∧ (a ∨ c)) =
(a ∨ b) ∧ (a ∨ c), for all a, b, c ∈ L.

6. Let G(S) be the set of all subsemigroups of a semigroup S, and let G0(S) =
G(S)∪∅. Then, the setG0(S), ordered by inclusion, is a lattice, where A∧B = A∩B,
A ∨B = ⟨A ∪B⟩, for all A,B ∈ G(S). The empty set is the zero of this lattice.

The lattice G0(S) we call the lattice of subsemigroups of S.

7. The set L(G) of all the subgroups of a group G, ordered by inclusion, is a lattice,
where for all A,B ∈ L(G), A ∧ B = A ∩ B and A ∨ B is the intersection of all the
subgroups of G which contain the set A ∪B.

The lattice L(G) we call the lattice of the subgroups of G.

8. The relation ≤ defined by: a ≤ b ⇔ (∃x, y ∈ S1) a = xb = by, xa = a = ay,

a, b ∈ S, is the order on an arbitrary semigroup S. This order we call the natural

order on S. The restriction of this order on E(S) (if E(S) ̸= ∅) is the natural order

on E(S).
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1.6 Ideals

Let S be a semigroup. A subsemigroup A of a semigroup S is a

• left ideal of S, if SA ⊆ A;

• right ideal of S, if AS ⊆ A;

• (two-sided) ideal of S, if A is both a left and a right ideal of S, i.e. if

SA ∪AS ⊆ A;

• quasi-ideal of S, if SA ∩AS ⊆ A;

• bi-ideal of S, if ASA ⊆ A.

Every quasi-ideal of a semigroup is its bi-ideal, every left (right) ideal of a

semigroup is its quasi-ideal, and every ideal of a semigroup is its left (right)

ideal. Every semigroup S is its own ideal, while an (left, right, quasi-, bi-)

ideal of S different than S we call a proper (left, right, quasi-, bi-) ideal of

S. If L is a left ideal of S, R a right ideal of S and A subset of S, then LA

is a left ideal, AR is a right ideal and LR is an ideal of S. Also, RL ⊆ L∩R
holds, so the intersection of a left ideal and a right ideal of a semigroup is

always non-empty. Moreover, the intersection of a left ideal and a right ideal

of a semigroup is its quasi-ideal. Conversely, if A is a quasi-ideal of S, then

A∪SA is a left and A∪AS is a right ideal of S, where (A∪AS)∩(A∪SA) = A.

Thus, a subsemigroup A of a semigroup S is its quasi-ideal if and only if A

is equal to the intersection of a left ideal and a right ideal of S.

Based on the aforementioned, we can determine that the intersection of

two ideals A and B of a semigroup S is non-empty, and AB and BA are

ideals of S contained in A ∩ B. Also, the intersection of an arbitrary finite

family of ideals of a semigroup is non-empty. For an infinite family of ideals

it does not hold. However, if so far the intersection of some family of (left,

right) ideals of a semigroup S is non-empty, then it is an (left, right) ideal

of S. Thus, if A is a non-empty subset of a semigroup S, the intersection

of all (left, right) ideals of S which contain A is an (left, right) ideal of S

which we call the (left, right) ideal of S generated by A. The set A in that

case is the generate set of that (left, right) ideal, and the elements of A are

its generate elements or the generators. For an element a of a semigroup

S, the left ideal, the right ideal, the ideal and the bi-ideal of S generated

by a we denote with L(a), R(a), J(a) and B(a), respectively, and we call

the principal left ideal, the principal right ideal, the principal ideal and the
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principal bi-ideal of S generated by a. It is easy to prove that

L(a) = S1a, R(a) = aS1, J(a) = S1aS1, B(a) = {a, a2} ∪ aSa.

Let a and b be elements of a semigroup S. Then:

a | b⇔ b ∈ J(a), a |l b⇔ b ∈ L(a), a |r b⇔ b ∈ R(a).

If a | b (a |l b, a |r b), then we say that a ∈ S is a factor (a right factor, a left

factor) of the element b. The relations | , |l and |r are quasi-orders on S.

Using the previous relations we will define the following relations:

a−→b⇔(∃n∈Z+)a | bn, a l−→b⇔(∃n∈Z+)a|l bn, a
r−→b⇔(∃n∈Z+)a|r bn,

t−→=
l−→ ∩ r−→, =−→ ∩ (−→)−1,

l
=

l−→ ∩ (
l−→)−1,

r
=

r−→ ∩ (
r−→)−1,

t
=

r ∩ l
, a

p
b⇔ (∃m,n ∈ Z+) am = bn.

If T is a subsemigroup of S and a, b ∈ T , then we say that a divides b

into T , in notation a|b in T or a|T b, if b = xay, for some x, y ∈ T 1.

A set Id(S) of all the ideals of a semigroup S, ordered by the set inclusion,

is a lattice in which the operations of union and intersection are equal to

the set union and the set intersection of the ideals, and it we call a lattice of

ideals of a semigroup S. For the left ideals this does not hold, because the

intersection of two left ideals of a semigroup can be an empty set. So we can

make a distinction between two cases: if S is a semigroup with zero, then

the intersection of every two ideals of S is non-empty, because it contains

the zero. In that case, a set LId(S), ordered by the set inclusion, is a lattice

with a union and intersection which are equal to the set union and the set

intersection. If S is a semigroup without zero, then we assume that the set

LId(S) consists of the empty set and of all the left ideals of S, then the

lattice LId(S) is isomorphic to the lattice LId(S0). In both cases, a lattice

LId(S) we call the lattice of left ideals of a semigroup S. Similarly we define

the lattice of right ideals of a semigroup, in notation RId(S).
Let S be a semigroup. Because that intersection of every two ideals of

a semigroup S is non-empty, and it is an ideal of S, a lattice Id(S) can

have only one minimal element, and it is the smallest element in Id(S). The
smallest element of a lattice Id(S), if it exists there, we call the kernel of

a semigroup S. It is easy to prove that a semigroup S has a kernel if and
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only if the intersection of all the ideals of S is non-empty, and in that case

the kernel is equal to this intersection. An infinite monogenic semigroup is

an example of a semigroup which has no kernel. A minimal element of the

ordered set of all the left (right) ideals of S we call the minimal left (right)

ideals of S.

If S = S0, then {0} is an ideal of S, which we call a null ideal and a null

ideal is a kernel of S. So, if a semigroup has a zero, then we investigate some

other important ideal: minimal elements in the ordered set of all the ideals

of S different than the null ideal we call the 0-minimal ideal of S, while the

smallest element of this set, if it exists there, we call the 0-kernel of S. If

the minimal elements of the ordered set of all the left (right) ideals of S are

different, then the null ideals we call the 0-minimal left (right) ideals of S.

A semigroup S is simple (left simple, right simple) if S has no proper

ideals (left ideals, right ideals). Since a semigroup S with zero has a null

ideal, then the case when the null ideal is a unique proper two-sided (left,

right) ideal of S is very interesting. We introduce the following definitions:

a semigroup S = S0 is a null semigroup, if S2 = 0, i.e. if ab = 0, for all

a, b ∈ S. A semigroup S = S0 is 0-simple (left 0-simple, right 0-simple) if

the following conditions hold:

(i) S is not a null semigroup;

(ii) the null ideal is the unique proper two-sided (left, right) ideal of S.

The important property of a 0-minimal left ideal of a semigroup with

zero gives

Theorem 1.12 Let L be a left 0-minimal ideal of a semigroup S = S0.

Then one of the following conditions holds:

(i) Sa = L, for every a ∈ L•;

(ii) L = {0, a} and Sa = 0.

Proof. For a ∈ L•, Sa is a left ideal of S contained in L, so Sa = L or

Sa = 0. If Sa = L, for every a ∈ L•, then (i) holds. Let Sa = 0, for some

a ∈ L•. Then {0, a} is a left ideal of S contained in L, whence L = {0, a},
so (ii) holds.

Based on Theorem 1.12, what immediately follows is

Corollary 1.4 A semigroup S = S0 is a left 0-simple if and only if Sa = S,

for every a ∈ S•.
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If S is a semigroup without zero, by using Corollary 1.4 on a semigroup

S0, we obtain

Corollary 1.5 A semigroup S is a left simple if and only if Sa = S, for

every a ∈ S.

The following result gives one very important characteristic of 0-minimal

ideals.

Theorem 1.13 LetM be a 0-minimal ideal of a semigroup S. ThenM2 = 0

or MaM =M , for every a ∈M•.

Proof. Let M2 ̸= 0. Since M2 is an ideal of S contained in M , then

M2 =M , whence M3 =M . Let a ∈M•. Then J(a) = S1aS1 is a non null

ideal of S contained in M , so M = S1aS1. Thus, M =M3 =MS1aS1M ⊆
MaM ⊆M , so M =MaM .

As a consequence of Theorem 1.13 we determine the following

Corollary 1.6 A semigroup S = S0 is a 0-simple if and only if SaS = S,

for every a ∈ S•.

Theorem 1.14 A minimal two-sided (left, right) ideal of a semigroup S is

a simple (left simple, right simple) subsemigroup of S.

Proof. Let K be a minimal two-sided ideal of S and let A be an ideal of

K, A ̸= K. Then KAK is an ideal of S. Since K is minimal, then we have

that K = KAK ⊆ A, which is not possible.

The remaining cases can be proved in a similar way.

Corollary 1.7 Let M be a 0-minimal ideal of a semigroup S. Then M2 = 0

or M is a 0-simple subsemigroup of S.

If S is a semigroup without zero, using Corollary 1.7 on a semigroup S0,

we find

Corollary 1.8 A semigroup S is simple if and only if SaS = S, for every

a ∈ S.
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Corollary 1.9 Let K be an ideal of a semigroup S. Then K is the kernel

of S if and only if K is a simple semigroup.

Proof. Let K be the kernel of S. For an arbitrary a ∈ S, KaK is an

ideal of S contained in K, so since K is the kernel, then K = KaK. Thus,

according to Corollary 1.8, K is a simple semigroup.

Conversely, let K be a simple semigroup. For an arbitrary ideal A of S,

A ∩K is an ideal of K, so since K is simple, then A ∩K = K, i.e. K ⊆ A.

Therefore, K is the kernel.

A maximal element of the ordered set of all the proper left (right) ideals

of S we call the maximal left (right) ideal of S. Based on the following

theorem we describe a maximal left ideal of a semigroup.

Theorem 1.15 Let L be a proper left ideal of a semigroup S. Then L is

maximal if and only if one of the following conditions holds:

(i) S − L = {a} and a2 ∈ L;

(ii) S − L ⊆ Sa, for every a ∈ S − L.

Proof. Let L be a maximal left ideal of S. Then we have two cases:

(i) there exists a ∈ S − L such that Sa ⊆ L, then L ∪ {a} = S, whence

S − L = {a}, a2 ∈ L;

(ii) for every a ∈ S − L, Sa ̸⊆ L, then L ∪ Sa = S, whence S − L ⊆ Sa,

for every a ∈ S − L.

The converse follows immediately.

Let L(S) be the union of all the proper left ideals of a semigroup S.

Theorem 1.16 Let L(S) be as same as (ii) in Theorem 1.15. Then S −
L(S) = {a ∈ S |Sa = S} and S − L(S) is a subsemigroup of S.

Proof. For a ∈ S−L(S) we have that S = L(S)∪ (S−L(S)) = a∪Sa, so
L(S) ⊆ Sa. From this and from S − L(S) ⊆ Sa we have that S = Sa, for

every a ∈ S − L(S).

Conversely, let S = Sa, for every a ∈ S − L(S). Then S − L(S) ⊆ Sa,

a ∈ S − L(S). Thus, S − L(S) = {a ∈ S |Sa = S}, and it is evident that

S − L(S) is a subsemigroup of S.
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Corollary 1.10 Let A be a proper ideal of a semigroup S which is not a

proper subset of any one left ideal of S. Then one of the following conditions

holds:

(i) S −A is a left simple semigroup;

(ii) S −A = {a} and a2 ∈ A.

Proof. Let (i) S − A = T have at least two elements. Then by Theorem

1.16, T is a subsemigroup of S. Since A ∪ Sa = A ∪ (A ∪ T )a = A ∪ T = S,

for every a ∈ T , and A ∩ T = ∅, then T ⊆ Ta ⊆ T , i.e. Ta = T , for every

a ∈ T , so T is a left simple semigroup. Hence, in this case (i) holds.

Let S − A = {a}. Then a2 = a and S − A is a group, so (i) holds, or

a2 ̸= a, i.e. a2 ∈ A, so (ii) holds.

If A is a minimal element of the set of all the bi-ideals of a semigroup S,

then we it call the minimal bi-ideal of S.

We prove the following lemma immediately.

Lemma 1.13 Let A be a bi-ideal of a semigroup S and let x, y ∈ S. Then

xAy is also a bi-ideal of S.

Lemma 1.14 Let M be a minimal bi-ideal of a semigroup S, let x, y ∈ M

and let A be a bi-ideal of S. Then M = xAy.

Proof. According to Lemma 1.13, xAy is a bi-ideal of S. Since xAy ⊆
MAM ⊆MSM ⊆M and since M is a minimal bi-ideal, then xAy =M .

Lemma 1.15 Let M be a minimal bi-ideal of a semigroup S, let x, y ∈ S.

Then xMy is also a minimal bi-ideal of S.

Proof. According to Lemma 1.13, xMy is a bi-ideal of S. Assume that

A is a bi-ideal of S contained in xMy. Then A = {xay | a ∈ H}, where
H ⊆ M . Assume a, b ∈ H, u ∈ S. Then xayuxby ∈ A, so ayuxb ∈ H.

Hence, aySxb ⊆ H. Since a, b ∈ M and ySx is a bi-ideal of S, then by

Lemma 1.14, M = aySxb ⊆ H. Thus, M = H, whence A = xMy, so xMy

is a minimal bi-ideal of S.

By Lemmas 1.14 and 1.15 we determine
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Lemma 1.16 Let M be a minimal bi-ideal of S. Then every minimal bi-

ideal of S is of the form xMy, for x, y ∈ S.

A minimal bi-ideal we characterize by means of the following lemma.

Lemma 1.17 A bi-ideal M of a semigroup S is minimal if and only if M

is a group.

Proof. Let M be a minimal bi-ideal of S. For x, y ∈ M , by Lemma 1.14,

M = xMy, whence M = aM =Ma, for a ∈M , so M is a subgroup of S.

Conversely, let M be a group. Let A be a bi-ideal of S contained in M .

Assume a ∈ M , x, y ∈ A. Let x−1 and y−1 be the inverse of x and y in a

group M , respectively. Then a = x(x−1ay−1)y ∈ ASA ⊆ A. Thus, M = A,

so M is a minimal bi-ideal of S.

Theorem 1.17 Let K be the union of all the minimal bi-ideals of a semi-

group S. If K ̸= ∅, then K is the kernel of S.

Proof. Let M be a minimal bi-ideal of S. According to Lemma 1.16,

K = ∪{xMy |x, y ∈ S} = SMS, so K is an ideal of S. Assume a, b ∈ K.

Then a ∈ M , b ∈ N , for some minimal bi-ideals M and N of S, and by

Lemma 1.16, N = xMy, for some x, y ∈ S, whence b = xcy, for some c ∈M .

Since M is a group, then c = caa−1, so b = xcy = (xc)a(a−1y) ∈ KaK.

Thus, KaK = K, for every a ∈ K, so by Corollaries 1.8 and 1.9, K is the

kernel of S.

Let A and B be the subsets of a semigroup S, and let A ⊆ B. Then

A is a consistent (right consistent, left consistent) subset of B, in notation

A ≤C B (A ≤RC B,A ≤LC B), if for x, y ∈ B

xy ∈ A⇒ x ∈ A ∧ y ∈ A (xy ∈ A⇒ y ∈ A, xy ∈ A⇒ x ∈ A).

The empty set is also a consistent subset of B. If A ≤C S (A ≤RC S,A ≤LC

S), then we say, in short, that A is a consistent (right consistent, left con-

sistent) subset.

The proofs of the following lemmas are elementary.

Lemma 1.18 The relation ≤C is a partial order on a partitive set P(S) of

a semigroup S, ≤C=≤LC ∩ ≤RC , ≤RC · ≤C=≤RC and ≤LC · ≤C=≤LC ,

where ”·” is a multiplication of binary relations.
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Lemma 1.19 The intersection and union of an arbitrary family of consis-

tent (right consistent, left consistent) subsets of a subset A of a semigroup

S are consistent (right consistent, left consistent) subsets of A.

Lemma 1.20 Let A be a subset of a semigroup S different from S. Then

(i) A ≤RC S (A ≤LC S) if and only if S −A is a left (right) ideal of S;

(ii) A ≤C S if and only if S −A is an ideal of S.

A subset A of a semigroup S is a completely prime subset of S if for

x, y ∈ S

xy ∈ A ⇒ (x ∈ A ∨ y ∈ A).

A subset A of a semigroup S is a completely semiprime subset of S if for

x ∈ S, from x2 ∈ A it follows that x ∈ A. It is evident that every com-

pletely prime subset of S is completely semiprime. The empty set is also a

completely prime subset of S.

A subsemigroup A of a semigroup S is a filter (left filter, right filter)

of S if A is a consistent (right consistent, left consistent) subset of S. For

an element a of a semigroup S, the intersection of all the filters of S which

contain a we call the principal filter of S generated by a, and denote by N(a).

It is the smallest filter containing an element a of a semigroup S.

We immediately prove

Lemma 1.21 Let A be a non-empty subset of a semigroup S different from

S. Then

(i) A is a completely prime subset of S if and only if S −A is a subsemi-

group of S;

(ii) A is a completely prime left (right) ideal of S if and only if S −A is a

left (right) filter of S;

(iii) A is a completely prime ideal of S if and only if S −A is a filter of S.

Lemma 1.22 The intersection of an arbitrary family of completely semipri-

me subsets of a semigroup S is a completely semiprime subset of S.

Corollary 1.11 The intersection of an arbitrary family of completely prime

(completely semiprime) ideals of a semigroup S, if it is non-empty, is a

completely semiprime ideal of S.
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Let A be an ideal of a semigroup S. The ideal A is a semiprime ideal

of S if for a ∈ S, from aSa ⊆ A it follows that a ∈ A. The ideal A is a

prime ideal of S if for a, b ∈ S, from aSb ⊆ A it follows that a ∈ A or b ∈ A.

The ideal A is a completely semiprime ideal of S if for a ∈ S, from a2 ∈ A

it follows that a ∈ A. The ideal A is a completely prime ideal of S if for

a, b ∈ S, from ab ∈ A it follows that a ∈ A or b ∈ A. By Idcs(S) will denote
the lattice of all the completely semiprime ideals of S.

The following lemma gives another definition of prime ideals.

Lemma 1.23 Let A be an ideal of a semigroup S. Then A is a prime ideal

of S if and only if for idealsM,N of S, fromMN ⊆ A it follows thatM ⊆ A

or N ⊆ A.

Proof. Let A be a prime ideal of S, and let M and N be the ideals of S

such that MN ⊆ A. Assume that there exists x ∈ M − A and y ∈ N − A.

Then xSy ⊆ MSN ⊆ MN ⊆ A, so x ∈ A or y ∈ A, because A is a prime

ideal. So, it is a contradiction. Hence, M −A = ∅ or N −A = ∅, i.e. M ⊆ A

or N ⊆ A.

Conversely, for ideals M and N of S, from MN ⊆ A, let it follow that

M ⊆ A orN ⊆ A. Assume x, y ∈ S such that xSy ⊆ A. Then J(x)J(y) ⊆ A,

whence J(x) ⊆ A or J(y) ⊆ A, i.e. x ∈ A or y ∈ A. Therefore, A is a prime

ideal of S.

Exercises

1. Let ϕ be a homomorphism of a semigroup S into a semigroup T . If A is a left
(right) ideal of S, then Aϕ is a left (right) ideal of T . If B is a left (right) ideal of
T , then Bϕ−1 is a left (right) ideal of S.

2. If X is a finite set, then every ideal of a semigroup Tr(X) is principal. If X is
an infinite countable set, then the unique non-principal ideal of Tr(X) is the set of
all mapping from Tr(X), such that its image is the finite subset of X.

3. A semigroup S is left (right) 0-simple if and only if S• is a left (right) simple
subsemigroup of S.

4. Let M be a 0-minimal ideal of a semigroup S = S0 which contains at least one
0-minimal left ideal of S. Then M is the union of all 0-minimal left ideals of S
contained in M .

If, also, M2 ̸= 0, then every left ideal of M is a left ideal of S.

5. A semigroup S has no proper quasi-ideals (bi-ideals) if and only if S is a group.

6. If L is a left and R is a right ideal of a semigroup S, and if B is a subset of S
such that RL ⊆ B ⊆ R ∩ L, then B is a bi-ideal of S.
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7. A semigroup S is a group if and only if S is left simple and right simple.

8. Prove that in a monogenic semigroup S = ⟨a⟩ = M(i, p), the group Ka =
{ai, ai+1, . . . , ai+p+1} is the kernel of S.

9. A semigroup cannot have the proper left consistent left ideals and cannot have
the proper consistent ideals.

10. If B is a bi-ideal of a semigroup S, then P(B) is a bi-ideal of P(S).
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1.7 Ideal and Retractive Extensions of Semigroups

Let T be an ideal of a semigroup S. We define a relation θ on S with:

aθb ⇔ a = b ∨ a, b ∈ T, a, b ∈ S,

i.e. θ = ∆S ∪T ×T . It is evident that θ is a congruence on S, and we call it

Rees’s congruence determined by the ideal T . A factor semigroup S/θ we call

Rees’s factor semigroup under the ideal T , and denote it by S/T . Assume

that S/T = Q. According to the definition of Rees’s congruence, T is one of

θ-classes of S, which is a zero in Q. Hence, a Rees’s factor semigroup is a

semigroup with zero. For a ∈ S−T , a θ-class of the element a is a singleton.

Thus, we can informally discuss, a semigroupQ as a semigroup obtained from

S contracting the ideal T into one element (zero), while a partial semigroup

S − T stays the same. Formally, a semigroup Q is isomorphic to the zero

extension of a partial semigroup S − T . So, we usually identify partial

semigroups Q• and S − T .

A semigroup S is an ideal extension of a semigroup T by a semigroup

Q with a zero if T is isomorphic to an ideal T ′ of S and a factor semigroup

S/T is isomorphic to Q. In that case we identify semigroups T and T ′,

semigroups S/T ′ and Q, and semigroups S − T and Q•. One of the main

problems with an ideal extension is: If there is a given semigroup T and a
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semigroup Q with zero, how do we construct an ideal extension S of T by

a semigroup Q? Namely, if we assume that S = T ∪ Q•, the question is:

How do we define a multiplication ∗ on S such that S is a semigroup, T an

ideal of S and a factor semigroup S/T is isomorphic to Q, i.e. such that the

following conditions hold:

(M1) x ∗ y = xy, if xy ̸= 0; (M2) x ∗ y ∈ T , if xy = 0;

(M3) a ∗ b = ab; (M4) a ∗ x ∈ T ; (M5) x ∗ a ∈ T ;

for all x, y ∈ Q•, a, b ∈ T? One very useful method for the construction of

some ideal extension gives us partial homomorphisms. We defined partial

homomorphisms in Section 1.3. The following lemma gives its role in the

construction of some ideal extensions.

Lemma 1.24 Let T and Q = Q0 be the semigroups, and let φ : Q• 7→ T be

a partial homomorphism. We define a multiplication ∗ on S = T ∪Q• with:

a ∗ y =

{
xy, if xy ̸= 0 in Q

(xφ)(yφ), if xy = 0 in Q
,

a ∗ x = a(xφ), x ∗ a = (xφ)a, a ∗ b = ab,

for x, y ∈ Q•, a, b ∈ T . Then S with this operation ∗ is a semigroup and S

is an ideal extension of T by Q.

Proof. Follows immediately.

An ideal extension constructed in Lemma 1.24 we call an extension of T

by Q determined with partial homomorphism.

Retractive extensions are in very close relation with ideal extensions de-

termined by partial homomorphisms, which we are about to discuss.

An endomorphism φ of a semigroup S is a retraction if φ2 = φ, i.e. if

(xφ)φ = xφ, for every x ∈ S. If φ is a retraction of a semigroup S, then

a subsemigroup T = Sφ of S we call a retract of S and say that φ is a

retraction of S onto T . Namely, a subsemigroup T of a semigroup S is a

retract of S if there exists a retraction of S onto T , i.e. if there exists a

homomorphism φ of S onto T such that xφ = x, for every x ∈ T .

Here we are especially interested in the retracts of the given semigroup

which are equal to its ideals. If T is both, a retract of a semigroup S and an

ideal of S, then T is a retractive ideal of S and the corresponding retraction
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of S onto T is an ideal retraction. Namely, a retraction φ of a semigroup

S is an ideal retraction of S if Sφ is an ideal of S. Based on the following

lemma we give one characterization of ideal retractions:

Lemma 1.25 A retraction φ of a semigroup S is an ideal retraction of S if

and only if (xy)φ = x(yφ) = (xφ)y, for all x, y ∈ S.

Proof. Let φ be an ideal retraction of S, i.e. let T = Sφ be an ideal of S.

Assume x, y ∈ S. Since yφ ∈ T , then x(yφ) ∈ T , whence

x(yφ) = [x(yφ)]φ = (xφ)(yφ2) = (xφ)(yφ) = (xy)φ.

Similarly, we prove that (xφ)y = (xy)φ.

Conversely, let (xy)φ = x(yφ) = (xφ)y, for all x, y ∈ S, and let T = Sφ.

Assume a ∈ T , x ∈ S. Then ax = (aφ)x = (ax)φ ∈ T , and similar, xa ∈ T .

Hence, T is an ideal of S.

Lemma 1.26 Let T be a semigroup. To every element a ∈ T we associated

the set Ya such that

a ∈ Ya, Ya ∩ Yb = ∅ if a ̸= b, a, b ∈ T.

For a, b ∈ T , let φ(a,b) : Ya × Yb 7→ Yab be a mapping for which

(1) (x, b)φ(a,b) = (a, y)φ(a,b) = ab,

for all x ∈ Ya, y ∈ Yb, a, b ∈ T , and

(2) ((x, y)φ(a,b), z)φ(ab,c) = (x, (y, z)φ(b,c))φ(a,bc),

for all x ∈ Ya − {a}, y ∈ Yb − {b}, z ∈ Yc − {c}, a, b, c ∈ T . We define a

multiplication ∗ on S = ∪a∈TYa with:

x ∗ y = (x, y)φ(a,b), if x ∈ Ya, y ∈ Yb, a, b ∈ T.

Then S with this multiplication is a semigroup, in notation (T ;Ya, φ
(a,b)).

Proof. Assume x, y, z ∈ S, x ∈ Ya, y ∈ Yb, z ∈ Yc, a, b, c ∈ T . According

to (2) we obtain that

(x ∗ y) ∗ z = (x, y)φ(a,b) ∗ z = ((x, y)φ(a,b), z)φ(ab,c)

= (x, (y, z)φ(b,c))φ(a,bc) = x ∗ (y, z)φ(b,c) = x ∗ (y ∗ z).

Thus, S is a semigroup.
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A subset A of a semigroup S is a transversal of S if a congruence ξ on S

exists such that every ξ-classe contains only one element from A.

By the following theorem we give a characterization of a retractive ex-

tension, i.e. of an ideal extension determined by partial homomorphisms.

Theorem 1.18 Let T be an ideal of a semigroup S. Then the following

conditions are equivalent:

(i) S is an ideal extension of T determined by partial homomorphism;

(ii) S is a retractive extension of T ;

(iii) T is a transversal of S;

(iv) S is isomorphic to some semigroup (T ;Ya, φ
(a,b)).

Proof. (i)⇒(ii) Let φ be a partial homomorphism which determined a

multiplication on S. We define a mapping ψ : S 7→ T with

xψ =

{
xφ, if x ∈ S/T
x, if x ∈ T

.

It is easy to prove that ψ is a retraction of S onto T .

(ii)⇒(i) Let φ be a retraction of S onto T . Then, by the usual identifica-

tion of partial semigroups S − T and Q•, where Q = S/T , a retraction ψ of

a retraction φ on Q• is a partial homomorphism of Q• into T and multipli-

cation on S is determined by this partial homomorphism, in the way which

we saw in Lemma 1.24.

(ii)⇒(iv) Let φ be a retraction of S onto T . For a ∈ T , let Ya = aφ−1 =

{x ∈ S |xφ = a}. Then S = ∪a∈TYa, and for sets Ya, a ∈ T the conditions

of Lemma 1.26 hold.

For an arbitrary x, y ∈ S there are a, b ∈ T such that x ∈ Ya, y ∈ Yb, i.e.

xφ = a, yφ = b, whence (xy)φ = (xφ)(yφ) = ab ∈ Yab. It is easy to prove

that for a, b ∈ T , a mapping φ(a,b) : Ya × Yb 7→ Yab defined by

(x, y)φ(a,b) = (xy)φ,

satisfied the condition (2) and a multiplication on S is defined the same as

in Lemma 1.26. Since T is an ideal of S, then (1) holds.

(iv)⇒(ii) Let S = (T ;Ya, φ
(a,b)). We define a mapping φ : S 7→ T with

xφ= a if x∈Ya, a ∈T . It is easy to prove that φ is a retraction of S onto T .

(iii)⇒(ii) Let ξ be a congruence on S such that in every ξ-classe there is

only one element from T . For a ∈ T , let Ca = {x ∈ S | aξx}, and we define
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a mapping φ : S 7→ T with xφ = a if x ∈ Ca, a ∈ T . It is evident that φ is

a retraction of S onto T .

(ii)⇒(iii) Let φ : S 7→ T be a retraction. Then ξ = kerφ is a congruence

on S. Let C be an arbitrary ξ-class of S, and let a, b ∈ C ∩ T . Then

a = aφ = bφ = b. Therefore, T is a transversal of S.

Theorem 1.19 A semigroup T is a retract of every one of its ideal exten-

sions if and only if T has a unit.

Proof. Let T be a retract of every one of its ideal extensions. Then T is

also a retract of a semigroup S = T 1. Let φ be a retraction of S onto T .

Then for an arbitrary x ∈ T we have

x(1φ) = (xφ)(1φ) = (x1)φ = xφ = x = (1x)φ = (1φ)(xφ) = (1φ)x,

so 1φ is an identity in T .

Conversely, let T be a semigroup with an identity e. Let S be an arbitrary

ideal extension of T . Then it is easy to prove that the mapping φ : S 7→ T

defined by

xφ = xe, x ∈ S,

is a retraction of S onto T .

Lemma 1.27 Let ξ be a congruence on a semigroup S. For every congru-

ence η on S which contains ξ we define a relation η′ on S/ξ with

(xξ)η′(yξ) ⇔ xηy, x, y ∈ S.

Then η′ is a congruence on S/ξ and a mapping η 7→ η′ of the set of all con-

gruences on S which contains ξ into the set of all congruences of a semigroup

S/ξ is a bijection which preserves an order.

Proof. The proof follows immediately.

Let T be an ideal of a semigroup S. A congruence ξ on S is a T -

congruence if its restriction on T is ∆T . An ideal extension S of a semigroup

T is a dense extension of T if the equality relation is the unique T -congruence

on S.

Lemma 1.28 Let S be an ideal extension of a semigroup T , let ξ be a T -

congruence on S and let S/ξ be an ideal extension of T . Then S/ξ is a dense

extension of T if and only if ξ is a maximal T -congruence on S.
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Proof. Follows from Lemma 1.27.

Theorem 1.20 Let D be an ideal extension of a semigroup T , and let Q =

Q0 be a semigroup such that T ∩ Q = ∅. Let φ : Q• 7→ D be a partial

homomorphism such that (aφ)(bφ) ∈ T , whenever ab = 0 in Q, a, b ∈ Q.

We define a multiplication ∗ on S = T ∪Q• with

a ∗ b =


(aφ)b, if a ∈ Q•, b ∈ T,
a(bφ), if a ∈ T, b ∈ Q•,

(aφ)(bφ), if a, b ∈ Q•, ab = 0 in Q,
ab, otherwise.

Then S is an ideal extension of T by Q.

Conversely, every ideal extension of a semigroup T by a semigroup Q

can be constructed in the previous way, for any extension D of T and any

partial homomorphism φ from Q• into D, where we can choose that D is a

dense extension of T and that is D = T ∪Q•φ.

Proof. Let S be an ideal extension of T by Q. In a partially ordered set

of all T -congruences on S, by Lemma 1.11, there exists a maximal element,

i.e. there exists a maximal T -congruence ξ on S. Let D = S/ξ and let φ be

a restriction of a natural homomorphism ξ♮ on Q• = S − T .

If a, b ∈ Q• and ab ̸= 0 in Q, then (aφ)(bφ) = (aξ♮)(bξ♮) = (ab)ξ♮ =

(ab)φ, so φ is a partial homomorphism. If a, b ∈ Q• and ab = 0 in Q, i.e.

ab ∈ T in S, then (aφ)(bφ) = (aξ♮)(bξ♮) = (ab)ξ♮ = ab ∈ S. Furthermore,

D = Sξ♮ = T ∪Q•φ. Based on Lemma 1.28, D is a dense extension of T .

For a ∈ S, b ∈ Q•, ab ∈ S, so ab = (ab)ξ♮ = (aξ♮)(bξ♮) = a(bφ). Similarly

we prove the other cases from the multiplication ∗. Thus, a semigroup S

can be constructed in this the way from the formulation of a theorem.

The converse follows immediately.

Let S = S0. An element a ∈ S is nilpotent if there is n ∈ Z+ such that

an = 0. The set of all nilpotent elements from a semigroup S we denote by

Nil(S). A semigroup S is a nil-semigroup if S = Nil(S). An ideal extension

S of a semigroup T is a nil-extension of T if S/T is a nil-semigroup, i.e. if√
T = S. A semigroup S = S0 is nilpotent if there is n ∈ Z+ such that

Sn+1 = 0. If Sn+1 = 0, then we say that S is (n+1)-nilpotent. A semigroup

S is nilpotent, the class of nilpotency n + 1, if S is (n + 1)-nilpotent and it

is not n-nilpotent. Let n ∈ Z+. An ideal extension S of a semigroup T by
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nilpotent ((n+1)-nilpotent) semigroup we call a nilpotent ((n+1)-nilpotent)

extension of T . A retractive (n+1)-nilpotent extension of a semigroup T we

call n-inflation of a semigroup T , 1-inflation is an inflation, and 2-inflation

is a strong inflation.

Exercises

1. Let I and J be the ideals of a semigroup S. Then I ∩ J and I ∪ J are ideals of
S and (I ∪ J)/J ∼= I/(I ∩ J).

2. A semigroup S is a semigroup with unique decomposition if every non-zero
element from S has a unique decomposition into a product of the elements from
S − S2.

Let T = T 0 and S be semigroups. Then

(a) there exists a semigroup U with a unique decomposition and a homomorphism
ϕ of U onto T such that |0ϕ−1| = 1;

(b) if α is a partial homomorphism of U• into S such that kerϕ ⊆ kerα on U•,
then the mapping α′ : T • 7→ S defined by yα′ = xα, where x ∈ yϕ−1, y ∈ T •,
is a partial homomorphism of T • into S.

Conversely, every partial homomorphism of T • into S is determined in this way.
Also, the mapping α 7→ α′ is injective.

3. Let IR(S) be the set of all ideal retractions of a semigroup S and let RI(S) be
the set of all retractive ideals of S. Then

(a) If IR(S) is a semilattice under the product of mappings, then RI(S) is a
semilattice under the intersection and RI(S) is the homomorphic image of
IR(S);

(b) If S2 = S or for all a, b ∈ S, from a2 = b2 = ab = ba it follows that a = b,
then IR(S) is a semilattice and RI(S) ∼= IR(S).

4. Let S be a semigroup such that S2 = S or for all a, b ∈ S, from a2 = b2 = ab = ba
it follows that a = b, and if I is an ideal of S, then there exists at most one retraction
of S onto I.

5. Let T be a semigroup, let Q be the non-empty set and let φ be an arbitrary

mapping from Q into T . Then S = Q ∪ T with the multiplication defined by:

x ∗ y = (xφ)(yφ), x ∗ a = (aφ)a, a ∗ x = a(xφ), a ∗ b = ab, for x, y ∈ Q, a, b ∈ T , is

a semigroup and S is an inflation of T . Conversely, every inflation of a semigroup

T can by constructed in this way.
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1.8 Green’s Relations

On a semigroup S we define the relations L, R, J , H and D in the

following way

aL b ⇔ L(a) = L(b), a, b ∈ S;
aR b ⇔ R(a) = R(b), a, b ∈ S;
aJ b ⇔ J(a) = J(b), a, b ∈ S;

H = L ∩ R, D = LR.

These relations are equivalence relations and we call them Green’s relations

or Green’s equivalences. By La (Ra, Ja, Ha, Da) we denote a L- (R-, J -,

H-, D-) class containing a fixed element a ∈ S.

Lemma 1.29 Let a and b be the elements of a semigroup S, then

aL b ⇔ (∃x, y ∈ S1) xa = b, yb = a;
aR b ⇔ (∃u, v ∈ S1) au = b, bv = a;
aJ b ⇔ (∃x, y, u, v ∈ S1) xay = b, ubv = a.

According to Lemma 1.29 it is evident that the following corollary holds.

Corollary 1.12 Every idempotent e of a semigroup S is a left identity ele-

ment of Re and a right identity element of Le.

Lemma 1.30 On a semigroup S, L is a right and R is a left congruence

relation.

Lemma 1.31 On a semigroup S the relations L and R commute.
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Proof. Assume aLRb, a, b ∈ S. Then there exists c ∈ S such that aLc and
cRb. According to Lemma 1.29 we have that a = xc, b = cy, c = ua = bv,

for some x, y, u, v ∈ S1. Let d = ay. Then

d = xcy = xb, a = xc = xbv = dv, b = cy = uay = ud.

Hence, aRd and dLb, so LR ⊆ RL. Similarly, we can prove that RL ⊆ LR.

Therefore, LR = RL.

It is evident that L ∪ R ⊆ J and D ⊆ J . There are semigroups on

which some Green’s relations are equal. For instance, if S is a commutative

semigroup then all of Green’s relations are equal to each other. There are

semigroups on which the relation D is the proper subset of the relation J .

Here, we will prove that the relations D and J are equal to each other

on an important class of semigroups, on the class of completely π-regular

semigroups.

An element a of a semigroup S is regular if there exists x ∈ S such that

a = axa. A semigroup S is regular if all its elements are regular.

An element a ∈ S is π-regular if there exists n ∈ Z+ and x ∈ S such that

an = anxan. A semigroup S is π-regular if all its elements are π-regular.

An element a ∈ S is completely π-regular if there exists n ∈ Z+ and

x ∈ S such that an = anxan and anx = xan. A semigroup S is completely

π-regular if all its elements are completely π-regular.

Lemma 1.32 If S is a completely π-regular semigroup, then D = J .

Proof. Let S be a completely π-regular semigroup. Assume a, b ∈ S such

that aJ b. Then a = xby and b = uav, for some x, y, u, v ∈ S1. So, a =

x(uav)y = (xu)a(vy), whence a = (xu)ma(vy)m, for all m ∈ Z+. Assume

n ∈ Z+ and z ∈ S such that (xu)n = (xu)nz(xu)n and (xu)nz = z(xu)n.

Then a = (xu)na(vy)n = (xu)nz(xu)na(vy)n = (xu)nza = z(xu)na ∈ S1ua.

Thus aLua. Similarly, we prove that aRav. Since L is a right congruence

if follows that b = uavLav. Therefore, aDb, i.e. J ⊆ D. Since the opposite

inclusion always holds we have that J = D.

More will be said about completely π-regular semigroups in Section 2.1.

Let ρ be an equivalence relation on a semigroup S, let A and B be a

subset of S and let φ : A 7→ B be a mapping. We say that the mapping φ

preserves the ρ-classes if x ρ (xφ) for all x ∈ A.

The next two results are well known as Green’s lemmas.
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Lemma 1.33 Let a and b be R-equivalent elements of a semigroup S and

let u, v ∈ S1 such that au = b and bv = a. Then the mappings

(1) x 7→ xu, x ∈ La, y 7→ yv, y ∈ Lb,

are mutually inverse bijections, R-class preserving, of La onto Lb and of Lb
ontp La, respectively.

Proof. First, we note that the given mappings (1) are right translation ρu
and ρv restricted to La and Lb, respectively. For x ∈ La, from xLa we get

xuLau = b, because L is a right congruence. Thus ρu maps La into Lb.

Similarly, ρv maps Lb into La. Also, for x ∈ La from xLa it follows that

x = wa for some w ∈ S1, whence xρuρv = xuv = wauv = wbv = wa =

x. Similarly, we prove that yρvρu = y for every y ∈ Lb. Therefore, the

mappings (1) are mutually inverse bijections of La onto Lb and of Lb onto

La, respectively.

For x ∈ La we have that x = xρuρv = (xu)v, whence xRxu. Similarly,

we prove that yRyv, for every y ∈ Lb. Thus, the mapping (1) preserves

R-classes.

Lemma 1.34 Let a and b be L-equivalent elements of a semigroup S and

let s, t ∈ S1 such that sa = b and tb = a. Then the mappings

(2) x 7→ sx, x ∈ Ra, y 7→ ty, y ∈ Rb,

are mutually inverse bijections, L-class preserving, of Ra onto Rb and of Rb
onto Ra, respectively.

Lemma 1.35 Let a and b be the elements of a semigroup S, then:

(i) If ab ∈ Ha, then the mapping x 7→ xb, x ∈ Ha is a bijection from Ha

onto Ha;

(ii) If ab ∈ Hb, then the mapping x 7→ ax, x ∈ Hb is a bijection from Hb

onto Hb.

Proof. (i) From ab ∈ Ha it follows that abRa, whence a = (ab)u for

some u ∈ S1, so by Lemma 1.33 the mappings ξ : x 7→ xb, x ∈ La, and

ξ′ : y 7→ yu, y ∈ Lab = La are mutually inverse bijections from La onto

itself which preserve R-classes. Let η and η′ be the restrictions of ξ and ξ′

on Ha, respectively. For x ∈ Ha we have that xη = xξ ∈ La. On the other
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hand, since ξ preserves R- classes, then xRxξ = xη, i.e. xη ∈ Rx = Ra.

Thus xη ∈ La ∩ Ra = Ha, so η maps Ha into itself. Similarly, we prove

that η′ maps Ha into itself. It is evident that η and η′ are mutually inverse

bijections from Ha onto Ha.

(ii) This is proved in a similar way as (i).

The following result is as famous as Green’s theorem.

Theorem 1.21 Let H be an H-class of a semigroup S, then H2 ∩ H = ∅
or H2 = H.

If H2 = H holds, then H is a (maximal) subgroup of S.

Proof. Assume that H2 ∩ H ̸= ∅, then there exist a, b ∈ H such that

ab ∈ H. According to Lemma 1.35 the mappings

x 7→ xb, x ∈ H, y 7→ ay, y ∈ H,

are bijections from H onto itself. Thus ah, hb ∈ H for every h ∈ H and

again by Lemma 1.35, for every h ∈ H, the mappings

x 7→ xh, x ∈ H, y 7→ hy, y ∈ H,

are bijections from H onto itself. Hence, hH = Hh = H for every h ∈ H,

so, we have that H2 = H and H is a subgroup of S. It is easy to prove that

H is a maximal subgroup of S.

Corollary 1.13 If e is an idempotent of a semigroup S, then He is a sub-

group of S. Also, the H-class cannot contain more than one idempotent

element.

Lemma 1.36 If a D-class D of a semigroup S contains a regular element,

then every element of D is regular.

Proof. Let a be a regular element of a class D and let b ∈ D. Then aDb,
i.e. ua = c, vc = a, cs = b and bt = c for some c ∈ S and u, v, s, t ∈ S1. If

x ∈ S such that a = axa, then we have that

b = cs = uas = uaxas = cxas = cxvcs = cxvb = btxvb.

Therefore, b is a regular element too.
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According to Lemma 1.36 a D-class of a semigroup S which contains a

regular element (i.e. whose elements are all regular) we call a regular D-class.

Lemma 1.37 If D is a regular D-class, then every L-class and every R-

class contained in D contains an idempotent.

Proof. If a ∈ D and a = axa, for some x ∈ S, then ax, xa ∈ E(S), and

ax ∈ Ra and xa ∈ La.

Let A and B be the ideals of a semigroup S such that A ⊆ B. It is easy

to prove that the factor set B/A can be embedded into a factor set S/A, and

usually we assume that B/A is a subsemigroup of S/A.

According to Theorem 1.4 and Lemma 1.27 the next result immediately

follows:

Lemma 1.38 Let A be an ideal of a semigroup S:

(i) If B is an ideal of S such that A ⊆ B, then B/A is an ideal of S/A

and (S/A)/(B/A) ∼= S/B.

(ii) The mapping θ : B 7→ B/A is a bijection from Id(S) onto Id(S/A)

which preserves the partial order.

Let a be an element of a semigroup S. Based on I(a) we denote the set

I(a) = J(a)− Ja = {x ∈ S | J(x) ⊂ J(a)}.

Lemma 1.39 Let a be an element of a semigroup S such that I(a) ̸= ∅.
Then I(a) is an ideal of S. Moreover, I(a) is the greatest element in the

partial ordered set of all the ideals of S which are strictly contained in J(a).

Proof. Assume b ∈ I(a) and x ∈ S. Then J(bx) ⊆ J(b) ⊂ J(a) and

bx ∈ J(a), so bx ∈ I(a). Similarly, we prove that xb ∈ I(a). Thus, I(a) is

an ideal of S.

Let A be an arbitrary ideal of S strictly contained in J(a). For x ∈ A

we have that J(x) ⊆ A ⊂ J(a) and x ∈ J(a), so, x ∈ I(a). Thus, A ⊆ I(a).

Therefore, I(a) is the greatest ideal of S strictly contained in J(a).

For reasons of simplicity we use the following notation: the factor set

S/∅ is S.
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For an element a of a semigroup S, the factor semigroup J(a)/I(a) we

call the principal factor of a semigroup S which contains the element a.

The important characteristics of the principal factors give the following

result.

Theorem 1.22 Let a be an element of a semigroup S. Then one of the

following statements holds:

(i) J(a) is the kernel of a semigroup S;

(ii) I(a) ̸= ∅ and the principal factor J(a)/I(a) is a 0-simple semigroup or

a zero-semigroup.

Proof. Let J(a) be the kernel of a semigroup S. Then there exists an ideal

A of S such that A ⊂ J(a). For x ∈ A we have that J(x) ⊆ A ⊂ J(a), so

x ∈ I(a). Therefore, I(a) ̸= ∅.
Let A be a non zero ideal of a semigroup S/I(a). Using the bijection

from Lemma 1.38, the ideal B corresponds to the ideal A such that I(a) ⊂
B ⊆ J(a). According to Lemma 1.39, it follows that B = J(a), whence

A = J(a)/I(a). Thus J(a)/I(a) is a 0-minimal ideal of S/I(a) and by

Corollary 1.7 J(a)/I(a) is a 0-simple semigroup or a zero-semigroup.

Exercises

1. Let T be a monoid and letH be a group of its identity. Let θ be a homomorphism
of T into H, and let N be the set of all non-negative integers. Then, S = N×T ×N
with the multiplication defined by:

(m; a;n)(p; b; q) = (m− n+ t; (aθt−n)(bθt−p); q − p+ t),

for (m; a;n), (p; b; q) ∈ S and t = max{n, p}, is a semigroup, in notation S =
BR(T, θ), which we call the Bruck-Reilly’s extension of T by θ.

Prove the following conditions:

(a) S is a simple semigroup;
(b) (m; a;n)DS(p; b; q) ⇔ aDT b, (m; a;n), (p; b; q) ∈ S;
(c) every semigroup T can be embedded into BR(T 1, θ), where θ : T 1 7→ {1};
(d) if T is a semigroup without an identity, θ : T 1 7→ {1} and S = BR(T 1, θ),

then D ̸= J on S.

2. If α, β ∈ Tr(X), then

(a) αLβ ⇔ Xα = Xβ;
(b) αRβ ⇔ kerα = kerβ;
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(c) αDβ ⇔ |Xα| = |Xβ|;
(d) D = J .

3. Let a and b be the elements of a semigroup S. Then (a, b) ∈ L† if and only if a
and b are L-equivalents in any semigroup of S. The relation L† is the generalization
of Green’s relation L. Dually, we define the relation R†. By H† we denote the
intersection of relations L† and R†. Prove the following conditions:

(a) aL†b⇔ ((∀x, y ∈ S1) ax = ay ⇔ bx = by);
(b) aR†b⇔ ((∀x, y ∈ S1)xa = ya⇔ xb = yb);
(c) L† (R†) is a right (left) congruence on S;
(d) H†-class which contains an idempotent is a cancellative monoid.

4. If e and f are the idempotents of a semigroup S, then

eLf ⇔ e = ef, f = fe and eRf ⇔ e = fe, f = ef.
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Chapter 2

Regularity on Semigroups

The notion of the regularity in semigroups and rings was introduced by

J. von Neumann, in 1936, who defined an element a of a semigroup (ring) S

a being regular if the equation a = axa, with a variable x, has a solution in

S. His work initiated an investigation of many other types of regularity.

R. Croisot, in 1953, stated a very interesting problem of the classification

of all types of the regularity of semigroups defined by equations of the type

a = amxan, withm,n ≥ 0, m+n ≥ 2. He proved that any of these equations

determines either ordinary regularity, left, right or complete regularity (see

also the book by A. H. Clifford and G. B. Preston, Section 4.1). A simi-

lar problem, concerning all types of the regularity of semigroups and their

elements defined by equations of the type a = apxaqyar, with p, q, r ≥ 0,

was treated by S. Lajos and G. Szász, 1975. S. Bogdanović, M. Ćirić, P.

Stanimirović and T. Petković, 2004, determined all types of the regularity

of elements defined by linear equations, and proved that there are exactly

14 types of the regularity of semigroups defined by such equations.

R. Arens and I. Kaplansky, in 1948, introduced the notion of π-regularity

which is a generalization of regularity. π-regularity is in very close connection

with the nil-extensions of semigroups, about which we will talk throughout

this book. In particular, we will investigate completely π-regular semigroups

which M. P. Drazin, in 1958, called pseudo-inverse semigroups, while L. N.

Shevrin and his students, for a short time, called them epigroups. These

semigroups we meet as eventually regular or quasi-periodic semigroups.

53
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2.1 π-regular Semigroups

In this section we outline the general characterizations of π-regular semi-

groups. The set of all the regular elements of a semigroup S we denote by

Reg(S) and we call it the regular part of S. A semigroup S is regular if

S = Reg(S). We remind the reader that a semigroup S is called π-regular

if for every a ∈ S there exists n ∈ Z+ such that an is a regular element.

Lemma 2.1 The following conditions for an element a of a semigroup S

are equivalent:

(i) a is π-regular;

(ii) there exists n ∈ Z+ such that R(an) (L(an)) has an idempotent as a

generator;

(iii) there exists n ∈ Z+ such that R(an) (L(an)) has a left (right) identity.

Proof. (i)⇒(ii) Let a be a π-regular element, i.e. let there exists n ∈ Z+

and x ∈ S such that an = anxan. Assume e = anx. Then R(an) = R(e) and

e ∈ E(S), so (ii) holds.

(ii)⇒(i) If (ii) holds, then R(an) = R(e) for some n ∈ Z+ and e ∈ E(S),

so there are x, y ∈ S such that an = ex, e = any whence we have that

an = ex = e2x = ean = anyan.

Thus, a is π-regular.

(i)⇒(iii) Let an = anxan, for some n ∈ Z+ and x ∈ S and let e = anx.

Assume an arbitrary b ∈ R(an). Then b = any for some y ∈ S, so

eb = anxb = anxany = any = b.

Therefore, e is a left identity of R(an).

(iii)⇒(i) Let n ∈ Z+ such that R(an) has a left identity e. Then e = anx,

for some x ∈ S1, so an = ean = anxan. Thus, a is π-regular.

Corollary 2.1 The following conditions on a semigroup S are equivalent:

(i) S is a π-regular semigroup;

(ii) for every a ∈ S there exists n ∈ Z+ and e ∈ E(S) such that R(an) = eS

(L(an) = Se);
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(iii) for every a ∈ S there exists n ∈ Z+ such that R(an) (L(an)) has a left

(right) identity.

Corollary 2.2 An element a of a semigroup S is regular if and only if there

is an idempotent e ∈ E(S) such that aS1 = eS.

Theorem 2.1 The following conditions on a semigroup S are equivalent:

(i) S is simple and π-regular;

(ii) S is simple and regular;

(iii) (∀a, b ∈ S) a ∈ aSbSa;

(iv) every bi-ideal of S is a simple semigroup.

Proof. (i)⇒(ii) Suppose that S is π-regular and simple. Let a ∈ S. Then

there exist x, y ∈ S such that a = xay = xnayn, for every n ∈ Z+. For some

n ∈ Z+ and v ∈ S we have yn = ynvyn, and then a = xnaynvyn = avyn,

so based on the simplicity of S we obtain that a ∈ aSa2S. From this it

follows that a = apa2q, for some p, q ∈ S, whence a = (apa)naqn, for

every n ∈ Z+. Since S is π-regular, then we have that a = (apa)naqn =

(apa)nu(apa)naqn = (apa)nua, for some n ∈ Z+ and u ∈ S. Therefore,

a ∈ aSa and we have proved that S is a regular semigroup.

(ii)⇒(i) This is obvious.

(ii)⇒(iii) Let a, b ∈ S. Then a ∈ SbS, and also, there exists x ∈ S such

that a = axa. But, then we have that a = axaxa ∈ axSbSxa ⊆ aSbSa.

(iii)⇒(ii) This is obvious.

(iii)⇒(iv) Let B be a bi-ideal of S and let a, b ∈ B. According to (iii)

we have that a ∈ aSb3Sa, which yields

a ∈ aSb3Sa = (aSb)b(bSa) ⊆ (BSB)b(BSB) ⊆ BbB.

Thus, we have proved that B is a simple semigroup.

(iv)⇒(iii) Consider the arbitrary elements a, b ∈ S and the principal bi-

ideal B = B(a) = {a} ∪ {a2} ∪ aSa. Based on the hypothesis, B is a simple

semigroup, and a, aba ∈ B, so we have that

a ∈ BabaB ⊆ aS1abaS1a ⊆ aSbSa.

Therefore, (iii) holds.
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The element x of a semigroup S is the inverse of an element a ∈ S if

a = axa and x = xax. The set of all the inverse elements of the element

a we denote by V (a). We mention that it must make a difference between

the notion of the ”inverse of an element a” and the ”inverse of an element a

in a subgroup - group inverse”. A semigroup S is inverse if every one of its

elements has an unique inverse element.

Lemma 2.2 An element a of a semigroup S has an inverse element if and

only if a is a regular element.

Proof. Assume that a is a regular element. Then a = axa for some x ∈ S,

so the element y = xax is an inverse of the element a.

The converse follows immediately.

Lemma 2.3 Let ξ be a congruence relation on a π-regular semigroup S and

let A,B ∈ S/ξ such that A = ABA and B = BAB in S/ξ. Then there exists

a, b ∈ S such that a ∈ A, b ∈ B, and a = aba and b = bab in S.

Proof. Let x ∈ A, y ∈ B. Also, let n ∈ Z+ such that (xy)2n ∈ Reg(S) and

let z be the inverse element of (xy)2n. If we assume that a = xyz(xy)2n−1x,

b = yz(xy)2n−1 then we have a = aba and b = bab. On the other hand, from

A = ABA, B = BAB in S/ξ we have that xξxyx, yξyxy, so

xyξ(xy)k, for every k ∈ Z+.

Hence, it follows that

xyzξ(xy)2nz, (xy)2n−1xξ(xy)2nx,

and by Lemma 1.5 we have that

a = xyz(xy)2n−1xξ(xy)2nz(xy)2nx = (xy)2nxξxyxξx.

Thus, a ∈ A. Similarly we prove that b ∈ B.

The following corollary is famous in the literature as the Lallement

lemma. In the Section 6.6 we give some new generalizations on Lallement’s

lemma.

Corollary 2.3 Let ξ be a congruence relation on a π-regular semigroup

semigroup S. Then every ξ-class which is an idempotent in S/ξ, contains

an idempotent from S.
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Proof. Let E be an arbitrary idempotent from S/ξ. Since E = EEE in

S/ξ then there exists a, b ∈ E such that a = aba and b = bab (by Lemma

2.3). Now we have that ab ∈ EE = E and ab is an idempotent in S.

Theorem 2.2 Let ξ be a congruence on a π-regular semigroup S, let n ∈ Z+

and let A,B1, B2, . . . , Bn ∈ S/ξ such that A = ABiA and Bi = BiABi, for

all i ∈ {1, 2, . . . , n}. Then there exist a, b1, b2, . . . , bn ∈ S such that a ∈ A,

bi ∈ Bi and a = abia, bi = biabi, for all i ∈ {1, 2, . . . , n}.

Proof. The theorem we will prove by induction. According to Lemma 2.3

the statement of the theorem is true for n = 1. Assume that the statement

of theorem is true for some positive integer k < n. Then there are elements

x, y1, y2, . . . , yk ∈ S such that x ∈ A, yi ∈ Bi, x = xyix and yi = yixyi
for i ∈ {1, 2, . . . , k}. Assume that the element yk+1 ∈ Bk+1. Since S is a

π-regular then there exists m ∈ Z+ such that (xyk+1)
2m ∈ Reg(S). Let

z ∈ V ((xyk+1)
2m) and let

u = xyk+1z(xyk+1)
2m−1x,

vk+1 = yk+1z(xyk+1)
2m−1,

vi = yixyk+1z(xyk+1)
2m−1xyi, for i ∈ {1, 2, . . . , k}.

It is easy to prove that u ∈ A, vi ∈ Bi, u = uviu and vi = viuvi, for all

i ∈ {1, 2, . . . , k + 1}.

Exercises

1. A semigroup S is regular if and only if L ∩ R = RL, for every left ideal L and
every right ideal R of S.

2. Let S be a regular subsemigroup of a semigroup T . Then Green’s relations L,
R and H on S are restrictions of the corresponding relations on T .

3. The statement that a full semigroup of transformations Tr(X) is regular, for
every set X, is equivalent to the axiom of choice.

4. A semigroup satisfies the conditions TC (term conditions) if

(C1) xy = xz ⇒ uy = uz;
(C2) yx = zx ⇒ yu = zu;
(C3) y1xy2 = z1xz2 ⇒ y1uy2 = z1uz2.

A semigroup S which satisfies the TC conditions we call a TC-semigroup.

Let G be a commutative group, I, Λ and Q be non-empty sets and ϕ, λ and β
be mappings from G into I, Λ and Q, respectively. Then the set S = Q∪(G×I×Λ)
with a multiplication defined by

p ∗ q = ((pϕ)(qϕ); pα, qβ), (a; i, λ) ∗ (b; j, µ) = (ab; i, µ),
p ∗ (a; i, λ) = ((pϕ)a; pα, λ) (a; i, λ) ∗ p = (a(pϕ); i, pβ),
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for p, q ∈ Q, (a; i, λ), (b; j, µ) ∈ G× I × Λ, is a π-regular TC-semigroup.

Conversely, every π-regular TC-semigroup can be constructed in this way.

5. A semigroup S is a periodic TC-semigroup if and only if S is isomorphic to some
semigroup constructed in Exercise 4., where G is a periodic group.

6. Let I(X) be the set of all injective partial mappings of a set X, including the
empty relation. Prove that I(X) is an inverse subsemigroup of B(X).

A semigroup I(X) we call a symmetric inverse semigroup of the set X.

7. Every inverse semigroup can be embedded into some symmetric inverse semi-
group.

8. A congruence ξ on a semigroup S divides idempotents if for all e, f ∈ E(S), from
eξf it follows that e = f . On an arbitrary semigroup S we define a relation µ with

µ = {(a, b) ∈ S × S | (∀x ∈ Reg(S))((xRxa ∨ xRxb) ⇒ xaHxb ∧
(xLax ∨ xLbx) ⇒ axHbx)}.

Prove that µ is a congruence which divides idempotents. If S is a π-regular semi-
group, then µ is the greatest congruence which divides idempotents.

9. The following conditions for the congruence µ, from Exercise 8., on a semigroup
S are equivalent:

(a) ξ ⊆ µ;
(b) (∀e ∈ E(S))(∀b ∈ S) eξb⇒ L(e) ⊆ L(b) ∧R(e) ⊆ R(b);
(c) (∀a ∈ Reg(S))(∀b ∈ S) aξb⇒ L(a) ⊆ L(b) ∧R(a) ⊆ R(b).

If S is a π-regular semigroup, then every one of given conditions are equivalent with

(d) ξ divides idempotents.
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2.2 Completely π-regular Semigroups

As we know, an element a of a semigroup S is completely regular if there

is x ∈ S such that a = axa and ax = xa. A semigroup S is completely

regular if all its elements are completely regular.

The set of all the completely regular elements of a semigroup S we denote

by Gr(S) and we call it the group part of S. This name is justified from the

following lemma.

Lemma 2.4 The following conditions for an element a of a semigroup S

are equivalent:

(i) a is completely regular;

(ii) a has inverse which commutes with a;

(iii) a ∈ a2Sa2;

(iv) a is both right and left regular;

(v) a is contained in some subgroup of S.

Proof. (i)⇒(ii) Assume x ∈ S such that a = axa and ax = xa. Then for

y = xax we have that y ∈ V (a) and ay = ya.

(ii)⇒(iii)⇒(iv) This follows immediately.

(iv)⇒(v) Let a ∈ a2S ∩ Sa2. Then we have a = a2x = ya2, for some

x, y ∈ S, whence ax = ya2x = ya. Let e = ax = ya. Since e2 = yaax =

ya2x = ya = e, e ∈ aS ∩ Sa, ae = a(ax) = a2x = a, ea = (ya)a = ya2 = a,

then a ∈ eS ∩ Se, so by Theorem 1.6 we have that a ∈ Ge.

(v)⇒(i) This follows immediately.

An element a of a semigroup S is completely π-regular if there exists

n ∈ Z+ and x ∈ S such that an = anxan and anx = xan, i.e. if some power

of the element a is completely regular. A semigroup S is completely π-regular

if all its elements are completely π-regular.

An element a of a semigroup S is pseudo inverse if there exists x ∈ S

and n ∈ Z+ such that an = an+1x, ax = xa and x = x2a. In that case x is

the pseudo inverse of a. A semigroup S is pseudo inverse if all its elements

are pseudo inverse.

An element a of a semigroup S is left (right) regular if a ∈ Sa2 (a ∈ a2S).

A semigroup S is left (right) regular if all its elements are left (right) regular.
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The set of all left (right) regular elements of a semigroup S we denote by

LReg(S) (RReg(S)).

An element a of a semigroup S is left (right) π-regular if there is n ∈ Z+

such that an ∈ San+1 (an ∈ an+1S). A semigroup S is left (right) π-regular

if all its elements are left (right) π-regular.

Theorem 2.3 The following conditions on a semigroup S are equivalent:

(i) S is completely π-regular;

(ii) for every element from S some of its power is in some subgroup of S;

(iii) for every a ∈ S there exist n ∈ Z+ such that an ∈ anSan+1;

(iii’) for every a ∈ S there exist n ∈ Z+ such that an ∈ an+1San;

(iv) S is π-regular and left π-regular;

(v) S is pseudo inverse.

Proof. (i)⇒(ii)⇒(iii) This follows by Lemma 2.4.

(iii)⇒(iv) This is evident.

(iv)⇒(i) Let (iv) hold. Assume a ∈ S. Since a is left π-regular, then

there exists m ∈ Z+ and x ∈ S such that am = xam+1, whence

(1) am = xkam+k,

for every k ∈ Z+. Since am is π-regular, then there exists p ∈ Z+ and

y ∈ S such that amp = ampyamp. Then from (1) we have that amp =

ampy(x2mpam+2mp)p ∈ ampSamp, i.e.

(2) an = anza2n,

for n = mp and some z ∈ S. By (2) it is easy to prove that

(3) an = an(zan)kank,

for every k ∈ Z+. Since zan is left π-regular, then there exists q ∈ Z+ and

u ∈ S such that (zan)q = u(zan)q+1. Then (zan)q = u2(zan)q+2, so by (3)

we have

an = an(zan)qanq = anu2(zan)q+2anq = anu2zanz[an(zan)qanq]
= anu2zanzan = anu2(zan)2,

whence it follows that

a2nzan = an(anzan) = anu2(zan)2(anzan) = anu2z(anza2n)zan

= anu2zanzan = an.
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From this and (2) using Lemma 2.4 we get that a is a completely π-regular

element. Thus (i) holds.

(ii)⇒(v) Let a be an arbitrary element from S. Then an ∈ Ge for some

e ∈ E(S) and n ∈ Z+. According to Lemma 1.8, ae = ea ∈ Ge so there is

x ∈ Ge such that xea = aex = e. Since x = xe = ex then xa = ax = e and

x = xe = x2a. Finally, an = ane = an+1x. Thus a is pseudo inverse.

(v)⇒(iii) Let a be a pseudo inverse element of S. Then there are x ∈ S

and n ∈ Z+ such that

an = an+1x = an+2x2 = · · · = a3nx2n = anx2na2n ∈ anSan+1.

Lemma 2.5 Let S be a completely π-regular semigroup. If K is a subsemi-

group of S and completely π-regular, then

Gr(K) = K ∩Gr(S).

Proof. If g is a group element of a completely π-regular semigroup, then

its group inverse belongs to the same maximal subgroup as g.

Thus, that the pseudo inverse is unique proves the following lemma.

Lemma 2.6 The element a of a semigroup S has at most one pseudo in-

verse. If x is a pseudo inverse of a then x commutes with every element

from S which commutes with a.

Proof. Let x and y be two pseudo inverses of the element a and let k and

m be corresponding integers from the definition of pseudo inverse. Assume

that n = max{k,m}. Then

xan+1 = an = an+1y, x = x2a, y = ay2.

Hence

x = x2a = x3a2 = · · · = xn+1an = xn+1an+1y = xay = xaay2

= xa2y2 = · · · = xan+1yn+1 = anyn+1 = · · · = y.

Thus, a has at most one pseudo inverse x.

Now, assume u ∈ S such that au = ua. Then xanu = xuan = xuan+1x =

xan+1ux = anux whence we have xn+1anu = anuxn+1. Namely, since x =

xn+1an then xu = xn+1anu = anuxn+1 = uxn+1an = ux.
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A pseudo inverse is a generalization of a group inverse. Using Lemma

1.8 and Theorem 2.3, pseudo inverses can be represented in another way.

Namely, if x is pseudo invertible, or equivalently, a completely π-regular

element of a semigroup S, then xn ∈ Ge, for some n ∈ Z+ and xe ∈ Ge,

and the pseudo inverse x of x is given by x = (xe)−1, i.e. x is the group

inverse of the element xe in the group Ge. If x is an element of a completely

π-regular semigroup S and xn ∈ Ge, for some n ∈ Z+ and e ∈ E(S), then

x0 denotes the identity of Ge, x
0 = e. A pseudo inverse is in fact Drazin’s

inverse.

An element a of a semigroup S is intra regular if a ∈ Sa2S. The set of

all intra regular elements of a semigroup S we denote by Intra(S) and we

call it the intra regular part of S. A semigroup S is intra regular if all its

elements are intra regular.

An element a of a semigroup S is intra π-regular if there is n ∈ Z+ such

that an ∈ Sa2nS, i.e. if some its power is intra regular. A semigroup S is

intra π-regular if all its elements are intra π-regular.

Theorem 2.4 A semigroup S is left π-regular if and only if it is intra π-

regular and Intra(S) = LReg(S).

Proof. Let S be left π-regular. Clearly, S is intra π-regular and LReg(S) ⊆
Intra(S). Assume a ∈ Intra(S). Then a = xa2y, for some x, y ∈ S, whence

a = (xa)nayn, for each n ∈ Z+. Since S is left π-regular, then (xa)n =

z(xa)2n, for some n ∈ Z+ and z ∈ S, whence

a = (xa)nayn = z(xa)2nayn = z(xa)na ∈ Sa2.

Therefore, a ∈ LReg(S), so Intra(S) = LReg(S).

The converse follows immediately.

Lemma 2.7 Let C be one of the following classes of semigroups: regular,

π-regular, intra regular, intra π-regular, completely regular, completely π-

regular, left π-regular, right π-regular, and let ξ be a semilattice congruence

on a semigroup S. Then S is from a class C if and only if every ξ-class of

S is from C.

Proof. We will prove only for a class of π-regular semigroups, in the other

cases the proofs are similar.

Let S be a π-regular semigroup, let A be an arbitrary ξ-class of S and

let a ∈ A. Then there are n ∈ Z+ and x ∈ S such that an = anxan
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and x = xanx. Since xξ = (xanx)ξ = (xξ)((an)ξ)(xξ) = (xξ)(aξ) =

((an)ξ)(xξ)((an)ξ) = (an)ξ = aξ, so a ∈ A. Thus, A is a π-regular semi-

group.

The converse follows immediately.

Similarly we prove the following result.

Lemma 2.8 Let C be a class of completely regular semigroups or a class

of a completely π-regular semigroups, and let ξ be a band congruence on a

semigroup S. Then S is from a class C if and only if every ξ-class of S is

from C.

Exercises

1. Let N be the set of all non-negative integers. Then S = N ×N with a multipli-
cation defined by

(m,n)(p, q) = (m− n+max{n, p}, q − p+max{n, p}), (m,n), (p, q) ∈ S,

is a semigroup which we call a bi-cyclic semigroup. Prove that a bi-cyclic semigroup
is simple and inverse, and it is not completely simple, i.e. it is not completely π-
regular.

2. The following conditions on a semigroup S are equivalent:

(a) S is completely π-regular;
(b) S is left and right π-regular;
(c) every proper bi-ideal of S is π-regular.

3. Let S be a π-regular semigroup and m ∈ Z+. If every D-class of S contains at
most m L-classes, then S is completely π-regular and for every a ∈ S, amn belongs
to some subgroup of S, where n ∈ Z+ is the smallest number for which an ∈ Reg(S).

4. Every ideal of a π-regular (completely π-regular, regular, completely regular)
semigroup is π-regular (completely π-regular, regular, completely regular).

5. Let S be a completely π-regular semigroup, and for e ∈ E(S) let Te =
√
Ge.

Then Ge is an ideal of ⟨Te⟩, xe = ex for every x ∈ ⟨Te⟩, and Me = {u ∈ S | (∃x ∈
⟨Te⟩)xu ∈ ⟨Te⟩} = {u ∈ S | (∃x ∈ Ge)xu ∈ Ge} is a subsemigroups of S with the
ideal Ge.

6. Let e, f ∈ E(S) and (ef)n, (fe)n∈ Gg, for some n∈Z+. Then (ef)n= (fe)n= g.

7. The following conditions on a semigroup S are equivalent:

(a) S is completely π-regular and E(S) = Gr(S);
(b) S is a union of nil-semigroups;
(c) (∀a ∈ S)(∃n ∈ Z+) an = an+1.
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8. A semigroup S is inverse if and only if S is regular and its idempotents commute.
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2.3 The Union of Groups

An idempotent e of a semigroup S without zero is primitive if it is the

minimal element with respect to the natural partial order ≤ on E(S), i.e. if

f2 = f = ef = fe ⇒ f = e.

A semigroup S is completely simple if S is simple and if contains a primitive

idempotent.

The next result, is a known as Munn’s theorem in the relevant literature.

Theorem 2.5 Let S be a simple semigroup. Then S is completely simple if

and only if S is a completely π-regular semigroup.

Proof. Let S be a completely simple semigroup, let a ∈ S be an arbitrary

element and let e ∈ E(S) be an primitive idempotent. Then S = SeS =

Sea3eS, because S is simple, so there are u, v, x, y ∈ S such that a = uev

and e = x(ea3e)y. Assume f = evaeyexeaue. Then

f2 = evaeyexeaueevaeyexeaue = evaeyexea(uev)aeyexeaue
= evaeye(xea3ey)exeaue = evaeyeeexeaue = f,

and since f ≤ e then we have f = e. Thus

a = uev = ufev = (uev)(aeyexea)(uev) = a2(eyexe)a2 ∈ a2Sa2,

and by Lemma 2.4 a is a completely regular element.
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Conversely, let S be completely π-regular and let a ∈ S. Since S is simple

then a = xay for some x, y ∈ S. It is clear that a = xrayr, for every r ∈ Z+.

Since S is completely π-regular then xs ∈ Ge for some s ∈ Z+ and e ∈ E(S).

We will prove that e is primitive. Assume that ef = fe = f . Since S is

simple then e = pfq for some p, q ∈ S. Let h = epf and k = fqe. Then we

have that eh = h = hf = hfe = he and ke = k = fk = efk = ek. Also,

hk = epf2qe = e3 = e, so

e = hk = hek = h(hk)k = h2k2 = h3k3 = · · · = hrkr,

for every r ∈ Z+. Since S is completely π-regular then hn ∈ Gg for some

n ∈ Z+ and g ∈ E(S). Assume that u = hn, v = kn and let w be the group

inverse of u in Gg. Then

eu = u = ue, ev = v = ve, e = uv = u2v2, gu = u = ug, wu = g = uw,

whence we have that gv2u2 = w2u2v2u2 = w2eu2 = w2u2 = g so

e = uv = ugv = ugv2u2v = (ugv)(vu)(uv) = e(vu)e = vu.

On the other hand, fv = fkn = kn = v because fk = k. Thus, f = fe =

fvu = vu = e.

Corollary 2.4 A semigroup S is completely simple if and only if S is simple

and a completely regular semigroup.

The following theorem offers the structural characterization of intra reg-

ular semigroups.

Theorem 2.6 A semigroup S is intra regular if and only if S is a semilattice

of a simple semigroup.

Proof. Let S be an intra regular semigroup. Assume a ∈ S. Then a = xa2y

for some x, y ∈ S, so J(a) ⊆ J(a2). Since the opposite inclusion always holds

we have that J(a) = J(a2) for every a ∈ S.

Assume a, b ∈ S. Then, based on the previous it follows that J(ab) =

J(abab) ⊆ J(ba) and J(ba) ⊆ J(ab). Thus J(ab) = J(ba) for every a, b ∈ S.

Assume a, b ∈ S such that J(a) = J(b) and assume x ∈ S. Then a = ubv

for some u, v ∈ S so

J(ax) = J(ubvx) ⊆ J(bvx) = J(bvxbvx) ⊆ J(xb) = J(bx).
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Similarly we prove that J(bx) ⊆ J(ax) whence J(ax) = J(bx) and J(xa) =

J(xb). Thus J is a semilattice congruence on S.

It is evident that Ja is a subsemigroup of S, for all a ∈ S. Assume a ∈ S

and x, y ∈ Ja. Then J(y) = J(x) = J(x3) so we have y = ux3v = (ux)x(xv)

for some u, v ∈ S1. Since

Ja = Jy = JuxJxJxv = JuxJaJxv

is in S/J , then we have that

Ja = JuxJa = JuJxJa = JuJx = Jux,

and similarly Jxv = Ja. Thus, y ∈ JaxJa, so Ja is a simple semigroup.

Therefore, S is a semilattice of simple semigroups.

The converse follows based on the fact that every simple semigroup is

intra regular and by Lemma 2.7.

A semigroup S is a union of groups if S can be represented as a union of

its maximal subgroups. According to Theorem 1.7 this union is disjoint.

Theorem 2.7 The following conditions on a semigroup S are equivalent:

(i) S is completely regular;

(ii) S is a union of groups;

(iii) S is a semilattice of completely simple semigroups;

(iv) (∀a ∈ S) a ∈ aSa2;

(iv’) (∀a ∈ S) a ∈ a2Sa.

Proof. (i)⇒(ii) and (ii)⇒(iv) This follows from Lemma 2.4.

(iv)⇒(iii) Let a = axa2 for some x ∈ S. Then

a = axa2 = (ax)aa = (ax)(axa2)a ∈ Sa2S,

so S is intra regular. According to Theorem 2.6 S is a semilatice of simple

semigroups, and now by Theorem 2.3, Lemma 2.7 and Theorem 2.5, S is a

semilattice of completely simple semigroups.

(iii)⇒(i) This follows from Corollary 2.4 and Lemma 2.7.
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The condition (iv) from the previous theorem can be replaced with: S is

a regular and a left (right) regular semigroup.

Exercises

1. A semigroup S is intra regular if and only if R(J ) = J .

2. The following conditions on a semigroup S are equivalent:

(a) S is a union of groups;
(b) R(L) = L, R(R) = R;
(c) R(H) = H.

3. A semigroup S is a semilattice of groups if and only if R(L) = R.

4. The following conditions on a semigroup S are equivalent:

(a) S is a union of groups;
(b) S is left and right regular;
(c) S is regular and left (right) regular;
(d) every H-class of S is a group.
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2.4 π-inverse Semigroups

A semigroup S is right (left) π-inverse if S is π-regular and if for all

a, x, y ∈ S the following implication holds

a = axa = aya ⇒ xa = ya (ax = ay).

Theorem 2.8 The following conditions on a semigroup S are equivalent:

(i) S is right π-inverse;

(ii) S is π-regular and for all e, f ∈ E(S) there exists n ∈ Z+ such that

(ef)n = (fef)n;

(iii) for every a ∈ S there exists n ∈ Z+ such that L(an) has a unique

idempotent as a generator;
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(iv) for every a ∈ S there exists n ∈ Z+ such that L(an) has a unique right

identity;

(v) S is π-regular and for every e, f ∈ E(S) there exists n ∈ Z+ such that

(ef)nR(fe)n.

Proof. (i)⇒(ii) Let e, f ∈ E(S) and let a be an inverse element of the

element (ef)n, for some n ∈ Z+. Then

(ef)n = (ef)na(ef)n = (ef)nfa(ef)n,

and by supposition we have that a(ef)n = fa(ef)n, so a(ef)na = fa(ef)na.

Thus

(4) a = fa.

Now we have

(5) a = a(ef)na = a(efe)n−1fa = a(efe)n−1a.

Hence, based on (4)

a(efe)n−1 = a(efe)n−1a(efe)n−1a(efe)n−1

= a(efe)n−1efa(efe)n−1a(efe)n−1

so by supposition we have that

a(efe)n−1a(efe)n−1 = efa(efe)n−1a(efe)n−1,

i.e.

a(efe)n−1 = efa(efe)n−1.

Hence and according to (5) it follows that a = efa and from (4) we get

(6) a = ea.

Using (4) and (6) we have that

(ef)n = (ef)na(ef)n = (ef)nea(ef)n = (ef)nefa(ef)n

= ef(ef)na(ef)n = ef(ef)n = (ef)n+1.

Now, we have (ef)n = (ef)nef(ef)n = (ef)nf(ef)n, so ef(ef)n = f(ef)n.

Thus, (ef)n = (fef)n, i.e. (ii) holds.

(ii)⇒(i) If a = axa = aya then (xaya)n = (yaxaya)n for some n ∈ Z+,

so xa = ya. Thus, S is a right π-inverse.
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(i)⇒(iii) Let an = anxan for some n ∈ Z+ and x ∈ S. Then by Lemma

2.1, L(an) has an idempotent e as a generator. Assume f ∈ E(S) such that

L(an) = Sf . Then Se = Sf , so e = yf, f = xe for some x, y ∈ S. Now we

have ef = (yf)f = yf = e, fe = f whence e = efe = e(efe)e. From this,

by supposition, we have that fe = efee = efe. Thus, f = fe = efe = e.

Therefore, L(an) has a unique idempotent as a generator.

(iii)⇒(iv) Let L(an) have a unique idempotent e as a generator. Then

by Lemma 2.1 L(an) has a unique right identity.

(iv)⇒(i) Let L(an) have a unique right identity. According to Lemma

2.1 a is π-regular. Assume a = axa = aya. Then since the identity is unique

we have xa = ya. Thus, S is right π-regular.

(ii)⇒(v) For an arbitrary e, f ∈ E(S) there exists m,n ∈ Z+ such that

(efe)m = (fe)m and (fef)n = (ef)n. Hence

(ef)mne = (fe)mn and (fe)mnf = (ef)mn.

Thus (ef)kR(fe)k for k = mn.

(v)⇒(ii) For e, f ∈ E(S) let (fe)nR(ef)n for some n ∈ Z+. Then

(fe)nu = (ef)n for some u ∈ S, so f(ef)n = f(fe)nu = (fe)nu = (ef)n, i.e.

(fef)n = (ef)n.

A semigroup S is right (left) completely π-inverse if S is completely π-

regular and for all a, x, y ∈ S, a = axa = aya implies xa = ya (ax = ay),

i.e. if S is completely π-regular and right (left) π-inverse.

Theorem 2.9 The following conditions on a semigroup S are equivalent:

(i) S is right completely π-inverse;

(ii) S is π-regular and for all a ∈ S, f ∈ E(S) there exists n ∈ Z+ such

that (af)n = (faf)n;

(iii) S is π-regular and for all a ∈ Reg(S), f ∈ E(S) there exists n ∈ Z+

such that (af)n = (faf)n.

Proof. (i)⇒(ii) Assume a ∈ S and f ∈ E(S). According to Theorem 2.3

there exist k,m ∈ Z+ such that (af)k ∈ Gg and (faf)m ∈ Gh for some

g, h ∈ E(S). According to Lemma 1.8 there is n ∈ Z+ such that (af)n ∈ Gg
and (faf)n ∈ Gh. Now we have

g = ((af)n)−1(af)n = ((af)n)−1(af)nf = gf.
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Similarly, we prove that h = hf = fh. Since f(af)r = (af)rf = (faf)r, for

all r ∈ Z+, then f(af)n = (faf)n = h(faf)n = hf(af)n = h(af)n. Thus

f(af)n((af)n)−1 = h(af)n((af)n)−1,

i.e. fg = hg, whence g(fg) = g(hg). Since gf = g then g = ghg = g2 and

since S is right π-inverse then hg = g. Thus, the following holds

(7) fg = hg = g.

Also, we have

h = hf = ((faf)n)−1(faf)nf = ((faf)n)−1f(af)nf
= ((faf)n)−1f(af)ngf = ((faf)n)−1(faf)ngf = hgf = hg.

Hence, using (7) it follows that g = h. Thus, the elements (af)n and (faf)n

belong to the same subgroup Gg of S and since gf = g then

(faf)n = g(faf)n = gf(af)n = g(af)n = (af)n.

(ii)⇒(iii) This follows immediately.

(iii)⇒(i) We will prove that S is completely π-regular. Let a = axa for

some x ∈ S. Then based on the hypothesis of the theorem there is r ∈ Z+

such that

ar = (a(xa))r = ((xa)a)r = (xa2)r = xar+1.

Thus, every regular element from S is left π-regular. Since S is π-regular

then for every a ∈ S there exists m ∈ Z+ such that am ∈ Reg(S). From this

it follows that there are r ∈ Z+ and x ∈ S such that (am)r = x(am)r+1, i.e.

amr ∈ Samr+1. Thus, S is π-regular and left π-regular, so by Theorem 2.3,

S is a completely π-regular semigroup. Based on Theorem 2.8, S is a right

π-inverse.

A semigroup S is a π-inverse if S is π-regular and for every a ∈ Reg(S)

there is a unique x ∈ S such that a = axa and x = xax, i.e. if every regular

element has a unique inverse.

Theorem 2.10 The following conditions on a semigroup S are equivalent:

(i) S is π-inverse;

(ii) S is π-regular and for all e, f ∈ E(S) there exists n ∈ Z+ such that

(ef)n = (fe)n;
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(iii) S is left and right π-inverse.

Proof. (i)⇒(ii) For an arbitrary e, f ∈ E(S) there exists z ∈ S and k ∈ Z+

such that (ef)k = (ef)kz(ef)k and z = z(ef)kz. Hence (ef)k = (ef)kze(ef)k

and ze = ze(ef)kze. Now, since z is unique, we have that z = ze, and

similarly z = fz. There are two cases.

Assume that k > 1. Then

z = z(ef)kz = ze(fe)k−1fz = z(fe)k−1z,

and if t = (fe)k−1z(fe)k−1 then we have ztz = z and tzt = t. From this,

based on uniqueness we have that (ef)k = t = (fe)k−1z(fe)k−1, so

(ef)ke = (fe)k−1z(fe)k−1e = (ef)k.

Now, (ef)kef = (ef)kf , i.e. (ef)k+1 = (ef)k ∈ E(S), and based on unique-

ness we have that z = (ef)k.

If k = 1 then

z2 = zz = (ze)(fz) = z(ef)z = z,

i.e. z ∈ E(S). Hence, based on uniqueness z = ef .

Thus in both cases we have that

z = (ef)k = (ef)k+1.

Since z = ze = fz we have that (ef)k = z = fze = f(ef)ke = (fe)k+1.

Therefore, for n ≥ k + 1 is (ef)n = (fe)n.

(ii)⇒(iii) This follows from Theorem 2.8 and its dual.

(iii)⇒(i) Assume that a ∈ Reg(S) has two inverse elements b and c. Then

abS = aS = acS and Sbc = Sa = Sca.

According to Theorem 2.8 and its dual, L(a) and R(a) have a unique idempo-

tent as a generator, so ab = ac and ba = ca, whence b = bab = bac = cac = c

A semigroup S is completely π-inverse if S is completely π-regular and a

π-inverse semigroup. Based on Theorems 2.9 and 2.10 we immediately have

the following result.
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Theorem 2.11 The following conditions on a semigroup S are equivalent:

(i) S is completely π-inverse;

(ii) S is π-regular and for all a ∈ S, f ∈ E(S) there exists n ∈ Z+ such

that (af)n = (fa)n;

(iii) S is π-regular and for all a ∈ Reg(S), f ∈ E(S) there exists n ∈ Z+

such that (af)n = (fa)n.

A semigroup S is strongly π-inverse if S is π-regular and if its idempotents

commute each other.

Theorem 2.12 The following conditions on a semigroup S are equivalent:

(i) S is strongly π-inverse;

(ii) S is π-regular and Reg(S) is an inverse subsemigroup of S;

(iii) S is π-inverse and the product of every two idempotents from S is also

an idempotent.

Proof. (i)⇒(ii) Let a, b ∈ Reg(S). Then there are x, y ∈ S such that

a = axa and b = byb. Now we have

ab = (axa)(byb) = a(xa)(by)b = a(by)(xa)b = (ab)(yx)(ab).

Thus Reg2(S) = Reg(S). Let a ∈ Reg(S) and x, y ∈ V (a). Since idempo-

tents from Reg(S) commute then we have

x = xax = x(aya)x = x(ay)(ax) = x(ax)(ay) = xay.

Similarly, we have x = yax. So, it follows that

x = xax = (yax)a(xay) = y(axaxa)y = yay = y.

Thus, Reg(S) is an inverse semigroup.

(ii)⇒(i) Assume e, f ∈ E(S) ⊆ Reg(S) then ef ∈ Reg(S). Let x ∈ V (ef)

then

(8) x = x(ef)x and (ef) = (ef)x(ef).

From this we have

fxe = f(xefx)e = (fxe)(ef)(fxe) and (ef) = (ef)(fxe)(ef),
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i.e. fxe ∈ V (ef). Since in Reg(S) the inverse element is unique then

x = fxe. Now, we have x2 = (fxe)(fxe) = f(xefx)e = fxe = x, whence

x ∈ E(S) ⊆ Reg(S). So, for x ∈ E(S) and based on (8) it follows that

x ∈ V (x) and ef ∈ V (x), and since an inverse is unique we have that

x = ef ∈ E(S) and ef ∈ V (ef). Similarly, we prove that fe ∈ E(S). For

this element the following also holds

ef = (ef)2 = (ef)(ef) = (ef)(fe)(ef),
fe = (fe)2 = (fe)(fe) = (fe)(ef)(fe),

i.e. fe ∈ V (ef). Thus, ef ∈ V (ef) and fe ∈ V (ef) and since the inverse is

unique then we have ef = fe. Therefore, S is π-regular and its idempotents

commute, so S is strongly π-regular.

(i)⇒(iii) This follows from Theorem 2.10.

(iii)⇒(i) Let (iii) hold, then S is π-regular and for all e, f ∈ E(S) there

exists n ∈ Z+ such that (ef)n = (fe)n. From this, for n = 1 we have

ef = fe, for all e, f ∈ E(S). Thus, S is strongly π-inverse.

A semigroup S is Clifford’s semigroup if S is regular and E(S) ⊆ C(S). It

is evident that every Clifford’s semigroup is inverse and completely regular.

The following concept is more general: element b of a semigroup S is the

σ-inverse of an element a ∈ S if a = aba and b = bab and there is n ∈ Z+

such that anb = ban. A semigroup S is a σ-inverse if all its elements have a

unique σ-inverse.

Theorem 2.13 The following conditions on a semigroup S are equivalent:

(i) S is σ-inverse;

(ii) S is inverse and completely π-regular;

(iii) S is regular and for all a ∈ S, e ∈ E(S) there exists n ∈ Z+ such that

(ae)n = (ea)n.

Proof. (i)⇒(ii) Let (i) hold, then S is inverse and regular. Assume a ∈ S

then there exists a unique b ∈ S and n ∈ Z+ such that a = aba, b = bab and

anb = ban. From this we have an = aban = an+1b = ban+1 whence S is left

π-regular. Since S is regular and left π-regular then by Theorem 2.3, S is

completely π-regular.

(ii)⇒(i) Assume a ∈ S. Then there exists x ∈ S such that a = axa

and x = xax. Also ax, xa ∈ E(S). According to Theorem 2.11 there exist
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n,m ∈ Z+ such that

(aax)n = (axa)n = an and (xaa)m = (axa)m = am.

Then (a2x)t = at = (xa2)t for t = nm, so we have that

(a2x)t = a(axa)t−1ax = a(axa)t−1axax = a(axa)tx = aatx = at+1x.

Similarly, we prove (xa2)t = xat+1. Thus at+1x = xat+1. Therefore, S is a

σ-inverse semigroup.

(ii)⇔(iii) This follows from Theorem 2.11.

Recall that a subsemigroup B of a semigroup S is a bi-ideal of S if

BSB ⊆ B. For a ∈ S, B(a) = {a} ∪ {a2} ∪ aSa is the smallest bi-ideal

containing a, and it is called the principal bi-ideal of S generated by a.

Recall also that a semigroup S is called globally idempotent if S2 = S

(i.e. every element of S is decomposable).

Exercises

1. If for every a ∈ S there exists m ∈ Z+ such that L(am) has an identity, then S
is a completely π-regular and right π-inverse semigroup.

2. A semigroup S is π-inverse if and only if S is π-regular and from a = axa = aya
it follows that xax = yay.

3. If S is a π-inverse semigroup, then for all e, f ∈ E(S) there exists n ∈ Z+ such

that (ef)n ∈ E(S).
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2.5 Quasi-regular Semigroups

The following lemma establishes an interesting connection between intra

quasi-regular and intra regular, left quasi-regular and left regular, and right

quasi-regular and right regular elements.

An element a of a semigroup S is intra quasi-regular if a = xayaz, for

some x, y, z ∈ S. A semigroup S is intra quasi-regular if all its elements are

intra quasi-regular.
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An element a of a semigroup S is left (right) quasi-regular if a = xaya

(a = axay), for some x, y ∈ S. A semigroup S is left (right) quasi-regular if

all its elements are left (right) quasi-regular.

Lemma 2.9 The following conditions on a semigroup S are true:

(a) S has an intra quasi-regular element if and only if it has an intra

regular element;

(b) S has a left quasi-regular element if and only if it has a left regular

element;

(c) S has a right quasi-regular element if and only if it has a right regular

element.

Proof. (a) Let a be an intra quasi-regular element of S, i.e. a = xayaz,

for some x, y, z ∈ S. Then

yaz= y(xayaz)z = (yx)a(yaz2) = (yx)(xayaz)(yaz2)
= (yx2a)(yaz)2z ∈ S(yaz)2S,

so we have that yaz is an intra regular element of S. The converse is clear.

Further, let a be a left quasi-regular element of S, i.e. a = xaya, for

some x, y ∈ S. Then

ya= y(xaya) = (yx)a(ya) = (yx)(xaya)ya)
= (yx2a)(ya)2 ∈ S(ya)2,

so ya is a left regular element of S. The converse is evident.

The assertions (b) and (c) can be proved similarly.

It is well-known that an element a of a semigroup S is regular if and

only if the principal left ideal L(a) (or the principal right ideal R(a)) has an

idempotent generator. In a similar way we characterize the left, right and

intra quasi-regular elements.

Theorem 2.14 Let a be any element of a semigroup S. Then the following

assertions are true:

(a) a is intra quasi-regular if and only if the principal ideal J(a) of S has

an intra regular generator;

(b) a is left quasi-regular if and only if the principal left ideal L(a) of S

has a left regular generator;
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(c) a is right quasi-regular if and only if the principal right ideal R(a) of

S has a right regular generator.

Proof. (a) Let a be an intra quasi-regular element. Then a = xayaz, for

some x, y, z ∈ S, so J(a) = J(yaz). According to Lemma 2.9 it follows that

yaz is an intra regular element, so we have proved that J(a) is generated by

an intra regular element.

Conversely, let J(a) be generated by an intra regular element b. Then

J(a) = J(b) and b = pb2q, for some p, q ∈ S, from which it follows that

a ∈ J(b) = J(pb2q) =⊆ Sb2S. On the other hand, from b ∈ J(a) it follows

that b2 ∈ SaSaS. Therefore, a ∈ SaSaS, which has to be proved.

The assertions (b) and (c) can be proved similarly.

By LQReg(S), IQReg(S) and IReg(S) we denote respectively the sets of

all the left quasi-regular, intra quasi-regular and intra regular elements of a

semigroup S.

Theorem 2.15 A semigroup S is left quasi-π-regular if and only if it is

intra quasi-π-regular and IQReg(S) = LQReg(S).

Proof. Let S be left quasi-π-regular. Then it is also intra quasi-π-regular

and LQReg(S) ⊆ IQReg(S). To prove the opposite inclusion, consider an

arbitrary a ∈ IQReg(S). Then a = xayaz for some x, y, z ∈ S, so a =

(xay)nazn, for every n ∈ Z+. On the other hand, since S is left quasi-π-

regular, then there exists n ∈ Z+ and p, q ∈ LQReg(S) such that (xay)n =

p(xay)nq(xay)n. Now

a = (xay)nazn = p(xay)nq(xay)nazn = p(xay)nqa ∈ SaSa,

so a ∈ LQReg(S). Thus, LQReg(S) = IQReg(S), which has to be proved.

The converse is obvious.
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2.6 Idempotent-Generated Semigroups

In this section we give some properties of semigroups and subsemigroups

generated by idempotent elements. These results will be useful in the further

discussion. We remind the reader that by ⟨E(S)⟩ we denote the idempotent-

generated subsemigroup of a semigroup S. This subsemigroup is the core of

S. Also, based on V (En), n ∈ Z+, we denote the set {V (a) | a ∈ En}, where
E = E(S) and V (a) is the set of all the inverse elements of the element

a ∈ S.

Theorem 2.16 Let E(S) ̸= ∅, then the following conditions are equivalent

on a semigroup S:

(i) Reg(S) is a subsemigroup of S;

(ii) ⟨E(S)⟩ is a regular subsemigroup of S;

(iii) V (E) = E2;

(iv) V (En) = En+1, for every n ∈ Z+.

Proof. (i)⇒(ii) Let a = e1e2 . . . en ∈ ⟨E(S)⟩, ei ∈ E(S), i = 1, 2, . . . , n and

let b be an inverse of a in Reg(S). If n = 1, then b = bab = ba2b = (ba)(ab) ∈
⟨E(S)⟩. Let n > 1. For every i = 1, 2, . . . , n assume that

ti = e1e2 · · · ei, ui = eiei+1 · · · en, fi = uibti−1, i > 1.

Then tiui = a = tn = u1 and ti−1ui = a, f2i = uibabti−1 = fi. Thus

b = b(ab)n = b(tnunb)(tn−1un−1b) · · · (t2u2b)(t1u1b)
= (btn)(unbtn−1) · · · (u2bt1)(u1b)
= (ba)fn · · · f2(ab) ∈ En+1(S) ⊆ ⟨E(S)⟩.

Hence, ⟨E(S)⟩ is regular.
(ii)⇒(i) Assume a, b ∈ Reg(S). Then a = axa and b = byb, for some

x, y ∈ S. Based on the hypothesis there is a z ∈ ⟨E(S)⟩ such that (xa)(by) =

(xa)(by)z(xa)(by). Thus

ab = axabyb = a(xabyzxaby)b = (axa)(byzxa)(byb)
= abyzxab ∈ abSab.

Hence, ab ∈ Reg(S), i.e. Reg(S) is a subsemigroup of S.

(i)⇒(iv) This follows from the proof of (i)⇒(ii).

(iv)⇒(iii) This is evident for n = 1.

(iii)⇒(i) This is like (ii)⇒(i).
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Lemma 2.10 If S is a completely simple semigroup, then ⟨E(S)⟩ is com-

pletely simple.

Proof. According to Theorem 2.16, ⟨E(S)⟩ is a regular semigroup and since

its idempotents are primitive, because it is primitive in S, then ⟨E(S)⟩ is a
completely simple semigroup.

Lemma 2.11 If a semigroup S is (completely) π-regular, then ⟨E(S)⟩ is

(completely) π-regular.

Proof. If x ∈ ⟨E(S)⟩ and xn, n ∈ Z+, is regular in S, then by Theorem 2.3

xn, n ∈ Z+, is regular in ⟨E(S)⟩. If xnHSe, where HS is Green’s relation

with respect to S, then the inverse of xn contained in the HS-class of e is

contained in ⟨E(S)⟩, so that also xnH⟨E(S)⟩e. Thus the lemma follows.

Theorem 2.17 For a π-inverse semigroup S, ⟨E(S)⟩ is a periodic semi-

group.

Proof. Let e1, e2, . . . en ∈ E(S), i = 1, 2, . . . , n with n ∈ Z+. Since S is a

π-inverse semigroup, there exists m ∈ Z+ and a unique x ∈ S such that

x = x(e1e2 . . . en)
mx, (e1e2 . . . en)

m = (e1e2 . . . en)
mx(e1e2 . . . en)

m.

Clearly,

xe1(e1e2 . . . en)
mxe1 = xe1,

(e1e2 . . . en)
mxe1(e1e2 . . . en)

m = (e1e2 . . . en)
m.

Based on the definition of a π-inverse semigroup, we have xe1 = x. Sym-

metrically, we have enx = x.

Ifm = 1, then x = xe1e2 . . . enx = xe2 . . . enx. Let y = e2 . . . enxe2 . . . en.

Then xyx = x, yxy = y. Based on the uniqueness of inverses of x, we have

y = e2e3 . . . enxe2e3 . . . en = e1e2 . . . en.

Hence, e2y = y = e2(e1e2 . . . en). It follows that

xe2(e1e2 . . . en)xe2 = xe2,

e1e2 . . . en = (e1e2 . . . en)xe2(e1e2 . . . en).

Based on the uniqueness of inverses e1e2 . . . en, we have xe2 = x.
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Repeating this process, we have that

xe1 = xe2 = · · · = xen = x.

Symmetrically

enx = en−1x = · · · = e2x = e1x = x.

Hence

e1e2 . . . en = e1e2 . . . enxe1e2 . . . en = x = x(e1e2 . . . en)x = x2,

and so e1e2 . . . en is an idempotent of S.

If m ≥ 2, let y = e2 . . . en(e1e2 . . . en)
m−2e1e2 . . . en−1, then xyx = x.

Hence yxy is an inverse of x. Since S is a π-inverse semigroup, then

yxy = (e1e2 . . . en)
m

= e2 . . . en(e1 . . . en)
m−2e1 . . . en−1xe2 . . . en(e1 . . . en)

m−2e1 . . . en−1.

Thus e2(e1e2 . . . en)
m = (e1e2 . . . en)

m = (e1e2 . . . en)
men−1 and so

xe2(e1e2 . . . en)
mxe2 = xe2,

(e1e2 . . . en)
m = (e1e2 . . . en)

mxe2(e1e2 . . . en)
m.

Based on the uniqueness of the inverses of (e1e2 . . . en)
m, we have xe2 = x.

Symmetrically, en−1x = x. Hence

x = x(e1e2 . . . en)
mx = x(e3e4 . . . en)(e1e2 . . . en)

m−2e1e2 . . . en−2x.

Repeating the abovementioned process, we have

xe1 = xe2 = · · · = xen = x = enx = en−1x = · · · = e1x.

Hence

(e1e2 . . . en)
m = (e1e2 . . . en)

mx(e1e2 . . . en)
m = x = x(e1e2 . . . en)

mx = x2

and so (e1e2 . . . en)
m is an idempotent of S.

Thus we have proved that e1e2 . . . en is a periodic element of S and so

⟨E(S)⟩ is a periodic semigroup.

In view of Theorem 2.17 we have the following corollary.
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Corollary 2.5 For a π-inverse semigroup S, Reg(S) ∩ ⟨E(S)⟩ = E(S) and

⟨E(S)⟩ is a π-inverse subsemigroup of S.

Exercises

1. A semigroup S is a semiband if it is idempotent-generated.

An ideal of a regular semiband is itself a regular semiband.
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2.7 Left Regular Semigroups

In this section, we will give various structural characterizations of left

regular semigroups.

A semigroup S is a band Y of left (right) ideals Lα, α ∈ Y if

S =
∪
α∈Y

Lα, Lα ∩ Lβ = ∅, α ̸= β.

Lemma 2.12 A semigroup S is a left (right) zero band of a semigroup from

the class K if and only if S is a band of right (left) ideals from K.

Proof. Let S be a left zero band Y of semigroups Sα, α ∈ Y and Sα ∈ K.

Then for each α ∈ Y we have that

SαS = Sα

 ∪
β∈Y

Sβ

 =
∪
β∈Y

SαSβ ⊆
∪
β∈Y

Sαβ ⊆ Sα.

Hence, S is a band of right ideals from K.

Conversely, let S be a band of right ideals Sα ∈ K, α ∈ Y . Let τ be the

congruence relation on S induced by the decomposition of S. For a ∈ Sα,

b ∈ Sβ we have ab ∈ SαSβ ⊆ Sαβ and ab ∈ SαSβ ⊆ Sα. So Sαβ = Sα and

therefore τ is a left zero band congruence.
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A semigroup S will be called left (right) completely simple if it is simple

and left (right) regular. It is well-known that a semigroup S is completely

simple if and only if it is simple and completely regular, whence we have

that S is completely simple if and only if it is both left and right completely

simple.

Now we will characterize left completely simple semigroups.

Theorem 2.18 The following conditions on a semigroup S are equivalent:

(i) S is left completely simple;

(ii) S is simple and left π-regular;

(iii) every principal left ideal of S is a left simple subsemigroup of S;

(iv) S is a right zero band of left simple semigroups;

(v) (∀a, b ∈ S) a ∈ Sba;

(vi) S is a matrix of left simple semigroups;

(vii) |l is a symmetric relation on S;

(viii) S/L is a discrete partially ordered set.

Proof. (i)⇒(ii) This is obvious.

(ii)⇒(i) Since S is simple, then S = Intra(S). Now by Theorem 2.4 we

obtain that S = Intra(S) = LReg(S), so S is left regular.

(iii)⇒(iv) If all the principal left ideals of S are left simple, then the

principal left ideals are minimal, so the principal left ideals are disjoint.

From this and Lemma 2.12 it follows that S is a right zero band of left

simple semigroups.

(iv)⇒(v) If S is a right zero band Y of left simple semigroups Sα, α ∈ Y ,

then for a ∈ Sα, b ∈ Sβ we have that

ba ∈ SβSα ⊆ Sβα ⊆ Sα, so a ∈ Sαba ⊆ Sba.

(v)⇒(iii) Let condition (iii) hold. Assume a ∈ S and x, y ∈ L(a). Then

we have

(a) x = a, y = a. Then x = a ∈ Saa ⊆ L(a)y. Hence,

L(a) = L(a)y for every y ∈ L(a). (⋆)

(b) x = za, y = a. Then x = za ∈ zSaa ⊆ L(a)y, i.e. condition (⋆)

holds.
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(c) x = a, y = ua. Then x = a ∈ S(au)a ⊆ L(a)ua ⊆ L(a)y, i.e. (⋆)

holds.

(d) x = za, y = ua. Then x = za ∈ zS(au)a ⊆ L(a)ua = L(a)y i.e. (⋆)

holds. By (a), (b), (c) and (d) we have that L(a) is a left simple.

(vi)⇒(iv) If S is a matrix of left simple semigroups, then it is a right zero

band of semigroups that are left zero bands of left simple semigroups. Since

a left zero band of left simple semigroups is also a left simple semigroup,

then we obtain (iv).

(iv)⇒(vi). This is clear.

(i)⇒(v) For a, b ∈ S we have that a = xby, for some x, y ∈ S1, and

xb = z(xb)2, for some z ∈ S, whence

a = xby = z(xb)2y = zxb(xby) = zxba ∈ Sba.

(v)⇒(i) This is immediate.

(iv)⇒(vii) Let S be a right zero band I of left simple semigroups Si, i ∈ I.

Assume a, b ∈ S such that a |l b, i.e. b = xa, for some x ∈ S1. Then a, b ∈ Si,

for some i ∈ I, and Si is left simple, whence b |l a.
(vii)⇒(v) For all a, b ∈ S, a |l ba, and based on the hypothesis, ba |l a, i.e.

a ∈ S1ba, which yields a ∈ Sba.

(vii)⇒(viii) Assume La, Lb ∈ S/L such that La ≤ Lb, i.e. such that

a ∈ S1b. Then b |l a, so by (vi) we obtain that a |l b, i.e. b ∈ S1a, whence

Lb ≤ La. Thus, La = Lb. This proves (vii).

(viii)⇒(vii) Assume a, b ∈ S such that a |l b. Then Lb ≤ La, and from

(vii) it follws that Lb = La, whence b |l a. Hence, |l is symmetric.

An element a of a semigroup S is left (right) reproduced if a = xa (a =

ax), for some x ∈ S. A semigroup S is left (right) reproduced if all its

elements are left (right) reproduced.

Note that several known characterizations of completely simple semi-

groups can be obtained immediately from the previous theorem and its dual.

Here we give some new characterizations of left regular semigroups.

Theorem 2.19 The following conditions on a semigroup S are equivalent:

(i) S is left regular;

(ii) S is intra regular and left π-regular;
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(iii) S is a semilattice of left completely simple semigroups;

(iv) S is a union of left completely simple semigroups;

(v) S is a semilattice of right zero bands of left simple semigroups;

(vi) (∀a, b ∈ S) a | b ⇒ ab |l b;
(vii) every left ideal of S is a left quasi-regular semigroup;

(viii) every left ideal of S is a left reproduced semigroup.

Proof. (i)⇒(ii) This is clear.

(ii)⇒(iii) According to Theorem 2.6, S is a semilattice of simple semi-

groups Sα, α ∈ Y . For any α ∈ Y , Sα is also left π-regular, so by Theorem

2.18, it is left completely simple.

(iii)⇒(vi) Assume a, b ∈ S such that a | b. Based on the hypothesis, there

exists a left completely simple subsemigroup A of S such that b, ba ∈ A, and

by Theorem 2.18, b ∈ Abab ⊆ Sab.

(vi)⇒(i) This is obvious.

(iii)⇔(iv)⇔(v) This follows immediately from Theorem 2.18.

(i)⇒(vii) Let L be a left ideal of S and let a ∈ L. Based on the left

regularity of S we have that a = xa2 for some x ∈ S, so

a = xa2 = x3a4 = (x3a)aaa ∈ LaLa.

Hence, L is a left quasi-regular semigroup.

(vii)⇒(viii) This implication is evident.

(viii)⇒(i) Consider an arbitrary a ∈ S and the principal left ideal L =

L(a) = S1a. Based on the hypothesis, L is a left reproduced semigroup, so

a ∈ La ⊆ S1aa. Accordingly, we easily conclude that a ∈ Sa2. Thus, S is a

left regular semigroup.

Similarly, we prove the following theorem.

Theorem 2.20 The following conditions on a semigroup S are equivalent:

(i) S is completely regular;

(ii) S is left (resp. right) regular and right (resp. left) quasi-regular;

(iii) S is left (resp. right) regular and right (resp. left) quasi-π-regular;

(iv) every left (resp. right) ideal of S is a right (resp. left) regular semi-

group;

(v) every left (right) ideal of S is a completely quasi-regular semigroup;
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(vi) every bi-ideal of S is a left (right) quasi-regular semigroup.
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Chapter 3

(0)-Archimedean Semigroups

In 1928, A. K. Suškevič gave the construction of a semigroup kernel, i.e.

the construction of the smallest ideal of a finite semigroup. What we are

dealing with a simple semigroup, i.e. a simple semigroup with a primitive

idempotent. In 1941, D. Rees proved the structural theorem for completely

0-simple semigroups. This theorem, which we call the theorem of Suškevič-

Rees, was later used as one of the most explored models for ”making” new

classes of semigroups. Studying the decompositions of commutative semi-

groups T. Tamura and N. Kimura, and independently G. Thierrin in 1954,

gave the definition of the notion of an Archimedean semigroup. What we

are dealing with is a semigroup in which for every two elements, any one of

them divides some power of the others. Simple semigroups, i.e. semigroups

with no proper ideals are Archimedean semigroups. The converse does not

hold, an Archimedean semigroup with a primitive idempotent is a completely

Archimedean semigroup. These semigroups will play an important role in a

semilattice decomposition of completely π-regular semigroups (Chapter 4).

By analogy to Rees’s construction of a completely 0-simple semigroup using

a completely simple semigroup, S. Bogdanović and M. Ćirić in 1993 intro-

duced the notion of a (weakly) 0-Archimedean semigroup. It is a structural

reach class of semigroups. Archimedean and (weakly) 0-Archimedean semi-

groups will be discussed later in this chapter. At the end of the chapter we

will give the results regarding the semigroups, whose proper (left) ideals are

Archimedean semigroups.
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3.1 Completely 0-simple Semigroups

An idempotent e of a semigroup S = S0 is called 0-primitive if it is mini-

mal in the set of all the non-zero idempotents of a semigroup S with respect

to the natural partial order on E(S). A semigroup S = S0 is completely

0-simple if S is 0-simple and if it contains an 0-primitive idempotent.

As in the case of Theorem 2.5, we prove another form of Munn’s theorem.

Theorem 3.1 Let S be an 0-simple semigroup. Then S is completely 0-

simple if and only if S is completely π-regular.

Lemma 3.1 Let e be an 0-primitive idempotent of an 0-simple semigroup

S. Then L0
e = Se.

Proof. It is evident that L0
e ⊆ Se. Assume b ∈ Se, b ̸= 0. Then b = be and

since S is 0-simple we have that e = xby for some x, y ∈ S. For f = eyexb it

follows that ef = fe = f and f2 = eyexbeyexb = eyexbyexb = eyexb = f ,

and since e is an 0-primitive idempotent we have that f = e or f = 0. If

f = 0, then 0 = xbfy = xbeyexby = e which is impossible. Hence, f = e, i.e.

e = eyexb ∈ Sb. Thus, eLb, i.e. b ∈ L0
e. So, we have Se ⊆ L0

e. Therefore,

Se = L0
e.

Lemma 3.2 Let S be a completely 0-simple semigroup and let L be an ar-

bitrary L-class of S. Then L0 is a 0-minimal left ideal of S.

Proof. Assume that L = Lx, x ̸= 0. According to Lemma 3.1 we have that

S = SeS = L0
eS so x = ua for some u ∈ L0

e and a ∈ S.

Assume y ∈ L. Then y = sx for some s ∈ S1 whence y = sua ∈ L0
ea

because su ∈ L0
e and since by Lemma 3.1 L0

e is a left ideal of S. Thus

L0 ⊆ L0
ea. Assume y ∈ L0

ea. Then y = va for some v ∈ L0
e. If v = 0,

then y = 0 ∈ L0. If v ̸= 0, then vLu whence vaLua, because L is a right

congruence, i.e. yLx. Thus, y ∈ L i.e. L0
ea ⊆ L0. Therefore, by Lemma 3.1

L0 = L0
ea ⊆ Sea. So L0 is a left ideal of S.

Assume that A ⊆ L0, A ̸= 0 is a left ideal of S. Let a ∈ A, a ̸= 0 and

assume x ∈ L. Then xLa, whence x = ua ∈ A for some u ∈ S. Thus,

A = L0. Therefore, L0 is a 0-minimal left ideal of S.

From Lemma 3.2 we have the following



3.1. COMPLETELY 0-SIMPLE SEMIGROUPS 87

Corollary 3.1 Let S be a completely 0-simple semigroup and let a ∈ S.

Then L0
a = Sa.

Lemma 3.3 Let S be a completely 0-simple semigroup. For all a, b ∈ S

from aSb = 0 it follows that a = 0 or b = 0.

Proof. Let aSb = 0 and let a ̸= 0 and b ̸= 0. According to Corollary 1.6

we have SaS = SbS = S, whence S = S2 = SaSSbS = SaSbS = 0, which

is impossible. Thus, a = 0 or b = 0.

A semigroup S is 0-bi-simple if S has only one non-zero D-class.

Lemma 3.4 Every completely 0-simple semigroup is 0-bi-simple.

Proof. Assume a, b ∈ S•. According to Lemma 3.3 we have that aSb ̸= 0.

Let x ∈ aSb and x ̸= 0. Based on Corollary 3.1 we have that x ∈ aSb ⊆
Sb = L0

b , so xLb. Similarly we can prove that xRa. Thus, aDb, i.e. S is

0-bi-simple.

From Lemmas 3.4 and 1.36 immediately follows

Corollary 3.2 Every completely 0-simple semigroup is a regular semigroup.

Lemma 3.5 Let H be an H-class of a completely 0-simple semigroup S.

Then, H2 = 0 or H is a group.

Proof. Assume H ̸= H0 = 0 and a ∈ H. There are two cases:

(i) Let a2 = 0. Assume x, y ∈ H. Then xLa and yRa, whence x = ua

and y = av for some u, v ∈ S1, so xy = ua2v = 0. Thus H2 = 0.

(ii) Let a2 ̸= 0. According to Lemma 3.2, L0
a is a left ideal of S whence

a2 ∈ L0
a and by assertion we have that a2 ∈ La. Thus aLa2. In the same way

we prove that aRa2. Therefore, from aHa2 and Green’s theorem it follows

that H = Ha is a group.

A semigroup S = S0 is a 0-group if S• is a group.

Let G be a group, let I,Λ be non-empty sets and let P = (pλi) be a

Λ × I matrix over a 0-group G0. On S = (G × I × Λ) ∪ {0} we define the

multiplication by

(a; i, λ) · (b; j, µ) =
{

(apλjb; i, µ), if pλj ̸= 0
0, if pλj = 0

.
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(a; i, λ) · 0 = 0 · (a; i, λ) = 0 · 0 = 0.

It is easy to see that (S, ·) is a semigroup which we denote by S = M0(G; I,Λ;

P ) and which we call Rees’s matrix semigroup of the type Λ×I over a 0-group

G0 by a sandwich matrix P .

A matrix P of the type Λ× I over a 0-group G0 is regular if

(∀i ∈ I)(∃λ ∈ Λ) pλi ̸= 0, (∀λ ∈ Λ)(∃i ∈ I) pλi ̸= 0,

i.e. if every row and every column of a matrix P contains a non-zero element.

Lemma 3.6 A Rees’s matrix semigroup S = M0(G; I,Λ;P ) is regular if

and only if the matrix P is regular.

Proof. Let S be a regular semigroup, let i ∈ I, λ ∈ Λ and let a ∈ G. Let

(b; j, µ) ∈ S be the inverse element of the element (a; i, λ). Then pλjbpµi =

a−1 where pλj ̸= 0 and pµi ̸= 0. Thus, P is a regular matrix.

Conversely, let P be a regular matrix. Assume (a; i, λ) ∈ S•. Then

there exist j ∈ I and µ ∈ Λ such that pλj , pµi ∈ G and the element

(p−1λj a
−1p−1µi ; j, µ) is an inverse element of the element (a; i, λ), so (a; i, λ)

is a regular element. It is evident that 0 is a regular element. Therefore, S

is a regular semigroup.

Lemma 3.7 Let S = M0(G; I,Λ;P ) be a regular Rees’s matrix semigroup

and let (a; i, λ), (b; j, µ) ∈ S. Then

(a; i, λ)L (b; j, µ) ⇔ λ = µ,
(a; i, λ)R (b; j, µ) ⇔ i = j.

Proof. Assume (a; i, λ)L(b; j, µ). Then (a; i, λ) = (b; j, µ) or there exists

(x; k, ν) ∈ S such that (a; i, λ) = (x; k, ν)(b; j, µ) = (xpνjb; k, µ), where pνj ̸=
0 because (a; i, λ) ̸= 0. Therefore, λ = µ.

Conversely, let λ = µ and let ν, η ∈ Λ such that pνi ̸= 0 and pηj ̸= 0

(these elements exist because P is a regular matrix). Then we have that

(ba−1p−1νi ; j, ν) · (a; i, λ) = (b; j, λ),

(ab−1p−1ηj ; i, η) · (b; j, λ) = (a; i, λ).

Thus, (a; i, λ)L(b; j, λ). The similar proof exists for the R relation.
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Corollary 3.3 Let S = M0(G; I,Λ;P ) be a regular Rees’s matrix semi-

group. Then {Lλ |λ ∈ Λ} is the set of all non-zero L-classes of S and

{Ri | i ∈ I} is the set of all non-zero R-classes of S, where

Lλ = {(a; i, λ) | a ∈ G, i ∈ I}, Ri = {(a; i, λ) | a ∈ G,λ ∈ Λ},

and {Hiλ | i ∈ I, λ ∈ Λ} is the set of all non-zero H-classes of S, where

Hiλ = Ri ∩ Lλ = {(a; i, λ) | a ∈ G}.

Theorem 3.2 A Rees’s matrix semigroup S = M0(G; I,Λ;P ) is 0-simple

if and only if S is regular, and in that case S is completely 0-simple.

Proof. Let S be a 0-simple semigroup. Suppose that S is not regular.

Then by Lemma 3.6 there exists some row or some column of a matrix P all

of whose elements are equal to zero. Generally speaking we can assume that

there exists λ ∈ Λ such that pλj = 0 for all j ∈ I. Let A = {(a; i, λ) | a ∈
G, i ∈ I} ∪ {0}. Then for (a; i, λ) ∈ A and (b; j, µ) ∈ S• we have that

(a; i, λ)(b; j, µ) = 0, because pλj = 0, and

(b; j, µ) · (a; i, λ) =
{

(bpµia; j, λ) ∈ A if pµi ̸= 0
0 ∈ A if pµi = 0

.

Thus, A is an ideal of S and A ̸= {0}, A ̸= S, which is a contradiction

according to the hypothesis that S is a 0-simple semigroup. Therefore, S is

a regular semigroup.

Conversely, let S be a regular semigroup. Assume (a; i, λ), (b; j, µ) ∈
G× I × Λ. According to Lemma 3.6 there exist k ∈ I and ν ∈ Λ such that

pνi ̸= 0 and pλk ̸= 0. Then

(b(pνiapλk)
−1; j, ν)(a; i, λ)(e; k, µ) = (b; j, µ),

where e is the identity of a group G, so from Corollary 1.6 it follows that S

is a 0-simple semigroup.

Since E(S) = {(p−1λi ; i, λ) | i ∈ I, λ ∈ Λ} ∪ {0}, it is easy to prove that

every non-zero idempotent of a semigroup S is 0-primitive. Thus, S is 0-

simple, i.e. S is completely 0-simple.

The basic structural characterization of a completely 0-simple semigroup

was given by means of the following theorem, which we call the Suškevič-Rees

theorem.
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Theorem 3.3 A semigroup S is completely 0-simple if and only if S is

isomorphic to some regular Rees’s matrix semigroup over a 0-group.

Proof. Let S be a completely 0-simple semigroup. According to Lemma

3.4, S is 0-bi-simple, i.e. D = S − 0 is a D-class of S. Let {Ri | i ∈ I} and

{Lλ |λ ∈ Λ} be the sets of all R-classes and all L-classes of S contained in

D. Based on this notation the set of all the H-classes of S contained in D

is the set {Hiλ | i ∈ I, λ ∈ Λ}, where Hiλ = Ri ∩ Lλ.
Let e be an arbitrary idempotent from D. According to Corollary 1.13

we have that He is a group. Denote Re by R1, Le by L1 and He by R1 ∩L1.

Thus, here we take that sets I and Λ have element 1 in common, what no

make mistake and without loss of generality.

For every i ∈ I and λ ∈ Λ fix the element ri ∈ Hi1 and the element

qλ ∈ Hλ1. Since riLe, by Corollary 1.12 we have that rie = ri and by Lemma

1.34 the mapping x 7→ rix is a bijection from H11 onto Hi1. Similarly, we

have that eqλ = qλ and based on Lemma 1.33 the mapping y 7→ yqλ is a

bijection from Hi1 onto Hiλ. Thus, the mapping a 7→ riaqλ is a bijection

from H11 onto Hiλ, so, every element of H11 has the unique representation

of the form riaqλ, where a ∈ H11. Since D = ∪{Hiλ | i ∈ I, λ ∈ Λ} and since

this union is disjointed, the mapping ϕ : (H11 × I × Λ) ∪ 0 7→ S defined by

(a; i, λ)ϕ = riaqλ, 0ϕ = 0,

is a bijection. Let M = M0(H11; I,Λ;P ), where the matrix P is defined by

pλi = qλri (i ∈ I, λ ∈ Λ).

Assume i ∈ I and λ ∈ Λ and prove that pλi ∈ H0
11. According to Lemma

3.5 we have that H2
iλ = 0 or Hiλ is a group. First assume that H2

iλ = 0.

Then for c ∈ Hiλ there exist u, v ∈ S1 such that qλ = uc and ri = cv so

pλi = uc2v = 0 ∈ H0
11. Let Hiλ be a group and let f be its identity. Then

from Corollary 1.12 we have fri = ri and by Lemma 1.33 it follows that the

mapping x 7→ xri is a bijection from Lλ onto L1 which is R-class preserving.

Hence pλi = qλri ∈ H11. Thus P is a matrix over H0
11. Also, we proved that

pλi = 0 if and only if H2
iλ = 0. Since by Lemma 1.37 we have that every

L-class Lλ and every R-class Ri of S contained in D has an idempotent,

then for every i ∈ I there exists λ ∈ Λ such that Hiλ is a group, i.e. pλi ̸= 0.

We prove the second condition for regularity of the matrix P in a similar

way.
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It is easy to prove that ϕ is an isomorphism. Therefore, a semigroup S

is isomorphic to a Rees’s matrix semigroup M .

The converse follows immediately from Theorem 3.2.

As we can see from the proof of Theorem 3.3, the representation of a

completely 0-simple semigroup by a semigroup M0(H11; I,Λ;P ) we get by

means of the arbitrary election of a subgroupH11 and the sets {ri | i ∈ I} and
{qλ |λ ∈ Λ}. The natural question is: How do we make the selection which

does not influence (up to the isomorphism) the structure of a semigroup

M0(H11; I,Λ;P )? The answer to this question is provided by the following

theorem, which we give without proof.

Theorem 3.4 Two regular Rees’s matrix semigroups S = M0(G; I,Λ;P )

and T = M0(H; J,M ;Q) are isomorphic if and only if there is an isomor-

phism θ : G 7→ H, bijections φ : I 7→ J , ψ : Λ 7→ M and sets {ui | i ∈ I},
{vλ |λ∈Λ}⊆H such that pλiθ = vλqλψ,iφui, for all λ∈Λ, i∈I.

Let G be a group and I a non-empty set. If P is an I × I-matrix over

a 0-group G0 such that pii = 1 for every i ∈ I, where 1 is the identity of

a group G, then P is called the identity I × I-matrix. A semigroup S is

a Brandt semigroup if it is isomorphic to some semigroup M0(G; I, I;P ),

where P is an identity I × I-matrix. From Theorems 3.3 and 3.4 we have

Corollary 3.4 A semigroup S is a Brandt semigroup if and only if S is

completely 0-simple and an inverse semigroup.

Proof. Let S = M0(G; I, I;P ) be a Brandt semigroup. For an arbitrary

element (a; i, j) ∈ S•, from (b; k, l) ∈ V ((a; i, j)) it follows that k = j, l = i

and b = a−1, whence S is an inverse semigroup. According to Theorem 3.3,

S is a completely 0-simple semigroup.

Conversely, let S be a completely 0-simple and an inverse semigroup.

From Theorem 3.3 S ∼= M0(G; I,Λ;P ), where P is a regular matrix. Now

((p−1λi )
2; i, λ) ∈ V ((1; i, λ)). If µ ∈ Λ such that pµi ̸= 0, then (p−1λi p

−1
µi ; i, µ) ∈

V ((1; i, λ)) which is contradicted by the hypothesis that S is an inverse

semigroup. Thus for every i ∈ I there exists only one λ ∈ Λ such that

pλi ̸= 0. Similarly, we prove that for every λ ∈ Λ there exists only one

i ∈ I such that pλi ̸= 0. Thus, the mapping ψ : Λ 7→ I, defined as λψ = i

if and only if is pλi ̸= 0, is a bijection. If we now assume that Q is an

identity I × I-matrix over a group G0 then by Theorem 3.4 we have that
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M0(G; I,Λ;P ) ∼= M0(G; I, I;Q) (where, for example, we assume vλ = 1,

for all λ ∈ Λ, ui = piψ−1i, for all i ∈ I and θ is an identical automorphism of

a group G).

Let G be a group, I,Λ be the non-empty sets and P = (pλi) be a Λ× I-

matrix over a group G. On the set S = G×I×Λ we define the multiplication

by

(a; i, λ) · (b; j, µ) = (apλib; i, µ).

Then S is a semigroup which we denote by S = M(G; I,Λ;P ) and which

we call the Rees’s matrix semigroup of the type Λ× I over a group G with a

sandwich matrix P .

It is evident that such a constructed semigroup can be obtained from

Rees’s matrix semigroup S = M0(G; I,Λ;P ). Namely, since all the ele-

ments of a matrix P are different from zero, then S − 0 is a subsemigroup

of S isomorphic to M(G; I,Λ;P ). So, the proof of the following theorem

immediately follows by Theorem 3.3.

Theorem 3.5 A semigroup S is completely simple if and only if S is iso-

morphic to a Rees’s matrix semigroup over a group.

A semigroup which is isomorphic to a direct product of a rectangular

band and a group is a rectangular group. The next lemma immediately fol-

lows:

Lemma 3.8 If a rectangular group S is a direct product of a group G and

a rectangular band E, then E(S) is a rectangular band isomorphic to E.

Theorem 3.6 A semigroup S is a rectangular group if and only if S is a

completely simple semigroup in which E(S) is a subsemigroup.

Proof. Let S be a completely simple semigroup in which E(S) is a sub-

semigroup and denotes E(S) with E. Then S = M(G; I,Λ;P ). Since

E = {(p−1λi ; i, λ) | i ∈ I, λ ∈ Λ} from the hypothesis we have that

(p−1λi ; i, λ) · (p
−1
µj ; j, µ) = (p−1µi ; i, µ),

so

p−1λi pλjp
−1
µj = p−1µi , i.e. p−1λi pλj = p−1µi pµj .
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Choose and fix an arbitrary element 1 ∈ I. Then we have

p−1λ1 pλi = p−1µ1 pµi,

for all i ∈ I, λ, µ ∈ Λ. Define the mapping ϕ : S 7→ E ×G with

(a; i, λ)ϕ = ((p−1λi ; i, λ), p
−1
λ1 pλiapλ1).

It is easy to prove that ϕ is an isomorphism from a semigroup S onto a

rectangular group E ×G.

The converse follows immediately.

From Theorem 3.6 we have the following

Corollary 3.5 A band S is completely simple if and only if S is a rectan-

gular band.

Based on Theorem 2.7 and Corollary 3.5 we have:

Corollary 3.6 Every band is a semilattice of rectangular bands.

Corollary 3.7 Let S be a band B of semigroups Si, i ∈ B and let B be a

semilattice Y of rectangular bands Bα, α ∈ Y . Then S is a semilattice Y of

semigroups Sα, α ∈ Y and for all α ∈ Y , Sα is a matrix Bα of semigroups

Si, i ∈ Bα.

A semigroup S is right (left) cancellative if for all a, b ∈ S from ac = bc

(ca = cb) it follows a = b. A semigroup S is cancellative if it is both left and

right cancellative. A semigroup S is a left (right) group if S is isomorphic to

a direct product of a group and a left (right) zero band.

Theorem 3.7 The following conditions on a semigroup S are equivalent:

(i) S is a left group;

(ii) S is a left zero band of groups;

(iii) (∀a, x ∈ S) x ∈ xSa;

(iv) S is regular and E(S) is a left zero band;

(v) S is left simple and right cancellative;

(vi) for all a, b ∈ S there exists only one x ∈ S such that xa = b;
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(vii) S is left simple and contains an idempotent;

(viii) S has a right identity e and e ∈ Sa, for all a ∈ S.

Proof. (i)⇒(ii) If S = G×E is a direct product of a group G and a band

E, then S is a left zero band E of a group Ge = G× {e}, e ∈ E.

(ii)⇒(iii) Let S be a left zero band E of groups Ge, e ∈ E. Assume

x, a ∈ S. Then x ∈ Ge, a ∈ Gf for some e, f ∈ E, whence x, xa ∈ Ge and

since Ge is a group we have that x ∈ xGexa ⊆ xSa.

(iii)⇒(iv) If (iii) holds it is clear that S is a regular semigroup. Assume

e, f ∈ E(S). Then e ∈ Sf whence ef = e. Thus, E(S) is a left zero band.

(iv)⇒(v) Let S be a regular semigroup and let E(S) be a left zero band.

Assume a, b ∈ S. Then for x ∈ V (a), y ∈ V (b) we have that b = byb =

bybxa ∈ Sa. Thus, by Corollary 1.5, S is left simple.

Assume a, b, c ∈ S such that ac = bc. Then for x ∈ V (a), y ∈ V (b) and

z ∈ V (c) we have that

a = axa = axacz = acz = bcz = bybcz = byb = b.

Thus, S is right cancellative.

(v)⇒(vi) This follows immediately.

(vi)⇒(vii) Let (vi) hold. Then by Corollary 1.5, S is a left simple semi-

group. Assume an arbitrary a ∈ S. By (vi) there exists only one x ∈ S such

that xa = a. Hence we get x2a = xa = a and since x is unique, then x2 = x.

Thus, S contains an idempotent.

(vii)⇒(viii) Let S be a left simple and let S contains an idempotent.

Assume an arbitrary e ∈ E(S). Then by Corollary 1.5 for an arbitrary

a ∈ S, we have that e ∈ Sa and a ∈ Se. From a ∈ Se we have that ae = a,

so e is a right identity.

(viii)⇒(vii) Let (viii) hold. Then for arbitrary a, b ∈ S we have that

b = be ∈ bSa ⊆ Sa, so S is left simple. Since e ∈ E(S) then (vii) holds.

(vii)⇒(i) Let S be a left simple semigroup and let S contain an idempo-

tent. Then it is evident that S is simple. Also, for arbitrary e, f ∈ E(S) from

e ∈ Sf we have that ef = e, so E(S) is a subsemigroup of S and since E(S)

is a left zero band, then it immediately follows that all idempotents from

S are primitive. Thus, S is completely simple, and by Theorem 3.6, S is a

rectangular group, i.e. S is a direct product of a group G and a rectangular

band E. Since E(S) is a left zero band, based on Lemma 3.8 E is a left zero

band. Therefore, S is a left group.
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Theorem 3.8 Let S = M(G; I,Λ;P ). Then:

(i) S is a disjoint union of minimal left ideals

Lλ = {(a; i, λ) | a ∈ G, i ∈ I}, (λ ∈ Λ),

which are left groups;

(ii) S is a disjoint union of minimal right ideals

Ri = {(a; i, λ) | a ∈ G,λ ∈ Λ}, (i ∈ I),

which are right groups;

(iii) S is a disjoint union of bi-ideals

Hiλ = {(a; i, λ) | a ∈ G}, (i ∈ I, λ ∈ Λ),

which are groups with an identity (p−1λi ; i, λ); moreover, S is a matrix

(rectangular band) I × Λ of groups Hiλ.

Corollary 3.8 On a semigroup S the following conditions are equivalent:

(i) S is completely simple;

(ii) S is a left zero band of right groups;

(iii) S is a right zero band of left groups;

(iv) S is a matrix of groups.

Exercises

1. A semigroup S = S0 is a 0-group if and only if S is a left 0-simple and right
0-simple.

2. The following conditions on a semigroup S are equivalent:

(a) S is completely simple;
(b) S is regular and for any a, x ∈ S, a = axa implies x = xax;
(c) (∀a, b ∈ S) a ∈ aSba.

3. A semigroup S is a left group if and only if (∀a ∈ S)(∃1x ∈ S) a = xa2.
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3.2 0-Archimedean Semigroups

In this section we consider (completely) 0-Archimedean semigroups as a

generalization of (completely) 0-simple and (completely) Archimedean semi-

groups. We describe nil-extensions of (completely) 0-simple semigroups.

Recall that, an element a of a semigroup S = S0 is a nilpotent if there

exists n ∈ Z+ such that an = 0. The set of all nilpotent elements of S

is denoted by Nil(S). S is a nil-semigroup if S = Nil(S), otherwise it is

non-nil . An ideal I of S is a nil-ideal of S if I is a nil-semigroup. Based

on R(S) we denote Clifford’s radical of a semigroup S = S0, i.e. the union

of all nil-ideals of S (it is the greatest nil-ideal of S). An ideal extension S

of a semigroup K is a nil-extension of K if S/K is a nil-semigroup. Some

characterizations of a Clifford’s radical give the following lemmas.

Lemma 3.9 For an arbitrary semigroup S = S0, R(S/R(S)) = 0.

Proof. Let S/R(S) = Q, let φ : S 7→ Q be a natural homomorphism and

let I be a nil-ideal of Q. Let J = {x ∈ S |φ(x) ∈ I}. Then it is evident that

J is a nil-ideal of S, whence J ⊆ R(S), so I is a zero ideal of Q.

Let S be a semigroup. For a, b ∈ S, a | b if b ∈ J(a) and a −→ b if a | bn,
for some n ∈ Z+. For a ∈ S, Σ1(a) = {x ∈ S | a −→ x} and an equivalence

σ1 on S is defined by: a σ1 b if and only if Σ1(a) = Σ1(b), a, b ∈ S. More

will be said about sets Σn(a) and relations σn, n ∈ Z+ in Chapter 4.

An ideal I of a semigroup S is prime if for all a, b ∈ S, aSb ⊆ I implies

that either a ∈ I or b ∈ I, or, equivalently, if for all ideals A,B of S, AB ⊆ I

implies that either A ⊆ I or B ⊆ I.

The purpose of this section is to give some generalizations of (completely)

0-simple semigroups and of (completely) Archimedean semigroups and to

describe some of their characteristics.

First we will give a connection between Clifford’s radical of a semigroup

with zero and the relation σ1.

Lemma 3.10 The Clifford radical R(S) of a semigroup S = S0 is equal to

the σ1-class containing the zero 0.
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Proof. Let C be the σ1-class of S containing the zero 0, and let a ∈ C, x ∈
S. Then Σ1(a) = Σ1(0) = Nil(S). Since ab −→ x implies that a −→ x and

b −→ x, then we have that

Σ1(ax) ⊆ Σ1(a) = Nil(S), Σ1(xa) ⊆ Σ1(a) = Nil(S).

Since Nil(S) ⊆ Σ1(u) for all u ∈ S, then Σ1(ax) = Σ1(xa) = Nil(S) = Σ1(0),

so ax, xa ∈ C. Hence, C is an ideal of S. It is clear that C ⊆ Nil(S), so C

is a nil-ideal, whence C ⊆ R(S).

Let a ∈ R(S) and x ∈ Σ1(a), i.e. xn ∈ SaS for some n ∈ Z+. Since

SaS ⊆ SR(S)S ⊆ R(S) ⊆ Nil(S), then x ∈ Nil(S) = Σ1(0). Thus, Σ1(a) ⊆
Σ1(0). It is clear that Σ1(0) ⊆ Σ1(a). Therefore, a ∈ C so R(S) = C.

Let A be a subsemigroup of a semigroup S. By I(A) we denote the set of
all elements x ∈ S which satisfied the condition xA∪Ax ⊆ A. The set I(A)
we call an idealizer of a subsemigroup A into a semigroup S. It is evident

that I(A) is the greatest subemigroup of S containig A as an ideal.

Lemma 3.11 Let A be a proper subsemigroup of a semigroup S. If An is

an ideal of S, for some n ∈ Z+, then A ̸= I(A).

Proof. Assume x ∈ S−A. If x ∈ I(A), then the lemma holds. If x /∈ I(A),
then there is an element a1 ∈ A such that x1 = xa1 /∈ A (or a1x /∈ A). The

same holds for element x1 as for element x. Hence, if we continue this

procedure for elements xi, then in no more than 2(n− 1) steps, multiplying

(left or right) by elements ai from A we obtain that xk ∈ I(A)−A.

Corollary 3.9 If A is a proper nilpotent subsemigroup of a semigroup S

and the zero of A is the zero of S, then A ̸= I(A).

Theorem 3.9 A nil-semigroup is nilpotent if and only if the class of nilpo-

tency of all its nilpotent subsemigroups is bounded.

Proof. Let n be an upper bound of classes of nilpotency of all the nilpotent

subsemigroups of a nil-semigroup S. Since the union of the increasing family

of nilpotent semigroups of the class ≤ n is also a nilpotent semigroup of the

class ≤ n, then in S there is a maximal nilpotent subsemigroup A. If A = S,

then the statement of the theorem holds. Let A ̸= S. Then, by Lemma 3.11

A ̸= I(A). Let x be an arbitrary element from I(A) − A and k ∈ Z+ such
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that xk /∈ A, then xk+1 ∈ A. Let F be a subsemigroup of S generated by

A and xk, F = ⟨A, xk⟩. It is evident that F is nilpotent, F is not a proper

subsemigroup of S, because A is a maximal. Hence, F = S.

The converse follows immediately.

In the following lemma we describe the identities which should satisfy

the nil-semigroup to be nilpotent.

Lemma 3.12 A nil-semigroup with the identity u = x1x2 · · ·xm, where

|u| ≥ m+ 1, is nilpotent.

Proof. Let a nil-semigroup S satisfies the identity u = x1x2 · · ·xm, where
|u| ≥ m + 1. Then every nilpotent subsemigroup T of S has the power of

nilpotency not more than m. Suppose that the equation x1x2 · · ·xk = 0,

k ≥ m + 1 is satisfied in T and let y1, y2, . . . , ym ∈ T . Then y1 · · · ym =

u(y1, . . . , ym). If on the letter u we apply the equation x1 · · ·xm = u(x1, . . . ,

xm), then we obtain y1 · · · ym = u1(y1, . . . , ym), where |u1| ≥ m + 2. If this

procedure we apply again we obtain the equation y1 · · · ym = ui(y1, . . . , ym),

where |ui| ≥ k. Hence, y1y2 · · · ym = 0, for all y1, y2, . . . , ym ∈ T . According

to Theorem 3.9 the rest of the proof follows immediately.

Note that a semigroup S = S0 is 0-simple if and only if a | b, for all

a, b ∈ S•. Using the relation −→, we can introduce a generalization of 0-

simple semigroups. A semigroup S = S0 is 0-Archimedean if a −→ b, for

all a, b ∈ S•. Also, we can introduce a more general notion: A semigroup

S = S0 is weakly 0-Archimedean if a −→ b, for all a, b ∈ S −R(S).

A relationship between weakly 0-Archimedean and 0-Archimedean semi-

groups is given in the next theorem. Since every nil-semigroup is (weakly)

0-Archimedean, then a consideration of nil-semigroups will be omitted.

Theorem 3.10 The following conditions on a non-nil semigroup S = S0

are equivalent:

(i) S is weakly 0-Archimedean;

(ii) S is an ideal extension of a nil-semigroup by a 0-Archimedean semi-

group;

(iii) S contains at most two σ1-classes.
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Proof. (i)⇒(ii) Let S be weakly 0-Archimedean. Then S is an ideal ex-

tension of a nil-semigroup R = R(S) by a semigroup Q. Assume a, b ∈ Q•.

Then a, b ∈ S −R, so there exists x, y ∈ S and n ∈ Z+ such that bn = xay,

since S is weakly 0-Archimedean. If x ∈ R or y ∈ R, then bn ∈ R, whence

bn = 0 ∈ QaQ in Q, so a −→ b in Q. Assume that x, y ∈ S −R = Q•. Then

bn = xay ∈ QaQ in Q, so a −→ b in Q. Thus, Q is 0-Archimedean.

(ii)⇒(i) Let S be an ideal extension of a nil-semigroup R by a 0-Archime-

dean semigroup Q. Assume a, b ∈ S −R(S). Since R ⊆ R(S), then a, b ∈
S − R = Q•. Thus, there exist x, y ∈ Q and n ∈ Z+ such that bn = xay.

If x = 0 or y = 0, then bn = 0 in Q, whence bn ∈ R ⊆ Nil(S) in S, so

bnk = (bn)k = 0 ∈ SaS in S, for some k ∈ Z+, i.e. a −→ b in S. Assume

that x, y ̸= 0 in Q. Then x, y ∈ Q• = S − R, so bn = xay ∈ SaS in S,

whence a −→ b in S. Thus, S is weakly 0-Archimedean.

(i)⇒(iii) Let S be weakly 0-Archimedean. According to Lemma 3.10

we obtain that R(S) is equal to the σ1-class containing 0. Assume a, b ∈
S − R(S). Let us prove that a σ1 b. Let x ∈ Σ1(a), i.e. let xn = uav for

some n ∈ Z+, u, v ∈ S. If uav ∈ R(S), then x ∈ Nil(S), so b −→ x, i.e.

x ∈ Σ1(b). Let uav ∈ S − R(S). Then (uav)k ∈ SbS for some k ∈ Z+,

whence xnk ∈ SbS, i.e. x ∈ Σ1(b). Thus, Σ1(a) ⊆ Σ1(b). Similarly we prove

the opposite inclusion. Therefore, (iii) holds.

(iii)⇒(i) This follows from Lemma 3.10.

Lemma 3.13 Let S=S0 be a nil-extension of a 0-simple semigroup K. Then

R(S) = {x ∈ S | SxS ∩K = 0}.

Proof. Let A = {x ∈ S | SxS ∩ K = 0}. Assume a ∈ A, x ∈ S. Then

SaS ∩K = 0 so

SaxS ∩K ⊆ SaS ∩K = 0, SxaS ∩K ⊆ SaS ∩K = 0,

whence ax, xa ∈ A. Thus, A is an ideal of S. It is clear that A is a nil-

semigroup. Assume a nil-ideal I of S. Then I ∩K is an ideal of K, whence

I ∩K = 0 or I ∩K = K. Since K contains a non-nilpotent element, then

I ∩K = 0, so SaS ∩K ⊆ SIS ∩K ⊆ I ∩K = 0, for every a ∈ I. Therefore,

I ⊆ A, whence R(S) = A.

Note that the smallest ideal, if it exists, of a semigroup S is called a

kernel of S. But, in a semigroup with zero, this notion degenerates, since
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the zero ideal is the kernel, so we introduce the following notion: the smallest

element of a set of all nonzero ideals of a semigroup S = S0, if it exists, is

called the 0-kernel of S.

Let S = S0 and K be the 0-kernel of S. According to Corollary 1.7,

K2 = 0, and then we say that K is a nilpotent 0-kernel , or K is 0-simple,

and we call it a 0-simple 0-kernel .

Recall that, if a semigroup S is an ideal extension of a semigroup T by

a semigroup Q, then we usually identify the partial semigroups S − T and

Q•. This fact will be used in the following:

Theorem 3.11 A semigroup S = S0 is a nil-extension of a 0-simple semi-

group if and only if S is an ideal extension of a nil-semigroup R by a 0-

Archimedean semigroup Q with a 0-simple 0-kernel K and the following

conditions hold:

(a) for all a ∈ K•, b ∈ S −R

ab = 0 in Q ⇒ ab = 0 in S;
ba = 0 in Q ⇒ ba = 0 in S;

(b) ab = ba = 0, for all a ∈ K•, b ∈ R.

Proof. Let S be a nil-extension of a 0-simple semigroup T and let R =

R(S). Then R is a nil-semigroup and S is an ideal extension of R by a

semigroup Q. Since T is 0-simple, then R ∩ T = 0.

Assume a ∈ T •, b ∈ S − R. Then ab ∈ T , since T is an ideal of S. If

ab = 0 in Q, then ab ∈ R in S, so ab = 0 in S, since R ∩ T = 0. Thus,

ab = 0 ∈ Q⇒ ab = 0 ∈ S.

Similarly we prove the second implication from (a).

Assume a ∈ T •, b ∈ R. Then ab = ba = 0, since ab, ba ∈ R ∩ T = 0.

Let K = T • ∪ 0 ⊆ Q. Then K is a subsemigroup of Q isomorphic to

T , whence K is 0-simple. Therefore, from the aforementioned we obtain (a)

and (b).

Let I be an ideal of Q, I ̸= 0. It is easy to verify that I• ∪R is an ideal

of S and I• ∪ R ̸= 0, whence T ⊆ I• ∪ R, so K• = T • ⊆ I•, i.e. K ⊆ I.

Thus K is a 0-simple 0-kernel of Q.

Assume a, b ∈ S−R. Based on Lemma 3.13 we obtain that SaS∩T ̸= 0,

whence T ⊆ SaS. Thus, there exists n ∈ Z+ such that bn ∈ T ⊆ SaS, i.e.
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a −→ b. Hence, S is a weakly 0-Archimedean, so by the proof of Theorem

3.10 we obtain that Q is 0-Archimedean.

Conversely, let S be an ideal extension of a nil-semigroup R by a 0-

Archimedean semigroup Q with a 0-simple 0-kernel K and let (a) and (b)

hold. From (a) it follows that T = K• ∪ 0 ⊆ S is a subsemigroup of S

isomorphic to K, so T is 0-simple. From (a) and (b) it follows that T is an

ideal of S. According to Theorem 3.10, S is a weakly 0-Archimedean. Assume

x ∈ S. If x ∈ R(S), then x ∈ Nil(S), so xn = 0 ∈ T for some n ∈ Z+.

Let x ∈ S − R(S) and assume a ∈ T − Nil(S). Then a −→ x, whence

xn ∈ SaS ⊆ T , for some n ∈ Z+. Therefore, S is a nil-extension of T .

As we have seen, a 0-Archimedean semigroup is a generalization of a

0-simple semigroup. Similarly we generalize the notion of completely 0-

simple semigroups. An idempotent e of a semigroup S = S0 is a 0-primitive

idempotent of S if it is a minimal element in the partially ordered set of

all nonzero idempotents of S. A 0-Archimedean semigroup containing a

0-primitive idempotent is called a completely 0-Archimedean semigroup.

Lemma 3.14 Every completely 0-Archimedean semigroup contains a (com-

pletely) 0-simple 0-kernel.

Proof. Let S be a completely 0-Archimedean semigroup and let e ∈ E(S)

be a 0-primitive idempotent. Let K be an intersection of all non zero ideals

of a semigroup S. It is clear that 0 ∈ K, so K is a non-empty set, and also

it is evident that K is an ideal of S. Assume an arbitrary non-zero ideal I

of S and assume an arbitrary element a ∈ I•. Since S is a 0-Archimedean

and a, e ∈ S•, then a −→ e, i.e. e ∈ SaS ⊆ I. Thus, e is an element of

all non-zero ideals of S, so e ∈ K. Hence, K is a 0-minimal ideal of S and

K2 ̸= 0 and by Corollary 1.7 we have that K is a 0-simple semigroup. Since

e is a 0-primitive, then K is a completely 0-simple semigroup, i.e. K is a

completely 0-simple 0-kernel of S.

Based on Lemma 3.14 and Theorem 3.11 we obtain the following:

Corollary 3.10 A semigroup S = S0 is a nil-extension of a completely 0-

simple semigroup if and only if S is an ideal extension of a nil-semigroup R

by a completely 0-Archimedean semigroup Q, and the conditions (a) and (b)

hold, where K is the 0-kernel of Q.
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Theorem 3.12 The following conditions on a non-nil semigroup S = S0

are equivalent:

(i) S is a 0-Archimedean semigroup with a 0-simple 0-kernel;

(ii) S is a 0-Archimedean semigroup with a 0-minimal ideal;

(iii) S is a weakly 0-Archimedean semigroup with a 0-simple 0-kernel;

(iv) S is a 0-Archimedean intra-π-regular semigroup;

(v) S is a nil-extension of a 0-simple semigroup and R(S) = 0;

(vi) S is a nil-extension of a 0-simple semigroup and 0 is a prime ideal of

S.

Proof. (i)⇒(ii) This follows immediately.

(ii)⇒(i) Let S be a 0-Archimedean semigroup with a non-nil 0-minimal

idealM . Let I ̸= 0 be an ideal of S, let x ∈ I• and let a ∈M−Nil(S). Then

x −→ a, i.e. an ∈ SxS ⊆ I for some n ∈ Z+, whence an ∈ I ∩M, an ̸= 0.

Thus I ∩M ̸= 0 is an ideal of S contained in M , and since M is 0-minimal,

we obtain that I ∩M=M , i.e. M⊆I. Hence, M is a 0-simple 0-kernel of S.

(i)⇒(v) Let S be a 0-Archimedean semigroup with a 0-simple 0-kernel

K. Then K is 0-simple semigroup. Let a ∈ K• and assume x ∈ S•. Then

a −→ x, i.e. xn ∈ SaS ⊆ SKS ⊆ K, for some n ∈ Z+. Thus S is a nil-

extension of K. If R(S) ̸= 0, then K ⊆ R(S), which is not possible, since

K ̸= Nil(K). Thus R(S) = 0, so (v) holds.

(v)⇒(iv) Let S be a nil-extension of a 0-simple semigroup K and let

R(S) = 0. Then it is clear that S is intra-π-regular and from the proof of

Theorem 3.11 we obtain that S is a 0-Archimedean.

(iv)⇒(i) Let S be a non-nil 0-Archimedean intra π-regular semigroup.

Assume a ∈ S − Nil(S). Then there exists m ∈ Z+ and z, w ∈S such that

am= za2mw ∈ SamS. Let K = SamS and let c, d∈K•. Then c= xamy for

some x, y∈S. On the other hand, by am=za2mw=zam(amw) it follows that

am = znam(amw)n, (1)

for all n ∈ Z+. Since d, amw ∈ S• and S is 0-Archimedean, then there exists

k ∈ Z+ and u, v ∈ S such that (amw)k = udv. Now, from (1) we obtain that

c = xamy = (xzk+1am)(amw)k(amwy) = (xzk+1am)udv(amwy)
= (xzk+1amu)d(vamwy) ∈ KdK.

Thus, by Corollary 1.6 we obtain that K is a 0-simple semigroup.
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Let I ̸= 0 be an ideal of S. Let I ⊆ Nil(S). Assume x ∈ I•. Then

x −→ a, i.e. an ∈ SxS ⊆ I, for some n ∈ Z+, and since I ⊆ Nil(S),

then a ∈ Nil(S), which leads to a contradiction. Thus, there exists b ∈
I − Nil(S) ⊆ S•, so there exists n ∈ Z+ such that bn ∈ SamS = K, whence

bn ∈ I ∩K, bn ̸= 0, so I ∩K ̸= 0. Now, since K is 0-simple, then I ∩K = K,

so K ⊆ I. Thus, K is a 0-simple 0-kernel of S.

(iii)⇒(i) Let S be a weakly 0-Archimedean semigroup with a 0-simple

0-kernel K. Since K is 0-simple, then K * Nil(S) so K * R(S), whence

R(S)=0, so by the proof of Theorem 3.10 we obtain that S is 0-Archimedean.

(i)⇒(iii) This follows immediately.

(v)⇒(vi) Let S be a nil-extension of a 0-simple semigroup K and let

R(S) = 0. Let A and B be nonzero ideals of S and let a ∈ A•, b ∈ B•.

According to Lemma 3.13 we obtain that K ⊆ SaS ⊆ A and K ⊆ SbS ⊆ B,

whence K = K2 ⊆ AB. Thus AB ̸= 0. Therefore, 0 is a prime ideal of S.

(vi)⇒(v) Let S be a nil-extension of a 0-simple semigroup K and let 0

be a prime ideal of S. Let R = R(S). From the proof of Theorem 3.11 we

obtain that RK = 0, whence R = 0 or K = 0. Since K is 0-simple, then

R = 0, so (v) holds.

In the following theorem a consideration of nil-semigroups will be omitted

once again.

Theorem 3.13 The following conditions on a non-nil semigroup S = S0

are equivalent:

(i) S is a completely 0-Archimedean semigroup;

(ii) S is 0-Archimedean and completely π-regular;

(iii) S is a nil-extension of a completely 0-simple semigroup and R(S) = 0;

(iv) S is a nil-extension of a completely 0-simple semigroup and 0 is a

prime ideal of S.

Proof. (i)⇒(iii) Let S be a completely 0-Archimedean semigroup. Ac-

cording to Lemma 3.14, S has a completely 0-simple 0-kernel K, and it is

clear that S is a nil-extension of K. Now, by Theorem 3.12 we have that

R(S) = 0. Thus, (iii) holds.

(ii)⇒(iii) This follows from Theorem 3.12 and Theorem 2.5.

(iii)⇒(i), (iii)⇒(ii) and (iii)⇔(iv) This follows from Theorem 3.12.
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Exercises

1. A semigroup S = S0 is a weakly 0-Archimedean and has a 0-primitive idem-
potent if and only if S is an ideal extension of a nil-semigroup by a completely
0-Archimedean semigroup.

2. Every periodic (finite) 0-Archimedean semigroup is completely 0-Archimedean.

3. Let S = S0 be a 0-Archimedean semigroup. Then S has no divisors of zero if

and only if S has no non-zero nilpotents.
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3.3 Archimedean Semigroups

A semigroup S is Archimedean if a −→ b for all a, b ∈ S. It is clear that a

semigroup S is Archimedean if and only if S0 is a 0-Archimedean semigroup.

The Archimedean semigroups with kernels were described by the following

theorem:

Theorem 3.14 On a semigroup S the following conditions are equivalent:

(i) S is a nil-extension of a simple semigroup;

(ii) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ Sb2nS;

(iii) S is an Archimedean intra π-regular semigroup.

Proof. (i)⇒(ii) Let S be a nil-extension of a simple semigroup K. Assume

a, b ∈ S. Then there exists n ∈ Z+ such that an, b2n ∈ K and since K is a

simple semigroup then an ∈ Kb2nK ⊆ Sb2nS. Thus, (ii) holds.

(ii)⇒(iii) This follows immediately.

(iii)⇒(i) This implication we prove using Theorem 3.12 on a semigroup

S0.

Corollary 3.11 On a semigroup S the following conditions are equivalent:

(i) S is a nil-extension of a left simple semigroup;
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(ii) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ Sb2n;

(iii) S is a left Archimedean and left π-regular semigroup.

Theorem 3.15 The following conditions on a semigroup S are equivalent:

(i) S is π-regular and an Archimedean semigroup;

(ii) S is a nil-extension of a simple regular semigroup;

(iii) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ anSbSan.

Proof. (i)⇒(ii) If S is a π-regular Archimedean semigroup, then E(S) ̸= 0.

Assume e ∈ E(S) and let I be an ideal of S and let b ∈ I. Then e ∈ SbS ⊆ I.

Hence the intersection K of all the ideals of S is the non-empty set and by

Corollary 1.7, K is a simple kernel of S. Since S is Archimedean, we have

that for every a∈S there exists m∈Z+ such that am∈K. Thus, S is a nil-

extension of a simple and clearly π-regular semigroup K. Hence, by Theorem

2.1 we have that S is a nil-extension of a simple regular semigroup K.

(ii)⇒(i) Let S be a nil-extension of a simple regular semigroup K. Ac-

cording to Theorem 3.14, S is an Archimedean semigroup. For a ∈ S there

exists n ∈ Z+ such that an ∈ K. But K is a regular semigroup, so we have

an ∈ anKan ⊆ anSan, and S is a π-regular semigroup.

(ii)⇒(iii) Let S be a nil-extension of a simple regular semigroupK and let

a, b ∈ S. Then there exists n ∈ Z+ such that an, anb ∈ K, so an ∈ KanbK,

and there exists x ∈ K such that

an = anxan = anxanxan ∈ anxKanbKxan ⊆ anKbKan ⊆ anSbSan,

which has to be proved.

(iii)⇒(i) It is obvious that S is a π-regular semigroup. Assume a, b ∈ S.

Then there exists n ∈ Z+ such that an ∈ anSbSan ⊆ SbS, so S is an

Archimedean semigroup.

Lemma 3.15 Let S be a π-regular semigroup in which all the idempotents

are primitive. Then S is completely π-regular, and maximal subgroups of S

are of the form

Ge = eSe, e ∈ E(S).

Proof. For a ∈ S there exist x ∈ S and m ∈ Z+ such that am = amxam.

For ak, where k > m, there exist y ∈ S and n ∈ Z+ such that akn = aknyakn.
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Assume that e = xam and f = xamyakn. Then e2 = e and

f2 = xamyaknxamyakn = xamyakn−m(amxam)yakn = xamyakn−mamyakn

= xamyaknyakn = xamyakn = f,
fe = xamyaknxam = xamyakn−mamxam = xamyakn−mam = f = ef.

Thus ef = fe = f and since idempotents in S are primitive we have that

e = f . Whence

am = amxam = ame = amf = amxamyakn ∈ amSam+1,

and by Theorem 2.3, S is a completely π-regular semigroup.

Let e ∈ E(S) and u ∈ Ge. Then u = eue ∈ eSe, so Ge ⊆ eSe. On the

other hand, assume u ∈ eSe, i.e. let u = ebe for some b ∈ S. Since S is a

completely regular semigroup then up ∈ Gf for some p ∈ Z+ and f ∈ E(S).

Now, we have that

ef = eup(up)−1 = e(ebe)p(up)−1 = (ebe)p(up)−1 = f,

where (up)−1 is a group inverse of up in Gf , and dually we get fe = f , so

based on the primitivity of idempotents from S we have that e = f . Thus

up ∈ Ge and based on Lemma 1.8 u = ebe = e(ebe) = eu ∈ Ge. Therefore,

eSe ⊆ Ge.

As completely 0-Archimedean semigroups are one generalization of com-

pletely 0-simple semigroups, in a similar way we can introduce one new

generalization of completely simple semigroups.

A semigroup S is completely Archimedean if S is Archimedean and if it

has a primitive idempotent.

Theorem 3.16 The following conditions on a semigroup S are equivalent:

(i) S is a completely Archimedean semigroup;

(ii) S is a nil-extension of a completely simple semigroup;

(iii) S is Archimedean and completely π-regular;

(iv) S is π-regular and all idempotents from S are primitive;

(v) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ anSban;

(v’) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ anbSan;

(vi) S is completely π-regular and ⟨E(S)⟩ is a (completely) simple semi-

group.
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Proof. (i)⇒(ii)⇒(iii)⇒(i) These implications hold by Theorem 3.13 if a

semigroup S adds zero.

(ii)⇒(v) Let S be a nil-extension of a completely simple semigroup K.

Assume arbitrary a, b ∈ S. Then there exists n ∈ Z+ such that an ∈ K, so

by Corollary 3.8 K is a matrix of groups, whence there exists e ∈ E(S) such

that an, anban ∈ Ge. Thus xa
nban = e for some x ∈ Ge, whence

an = ane = anxanban ∈ anSban.

(v)⇒(iv) If (v) holds, then it is evident that S is a π-regular semigroup.

Assume e, f ∈ E(S) such that ef = fe = f . From (v) we have that e ∈
efSe = fSe, whence e = fe = f . Thus, all the idempotents from S are

primitive.

(iv)⇒(ii) Based on Lemma 3.15, S is completely π-regular and all the

maximal subgroups of S are of the form Ge = eSe, e ∈ E(S). Accord-

ing to Lemma 1.17, a subgroup Ge, e ∈ E(S) is a minimal bi-ideal of S.

Now, by Theorem 1.17 the union K of all the minimal bi-ideals of S i.e.

K = ∪e∈E(S)Ge, is the kernel of S. Based on Corollary 1.9, K is a simple

semigroup and since K is a union of groups, then by Corollary 2.4 K is

completely simple. In the end, since S is completely π-regular, then S is a

nil-extension of K.

(i)⇒(vi) Let S be a completely Archimedean semigroup. Based on

(i)⇔(ii) S is a nil-extension of a completely simple semigroup K. Since

⟨E(S)⟩ ⊆ K we then have by Lemma 2.10 that ⟨E(S)⟩ is completely simple.

It is clear that S is completely π-regular.

(vi)⇒(i) If S is completely π-regular and ⟨E(S)⟩ is a simple semigroup,

then by Lemma 2.11, ⟨E(S)⟩ is completely π-regular. According to Theorem

2.5, ⟨E(S)⟩ is completely simple, from where it follows that idempotents are

primitive, so S is completely Archimedean.

Corollary 3.12 A semigroup S is a nil-extension of rectangular group if

and only if S is π-regular and E(S) is a rectangular band.

Proof. Let S be a nil-extension of a rectangular group K. Then E(S) =

E(K) and by Lemma 3.8, E(S) is a rectangular band.

Conversely, let S be π-regular and let E(S) be a rectangular band. Then

all the idempotents from S are primitive and by Theorem 3.16, S is a nil-

extension of a completely simple semigroup K. Since E(K) = E(S) based

on Theorem 3.6, K is a rectangular group.
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A semigroup S is left (right) Archimedean if a
l−→ b (a

r−→ b), for all

a, b ∈ S. Left (right) Archimedean semigroups are the generalizations of left

(right) simple semigroups.

In the following theorem we describe a left Archimedean semigroup which

has an idempotent.

Theorem 3.17 The following conditions on a semigroup S are equivalent:

(i) S is left Archimedean and it has an idempotent;

(ii) S is π-regular and E(S) is a left zero band;

(iii) S is a nil-extension of a left group;

(iv) (∀a, b ∈ S)(∃m ∈ Z+) am ∈ amSamb;

(iv’) (∀a, b ∈ S)(∃m ∈ Z+) am ∈ bamSam.

Proof. (i)⇒(ii) Let S be a left Archimedean semigroup and let e ∈ E(S).

Assume a ∈ S. Then from a
l−→ e and e

l−→ a we have that e ∈ Sa and

an ∈ Se for some n ∈ Z+, whence an = ane ∈ anSan. Thus, S is π-regular.

Assume f, g ∈ E(S). Then from g
l−→ f we have that f ∈ Sg, whence

fg = f . Therefore, E(S) is a left zero band.

(ii)⇒(iii) Let S be π-regular and let E(S) be a left zero band. Then

all the idempotents from S are primitive and by Theorem 3.16, S is a nil-

extension of a completely simple semigroupK. It is clear that E(S) = E(K),

i.e. E(K) is a left zero band and since K is a regular semigroup then by

Theorem 3.7 K is a left group.

(iii)⇒(iv) Let S be a nil-extension of a left group K. Assume a, b ∈ S.

Then there exists n ∈ Z+ such that an ∈ K, whence anb ∈ K and by

Theorem 3.7 we have that an ∈ anKanb ⊆ anSanb. Thus, (iv) holds.

(iv)⇒(i) If (iv) holds then it is evident that S is a left Archimedean

semigroup. Since from (iv) it immediately follows that S is a π-regular, then

S has an idempotent.

A semigroup S is a two-sided Archimedean, t-Archimedean for short, if S

is both a left and right Archimedean semigroup. A semigroup S is a π-group

if S is π-regular and if it has only one idempotent.

Theorem 3.18 The following conditions on a semigroup S are equivalent:

(i) S is t-Archimedean and it has an idempotent;
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(ii) S is a π-group;

(iii) S is a nil-extension of a group;

(iv) (∀a, b ∈ S)(∃m ∈ Z+) am ∈ bamSamb.

Proof. (i)⇒(ii) Let S be a t-Archimedean semigroup and let S have an

idempotent. Then by Theorem 3.17 and it dual we have that S is a π-

regular semigroup, E(S) is a left zero band and E(S) is a right zero band.

Thus, E(S) contains only one element, so S is a π-group.

(ii)⇒(iii) If S is a π-group then by Theorem 3.17, S is a nil-extension of

a left group K. Since K has only one idempotent then K is a group.

(iii)⇒(iv) Let S be a nil-extension of a group G. Assume a, b ∈ S. Then

there exists n ∈ Z+ such that an ∈ G whence ban, anb ∈ G and since G is a

group, then we have an ∈ banGanb ⊆ banSanb.

(iv)⇒(i) If (iv) holds, then it is evident that S is a t-Archimedean semi-

group. Also, it is clear that S is π-regular, so S has an idempotent.

A semigroup S is power-joined if for all a, b ∈ S there exist m,n ∈ Z+

such that am = bn. It is clear that every power-joined semigroup is t-

Archimedean.

Corollary 3.13 The following conditions on a semigroup S are equivalent:

(i) S is power-joined and it has an idempotent;

(ii) S is t-Archimedean and periodic;

(iii) S is periodic and it has only one idempotent;

(iv) S is a nil-extension of a periodic group.

Exercises

1. A semigroup S is completely Archimedean if and only if S is Archimedean and
S contains at least one minimal left and at least one minimal right ideal.

2. The following conditions on a semigroup S are equivalent:

(a) S is periodic and Archimedean;
(b) S is π-regular and for all a, b ∈ S, ab = ba implies an = bn, for some n ∈ Z+;
(c) S is a nil-extension of a periodic simple semigroup.

3. A semigroup S is a nil-extension of a left simple semigroup if and only if S is a
left Archimedean and left π-regular.
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4. The following conditions on a semigroup S are equivalent:

(a) S is π-inverse Archimedean;
(b) S is a nil-extension of a simple π-inverse semigroup;
(c) S is a nil-extension of a simple inverse semigroup.

5. A semigroup S is a nil-extension of a rectangular band if and only if for every
a, b ∈ S there exists n ∈ Z+ such that an = anban.

6. If for every element a ∈ S there exists n ∈ Z+ and there exists exactly one x ∈ S
such that an = xan+1, then S is a nil-extension of a left group. Does the converse
hold?

7. A semigroup S is a nil-extension of a periodic left group if and only if for every
a, b ∈ S there exists n ∈ Z+ such that an = anbn.

8. A semigroup S is a π-group if and only if S is Archimedean with only one
idempotent.

9. Let ξ be a congruence on a π-regular semigroup S. Then eξf , for all e, f ∈ E(S)
if and only if S/ξ is a π-group.

10. The following conditions on a semigroup S are equivalent:

(a) S is a group;
(b) S is regular and has only one idempotent;
(c) (∀a ∈ S)(∃1x ∈ S) a = axa;
(d) (∀a, b ∈ S) a ∈ bSb.

11. A semigroup S is a subdirect product of nilpotent semigroups if and only if
| ∩n∈Z+ Sn| ≤ 1.

12. A semigroup S is a subdirect product of nil-semigroups if and only if ∩n∈Z+J(an)
= ∅, for all a ∈ S.

13. Let S be a subsemigroup of an Archimedean semigroup without intra-regular
elements. Then S is a subdirect product of countable many nil-semigroups.

14. The following conditions on a semigroup S are equivalent:

(a) S is a π-group;
(b) S is a subdirect product of a group by a nil-semigroup;
(c) S is completely π-regular with the identity x0 = y0.

15. A semigroup S is a nil-extension of a left group if and only if S is an epigroup
with the identity x0y0 = x0.

16. The following conditions on a semigroup S are equivalent:

(a) S is completely Archimedean;
(b) S is completely π-regular satisfying some heterotypical identity;
(c) S is completely π-regular with the identity (a0b0a0)0 = a0.

17. The following conditions on a semigroup S are equivalent:

(a) P(S) is Archimedean;
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(b) P(S) is a nilpotent extension of a rectangular band;

(c) S is a nilpotent extension of a rectangular band.

18. A semigroup S is a nilpotent extension of a left zero band if and only if P(S)
is left Archimedean.

19. A semigroup S is nilpotent if and only if P(S) is t-Archimedean.

20. A semigroup S is Archimedean if and only if any its bi-ideal is Archimedean.
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3.4 Semigroups in Which Proper Ideals are
Archimedean

Denote by A (LA,RA, T A,PJ ) the class of Archimedean (left Archi-

medean, right Archimedean, t-Archimedean, power-joined) semigroups. As

we have already noticed, the following relations between these classes hold

PJ ⊂ T A = LA ∩RA ⊂ LA ∪RA ⊂ A.

Let I(S) (L(S)) denote the union of all proper two-sided (left) ideals of

a semigroup S.

Theorem 3.19 Every proper ideal of a semigroup S is an Archimedean

subsemigroup of S if and only if I(S) is an Archimedean subsemigroup of S.
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Proof. Let all proper ideals of S be Archimedean semigroups and let a, b ∈
I(S). Then there exists a proper ideal A of S such that a, aba ∈ A and there

exists n ∈ Z+ such that

an ∈ AabaA ⊆ I(S)bI(S).

Thus I(S) is an Archimedean semigroup.

Conversely, let I(S) be an Archimedean semigroup and let A be a proper

ideal of S. Then for a, b ∈ A there exists n ∈ Z+ such that an = xby for some

x, y ∈ I(S). Thus an+2 = axbya where ax, ya ∈ A, so A is an Archimedean

semigroup.

Lemma 3.16 Every left ideal of an Archimedean (left Archimedean, right

Archimedean, t-Archimedean, power-joined) semigroup S is an Archimedean

(left Archimedean, right Archimedean, t-Archimedean, power-joined) sub-

semigroup of S.

Proof. We will only prove the case when S is an Archimedean semigroup,

the other cases are proved similarly. Let L be an arbitrary left ideal of S

and let a, b ∈ L. Then there exist x, y ∈ S and n ∈ Z+ such that an = xb2y.

Hence, it follows that an+1 = xbbya and xb, ya ∈ L.

In the following theorem we will give the characterization of a semigroup

whose every proper left ideal is an Archimedean semigroup.

Theorem 3.20 The following conditions on a semigroup S are equivalent:

(i) every proper left ideal of S is an Archimedean subsemigroup of S;

(ii) L(S) is an Archimedean subsemigroup of S;

(iii) S satisfies one of the following conditions:

(a) S is Archimedean;
(b) S has a maximal left ideal M which is an Archimedean semigroup

and M ⊆Ma, for every a ∈ S −M .

Proof. (i)⇒(ii) If S is a left simple semigroup then S is Archimedean.

Assume that S is not left simple. For arbitrary a, b ∈ L(S) there exists a

proper left ideal L of S such that a, ba ∈ L whence

an ∈ LbaL ⊆ L(S)bL(S),

for some n ∈ Z+, and thus L(S) is an Archimedean subsemigroup of S.
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(ii)⇒(iii) If L(S) ̸= S thenM = L(S) is a maximal left ideal of S and by

Theorem 1.15, S−M = {a}, a2 ∈M , or S−M ⊆ Sa, for every a ∈ S−M .

If S −M = {a}, a2 ∈M , then S is Archimedean. If S −M ⊆ Sa, for every

a ∈ S−M , then by Theorem 1.16 T = S−M is a subsemigroup of S. From

Sa = S, a ∈ T it follows that S =Ma∪Ta ⊆Ma∪T ⊆ S, i.e. S =Ma∪T .
Thus, M ⊆Ma, for every a ∈ S −M .

(iii)⇒(i) If (a) holds, then by Lemma 3.16 every left ideal of S is an

Archimedean subsemigroup of S. Let (ii) hold and let L be a proper left

ideal of S. If L ⊆M then by Lemma 3.4, L is an Archimedean subsemigroup

of S. If L *M then L∩(S−M) ̸= ∅ and for a ∈ L∩(S−M) isM ⊆Ma ⊆ L

which is impossible.

Theorem 3.21 Every proper left ideal of S is a left Archimedean subsemi-

group of S if and only if S satisfies one of the following conditions:

(a) S is left Archimedean;

(b) S contains only two left ideals L1 and L2 which are left simple semi-

groups and S = L1 ∪ L2;

(c) S has a maximal left ideal M which is a left Archimedean semigroup

and M ⊆Ma, for every a ∈ S −M .

Proof. Let all proper left ideals of S be left Archimedean. If L(S) ̸= S

then M = L(S) is a maximal left ideal of S which is a left Archimedean

semigroup. Based on Theorem 1.15, we have that S −M = {a}, a2 ∈ M or

S −M ⊆ Sa for every a ∈ S −M . If S −M = {a}, a2 ∈M then S is a left

Archimedean semigroup. If S −M ⊆ Sa for every a ∈ S −M , then as in

the proof of Theorem 3.20, we have that S is type (c).

If L(S) = S and for every two proper left ideals L1 and L2 of S, L1∩L2 ̸=
∅, then S is left Archimedean. On the other hand, there exist left ideals L1

and L2 of S such that L1 ∩ L2 = ∅. In that case, L1 ∪ L2 = S, because

L1 ∪L2 is not a left Archimedean semigroup (since L1 ∩L2 = ∅). Let L3 be

a left ideal of S such that L3 ⊂ L1, L3 ̸= L1. Then L2 ∪ L3 is a proper left

ideal of S and for a ∈ L3, b ∈ L2 we have that an = xb ∈ Sb ⊆ L2, for some

n ∈ Z+ and x ∈ S. Thus, L1 ∩ L2 ̸= ∅ which is not possible. Hence, L1 is

a minimal left ideal of S and by Theorem 1.14, it is left simple. Also, L2 is

a left simple semigroup of S. Thus, if every proper left ideal of S is a left

Archimedean semigroup, then one of the conditions (a), (b) or (c) holds.

The converse follows immediately.
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Also, on a semigroup S we define the relations ↑, ↑l, ↑r and ↑t by

a ↑ b ⇔ (∃n ∈ Z+) bn ∈ ⟨a, b⟩ a ⟨a, b⟩ ,
a ↑l b ⇔ (∃n ∈ Z+) bn ∈ ⟨a, b⟩ a,
a ↑r b ⇔ (∃n ∈ Z+) bn ∈ a ⟨a, b⟩ ,
a ↑t b ⇔ (∃n ∈ Z+) a ↑l b & a ↑r b.

Clearly, a ↑t b if and only if bn ∈ a ⟨a, b⟩ a, for some n ∈ Z+.

A semigroup S is a hereditary Archimedean if a ↑ b for all a, b ∈ S. By a

hereditary left Archimedean semigroup we mean a semigroup S satisfying the

condition: a ↑l b, for all a, b ∈ S. A hereditary right Archimedean semigroup

is defined dually. A semigroup S is called hereditary t-Archimedean if it is

both hereditary left Archimedean and hereditary right Archimedean, i.e. if

a ↑t b for all a, b ∈ S.

The next lemma gives an explanation of why we are use the term ”hered-

itary Archimedean”.

Lemma 3.17 A semigroup S is hereditary Archimedean (hereditary left Ar-

chimedean, hereditary right Archimedean, hereditary t-Archimedean) if and

only if every subsemigroup of S is Archimedean (left Archimedean, right

Archimedean, t-Archimedean).

By C2 we denote the two-element chain and for a prime p, Gp will denote

the group of order p.

The class Her(A) of all hereditary Archimedean semigroups will be char-

acterized in terms of forbidden divisors as follows:

Theorem 3.22 A semigroup S is hereditary Archimedean if and only if C2

does not divide S.

Proof. The class Her(A) is closed under the formation of divisors and it

does not contain C2, while we have that C2 does not divide any semigroup

from Her(A).

Conversely, let C2 not divide S. Suppose that S is not hereditary

Archimedean. Then there exist a, b ∈ S such that a ↑ b does not hold,

i.e. such that bn /∈ T 1aT 1, for any n ∈ Z+, where T = ⟨a, b⟩. But, now we

have that the set A0 = T 1aT 1 and A1 = ⟨b⟩ form a partition of T which

determines a congruence relation on S whose related factor is isomorphic to

C2. This means that C2 divides S, which contradicts our starting hypoth-

esis. Therefore, we conclude that S ∈ Her(A). This completes the proof of

the theorem.
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In terms of forbidden divisors we also characterize nil-extensions of rect-

angular bands.

Theorem 3.23 A semigroup S is a nil-extension of a rectangular band if

and only if C2 and Gp, for any prime p, do not divide S.

Proof. The class of all semigroups which are nil-extensions of rectangu-

lar bands is closed under the formation of divisors and it does not contain

semigroups C2 and Gp, for any prime p, so C2 and Gp do not divide any

semigroup from this class.

Conversely, let C2 and Gp, for any prime p, not divide S. According to

Theorem 3.22, S ∈ Her(A). Assume an arbitrary a ∈ S. If ⟨a⟩ is infinite,

then it is isomorphic to the additive semigroup of positive integers, and any

of the Gp groups is a homomorphic image of ⟨a⟩. Thus, Gp divides S, which

contradicts our starting hypothesis. Hence, ⟨a⟩ is finite, for any a ∈ S,

so S is periodic, and it is a nil-extension of a periodic completely simple

semigroup K (by Theorem 3.16). In view of this hypothesis, K does not

have non-trivial subgroups. So K is a rectangular band.

Lemma 3.18 A semigroup S is left simple hereditary left Archimedean if

and only if S is a periodic left group.

Proof. Let S be a left simple semigroup. Then by Corollary 1.5 for a ∈ S

there exists x ∈ S such that a = xa. Since S is a hereditary left Archimedean

semigroup then there exists n ∈ Z+ and u ∈ ⟨a, x⟩ such that xn = ua so

a = xna = uaa = ai+1,

for some i ∈ Z+, because u ∈ ⟨a, x⟩. Thus, S is a periodic semigroup, so

E(S) ̸= ∅. Now by Theorem 3.7 we have that S is a periodic left group.

The converse follows from Lemma 3.17 and from Theorem 3.7.

Theorem 3.24 Every proper subsemigroup of a semigroup S is left Archi-

medean if and only if S is hereditary left Archimedean or |S| = 2.

Proof. Let every proper subsemigroup of S be left Archimedean. Then by

Theorem 3.21 there are three cases:

(a) S is a left Archimedean. In that case by Lemma 3.17, S is a hereditary

left Archimedean semigroup.
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(b) S has only two left ideals L1 and L2 which are left simple semigroups

and S = L1 ∪ L2. In that case, since L1, L2 ̸= S based on the hypothesis

and by Lemma 3.17, L1 and L2 are hereditary left Archimedean semigroups,

so by Lemma 3.18, L1 and L2 are left groups. Now, according to Theorem

3.8, S is a union of a group, i.e. S is completely regular, so, since S is a

simple semigroup then by Corollary 2.4, S is completely simple. Using the

notation from Theorem 3.6, S is a left zero band I of a right group Ri, i ∈ I.

If |I| ≥ 2, then for i ∈ I Ri is a hereditary left Archimedean semigroup and

based on the dual of Theorem 3.7, and by Theorem 3.17, E(Ri) is both a

right and left zero band, whence |E(Ri)| = 1, i.e. Ri is a group. So, in that

case, by Theorem 3.7, S is a left group, i.e. E(S) is a left zero band, which

is impossible, as for e ∈ E(L1) and f ∈ E(L2) we have ef ∈ L2 because L2

is a left ideal of S, and e /∈ L2. Thus |I| = 1, so S is a right group and E(S)

is a right zero band. Then ⟨e, f⟩ = {e, f} cannot be a left Archimedean

semigroup, so S = {e, f}, i.e. |S| = 2.

(c) S has a maximal left ideal M = L(S) which is a hereditary left

Archimedean semigroup and M ⊆ Ma, for every a ∈ T = S −M . Based

on Theorem 1.16, T is a subsemigroup of S. Assume that T is not a left

simple semigroup. Then there exist a ∈ T such that Ta ̸= T . So, in

that case, M ̸= Ma whence S = Ma. Let a = xa for some x ∈ M .

Then (ax)n = anx ∈ M , for every n ∈ Z+, n ≥ 2 and ⟨ax⟩ ∪ ⟨a⟩ is a

subsemigroup of S. It is evident that S = ⟨ax⟩∪⟨a⟩ because ⟨ax⟩∪⟨a⟩ is not
a hereditary left Archimedean semigroup (if it is, then ak ∈ ⟨a, ax⟩ax ∈ M

that is impossible). Now we have that x ∈ ⟨ax⟩, i.e. x = akx for some

k ∈ Z+, so a = xa = akxa = ak+1, whence T = ⟨a⟩ is a group, that is a

contradict by hypothesis that T is not a left simple semigroup. Thus T is a

left simple semigroup and by Lemma 3.18 T is a left group. For e ∈ E(T )

we have that M ⊆ Me and for arbitrary x ∈ M we have x = ye, for some

y ∈ M . Hence x = ye = yee = xe and (ex)n = exn ∈ M for every n ∈ Z+.

Now, if A = {(ex)2, (ex)3, . . .} ∪ {e} is a proper subsemigroup of S, then

A is a hereditary left Archimedean semigroup, so e ∈ ⟨e, ex2⟩ex2 ⊆ M that

is impossible. Thus, S = A, whence ex = (ex)k for some k ∈ Z+, k ≥ 2,

i.e. {(ex)2, (ex)3, . . .} is a group. For identity (ex)k−1 = exk−1 of these

group we have that {exk−1, e} is not hereditary left Archimedean. Thus,

S = {exk−1, e}, i.e. |S| = 2.

The converse follows immediately.

Lemma 3.19 Every t-Archimedean semigroup contains at most one idem-

potent.
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Proof. Let e, f be idempotents of a t-Archimedean semigroup S. Then

e = xf and f = ey, for some x, y ∈ S, whence e = xf = xf2 = ef = e2y =

ey = f .

Lemma 3.20 A semigroup S is left simple (right simple, simple) t-Archi-

medean if and only if S is a group.

Proof. We only give the proof when S is a left simple t-Archimedean semi-

group. For an element a ∈ S there exists x ∈ S such that a = xa2. Since S

is t-Archimedean then for a and x there exist y ∈ S and n ∈ Z+ such that

xn = ay. Now we have

a = xa2 = x2a3 = · · · = xnan+1 = ayan+1.

Thus, S is a regular semigroup and by Lemma 3.19, S has only one idem-

potent, so according to Theorem 3.18, S is a group.

The converse follows immediately.

Theorem 3.25 Let a semigroup S be not left simple. Then every proper left

ideal of S is a t-Archimedean semigroup if and only if one of the following

conditions holds:

(a) S is t-Archimedean;

(b) S contains only two left ideals G1 and G2 which are groups and S =

G1 ∪G2;

(c) S has a maximal left ideal M which is a t-Archimedean semigroup and

M ⊆Ma, for every a ∈ S −M .

Proof. Let every proper left ideal of S be a t-Archimedean semigroup.

Then by Theorem 3.21 and Lemma 3.20, we have that one of the condi-

tions (b) or (c) holds, or S is a left Archimedean semigroup. If S is left

Archimedean and L(S) ̸= S, then L(S) is a maximal left ideal of S and it

is a t-Archimedean semigroup. Based on Theorems 1.15 and 1.16, there are

two cases: S−L(S) is a subsemigroup of S, and then we get a contradiction,

or S − L(S) = {a}, a2 ∈ L(S), then S is t-Archimedean. If L(S) = S then

it is easy to prove that S is of the type (a).

The converse follows immediately.

Theorem 3.26 Every proper subsemigroup of S is t-Archimedean if and

only if S is a hereditary t-Archimedean semigroup or S is a two element

band.
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Proof. Let every proper subsemigroup of S be t-Archimedean. If S is left

simple, then by Lemma 3.20, S is a group. Suppose that S is not left simple.

Then one of the conditions (a), (b) and (c) of Theorem 3.25 holds.

If (a) hold then S is a hereditary t-Archimedean semigroup.

Let (b) hold and let e, f be units of the groups G1 and G2 respectively.

Then based on the proof of Theorem 3.24, we have that S = {e, f}.
Let (c) hold. Then M is an ideal of S and by Theorem 3.24, S −M is

a left simple semigroup, so by Lemma 3.20, S −M is a group. Let x ∈ M

be an arbitrary element and let e be an identity of a group S −M . Then

ex, xke ∈ M , for every k ∈ Z+, so S = ⟨e, ex⟩ = ⟨x, xe⟩. Hence, we have

that x = ey for some y ∈ S, so ex = e(ey)ey = x. Thus (xe)k = x(ex)k−1e,

so S = {e, xe, x2e, . . .} and A = {e, x2e, x3e, . . .} is a subsemigroup of S. If

A is t-Archimedean, then e ∈ xkeA ⊆ M , which is impossible. Therefore,

S = A, so M = {x2e, x3e, . . .} whence we have that xe = xke = (xe)k, for

some k ∈ Z+, so M is a group with the identity (xe)k−1 = xk−1e. Thus,

S = {(xe)k−1, e} = {xk−1, e} is a band and |S| = 2.

The converse follows immediately.

Exercises

1. If S is not left simple, then every proper left ideal of S is a power-joined sub-
semigroup of S if and only if one of the following conditions holds:

(a) S is power-joined;
(b) S contains only two left ideals G1 and G2 which are periodic groups and

S = G1 ∪G2;
(c) S has a maximal left ideal M which is a power joined subsemigroup of S and

M ⊆Ma, for all a ∈ S −M .

2. Every proper subsemigroup of a semigroup S is power-joined if and only if
|S| = 2 or S is power-joined.

3. A semigroup S is a nilpotent extension of a rectangular band if and only if C2

does not divide P(S).
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Chapter 4

The Greatest Semilattice
Decompositions of
Semigroups

Semilattice decompositions of semigroups were first defined and studied

by A. H. Clifford, in 1941. After that, several authors have worked on this

very important topic. The existence of the greatest semilattice decompo-

sition of a semigroup was established by M. Yamada, in 1955, and by T.

Tamura and N. Kimura, in 1955. The smallest semilattice congruence on a

semigroup, in notation σ, has been considered many times. T. Tamura, in

1964, described the congruence σ with the use of the concept of contents.

M. Petrich, in 1964, described σ by means of completely prime ideals and fil-

ters. Another connection between σ and completely prime ideals and filters

was given by R. Šulka, in 1970. T. Tamura, in 1972, and 1975, proved that

σ =−→∞ ∩(−→∞)−1 and M. S. Putcha, in 1974, proved that σ is the tran-

sitive closure of the relation −→ ∩ −→−1. M. Ćirić and S. Bogdanović, in

1996, gave a new characterization of the greatest semilattice decomposition,

i.e. of the least semilattice congruence on a semigroup, by using principal

radicals, i.e. completely semiprime ideals of semigroups. Also, they de-

scribed some special types of semilattice decompositions: semilattices and

chains of σn- (λ-, λn-, τ -, τn-) simple semigroups.

Two relations that were introduced by M. S. Putcha and T. Tamura,

denoted by −→ and , play a crucial role in semilattice decompositions of

semigroups. General properties of the graphs that correspond to these rela-

119
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tions were studied by M. S. Putcha, in 1974, and the structure of semigroups

in which the minimal paths in the graph corresponding to −→ are bounded

was described by M. Ćirić and S. Bogdanović, in 1996.

The celebrated theorem of T. Tamura, in 1956, asserts that every semi-

group has the greatest semilattice decomposition and each of its components

is a semilattice indecomposable semigroup. But, if we intend to study the

structure of a semigroup through its greatest semilattice decomposition, we

face the following problem: How to construct this decomposition? Another

more convenient version of this problem is: How do we construct the smallest

semilattice congruence σ on a semigroup?

One of the best construction methods for σ was also given by T. Tamura,

in 1972. He devised the following procedure: We start from the division

relation on a semigroup. In the way shown below we define a relation denoted

by −→. Finally, making the transitive closure of −→ we obtain a quasi-order

whose symmetric opening (that is, its natural equivalence) equals σ.

On the other hand, M. S. Putcha, in 1974, proved that the action of the

transitive closure and the symmetric opening operators in Tamura’s proce-

dure can be permuted. In other words, on the relation −→ we can apply the

symmetric opening operator first, to obtain a relation denoted by , and

applying the transitive closure operator on , we obtain σ again.

The hardest step in these procedures is the application of the transi-

tive closure operator to relations −→ and . As we know, one obtains

the transitive closure on a relation by using an iteration procedure. In the

general case, the number of iterations applied may be infinite. A natural

problem that imposes itself here is the following: Under what conditions on

a semigroup S, can the smallest semilattice congruence on S be obtained by

applying only a finite number of iterations to −→ or ?

Problems of this type were first treated in the above mentioned paper

of M. S. Putcha. The results which will be presented in this chapter were

taken from the papers by M. Ćirić and S. Bogdanović (1996), and by S.

Bogdanović, M. Ćirić and Ž. Popović (2000).
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4.1 Principal Radicals and Semilattice
Decompositions of Semigroups

In this section we introduce the notion of the principal radicals of semi-

groups, we introduce relations which generalize the well known Green’s re-

lations and we describe their basic characteristics.

Let a be an element of a semigroup S and let n ∈ Z+. We will use the

following notations:

Σ(a) = {x ∈ S | a −→∞ x}, Σn(a) = {x ∈ S | a −→n x}.

First we will give some basic characteristics of these sets.

Lemma 4.1 Let a be an element of a semigroup S. Then

Σ1(a)=
√
SaS,Σn(a) ⊆ Σn+1(a)=

√
SΣn(a)S, n ∈ Z+,Σ(a)=

∪
n∈Z+

Σn(a).

Lemma 4.2 Let a be an element of a semigroup S. Then Σ(a) is the least

completely semiprime ideal of S containing a.

Proof. Let x ∈ Σ(a) and let b ∈ S. Then a −→∞ x and since x −→ bx and

x −→ xb, then a −→∞ xb and a −→∞ bx, so xb, bx ∈ Σ(a). Thus, Σ(a) is an

ideal of S. Let x ∈ S such that x2 ∈ Σ(a), i.e. a −→∞ x2. Since x2 −→ x,

then a −→∞ x, so x ∈ Σ(a). Therefore, Σ(a) is a completely semiprime

ideal of S containing a.

Let I be a completely semiprime ideal of S containing a. Then SaS ⊆
SIS ⊆ I, so Σ1(a) =

√
SaS ⊆

√
I ⊆ I. Assume that Σn(a) ⊆ I. Then

SΣn(a)S ⊆ SIS ⊆ I, so Σn+1(a) =
√
SΣn(a)S ⊆

√
I ⊆ I. Thus, by

induction we obtain that Σn(a) ⊆ I for every n ∈ Z+, whence Σ(a) ⊆ I.

Hence Σ(a) is the least completely semiprime ideal of S containing a.

Corollary 4.1 Let A be a nonempty subset of a semigroup S. Then:

Σ(A)
def
=

∪
a∈A

Σ(a)

is the least completely semiprime ideal of S containing A.
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If S is a semigroup, then the set Σ(a), a ∈ S, will be called the principal

radical of S. The set of all principal radicals of S will be denoted by ΣS .

Remark 4.1 If a is an element of a semigroup S, then it is easy to see that

Σn(a) = Σn(J(a)) for every n ∈ Z+, whence Σ(a) = Σ(J(a)).

Let S be a semigroup and let a, b ∈ S. Then a
h−→ b if a|hbi, for some

i ∈ Z+, a
h−→

n+1
b if there exists x ∈ S such that a

h−→
n
x

h−→ b, n ∈ Z+,

and a
h−→ ∞b if a

h−→ nb for some n ∈ Z+, where h is l or r.

For an element a of a semigroup S and for n ∈ Z+ we introduce the

following notations

Λ(a) = {x ∈ S | a l−→ ∞x}, Λn(a) = {x ∈ S | a l−→ nx},

P (a) = {x ∈ S | a r−→ ∞x}, Pn(a) = {x ∈ S | a r−→ nx}.
Based on the following results we will present some of the basic characteris-

tics of these sets.

Lemma 4.3 Let a be an element of a semigroup S. Then:

Λ1(a) =
√
Sa,Λn(a) ⊆ Λn+1(a) =

√
SΛn(a), n ∈ Z+,Λ(a) =

∪
n∈Z+

Λn(a),

P1(a) =
√
aS, Pn(a) ⊆ Pn+1(a) =

√
Pn(a)S, n ∈ Z+, P (a) =

∪
n∈Z+

Pn(a).

Lemma 4.4 Let a be an element of a semigroup S. Then Λ(a) ( P (a) ) is

the least completely semiprime left (right) ideal of S containing a.

Proof. Let x ∈ Λ(a) and let b ∈ S. Then a
l−→ ∞x and since x

l−→ bx,

then a
l−→ ∞bx. Thus bx ∈ Λ(a), so Λ(a) is a left ideal of S.

Let x ∈ S such that x2 ∈ Λ(a), i.e. such that a
l−→ ∞x2. Since x2

l−→ x,

then a
l−→ ∞x, i.e. x ∈ Λ(a). Therefore, Λ(a) is a completely semiprime

left ideal of S.

Let L be a completely semiprime left ideal of S containing a. Then

Sa ⊆ L whence Λ1(a) =
√
Sa ⊆

√
L ⊆ L. Assume that Λn(a) ⊆ L. Then

Λn+1(a) =
√
SΛn(a) ⊆

√
SL ⊆

√
L ⊆ L. Therefore, by induction we obtain

that Λn(a) ⊆ L for all a ∈ S, whence Λ(a) =
∪
n∈Z+ Λn(a) ⊆ L. Thus, Λ(a)

is the least completely semiprime left ideal of S containing a.
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Corollary 4.2 Let A be a nonempty subset of a semigroup S. Then:

Λ(A)
def
=

∪
a∈A

Λ(a) ( P (A)
def
=

∪
a∈A

P (a) )

is the least completely semiprime left (right) ideal of S containing A.

If S is a semigroup, then the sets Λ(a) ( P (a) ), a ∈ S, will be called the

principal left (right ) radicals of S.

Remark 4.2 If a is an element of a semigroup S, then it is easy to see

that Λn(a) = Λn(L(a)) and Pn(a) = Pn(R(a)) for every n ∈ Z+, whence

Λ(a) = Λ(L(a)) and P (a) = P (R(a)).

We introduce the following equivalences on a semigroup S:

a σ b⇔ Σ(a) = Σ(b), a σn b⇔ Σn(a) = Σn(b),
a λ b⇔ Λ(a) = Λ(b), a λn b⇔ Λn(a) = Λn(b),
a ρ b⇔ P (a) = P (b), a ρn b⇔ Pn(a) = Pn(b),

τ = λ ∩ ρ, τn = λn ∩ ρn,

a, b ∈ S. Based on the following lemma we prove that these equivalences are

generalizations of the well-known Green’s equivalences.

Lemma 4.5 On every semigroup

H ⊆ τ1 ⊆ τ2 ⊆ · · · ⊆ τn ⊆ · · · ⊆ τ
|
∩

|
∩

|
∩

|
∩

|
∩

L ⊆ λ1 ⊆ λ2 ⊆ · · · ⊆ λn ⊆ · · · ⊆ λ
|
∩

|
∩

|
∩

J ⊆ σ1 ⊆ σ2 ⊆ · · · ⊆ σn ⊆ · · · ⊆ σ
|
∪

|
∪

|
∪

R ⊆ ρ1 ⊆ ρ2 ⊆ · · · ⊆ ρn ⊆ · · · ⊆ ρ

Proof. The inclusions in the third row of the previous diagram follow from

Lemma 4.1. The inclusions in the second and fourth row from Lemma 4.3

and from this the inclusions in the first row follow. The inclusion λ ⊆ σ

follows from Lemmas 4.2 and 4.4.

Assume that (a, b) ∈ λ1, i.e. that Λ1(a) = Λ1(b). Let x ∈ Σ1(a),

i.e. let xn = uav for some n ∈ Z+, u, v ∈ S. Then vua ∈ Λ1(a) =
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Λ1(b), whence there exists k ∈ Z+, w ∈ S such that (vua)k = wb. Thus

xn(k+1) = (uav)k+1 = ua(vua)kv = uawbv ∈ SbS. Therefore, x ∈ Σ1(b), i.e.

Σ1(a) ⊆ Σ1(b). Similarly we prove that Σ1(b) ⊆ Σ1(a). Hence, (a, b) ∈ Σ1,

so λ1 ⊆ σ1.

The rest of the proof follows immediately.

If π is one of the equivalences from the diagram of Lemma 4.5, defined on

a semigroup S, then S is π-simple if π = S×S. It is clear that J (L, R, H)-

simple semigroups are simple semigroups (left simple semigroups, right sim-

ple semigroups, groups) and that σ1 (λ1, ρ1, τ1)-simple semigroups are

Archimedean (left Archimedean, right Archimedean, t-Archimedean semi-

groups).

Lemma 4.6 On every semigroup

(i) σn ⊆−→n ∩ (−→n)−1 for every n ∈ Z+;

(ii) λn ⊆ l−→ n ∩ (
l−→ n)−1 for every n ∈ Z+;

(iii) σ =−→∞ ∩ (−→∞)−1;

(iv) λ =
l−→ ∞ ∩ (

l−→ ∞)−1.

Proof. (i) and (ii) This follows immediately.

(iii) Follows from the definition of a principal radical and by Lemma 4.2.

(iv) Follows from the definition of a principal left radical and by Lemma

4.4.

Lemma 4.7 Let a, b, c be elements of a semigroup S. Then:

(i) Σ(a) = Σ(a2),

(ii) Σ(ab) ⊆ Σ(a) ∩ Σ(b),

(iii) Σ(abc) = Σ(acb),

(iv) Σ(ba) = Σ(anbn),

for every n ∈ Z+.

Proof. (i) According to Lemma 4.2 we have a2 ∈ Σ(a) and Σ(a2) ⊆ Σ(a).

Since Σ(a2) is a completely semiprime ideal of S and a2 ∈ Σ(a2) we then

have that a ∈ Σ(a2) and by Lemma 4.2 we obtain Σ(a) ⊆ Σ(a2). Thus, (i)

holds.
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(ii) Since Σ(a) and Σ(b) are the ideals of S, then ab ∈ Σ(a) and ab ∈ Σ(b)

and from Lemma 4.2 we have (ii).

(iii) From (i) and (ii) we have

Σ(abc) = Σ(abcabc) ⊆ Σ(bcabc) = Σ(bcabcbcabc) ⊆

⊆ Σ(cbca) = Σ(cbcacbca) ⊆ Σ(acb).

Thus, Σ(abc) ⊆ Σ(acb). Since the opposite inclusion also holds, we then

have that (iii) holds.

(iv) From (i) and (ii) we have

Σ(ab) = Σ(abab) ⊆ Σ(ba) = Σ(baba) ⊆ Σ(ab),

i.e. Σ(ab) = Σ(ba).

Assume that Σ(ba) = Σ(akbk), k ∈ Z+. Then based on (i), (ii) and (iii)

we have

Σ(ba)=Σ(akbk) = Σ(akbkakbk) = Σ(a2kb2k)⊆Σ(ak+1bk+1)⊆Σ(ab)=Σ(ba).

Thus Σ(ba) = Σ(ak+1bk+1) and by induction we have that (iv) holds.

Lemma 4.8 Let a, b, c be elements of a semigroup S. Then:

a −→n b ⇒ Σ(bc) ⊆ Σ(ac).

Proof. Let n = 1, i.e. bm = xay for some x, y ∈ S and m ∈ Z+. Then

from Lemma 4.7 we have that

Σ(bc) = Σ(cmbm) = Σ(cmxay) = Σ(xamay) ⊆ Σ(ca) = Σ(ac).

Thus, the assertion holds for n = 1.

Assume that the assertion holds for some n ∈ Z+ and assume that

a −→n+1 b, i.e. a −→n x −→ b for some x ∈ S. Then Σ(bc) ⊆ Σ(xc) ⊆
Σ(ac). By induction we obtain that the assertion of the lemma holds.

Lemma 4.9 Let ξ be a semilattice congruence on a semigroup S and let

n ∈ Z+.

(i) Let a, b ∈ S and a −→n b. Then bξ ≤ aξ in the semilattice S/ξ.

(ii) Let A be a ξ-class of S and a, b ∈ A. Then a −→n b in S if and only

if a −→n b in A.
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Proof. (i) Let n = 1. Then bm = xay for some x, y ∈ S and m ∈ Z+,

whence bξ = (bm)ξ = (xay)ξ = (xy)ξaξ ≤ aξ.

Assume that (i) holds for n ∈ Z+ and that a −→n+1 b. Then a −→n

x −→ b for some x ∈ S, whence bξ ≤ xξ ≤ aξ. By induction we have that

(i) holds.

(ii) Let n = 1. Then bm = xay, for some x, y ∈ S and m ∈ Z+. From

this it follows that

bξ = (bm)ξ = (xay)ξ = (xξ)(aξ)(yξ).

Thus (bξ)(xξ) = (yξ)(bξ) = bξ, i.e. bx, yb ∈ A. Hence bm+2 = (bx)a(yb) ∈
AaA, i.e. a −→ b in A. Thus, (ii) holds for n = 1.

Assume that (ii) holds for n ∈ Z+ and let a −→n+1 b in S. Then

a −→n x −→ b for some x ∈ S, and from (i) we obtain aξ ≤ xξ ≤ aξ = bξ,

i.e. xξ = bξ, i.e. x ∈ A. Thus, (ii) holds for n = 1 and based on the

hypothesis we have that a −→n x in A and x −→ b in A, whence a −→n+1 b

in A. Therefore, by induction we obtain (ii).

Recall that on a semigroup S we have the following equivalence relation:

aσb ⇔ Σ(a) = Σ(b).

Theorem 4.1 On a semigroup S equivalence σ is the smallest semilattice

congruence and every σ-class is semilattice indecomposable.

Proof. From Lemmas 4.7 and 4.8 we have that σ is a semilattice congruence

on S.

Let ξ be a semilattice conguence on S and let aσb. Then a −→∞ b and

b −→∞ a. According to Lemma 4.9 (i) we have that aξ ≤ bξ and bξ ≤ aξ

in S/ξ, i.e. aξ = bξ. Thus, aξb, whence σ ⊆ ξ. Hence, σ is the smallest

semilattice congruence on S.

Let A be a σ-class of S, let σ∗ be a relation of the type σ on A and let

a, b ∈ A. Then aσb in S, i.e. a −→∞ b and b −→∞ a in S. From Lemma 4.9

(ii) we have that a −→∞ b and b −→∞ a in A, whence aσ∗b. Thus, σ∗ is a

universal relation on A and since σ∗ is the smallest semilattice congruence

on A, we then have that A is a semilattice indecomposable semigroup.

The following theorem is one of the main results of this section. By means

of this we describe the structure of the partially ordered set of principal

radicals of a semigroup.
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Theorem 4.2 For elements a, b of a semigroup S Σ(ab) = Σ(a) ∩ Σ(b).

Furthermore, the set ΣS of all the principal radicals of S, partially ordered

by inclusion, is the greatest semilattice homomorphic image of S.

Proof. From Lemma 4.7 we obtain that Σ(ab) ⊆ Σ(a)∩Σ(b). Assume x ∈
Σ(a)∩Σ(b). Then a −→∞ x and b −→∞ x, so by Lemma 4.8 we obtain that

Σ(ab) ⊇ Σ(xb) ⊇ Σ(x2) = Σ(x).

Thus x ∈ Σ(ab), so Σ(a) ∩ Σ(b) ⊆ Σ(ab). Hence Σ(a) ∩ Σ(b) = Σ(ab).

Therefore ΣS is a semilattice and a 7→ Σ(a), (a ∈ S) is a homomorphism of

S onto ΣS with the kernel σ. From Lemma 4.6 (iii) and based on Theorem

4.1, σ is the smallest semilattice congruence on S, whence ΣS is the greatest

semilattice homomorphic image of S.

Lemma 4.10 Let ξ be an equivalence relation on a semigroup S such that

xyξxyxξyx for all x, y ∈ S1 and 1ξ1. Then

(a) xayξxaky, for all x, a, y ∈ S1 and k ∈ Z+;

(b) xyzξxzy, for all x, y, z ∈ S.

Proof. Assume that x, a, y ∈ S1. Then xayξyxaξayxaξxa2y. Then, (a)

holds for k = 2. Assume that xayξxaky, for some k ∈ Z+, k ≥ 2. Then

based on the hypothesis we have that

xayξxaky = (xak−1)ayξ(xak−1)a2y = xak+1y.

So, by induction we obtain that (a) holds.

Assume that x, y, z∈S. Then based on the hypothesis and from (a) we have

xyz ξx(yz)2ξ(xyzyz)2 = (xyzyzx)(yz)2ξ(xyzyzx)(yz)
= (xy)(zyzx)(yz)ξ(xy)(zyzx)2(yz) = x(yz)2(xzyzxyz)
ξx(yz)(xzyzxyz) = (xyzxzy)(zxyz)ξ(xyzxzy)2(zxyz)
= (xyzxzyxy)(yz)(xzyzxyz)ξ(xyzxzyx)(yz)2(xzyzxyz)
ξ(xyzxzyxy)(zyzx)2(yz)ξ(xyzxzyxy)(zyzx)(yz)
= (xyzxzyx)(yz)2(xyz)ξ(xyzxzyx)(yz)(xyz) = (xyzxzy)(xyz)2

ξ(xyzxzy)(xyz) = (xyz)(xzy)(xyz)ξ(xyz)(xzy).

Thus, xyzξ(xyz)(xzy). Similarly, it can be proved that xzyξ(xzy)(xyz).

Therefore, xyzξxzy.

Using the previous lemma, we can prove the following theorem:
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Theorem 4.3 On every semigroup S, σ = ∞.

Proof. It is easy to see that xy xyx yx, for all x, y ∈ S1, whence

we obtain that ∞ is an equivalence relation for which the conditions of

Lemma 4.10 hold.

Assume a, b ∈ S such that a −→ b, i.e. bm = uav for some u, v ∈ S1,m ∈
Z+, and assume x, y ∈ S1. From Lemma 4.10 we have

xaby ∞xabmy = xauavy = (xa)u(avy) ∞(xa)(avy)u =

xa2(vyu) ∞xa(vyu) = x(avy)u ∞xu(avy) =

x(uav)y = xbmy ∞xby.

Thus, from a −→ b it follows that xaby ∞xby, for all x, y ∈ S1. Similarly

it can be proved that b −→ a implies xaby ∞xay, for all x, y ∈ S1. There-

fore, a b implies xay ∞xby, for all x, y ∈ S1. By induction we obtain

that for every n ∈ Z+, a nb implies xay ∞xby for all x, y ∈ S1. Thus,
∞ is a congruence relation on S. It is clear that ∞ is a semilattice

congruence and by Theorem 4.1 we have that σ ⊆ ∞. On the other hand,
∞ ⊆−→∞ ∩(−→∞)−1 = σ. Thus, ∞ = σ.

Using the previous theorem we describe the principal filters of a semi-

group.

We remind the reader that, for an element a of a semigroup S, the

intersection of all filters of S which contain a we call the principal filter of S

generated by a, and denote by N(a). It is the smallest filter containing an

element a of a semigroup S.

Corollary 4.3 Let a be an element of a semigroup S. Then:

N(a) = {x ∈ S | x −→∞ a}.

Proof. Let a ∈ S and let

A = {x ∈ S | x −→∞ a}.

Assume x, y ∈ A. Then x −→∞ a and y −→∞ a, so a ∈ Σ(x)∩Σ(y) = Σ(xy).

Thus xy −→∞ a, so xy ∈ A, i.e. A is a subsemigroup of S.

Let x, y ∈ S and let xy ∈ A. Then xy −→∞ a and since x −→ xy and

y −→ xy, then x −→∞ a and y −→∞ a. Thus A is a filter.
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Let y −→ a, i.e. let an = uyv, for some n ∈ Z+, u, v ∈ S. Since a ∈
N(a), then uyv = an ∈ N(a) and since N(a) is a filter, then u, y, v ∈ N(a),

i.e. y ∈ N(a). By induction we prove that x ∈ N(a) for all x ∈ A, so

A ⊆ N(a). Since A is a filter, then A = N(a).

Corollary 4.4 Let a, b be elements of a semigroup S. Then:

a σ b ⇔ N(a) = N(b).

Proof. Let aσb. Then b ∈ Σ(a) and a ∈ Σ(b), i.e. a−→∞ b and b−→∞ a,
whence a ∈ N(b) and b ∈ N(a), so N(b) ⊆ N(a) and N(a) ⊆ N(b), i.e.

N(a) = N(b).

Conversely, let N(a) = N(b). Then a ∈ N(b) and b ∈ N(a), i.e. b −→∞ a

and a −→∞ b. Thus, a ∈ Σ(b) and b ∈ Σ(a) whence Σ(a) ⊆ Σ(b) and

Σ(b) ⊆ Σ(a), so aσb.

We give the new proof for the known result concerning completely semi-

prime ideals of a semigroup, without Zorn’s Lemma.

Corollary 4.5 Let I be a completely semiprime ideal of a semigroup S and

let a ∈ S such that a /∈ I. Then there exists a completely prime ideal P of S

such that I ⊆ P and a /∈ P .

Proof. Let P = S − N(a). Then P is a completely prime ideal of S and

a /∈ P . Let x ∈ I ∩N(a). Then from Corollary 4.3 it follows that x −→∞ a,

so a ∈ Σ(x) ⊆ I (from Lemma 4.2). Thus, we obtain that a ∈ I, which is

not possible. Hence, I ∩N(a) = ∅, whence I ⊆ P .

Corollary 4.6 Every completely semiprime ideal of a semigroup S is an

intersection of completely prime ideals of S.

Proof. This follows from Corollary 4.5.

Corollary 4.7 On a semigroup S the following conditions are equivalent:

(i) S is semilattice indecomposable;

(ii) S is σ-simple;

(iii) S has no proper completely semiprime ideals;

(iv) S has no proper completely prime ideals.
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Proof. It follows from Theorem 4.1 and Corollary 4.6.

As we have seen, every completely semiprime ideal of a semigroup is the

intersection of all the completely prime ideals containing it. But, this is

not true for completely semiprime left (right) ideals. For example, in the

semigroup given by

⟨a, e | a3 = a, e2 = e, ae = ea2 = e⟩,

there exists a completely semiprime left ideal which is not an intersection of

completely prime left ideals.

Based on the following theorem we give some characterizations of semi-

groups in which every completely semiprime left ideal is an intersection of

completely prime left ideals.

Theorem 4.4 The following conditions on a semigroup S are equivalent:

(i) every completely semiprime left ideal of S is an intersection of com-

pletely prime left ideals of S;

(ii) (∀a, b, c ∈ S) a
l−→
∞
c ∧ b l−→

∞
c⇒ ab

l−→
∞
c;

(iii) for every a ∈ S, {x ∈ S | x l−→
∞

a} is the least right filter of S

containing a.

Proof. (ii)⇒(iii) Let F = {x ∈ S | x l−→
∞
a}. Assume x, y ∈ S such that

xy ∈ F . Then xy
l−→
∞
a and since y

l−→ xy, then y
l−→
∞
a, so y ∈ F .

Thus, F is a right consistent subset of S.

Let x, y ∈ F . Then x
l−→
∞
a and y

l−→
∞
a, so by (ii) we obtain that

xy
l−→
∞
a. Thus xy ∈ F , so F is a subsemigroup of S. Hence, F is a right

filter of S containig a.

Let G be a right filter of S containing a. Assume y ∈ S such that y
l−→ a.

Then an = uy for some n ∈ Z+, u ∈ S, so by uy = an ∈ G it follows that

y ∈ G. By induction we show that x
l−→
∞
a implies x ∈ G, whence F ⊆ G.

Therefore, F is the smallest right filter of S containing a.

(iii)⇒(i) Let (iii) hold and let A be an arbitrary completely semiprime

left ideal of S. Let M be the intersection of all completely prime left ideals

of S containing A. Assume that a ∈M−A. From (iii) it follows that the set

F = {x ∈ S | x l−→
∞
a} is a right filter of S, so L = S − F is a completely
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prime left ideal of S. Assume that x ∈ A. If x ∈ F , i.e. if x
l−→
∞
a, then

a ∈ Λ(x) ⊆ A, which is not possible. Thus x ∈ L, so A ⊆ L, whence M ⊆ L.

But then a ∈ L and a ∈ F , which is not possible. Therefore, M = A, so A

is an intersection of completely prime left ideals.

(i)⇒(ii) Let every completely semiprime left ideal of S be an intersection

of completely prime left ideals of S. Let a, b ∈ S and let L be an arbitrary

completely prime left ideal containing Λ(ab). Then ab ∈ L whence a ∈ L or

b ∈ L, since L is completely prime. Since L also is completely semiprime,

then Λ(a) ⊆ L or Λ(b) ⊆ L, whence Λ(a)∩Λ(b) ⊆ L, so from the hypothesis

we obtain that Λ(a) ∩ Λ(b) ⊆ Λ(ab), so (ii) holds.

Exercises

1. Let C be a class of semigroups. A congruence ξ on a semigroup S is the smallest
C-congruence on S if ξ is the smallest element in the set of all C-congruences on S.
The decomposition and the factor which corresponds to the smallest C-congruence
on S we call the greatest C-decomposition and the greatest C-homomorphic image
of S, respectively.

Let V be a variety of semigroups. Prove that every semigroup has the smallest
V-congruence, i.e. the greatest V-decomposition.

2. Let A be a non-empty subset of a semigroup S. Then Σ(A) = ∪a∈AΣ(a) is the
smallest completely semiprime ideal of S which contains A.

3. If a is an element of a semigroup S, then Σ(a) = Σ(J(a)) and Σn(a) = Σn(J(a)),
for every n ∈ Z+.

4. Let a1, a2, . . . , an be elements of a semigroup S, n ∈ Z+. Then Σ(a1a2 · · · an) =
Σ(a1πa2π · · · anπ), for every permutation π of the set {1, 2, . . . , n}.
5. Let C be a σ-class of an element a of a semigroup S. Then C = Σ(a) ∩N(a).

6. If A+ is a free semigroup over an alphabet A, then:

(a) Σ(u) = {w ∈ A+ | c(u) ⊆ c(w)}, u ∈ A+;
(b) N(u) = {w ∈ A+ | c(u) ⊇ c(w)}, u ∈ A+;
(c) uσv ⇔ c(u) = c(v), u, v ∈ A+.

7. A rectangular band of semilattice indecomposable semigroups is a semilattice
indecomposable semigroup.

8. Let a1, a2, . . . , an ∈ S1, where S is a semigroup. By C(a1, a2, . . . , an) we denote
the subsemigroup of S1 which consists of the products of elements a1, a2, . . . , an in
which every element ai is notified at least once. Prove that C(a1, a2, . . . , an) is an
indecomposable subsemigroup of S1.

9. Let a and b be elements of a semigroup S. Then aσb if and only if for all
x, y ∈ S1 there exists a semilattice indecomposable subsemigroup T of S such that
xay, xby ∈ T .
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10. The following conditions on a semigroup S are equivalent:

(a) for all a, b ∈ S, from ab, ba ∈ E(S) it follows that ab = ba;
(b) every J -class of S contains at most one idempotent;
(c) S is a semilattice of semilattice indecomposable semigroups such that ev-

ery semigroup contains at most one idempotent and group ideal whenever it
contains an idempotent;

(d) S is a semilattice of semigroups such that every semigroup contains at most
one idempotent.

11. A semigroup S is separative if for all a, b ∈ S, a2 = ab and b2 = ba implies a = b,
and a2 = ba and b2 = ab implies a = b. Prove that a semigroup S is separative if
and only if S is a semilattice of cancellative semigroups.

12. The following conditions on a semigroup S are equivalent:

(a) Σ(0) = 0;
(b) S has no non-zero nilpotents;
(c) S is a subdirect product of semigroups without a divisor of zero.

13. Let S be a regular semigroup. Then σ = D# = J#, and if β is the smallest

band congruence on S, then H# ⊆ β ⊆ L# ∩ R#. If S is an inverse semigroup,

then H# ⊆ σ = R# = L# = D# = J#.
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4.2 Semilattices of σn-simple Semigroups

In Section 6.1 we proved that the relation σ is the smallest semilattice

congruence on every semigroup. In this section we will study the condi-

tions under which the relation σn is a congruence, i.e. we will consider the

semilattices of σn-simple semigroups.

Lemma 4.11 Let a, b be elements of a semigroup S. Then:

Σn(ab) ⊆ Σn(a) ∩ Σn(b).
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Proof. This follows since ab −→ x implies that a −→ x and b −→ x.

Let ϱ be an arbitrary relation on a semigroup S. Recall that the radical

R(ϱ) of a binary relation ϱ on a semigroup S is defined by:

(a, b) ∈ R(ϱ) ⇔ (∃m,n ∈ Z+) am ϱbn.

Based on the following theorem we characterize the semilattices of σn-

simple semigroups.

Theorem 4.5 Let n ∈ Z+. Then the following conditions on a semigroup

S are equivalent:

(i) S is a semilattice of σn-simple semigroups;

(ii) S is a band of σn-simple semigroups;

(iii) every σn-class of S is a subsemigroup;

(iv) (∀a ∈ S) a σna
2;

(v) (∀a, b ∈ S) a −→n b⇒ a2 −→n b;

(vi) (∀a, b, c ∈ S) a −→n c ∧ b −→n c⇒ ab −→n c;

(vii) for every a ∈ S, Σn(a) is an ideal of S;

(viii) (∀a, b ∈ S) Σn(ab) = Σn(a) ∩ Σn(b);

(ix) for every a ∈ S, N(a) = {x ∈ S | x −→n a};
(x) −→n is a quasi-order on S;

(xi) σn =−→n ∩(−→n)−1 on S;

(xii) n ⊆ σn;

(xiii) l n ⊆ σn;

(xiv) R(σn) = σn.

Proof. (i)⇒(ii) and (iii)⇒(iv) This follows immediately.

(ii)⇒(i) If S is a band of σn-simple semigroups, then by Corollary 3.7

S is a semilattice of semigroups which are rectangular bands of σn-simple

semigroups. Since a rectangular band of σn-simple semigroups is σn-simple,

we obtain (i).

(iv)⇔(v) This follows from the definition of the relation σn.

(v)⇒(x) Let a, b ∈ S and let a −→n+1 b. Then a −→ x −→n b for

some x ∈ S. From (v) it follows that xk −→n b for every k ∈ Z+. On the

other hand, there exists k ∈ Z+ such that xk ∈ SaS. Let y ∈ S such that

xk −→ y −→n−1 b, if n ≥ 2, and y = b, if n = 1. Then there exists m ∈ Z+
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such that ym ∈ SxkS ⊆ SaS. Thus a −→ y, whence a −→n b. Therefore

−→n=−→n+1, whence −→n=−→∞, so −→n is transitive.

(x)⇒(vii) If −→n is a transitive relation, then −→n=−→∞, whence

Σn(a) = Σ(a), for every a ∈ S, so Σn(a) is an ideal of S.

(vii)⇒(viii) If Σn(a) is an ideal for every a ∈ S, then Σn(a) = Σ(a) for

every a ∈ S, so by Theorem 4.2 it follows that (viii) holds.

(viii)⇒(i) From (viii) it follows that the relation σn is a semilattice con-

gruence on S, so S is a semilattice Y of semigroups Sα, α ∈ Y , where Sα
are σn-classes of S. Let α ∈ Y and let a, b ∈ Sα. Then aσnb, so a −→n b in

S. According to Lemma 4.9 we obtain that a −→n b in Sα, whence Sα is a

σn-simple semigroup.

(i)⇒(v) Let S be a semilattice Y of σn-simple semigroups Sα, α ∈ Y .

Let a, b ∈ S such that a −→n b. Then a ∈ Sα and b ∈ Sβ for some α, β ∈ Y ,

and from Lemma 4.9 it follows that α ≥ β. Now we have that a2b ∈ Sβ
whence a2b −→n b in Sβ , so a

2 −→n b in S.

(viii)⇒(vi) This follows immediately.

(vi)⇒(viii) From (vi) it follows that Σn(a) ∩ Σn(b) ⊆ Σn(ab) for all

a, b ∈ S, so by Lemma 4.11 we obtain that (viii) holds.

(x)⇒(ix) If −→n is a transitive relation, then −→n=−→∞, so by Corol-

lary 4.3 we obtain (ix).

(ix)⇒(vi) Let a, b, c ∈ S such that a −→n c and b −→n c. Then a, b ∈
N(c) and since N(c) is a subsemigroup of S, then ab ∈ N(c), i.e. ab −→n c.

(viii)⇒(iii) Let A be a σn-class of S and let a, b ∈ A. Then aσnb so

Σn(a) = Σn(b). From this and from (viii) it follows that Σn(ab) = Σn(a) ∩
Σn(b) = Σn(a). Thus abσna, i.e. ab ∈ A, so (iii) holds.

(x)⇒(xi). Since (x)⇔(vii), then we obtain that σn = σ and −→n=−→∞,

so by Lemma 4.6 we obtain (xi).

(xi)⇒(iv) This follows immediately.

(x)⇒(xii) Let S be a semilattice Y of σn-simple semigroups Sα, α ∈ Y .

Assume a, b ∈ S such that a nb. Based on Lemma 4.9 we have that

a, b ∈ Sα, for some α ∈ Y , whence (a, b) ∈ σn. Therefore, (xii) holds.

(xii)⇒(xiii) This is an immediate consequence of the inclusion l n ⊆
n.

(xiii)⇒(iv) Since a l na2, for each a ∈ S, then (xiii) yields (iv).

(x)⇒(xiv) The inclusion σn ⊆ R(σn) always holds, so it we have to

prove the opposite inclusion. Assume a, b ∈ S such that (a, b) ∈ R(σn).
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Then ak σn b
m, for some k,m ∈ Z+, and since σn is a semilattice congruence

on S (based on the hypothesis) we have a σn a
k σn b

m σn b. Thus (a, b) ∈ σn,

which was to be proved.

(xiv)⇒(iv) This follows from (v) and the fact that (a, a2) ∈ R(ϱ), for

every reflexive relation ϱ on S.

If S is a finite semigroup, then there exists n ∈ Z+, n ≤ |S|, such that

−→∞=−→n, so from Theorem 4.5 (iii) we obtain

Corollary 4.8 Let S be a finite semigroup. Then there exists n ∈ Z+, n ≤
|S|, such that S is a semilattice of σn-simple semigroups.

Now we give the following important examples of semilattices of σ2-

simple semigroups.

Example 4.1 LetX be a finite set and let Tr(X) be the full transformation

semigroup on X. If |X| = 2, then Tr(X) is a union of groups (and there-

fore, Tr(X) is a semilattice of completely simple semigroups). If |X| > 2,

then based on the results of R.Croisot ([1], Example 3) Tr(X) is not a union

of simple semigroups (and therefore, Tr(X) is not a semilattice of simple

semigroups). Let V(X) = Tr(X) − S(X), where S(X) is the group of per-

mutations on X. Then V(X) is a completely prime ideal of Tr(X). As M.

S. Putcha ([5], Example 4.6) mentioned, there exists a fixed a ∈ V(X) such

that for all b ∈ V(X) a −→ b −→ a. From this we conclude that V(X) is a

σ2-simple semigroup. Therefore, Tr(X) is a chain of a σ2-simple semigroup

and of a group.

Example 4.2 Let X be an infinite set and let Tr(X) be the full transforma-

tion semigroup on X. As M.S.Putcha ([5], Example 4.6) mentioned, there

exists a fixed a ∈ Tr(X) such that for all b ∈ Tr(X) a −→ b −→ a. From

this it follows that Tr(X) is a σ2-simple semigroup.

Next we prove two auxiliary lemmas.

Lemma 4.12 Let a be a completely π-regular element of a semigroup S.

Then for every b ∈ S and every n ∈ Z+,

a0 −→n b ⇒ a −→n b.

In other words, for every n ∈ Z+,

Σn(a
0) ⊆ Σn(a).
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Proof. Let m ∈ Z+ such that am ∈ Ga0 , and let (am)−1 be the inverse

of am in the group Ga0 . Then a0 = (am(am)−1)2 ∈ SaS, which yields

Sa0S ⊆ SaS, and hence

Σ1(a
0) =

√
Sa0S ⊆

√
SaS = Σ1(a).

Now, by induction we easily verify that Σn(a
0) ⊆ Σn(a), for every n ∈ Z+.

Lemma 4.13 Let b be a completely π-regular element of a semigroup S.

Then for every a ∈ S and every n ∈ Z+,

a −→n b ⇔ a −→n b0.

Proof. Let m ∈ Z+ such that bm ∈ Gb0 . Consider an arbitrary a ∈ S.

Suppose that a −→ b. Then bk ∈ SaS, for some k ∈ Z+, and hence bmk ∈
Gb0 ∩ SaS. Let (bmk)−1 be the inverse of bmk in the group Gb0 . Now

b0 = (bmk(bmk)−1)2 ∈ SaS so we obtain that a | b0, which is equivalent to

a −→ b0, because b0 is an idempotent. Conversely, let a −→ b0, i.e. a | b0.
Then bm = b0bm ∈ SaSbm ⊆ SaS, and hence a −→ b.

Therefore, we have proved that our assertion holds for n = 1. By induc-

tion we easily verify that this assertion holds for every n ∈ Z+.

Note that if b is a completely π-regular element then we have that a −→
b0 if and only if a | b0. Therefore, in such a case we obtain

a −→ b if and only if a | b0.

Now we are prepared for the next result.

Theorem 4.6 Let S be a completely π-regular semigroup and n ∈ Z+. Then

the following conditions are equivalent:

(i) S is a semilattice of σn-simple semigroups;

(ii) (∀a ∈ S) aσna
0;

(iii) (∀a, b ∈ S) a −→n b⇒ a0 −→n b;

(iv) (∀a ∈ S)(∀f ∈ E(S)) a −→n f ⇒ a2 −→n f ;

(v) (∀a, b ∈ S)(∀g ∈ E(S)) a −→n g &b −→n g ⇒ ab −→n g;

(vi) (∀e, f ∈ E(S))(∀c ∈ S) e −→n c &f −→n c⇒ ef −→n c;

(vii) (∀e, f, g ∈ E(S)) e −→n g &f −→n g ⇒ ef −→n g.
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If n ≥ 2, then any of the above conditions are equivalent to

(viii) (∀e, f, g ∈ E(S)) e −→n f &f −→n g ⇒ e −→n g.

Proof. (i)⇒(ii) For an arbitrary a ∈ S, a0 −→ a and a | a0, which implies

a −→ a0, and if (i) holds, then based on (xi) of Theorem 4.5 it follows that

aσna
0.

(ii)⇒(iii) The condition (ii) is equivalent to Σn(a) = Σn(a
0), whereas

(iii) is equivalent to Σn(a) ⊆ Σn(a
0), so it is evident that (ii) implies (iii).

(iii)⇒(i) Let a, b ∈ S such that a −→n b. Based on the assumption (iii)

a0 −→n b, and since (a2)0 = a0, we have that (a2)0 −→n b, so based on

Lemma 4.12, a2 −→n b. Hence, from Theorem 4.5, S is a semilattice of

σn-simple semigroups.

(i)⇒(iv) This is an immediate consequence of Theorem 4.5.

(iv)⇒(i) Consider a, b ∈ S such that a −→n b. Based on Lemma 4.13,

a −→n b implies a −→n b0, and from (iv), a −→n b0 implies a2 −→n b0, so

again by Lemma 4.13, a2 −→n b. From this and from Theorem 4.5 it follows

that (i) holds.

(i)⇒(vii) This is an immediate consequence of Theorem 4.5.

(vii)⇒(v) Let a, b ∈ S and g ∈ E(S) such that a −→n g and b −→n g.

This means that a −→ x −→n−1 g and b −→ y −→n−1 g, for some x, y ∈ S.

Based on the hypothesis, S is a completely π-regular semigroup, so x ∈ Te0
and f ∈ Tf0 , for some e0, f0 ∈ E(S), and by Lemma 4.13, we have that

a −→ x is equivalent to a | e0 and b −→ y is equivalent to b | f0. But, a | e0
and b | f0 yield e0 = uav and f0 = pbq, for some u, v, p, q ∈ S. Set e = (vua)2

and f = (bqp)2. Then e, f ∈ E(S) and

e0 = e30 = ua(vua)2v = uaev,

so we have that e | e0, and similarly, f | f0. Again from Lemma 4.13, e | e0 is

equivalent to e −→ x and f | f0 is equivalent to f −→ y, which yields

e −→ x −→n−1 g and f −→ y −→n−1 g,

i.e. e −→n g and f −→n g. Now, based on the assumption (vii), we obtain

that ef −→n g, i.e. ef −→ z −→n−1 g, for some z ∈ S, and hence

zk ∈ SefS = S(vua)2(bqp)2S ⊆ SabS,

which means that ab −→ z. Therefore, ab −→ z −→n−1 g, so ab −→n g.

Hence, we have proved that (v) holds.
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(v)⇒(iv) This implication is obvious.

(vi)⇒(vii) This implication is obvious.

(vii)⇒(vi) Let e, f ∈ E(S) and c ∈ S such that e −→n c and f −→n c.

Based on Lemma 4.13, e −→n c0 and f −→n c0, and (vii) yields ef −→n c0,

so again from Lemma 4.13 we obtain ef −→n c, which was to be proved.

Further, let n ≥ 2.

(i)⇒(viii) This is an immediate consequence of Theorem 4.5.

(viii)⇒(i) According to Theorem 4.5, in order to prove (i), it suffices to

prove that −→n is a transitive relation, and we will consider a, b, c ∈ S such

that a −→n b and b −→n c.

First, according to Lemma 4.13 we have that a −→n b0 and b −→n c0.

Furthermore, a −→n b0 yields a −→ y −→n−1 b0, for some y ∈ S, and since

y ∈ Te0 , for some e0 ∈ E(S), from Lemma 4.13 it follows that a −→ y if

and only if a | e0, i.e. e0 = uav, for some u, v ∈ S. If we set e = (vua)2,

then e ∈ E(S) and e0 = uaev so e | e0. But, based on Lemma 4.13, e | e0 is

equivalent to e −→ y, so we have that e −→ y −→n−1 b0, i.e. e −→n b0.

On the other hand, b −→n c0 gives b −→ z −→n−1 c0, for some z ∈ S,

and z ∈ Th0 , for some h0 ∈ E(S). Now, based on Lemma 4.13, b −→ z if

and only if b |h0, i.e. h0 = pbq, for some p, q ∈ S. Set h = (bqp)2. Then

h ∈ E(S) and h |h0, which is equivalent to h −→ z, again from Lemma 4.13.

Thus, h −→ z −→n−1 c0, which means h −→n c0.

Finally we have b0 −→ b, and also b |h, so b −→ h. Hence, b0 −→2 h, so

b0 −→n h, because n ≥ 2. Therefore,

e −→n b0, b0 −→n h and h −→n c0,

so based on the assumption (viii) we conclude that e −→n c0.

Now, in order to prove that a −→n c, we start with the relation e −→n

c0, and from Lemma 4.13 we obtain that e −→n c. But this means that

e −→ t −→n−1 c, for some t ∈ S. Furthermore, e −→ t implies

tk ∈ SeS = S(vua)2S ⊆ SaS,

for some k ∈ Z+, so a −→ t. Therefore, a −→ t −→n−1 c, and we have that

a −→n c, which was to be proved.

Remark 4.3 The requirement n ≥ 2 is crucial for the equivalence of (i) and

(viii) in the previous theorem. Namely, every completely π-regular semi-

group S satisfies the condition

(∀e, f, g ∈ E(S)) e −→ f &f −→ g ⇒ e −→ g,



4.3. SEMILATTICES OF λ-SIMPLE SEMIGROUPS 139

because it is clearly equivalent to the condition

(∀e, f, g ∈ E(S)) e | f &f | g ⇒ e | g,

and the division relation is transitive. But, S is not necessarily a semilattice

of σ1-simple semigroups. For example, the five-element Brandt semigroup

B2 = ⟨a, b | a2 = b2 = 0, aba = a, bab = b⟩

is completely π-regular, and hence satisfies the above mentioned conditions.

But S is not a semilattice of σ1-simple (Archimedean) semigroups.

Exercises

1. Let S be a completely π-regular semigroup and n ∈ Z+. Then the following
conditions are equivalent:

(a) S is a semilattice of σn-simple semigroups;
(b) for every e ∈ E(S), Σn(e) is an ideal of S;
(c) (∀e, f ∈ E(S)) Σn(ef) = Σn(e) ∩ Σn(f);
(d) for every e ∈ E(S), N(e) = {x ∈ S |x −→n e}.
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4.3 Semilattices of λ-simple Semigroups

In this section we consider semilattices of λ, λn, τ - and τn-simple semi-

groups. The results obtained here are generalizations of well known results

concerning unions and semilattices of left simple semigroups and semilattices

of groups and of results concerning semilattices of left and t-Archimedean

semigroups.

First we will prove the following lemma:

Lemma 4.14Let S be a semilatticeY of semigroups Sα, α∈Y and let n∈Z+.

(a) Let α ∈ Y with a, b ∈ Sα. If a
l−→ b in S, then a

l−→ b in Sα.
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(b) Let a ∈ Sα, b ∈ Sβ , α, β ∈ Y . If a
l−→ b, then α ≥ β.

(c) Let α ∈ Y with a, b ∈ Sα. If a
l−→
n
b in S, then a

l−→
n
b in Sα.

Proof. (a) Let a
l−→ b in S, i.e. let bm = ua for some m ∈ Z+, u ∈ S. If

u ∈ Sβ for some β ∈ Y , then αβ = α whence

bm+1 = (bu)a ∈ Sαβa = Sαa.

Thus a
l−→ b in Sα.

(b) This follows from Lemma 4.9 (i), since
l−→⊆−→.

(c) This can be proved in a way similar as Lemma 4.9 (ii).

Theorem 4.7 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of λ-simple semigroups;

(ii) (∀a, b ∈ S) a
l−→
∞
ab;

(iii) for every a ∈ S, Λ(a) is an ideal;

(iv) every completely semiprime left ideal of S is two-sided;

(v) (∀a, b ∈ S) Λ(ab) = Λ(a) ∩ Λ(b);

(vi) for every a ∈ S, N(a) = {x ∈ S | x l−→
∞
a};

(vii) (∀a, b ∈ S) a −→ ∞b⇒ a
l−→ ∞b;

(viii) (∀a, b ∈ S) a ∞b⇒ a
l−→ ∞b.

Proof. (i)⇒(ii) Let S be a semilattice Y of λ-simple semigroups Sα, α ∈ Y ,

and let a, b ∈ S. Then ab, ba ∈ Sα for some α ∈ Y , so ba
l−→
∞
ab in Sα,

since Sα is λ-simple. Thus ba
l−→
∞
ab in S, and since a

l−→ ba in S, then

a
l−→
∞
ab in S. Hence, (ii) holds.

(ii)⇒(iii) Let a ∈ S, let x ∈ Λ(a) and let b ∈ S. Then from (ii) we obtain

a
l−→
∞
x

l−→
∞
xb,

whence xb ∈ Λ(a). Thus, Λ(a) is a right ideal of S, so from Lemma 4.4 it

follows that Λ(a) is an ideal of S.

(iii)⇒(iv) This follows immediately.

(iv)⇒(v) This follows from Theorem 4.2, since Λ(a) = Σ(a) for all a ∈ S.

(v)⇒(i) From (v) it follows that S is a semilattice Y of semigroups

Sα, α ∈ Y , such that Sα are λ-classes of S. Assume α ∈ Y and a, b ∈ Sα.
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Then a λb, so a
l−→
∞
b in S. According to Lemma 4.14 we obtain that

a
l−→
∞
b in Sα. Thus, Sα is a λ-simple semigroup.

(v)⇒(vi) Let (v) hold, let a ∈ S and let A = {x ∈ S|x l−→
∞
a}. Based on

(v) and Theorem 4.4 we obtain that A is the smallest right filter of S con-

taining a, so A ⊆ N(a). Let x, y ∈ S be such that xy ∈ A, i.e. such that

xy
l−→
∞
a. Since from (v) we obtain that x

l−→
∞
xy, then x

l−→
∞
a, whence

x ∈ A. Therefore, A is left consistent, i.e. A is a filter, whence A = N(a).

(vi)⇒(ii) Let (vi) hold and let a, b ∈ S. Since {x ∈ S |x l−→
∞
ab} =

N(ab) is a filter and ab ∈ N(ab), then a ∈ N(ab), i.e. a
l−→
∞
ab. Hence,

(ii) holds.

(i)⇒(vii) Let S be a semilattice Y of λ-simple semigroups Sα, α ∈ Y .

Assume a, b ∈ S such that a −→ ∞b. Then based on Lemma 4.9 (i), for

n = 1, a ∈ Sα, b ∈ Sβ , for some α, β ∈ Y and β ≤ α, whence ba, b ∈ Sβ . So

ba
l−→ ∞b. Since a

l−→ ba
l−→ ∞b, we then have that a

l−→ ∞b.

(vii)⇒(i) Let (vii) hold. According to Theorem 4.2 every semigroup S

is a semilattice Y of σ-simple semigroups Sα, α ∈ Y . Then for a, b ∈ Sα,

α ∈ Y , from Theorem 4.1 we have that a ∞b, and from Lemma 4.9 (ii),

for n = 1, a ∞b in Sα, α ∈ Y , whence a −→ ∞b in Sα, α ∈ Y . So based on

the hypothesis a
l−→ ∞b and Lemma 4.14 (a) a

l−→ ∞b in Sα, α ∈ Y , since

a, b ∈ Sα. Thus a
l−→ ∞b in Sα, α ∈ Y , for all a, b ∈ Sα and from Lemma

4.6 (iv) Sα, α ∈ Y is a λ-simple semigroup. Therefore, S is a semilattice of

λ-simple semigroups.

(i)⇒(viii) Let S be a semilattice Y of λ-simple semigroups Sα, α ∈ Y .

Assume a, b ∈ S such that a ∞b. Then based on Lemma 4.9 (ii), for

n = 1, a, b ∈ Sα and a ∞b in Sα, for some α ∈ Y , whence aλb and based

on Lemma 4.6 (iv) a
l−→
∞
b.

(viii)⇒(i) Let (viii) hold. Since every semigroup S is a semilattice Y

of σ-simple semigroups Sα, α ∈ Y , then for a, b ∈ Sα, α ∈ Y , based on

Theorem 4.1 we have that a ∞b, whence a
l−→ ∞b and a(

l−→ ∞)−1b in

Sα. Thus a
l−→ ∞ ∩ (

l−→ ∞)−1b and based on Lemma 4.6 (iv) Sα is a

λ-simple semigroup.

Theorem 4.8 Let n ∈ Z+. Then the following conditions on a semigroup

S are equivalent:

(i)
l−→ n is a quasi-order on S;
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(ii) (∀a ∈ S) a λn a
2;

(iii) (∀a, b ∈ S) a
l−→ nb⇒ a2

l−→ nb;

(iv) for all a ∈ S, Λn(a) is a left ideal of S.

Proof. (ii)⇔(iii) This follows immediately.

(iii)⇒(i) Let a
l−→ n+1b, i.e. let a

l−→ x
l−→ nb for some x ∈ S. From

(iii) it follows that xk
l−→ nb for all k ∈ Z+. Let k ∈ Z+ such that xk ∈ Sa.

Let y ∈ S be such that xk
l−→ y

l−→ n−1b, if n ≥ 2, or y = b, if n = 1. Then

there exists m ∈ Z+ such that ym ∈ Sxk ⊆ Sa. Thus a
l−→ y, so a

l−→ nb.

Therefore,
l−→ n =

l−→ n+1, so
l−→ n =

l−→ ∞, i.e.
l−→ n is a transitive

relation.

(i)⇒(iv) This follows from Lemma 4.4, since in this case
l−→ ∞ =

l−→ n.

(iv)⇒(i) Let Λn(a) be a left ideal for every a ∈ S. Then based on Lemma

4.4 we obtain that Λn(a) = Λ(a) for all a ∈ S, whence
l−→ n =

l−→ ∞, so (i)

holds.

Theorem 4.9 Let n ∈ Z+. Then the following conditions on a semigroup

S are equivalent:

(i) S is a semilattice of λn-simple semigroups;

(ii) a λn a
2 for all a ∈ S and a

l−→ nab for all a, b ∈ S;

(iii) for all a ∈ S, Λn(a) is an ideal;

(iv) (∀a, b ∈ S) Λn(ab) = Λn(a) ∩ Λn(b);

(v) for all a ∈ S, N(a) = {x ∈ S | x l−→ na}.

Proof. (i)⇒(ii) Let S be a semilattice Y of λn-simple semigroups Sα, α ∈
Y . Assume a, b ∈ S such that a

l−→ nb, i.e. a ∈ Sα, b ∈ Sβ , α, β ∈ Y .

Then by Lemma 4.14 we obtain that α ≥ β, so ba2 ∈ Sαβ = Sβ . Since Sβ is

λn-simple, then ba2
l−→ nb in Sβ , whence ba

2 l−→ nb in S, so a2
l−→ nb in

S. Thus, by Theorem 4.8 we obtain that aλna
2 for all a ∈ S.

Assume a, b ∈ S, i.e. a ∈ Sα, b ∈ Sβ for some α, β ∈ Y . Then ab, ba ∈
Sαβ , and since Sαβ is a λn-simple semigroup, then ba

l−→ nab in Sαβ , whence

ba
l−→ nab in S, so a

l−→ nab in S. Thus, (ii) holds.

(ii)⇒(iii) Let (ii) hold. Based on Theorem 4.8 we obtain that Λn(a) is a

left ideal of S, so Λn(a) = Λ(a), for all a ∈ S. Now, according to Theorem

4.7 we obtain that Λn(a) = Λ(a) is an ideal of S, for all a ∈ S.
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(iii)⇒(iv) If for all a ∈ S, Λn(a) is an ideal of S, then from Lemma 4.4 it

follows that Λn(a) = Λ(a) for all a ∈ S, so based on Theorem 4.7 we obtain

that (iv) holds.

(iv)⇒(i) Let (iv) hold. Then S is a semilattice Y of semigroups Sα,

α ∈ Y , such that Sα are λn-classes of S. Assume α ∈ Y and a, b ∈ Sα. Then

aλnb, whence a
l−→ nb in S, so from Lemma 4.14 we obtain that a

l−→ nb

in Sα. Thus, Sα is a λn-simple semigroup, so (i) holds.

(iii)⇒(v) From (iii) it follows that Λn(a) = Λ(a) for all a ∈ S, so
l−→

n =
l−→ ∞. Thus, according to Theorem 4.7 we obtain that (v) holds.

(v)⇒(iv) Let (v) hold. Then for a, b, x ∈ S we obtain that

x ∈ Λn(a) ∩ Λn(b) ⇔ a, b ∈ N(x) ⇔ ab ∈ N(x) ⇔ x ∈ Λn(ab).

Thus, (iv) holds.

Problem 4.1 For n = 1, in (ii) of Theorem 4.9 the condition aλna
2 can be

omitted. We can state a problem: Can this hypothesis also be omitted for

n ≥ 2?

Theorem 4.10 The following conditions on a semigroup S are equivalent:

(i) λ is a matrix congruence on S;

(ii) λ is a right zero band congruence on S;

(iii) (∀a, b, c ∈ S) abc
l−→ ∞ac;

(iv) (∀a, b ∈ S) aba
l−→ ∞a;

(v) (∀a, b ∈ S) ab
l−→ ∞b;

(vi) S is a disjoint union of all its principal left radicals;

(vii)
l−→ ∞ is a symmetric relation on S.

Proof. (i)⇒(iii), (iii)⇒(iv) and (ii)⇒(i) This follows immediately.

(iv)⇒(v) For all a, b ∈ S, ab
l−→ bab, so from (iv), ab

l−→ ∞b.

(v)⇒(ii) Let a, b ∈ S such that aλb, and x ∈ S. By (v), Λ(ax) = Λ(x) =

Λ(bx) and Λ(xa) = Λ(a) = Λ(b) = Λ(xb). Therefore, λ is a congruence.

Clearly, it is a right zero band congruence.

(ii)⇒(vi) Let S be a right zero band B of semigroups Si, i ∈ B, which

are λ-classes of S. Assume a ∈ S. Then a ∈ Si, for some i ∈ B, and since Si
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is a completely semiprime left ideal of S (Lemma 4.4), then Λ(a) ⊆ Si. On

the other hand, if b ∈ Si, then bλa, so b ∈ Λ(b) = Λ(a), whence Si ⊆ Λ(a).

Therefore, Λ(a) = Si, so (vi) holds.

(vi)⇒(vii) Let a, b ∈ S such that a
l−→ ∞b. Then b ∈ Λ(a), whence

Λ(a) ∩ Λ(b) ̸= ∅, so from (vi), Λ(a) = Λ(b). Therefore, b
l−→ ∞a.

(vii)⇒(v) For all a, b ∈ S, b
l−→ ab, so from (vii), ab

l−→ ∞b.

Corollary 4.9 The following conditions on a semigroup S are equivalent:

(i) λn is a matrix congruence on S;

(ii) λn is a right zero band congruence on S;

(iii) (∀a, b ∈ S) Λn(a) ⊆ Λn(aba);

(iv) (∀a, b ∈ S) Λn(b) ⊆ Λn(ab);

(v)
l−→ n is a symmetric relation on S.

Based on the well-known result of A. H. Clifford, any band of λ-simple

semigroups is a semillatice of matrices of λ-simple semigroups. These semi-

groups will be characterized by the following theorem.

Theorem 4.11 A semigroup S is a semilattice of matrices of λ-simple semi-

groups if and only if

a −→ ∞b ⇒ ab
l−→ ∞b,

for every a, b ∈ S.

Proof. Let S be a semilattice Y of matrices of λ-simple semigroups Sα,

α ∈ Y . Assume that a −→ ∞b, for a ∈ Sα, b ∈ Sβ , α, β ∈ Y . Then based on

Lemma 4.9, β ≤ α, whence b, ba ∈ Sβ and based on Theorem 4.10 we have

that ba · b l−→ ∞b, i.e. ab
l−→ ∞b.

Conversely, since every semigroup S is a semilattice Y of semilattice

indecomposable semigroups Sα, α ∈ Y , then for a, b ∈ Sα, α ∈ Y we have

that aσb (where σ corresponds to the greatest semilattice congruence on S),

whence from Lemma 4.6, a −→ ∞b. Based on Lemma 4.9 we have that

a −→ ∞b in Sα, α ∈ Y . From this and from the hypothesis it follows that

ab
l−→ ∞b. From Lemma 4.14 we have that ab

l−→ ∞b in Sα, α ∈ Y and

based Theorem 4.10, Sα is a matrix of λ-simple semigroups, for all α ∈ Y .
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If a is an element of a semigroup S and if n ∈ Z+, then we will use the

following notations:

Q(a) = Λ(a) ∩ P (a), Qn(a) = Λn(a) ∩ Pn(a).

Using the previous theorems, we obtain the following results:

Corollary 4.10 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of τ -simple semigroups;

(ii) (∀a, b ∈ S) a
l−→ ∞ab ∧ b r−→ ∞ab;

(iii) for all a ∈ S, Q(a) is an ideal;

(iv) (∀a, b ∈ S) Q(ab) = Q(a) ∩Q(b);

(v) L ∩ R is an ideal, for every completely semiprime left ideal L and for

every completely semiprime right ideal R of S;

(vi) for all a ∈ S, N(a) = {x ∈ S | x l−→ ∞a ∧ x r−→ ∞a}.

Proof. This follows from Theorem 4.7 and its dual.

Corollary 4.11 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of τn-simple semigroups;

(ii) for all a ∈ S, Qn(a) is an ideal;

(iii) (∀a, b ∈ S) Qn(ab) = Qn(a) ∩Qn(b);
(iv) aτna

2 for all a ∈ S and

a
l−→ nab ∧ b r−→ nab,

for all a, b ∈ S;

(v) for all a ∈ S, N(a) = {x ∈ S | x l−→ na ∧ x r−→ na}.

Proof. This follows from Theorem 4.9 and its dual.

Exercises

1. The relation τ# on a semigroup S is the smallest band congruence on S.
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4.4 Chains of σ-simple Semigroups

Here we will give some characterizations of chains of σ-simple semigroups

and the related consequences to chains of σn-simple and λ-simple semigroups.

Lemma 4.15 Let a, b be elements of a semigroup S. Then:

N(a) ∪N(b) ⊆ N(ab).

Lemma 4.16 The following conditions for elements a, b of a semigroup S

are equivalent:

(i) N(ab) = N(a) ∪N(b);

(ii) N(b) ⊆ N(a) or N(a) ⊆ N(b);

(iii) N(ab) = N(a) or N(ab) = N(b).

Proof. (i)⇒(ii) From ab ∈ N(ab) = N(a) ∪N(b) it follows that ab ∈ N(a)

or ab ∈ N(b). If ab ∈ N(a), then a, b ∈ N(a), since N(a) is a filter, i.e.

b ∈ N(a), whence N(b) ⊆ N(a). Similarly we show that from ab ∈ N(b) it

follows that N(a) ⊆ N(b).

(ii)⇒(iii) Assume that N(a) ⊆ N(b). Then a, b ∈ N(b) so ab ∈ N(b),

since N(b) is a subsemigroup. Thus N(ab) ⊆ N(b). On the other hand,

since N(ab) is a filter, then a, b ∈ N(ab), i.e. b ∈ N(ab), so N(b) ⊆ N(ab).

Therefore, N(ab) = N(b). In a similar way we prove that from N(b) ⊆ N(a)

it follows that N(ab) = N(a).

(iii)⇒(i) From (iii) it follows that N(ab) ⊆ N(a) ∪ N(b), so based on

Lemma 4.15 we obtain (i).

Lemma 4.17 The union of every nonempty family of consistent subsets of

a semigroup S is a consistent subset of S.

Theorem 4.12 The following conditions on a semigroup S are equivalent:

(i) ΣS is a chain;

(ii) S is a chain of σ-simple semigroups;

(iii) the partially ordered set of all completely prime ideals of S is a chain;

(iv) every completely semiprime ideal of S is completely prime;

(v) principal radicals of S are completely prime;
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(vi) the union of every nonempty family of filters of S is a filter of S;

(vii) (∀a, b ∈ S) ab−→∞a ∨ ab−→∞b;
(viii) −→∞ ∪ (−→∞)−1 is the universal relation on S.

Proof. (i)⇔(ii) This follows immediately.

(i)⇒(vi) Let ΣS be a chain, let Fi, i ∈ I, be a family of filters of S

and let F be the union of this family. From Lemma 4.17 it follows that it

is sufficient to prove that F is a subsemigroup of S. Let a, b ∈ F , i.e. let

a ∈ Fi, b ∈ Fj for some i, j ∈ I. Since ΣS is a chain, then abσa or abσb, so

from Corollary 4.3 and Lemma 4.16 it follows that N(ab) = N(a) ∪ N(b).

Since N(a) ⊆ Fi and N(b) ⊆ Fj , then

ab ∈ N(ab) = N(a) ∪N(b) ⊆ Fi ∪ Fj ⊆ F.

Thus, F is a subsemigroup.

(vi)⇒(vii) Let the union of every nonempty family of filters of S be a

filter of S. Then N(a)∪N(b) is a filter for every a, b ∈ S. Thus N(a)∪N(b) is

a subsemigroup of S, whence ab ∈ N(a)∪N(b), i.e. ab ∈ N(a) or ab ∈ N(b),

so based on Corollary 4.3 we obtain (vii).

(vii)⇒(viii) This follows from the fact that a −→ ab and b −→ ab.

(viii)⇒(i) Let a, b ∈ S. Then from (viii) it follows that b ∈ Σ(a) or

a ∈ Σ(b), whence Σ(b) ⊆ Σ(a) or Σ(a) ⊆ Σ(b). Thus, ΣS is a chain.

(i)⇒(iii) Let A and B be completely semiprime ideals of S. Assume that

A−B ̸= ∅ and B−A ̸= ∅, i.e. assume that a ∈ A−B and b ∈ B−A. Then

Σ(a) ⊆ A and Σ(b) ⊆ B, so from (i) we obtain that Σ(a) ⊆ Σ(b) ⊆ B or

Σ(b) ⊆ Σ(b) ⊆ A, whence a ∈ B or b ∈ A, which is a contradiction according

to the hypothesis. Thus, A − B = ∅ or B − A = ∅, i.e. A ⊆ B or B ⊆ A.

Therefore, (iii) holds.

(iii)⇒(viii) Assume a, b ∈ S. Let A = S−N(a) and B = S−N(b). Based

on Lemma 1.21, A and B are completely prime ideals of S, so based on (iii),

A ⊆ B or B ⊆ A, whence N(b) ⊆ N(a) or N(a) ⊆ N(b), so according to

Corollary 4.3, b−→∞a or a−→∞b. Therefore, (viii) holds.
(vii)⇒(iv) Let A be a completely semiprime ideal of S. Assume a, b ∈ S

such that ab ∈ A. Then Σ(ab) ⊆ A, so from (vii) we obtain that a ∈ Σ(ab) ⊆
A or b ∈ Σ(ab) ⊆ A. Hence, A is completely prime.

(iv)⇒(v) This follows immediately.

(v)⇒(vii) If a, b ∈ S, then Σ(ab) is completely prime, whence a ∈ Σ(ab)

or b ∈ Σ(ab), so (vii) holds.
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Corollary 4.12 Let n ∈ Z+. Then the following conditions on a semigroup

S are equivalent:

(i) S is a chain of σn-simple semigroups;

(ii) for every a ∈ S, Σn(a) is a completely prime ideal of S;

(iii) S is a semilattice of σn-simple semigroups and for every a ∈ S, Σn(a)

is a completely prime subset of S;

(iv) S is a semilattice of σn-simple semigroups and ab−→na or ab−→nb for

all a, b ∈ S;

(v) S is a semilattice of σn-simple semigroups and b−→na or a−→nb for

all a, b ∈ S.

Proof. (i)⇒(ii) Based on the hypothesis and Theorem 4.5 we obtain that

Σn(a) is an ideal of S, and based on Theorem 4.12 we obtain that Σn(a) is

completely prime, for all a ∈ S.

(ii)⇒(iii) This follows from Theorem 4.5.

(iii)⇒(iv) Assume a, b ∈ S. Since Σn(ab) is completely prime and ab ∈
Σn(ab), then we obtain that a ∈ Σn(ab) or b ∈ Σn(ab), so (iv) holds.

(iv)⇒(v) This follows immediately.

(v)⇒(i) This follows from Theorem 4.12.

Problem 4.2 In [11] S. Bogdanović and M. Ćirić proved that for n = 1 the

previous theorem can be proved without the hypothesis in (iii),(iv) and (v)

that S is a semilattice of σn-simple semigroups. We can state the following

problem: Can this hypothesis also be omitted for n ≥ 2?

Corollary 4.13 The following conditions on a semigroup S are equivalent:

(i) S is a chain of λ-simple semigroups;

(ii) principal left radicals of S are completely prime ideals of S;

(iii) S is a semilattice of λ-simple semigroups and ab
l−→ ∞a or ab

l−→ ∞b

for all a, b ∈ S;

(iv) S is a semilattice of λ-simple semigroups and b
l−→ ∞a or a

l−→ ∞b

for all a, b ∈ S.

Proof. It follows from Theorems 4.7 and 4.12.
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The similar characterizations we can obtain for chains of λn-, τ - and

τn-simple semigroups.
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[12], [13], [15]; T. Tamura and N. Kimura [2]; M. Yamada [1].

4.5 Semilattices of σ̂n-simple Semigroups

Given a, b ∈ S. If a path exists from a to b in (S,−→) (resp. a path

between a and b in (S, ) ), then paths exist from a to b (resp. between a

and b) of minimal length. They will be called the minimal paths from a to

b (resp. between a and b). Let Sn and Ŝn, n ∈ Z+, denote respectively the

classes of all semigroups S in which the lengths of all the minimal paths in

the graphs (S,−→) and (S, ) are bounded by n. Equivalently, Sn and Ŝn
are respectively the classes of all semigroups in which the n-th powers −→n

and n of −→ and are transitive relations. It is known that S1 = Ŝ1.

This class consists of semigroups which are decomposable into a semilattice

of Archimedean semigroups.

However, for n ≥ 2 we have Sn ̸= Ŝn, that is Ŝn ⊂ Sn. An example that

confirms this inequality, obtained through the combination of two construc-

tion methods of M. S. Putcha from [5], will be given here. The purpose of

this section is to study semigroups belonging to the class Ŝn. These semi-

groups will be described by Theorem 4.13. This result is from a paper by S.

Bogdanović, M. Ćirić and Ž. Popović [1]. By means of other theorems we

characterize their various special types.

By the rank of a semigroup S, in notation ran(S), we mean the supremum

of the lengths of all the minimal paths in the graph (S, ), and by the

semirank of S, in notation sran(S), we mean the supremum of the lengths

of all the minimal paths in the graph (S,−→). Equivalently, ran(S) is the

smallest n ≤ ∞ for which n is transitive, and sran(S) is the smallest

n ≤ ∞ for which −→n is transitive, where −→n and n denote the n-th

powers of −→ and , respectively. These notions were introduced by M.

S. Putcha in [5], but our definition differs from his, since he denoted by −→n
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and n not the n-th powers of −→ and , but their (n + 1)-th powers.

Therefore, our definition increases Putcha’s rank and semirank by 1, if they

are finite.

The main goal of this section is to describe the structure of semigroups

from the class Ŝn.
We define the set Σ̂n(a) and the relation σ̂n on S by

Σ̂n(a) = {x ∈ S | a nx}, (a, b) ∈ σ̂n ⇔ Σ̂n(a) = Σ̂n(b).

Since σn is contained in the symmetric opening of −→n (Lemma 4.6) and

σ̂n ⊆ n, then S is σn-simple if and only if a −→ nb, for all a, b ∈ S,

and S is σ̂n-simple if and only if a nb, for all a, b ∈ S. Thus, for every

n ∈ Z+, each σ̂n-simple semigroup is σn-simple. We will show that for n ≥ 2

the opposite statement does not hold. But, all σ1-simple semigroups are

σ̂1-simple, and these are exactly the Archimedean semigroups.

Now we are ready to describe the semigroups from the class Ŝn. The

following theorem gives the relation between the class Sn and the class Ŝn.

Theorem 4.13 Let n ∈ Z+. Then the following conditions on a semigroup

S are equivalent:

(i) S ∈ Ŝn (i.e. n is transitive);

(ii) n is a semilattice congruence on S;

(iii) σ̂n is a band congruence on S;

(iv) S is a semilattice of σ̂n-simple semigroups;

(v) n = σn;

(vi) (∀a, b, c ∈ S) a n+1c & b n+1c ⇒ ab nc;

(vii) (∀a, b ∈ S) a n+1b ⇒ a2 nb;

(viii) S ∈ Sn and n equals the symmetric opening of −→n;

(ix) n equals the symmetric opening of −→n+1.

Proof. (i)⇒(ii) Let S ∈ Ŝn, that is let n be a transitive relation. Then
n = ∞, and ∞ equals the smallest semilattice congruence on S,

based on Theorem 4.3. Therefore, (ii) holds.

(ii)⇒(iii) Using the transitivity of n we easily check that n = σ̂n,

whence we have that σ̂n is a semilattice congruence on S.

(iii)⇒(iv) Let σ̂n be a band congruence on S. Let a, b ∈ S be arbitrary

elements. Then ab σ̂n (ab)
2, that is Σ̂n(ab) = Σ̂n((ab)

2). Now, let x ∈ Σ̂n(ab)
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be an arbitrary element. Then (ab)2 nx, whence (ab)2 y n−1x. But,

(ab)2 y implies ba y, so we have ba nx, i.e. x ∈ Σ̂n(ba). Analogously

we prove the opposite inclusion. Therefore, ab σ̂n ba, so σ̂n is a semilattice

congruence on S.

Let C be an arbitrary σ̂n-class of S and let a, b ∈ C. Then a nb in S,

and based on Lemma 4.9, a nb in C. Hence, we have proved that each

σ̂n-class of S is an σ̂n-simple semigroup.

(iv)⇒(v) Let S be a semilattice of σ̂n-simple semigroups. As we have

already mentioned, every σ̂n-simple semigroup is σn-simple, so S is also a

semilattice of σn-simple semigroups, σ̂n = σn and it is the smallest semilat-

tice congruence on S.

According to Theorem 4.5, n ⊆ σn. On the other hand, assume an

arbitrary pair (a, b) ∈ σn. Then (a, b) ∈ σ̂n, whence a
nb, which was to

be proved. Therefore, (v) holds.

(v)⇒(vi) Let n = σn. Based on Theorem 4.5, S is a semilattice Y

of σn-simple semigroups Sα, α ∈ Y . Assume a, b, c ∈ S such that a n+1c

and b n+1c. Based on Lemma 4.9, a, b, c ∈ Sα, for some α ∈ Y , whence

ab, c ∈ Sα and so ab σn c. But, σn = n, according to the hypothesis, so

we have that ab nc, which was to be proved.

(vi)⇒(vii) This implication is trivial.

(vii)⇒(i) We always have n ⊆ n+1. To prove the opposite inclu-

sion, assume a, b ∈ S such that a n+1b. Then a2 nb, by (vii), and so

a nb, which we had to prove. Hence, n = n+1, so n is transitive.

(v)⇒(viii) Let n = σn. Based on Theorem 4.5, S is a semilattice

of σn-simple semigroups, and based on Theorem 4.5 we have that −→n is

transitive, that is S ∈ Sn, and σn equals the symmetric opening of −→n.

Therefore, we have proved (viii).

(viii)⇒(ix) Since S ∈ Sn means that −→n is transitive, that is −→n=

−→n+1, then (viii) yields (ix).

(ix)⇒(i) We have that

n ⊆ n+1 ⊆−→n+1 ∩(−→n+1)−1 = n,

so n = n+1, whence it follows that n is transitive.

Remark 4.4 A binary relation ξ on a semigroup S is said to satisfy the

power property if a ξ b implies a2 ξ b, for all a, b ∈ S, and to satisfy the
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common multiple property , the cm-property in short, if a ξ c and b ξ c implies

ab ξ c.

Remark 4.5 Let {Sk}k∈Z+ be a sequence of semigroups such that for each

k ∈ Z+ the following conditions are satisfied:

(1) Sk is a 0-simple semigroup with the zero 0k;

(2) there exists a nonzero square-zero element ak in Sk;

(3) there exists a nonzero idempotent ek in Sk;

(4) Sk ∩ Sk+1 = {ek} = {0k+1} and Sk ∩ Si = ∅ for i ≥ k + 2.

By induction we define a new sequence {Tn}n∈Z+ of semigroups as fol-

lows: We set T1 = S1. If, for n ∈ Z+, Tn is defined, then we set Tn+1 =

Tn ∪ Sn+1 and we define a multiplication on Tn+1 to coincide with the mul-

tiplications on Tn and Sn+1, and for x ∈ Tn and y ∈ Sn+1 we set xy = xen
and yx = enx, where the right-hand side multiplications are from Tn. Since

{Tn}n∈Z+ is a chain of semigroups, then T =
∪
n∈Z+ Tn is also a semigroup

and each Tn is an ideal of T . Let us denote 0 = 01. We see that 0 is the zero

of T .

As was proved by M. S. Putcha in [5], ran(Tn) = sran(Tn) = n + 1,

for each n ∈ Z+, and ran(T) = sran(T) = ∞. Moreover, he proved that

0 a1 a2 · · · an en is a minimal sequence between 0 and en in

Tn and T .

For n ∈ Z+, n ≥ 2, let Pn be the orthogonal sum (0-direct union) of Tn
and a 0-simple semigroup S having a nonzero square-zero element a and a

nonzero idempotent e. Then ran(Pn) = n+2 and sran(Pn) = n+1. In partic-

ular, a minimal sequence between e and en is e a a1 a2 · · · an
en, and a minimal sequence from e into en is e −→ a1 −→ a2 −→ · · · −→

an −→ en.
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4.6 Semilattices of λ̂-simple Semigroups

The problems, that were treated in the previous section for the relation

, will here be considered for the left-hand analogue of this relation.

For n ∈ Z+ and an element a of a semigroup S, we define the sets Λ̂n(a)

and Λ̂(a) by

Λ̂n(a) = {x ∈ S | a l nx}, Λ̂(a) = {x ∈ S | a l ∞x},

and the relations λ̂n and λ̂ on S by:

(a, b) ∈ λ̂n ⇔ Λ̂n(a) = Λ̂n(b), (a, b) ∈ λ̂ ⇔ Λ̂(a) = Λ̂(b).

The semilattices of λ-simple semigroups were described in the previous

subsection. Here we study the semilattices of λ̂-simple semigroups. A semi-

group S is λ̂-simple if a λ̂ b, for all a, b ∈ S.

Theorem 4.14 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of λ̂-simple semigroups;

(ii) l ∞ = ∞;

(iii) l ∞ is a semilattice congruence on S.

Proof. (i)⇒(ii) Let S be a semilattice Y of λ̂-simple semigroups Sα, α ∈ Y .

Assume a, b ∈ S such that a ∞b. Based on Lemma 4.9, a, b ∈ Sα, for some

α ∈ Y , whence a l ∞b. Therefore, ∞ ⊆ l ∞. The opposite inclusion

is clear.

(ii)⇒(iii) This is an immediate consequence of Theorem 4.3.

(iii)⇒(i) This follows from Lemma 4.14.

For n ∈ Z+, let us denote by Ln the class of all semigroups from Sn on

which −→n=
l−→n, and let L̂n denote the class of all semigroups from Ŝn on

which n = l n. Semigroups belonging to the class Ln were described in

the previous subsection. In particular, it was to be proved that S ∈ Ln if

and only if it is a semilattice of λn-simple semigroups. It can be also checked

that S ∈ Ln if and only if
l−→n =−→n+1. Here we investigate the structure

of semigroups from the class L̂n.
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Theorem 4.15 Let n ∈ Z+. Then the following conditions on a semigroup

S are equivalent:

(i) S ∈ L̂n;
(ii) l n = n+1 on S;

(iii) l n is a semilattice congruence on S;

(iv) S is a semilattice of λ̂n-simple semigroups;

(v) l n = σn on S;

(vi) (∀a, b, c ∈ S) a n+1b ⇒ a2 l nb;

(vii) (∀a, b, c ∈ S) a nb & b nc ⇒ a l nc;

(viii) (∀a, b, c ∈ S) a n+1c & b n+1c ⇒ ab l nc;

(ix) S ∈ Ln and l n equals the symmetric opening of
l−→n.

Proof. (i)⇒(ii) This is evident.

(ii)⇒(iii) From (ii) it follows that n+1 = l n ⊆ n ⊆ n+1,

whence l n = n, and so l ∞ = l n = n = ∞. Therefore, in

view of Theorem 4.14, l n is a semilattice congruence on S.

(iii)⇒(iv) This follows from Lemma 4.14.

(iv)⇒(v) Let S be a semilattice Y of λ̂n-simple semigroups Sα, α ∈ Y .

Then Sα is a σn-simple semigroup, for each α ∈ Y , so based on Theorem

4.5 we have that l n ⊆ σn. On the other hand, if (a, b) ∈ σn, then there

exists α ∈ Y such that a, b ∈ Sα, based on Lemma 4.9, whence a l nb, so

σn ⊆ l n. Therefore, (v) holds.

(v)⇒(i) Based on (v), in view of Theorem 4.5, σn = l n ⊆ n ⊆ σn,

that is l n = n = σn, and from Thorem 4.13 it follows that S ∈ Ŝn, so
we have proved (i).

(i)⇒(vi) Let S ∈ L̂n. Then S ∈ Ŝn and l n = n = n+1. Assume

now a, b ∈ S such that a n+1b. According to Theorem 4.13 we have that

a2 nb, and since l n = n, then a2 l nb, which was to be proved.

(vi)⇒(vii) Based on (vi) it follows that a n+1b implies a2 nb, for all

a, b ∈ S, so based on Theorem 4.13 we have that n is a transitive relation

on S. Assume now a, b, c ∈ S such that a nb and b nc. Then a nc,

that is a n+1c, whence a2 l nc, by (vi), and hence a l nc, which was to

be proved.

(vii)⇒(i) From (vii) it follows that n is transitive, that is S ∈ Ŝn, and
also n = l n, whence we obtain S ∈ L̂n.



4.7. THE RADICALS OF GREEN’S J -RELATION 155

(iv)⇒(ix) Let S be a semilattice Y of λ̂n-simple semigroups Sα, α ∈ Y .

Assume a, b ∈ S such that a −→n+1 b. Let a ∈ Sα, b ∈ Sβ , for some α, β ∈ Y .

Based on Lemma 4.9, β ≤ α in Y , that is αβ = β, whence b, ba ∈ Sβ . Now

we have that ba l nb and hence ba
l−→nb. But, ba

l−→nb implies a
l−→nb.

Therefore, we have proved that −→n+1⊆ l−→n. Since the opposite inclusion

always holds, we have that −→n+1=
l−→n, that is S ∈ Ln.

We also have that Sα is a σn-simple semigroup, for each α ∈ Y , so σn
equals the symmetric opening of −→n, based on Theorem 4.5. But, we

have proved that
l−→n =−→n, and in the part (iv)⇒(v) of this theorem we

proved that l n = σn. Therefore, l n equals the symmetric opening of

−→n. This completes the proof of this implication.

(ix)⇒(v) From S ∈ Ln it follows that
l−→ n =−→n and

l−→ n and −→n

are transitive relations on S. On the other hand, based on Theorem 4.5,

σn is the transitive closure of −→n, and now, in view of (ix), we have that
n = σn.

(i)⇒(viii) Let S ∈ L̂n. Assume a, b, c ∈ S such that a n+1c and

b n+1c. Then S ∈ Ŝn, and based on Theorem 4.13 we have that ab nc.

But, n = l n, so we obtain ab l nc, which was to be proved.

(viii)⇒(vi) This implication is evident.
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4.7 The Radicals of Green’s J -relation

The radicals R(ϱ) and T (ϱ) which we will use in this section are defined

on page 28.

As was proved by M. S. Putcha in [1], in 1973, the smallest semilattice

congruence on a completely π-regular semigroup equals the transitive clo-

sure of R(J ). But, this assertion does not hold in a general case, and we

investigate some conditions under which the transitive closures and powers

of the relations R(J ) and T (J ) are semilattice congruences.
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A relation ϱ on S will be called T -closed if T (ϱ) = ϱ, and it is R-closed

if R(ϱ) = ϱ. It is easy to check that n, for each n ∈ Z+, and ∞ are

both T -closed and R-closed relations. Thus, for Green’s J -relation on S,

R(J ) and T (J ) are contained in .

Here we consider the semigroups on which R(J )∞ is a semilattice con-

gruence.

Theorem 4.16 On a semigroup S, R(J )∞ is a semilattice congruence if

and only if R(J )∞ = ∞.

Proof. This is an immediate consequence of Theorem 4.3 and the fact that

R(J ) is contained in .

Similarly we have

Theorem 4.17 On a semigroup S, T (J )∞ is a semilattice congruence if

and only if T (J )∞ = ∞.

Further we study the conditions under which the powers of R(J ) are

semilattice congruences.

Theorem 4.18 Let n ∈ Z+. Then the following conditions on a semigroup

S are equivalent:

(i) R(J )n is a semilattice congruence;

(ii) R(J )n = σn;

(iii) R(J )n = n+1;

(iv) (∀a, b ∈ S) a n+1b ⇒ (a2, b) ∈ R(J )n;

(v) (∀a, b, c ∈ S) a nb & b nc ⇒ (a, c) ∈ R(J )n;

(vi) (∀a, b, c ∈ S) a n+1c & b n+1c ⇒ (ab, c) ∈ R(J )n.

Proof. (i)⇒(iii), (iv), (v), and (vi). Let S be a semilattice Y of semigroups

Sα, α ∈ Y , such that each Sα is an R(J )n-class of S.

Assume a, b ∈ S such that a n+1b. Then from Lemma 4.9 we have

that a, b ∈ Sα, for some α ∈ Y , so (a, b) ∈ R(J )n. Therefore,

n+1 ⊆ R(J )n ⊆ n ⊆ n+1,

so we have obtained (iii). On the other hand, we also have that a2, b ∈ Sα,

so (a2, b) ∈ R(J )n, whence it follows (iv).
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Assume a, b, c ∈ S such that a nb and b nc. Then a, b, c ∈ Sα, for

some α ∈ Y , in view of Lemma 4.9, and a, c ∈ Sα implies (a, c) ∈ R(J )n.

Therefore, we have proved (v). Similarly, if a, b, c ∈ S such that a n+1c

and b n+1c, then a, b, c ∈ Sα, for some α ∈ Y , so ab, c ∈ Sα, whence

(ab, c) ∈ R(J )n. This proves (vi).

(iii)⇒(ii) If (iii) holds, then

n+1 ⊆ R(J )n ⊆ n ⊆ n+1,

so we have that n = n+1, that is n is transitive, and from Theorem

4.13 it follows that σn = n = R(J )n.

(ii)⇒(i) If R(J )n = σn, then (a2, a) ∈ R(J ) ⊆ R(J )n = σn, for each

a ∈ S, and based on Theorem 4.5 we have that σn = R(J )n is a semilattice

congruence.

(vi)⇒(iv) This is obvious.

(iv)⇒(iii) Note that (a2, b) ∈ R(J ) implies (a, b) ∈ R(J ), so (a2, b) ∈
R(J )n implies (a, b) ∈ R(J )n. Therefore, (iv) yields n+1 ⊆ R(J )n,

whence it follows (iii).

(v)⇒(iii) First, from (v) it follows that n is transitive, that is n =
n+1. It also follows from (v) that n = R(J )n, so we have proved (iii).

In the case of the radical T (J ) we have the following:

Theorem 4.19 Let n ∈ Z+. Then the following conditions on a semigroup

S are equivalent:

(i) T (J )n is a semilattice congruence;

(ii) T (J )n = σn = R(J )n;

(iii) T (J )n = n+1;

(iv) (∀a, b ∈ S) a n+1b ⇒ (a2, b) ∈ T (J )n;

(v) (∀a, b, c ∈ S) a nb & b nc ⇒ (a, c) ∈ T (J )n;

(vi) (∀a, b, c ∈ S) a n+1c & b n+1c ⇒ (ab, c) ∈ T (J )n.

Proof. (iii)⇒(ii) If (iii) holds then

n+1 = T (J )n ⊆ R(J )n ⊆ n ⊆ n+1,

so R(J )n = n+1, and from Theorem 4.18 we have that σn = R(J )n =
n+1 = T (J )n, which was to be proved.
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The implication (ii)⇒(i) follows from Theorem 4.18. The implications

between the remaining conditions can be proved in a similar way as the

corresponding parts of Theorem 4.18.

Problem 4.3 For an arbitrary Green’s relation X ∈ {J ,D,L,R,H}, we
say that a semigroup S is R(X )-simple if a, b ∈ R(X ), for all a, b ∈ S.

At the end we state the following problems:

(i) Describe the bands of R(J )-simple (R(L)-simple) semigroups;

(ii) Describe the semigroups in which R(X ), X ∈ {J ,D,L,R,H}, is a

congruence.

Exercises

1. Let X ∈ {J ,L,H}. Prove that the following conditions on a semigroup S are
equivalent:

(i) S is a semilattice of Archimedean semigroups;
(ii) R(σ1) is a congruence on S;
(iii) T (σ1) is a semilattice (band) congruence on S;
(iv) R(σ1) = σ1;
(v) R(X ) ⊆ σ1.

2. Let X ∈ {J ,L,H}. Prove that the following conditions on a semigroup S are
equivalent:

(i) R(X ) is a semilattice congruence;
(ii) R(X ) = σ1;
(iii) S is a semilattice of R(X )-simple semigroups.

3. Show that the following conditions on a semigroup S are equivalent:

(i) R(J ) is a semilattice congruence;
(ii) R(J ) = σ1;
(iii) R(J ) = 2;
(iv) (∀a, b ∈ S) a b ⇒ (a2, b) ∈ R(J );
(v) (∀a, b, c ∈ S) a b & b c ⇒ (a, c) ∈ R(J );
(vi) (∀a, b, c ∈ S) a c & b c ⇒ (ab, c) ∈ R(J ).
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Chapter 5

Semilattices of Archimedean
Semigroups

Note that the semilattices of Archimedean semigroups have been studied

by a number of authours. M. S. Putcha, in 1973, gave the first complete

description of such semigroups. Other characterizations of semilattices of

Archimedean semigroups have been given by T. Tamura, 1972, S. Bogdanović

and M. Ćirić, 1992, and M. Ćirić and S. Bogdanović, 1993.

In this chapter we investigate the semigroups whose any subsemigroup

is Archimedean, called hereditary Archimedean, and the semilattices of such

semigroups.

Bands of left (also right and two-sided) Archimedean semigroups form

important classes of semigroups studied by a number of authors. General

characterizations of these semigroups were given by M. S. Putcha, in 1973,

and in the completely π-regular case by L. N. Shevrin, in 1994. Some

characterizations of bands of left Archimedean semigroups and of bands

of nil-extensions of left simple semigroups have been given recently by S.

Bogdanović and M. Ćirić, 1997. Based on the well-known results of A. H.

Clifford, in 1954, any band of left Archimedean semigroups is a semilat-

tice of matrices (rectangular bands) of left Archimedean semigroups. The

converse of this assertion does not hold, i.e. the class of semilattices of ma-

trices of left Archimedean semigroups is larger than the class of bands of

left Archimedean semigroups. In this chapter we give a complete characteri-

zation of semigroups having a semilattice decomposition whose components

are matrices of left Archimedean semigroups. Moreover, we describe such

159
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components in general and in some special cases.

As we all know, semilattices of completely Archimedean semigroups form

an important class of semigroups studied by a number of authors. Several

characterizations of these semigroups were given by M. S. Putcha, in 1973,

and 1981, L. N. Shevrin, in 2005, M. L. Veronesi, in 1984, and S. Bogdanović,

in 1987. We emphasize the results of L. N. Shevrin (see also M. L. Veronesi

[1] and L. N. Shevrin [4]), which give a powerful tool for checking whether a

π-regular semigroup is a semilattice of completely Archimedean semigroups.

Based on this result, a π-regular semigroup has this property if and only if

any of its regular elements are completely regular. In this chapter we gen-

eralize the notion of a completely Archimedean semigroup, introducing the

notion of a left completely Archimedean semigroup. Several characteriza-

tions of these semigroups will be given in Theorem 5.26. The main results of

this section are Theorem 5.27, which gives some characterizations of semilat-

tices of left completely Archimedean semigroups, and Theorem 7.4, in which

we give some new results concerning semilattices of completely Archimedean

semigroups.

Semigroups which can be decomposed into a band of left Archimedean

semigroups have been studied in many papers. M. S. Putcha, in 1973, proved

a general theorem that characterizes such semigroups. This result we give

here as the equivalence of conditions (i) and (ii) in Theorem 5.29. Some

special decompositions of this type have also been treated in a number of

papers. S. Bogdanović, in 1984, P. Protić, in 1991, and 1994, and S. Bog-

danović and M. Ćirić, in 1992, and 1995, studied bands of left Archimedean

semigroups whose related band homomorphic images belong to several very

important varieties of bands. L. N. Shevrin, in 1994, investigated bands

of nil-extensions of left groups, and S. Bogdanović and M. Ćirić, in 1992,

investigated bands of nil-extensions of groups. Finally, bands of left simple

semigroups, in the general and some special cases, were investigated by P.

Protić, in 1995, and S. Bogdanović and M. Ćirić, in 1996.

5.1 The General Case

The semilattice of σn-simple and λn-simple semigroups were described

in Sections 4.2 and 4.3. Here we give some new characterizations for the

semilattices of σ1-simple and λ1-simple semigroups, i.e. for the semilattices
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of Archimedean semigroups and the semilattices of left Archimeden semi-

groups.

Theorem 5.1 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of Archimedean semigroups;

(ii) (∀a, b ∈ S) a −→ b ⇒ a2 −→ b;

(iii) (∀a, b ∈ S) a | b ⇒ a2 −→ b;

(iv) (∀a, b ∈ S)(∀k ∈ Z+)(∃n ∈ Z+) (ab)n ∈ SakS;

(v) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ Sa2S;

(vi) (∀a, b ∈ S)(∀k ∈ Z+)(∃n ∈ Z+) (ab)n ∈ SbkS;

(vii) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ Sb2S;

(viii) the radical of every ideal of S is an ideal.

Proof. (i)⇔(ii) This equivalence holds based on (i)⇔(v) of Theorem 4.5,

for n = 1.

(ii)⇒(iii) Assume that a| b, then a−→ b, whence a2−→ b. Thus (iii) holds.

(iii)⇒(ii) Assume that a −→ b, i.e. a | bn for some n ∈ Z+. Then

a2 −→ bn. Thus a2 −→ b.

(i)⇒(iv) Let S be a semilattice Y of Archimedean semigroups Sα, α ∈ Y .

Let a ∈ Sα, b ∈ Sβ for some α, β ∈ Y . Then we have that ab, akb ∈ Sαβ for

all k ∈ Z+, so there exists n ∈ Z+ such that

(ab)n ∈ SakbS ⊆ SakS.

(iv)⇒(v) This follows immediately.

(v)⇒(i) Let a, b ∈ S be elements such that a | b. Then there exists

u, v ∈ S1 such that b = uav, so bn+1 = u(avu)nav for every n ∈ Z+. From

(v) we have that there exists n ∈ Z+ such that (avu)n ∈ Sa2S, whence

bn+1 = u(avu)nav ∈ uSa2Sav ⊆ Sa2S.

Therefore, a2 | bn+1, and based on the equivalence (ii)⇔(iii) and from The-

orem 4.5 it follows that S is a semilattice of Archimedean semigroups.

(i)⇒(vi)⇒(vii)⇒(i) This we prove in a similar way, as (i)⇒(iv)⇒(v)⇒(i).

(i)⇒(viii) Let A be an ideal of S and let a ∈
√
A, b ∈ S. Then ak ∈ A, for

some k ∈ Z+. Since (i)⇔(iv)⇔(vi), we then have that there exist m,n ∈ Z+

such that (ab)n, (ba)m ∈ SakS ⊆ SAS ⊆ A. Therefore, ab, ba ∈
√
A, so

√
A

is an ideal of S.
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(viii)⇒(v) Let (viii) hold. Let a, b ∈ S and let A = Sa2S. It is clear that

A is an ideal of S and that a ∈
√
A. From (viii) it follows that

√
A is an

ideal of S, so ab ∈
√
A, i.e. there exists n ∈ Z+ such that (ab)n ∈ Sa2S.

Let m,n ∈ Z+. On a semigroup S we define a relation ρ(m,n) by

(a, b) ∈ ρ(m,n) ⇔ (∀x ∈ Sm)(∀y ∈ Sn) xay xby,

i.e.

aρ(m,n)b⇔ (∀x∈Sm)(∀y∈Sn)(∃i, j∈Z+)(xay)i∈SxbyS ∧ (xby)j∈SxayS.

The relation ρ(1,1) we simply denote by ρ.

If instead of the relation we assume the equality relation, then we

obtain the relation which was introduced and discussed by S. J. L. Kopamu

in [1], 1995. So, the relation ρ(m,n) is a generalization of Kopamu’s relation.

Based on the following theorem we give a very important characteristic

of the ρ(m,n) relation.

Theorem 5.2 Let m,n ∈ Z+. On a semigroup S the relation ρ(m,n) is a

congruence relation.

Proof. It is evident that ρ(m,n) is a reflexive and symmetric relation on S.

Assume a, b, c ∈ S such that aρ(m,n)b and bρ(m,n)c. Then

aρ(m,n)b⇔ (∀x∈Sm)(∀y∈Sn)(∃i, j∈Z+) (xay)i∈SxbyS ∧ (xby)j∈SxayS,

bρ(m,n)c⇔ (∀x∈Sm)(∀y∈Sn)(∃p, q∈Z+) (xby)p∈SxcyS ∧ (xcy)q∈SxbyS.

So, (xay)i = uxbyv and (xcy)q = wxbyz, for some u, v, w, z ∈ S. Since

bρ(m,n)c, then for x ∈ Sm and yvu ∈ Sn+2 ⊆ Sn we have that there exists

t ∈ Z+ such that (xbyvu)t ∈ SxcyvuS and

((xay)i)t+1 = (uxbyv)t+1 = u(xbyvu)txbyv ∈ uSxcyvuSxbyv ⊆ SxcyS.

Thus (xay)i(t+1) ∈ SxcyS.

Similarly, we prove that (xcy)k ∈ SxayS, for some k ∈ Z+. Hence,

aρ(m,n)c. Therefore, ρ(m,n) is a transitive relation on S.

Now, assume a, b, c ∈ S are such that aρ(m,n)b. Then for x ∈ Sm, y ∈ Sn

we have cy ∈ Sn+1 ⊆ Sn, so, there exist p, q ∈ Z+ such that

(x(ac)y)p = (xa(cy))p ∈ Sxb(cy)S = Sx(bc)yS,
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(x(bc)y)q = (xb(cy))q ∈ Sxa(cy)S = Sx(ac)yS.

Hence acρ(m,n)bc. Similarly, we prove that caρ(m,n)cb. Thus, ρ(m,n) is a

congruence relation on S.

Remark 5.1 Let µ be an equivalence relation on a semigroup S and let

m,n ∈ Z+. Then a relation µ(m,n) defined on S by

(a, b) ∈ µ(m,n) ⇔ (∀x ∈ Sm)(∀y ∈ Sn) (xay, xby) ∈ µ

is a congruence relation on S. But, there exists a relation µ which is not

equivalence, for example µ = , for which the relation µ(m,n) is a congru-

ence on S.

The following two lemmas are useful for further work. Their proofs are

elementary and they will be omitted.

Lemma 5.1 Let ξ be an equivalence on a semigroup S. Then ξ is a con-

gruence relation on S if and only if ξ = ξ♭.

Lemma 5.2 Let ξ be an equivalence relation on a semigroup S. Then ξ♭ is

a band congruence if and only if

(∀a ∈ S)(∀x, y ∈ S1) (xay, xa2y) ∈ ξ.

Now we give some new characterizations of the semilattices of Archime-

dean semigroups.

Theorem 5.3 Let m,n ∈ Z+. The following conditions on a semigroup S

are equivalent:

(i) ρ(m,n) is a band congruence;

(ii) (∀a ∈ S)(∀x ∈ Sm)(∀y ∈ Sn) xay xa2y;

(iii) S is a semilattice of Archimedean semigroups;

(iv) R(ρ(m,n)) = ρ(m,n);

(v) ρ♭(m,n) is a band congruence;

(vi) (∀a ∈ S)(∀u, v ∈ S1) (uav, ua2v) ∈ ρ(m,n);

(vii) ρ is a band congruence.
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Proof. (i)⇒(ii) This implication follows immediately.

(ii)⇒(iii) Let (ii) hold. Then for every a, b ∈ S, if x = (ab)l and y =

(ba)kb, for some k, l ∈ Z+, l ≥ m and k ≥ n, there exists i ∈ Z+ such that

((ab)la(ba)kb)i ∈ S(ab)la2(ba)kbS ⊆ Sa2S,

i.e.

(ab)(2k+l+1)i ∈ Sa2S.

Thus, based on Theorem 5.1 S is a semilattice of Archimedean semigroups.

(iii)⇒(i) Let S be a semilattice Y of Archimedean semigroups Sα, α ∈ Y

and let m,n ∈ Z+ be fixed elements. Based on Theorem 5.2 ρ(m,n) is a

congruence relation on S. It remains to be proven that ρ(m,n) is a band

congruence on S. Assume a ∈ S, x ∈ Sm and y ∈ Sn. Then xay, xa2y ∈ Sα,

for some α ∈ Y . Since Sα, α ∈ Y , is Archimedean, then there exist p, q ∈ Z+

such that

(xay)p ∈ Sαxa
2ySα ⊆ Sxa2yS,

(xa2y)q ∈ SαxaySα ⊆ SxayS,

hence aρ(m,n)a
2, i.e. ρ(m,n) is a band congruence on S. Thus (i) holds.

(i)⇒(iv) The inclusion ρ(m,n) ⊆ R(ρ(m,n)) always holds, so it remains for

us to prove the opposite inclusion. Since ρ(m,n) is a band congruence on S,

then we have that

(∀a ∈ S)(∀k ∈ Z+) aρ(m,n)a
k.

Now assume a, b ∈ S such that aR(ρ(m,n))b. Then a
iρ(m,n)b

j , for some i, j ∈
Z+, and from the previous statement we have that aρ(m,n)a

iρ(m,n)b
jρ(m,n)b.

Thus aρ(m,n)b. So R(ρ(m,n)) ⊆ ρ(m,n). Therefore, (iv) holds.

(iv)⇒(i) Since ρ(m,n) is reflexive, then based on the hypothesis for every

a ∈ S we have that

a2ρ(m,n)a
2 ⇔ (a1)2ρ(m,n)(a

2)1 ⇔ aR(ρ(m,n))a
2 ⇔ aρ(m,n)a

2.

Thus, (i) holds.

(i)⇒(v) This implication follows from Lemma 5.1.

(v)⇒(vi) This implication follows from Lemma 5.2.

(vi)⇒(i) Let (vi) hold. Based on Theorem 5.2 ρ(m,n) is a congruence and

based on (vi) for u = v = 1 we obtain that (a, a2) ∈ ρ(m,n), for every a ∈ S,

i.e. ρ(m,n) is a band congruence. Thus, (i) holds.

(i)⇔(vii) This equivalence follows immediately from the equivalence

(i)⇔(iii).
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The following result shows the connections between relations ρ and σ♭1.

Theorem 5.4 Let S be an arbitrary semigroup. Then ρ = σ♭1.

Proof. Assume a, b ∈ S such that aρb. If c ∈ Σ1(a), then ck = uav, for

some u, v ∈ S and some k ∈ Z+. Since aρb then we obtain that (uav)i ∈
SubvS ⊆ SbS, for some i ∈ Z+. Thus

cki = (ck)i = (uav)i ∈ SbS,

whence c ∈ Σ1(b). So, we proved that Σ1(a) ⊆ Σ1(b). Similarly we prove

that Σ1(b) ⊆ Σ1(a). Therefore, Σ1(a) = Σ1(b), i.e. aσ1b. Thus, ρ ⊆ σ1.

Let ξ be an arbitrary congruence relation on S contained in σ1 and let

a, b ∈ S be elements such that aξb. Since ξ is a congruence, then for every

x, y ∈ S we have that

(xay, xby) ∈ ξ ⊆ σ1 ⊆ ,

so it follows that (∀x, y ∈ S) xay xby, i.e. aρb. Therefore, ξ ⊆ ρ. Since σ♭1
is the greatest congruence contained in σ1, then from the previous statement

it is evident that ρ = σ♭1.

On an arbitrary semigroup S, it is clear that the following inclusion holds

ρ♭ = ρ = σ♭1 ⊆ σ1.

Theorem 5.5 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of nil-extensions of simple semigroups;

(ii) S is intra π-regular and each J -class of S containing an intra regular

element is a subsemigroup;

(iii) S is intra π-regular and a semilattice of Archimedean semigroups;

(iv) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ S(ba)n(ab)nS;

(v) (∀a, b ∈ S)(∃n ∈ Z+)(∀k ∈ Z+) ak | (ab)n;
(vi) (∀a, b ∈ S)(∃n ∈ Z+) a4n | (ab)n.

Proof. (i)⇒(ii) Let S be a semilattice Y of semigroups Sα, α ∈ Y , and for

each α ∈ Y , let Sα be a nil-extension of a simple semigroup Kα. Let J be a

J -class of S containing an intra regular element a, and let a ∈ Sα, for some

α ∈ Y . Then a = xa2y, for some x, y ∈ S, whence a = (xa)nayn, for each



166CHAPTER 5. SEMILATTICES OF ARCHIMEDEAN SEMIGROUPS

n ∈ Z+. It is easy to verify that xa ∈ Sα, so (xa)n ∈ Kα, for some n ∈ Z+,

and also, ayn ∈ Sα. Now, a = (xa)nayn ∈ KαSα ⊆ Kα. Thus, a ∈ Kα. Since

Kα is simple, then every element of Kα is J -related with a in S, so Kα ⊆ J .

Further, assume b ∈ J . Then (a, b) ∈ J ⊆ σ, so b ∈ Sα, and since b = uav,

for some u, v ∈ S1, then b = uxa2yv = u(xa)2ay2v = (uxax)a(ay2v). It is

not difficult to check that uxax, ay2v ∈ Sα, so b ∈ SαKαSα ⊆ Kα, whence

J ⊆ Kα. Therefore, J = Kα, so it is a subsemigroup of S.

(ii)⇒(iv) Assume a, b ∈ S. Since S is intra π-regular, then (ab)n =

x(ab)2ny, for some n ∈ Z+, x, y ∈ S. Without a loss of generality we

can assume that n ≥ 2, so (ab)n = x(ab)2ny ∈ S(ba)n+1S, and clearly,

(ba)n+1 ∈ S(ab)nS, whence (ba)n+1J (ab)n, i.e., (ba)n+1 ∈ J , where J is

the J -class of (ab)n. Similarly, (ab)n+1 ∈ J . Based on the hypothesis, J

is a subsemigroup of S, so (ba)n+1(ab)n+1 ∈ J , i.e., (ba)n+1(ab)n+1J (ab)n.

Therefore,

(ab)n ∈ S1(ba)n+1(ab)n+1S1 ⊆ S(ba)n(ab)nS.

(iv)⇒(iii) Assume a ∈ S, then a2n ∈ Sa2na2nS = S(a2n)2S for some

n ∈ Z+, i.e. S is an intra π-regular semigroup. From (iv) we have that for

every a, b ∈ S there exists n ∈ Z+ such that (ab)n ∈ S(ba)n(ab)nS ⊆ Sa2S

and based on Theorem 5.1 S is a semilattice of Archimedean semigroups.

(iii)⇒(i) This follows from Theorem 3.14 and Lemma 2.7.

(i)⇒(v) Let (i) hold and let ξ be a corresponding semilattice congruence.

Assume a, b ∈ S and let A be a ξ-class of element ab. Then A is a nil-

extension of a simple semigroup K, so there exist n ∈ Z+ such that (ab)n ∈
K. Assume k ∈ Z+. Since akb ∈ A then (akb)m ∈ K, for some m ∈ Z+.

Thus,

(ab)n ∈ K(akb)mK ⊆ SakS,

because K is a simple semigroup. Therefore, (v) holds.

(v)⇒(vi) This is evident.

(vi)⇒(iii) Based on (vi) for every a ∈ S there exists n ∈ Z+ such that

a4n | a2n, so S is intra π-regular. According to Theorem 5.1 we have that S

is a semilattice of Archimedean semigroups. Thus, (iii) holds.

A subset A of a semigroup S is semiprimary iff

(∀a, b ∈ S)(∃n ∈ Z+) ab ∈ A ⇒ an ∈ A ∨ bn ∈ A.

A semigroup S is semiprimary if all of its ideals are semiprimary subsets of

S. Based on the following theorem we prove that the class of semiprimary

semigroups is equal to the class of chains of Archimedean semigroups.
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Theorem 5.6 The following conditions on a semigroup S are equivalent:

(i) S is a chain of Archimedean semigroups;

(ii) (∀a, b ∈ S) ab −→ a ∨ ab −→ b;

(iii) S is semiprimary;

(iv)
√
A is a completely prime ideal, for every ideal A of S;

(v)
√
A is a completely prime subset of S, for every ideal A of S.

Proof. (i)⇒(ii) This follows from Corollary 4.12.

(ii)⇒(iii) Let A be an ideal of S and let a, b ∈ S. From (ii), ab −→ a or

ab −→ b, so there exists n ∈ Z+ such that an ∈ SabS or bn ∈ SabS. Now, if

ab ∈ A, then an ∈ SabS ⊆ SAS ⊆ A or bn ∈ SabS ⊆ SAS ⊆ A. Thus, S is

a semiprimary semigroup.

(iii)⇒(iv) Let S be a semiprimary semigroup and let a, b ∈ S. Since

(ba)(ab) ∈ J((ba)(ab)), then there exists n ∈ Z+ such that

(ba)n ∈ S(ba)(ab)S or (ab)n ∈ S(ba)(ab)S,

whence (ab)n+1 ∈ Sa2S. Now, from Theorems 5.1 and 4.5 it follows that√
A is an ideal, for every ideal A of S. Assume an arbitrary ideal A of S

and assume a, b ∈ S such that ab ∈
√
A. Based on (iii) there exists n ∈ Z+

such that an ∈ SabS ⊆
√
A or bn ∈ SabS ⊆

√
A, so, it follows that a ∈

√
A

or b ∈
√
A. Therefore,

√
A is a completely prime ideal.

(iv)⇒(v) This implication follows immediately.

(v)⇒(ii) Assume a, b ∈ S. Based on (v),
√
SabS is a completely prime

subset of S. Since a2b2 ∈ SabS ∈
√
SabS, we then have that a2 ∈

√
SabS or

b2 ∈
√
SabS, whence it follows that (ii) holds.

(ii)⇒(i) Assume a, b ∈ S. Then, from (ii), (ba)(ab) −→ ba or (ba)(ab) −→
ab, whence it is easy to prove that a2 −→ ab, so based on Theorem 5.1 S is a

semilattice Y of Archimedean semigroups Sα, α ∈ Y . Let α, β ∈ Y . Assume

that a ∈ Sα and b ∈ Sβ . Then based on (ii) there exists n ∈ Z+ such that

an ∈ SabS or bn ∈ SabS, whence α ≤ β or β ≤ α. Thus Y is a chain.

Theorem 5.7 The following conditions on a semigroup S are equivalent:

(i) (∀a, b ∈ S) a
l−→ b⇒ a2

l−→ b;

(ii) (∀a, b ∈ S)(∀k ∈ Z+) bk
l−→ ab;

(iii) (∀a, b ∈ S) b2
l−→ ab.
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Proof. (i)⇒(ii) Assume a, b ∈ S and k ∈ Z+. Then b
l−→ ab, so based on

(i) it is easy to prove that bk
l−→ ab. Thus, (ii) holds.

(ii)⇒(iii) This is evident.

(iii)⇒(i) Assume a, b ∈ S such that a
l−→ b, i.e. bn = xa, for some

n ∈ Z+, x ∈ S. Based on (iii), a2
l−→ xa, i.e. (xa)m = ya2, for some

m ∈ Z+, y ∈ S. Thus, bmn = ya2, so a2
l−→ b. Whence, (i) holds.

Theorem 5.8 Let S be a semigroup. Then

(i) S is a semilattice of right Archimedean semigroups if and only if for

all a, b ∈ S, a | b ⇒ a | rbn, for some n ∈ Z+;

(ii) S is a semilattice of left Archimedean semigroups if and only if for all

a, b ∈ S, a | b ⇒ a | lbn, for some n ∈ Z+;

(iii) S is a semilattice of t-Archimedean semigroups if and only if for all

a, b ∈ S, a | b ⇒ a | tbn, for some n ∈ Z+.

Proof. We prove (i). The proofs of (ii) and (iii) are similar.

Suppose that for all a, b ∈ S, a | b ⇒ a | rbn, for some n ∈ Z+. Let

a, b ∈ S such that a | b. Then b = xay, for some x, y ∈ S1. Let c = yxa. Then

a | c. So a | rcn, for some n ∈ Z+. So az = (yxa)n for some z ∈ S1, n ∈ Z+.

Hence a2 |xa2z = xa(yxa)n | (xay)n+1 = bn+1. Based on Theorem 5.1, S is

a semilattice of Archimedean semigroups Sα, α ∈ Y . Let a, b ∈ Sα, for some

α ∈ Y . Then a | bn for some n ∈ Z+. So a | rbm in S for some m ∈ Z+.

Then au = bm for some u ∈ S1. So a(ub) = bm+1, ub ∈ Sα. Thus a | rbm+1

in Sα. Hence Sα is right Archimedean. Now assume conversely that S is a

semilattice of right Archimedean semigroups Sα, α ∈ Y . Let a, b ∈ S, a | b.
Then xay = b for some x, y ∈ S1. Then ayx, b ∈ Sα for some α ∈ Y . So

ayx | rbn for some n ∈ Z+. Then a | rbn. This proves the theorem.

Theorem 5.9 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of left Archimedean semigroups;

(ii) (∀a, b ∈ S)(∀k ∈ Z+) ak
l−→ ab;

(iii) (∀a, b ∈ S) a
l−→ ab;

(iv) the radical of every left ideal of S is a right ideal of S.

Proof. (i)⇒(ii) This we prove in a way similar to (i)⇒(ii) in Theorem 5.1.
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(ii)⇒(iii) This is evident.

(iii)⇒(i) Assume a, b ∈ S. Based on (iii) there exists n ∈ Z+ and x ∈ S

such that (ba)n = xb. Now we have that (ab)n+1 = axb2, so b2
l−→ ab. Based

on (iii), Theorems 4.7 and 4.8, for n = 1, and Theorem 5.1, we have (i).

(ii)⇒(iv) Let L be a left ideal of S. Assume that a ∈
√
L, b ∈ S. Then

ak ∈ L, for some k ∈ Z+, and we have that (ab)n ∈ Sak ⊆ SL ⊆ L, for some

n ∈ Z+. Thus ab ∈
√
L, i.e.

√
L is a right ideal of S.

(iv)⇒(i) Let a, b ∈ S,L = Sa. Then a ∈
√
L. Since

√
L is a right

ideal of S we then have that ab ∈
√
L, i.e. there exists n ∈ Z+ such that

(ab)n ∈ L = Sa, whence from (ii) Theorem 5.8 we have that the condition

(i) holds.

From Corollary 4.13 and Theorems 4.8, 4.9 we have the following

Corollary 5.1 The following conditions on a semigroup S are equivalent:

(i) S is a chain of left Archimedean semigroups;

(ii) for every left ideal A of S,
√
A is a completely prime ideals of S;

(iii) S is a semilattice of left Archimedean semigroups and every left ideal

of S is semiprime;

(iv) S is a semilattice of left Archimedean semigroups and ab
l−→ a or

ab
l−→ b for all a, b ∈ S.

As in the case of Theorem 5.5, we prove the following corollary:

Corollary 5.2 The following conditions on a semigroup S are equivalent:

(i) S is semilattice of nil-extensions of left simple semigroups;

(ii) S is left π-regular and a semilattice of left Archimedean semigroups;

(iii) (∀a, b ∈ S)(∃n ∈ Z+)(∀k ∈ Z+) ak |l (ab)n;
(iv) (∀a, b ∈ S)(∃n ∈ Z+) a2n+1 |l (ab)n.

For the semilattice and chains of t-Archimedean semigroups it is easy to

prove the following characterizations:

Corollary 5.3 The following conditions on a semigroup S are equivalent:

(i) S is semilattice of t-Archimedean semigroups;
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(ii) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ bSa;

(iii) for every bi-ideal A of S,
√
A is an ideal of S.

Corollary 5.4 The following conditions on a semigroup S are equivalent:

(i) S is a chain of t-Archimedean semigroups;

(ii) S is a semilattice of t-Archimedean semigroups and ab
t−→ a or ab

t−→
b for all a, b ∈ S;

(iii) for every bi-ideal A of S,
√
A is a completely prime ideals of S.

Theorem 5.10 For every subsemigroup A of S,
√
A is a completely prime

subset of S if and only if for all a, b ∈ S is ab p a or ab p b.

Proof. Let
√
A be completely prime for every subsemigroup A of S. Then,

for all a, b ∈ S, from ab ∈ ⟨ab⟩ ⊆
√
⟨ab⟩ we have that a ∈

√
⟨ab⟩ or b ∈√

⟨ab⟩, i.e. ab p a or ab p b.

Conversely, let ab p a or ab p b, for every a, b ∈ S and let A be a

subsemigroup of S. Let ab ∈
√
A, a, b ∈ S. Then (ab)k ∈ A, for some

k ∈ Z+. Since an = (ab)r or bn = (ab)t, for some n, r, t ∈ Z+, we then have

that ank = (ab)rk ∈ A or bnk = (ab)tk ∈ A, whence a ∈
√
A or b ∈

√
A.

Therefore,
√
A is a completely prime subset of S.

Based on Theorem 4.5 we know that a semigroup S is a band of Archime-

dean semigroups if and only if S is a semilattice of Archimedean semigroups.

If the term ”Archimedean” we replace with ”left (right) Archimedean” the

same statements does not hold. That is confirmed by every completely

simple semigroup which is not a left group (see Corollary 3.8). By means of

the following theorem we describe a band of left Archimedean semigroups.

Theorem 5.11 A semigroup S is a band of left Archimedean semigroups if

and only if

xay
l
xa2y,

for all a ∈ S, x, y ∈ S1.

Proof. Let S be a band of left Archimedean semigroups and let ξ be a

corresponding band congruence. Assume a ∈ S, x, y ∈ S1 and assume that

A is a ξ-class of the element xay. Then xay, xa2y ∈ A and since A is a left

Archimedean semigroup then we have that xay l xa2y.
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Conversely, assume a, b ∈ S, then based on the hypothesis we have that

ab l ab2, so (ab)n ∈ Sab2 ⊆ Sb2. Whence, b2
l−→ ab, and according to

Theorem 5.7 ((i)⇔(iii)) and Theorem 4.8 ((iii)⇔(v), for n = 1), we have

that l = λ1, so
l is an equivalence relation on S.

We define the relation ξ on S with

aξb ⇔ (∀x, y ∈ S1) xay
l
xby, a, b ∈ S.

From Theorem 1.2 and the hypothesis we have that ξ is a band congruence

on S. Let A be a ξ-class of S. Assume a, b ∈ A. Then a2ξb, whence bn = xa2,

for some n ∈ Z+, x ∈ S. Now, we have that xaξxa2 = bnξb, so xa ∈ A.

Hence, bn = (xa)a ∈ Aa, i.e. a
l−→ b in A, so A is a left Archimedean

semigroup. Thus, S is a band of left Archimedean semigroups.

Corollary 5.5 A semigroup S is a band of t-Archimedean semigroups if and

only if

xay
t
xa2y,

for all a ∈ S, x, y ∈ S1.

Proof. This follows from Theorem 5.11 and its dual.

Otherwise, it is easy to prove that t-Archimedean semigroups are band

indecomposable, i.e. the universal relation on a t-Archimedean semigroup S

is an unique band congruence on S.

A band B is left (right) seminormal if axy = axyay (yxa = yayxa), for

all a, x, y ∈ B. A band B is normal if axya = ayxa, or all a, x, y ∈ B. A

band B is left (right) regular if xy = yxy (xy = yay), for all a, x, y ∈ B.

Theorem 5.12 On a semigroup S the following conditions are equivalent:

(i) S is a normal band;

(ii) (∀a, x, y, b ∈ S) axyb = ayxb;

(iii) S is a left and right seminormal band.

Proof. (i)⇒(ii) Assume a, x, y, b ∈ S. Then

axyb = axybaxyb = aybxaxyb = aybaxyxb = ayxbayxb = ayxb.
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(ii)⇒(iii) Assume a, x, y ∈ S. Then

axy = axyaxy = axxyay = axyay.

Similarly we prove that yxa = yayxa. Therefore, S is left and right semi-

normal, so (iii) holds.

(iii)⇒(i) Assume a, x, y ∈ S. Then

axya = ayaaxya = ayaxya = ayxyaayaxya
= ayx(ya)2xya = ayxyaxya = ay(xya)2 = ayxya,

ayxa = ayxaaya = ayxaya = ayxayaayxya
= ayx(ay)2xya = ayxayxya = (ayx)2ya = ayxya.

Thus, axya = ayxa, so (i) holds.

Corollary 5.6 A semigroup S is a left seminormal band of left Archimedean

semigroups if and only if for all a, b, c ∈ S, ac
l−→ abc.

Proof. Let S be a left seminormal band of left Archimedean semigroups

and let ξ be a corresponding band congruence. Assume a, b, c ∈ S. Since

S/ξ is a left seminormal band, then abcξabcac. Assume that A is a ξ-class

of elements abc and abcac. Since A is a left Archimedean semigroup, then

(abc)n ∈ Sabcac ⊆ Sac, so ac
l−→ abc.

Conversely, let ac
l−→ abc, for all a, b, c ∈ S. Assume x, y, a ∈ S. Then

xa2y = (xa)(ay)
l−→ (xa)(yx)(ay) = (xay)2,

xay
l−→ (xa)(ayxa2)y = (xa2y)2,

whence xa2y
l−→ xay and xay

l−→ xa2y, i.e. xay l xa2y. Thus, based

on Theorem 5.11, S is a band B of left Archimedean semigroups. Since B

is a homomorphic image of S, then ik
l−→ ijk in B for all i, j, k ∈ B, i.e.

ijk ∈ Bik, whence ijk = ijkik. Therefore, B is a left seminormal band.

Corollary 5.7 A semigroup S is a normal band of t-Archimedean semi-

groups if and only if for all a, b, c ∈ S, ac
t−→ abc.

Proof. This follows from Corollary 5.6, Theorem 5.12 and the fact that

t-Archimedean semigroups are band indecomposable.
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Theorem 5.13 The following conditions on a semigroup S are equivalent:

(i) S is a band of power-joined semigroups;

(ii) (∀a, b ∈ S) ab p a2b p ab2;

(iii) (∀a, b ∈ S)(∀m,n ∈ Z+) ab p ambn.

Proof. (i)⇒(ii) Let S be a band of power-joined semigroups and let ξ be

a corresponding band congruence. Assume a, b ∈ S and let A be a ξ-class of

the element ab. Then ab, a2b, ab2 ∈ A, whence we have that (ii) holds.

(ii)⇒(iii) Let (ii) hold. Assume a, b∈S. From (ii) we have that ab p a2b
p a2b2, i.e. ab p a2b2, because p is an equivalence on S. Assume

ab p ambn for m,n ∈ Z+, m,n ≥ 2. Then from (ii) we have that

ab p ambn = (ambn−1)b p (ambn−1)b2 = ambn+1 =
= a(am−1bn+1) p a2(am−1bn+1) = am+1bn+1,

i.e. ab p am+1bn+1. Thus, by induction we have that (iii) holds.

(iii)⇒(i) It is clear that p is an equivalence relation on S. Let a p b,

a, b ∈ S and assume x ∈ S. Then am = bn for some m,n ∈ Z+, and from

(iii) we have that

ax
p
amx = bnx

p
bx, xa

p
xam = xbn

p
xb.

Thus, p is a congruence on S. It is evident that a p a2, for every a ∈ S,

so p is a band conguence on S. Also, it is clear that every p -class is a

power-joined semigroup.

Corollary 5.8 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of power-joined semigroups;

(ii) (∀a, b ∈ S) ab p a2b p ab2 p ba;

(iii) (∀a, b ∈ S)(∀m,n ∈ Z+) ba p ambn.

Exercises

1. A semigroup S is a semilattice of Archimedean semigroups if and only if the
following relation ρ on S:

aρb⇔ (∀x, y ∈ S)(∃m,n ∈ Z+) (xay)m ∈ SxbyS, (xby)n ∈ SxayS,

is a semilattice congruence.
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2. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of Archimedean semigroups;
(ii) is transitive;
(iii) (∀a, b, c ∈ S) a c & b c ⇒ ab c;
(iv) (∀a, b ∈ S) a b ⇒ a2 b;
(v) (∀a, b ∈ S) a |r b ⇒ a2 −→ b;
(vi)

√
SaS is an ideal of S, for all a ∈ S;

(vii) in every homomorphic image with a zero of S the set of all nilpotent elements
is an ideal.

3. The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of nil-extensions of groups;
(ii) T (H) is a semilattice congruence;
(iii) T (H) = σ1 = R(H);
(iv) (∀a, b ∈ S) (ab, ba2) ∈ T (H).

4. Prove that the following conditions on a semigroup S are equivalent:

(i) T (J ) is a semilattice congruence;
(ii) T (J ) = σ1 = R(J );
(iii) T (J ) = 2;
(iv) (∀a, b ∈ S) a b ⇒ (a2, b) ∈ T (J );
(v) (∀a, b, c ∈ S) a b & b c ⇒ (a, c) ∈ T (J );
(vi) (∀a, b, c ∈ S) a c & b c ⇒ (ab, c) ∈ T (J );
(vii) S is a semilattice of nil-extensions of simple semigroups.

5. A ◦ S is homomorphically closed.

6. A ◦ S is not subsemigroup closed.

7. A ◦ S is finite-direct product closed.

8. A ◦ S is not infinite-direct product closed.

9. A semigroup S is a rectangular band of power-joined semigroups if and only if

(∀a, b, c ∈ S)(∃m,n ∈ Z+)( (abc)m = (ac)n ).

10. A semigroup S is a left zero band of power-joined semigroups if and only if

(∀a, b ∈ S)(∃m,n ∈ Z+)( (ab)m = an ).
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5.2 Semilattices of Hereditary Archimedean
Semigroups

In this section we investigate semigroups whose any subsemigroup is a

semilattice of Archimedean semigroups.

Theorem 5.14 Any subsemigroup of a semigroup S is a semilattice of Arc-

himedean semigroups if and only if

(∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ ⟨a, b⟩ a2 ⟨a, b⟩ .

Proof. If a, b ∈ S and T = ⟨a, b⟩, then from Theorem 5.1 it follows that

(ab)m ∈ Ta2T = ⟨a, b⟩ a2 ⟨a, b⟩ ,

for some m ∈ Z+.

Conversely, if T is a subsemigroup of S and a, b ∈ T , then there exists

m ∈ Z+ such that

(ab)m ∈ ⟨a, b⟩ a2 ⟨a, b⟩ ⊆ Ta2T,

so based on Theorem 5.1, T is a semilattice of Archimedean semigroups.

The main result of this section is the following theorem which character-

izes the semilattices of hereditary Archimedean semigroups.

Theorem 5.15 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of hereditary Archimedean semigroups;

(ii) (∀a, b ∈ S) a −→ b ⇒ a2 ↑ b;
(iii) (∀a, b, c ∈ S) a −→ c & b −→ c ⇒ ab ↑ c;
(iv) (∀a, b, c ∈ S) a −→ b & b −→ c ⇒ a ↑ c.
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Proof. (i)⇒(ii) Let S be a semilattice Y of hereditary Archimedean semi-

groups Sα, α ∈ Y . Assume a, b ∈ S such that a −→ b. Then b, a2b ∈ Sα, for

some α ∈ Y , so based on the hypothesis we obtain that

bn ∈
⟨
b, a2b

⟩
a2b

⟨
b, a2b

⟩
⊆

⟨
a2, b

⟩
a2

⟨
a2, b

⟩
.

Thus a2 ↑ b, so (ii) holds.

(ii)⇒(iii) Assume a, b, c ∈ S such that a −→ c & b −→ c. Then based on

Theorem 4.5 ab −→ c. Now, from (ii) it follows (ab)2 ↑ c, whence ab ↑ c.
(iii)⇒(iv) Based on (iii) and Theorem 4.5, for n = 1, −→ is transitive.

Assume a, b, c ∈ S such that a −→ b and b −→ c. Then a −→ c, so a2 ↑ c,
by (iii), whence a ↑ c.

(iv)⇒(i) Based on (iv), −→ is transitive, so according to Theorem 4.5,

for n = 1, S is a semilattice Y of Archimedean semigroups Sα, α ∈ Y .

Assume α ∈ Y and a, b ∈ Sα. Then a −→ b and b −→ b, whence a ↑ b,
by (iv). Therefore, Sα is hereditary Archimedean. Hence, (i) holds.

The next theorem gives a characterization of semigroups which are chains

of hereditary Archimedean semigroups.

Theorem 5.16 A semigroup S is a chain of hereditary Archimedean semi-

groups if and only if

ab ↑ a or ab ↑ b.

for all a, b ∈ S.

Proof. Let S be a chain Y of hereditary Archimedean semigroups Sα, α ∈
Y . If a ∈ Sα, b ∈ Sβ , for some α, β ∈ Y , then a, ab ∈ Sα or b, ab ∈ Sβ ,

whence

an ∈ ⟨a, ab⟩ ab ⟨a, ab⟩ or bn ∈ ⟨b, ab⟩ ab ⟨b, ab⟩

for some n ∈ Z+.

Conversely, based on the hypothesis and Theorem 5.6, S is a chain Y of

Archimedean semigroups Sα, α ∈ Y . If α ∈ Y and a, b ∈ Sα, then then there

exists n ∈ Z+ such that bn ∈ SαaSα, and based on Theorem 5.15, a2 ↑ bn,
whence a ↑ b. Thus, Sα is hereditary Archimedean. Hence, S is a chain of

hereditary Archimedean semigroups.

We proceed on to study the semilattices of hereditary left Archimedean

semigroups.
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Theorem 5.17 A semigroup S is a semilattice of hereditary left Archime-

dean semigroups if and only if for all a, b ∈ S,

a −→ b ⇒ a ↑l b.

Proof. Let S be a semilattice Y of hereditary left Archimedean semigroups

Sα, α ∈ Y . Assume a, b ∈ S such that a −→ b. Since a ∈ Sα, b ∈ Sβ , for

some α, β ∈ Y , then we have that β ≤ α, so b, ba ∈ Sβ . Now ba ↑l b, whence
a ↑l b, which proves the direct part of the theorem.

Conversely, based on the hypothesis and Theorem 5.8, S is a semilattice

Y of the left Archimedean semigroups Sα, α ∈ Y . Assume α ∈ Y and

a, b ∈ Sα. Then a −→ b, whence a ↑l b, based on the hypothesis. Therefore,

any Sα is hereditary left Archimedean, so S is a semilattice of hereditary left

Archimedean semigroups.

Corollary 5.9 A semigroup S is a semilattice of hereditary t-Archimedean

semigroups if and only if for all a, b ∈ S,

a −→ b ⇒ a ↑t b.

Theorem 5.18 The folowing conditions on a semigroup S are equivalent:

(i) S is hereditary Archimedean and π-regular;

(ii) S is hereditary Archimedean and has a primitive idempotent;

(iii) S is a nil-extension of a periodic completely simple semigroup;

(iv) (∀a, b ∈ S)(∃n ∈ Z+) an = (anbnan)n.

Proof. (i)⇒(ii) First we prove that

(∀a ∈ S)(∀e ∈ E(S))(∃n ∈ Z+) e = (eae)n. (1)

Indeed, for a ∈ S, e ∈ E(S), ea ↑ e, by (i), whence e = (ea)n or e = (ea)ne,

for some n ∈ Z+. However, in both of cases it follows that e = (ea)ne =

(eae)n. Thus, (1) holds.

Further, assume a ∈ S. Let m ∈ Z+ such that am ∈ Reg(S) and let x

be an inverse of am. Then amx, xam ∈ E(S), so from (1) we obtain that

amx = (amx · a · amx)n = (am+1x)n,
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for some n ∈ Z+, whence

am = amxam = (am+1x)nam = (am+1x)n−1am+1xam =
= (am+1x)n−1aamxam = (am+1x)n−1am+1 =
= (am+1x)n−2am+1xam+1 = (am+1x)n−2aamxama =
= (am+1x)n−2aama = (am+1x)n−2am+2 = · · · =
= (am+1x)n−(n−1)am+(n−1) =
= am+1xam+n−1 = aamxaman−1 =
= aaman−1 = am+n.

Thus, S is periodic, and by Theorem 3.16, S has a primitive idempotent.

(ii)⇒(iii) Based on Theorem 3.16, S is a nil-extension of a completely

simple semigroup K. But, K is hereditary Archimedean and regular, so it

is periodic, based on the proof of (i)⇒(ii).

(iii)⇒(iv) Assume a, b ∈ S. Then ak = e and bn = f , for some e, f ∈
E(S), k ∈ Z+. Further, efe ∈ eSe = Ge, by Lemma 3.15, whence (efe)m =

e, for some m ∈ Z+. Now, for n = km we obtain that an = (anbnan)n.

(iv)⇒(i) This follows immediately.

Theorem 5.19 The following conditions on a semigroup S are equivalent:

(i) S is π-regular and a semilattice of hereditary Archimedean semigroups;

(ii) S is a semilattice of nil-extensions of periodic completely simple semi-

groups;

(iii) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n = (ab)n((ba)n(ab)n)n;

(iv) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n = ((ab)n(ba)n(ab)n)n.

Proof. (i)⇒(ii) This follows immediately from Theorem 5.18.

(ii)⇒(iii) and (ii)⇒(iv) This follows from Theorem 5.18.

(iii)⇒(i) and (iv)⇒(i) This follows immediately.
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5.3 Semilattices of Weakly Left Archimedean
Semigroups

Based on the well-known results of A. H. Clifford, from 1954, any band of

left Archimedean semigroups is a semilattice of matrices (rectangular bands)

of left Archimedean semigroups (see Corollary 3.7). The converse of this

assertion does not hold, i.e. the class of semilattices of matrices of left Archi-

medean semigroups is larger than the class of bands of left Archimedean

semigroups. In this section we characterize the semilattices of matrices of

left Archimedean semigroups, and especially matrices of left Archimedean

semigroups.

Recall that a semigroup S is called left Archimedean if a
l−→ b, for all

a, b ∈ S. Here we introduce a more general notion: a semigroup S will be

called weakly left Archimedean if ab
l−→ b, for all a, b ∈ S. By WLA we

denote the class of all weakly left Archimedean semigroups. Weakly right

Archimedean semigroups are defined dually. A semigroup S is weakly t-

Archimedean (or weakly two-sided Archimedean) if it is both weakly left and

weakly right Archimedean, i.e. if for all a, b ∈ S there exists n ∈ Z+ such

that an ∈ abSba.

First we prove the following important lemma:

Lemma 5.3 Let ξ be a band congruence on a semigroup S. Then the fol-

lowing conditions are equivalent:

(i) ξ ⊆ l ;

(ii) ξ ⊆ λ1;

(iii) any ξ-class is a left Archimedean semigroup.

Proof. (i)⇒(iii) Let A be a ξ-class of S and let a, b ∈ A. Then a2ξb, whence

a2
l−→ b, that is bn = xa2, for some n ∈ Z+, x ∈ S1. Seeing that ξ is a band

congruence, xaξxa2 = bnξb, so xa ∈ A and bn = (xa)a ∈ Aa. Therefore, A

is left Archimedean.

(iii)⇒(ii) Assume an arbitrary pair (a, b) ∈ ξ. Let c ∈ Λ1(a), that is

a
l−→ c. Then cn = xa, for some n ∈ Z+ and x ∈ S1, and xa, xb ∈ A, where

A is a ξ-class of S. Since A is left Archimedean, then there existsm ∈ Z+ and

y ∈ S1 such that (xa)m = yxb. Therefore, cmn = (xa)m = yxb, so b
l−→ c
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and c ∈ Λ1(b). Thus, Λ1(a) ⊆ Λ1(b). Similarly we prove Λ1(b) ⊆ Λ1(a).

Hence, Λ1(a) = Λ1(b), so (a, b) ∈ λ1 This proves (ii).

(ii)⇒(i) This is obvious.

Now, we give the following characterization of semilattices of weakly left

Archimedean semigroups:

Theorem 5.20 A semigroup S is a semilattice of weakly left Archimedean

semigroups if and only if

a −→ b ⇒ ab
l−→ b,

for all a, b ∈ S.

Proof. Let S be a semillatice Y of weakly left Archimedean semigroups

Sα, α ∈ Y . Assume a, b ∈ S such that a −→ b. If a ∈ Sα, b ∈ Sβ , for some

α, β ∈ Y , then β ≤ α, whence b, ba ∈ Sβ . Now, bn ∈ Sβbab ⊆ Sab, for some

n ∈ Z+, since Sβ is weakly left Archimedean. Therefore, ab
l−→ b.

Conversely, let for all a, b ∈ S, a −→ b implies ab
l−→ b. Assume

a, b ∈ S. Since a −→ ab, then based on the hypothesis, a2b
l−→ ab, i.e.

(ab)n ∈ Sa2b ⊆ Sa2S, for some n ∈ Z+. Now, based on Theorem 5.1, S

is a semilattice Y of Archimedean semigroups Sα, α ∈ Y . Further, assume

α ∈ Y, a, b ∈ Sα. Then a −→ b, so based on the hypothesis, ab
l−→ b

in S, and Lemma 4.14 (c), ab
l−→ b in Sα. Therefore, Sα is weakly left

Archimedean.

Corollary 5.10 A semigroup S is a semilattice of weakly t-Archimedean

semigroups if and only if

a −→ b ⇒ ab
l−→ b & ba

r−→ b,

for all a, b ∈ S.

The components of the semilattice decomposition treated in Theorem

5.20 will be characterized in the next theorem. Namely, we will give a

description of weakly left Archimedean semigroups.



5.3. SEMILATTICE OF WEAKLY LEFT ARCHIMEDEAN... 181

Theorem 5.21 The following conditions on a semigroup S are equivalent:

(i) S is weakly left Archimedean;

(ii) S is a matrix of left Archimedean semigroups;

(iii) S is a right zero band of left Archimedean semigroups;

(iv)
l−→ is a symmetric relation on S.

Proof. (i)⇒(iv) Let a, b ∈ S such that a
l−→ b, i.e. bn = xa, for some

n ∈ Z+, x ∈ S. Based on (i), am = yxa = ybn, for some m ∈ Z+, y ∈ S,

whence b
l−→ a.

(iv)⇒(i) This follows from the proof for (vii)⇒(v) of Theorem 4.10.

(iv)⇒(iii) Let a, b, c ∈ S such that a
l−→ b and b

l−→ c. From (iv),

c
l−→ b, so bn = xa = yc, for some n ∈ Z+, x, y ∈ S. Since (iv)⇔(i),

then there exists m ∈ Z+, z ∈ S such that cm = z(yc) = zbn = zxa ∈ Sa.

Therefore, a
l−→ c, so

l−→ is transitive, i.e.
l−→=

l−→ ∞. Now, based on

Theorem 4.10, λ1 = λ is a right zero band congruence. According to Lemma

5.3, λ1-classes are left Archimedean semigroups.

(iii)⇒(ii) This follows immediately.

(ii)⇒(i) Let S be a matrix B of left Archimedean semigroups Si, i ∈ B.

Then for a, b ∈ S, a, aba ∈ Si, for some i ∈ B, whence an ∈ Siaba ⊆ Sba, for

some n ∈ Z+.

Recall that, the relation
t−→ on a semigroup S is defined by

t−→=
l−→

∩ r−→. Now, from Theorem 5.21 and its dual we obtain the following

corollary:

Corollary 5.11 The following conditions on a semigroup S are equivalent:

(i) S is weakly t-Archimedean;

(ii) S is a matrix of t-Archimedean semigroups;

(iii)
t−→ is a symmetric relation on S;

(iv)
l−→ and

r−→ are symmetric relations on S.

By means of the following theorem we characterize the matrices of nil-

extensions of left simple semigroups.
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Theorem 5.22 The following conditions on a semigroup S are equivalent:

(i) S is weakly left Archimedean and left π-regular;

(ii) S is weakly left Archimedean and intra-π-regular;

(iii) S is a matrix of nil-extensions of left simple semigroups;

(iv) S is a right zero band of nil-extensions of left simple semigroups;

(v) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ S(ba)n;

(vi) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ Sbna.

Proof. (i)⇒(iv) This follows from Theorem 5.21 and Theorem 3.14, since

the components of any band decomposition of a left π-regular semigroup are

also left π-regular.

(iv)⇒(iii) This follows immediately.

(iii)⇒(ii) Based on follows from Theorem 5.21, since a nil-extension of a

left simple semigroup is intra-π-regular.

(ii)⇒(i) By Theorem 5.21, S is a right zero band B of left Archimedean

semigroups Si, i ∈ B. Let a ∈ Intra(S), i.e. a = xa2y, for some x, y ∈ S.

Then a = (xa)kayk, for each k ∈ Z+. Further, a ∈ Si, for some i ∈ B,

and clearly, y ∈ Si, so y
k = za2, for some k ∈ Z+, z ∈ S, since Si is left

Archimedean. Therefore, a = (xa)kayk = (xa)kaza2, whence a ∈ LReg(S),

so based on Theorem 2.4, S is left π-regular.

(iv)⇒(vi) Let S be a right zero band B of semigroups Si, i ∈ B, and for

each i ∈ B, let Si be a nil-extension of a left simple semigroup Ki. Since

(v)⇔(i), then S is a nil-extension of a left completely simple semigroup K.

Clearly, K = LReg(S) =
∪
i∈BKi. Now, for a, b ∈ S, a ∈ Si, b ∈ Sj ,

for some i, j ∈ B, and an ∈ Ki, bn ∈ Kj , for some n ∈ Z+, whence

bna ∈ Si ∩K = Ki, so a
n ∈ Kib

na ⊆ Sbna.

(vi)⇒(v) Assume a, b ∈ S. By (vii), there exists n ∈ Z+ such that

an ∈ S(ab)na ⊆ S(ba)n.

(v)⇒(i) This follows immediately.

Let T be a subsemigroup of a semigroup S. A mapping φ of S onto T is

a right retraction of S onto T if aφ = a, for each a ∈ T , and (ab)φ = a(bφ),

for all a, b ∈ S. Left retraction is defined dually. A mapping φ of S onto T

is a retraction of S onto T if it is a homomorphism and aφ = a, for each

a ∈ T . If T is an ideal of S, then φ is a retraction of S onto T if and only if

it is both a left and right retraction of S onto T . An ideal extension S of a
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semigroup T is a (left, right) retractive extension of T if there exists a (left,

right) retraction of S onto T .

By means of the next theorem we prove that such semigroups are exactly

right retractive nil-extensions of completely simple semigroups.

Theorem 5.23 The following conditions on a semigroup S are equivalent:

(i) S is a right retractive nil-extension of a completely simple semigroup;

(ii) S is weakly left Archimedean and has an idempotent;

(iii) S is a matrix of nil-extensions of left groups;

(iv) S is a right zero band of nil-extensions of left groups;

(v) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ anS(ba)n;

(vi) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ anSbna.

Proof. (iv)⇒(iii) and (iii)⇒(ii) This follows immediately.

(ii)⇒(i) Based on Theorem 3.14, S is a nil-extension of a simple semi-

group K, so it is intra π-regular and based on Theorem 2.4, S is left

π-regular, it is a right zero band B of semigroups Si, i ∈ B, and for

each i ∈ B, Si is a nil-extension of a left simple semigroup Ki. Further,

K = Intra(S) = LReg(S) =
∪
i∈BKi, based on Theorem 2.4, since the com-

ponents of any band decomposition of a left π-regular semigroup are also

left π-regular. Thus, K is left completely simple, so it is completely simple,

since it has an idempotent. Thus, for each i ∈ B, Ki is a left group, so based

on Theorem 3.7, it has a right identity ei. Define a mapping φ of S onto K

by:

aφ = aei if a ∈ Si, i ∈ B.

Clearly, aφ = a, for each a ∈ K. Further, for a, b ∈ S, a ∈ Si, b ∈ Sj ,

for some i, j ∈ B, and ab ∈ Sj , whence (ab)φ = (ab)ej = a(bej) = a(bφ).

Therefore, φ is a right retraction of S onto K.

(i)⇒(vi) Let S be a right retractive nil-extension of a completely simple

semigroup K, and let K be a right zero band B of left groups Ki, i ∈ B.

Let a, b ∈ S. Then an, bn ∈ K, for some n ∈ Z+, and an ∈ Ki, b
n ∈ Kj ,

for some i, j ∈ B. If aφ ∈ Kl, for some l ∈ B, since an+1 ∈ Ki, then

an+1 = an+1φ = an(aφ) ∈ KiKl ⊆ Kl, whence l = i. Thus, aφ ∈ Ki, so

bna = (bna)φ = bn(aφ) ∈ KjKi ⊆ Ki. Therefore, an, bna ∈ Ki, so based on

Theorem 3.7, an ∈ anKib
na ⊆ anSbna.

(vi)⇒(v) For a, b ∈ S there exists n ∈ Z+ such that an ∈ anS(ab)na =

anSa(ba)n ⊆ anS(ba)n.

(v)⇒(iv) This follows from Theorem 5.22.
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Corollary 5.12 The following conditions on a semigroup S are equivalent:

(i) S is a retractive nil-extension of a completely simple semigroup;

(ii) S is weakly t-Archimedean and intra-π-regular;

(iii) S is weakly t-Archimedean and has an idempotent;

(iv) S is a matrix of π-groups;

(v) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ (ab)nS(ba)n.

A semigroup S is hereditary weakly left Archimedean if

(∀a, b ∈ S)(∃i ∈ Z+) bi ∈ ⟨a, b⟩ab.

The next theorem gives an explanation why the notion ”hereditary weak-

ly left Archimedean” is used.

Theorem 5.24 The following conditions on a semigroup S are equivalent:

(i) S is hereditary weakly left Archimedean;

(ii) any subsemigroup of S is weakly left Archimedean;

(iii) ↑l is a symmetric relation on S.

Proof. (i)⇒(ii) Let T be a subsemigroup of S. For a, b ∈ T we have that

bi ∈ ⟨a, b⟩ab ⊆ Tab, for some i ∈ Z+. Hence, T is a weakly left Archimedean

semigroup and therefore S is a hereditary weakly left Archimedean semi-

group.

(ii)⇒(i) Assume a, b ∈ S, then ⟨ba, b⟩ is a weakly left Archimedean semi-

group, whence

bi ∈ ⟨ba, b⟩ba · b ⊆ ⟨a, b⟩ab,

for some i ∈ Z+.

(i)⇒(iii) Let a, b ∈ S such that a ↑l b, i.e. bn ∈ ⟨a, b⟩a, for some n ∈ Z+.

Then bn = xa, for some x ∈ ⟨a, b⟩. For x and a there exists m ∈ Z+,

y ∈ ⟨x, a⟩ ⊆ ⟨a, b⟩ such that am = yax = ybn, i.e. b ↑l a.
(iii)⇒(i) Let a, b ∈ S, then b ↑l ab, whence ab ↑l b, i.e. bi ∈ ⟨ab, b⟩ab ⊆

⟨a, b⟩ab, for some i ∈ Z+.

T. Tamura [15] proved that in the general case semilattices of Archi-

medean semigroups are not subsemigroup closed. Here, we prove that semi-

lattices of hereditary weakly Archimedean semigroups are subsemigroup

closed. Based on the following theorem we generalize some results obtained

by S. Bogdanović, M. Ćirić and M. Mitrović [1].
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Theorem 5.25 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of hereditary weakly left Archimedean semigroups;

(ii) (∀a, b ∈ S) a −→ b⇒ (∃i ∈ Z+) bi ∈ ⟨a, b⟩ab;
(iii) every subsemigroup of S is a semilattice of hereditary weakly left Archi-

medean semigroups.

Proof. (i)⇒(ii) Let S be a semilattice Y of hereditary weakly left Archime-

dean semigroups Sα, α ∈ Y . Assume a, b ∈ S such that a −→ b. If a ∈ Sα,

b ∈ Sβ for some α, β ∈ Y , then β ≤ α, whence b, ba ∈ Sβ . Now

bn ∈ ⟨ba, b⟩bab ⊆ ⟨a, b⟩ab,

for some n ∈ Z+. Hence, (ii) holds.

(ii)⇒(i) Assume a, b ∈ S. Since a −→ ab, then based on the hypothesis

a · ab ↑l ab, i.e. (ab)n ∈ ⟨a, ab⟩a2b, for some n ∈ Z+. Now based on Theorem

5.1 S is a semilattice Y of Archimedean semigroups Sα, α ∈ Y . Further,

assume α ∈ Y , a, b ∈ Sα. Then a −→ b, so according to the hypothesis

bn ∈ ⟨a, b⟩ab, for some n ∈ Z+. Therefore, Sα, α ∈ Y is an hereditary

weakly left Archimedean semigroup.

(ii)⇒(iii) Let T be a subsemigroup of S and a, b ∈ T such that a −→ b in

T , then a −→ b in S and based on (ii), bn ∈ ⟨a, b⟩ab ⊆ Tab, for some n ∈ Z+.

Thus, T is a semilattice of hereditary weakly left Archimedean semigroups.

(iii)⇒(i) This implication follows immediately.

Let us introduce the following notations for some classes of semigroups:

Notation Class of semigroups

B bands

RB (M) rectangular bands (matrix)

S semilattices

and by X1 ◦ X2 we denote the Mal’cev product (see page 189.) of classes X1

and X2 of the semigroups. Let

LA ◦Mk+1 =
(
LA ◦Mk

)
◦M, k ∈ Z+.

Now we can state the following:

Problem 5.1 Describe the structure of semigroups from the following class-

es

LA ◦Mk+1,
(
LA ◦Mk+1

)
◦ B,

(
LA ◦Mk+1

)
◦ S.
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The previous problem can be formulated in the same way if instead the

class LA we take the class of all power-joined semigroups, the class of all

λ-simple semigroups or the class of all λn-simple semigroups.

Exercises

1. The following conditions on a semigroup S are equivalent:

(a) S is a matrix of π-groups;
(b) S is π-regular and S satisfies the identities a0 = (a0ba0)0, (ab)0 = (a0b0)0;
(c) S is a subdirect product of a completely simple semigroup and a nil-semigroup.
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5.4 Semilattices of Left Completely Archimedean
Semigroups

In this section we introduce the notion of a left completely Archime-

dean semigroup, which is a generalization of the notion of a completely

Archimedean semigroup. We give certain characterizations of semilattices of

left completely Archimedean semigroups and some results concerning semi-

lattices of completely Archimedean semigroups.

A semigroup S is left completely Archimedean if it is Archimedean and

left π-regular. Right completely Archimedean semigroups are defined dually.

Clearly, a semigroup is completely Archimedean if and only if it is both left

and right completely Archimedean.

Certain characterizations of left completely Archimedean semigroups will

be given in the following theorem:

Theorem 5.26 The following conditions on a semigroup S are equivalent:

(i) S is left completely Archimedean;
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(ii) S is a nil-extension of a left completely simple semigroup;

(iii) S is Archimedean and has a minimal left ideal;

(iv) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ Sban.

Proof. (i)⇒(ii) Based on Theorem 3.14, S is a nil-extension of a simple

semigroup K. Clearly, K is left π-regular, so based on Theorem 2.18, K is

left completely simple.

(ii)⇒(iv) Let S be a nil-extension of a left completely simple semigroup

K. Assume a, b ∈ S. Then an, bm ∈ K, for some n,m ∈ Z+, so based on

Theorem 2.18, an ∈ Kbman ⊆ Sban.

(iv)⇒(i) This follows immediately.

(ii)⇒(iii) Let S be a nil-extension of a left completely simple semi-

group K. According to Theorem 2.18, K has a minimal left ideal L. Clearly,

L2 = L, whence SL = SLL ⊆ KL ⊆ L. Therefore, L is a left ideal of S,

and clearly, a minimal left ideal of S.

(iii)⇒(ii) It is known that the union of all minimal left ideals of S, if

it is non-empty, is the kernel of S, so based on (iii), S has a kernel K,

which is the union of all minimal left ideals of S, and hence, a union of left

simple semigroups, so it is left regular. Moreover, K is simple, so it is left

completely simple. Finally, since S is Archimedean, it is a nil-extension of

K.

Theorem 5.27 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of left completely Archimedean semigroups;

(ii) S is left π-regular and each L-class of S containing a left regular ele-

ment is a subsemigroup;

(iii) S is left π-regular and each J -class of S containing a left regular ele-

ment is a subsemigroup;

(iv) S is left π-regular and a semilattice of Archimedean semigroups;

(v) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ Sa(ab)n.

Proof. (i)⇒(ii) Let S be a semilattice Y of left completely Archimedean

semigroups Sα, α ∈ Y , and for each α ∈ Y , let Sα be a nil-extension of a

left completely simple semigroup Kα, and let Kα be a right zero band Bα
of left simple semigroups Ki, i ∈ Bα. Clearly, S is left π-regular. As in

the proof for (i)⇒(ii) of Theorem 5.5 we obtain that for each L-class L of

S containing a left regular element, there exists α ∈ Y, i ∈ Bα, such that

L = Ki, so it is a subsemigroup of S.
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(ii)⇒(v) Assume a, b ∈ S. Then (ba)n = x(ba)2n, for some n ∈ Z+, x∈ S,

whence (ba)n∈Sa(ba)n, and clearly, a(ba)n∈S(ba)n, whence (ba)nLa(ba)n,
i.e., a(ba)n ∈ L, where L is the L-class of S containing (ba)n. Based on

the hypothesis, L is a subsemigroup of S, whence (ba)na(ba)n ∈ L, i.e.,

(ba)nL(ba)na(ba)n. Therefore,

(ab)n+1 = a(ba)nb ∈ aS1(ba)na(ba)nb ⊆ Sa(ab)n+1.

(v)⇒(iv) For every a, b ∈ S there exists n ∈ Z+ such that (ab)n ∈
Sa(ab)n ⊆ Sa2S and based on Theorem 5.1 S is a semilattice of Archimedean

semigroups. It is clear that S is left π-regular.

(iv)⇒(i) This follows from Theorem 5.26, since in every semilattice de-

composition of a left π-regular semigroup, each of its components is also left

π-regular.

(iii)⇔(iv) This follows from Theorem 2.4 and Theorem 5.5.
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5.5 Bands of Left Archimedean Semigroups

In this section we give some new results concerning decompositions into

a band of left Archimedean semigroups, in general and some special cases.

Based on Theorem 5.29 we give some new characterizations of these decom-

positions in general. Then we study the bands of nil-extensions of left simple

semigroups (Theorem 5.30) and bands of nil-extensions of left groups (The-

orem 5.31). We investigate the decompositions which correspond to various

varieties of bands. All such decompositions will be characterized in Theo-

rems 5.32 and 5.34. Some of the results obtained in this section generalize

many results from the above mentioned papers, and some of them simplify

some known results.

In the following table we outline the notations for some classes of semi-

groups and some varieties of bands which will be used later.
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Notation Class of semigroups Notation Class of semigroups

LS left simple πR π-regular

LG left groups IπR intra π-regular

G groups LπR left π-regular

N nil-semigroups RπR right π-regular

Λ λ-simple CπR completely π-regular

Notation Variety of bands Notation Variety of bands

O one-element bands LN left normal bands

LZ left zero bands RN right normal bands

RZ right zero bands

For two classes X1 and X2 of semigroups, X1 ◦X2 will denote the Mal’cev

product of X1 and X2, i.e. the class of all semigroups S on which there exists

a congruence ϱ such that S/ϱ belongs to X2 and each ϱ-class of S which is

a subsemigroup of S belongs to X1. If X2 is a subclass of B, then X1 ◦ X2 is

the class of all semigroups having a band decomposition whose related factor

band belongs to X2 and the components belong to X1. Such decompositions

will be called X1 ◦X2-decompositions. On the other hand, if X2 is a subclass

of N , then X1 ◦ X2 is the class of all semigroups that are ideal extensions of

semigroups from X1 by semigroups from X2.

Here we describe some other properties of relations
l−→, l , λ1 and λ.

Lemma 5.4 If a semigroup S satisfies

(∀a, b ∈ S) ab
l−→ ab2, (1)

then for any k ∈ Z+, it satisfies

(∀a, b ∈ S) ab
l−→ abk. (2)

Proof. Suppose that S satisfies (2) for some k ∈ Z+. Assume a, b ∈ S.

Based on (1) it follows that abk = abk−1b
l−→ abk−1b2 = abk+1, that is

(abk+1)m = xabk, for some m ∈ Z+, x ∈ S1. Based on the hypothe-

sis, xab
l−→ xabk, that is (xabk)n = yxab, for some n ∈ Z+, y ∈ S1, so

(abk+1)mn = yxab. Hence, S satisfies (2) for k + 1. Now, by induction we

have that S satisfies (2) for any k ∈ Z+.
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Lemma 5.5 If a semigroup S satisfies

(∀a, b ∈ S) b2
l−→ ab, (3)

then it also satisfies

(∀a, b ∈ S) a2b
l−→ ab. (4)

Proof. Assume a, b ∈ S. Based on (3) we have a2
l−→ ba, that is (ba)n =

xa2, for some n ∈ Z+, x ∈ S1, whence (ab)n+1 = a(ba)nb = axa2b, which

gives a2b
l−→ ab.

Theorem 5.28 The following conditions on a semigroup S are equivalent:

(i) (∀a, b ∈ S) a |r b ⇒ a2
r−→ b;

(ii) (∀a, b ∈ S)(∀k ∈ Z+) ak
r−→ ab;

(iii) (∀a, b ∈ S) a2
r−→ ab;

(iv)
√
aS is a right ideal of S, for every a ∈ S;

(v)
√
R is a right ideal of S, for every right ideal R of S.

Proof. (i)⇒(iii) Since ab ∈ aS for every a, b ∈ S, we then have that (ab)n ∈
a2S. Thus a2

r−→ ab.

(iii)⇒(ii) By induction.

(ii)⇒(i) Let b = au for some u ∈ S. Then there exists n ∈ Z+ such that

bn = (au)n ∈ a2S. Thus a2
r−→ b.

(ii)⇒(iv) Let x ∈
√
aS and let b ∈ S. Then xk ∈ aS for some k ∈ Z+.

Since (xb)n ∈ xkS ⊆ aSS ⊆ aS, for some n ∈ Z+ we then have that

xb ∈
√
aS. Thus

√
aS is a right ideal of S.

(iv)⇒(iii) Let a, b ∈ S. Then a ∈
√
a2S. Since

√
a2S is a right ideal of

S, then ab ∈
√
a2S, and therefore (iii) holds.

(v)⇒(iv) Since aS is a right ideal of S, from (v) we then have that
√
aS

is also a right ideal of S.

(ii)⇒(v) Let R be a right ideal of S. Let a ∈
√
R, b ∈ S. Then ak ∈ R

for some k ∈ Z+. Now, (ab)n ∈ akS ⊆ RS ⊆ R, for some n ∈ Z+ and thus

ab ∈
√
R, i.e.

√
R is a right ideal of S.

Lemma 5.6 The following conditions on a semigroup S are equivalent:

(i)
l−→ is a transitive relation on S;



5.5. BANDS OF LEFT ARCHIMEDEAN SEMIGROUPS 191

(ii)
l−→ is a right compatible quasi-order on S;

(iii) l = λ1 on S;

(iv) (∀a ∈ S) aλ1a
2;

(v) (∀a, b ∈ S) a
l−→ b ⇒ a2

l−→ b;

(vi) (∀a, b ∈ S)(∀k ∈ Z+) bk
l−→ ab;

(vii) (∀a, b ∈ S) b2
l−→ ab;

(viii) any λ1-class of S is a subsemigroup;

(ix)
√
Sa is a left ideal of S, for any a ∈ S;

(x)
√
L is a left ideal of S, for any left ideal L of S.

Proof. Note that the equivalence of conditions (i), (iv), (v) and (ix) is a

particular case of Theorem 4.8, for n = 1, and the equivalence of (v), (vi),

(vii), (ix) and (x) is the dual of Theorem 5.28. Therefore, it remains for us to

prove that the conditions (ii), (iii) and (viii) are equivalent to the remaining

ones.

We will establish the following sequences of implications: (i)⇒(iii)⇒(iv)

and (vii)⇒(ii)⇒(viii)⇒(iv).

(i)⇒(iii). This follows from Lemma 4.6.

(iii)⇒(iv). This is obvious.

(vii)⇒(ii). Based on the equivalence of conditions (vii) and (i) we have

that
l−→ is a quasi-order. Assume that a

l−→ b, for a, b ∈ S, and assume

an arbitrary c ∈ S. Then bn = xa, for some n ∈ Z+, x ∈ S1, and based

on (vii) and Lemma 5.5 we have that b2kc
l−→ bc, for any k ∈ Z+. Assume

k ∈ Z+ such that 2k > n. Then (bc)m = yb2kc = yb2k−nxac, for some

m ∈ Z+, y ∈ S1, whence ac
l−→ bc. Hence,

l−→ is right compatible.

(ii)⇒(viii). Clearly, λ1 is a right congruence on S. Let A be a λ1-class

of S and let a, b ∈ A. Then bλ1a, whence bλ1b
2λ1ab, since λ1 is a right

congruence, and hence ab ∈ A.

(viii)⇒(iv). This is obvious.

Lemma 5.7 The following conditions on a semigroup S are equivalent:

(i) (∀a, b ∈ S) ab2
l−→ ab;

(ii) (∀a, b, c ∈ S) a |l c ∧ b |l c ⇒ ab
l−→ c.

(iii) (∀a, b ∈ S) a
l−→ b⇒ ba

l−→ b;
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(iv)
l−→ satisfies the cm-property on S;

(v) for any left ideal L of S,
√
L is an intersection of completely prime left

ideals of S.

Proof. (i)⇒(ii) Let c = ua = vb for some u, v ∈ S, whence c2 = (vb)2.

Now, there exists i ∈ Z+ such that

c2i = ((vbv)b)i ∈ S(vbv)b2 ⊆ Svb2 = S(vb)b = S(ua)b ⊆ Sab.

Thus ab
l−→ c.

(ii)⇒(i) It is clear that ab |l ab, b |l ab, for all a, b ∈ S, and based on (ii)

we have that (ab)b = ab2
l−→ ab.

(i)⇒(iv) Let a, b, c ∈ S, a
l−→ c and b

l−→ c. Then cn = xa = yb,

for some n ∈ Z+, x, y ∈ S1, and based on (i), (yb)m = zyb2, for some

m ∈ Z+, z ∈ S1, whence

cnm = (yb)m = zyb2 = z(yb)b = zuab ∈ Sab,

so ab
l−→ c.

(iv)⇒(iii) Let a, b ∈ S and a
l−→ b. Then b

l−→ b and a
l−→ b, whence

ba
l−→ b, by (iv).

(iii)⇒(i) Let a, b ∈ S. Then b
l−→ ab, so by (iii), ab2

l−→ ab.

(iv)⇒(v) Since (i)⇔(ii), then according to Lemma 5.6 we have that
l−→

is transitive, that is
l−→=

l−→ ∞, so based on Theorem 4.8, for each left ideal

L of S,
√
L is a completely semiprime left ideal of S, and based on Theorem

4.4, it is an intersection of completely prime left ideals of S.

(v)⇒(iv) Let a ∈ S. Based on (iv),
√
Sa is a completely semiprime left

ideal of S, so according to Theorem 4.8,
l−→ is transitive, i.e.

l−→=
l−→ ∞.

Now, based on Theorem 4.4,
l−→ satisfies the cm-property.

Lemma 5.8 On a semigroup S the relation η defined by

aηb⇔ (∀x ∈ S1) xa
l
xb,

is a congruence relation.
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Proof. It is evident that η is a reflexive and symmetric relation.

Now, assume a, b, c ∈ S such that aηb and bηc, i.e. xa l xb and xb l xc,

for every x ∈ S1. Then, there exist i, j, p, q ∈ Z+ such that

(xa)i ∈ Sxb, (xb)j ∈ Sxa, (xb)p ∈ Sxc, (xc)q ∈ Sxb.

By this we have that

(xa)i = uxb, (xb)j = vxa, (xb)p = wxc, (xc)q = zxb,

for some u, v, w, z ∈ S and for every x ∈ S1. Now, we obtain that

(xa)ip =
(
(xa)i

)p
= (uxb)p = ((ux)b)p = w(ux)c ∈ Sxc,

and

(xc)qj = ((xc)q)j = (zxb)j = ((zx)b)j = v(zx)a ∈ Sxa.

Hence, xa l xc, for every x ∈ S1, i.e. aηc. So, η is transitive. Thus, η is an

equivalence relation on S.

Furthermore, assume a, b, c ∈ S such that aηb, i.e. xa l xb, for every

x ∈ S1. Then, there exist i, j ∈ Z+ such that

(xa)i ∈ Sxb, (xb)j ∈ Sxa,

for every x ∈ S1. Based on this, we have that

(x(ca))i = ((xc)a)i ∈ S(xc)b = Sx(cb),

and

(x(cb))j = ((xc)b)j ∈ S(xc)a = Sx(ca).

Hence, x(ca) l x(cb), for every x ∈ S1, i.e. caηcb.

Also, we have that

(x(ac))i+1 = xa(cxa)ic = xa((cx)a)ic ∈ xa · S(cx)b · c ∈ Sx(bc),

and

(x(bc))j+1 = xb(cxb)jc = xb((cx)b)jc ∈ xb · S(cx)a · c ∈ Sx(ac).

Hence, x(ac) l x(bc), for every x ∈ S1, i.e. acηbc. Thus, η is a congruence

relation on S.
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Now we prove the following lemma.

Lemma 5.9 On any semigroup S, η = λ♭1.

Proof. Assume an arbitrary pair (a, b) ∈ η. If c ∈ Λ1(a), that is c
n = xa,

for some x ∈ S1, n ∈ Z+, then from aηb we have that xa l xb, so (xa)m ∈
Sxb, for some m ∈ Z+, which yields cnm ∈ Sb, so c ∈ Λ1(b). Thus we proved

Λ1(a) ⊆ Λ1(b). Similarly we prove Λ1(b) ⊆ Λ1(a). Therefore, aλ1b, which

means that η ⊆ λ1.

Let ϱ be an arbitrary congruence relation on S contained in λ1. Assume

an arbitrary pair (a, b) ∈ ϱ. Then for any x ∈ S1 we have that

(xa, xb) ∈ ϱ ⊆ λ1 ⊆
l
,

whence it follows that (a, b) ∈ η. Therefore, ϱ ⊆ η, which was to be proved.

This completes the proof of the lemma.

As we noted before, the first characterization of bands of left Archime-

dean semigroups was given by M. S. Putcha in [3], and this result we quote

in the next theorem as the equivalence of conditions (i) and (ii). Moreover,

we give several new characterizations of semigroups having such a decompo-

sition.

Theorem 5.29 The following conditions on a semigroup S are equivalent:

(i) S ∈ LA ◦ B;
(ii) (∀a ∈ S)(∀x, y ∈ S1) xay l xa2y;

(iii) η is a band congruence on S;

(iv) (∀a, b ∈ S) a2b
l−→ ab & ab

l−→ ab2;

(v) (∀a, b ∈ S) ab l ab2.

Proof. (i)⇔(ii). This is Theorem 5.11.

(ii)⇒(v) This is clear.

(v)⇒(ii) Clearly, b2
l−→ ab, for all a, b ∈ S, so based on Lemma 5.6, l

is a right congruence. Assume a, b, c ∈ S. Based on (v) and (iv) we have

ab l ab2 and ab l a2b, and since l is a right congruence, then abc l ab2c.

Hence, (ii) holds.
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(iv)⇒(v) Assume a, b ∈ S such that a −→ b, that is bm = xay, for

some m ∈ Z+, x, y ∈ S1. Based on (iv) we have (xa)2y
l−→ xay, that is

(xay)n = z(xa)2y = zxabm, for some n ∈ Z+, z ∈ S1. On the other hand,

according to Lemma 5.4, zxab
l−→ zxabm, that is (zxabm)k = uzaxb, for

some k ∈ Z+, u ∈ S1, which gives bmnk = uzxab, that is ab
l−→ b. Now,

according to Theorem 5.20, S is a semilattice Y of weakly left Archimedean

semigroups Sα, α ∈ Y .

Assume a, b ∈ S Then ab
l−→ ab2 in S, and ab, ab2 ∈ Sα, for some α ∈ Y ,

so based on Lemma 4.14 (c), ab
l−→ ab2 in Sα. According to Theorem 5.21,

l−→ is a symmetric relation on Sα, whence ab
2 l−→ ab.

(v)⇒(iv) This follows from Lemma 5.5.

(v)⇒(iii) This follows from Lemma 5.9.

(iii)⇒(i) This follows from Lemma 5.3.

As a consequence of the previous theorem we obtain the next corollary.

Corollary 5.13A semigroupS belongs to TA◦B if and only if a2b r ab l ab2

for all a, b ∈ S.

The concept of π-regularity, in its various forms, appeared first in ring

theory, as a natural generalization of the regularity. In semigroup theory this

concept attracts great attention both as a generalization of the regularity

and a generalization of finiteness and periodicity. On the other hand, there

are specific relations between the π-regularity and the Archimedeanness, as

was shown by M. S. Putcha in [2]. That motivates us to investigate LA◦B-
decompositions of π-regular semigroups.

We do it first for intra π-regular and left π-regular semigroups. It is

interesting to note that for left π-regular semigroups only one half of the

condition (v) of Theorem 5.29 is enough.

Theorem 5.30 The following conditions on a semigroup S are equivalent:

(i) S ∈ LπR∩ LA ◦ B;
(ii) S ∈ IπR∩ LA ◦ B;
(iii) S ∈ (LS ◦ N ) ◦ B;
(iv) S ∈ LπR and ab2

l−→ ab, for all a, b ∈ S;

(v) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ S(ab2)n.
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Proof. (iii)⇒(i) and (i)⇒(ii) This is trivial.

(ii)⇒(i) Since IπR∩LA ◦B ⊆ IπR∩WLA◦ S = (IπR∩WLA) ◦ S =

(LπR ∩WLA) ◦ S = LπR ∩WLA ◦ S, based on Theorems 5.20, 5.21 and

5.22, then (iii) implies (ii).

(i)⇒(iii) As we all know, each component of a band decomposition of a

left π-regular semigroup is also left π-regular. Based on this and Theorem

3.14 we obtain (i).

(iii)⇒(v) Let S be a band I of semigroups Si, i ∈ I, and for each i ∈ I,

let Si be a nil-extension of a left simple semigroup Ki. Then for all a, b ∈ S,

ab, ab2 ∈ Si, for some i ∈ I, and (ab)n, (ab2)n ∈ Ki, for some n ∈ Z+, whence

(ab)n ∈ Ki(ab
2)n ⊆ S(ab2)n.

(v)⇒(iv) This is obvious.

(iv)⇒(i) Based on Theorem 5.1, S is a semilattice Y of Archimedean

semigroups Sα, α ∈ Y . It was proved in Theorem 5.26 that A ∩ LπR =

(LS ◦ RZ) ◦ N , so for any α ∈ Y , Sα is a nil-extension of a semigroup Kα

which is a right zero band Iα of left simple semigroups Ki, i ∈ Iα.

Assume α ∈ Y , i ∈ Iα, and set Si =
√
Ki. Further, let i, j ∈ Iα, a ∈

Si, b ∈ Sj , and assume m ∈ Z+ such that bm ∈ Kj . By (iv) and based on

Lemma 5.4, abm+1 l−→ ab in S, so based on Lemma 4.14 (c), (ab)n = xabm+1,

for some n ∈ Z+, x ∈ S1
α. Assume k ∈ Z+ such that (ab)k ∈ Kα. Then

(ab)k+n = (ab)k(xab)bm ∈ KαSαKi ⊆ KαKi ⊆ Ki,

so ab ∈ Sj . Hence, for any α ∈ Y , Sα is a right zero band Iα of semigroups

Si, i ∈ Iα, and for any i ∈ Iα, Si is a nil-extension of a left simple semigroup

Ki. Now, according to Theorem 5.21, for any α ∈ Y ,
l−→ is a symmetric

relation on Sα, and as in the proof of (iv)⇒(v) of Theorem 5.29 we obtain

that ab l ab2, for all a, b ∈ S. Hence, by Theorem 5.29 we obtain (ii).

For π-regular semigroups we have the following:

Theorem 5.31 The following conditions on a semigroup S are equivalent:

(i) S ∈ RπR∩ LA ◦ B;
(ii) S ∈ πR∩ LA ◦ B;
(iii) S ∈ CπR∩ LA ◦ B;
(iv) S ∈ (LG ◦ N ) ◦ B;
(v) S ∈ πR and ab2

l−→ ab, for all a, b ∈ S;
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(vi) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ (ab)nS(ab2)n.

Proof. (iv)⇒(iii) and (vi)⇒(v) This is clear.

(i)⇔(iii) and (ii)⇔(iii) This can be proved in a similar way as (ii)⇒(i)

of Theorem 5.30, using Theorems 5.22 and 5.23.

(iii)⇒(iv) This follows from the arguments similar to the ones used in

(i)⇒(iii) of Theorem 5.30.

(iv)⇒(vi) This can be proved in a similar way as (iii)⇒(v) of Theorem

5.30, using Theorem 3.7.

(v)⇒(ii) Let a ∈ Reg(S), a′ ∈ V (a). Then a′a2
l−→ a′a, whence a ∈

LReg(S), so S is left π-regular, and based on Theorem 5.30, S ∈ LA ◦ B.

Some other characterizations of semigroups from (LG◦N )◦B one can ob-

tain by the results concerning their dual semigroups, given by L. N. Shevrin

in [5].

Corollary 5.14 The following conditions on a semigroup S are equivalent:

(i) S ∈ (G ◦ N ) ◦ B;
(ii) S ∈ IπR∩ T A ◦ B;
(iii) S ∈ πR∩ T A ◦ B;
(iv) S ∈ πR and a2b

r−→ ab & ab2
l−→ ab, for all a, b ∈ S.

Our next goal is to characterize the semigroups from LA ◦ V , for an

arbitrary variety of bands V.
The lattice LVB of all varieties of bands was studied by P. A. Birjukov,

C. F. Fennemore, J. A. Gerhard, M. Petrich and others. Here we use the

characterization of LVB given by J. A. Gerhard and M. Petrich in [1]. Using

induction they defined three systems of words as follows:

G2 = x2x1, H2 = x2, I2 = x2x1x2,

Gn = xnGn−1, Hn = xnGn−1xnHn−1, In = xnGn−1xnIn−1,

(for n ≥ 3), and they shown that the lattice LVB can be represented by

the graph given in Figure 1.

Let us give some additional explanations concerning the graph from Fig-

ure 1. Throughout this section, for a semigroup identity u = v, based

on [u = v] we will denote the variety of bands determined by this iden-

tity. In other words, this is a shortened notation for the semigroup variety
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[x2 = x, u = v]. For a word w, w denotes the dual of w, that is, the word

obtained from w by reversing the order of the letters in w. In the graph

from Figure 1 we have labelled only the nodes which represent varieties of

bands that will appear in our further investigations.
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Figure 1.

The central point of this section is the following theorem:

Theorem 5.32 Let V be an arbitrary variety of bands. Then

LZ◦V =



LZ, if V ∈ [O,LZ];
RB, if V ∈ [RZ,RB];
[G2 = I2] , if V ∈ [S, [G2 = I2]] ;
[G3 = I3] , if V ∈ [RN , [G3 = H3]] ;

[Gn+1 = In+1] , if V ∈
[
[Gn = In], [Gn+1 = In+1]

]
, n ≥ 2;

[Gn+1 = Hn+1] , if V ∈
[
[Gn = Hn], [Gn+1 = Hn+1]

]
, n ≥ 3.
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Proof. Consider the congruence η on a band S. Since λ1 = l = L on

S, then η = L♭. It is known that the Green relation L on S is defined by

(a, b) ∈ L ⇔ ab = a & b = ba, whence we conclude that

(a, b) ∈ η ⇔ (∀x ∈ S1) xa = xaxb & xb = xbxa. (5)

But, if xa = xaxb and xb = xbxa, for any x ∈ S, then for x = a we have

a = ab, and for x = b we have b = ba, so the condition (5) is equivalent to

(a, b) ∈ η ⇔ (∀x ∈ S) xa = xaxb & xb = xbxa. (6)

Let [V1,V2] be some of the intervals of LVB which appear in the formu-

lation of the theorem. We will prove:

S ∈ V2 ⇔ S/η ∈ V1, (7)

for any band S.

Case 1: [V1,V2] = [O,LZ]. This case is trivial.

Case 2: [V1,V2] = [RZ,RB]. In this case the assertion (7) is an imme-

diate consequence of the construction of a rectangular band.

Case 3: [V1,V2] = [S, [G2 = I2]].

Case 4: [V1,V2] = [RN , [G3 = H3]].

Case 5: [V1,V2] = [G2 = I2, [G3 = I3]].
1

Note that in all of these cases the Green relation L is a congruence, i.e.

η = L. In other words, for a band S we have that L is a congruence on S if

and only if S ∈ [G3 = I3].

Case 6: [V1,V2] = [Gn = In, [Gn+1 = In+1]], n ≥ 3. Here we have that

V2 = [xn+1Gn = xn+1Gnxn+1In].

Let S be an arbitrary band. Suppose first that S ∈ V2. For 1 ≤ i ≤ n

let the letter xi get a value ai in S. Then the words Gn and In get some

values u and v in S, respectively. To prove that S/η ∈ V1 = [Gn = In], it is

enough to prove that (u, v) ∈ η.

Assume an arbitrary a ∈ S. If the letter xn+1 assumes in S a value a,

then from S ∈ V2 it follows that au = auav. Since the words Gn and In have

the same letters, then (u, v) ∈ D and (au, av) ∈ D. But, any D-class of S is

a rectangular band, whence by au = auav it follows avau = avauav = av.

1For details of the proof for cases 3, 4 and 5 see Section II 3 of book [10] by M. Petrich.
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Therefore, au = auav and av = avau, for any a ∈ S, whence (u, v) ∈ η,

which was to be proved.

Conversely, assume that S/η ∈ V1. For 1 ≤ i ≤ n+1 let the letter xi get

an arbitrary value ai in S. Then the words Gn and In get some values u and

v in S, respectively, and (u, v) ∈ η, since S/η ∈ V1 = [Gn = In]. But, from

(u, v) ∈ η it follows that an+1u = an+1uan+1v, by (6), whence we conclude

that S ∈ [xn+1Gn = xn+1In] = V2. This completes the proof of this case.

Case 7: [V1,V2] = [Gn = Hn, [Gn+1 = Hn+1]], n ≥ 3. This case is

analogous to the previous one.

Taking into consideration all the cases, we have completed the proof of

the theorem.

By means of a straightforward verification we give the following lemma:

Lemma 5.10 Let C be a class of semigroups and let B1 and B2 be two classes

of bands. Then C ◦ (B1 ◦ B2) ⊆ (C ◦ B1) ◦ B2.

A particular case of the previous lemma is the well-known result of A.

H. Clifford from 1954 (see Corollary 3.7) that asserts that X ◦ B = X ◦
(RB ◦ S) ⊆ (X ◦ RB) ◦ S, for an arbitrary class X of semigroups. For the

class G of all groups, G ◦ B = G ◦ (RB ◦ S) is the class of all semigroups

that are bands of groups, and (G ◦ RB) ◦ S is the class of all semigroups

that are unions of groups. As we all know, these classes are different, so

G ◦ (RB ◦ S) $ (G ◦ RB) ◦ S. This proves that the inclusion in Lemma 5.10

can be proper.

The following theorem gives a very important result. It gives the con-

ditions under which a band of semigroups from any class of semigroups

coincides with a semilattice of semigroups from the same class.

Theorem 5.33 Let C be a class of semigroups. Then

C ◦ RB ⊆ C ⇔ C ◦ B = C ◦ S.

Proof. Let C ◦ RB ⊆ C. Then based on Lemma 5.10 and Corollary 3.6 we

have that

C ◦ B = C ◦ (RB ◦ S) ⊆ (C ◦ RB) ◦ S ⊆ C ◦ S ⊆ C ◦ B.

Hence, C ◦ B = C ◦ S.
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Conversely, from the hypothesis we have that

C = C ◦ O = C ◦ S = C ◦ RB.

Using the above theorem and lemma we prove the following:

Theorem 5.34 Let V be an arbitrary variety of bands. Then

LA ◦ V =



LA, if V ∈ [O,LZ];
LA ◦ RZ, if V ∈ [RZ,RB];
LA ◦ S, if V ∈ [S, [G2 = I2]];
LA ◦ RN , if V ∈ [RN , [G3 = H3]];

LA ◦ [Gn = In] if V ∈ [[Gn = In], [Gn+1 = In+1]], n ≥ 2;

LA ◦ [Gn = Hn] if V ∈ [[Gn = Hn], [Gn+1 = Hn+1]], n ≥ 3.

Proof. One verifies easily that LA ◦ LZ = LA. Further, let [V1,V2] be

some of the intervals of the lattice LVB which appears in the formulation of

the theorem, and let V ∈ [V1,V2]. According to Theorem 5.32 we have that

V2 = LZ ◦ V1, whence

LA◦V1 ⊆ LA◦V ⊆ LA◦V2 = LA◦ (LZ ◦V1) ⊆ (LA◦LZ) ◦V1 = LA◦V1,

using Lemma 5.10. Therefore, LA ◦ V1 = LA ◦ V = LA ◦ V2, which was to

be proved.

Finally, we prove the following:

Theorem 5.35 Let V be an arbitrary variety of bands and let S be a semi-

group. Then S ∈ LA ◦ V if and only if S/η ∈ V.

Proof. Let S ∈ LA ◦ V. Then there exists a congruence ξ on S such that

S/ξ ∈ V and any ξ-class of S is in LA. Based on Lemma 5.3 we have ξ ⊆ λ1,

and Lemma 5.9, ξ ⊆ η. Therefore, S/η is a homomorphic image of S/ξ and

S/ξ ∈ V, whence S/η ∈ V, which was to be proved.

Conversely, if S/η ∈ V, then based on Lemma 5.3 we have that any

η-class is in LA, and hence, S ∈ LA ◦ V.

Lemma 5.11 Let S be a semigroup. Then

Λ = Λ ◦ LZ.
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Proof. Let S be a left zero band Y of λ-simple semigroups Sα, α ∈ Y .

Assume a, b ∈ S, then a ∈ Sα, b ∈ Sβ , for some α, β ∈ Y , whence ab ∈
SαSβ ⊆ Sαβ = Sα. Hence, ab, a ∈ Sα. So ab

l−→ ∞a, whence b
l−→ ∞a. In

a similar way we can prove that a
l−→ ∞b. Thus a

l−→ ∞ ∩ (
l−→ ∞)−1b and

based on Lemma 4.6 we have that aλb. Therefore, S is a λ-simple semigroup.

The converse follows immediately.

Our next goal is to characterize semigroups from Λ ◦ V, for an arbitrary

variety of bands V.

Theorem 5.36 Let V be an arbitrary variety of bands. Then

Λ ◦ V =



Λ, if V ∈ [O,LZ];
Λ ◦ RZ, if V ∈ [RZ,RB];
Λ ◦ S, if V ∈ [S, [G2 = I2]] ;
Λ ◦ RN , if V ∈ [RN , [G3 = H3]] ;

Λ ◦
[
Gn = In

]
, if V ∈

[
[Gn = In], [Gn+1 = In+1]

]
, n ≥ 2;

Λ ◦
[
Gn = Hn

]
, if V ∈

[
[Gn = Hn], [Gn+1 = Hn+1]

]
, n ≥ 3.

Proof. Based on Lemma 5.11 we have that Λ ◦ LZ = Λ. Let V ∈ [V1,V2],

whence [V1,V2] is some of the intervals of the lattice LVB from the theorem.

Based on Theorem 5.32 we have that V2 = LZ ◦ V1, whence

Λ◦V1 ⊆ Λ◦V ⊆ Λ◦V2= Λ◦(LZ◦V1) ⊆ (Λ◦LZ)◦V1= Λ◦V1 (by Lemma 5.11).

Therefore, Λ ◦ V1 = Λ ◦ V = Λ ◦ V2.

Note that the corresponding results can be obtained for bands of left

simple semigroups and bands of left groups.

Exercises

1. The following conditions on a semigroup S are equivalent:

(i) S is a right weakly commutative;
(ii) S is a semilattice of left Archimedean semigroups;
(iii) (∀a, b ∈ S) a | b ⇒ (∃i ∈ Z+) a | lbi;
(iv) N(x) = {y ∈ S | (∃n ∈ Z+)xn ∈ Sy}, for every x ∈ S;
(v) (∀a, b ∈ S) ab l ba;

(vi) (∀a, b ∈ S) a b ⇒ a2 l b;

(vii) (∀a, b, c ∈ S) a b & b c ⇒ a l c;

(viii) (∀a, b, c ∈ S) a c & b c ⇒ ab l c.
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2.
√
R is a subsemigroup of S, for every right ideal R of S if and only if

(∀a, b ∈ S)(∀k, l ∈ Z+) ak
r−→ ab ∨ bl

r−→ ab.

3. The radical of every right ideal of a semigroup S is a bi-ideal of S if and only if

(∀a, b, c ∈ S)(∀k, l ∈ Z+) ak
r−→ abc ∨ cl

r−→ abc. (1)

4. The radical of every ideal of a semigroup S is a bi-ideal of S if and only if

(∀a, b, c ∈ S)(∀k, l ∈ Z+) ak −→ abc ∨ cl −→ abc.
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Chapter 6

Semilattice of k-Archimedean
Semigroups

In this section, on an arbitrary semigroup we define a few different types

of relations and its congruence extensions. Also, we describe the structure

of semigroups in which these relations are band (semilattice) congruences.

The components of such obtained band (semilattice) decompositions usually

are in some sense simple semigroups.

L. N. Shevrin proved that a completely π-regular semigroup R(D) is

transitive if and only if it is a semilattice congruence. A more general result

has been obtained by M. S. Putcha who proved that in a completely π-

regular semigroup the transitive closure of R(J ) is the smallest semilattice

congruence. Since D = J on any completely π-regular semigroup, Shevrin’s

result can also be derived from the one of M. S. Putcha.

Various characterizations of semigroups in which the radical R(ϱ) (T (ϱ)),

where ϱ ∈ {J ,L,R,D,H}, is a band (semilattice) congruence have been

investigated by S. Bogdanović and M. Ćirić, S. Bogdanović, M. Ćirić and Ž.

Popović and S. Bogdanović, Ž. Popović and M. Ćirić.

In this section we define one new radical ϱk, k ∈ Z+, of a relation ϱ

on a semigroup S and using it we describe the structure of a semigroup

in which this radical is a band (semilattice) congruence for some Green’s

relation. For these descriptions of the structure of semigroups we consider

some new types of k-regularity of semigroups and also some new types of k-

Archimednness of semigroups. Also, here we characterize the semilattices of

205



206 CHAPTER 6. SEMILATTICES OF K-ARCHIMEDEAN..

k-Archimedean semigroups and describe the hereditary properties of semi-

lattices of k-Archimedean semigroups.

Very interesting decompositions are band decompositions in which com-

ponents are power-joined, periodic and both power-joined and periodic semi-

groups. These decompositions were studied by T. Tamura, T. Nordahl, K.

Iseki and S. Bogdanović.

T. Tamura studied commutative Archimedean semigroups which have

a finite number of power-joined components. Bands of power-joined semi-

groups were studied by T. Nordahl, in medial cases, and by S. Bogdanović,

in general. K Iseki considered periodic semigroups which are the disjoint

union of semigroups, each containing only one idempotent. S. Bogdanović

considered bands of periodic power-joined semigroups.

In this section, on a semigroup S, for k ∈ Z+, we define some new equiv-

alence relations η, ηk and τ . If these equivalences are band congruences then

they makes band decompositions of η-simple (power-joined) semigroups, and

band decompositions of two types of periodic power-joined semigroups (ηk-

simple and τ -simple semigroups). The obtained results generalize the results

of the above mentioned authors.

It is known that Lallement’s lemma does not hold true in arbitrary semi-

groups. In fact, this lemma fails to hold in the semigroup of all positive

integers under addition, since it does not have an idempotent element but

the entire semigroup can be mapped onto a trivial semigroup, which of course

is an idempotent.

Idempotent-consistent semigroups are defined by the property that each

idempotent in a homomorphic image of a semigroup has an idempotent pre-

image. In a way this property is another formulation for the well known

Lallement’s lemma. Idempotent-consistent semigroups were studied by P.

M. Higgins, P. M. Edwards, P. M. Edwards, P. M. Higgins and S. J. L.

Kopamu, S. Bogdanović, H. Mitsch, S. J. L. Kopamu and S. Bogdanović, Ž.

Popović and M. Ćirić.

Here on an arbitrary semigroup we introduce a system of congruence

relations and using them we give a new version of the proof of Lallement’s

lemma. The results presented in this section are generalizations of results

obtained by the above mentioned authors.
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6.1 k-Archimedean Semigroups

Let k ∈ Z+ be a fix integer. A semigroup S is k-nil if ak = 0 for every

a ∈ S. This notion was introduced by T. Tamura in [17]. A semigroup

S is nilpotent if Sn = {0}, for some n ∈ Z+. All finite nil-semigroups are

nilpotent. An ideal extension S of a semigroup I is a k-nil-extension of I if

S/I is a k-nil-semigroup.

In the following table we introduce the notations for some new classes of

semigroups.

Notation Class of semigroups Definition

kR k-regular (∀a ∈ S) ak ∈ akSak

LkR left k-regular (∀a ∈ S) ak ∈ Sak+1

RkR right k-regular (∀a ∈ S) ak ∈ ak+1S

CkR completely k-regular (∀a ∈ S) ak ∈ ak+1Sak+1

IkR intra k-regular (∀a ∈ S) ak ∈ Sa2kS

kA k-Archimedean (∀a, b ∈ S) ak ∈ S1bS1

LkA left k-Archimedean (∀a, b ∈ S) ak ∈ S1b

RkA right k-Archimedean (∀a, b ∈ S) ak ∈ bS1

T kA t-k-Archimedean (∀a, b ∈ S) ak ∈ bS1 ∩ S1b

Semigroups from the class kR were introduced by K. S. Harinath in [2].

The other types of semigroups were introduce by S. Bogdanović, Ž. Popović

and M. Ćirić in [1] for the first time.

We give here one very simple example.

Example 6.1 Let S be a semigroup defined by Cayley’s table

e a b c d

e e a b c d
a a b b c d
b b b b c d
c c c c d b
d d d d b c

.

It is easy to see that the subsemigroup {a, b, c, d} of S is t-2-Archimedean.

Also, a /∈ Reg(S), i.e. S is not regular. Since a2 = a3 ∈ Reg(S) and

{e, b2, c2, d2} ⊆ Reg(S), then S is a 2-regular semigroup.
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Based on the following lemmas we describe the structure of k-Archime-

dean, left k-Archimedean and k-regular and Archimedean semigroups.

Lemma 6.1 Let k ∈ Z+. Then the following conditions on a semigroup S

are equivalent:

(i) S ∈ kA;

(ii) S ∈ A ∩ IkR;

(iii) S is a k-nil-extension of a simple semigroup.

Proof. (i)⇒(ii) This implication follows immediately.

(ii)⇒(iii) Based on Theorem 3.14, S is a nil-extension of a simple semi-

group I. Let a ∈ S − I, b ∈ I. Then ak = xa2ky, for some x, y ∈ S,

whence

ak = xkak(aky)k ∈ xkakSbS ⊆ SbS.

Thus, S is a k-nil-extension of a simple semigroup I.

(iii)⇒(i) This implication follows immediately.

Lemma 6.2 Let k ∈ Z+. Then the following conditions on a semigroup S

are equivalent:

(i) S ∈ LkA;

(ii) S ∈ LA ∩ LkR;

(iii) S is a k-nil-extension of a left simple semigroup.

Lemma 6.3 Let k ∈ Z+. Then the following conditions on a semigroup S

are equivalent:

(i) S ∈ kR∩A;

(ii) S ∈ πR∩ kA;

(iii) S is a k-nil-extension of a simple regular semigroup.

Proof. (i)⇒(ii) Let a, b ∈ S, then ak = akxak, for some x ∈ S. Since S is

Archimedean, then for akx and b we have that akx ∈ SbS, whence

ak = akxak ∈ SbSak ⊆ SbS.

Hence, ak ∈ SbS, i.e. S is k-Archimedean.
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(ii)⇒(iii) Based on Lemma 6.1, S is a k-nil-extension of a simple semi-

group and based on Theorem 3.15, S is a k-nil-extension of a simple regular

semigroup.

(iii)⇒(i) Let S be a k-nil-extension of a simple regular semigroup I.

Assume a ∈ S, then ak ∈ I. So, ak ∈ Reg(S). Clearly, S is an Archimedean

semigroup.

Let k ∈ Z+ be a fix integer. A semigroup S is a k-group if S is k-regular

and if it has only one idempotent. By means of the following theorem we

describe the structure of the k-group.

Theorem 6.1 Let k ∈ Z+. The following conditions on a semigroup S are

equivalent:

(i) S ∈ T kA;

(ii) S ∈ T A ∩ CkR;

(iii) S is a k-group;

(iv) S is a k-nil-extension of a group;

(v) (∀a, b ∈ S) ak ∈ bSb.

Proof. (i)⇒(ii) Let S be a t-k-Archimedean semigroup. Then S is both

left k-Archimedean and right k-Archimedean. So, based on Lemma 6.2 and

its dual, we have that S is t-Archimedean and both left k-regular and right

k-regular. Thus, it is evident that S is t-Archimedean and a completely

k-regular semigroup. Hence, (ii) holds.

(ii)⇒(iii) Let (ii) hold. Then it is clear that S is k-regular and that S con-

tains idempotent elements. Assume e, f ∈ E(S). Since S is t-Archimedean,

then e = fx and f = ye, for some x, y ∈ S1. So, we obtain that e = fx =

f(fx) = fe = (ye)e = ye = f . Hence, S has only one idempotent element.

Thus, S is a k-group.

(iii)⇒(iv) Let (iii) hold. It is clear that S is a π-group. So, based on

Theorem 3.18, S is a nil-extension of a group G. Assume a ∈ S −G. Then

an ∈ G, for some n ∈ Z+. Now, we make a distinction between two cases. If

k ≥ n, then ak = anak−n ∈ GS ⊂ G, i.e. S is a k-nil-extension of a group G.

If k < n, then since S is k-regular and since S has only one idempotent, from

ak = akxak, for some x ∈ S, and from akx = xak ∈ E(S), we obtain that

ak = aikx, for every i ∈ Z+. Assume j ∈ Z+ such that n < jk. Then we

have that ak = ajkx = anajk−nx ∈ GS ⊆ G, whence S is a k-nil-extension

of a group G. Thus, (iv) holds.
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(iv)⇒(v) Let S be a k-nil-extension of a group G. Assume a, b ∈ S.

Then ak ∈ G, whence bak, akb ∈ G and since G is a group, then we have

that ak ∈ bakGakb ⊆ bakSakb ⊆ bSb.

(v)⇒(i) If (v) holds, then it is evident that S is a t-k-Archimedean semi-

group.

By means of the following theorem we describe the structure of left k-

Archimedean semigroups.

Theorem 6.2 Let k ∈ Z+. The following conditions on a semigroup S are

equivalent:

(i) S ∈ LkA and it has an idempotent;

(ii) S ∈ kR and E(S) is a left zero band;

(iii) S is a k-nil-extension of a left group;

(iv) (∀a, b ∈ S) ak ∈ akSakb.

Proof. (i)⇒(ii) Let S be a left k-Archimedean semigroup and let e ∈ E(S).

Assume a ∈ S. Then e ∈ S1a and ak ∈ S1e. Since ak = xe, for some x ∈ S1,

then ake = (xe)e = xe = ak. Also, since S is left k-Archimedean and

e, ak ∈ S, then e = ek ∈ S1ak. Thus, ak = ake ∈ akS1ak ⊆ akSak, for all

a ∈ S, i.e. S is k-regular. Now, assume f, g ∈ E(S). Then f ∈ S1g, i.e.

f = yg, for some y ∈ S1. Hence fg = (yg)g = yg = f . Therefore, E(S) is a

left zero band.

(ii)⇒(i) Let S be k-regular and let E(S) be a left zero band. According

to Theorem 3.17, S has an idempotent. Assume a, b ∈ S. Then ak = akxak

and bk = bkybk, for some x, y ∈ S. Let e = xak and f = ybk. Then

e2 = ee = xakxak = xak = e and f2 = ff = ybkybk = ybk = f , i.e.

e, f ∈ E(S). Since E(S) is a left zero band then ef = e, i.e. xakybk = xak.

Thus, we obtain that ak = akxak = akxakybk ∈ Sb, for every a, b ∈ S, i.e. S

is left k-Archimedean. Therefore, (i) holds.

(i)⇒(iii) Let S be a left k-Archimedean semigroup and let e ∈ E(S).

Based on Lemma 6.2, S is a k-nil-extension of a left simple semigroup K.

Then e = ek ∈ K and based on Theorem 3.7, K is a left group. Thus, (iii)

holds.

(iii)⇒(iv) Let S be a k-nil-extension of a left group K. Assume a, b ∈ S.

Then ak ∈ K, whence akb ∈ K and based on Theorem 3.7 we obtain that

ak ∈ akKakb ⊆ akSakb. Thus, (iv) holds.
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(iv)⇒(i) If (iv) holds then it is evident that S is a left k-Archimedean

semigroup. Since from (iv) it immediately follows that S is a k-regular, then

based on Theorem 3.17, S has an idempotent.
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6.2 Bands of Jk-simple Semigroups

Recall that by J , L, R and H we denote Green’s equivalences on a

semigroup S. Here we define a new radical ϱk, k ∈ Z+ by

(a, b) ∈ ϱk ⇔ (ak, bk) ∈ ϱ.

It is clear that

ϱk ⊆ T (ϱ) ⊆ R(ϱ).

If ϱ ∈ {J ,L,R,D,H}, then it is easy to see that ϱk, k ∈ Z+ is an equivalence

relation. So, in this case these equivalences are very similar to Green’s

equivalences and they can be considered its generalizations. The conditions

under which the relations R(ϱ) and T (ϱ) are transitive (i.e. are equivalences)

have been discussed by L. N. Shevrin in [4], by S. Bogdanović and M. Ćirić

in [19], [21] and by S. Bogdanović, M. Ćirić and Ž. Popović in [1].

We start with a few lemmas in which we give some general characteristics

of band congruences on an arbitrary semigroup.

Lemma 6.4 Let ξ be a congruence relation on a semigroup S. Then R(ξ) =

ξ if and only if ξ is a band congruence on S.

Proof. Let R(ξ) = ξ. Since ξ is reflexive, then for every a ∈ S we have

that

a2 ξ a2 ⇔ (a1)2 ξ (a2)1 ⇔ aR(ξ) a2 ⇔ a ξ a2.

Thus, ξ is a band congruence on S.
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Conversely, let ξ be a band congruence on a semigroup S. Since the

inclusion ξ ⊆ R(ξ) always holds, then it remains for us to prove the opposite

inclusion. Also, since ξ is a band congruence on S, then we have that

(∀a ∈ S)(∀k ∈ Z+) a ξ ak.

Now assume a, b ∈ S such that aR(ξ) b. Then ai ξ bj , for some i, j ∈ Z+,

and based on the previously stated, we have that a ξ ai ξ bj ξ b. Thus a ξ b.

Therefore, R(ξ) ⊆ ξ, i.e. R(ξ) = ξ.

Lemma 6.5 Let ξ be an equivalence relation on a semigroup S. Then the

following conditions are equivalent:

(i) ξ is a band congruence;

(ii) ξ = ξ♭ = R(ξ);

(iii) ξ = R(ξ) and ξ is a congruence on S.

Proof. (i)⇔(ii) This equivalence follows from Lemmas 6.4 and 5.1.

(i)⇔(iii) This equivalence follows from Lemma 6.4.

Let k ∈ Z+ be a fix integer. On S we define the following relations by

(a, b) ∈ Jk ⇔ (ak, bk) ∈ J ;

(a, b) ∈ J ♭
k ⇔ (∀x, y ∈ S1) (xay, xby) ∈ Jk.

It is easy to verify that Jk is an equivalence relation on a semigroup S.

But R(J ) and T (J ) are not equivalences (see L. N. Shevrin [4]).

A semigroup S is Jk-simple if

(∀a, b ∈ S) (a, b) ∈ Jk.

It is clear that a semigroup S is Jk-simple if and only if S is k-Archime-

dean. In the remainder of our study there is no distinction between these

notions.

Example 6.2 It is not difficult to verify that on the semigroup S, as shown

in the table in Example 6.1, we have that the relation

J=J1={(e, e), (a, a), (b, b), (c, c), (d, d), (b, c), (c, b), (b, d), (d, b), (c, d), (d, c)},
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is an equivalence and it is not a band congruence, since (a, a2) = (a, b) /∈ J .

Further, the relation

J2 = {(e, e), (a, a), (b, b), (c, c), (d, d), (a, b), (a, c), (a, d), (b, a), (b, c), (b, d),

(c, a), (c, b), (c, d), (d, a), (d, b), (d, c)},

is a band congruence on S, and S is a band of 2-Archimedean semigroups.

Example 6.3 Let S = T e be the semigroup T with an identity adjoined,

where T is from the Example of T. Tamura in [17]. It is clear that S is

a band (two-element chain) of two semigroups {e} and T , and then the

corresponding band congruence is J2.

The following lemma holds.

Lemma 6.6 Let S be a semigroup and let k ∈ Z+. If S ∈ kA ◦ RB, then
S ∈ kA.

Proof. Let S be a rectangular band I of k-Archimedean semigroups Si,

i ∈ I. Assume a, b ∈ S, then there exist i, j ∈ I such that aba ∈ SiSjSi ⊆
Siji ⊆ Si. Thus a, aba ∈ Si, whence ak ∈ SiabaSi ⊆ SbS. Hence, S is

k-Archimedean.

Based on the following result we describe the structure of a semigroup

which can be decomposed into a band (semilattice) of Jk-simple semigroups.

Theorem 6.3 Let k ∈ Z+. Then the following conditions on a semigroup

S are equivalent:

(i) Jk is a band congruence;

(ii) Jk = J ♭
k = R(Jk);

(iii) S ∈ kA ◦ B;
(iv) S ∈ kA ◦ S;
(v) J ♭

k is a band congruence;

(vi) (∀a ∈ S)(∀x, y ∈ S1) xayJk xa2y;
(vii) J ♭

k = R(J ♭
k );

(viii) S ∈ A ◦ S ∩ IkR.
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Proof. (i)⇔(ii) This follows from Lemma 6.5.

(ii)⇒(iii) For all a ∈ S, x, y ∈ S1, by (ii) we have that xayJk xa2y.
From this and based on Theorem 5.1 we have that S is a semilattice of

Archimedean semigroups. Also, since aJk a2 implies ak J a2k, for every

a ∈ S, then S is intra k-regular. Thus, based on Lemma 6.1, S is a semilattice

of k-Archimedean semigroups. Thus, (iii) holds.

(iii)⇒(i) Let S be a semilattice Y of Jk-simple semigroups Sα, α ∈ Y .

Assume a, b, c ∈ S, then a ∈ Sα, b ∈ Sβ and c ∈ Sγ , for some α, β, γ ∈ Y .

Let (a, b) ∈ Jk, then (ak, bk) ∈ J , whence α = β, i.e. a, b ∈ Sα. Further,

ac, bc, ca, cb ∈ Sαγ . Hence, acJk bc and caJk, cb, i.e. Jk is a congruence.

Since a, a2 ∈ Sα, α ∈ Y , we then have that aJk a2, i.e. Jk is a band

congruence on S.

(iii)⇔(iv) This equivalence follows from Theorem 5.33 and Lemma 6.6.

(iii)⇒(vi) Let S be a band Y of Jk-simple semigroups Sα, α ∈ Y . Assume

a ∈ S and x, y ∈ S1. Then xay, xa2y ∈ Sα, for some α ∈ Y . Since Sα, α ∈ Y

is an Jk-simple semigroup then xayJk xa2y. Thus, (vi) holds.
(vi)⇒(iii) This implication is the same as (ii)⇒(iii).

(vi)⇔(v) This equivalence follows from Lemma 5.2.

(v)⇔(vii) This equivalence follows from Lemma 6.4.

(i)⇔(viii) This equivalence is the same as the equivalence (i)⇔(iii).

Theorem 6.4 Let k ∈ Z+. A semigroup S is a semilattice of k-Archime-

dean semigroups if and only if

(∀a, b ∈ S) (ab)k ∈ Sa2S & S ∈ IkR.

Proof. Let S be a semilattice Y of k-Archimedean semigroups Sα, α ∈ Y .

For a, b ∈ S there exists α ∈ Y such that ab, a2b ∈ Sα, whence (ab)k ∈
Sαa

2bSα ⊆ Sa2S. Based on Theorem 6.3 we have that S ∈ IkR.

Conversely, from the first condition of Theorem 5.3 we have that S is

a semilattice of Archimedean semigroups and since S is intra k-regular we

have from Theorem 6.3 that the assertion follows.

T. Tamura [15] proved that the class of all semigroups which are semi-

lattices of Archimedean semigroups is not subsemigroup closed. Based on

the following theorem we determine the greatest subsemigroup closed sub-

class of the class of all semigroups which are semilattices of k-Archimedean

semigroups.
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Theorem 6.5 Let k ∈ Z+. Then kA ◦ S is a subsemigroup closed if and

only if

(∀a, b ∈ S) (ab)k ∈ ⟨a, b⟩a2⟨a, b⟩ & ak ∈ ⟨a, b⟩a2k⟨a, b⟩.

Proof. Assume a, b ∈ S and T = ⟨a, b⟩. Since T is a semilattice of k-

Archimedean semigroups then based on Theorem 6.4 we obtain

(ab)k ∈ Ta2T = ⟨a, b⟩a2⟨a, b⟩,

and

ak ∈ Ta2kT = ⟨a, b⟩a2k⟨a, b⟩.

Conversely, let T be an arbitrary subsemigroup of S. Assume a, b ∈ T .

Based on the hypothesis we have that

(ab)k ∈ ⟨a, b⟩a2⟨a, b⟩ ⊆ Ta2T,

so based on Theorem 5.1, T is a semilattice of Archimedean semigroups.

Also, according to the second part of hypothesis we have that

ak ∈ ⟨a, b⟩a2k⟨a, b⟩ ⊆ Ta2kT,

thus T is an intra k-regular semigroup. Therefore, based on Theorem 6.4, T

is a semilattice of k-Archimedean semigroups.

Let k ∈ Z+ be a fixed positive integer and let a and b be elements of a

semigroup S. Then:

a ↑k b⇔ bk ∈ ⟨a, b⟩a⟨a, b⟩.

A semigroup S is hereditary k-Archimedean if a ↑k b, for all a, b ∈ S. The

class of all hereditary k-Archimedean semigroups we denote by Her(kA).

Theorem 6.6 Let k ∈ Z+. Then S ∈ Her(kA) if and only if every one of

its subsemigroups is k-Archimedean.

Proof. Let S be a hereditary k-Archimedean semigroup and let T be a

subsemigroup of S. Assume a, b ∈ T , then ⟨a, b⟩ ⊆ T , and also based on the

hypothesis we have that

bk ∈ ⟨a, b⟩b⟨a, b⟩ ⊆ TaT.

Thus, T is k-Archimedean.
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Conversely, assume a, b ∈ S. Then a, b ∈ ⟨a, b⟩ and since ⟨a, b⟩ is k-

Archimedean, we obtain that

bk ∈ ⟨a, b⟩a⟨a, b⟩.

Thus, S is hereditary k-Archimedean.

Based on the following theorem we describe the semilettices of hereditary

k-Archimedean semigroups which are subsemigroup closed.

Theorem 6.7 Let k ∈ Z+. The following conditions on a semigroup S are

equivalent:

(i) S ∈ Her(kA) ◦ S;
(ii) (∀a, b ∈ S) a −→ b⇒ a2 ↑k b;
(iii) (∀a, b ∈ S) a −→ c & b −→ c⇒ ab ↑k c;
(iv) (∀a, b, c ∈ S) a −→ b & b −→ c⇒ a ↑k c;
(v) the class Her(kA) ◦ S is subsemigroup closed.

Proof. (i)⇒(ii) Let S be a semilattice Y of hereditary k-Archimedean semi-

groups Sα, α ∈ Y . Let a, b ∈ S, such that a −→ b. Then b, a2b ∈ Sα, for

some α ∈ Y and based on the hypothesis we have that

bk ∈ ⟨b, a2b⟩a2b⟨b, a2b⟩ ⊆ ⟨a2, b⟩a2⟨a2, b⟩,

i.e. a2 ↑k b. So, (ii) holds.
(ii)⇒(i) Based on Theorem 5.3, S is a semilattice Y of Archimedean

semigroups Sα, α ∈ Y . Assume a, b ∈ Sα, α ∈ Y . Then a −→ b and from

(ii) we have that a2 ↑k b, whence

bk ∈ ⟨a2, b⟩a2⟨a2, b⟩ ⊆ ⟨a, b⟩a⟨a, b⟩.

Hence, a ↑k b in Sα, i.e. Sα, α ∈ Y is a k-Archimedean semigroup.

(ii)⇒(iii) Assume a, b, c ∈ S such that a −→ c and b −→ c. Then based

on (i)⇔(ii) and Theorem 5.1 and Theorem 4.5, for n = 1, we have that

ab −→ c. Now, based on the hypothesis we have that (ab)2 ↑k c, whence
ab ↑k c.

(iii)⇒(iv) Based on Theorem 4.5, for n = 1, we have that −→ is transi-

tive. Assume a, b, c ∈ S such that a −→ b and b −→ c. Then a2 ↑k c, whence
a ↑k c.
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(iv)⇒(i) Since −→ is transitive, then based on Theorem 4.5, for n = 1,

we have that S is a semilattice Y of Archimedean semigroups Sα, α ∈ Y .

Let a, b ∈ Sα, α ∈ Y . Then a −→ b and b −→ b and from (iv) we have that

a ↑k b. Hence, (i) holds.
(ii)⇒(v) Let T be a subsemigroup of S and let a, b ∈ T such that a −→ b

in T . By (ii), a2 ↑k b, i.e.

bk ∈ ⟨a2, b⟩a2⟨a2, b⟩ ⊆ Ta2T.

Hence, a2 ↑k b in T . Based on (i)⇔(ii) we have that T is a semilattice of

hereditary k-Archimedean semigroups.

(v)⇒(i) This implication is obvious.
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6.3 Bands of Lk-simple Semigroups

Let k ∈ Z+ be a fix integer. Let L be a Green’s relation on a semigroup

S. On S we define the following relations by

(a, b) ∈ Lk ⇔ (ak, bk) ∈ L;

(a, b) ∈ L♭k ⇔ (∀x, y ∈ S1) (xay, xby) ∈ Lk.

It is easy to verify that Lk is an equivalence relation on a semigroup S.

A semigroup S is Lk-simple or left k-Archimedean, if aLk b, for all a, b ∈
S. It is clear that a Lk-simple semigroup is left π-regular and left Archime-

dean.

Lemma 6.7 Let S be a semigroup and let k ∈ Z+. If S ∈ LkR ∩ LA ◦ B,
then S ∈ LkA ◦ B.

Proof. Let S be a band of left Archimedean semigroups Sα, α ∈ Y . Since

Sα, α ∈ Y is left Archimedean and left k-regular, then based on Lemma 6.2

Sα, α ∈ Y is left k-Archimedean, i.e. an Lk-simple semigroup. Thus, S is a

band of Lk-simple semigroups.
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Based on the following theorem we describe the structure of a semigroup

which can be decomposed into a band of Lk-simple semigroups. Also, we

should emphasize that a band of left k-Archimedean semigroups is not co-

incident with a semilattice of left k-Archimedean semigroups.

Theorem 6.8 Let k ∈ Z+. Then the following conditions on a semigroup

S are equivalent:

(i) S ∈ LkA ◦ B;
(ii) (∀a, b ∈ S) ( abLk ab2 ∧ aLk a2);
(iii) L♭k is a band congruence on S;

(iv) (∀a ∈ S)(∀x, y ∈ S1) xayLk xa2y;
(v) R(L♭k) = L♭k;
(vi) S ∈ LA ◦ B ∩ LkR.

Proof. (i)⇒(ii) Let S be a band Y of Lk-simple semigroups Sα, α ∈ Y .

Then for every a, b ∈ S we have that a ∈ Sα, b ∈ Sβ , for some α, β ∈ Y ,

whence ab, ab2 ∈ SαSβ ⊆ Sαβ . Thus abLk ab2. Also, a, a2 ∈ Sα, for every

α ∈ Y and thus aLk a2. Hence, (ii) holds.

(ii)⇒(i) Let a, b ∈ S. From (ii) it follows that ab l ab2, whence based on

Theorem 5.29 we have that S is a band Y of left Archimedean semigroups

Sα, α ∈ Y . From the second condition of the hypothesis we have that S is

left k-regular. Based on Lemma 6.7 we have that Sα is left k-regular, for

all α ∈ Y . Finally, from Lemma 6.2 we obtain that Sα, α ∈ Y , is a left

k-Archimedean (Lk-simple) semigroup.

(i)⇒(iv) Let S be a band Y of Lk-simple semigroups Sα, α ∈ Y . Assume

a ∈ S and x, y ∈ S1. Then xay, xa2y ∈ Sα, for some α ∈ Y . Since Sα, α ∈ Y

is an Lk-simple semigroup then xayLk xa2y. Thus, (iv) holds.
(iv)⇒(i) Based on Theorem 5.29, S is a band Y of left Archimedean

semigroups Sα, α ∈ Y . From (iv) it follows that S is a left k-regular.

Assume a ∈ S, then a ∈ Sα, for some α ∈ Y and ak = xa2k, for some

x ∈ Sβ , β ∈ Y . Since α = βα, we have that ak = x2aka2k ∈ Sαa
2k. Hence,

Sα, α ∈ Y , is left k-regular and since it is left Archimedean, then based on

Lemma 6.2 we have that Sα, α ∈ Y , is a left k-Archimedean (Lk-simple)

semigroup.

(iv)⇔(iii) This equivalence is evident.

(iii)⇔(v) This equivalence immediately follows from Lemma 6.4.

(i)⇔(vi) This equivalence follows from Lemmas 6.2 and 6.7, and from

Theorem 5.29.
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Theorem 6.9 Let k ∈ Z+. Then the following conditions on a semigroup

S are equivalent:

(i) Lk is a band congruence on S;

(ii) Lk = L♭k = R(Lk);
(iii) R(Lk) = Lk and Lk is a congruence on S.

Proof. (i)⇔(ii)⇔(iii) These equivalences follow from Lemma 6.5.

Proposition 6.1 Let k ∈ Z+. If Lk is a band congruence on a semigroup

S, then S ∈ LkA ◦ B.

Proof. Let a, b ∈ A, where A is an arbitrary Lk-class of S. Then a2 Lk b,
whence a2k L bk, i.e. bk = xa2k, for some x ∈ S1. Since aLk a2, for every

a ∈ S, then for every i ∈ Z+ we have that aLk ai, for every a ∈ S, whence

xaLk xai, i.e. xaLk bk, so xa ∈ A, and therefore, xak ∈ A. Now, we have

that

bk = xa2k = xak · ak ∈ Aak.

Similarly we prove that ak ∈ Abk. Therefore, Lk-class A of S is a Lk-simple

semigroup. Thus, S is a band of Lk-simple semigroups.

Based on the following theorem we describe the structure of a semigroup

which can be decomposed into a semilattice of Lk-simple semigroups.

Theorem 6.10 Let k ∈ Z+. Then the following conditions on a semigroup

S are equivalent:

(i) S ∈ LkA ◦ S;
(ii) Lk is a semilattice congruence on S;

(iii) S ∈ LA ◦ S ∩ LkR.

Proof. (i)⇒(ii) Let S be a semilattice Y of Lk-simple semigroups Sα, α ∈
Y . Assume a, b, c ∈ S such that (a, b) ∈ Lk. Since a ∈ Sα, b ∈ Sβ , c ∈ Sγ ,

for some α, β, γ ∈ Y , and since ak = xbk and bk = yak, for some x ∈ Sδ,

y ∈ Sε, where δ, ε ∈ Y , then we obtain that α = δβ and β = εα. Based on

this we have that αβ = (δβ)β = δβ = α and βα = (εα)α = εα = β. Since

Y is a semilattice then it follows that α = αβ = βα = β. Thus a, b ∈ Sα,

α ∈ Y . So, ac, bc ∈ Sαγ , α, γ ∈ Y , and since Sαγ , α, γ ∈ Y , is an Lk-
simple semigroup, then (ac, bc) ∈ Lk. Similarly we prove that (ca, cb) ∈ Lk.
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Thus Lk is a congruence relation on S. Further, a, a2 ∈ Sα, α ∈ Y and Sα,

α ∈ Y , is Lk-simple, then (a, a2) ∈ Lk, for every a ∈ S, whence Lk is a band

congruence on S. Also, ab, ba ∈ Sα, α ∈ Y and Sα, α ∈ Y , is Lk-simple,

then (ab, ba) ∈ Lk, for all a, b ∈ S, whence Lk is a semilattice congruence on

S.

(ii)⇒(i) Let (ii) hold. Then S is a semilattice of Lk-classes. Let a, b ∈ A,

where A is an arbitrary Lk-class of S. Then a2 Lk b, whence a2k L bk, i.e.
bk = xa2k, for some x ∈ S1. Since Lk is a semilattice congruence, then

aLk a2, for every a ∈ S. Based on this, for every i ∈ Z+ we have that

aLk ai, for every a ∈ S, whence xaLk xai, i.e. xaLk bk, so xa ∈ A, and

therefore, xak ∈ A. Now, we have that

bk = xa2k = xak · ak ∈ Aak.

Similarly, we prove that ak ∈ Abk. Therefore, the Lk-class A of S is a

Lk-simple semigroup. Thus, S is a semilattice of Lk-simple semigroups.

(i)⇒(iii) Let S be a semilattice Y of Lk-simple semigroups Sα, α ∈ Y .

Assume a, b ∈ S. Then ab, ba ∈ Sα, for some α ∈ Y . Since Sα, α ∈ Y , is Lk-
simple, then (ab, ba) ∈ Lk, whence (ab)k ∈ S(ba)k ⊆ Sa, i.e. a

l−→ ab. Then

based on Theorem 5.9, S is a semilattice of left Archimedean semigroups.

Also, a, a2 ∈ Sα, for some α ∈ Y , and since Sα, α ∈ Y , is Lk-simple, then

(a, a2) ∈ Lk, whence ak ∈ Sa2k ⊆ Sak+1, for every a ∈ S. Thus, S is a left

k-regular semigroup. Therefore, (iii) holds.

(iii)⇒(i) This implication immediately follows from Lemma 6.2.
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6.4 Bands of Hk-simple Semigroups

Let k ∈ Z+ be a fix integer. Let H be a Green’s relation on a semigroup

S. On S we define the following relations by

(a, b) ∈ Hk ⇔ (ak, bk) ∈ H;
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(a, b) ∈ H♭
k ⇔ (∀x, y ∈ S1) (xay, xby) ∈ Hk.

It is easy to verify that Hk is an equivalence relation on a semigroup S.

Also, it is evident that Hk = Lk ∩Rk.

A semigroup S is Hk-simple (t-k-Archimedean), if aHk b, for all a, b ∈ S.

Also, it is easy to verify that a semigroup S is Hk-simple if it is both Lk-
simple and Rk-simple, and conversely.

Based on the following theorem we describe the structure of a semigroup

which can be decomposed into a band of Hk-simple semigroups.

Theorem 6.11 Let k ∈ Z+. Then the following conditions on a semigroup

S are equivalent:

(i) S ∈ T kA ◦ B;
(ii) H♭

k is a band congruence on S;

(iii) (∀a ∈ S)(∀x, y ∈ S1) xayHk xa
2y;

(iv) R(H♭
k) = H♭

k;

(v) S ∈ T A ◦ B ∩ CkR.

Proof. (i)⇒(iii) Let S be a band Y of Hk-simple semigroups Sα, α ∈ Y .

Assume a ∈ S and x, y ∈ S1. Then xay, xa2y ∈ Sα, for some α ∈ Y . Since

Sα, α ∈ Y is an Hk-simple semigroup then xayHk xa
2y. Thus, (iii) holds.

(iii)⇒(i) Let a ∈ S and x, y ∈ S1. From (iii) it follows that xay t xa2y,

whence based on Corollary 5.5, S is a band Y of t-Archimedean semigroups

Sα, α ∈ Y . Also, based on (iii) S is both left k-regular and right k-regular.

Just like (iv)⇒(i) of Theorem 6.8 we prove that every band component

Sα, α ∈ Y , of S is left k-regular, and, dually, that Sα, α ∈ Y , is right

k-regular, i.e. Sα, α ∈ Y , is completely k-regular. Thus, Sα, α ∈ Y , is

t-Archimedean and completely k-regular. So, based on Theorem 6.1, Sα,

α ∈ Y is t-k-Archimedean. Therefore, S is a band of t-k-Archimedean (Hk-

simple) semigroups.

(iii)⇔(ii) This equivalence follows from Lemma 5.2.

(ii)⇔(iv) This equivalence follows from Lemma 6.4

(i)⇔(v) This equivalence follows from Theorem 6.1.

Theorem 6.12 Let k ∈ Z+. Then the following conditions on a semigroup

S are equivalent:

(i) Hk is a band congruence on S;
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(ii) Hk = H♭
k = R(Hk);

(iii) R(Hk) = Hk and Hk is a congruence on S.

Proof. (i)⇔(ii)⇔(iii) These equivalences follow from Lemma 6.5.

Theorem 6.13 Let k ∈ Z+. Then the following conditions on a semigroup

S are equivalent:

(i) S ∈ T kA ◦ S;
(ii) Hk is a semilattice congruence on S;

(iii) S ∈ T A ◦ S ∩ CkR.

Proof. These equivalences follow from Theorem 6.10 and its dual.
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6.5 Bands of η-simple Semigroups

Recall that a semigroup S is called power-joined if for each pair of ele-

ments a, b ∈ S there exist m,n ∈ Z+ such that am = bn. These semigroups

were first considered by P. Abellanas [1], in 1965, for cancellative semigroups

only, and D. B. Mc Alister [1], in 1968, who called them rational semigroups.

Every power-joined semigroup is Archimedean. An element a of a semigroup

S is periodic if there exist m,n ∈ Z+ such that am = am+n. A semigroup S

is periodic if every one of its element is periodic.

On a semigroup S we define the following relations:

(a, b) ∈ η ⇔ (∃i, j ∈ Z+) ai = bj ,

(a, b) ∈ η♭ ⇔ (∀x, y ∈ S1) (xay, xby) ∈ η.

It is easy to verify that η is an equivalence relation on a semigroup S.

A semigroup S is η-simple if

(∀a, b ∈ S) (a, b) ∈ η.
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These semigroups are well-known in the literature as power-joined semi-

groups.

The important result is the following lemma.

Lemma 6.8 If ξ is a band congruence on a semigroup S, then ξ ⊆ η if and

only if every ξ-class of S is an η-simple semigroup.

Proof. Let A be a ξ-class of S. Then A is a subsemigroup of S, since a ξ a2,

for all a ∈ S. Let a, b ∈ A, then a ξ b, whence a η b in A.

Conversely, let (a, b) ∈ ξ, then ai = bj , for some i, j ∈ Z+, since a and b

are in the same ξ-class A of S. Thus (a, b) ∈ η. Therefore, ξ ⊆ η.

By means of the following theorem we describe the structure of semi-

groups in which the relation η is a congruence relation. These semigroups

have been treated by S. Bogdanović in a different way in [9].

Theorem 6.14 The following conditions on a semigroup S are equivalent:

(i) S is a band of η-simple semigroups;

(ii) η is a (band) congruence on S;

(iii) η♭ is a band congruence on S;

(iv) (∀a ∈ S)(∀x, y ∈ S1) xay η xa2y;

(v) R(η♭) = η♭.

Proof. (i)⇒(ii) Let S be a band B of η-simple semigroups Sα, α ∈ B.

Assume a, b, c ∈ S such that a η b. Then a, b ∈ Sα and c ∈ Sβ , for some

α, β ∈ B. Also, ac, bc ∈ SαSβ ⊆ Sαβ , α, β ∈ B and since Sαβ , α, β ∈ B, is η

simple, then ac η bc. Similarly we prove that ca η cb. Thus η is a congruence

relation on S. Furthermore, since a, a2 ∈ Sα, α ∈ B and Sα, α ∈ B, is

η-simple, then a η a2, i.e. η is a band congruence on S.

(ii)⇒(i) Let (ii) hold. Then S is a band of η-classes. Since η ⊆ η, then

based on Lemma 5.2 we have that every η-class is an η-simple semigroup.

Thus S is a band of η-simple semigroups.

(i)⇒(iv) Let S be a band B of η-simple semigroups Sα, α ∈ B. Assume

a ∈ S and x, y ∈ S1. Then xay, xa2y ∈ Sα, for some α ∈ Y . Since Sα, α ∈ Y

is η-simple, then xay η xa2y. Thus, (iv) holds.

(iv)⇒(iii) Let (iv) hold. Then by definition, for η♭ it is evident that

a η♭ a2, for every a ∈ S. Thus η♭ is a band congruence.
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(iii)⇒(i) Let η♭ be a band congruence on S, then S is a band of η♭-

classes. Since η♭ is the greatest congruence on S contained in η, then based

on Lemma 5.2 we have that every η♭-class is an η-simple semigroup. Thus

S is a band of η-simple semigroups.

(iii)⇔(v) This equivalence immediately follows from Lemma 6.4.

Let m,n ∈ Z+. On a semigroup S we define a relation η(m,n) by

(a, b) ∈ η(m,n) ⇔ (∀x ∈ Sm)(∀y ∈ Sn) (xay, xby) ∈ η.

If instead of η we assume the equality relation, then we obtain the re-

lation which was discussed by S. J. L. Kopamu in [1] and [2]. The main

characteristic of the previous defined relation gives the following theorem.

Theorem 6.15 Let S be a semigroup and let m,n ∈ Z+. Then η(m,n) is a

congruence relation on S.

Proof. It is clear that η(m,n) is reflexive and symmetric. Assume that

a η(m,n) b and b η(m,n) c. Then for every x ∈ Sm and y ∈ Sn there exist

k, l, s, t ∈ Z+ such that

(xay)k = (xby)l and (xby)s = (xcy)t

whence

(xay)ks = (xby)ls = (xcy)tl,

i.e. xay η xcy. Thus η(m,n) is transitive and therefore it is a congruence on

S.

The complete description of η(m,n) congruence, for η = , was given

by S. Bogdanović, Ž. Popović and M. Ćirić in [5].

Theorem 6.16 Let m,n ∈ Z+. The following conditions on a semigroup S

are equivalent:

(i) η(m,n) is a band congruence on S;

(ii) (∀x ∈ Sm)(∀y ∈ Sn)(∀a ∈ S) xay η xa2y;

(iii) η ⊆ η(m,n);

(iv) R(η(m,n)) = η(m,n).
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Proof. (i)⇒(ii) This implication follows immediately.

(ii)⇒(iii) Assume that a η b. Then ai = bj , for some i, j ∈ Z+. Then for

every x ∈ Sm, y ∈ Sn and i, j ∈ Z+ we have that

xay η xa2y η xaiy = xbjy η xby.

Since η is transitive, we have that a η(m,n) b. Thus η ⊆ η(m,n).

(iii)⇒(i) Since a η a2, for every a ∈ S, then we have that a η(m,n) a
2, for

every a ∈ S, i.e. η(m,n) is a band congruence.

(i)⇔(iv) This equivalence immediately follows from Lemma 6.4.

Proposition 6.2 Let m,n ∈ Z+. If η(m,n) is a band congruence on a semi-

group S, then S is a band of η(m,n)-simple semigroups.

Proof. Let A be an η(m,n)-class of a semigroup S. Assume a, b ∈ A, then

a η(m,n) b in S, i.e. xay η xby, for every x ∈ Sm and every y ∈ Sn, whence

we have that for every x ∈ Am and every y ∈ An is xay η xby, i.e. a η(m,n) b

in A. Thus A is η(m,n)-simple.

Let k ∈ Z+ be a fix integer. On a semigroup S we define the following

relations by

(a, b) ∈ ηk ⇔ ak = bk;

(a, b) ∈ η♭k ⇔ (∀x, y ∈ S1) (xay, xby) ∈ ηk.

It is easy to verify that ηk is an equivalence relation on a semigroup S.

A semigroup S is ηk-simple if

(∀a, b ∈ S) (a, b) ∈ ηk.

These semigroups are periodic.

Lemma 6.9 Let k ∈ Z+. If ξ is a band congruence on a semigroup S, then

ξ ⊆ ηk if and only if every ξ-class of S is an ηk-simple semigroup.

Proof. Let A be a ξ-class of S. Then A is a subsemigroup of S, since a ξ a2,

for all a ∈ S. Let a, b ∈ A, then a ξ b, whence a ηk b in A.

Conversely, let (a, b) ∈ ξ. Since a and b are in the some ξ-class A of S

and since A is ηk-simple,then (a, b) ∈ ηk. Therefore, ξ ⊆ ηk.
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By means of the following theorem we give the structural characterization

of bands of ηk-simple semigroups.

Theorem 6.17 Let k ∈ Z+. Then the following conditions on a semigroup

S are equivalent:

(i) S is a band of ηk-simple semigroups;

(ii) (∀a, b ∈ S) ( (ab)k = (akbk)k ∧ ak = a2k );

(iii) ηk is a band congruence on S;

(iv) η♭k is a band congruence on S;

(v) (∀a ∈ S)(∀x, y ∈ S1) xay ηk xa
2y;

(vi) R(ηk) = ηk and ηk is a congruence on S;

(vii) R(η♭k) = η♭k.

Proof. (i)⇒(ii) Let S be a band Y of ηk-simple semigroups Sα, α ∈ Y .

For every a, b ∈ S we have that a ∈ Sα, b ∈ Sβ , for some α, β ∈ Y , whence

ab, akbk ∈ Sαβ and so (ab)k = (akbk)k. Clearly, ak = a2k.

(ii)⇒(iii) It is clear that ηk is an equivalence. Let aηkb and x ∈ S,

then ak = bk and based on the hypothesis we have that (ax)k = (akxk)k =

(bkxk)k = (bx)k, i.e. ax ηk bx. Similarly, xa ηk, xb. Thus ηk is a congruence

relation on S, and since ak = a2k we have that ηk is a band congruence on

S.

(iii)⇒(i) Let ηk be a band congruence and A be an ηk-class of S. Assume

a, b ∈ A, then a ηk b in A and thus A is an ηk-simple semigroup. Therefore,

S is a band of ηk-simple semigroups.

(i)⇒(v) Let S be a band Y of ηk-simple semigroups Sα, α ∈ Y . Assume

a ∈ S and x, y ∈ S1. Then xay, xa2y ∈ Sα, for some α ∈ Y . Since Sα, α ∈ Y

is an ηk-simple semigroup then xay ηk xa
2y. Thus, (v) holds.

(v)⇒(iv) Let (v) hold. Then based on the definition for η♭k it is evident

that a η♭k a
2, for every a ∈ S. Thus η♭k is a band congruence.

(iv)⇒(i) Let η♭k be a band congruence on S, then S is a band of η♭k-

classes. Since η♭k is the largest congruence on S contained in ηk, then based

on Lemma 6.9 we have that every η♭k-class is ηk-simple semigroup. Thus S

is a band of ηk-simple semigroups.

(iii)⇔(vi) and (iv)⇔(vii) These equivalences immediately follows from

Lemma 6.4.
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Let k,m, n ∈ Z+. On a semigroup S we define a relation η(k;m,n) by

(a, b) ∈ η(k;m,n) ⇔ (∀x ∈ Sm)(∀y ∈ Sn) (xay, xby) ∈ ηk.

The following lemma holds.

Lemma 6.10 Let S be a semigroup and let k,m, n ∈ Z+, then η(k;m,n) is a

congruence relation on S.

Proof. It is clear that η(k;m,n) is reflexive and symmetric. Assume a, b, c ∈
S such that a η(k;m,n) b and b η(k;m,n) c. Then for every x ∈ Sm and every

y ∈ Sn we obtain that

(xay)k = (xby)k and (xby)k = (xcy)k

whence

(xay)k = (xcy)k,

i.e. xay η(k;m,n) xcy. Thus η(k;m,n) is transitive and therefore it is a congru-

ence on S.

Theorem 6.18 Let k,m, n ∈ Z+. Then the following conditions on a semi-

group S are equivalent:

(i) η(k;m,n) is a band congruence on S;

(ii) (∀x ∈ Sm)(∀y ∈ Sn)(∀a ∈ S) xay ηk xa
2y;

(iii) R(η(k;m,n)) = η(k;m,n).

Proof. (i)⇔(ii) This equivalence is evident.

(i)⇔(iii) This equivalence immediately follows from Lemma 6.4.

Proposition 6.3 Let k,m, n ∈ Z+. If η(k;m,n) is a band congruence on a

semigroup S, then ηk ⊆ η(k;m,n).

Proof. Since η(k;m,n) is a band congruence on S, then xay ηk xa
iy, for every

i ∈ Z+ and for all x ∈ Sm, y ∈ Sn, a ∈ S. Assume a, b ∈ S such that a ηk b.

Then ak = bk. Thus for every x ∈ Sm and y ∈ Sn we have that

xay ηk xa
ky = xbky ηk xby.

Since ηk is transitive, we obtain that a η(k;m,n) b. Thus ηk ⊆ η(k;m,n).
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Furthermore, based on the previously defined relations on a semigroup

S, we define the following relations:

(a, b) ∈ τ ⇔ (∃k ∈ Z+) (a, b) ∈ ηk;

(a, b) ∈ τ ♭ ⇔ (∀x, y ∈ S1) (xay, xby) ∈ τ.

It is easy to verify that the relation τ is an equivalence on a semigroup S.

A semigroup S is τ -simple if

(∀a, b ∈ S) (a, b) ∈ τ.

By means of the following theorem we describe the structure of bands of

τ -simple semigroups. S. Bogdanović in [10] gave some other characterizations

of these semigroups.

Theorem 6.19 The following conditions on a semigroup S are equivalent:

(i) S is a band of τ -simple semigroups;

(ii) τ is a band congruence on S;

(iii) τ ♭ is a band congruence on S;

(iv) (∀a ∈ S)(∀x, y ∈ S1) xay τ xa2y;

(v) R(τ) = τ and τ is a congruence on S;

(vi) R(τ ♭) = τ ♭.

Proof. (i)⇒(ii) Let S be a band Y of τ -simple semigroups Sα, α ∈ Y .

Assume a, b, c ∈ S such that a τ b. Then ak = bk, for some k ∈ Z+. So,

then a, b ∈ Sα and c ∈ Sβ , for some α, β ∈ Y . Thus ac, bc ∈ SαSβ ⊆ Sαβ ,

α, β ∈ Y and since Sαβ, α, β ∈ Y , is τ -simple, then ac τ bc. Similarly, ca τ cb.

Hence, τ is a congruence relation on S. Furthermore, since a, a2 ∈ Sα, α ∈ Y

and Sα, α ∈ Y , is τ -simple, then a τ a2, i.e. τ is a band congruence on S.

(ii)⇒(i) Let (ii) hold. Then S is a band of τ -classes. Let A be a τ -class

of S. Then A is a subsemigroup of S. Assume a, b ∈ A, then a τ b in A and

A is a τ -simple. Therefore, S is a band of τ -simple semigroups.

(i)⇒(iv) Let S be a band Y of τ -simple semigroups Sα, α ∈ Y . Assume

a ∈ S and x, y ∈ S1. Then xay, xa2y ∈ Sα, for some α ∈ Y . Since Sα, α ∈ Y

is τ -simple then xay τ xa2y. Thus, (iv) holds.

(iv)⇒(iii) This implication follows immediately.
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(iii)⇒(i) Let (iii) hold. Then S is a band of τ ♭-classes. Let A be an

arbitrary τ ♭-class of S. Then A is a subsemigroup of S. Assume a, b ∈ A,

then a τ ♭ b in A and since τ ♭ ⊆ τ , then a τ b in A. Thus A is a τ -simple.

Therefore, S is a band of τ -simple semigroups.

(ii)⇔(v) and (iii)⇔(vi) These equivalences follow from Lemma 6.4.

Let m,n ∈ Z+. On a semigroup S we define a relation τ (m,n) by

(a, b) ∈ τ (m,n) ⇔ (∀x ∈ Sm)(∀y ∈ Sn) (xay, xby) ∈ τ.

The following theorem holds.

Theorem 6.20 Let S be a semigroup and let m,n ∈ Z+. Then τ (m,n) is a

congruence relation on S.

Proof. It is clear that τ (m,n) is reflexive and symmetric. Assume a, b, c ∈ S

such that a τ (m,n) b and b τ (m,n) c. Then for every x ∈ Sm and y ∈ Sn there

exist k, l ∈ Z+ such that

(xay)k = (xby)k and (xby)l = (xcy)l

whence

(xay)kl = (xby)kl = (xby)lk = (xcy)lk.

So, we have that xay ηlk xcy, i.e. xay τ xcy. Thus τ (m,n) is transitive and

therefore it is a congruence on S.

Theorem 6.21 Let m,n ∈ Z+. Then the following conditions on a semi-

group S are equivalent:

(i) τ (m,n) is a band congruence on S;

(ii) (∀x ∈ Sm)(∀y ∈ Sn)(∀a ∈ S) xay τ xa2y;

(iii) R(τ (m,n)) = τ (m,n).

Proof. (i)⇔(ii) This equivalence follows immediately.

(i)⇔(iii) This equivalence immediately follows from Lemma 6.4.

Proposition 6.4 Let m,n ∈ Z+. If τ (m,n) is a band congruence on a semi-

group S, then τ ⊆ τ (m,n).
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Proof. Since τ (m,n) is a band congruence on S, then xay τ xaiy, for every

i ∈ Z+ and for all x ∈ Sm, y ∈ Sn, a ∈ S. Assume a, b ∈ S such that a τ b.

Then ak = bk, for some k ∈ Z+. Thus for every x ∈ Sm, y ∈ Sn and k ∈ Z+

we have that

xay τ xaky = xbky τ xby.

Since τ is transitive, then a τ (m,n) b. Therefore τ ⊆ τ (m,n).
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6.6 On Lallement’s Lemma

Lallement’s lemma for regular semigroups says that if ρ is a congruence

on a regular semigroup S and aρ is an idempotent in the quotient S/ρ then

a ρ e for some idempotent e ∈ S. We can formulate this property in terms of

homomorphic images. The property featured in the conclusion of the lemma

therefore has merited a name of its own and so we say that a congruence rela-

tion ξ on a semigroup S is idempotent-consistent (or idempotent-surjective)

if for every idempotent class aξ of S/ξ there exists e ∈ E(S) such that

aξe. This property is found in the conclusion of the well known Lallement’s

lemma. A semigroup is idempotent-consistent if all of its congruences enjoy

this property. These notions were explored by P. M. Higgins [1], [4], P. M.

Edwards [1], P. M. Edwards, P. M. Higgins and S. J. L. Kopamu [1], S.

Bogdanović [14], and H. Mitsch [3], [4].

The class of regular semigroups certainly does not exhaust the class of

idempotent-consistent semigroups as it is a simple matter to check that ev-

ery periodic semigroup, or more generally every (completely) π-regular, is

idempotent-consistent. A generalization of Lallement’s lemma that includes

all the cases mentioned so far was provided by P. M. Edwards [1], where it

was shown that the class of idempotent-consistent semigroups includes all

π-regular semigroups.

Although the class of π-regular semigroups does not contain all idempo-

tent-consistent semigroups, any idempotent-consistent and weakly commu-
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tative semigroup is also π-regular. A semigroup S is weakly commutative if

for all a, b ∈ S there exists n ∈ Z+ such that (ab)n ∈ bSa.

The converse implication does not generally hold, however, not all idem-

potent-consistent semigroups are π-regular. This was first shown by S. J.

L. Kopamu [2] through the introduction of the class of structurally regular

semigroups which are defined using a special family of congruences. Some

characterizations of semigroups, based on congruences which are more gen-

eral then ones introduced by S. J. L. Kopamu in [1], are considered by S.

Bogdanović, Ž. Popović and M. Ćirić in [1] and [4]. S. J. L. Kopamu proved

that Lallement’s lemma holds for the class of all structurally regular semi-

groups.

Let ξ be a congruence relation on a semigroup S. An element a ∈ S

is ξ-regular if there exists b ∈ S such that aξ = (aba)ξ. A semigroup S is

ξ-regular if all its elements are ξ-regular, i.e. if S/ξ is a regular semigroup.

An element b ∈ S is such that aξ = (aba)ξ and bξ = (bab)ξ is a ξ-inverse of

the element a.

Lemma 6.11 For any ξ-regular element of a semigroup S there exists a

ξ-inverse element.

Proof. Let a, b ∈ S such that aξ = (aba)ξ, then it is easy to verify that

(aξ) (bab)ξ (aξ) = aξ and (bab)ξ (aξ) (bab)ξ = (bab)ξ.

Thus aξ and (bab)ξ are mutually inverses.

Before we present the main result of this section, we give the following

helpful lemma.

Lemma 6.12 Let m,n ∈ Z+. An element a ∈ S is τ (m,n)-regular if and

only if a has a τ (m,n)-inverse element.

Proof. Let a ∈ S is τ (m,n)-regular. Then aτ (m,n)axa, for some x ∈ S, i.e.

(uav)p = (uaxav)p, for every u ∈ Sm and every v ∈ Sn and some p ∈ Z+.

Put x′ = xax. Since xav ∈ Sn+2 ⊆ Sn then we have that (uax′av)q =

(uaxaxav)q = (uaxav)q, for some q ∈ Z+. Hence,

(uax′av)qp= ((uax′av)q)p= ((uaxav)q)p= ((uaxav)p)q= ((uav)p)q= (uav)pq.

Thus, aτ (m,n)ax
′a. Since ux ∈ Sm+1 ⊆ Sm and xaxv ∈ Sn+3 ⊆ Sn we have

that (ux′ax′v)k = (uxaxaxaxv)k = (uxaxaxv)k, for some k ∈ Z+. Also,
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since ux ∈ Sm and xv ∈ Sn we have and (uxaxaxv)t = (uxaxv)t = (ux′v)t,

for some t ∈ Z+. Hence,

(ux′ax′v)kt = ((ux′ax′v)k)t = ((uxaxaxv)k)t =

= ((uxaxaxv)t)k = ((ux′v)t)k = (ux′v)tk.

Thus, x′ax′τ (m,n)x
′. Therefore, x′ is a τ (m,n)-inverse of a.

The converse follows immediately.

By means of the following theorem we give a new result of the type of

Lallement’s lemma. This theorem is a generalization of the results obtained

by P. M. Edwards, P. M. Higgins and S. J. L. Kopamu [1].

Theorem 6.22 Letm,n ∈ Z+. Let ϕ be a homomorphism from a semigroup

S onto T and let S/τ (m,n) be a π-regular semigroup. Then for every f ∈
E(T ) there exists e ∈ E(S) such that eϕ = f .

Proof. Since ϕ is surjective, then there exists a ∈ S such that aϕ = f .

Assume a2(mn) ∈ S, then based on Lemma 6.12 we have that

(1) a2(mn)iτ (m,n) = (a2(mn)ixa2(mn)i)τ (m,n), xτ (m,n) = (xa2(mn)ix)τ (m,n),

for some x ∈ S and i ∈ Z+, whence

((a(mn)ixa(mn)i)j)2 = ((a(mn)ixa(mn)i)2)j = (a(mn)i(xa2(mn)ix)a(mn)i)j

= (a(ni)m(xa2(mn)ix)a(mi)n)j = (a(ni)mxa(mi)n)j

= (a(mn)ixa(mn)i)j ∈ E(S),

for some j ∈ Z+. Let e = (a(mn)ixa(mn)i)j , then

eϕ = ((a(mn)ixa(mn)i)j)ϕ = ((a(mn)iϕ)(xϕ)(a(mn)iϕ))j

= ((aϕ)(mn)i(xϕ)(aϕ)(mn)i)j

= ((aϕ)3(mn)i(xϕ)(aϕ)3(mn)i)j , (since (aϕ)2 = aϕ = f = f2)

= ((a3(mn)iϕ)(xϕ)(a3(mn)iϕ))j = ((a3(mn)ixa3(mn)i)j)ϕ

= ((a(mn)i(a2(mn)ixa2(mn)i)a(mn)i)j)ϕ.

Based on (1) there exists k ∈ Z+ such that

(a(mn)i(a2(mn)ixa2(mn)i)a(mn)i)k = (a(ni)m(a2(mn)ixa2(mn)i)a(mi)n)k =

(a(ni)ma2(mn)ia(mi)n)k = a4(mn)ik.
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Finally,

(eϕ)k = (((a(mn)i(a2(mn)ixa2(mn)i)a(mn)i)j)ϕ)k

= (((ai(mn)(a2(mn)ixa2(mn)i)a(mn)i)k)ϕ)j = ((a4(mn)ik)ϕ)j

= (a4(mn)ikj)ϕ = (aϕ)4(mn)ikj = f4(mn)ikj = f.

Therefore, eϕ = f .

The proof of the following corollary immediately follows from the previ-

ous theorem.

Corollary 6.1 Let m,n ∈ Z+. Every semigroup S for which S/τ (m,n) is

π-regular is idempotent-consistent.

The relation τ (1,1) we simply denote by τ . On a semigroup S this relation

is defined by

(a, b) ∈ τ ⇔ (∀x, y ∈ S) (xay, xby) ∈ τ.

According to Theorem 6.20 it is evident that:

Corollary 6.2 Let S be an arbitrary semigroup, then τ is a congruence

relation on S.

For m = 1 and n = 1 based on the previously obtained results we give

the following corollaries which refer to the relation τ .

Corollary 6.3 An element a ∈ S is τ -regular if and only if a has a τ -inverse

element.

Corollary 6.4 Let ϕ be a homomorphism from a semigroup S onto T and

let S/τ be a π-regular semigroup. Then for every f ∈ E(T ) there exists

e ∈ E(S) such that eϕ = f .

Corollary 6.5 Every semigroup S for which S/τ is π-regular is idempo-

tent-consistent.
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Chapter 7

Semilattices of Completely
Archimedean Semigroups

This chapter continues the previous study in a natural way. Here we give

the theory of semilattice decompositions of completely π-regular semigroups

on Archimedean components, i.e. we are going to talk about a completely

π-regular semigroups whose every regular element is a group element. These

semigroups were introduced by L. N. Shevrin, in 1977, but the first proof

concerning them was given by M. L. Veronesi, in 1984. These semigroups

will be described structurally in Theorem 7.4. Semilattices of completely

Archimedean semigroups are of special interest. In the first section we will

present the results regarding the semilattice of simple semigroups which are

regular. Various structures and characterizations of these semigroups repre-

sent the results obtained by S. Bogdanović and M. Ćirić, in 1993, which will

be shown in Theorem 7.6. In the last section of this chapter we will present

the results regarding bands and semilattices of nil-extensions of groups.

7.1 Semilattices of Nil-extensions of Simple
Regular Semigroups

The main purpose of this section is to study semigroups which are π-

regular and are decomposable into a semilattice of Archimedean semigroups.

235
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We characterize them as semilattices of nil-extensions of simple regular semi-

groups.

The following theorem is a helpful result for future work.

Theorem 7.1 Let E(S) ̸= ∅. Then the following conditions on a semigroup

S are equivalent:

(i) (∀a ∈ S)(∀e ∈ E(S)) a|e⇒ a2|e;
(ii) (∀a, b ∈ S)(∀e ∈ S) a|e & b|e ⇒ ab|e;
(iii) (∀e, f, g ∈ E(S)) e|g & f |g ⇒ ef |g.

Proof. (i)⇒(ii) Let a, b ∈ S and let e ∈ E(S) such that a|e and b|e, i.e. let
e = xay = ubv, for some x, y, u, v ∈ S1. Based on the hypothesis we have

e = ee = ubvxay ∈ S(bvxa)2S ⊆ SabS.

Hence, ab|e.
(ii)⇒(i) and (ii)⇒(iii) This is obvious.

(iii)⇒(ii) Let a, b ∈ S and let e ∈ E(S) such that a|e and b|e. Then e =
xay = ubv for some x, y, u, v ∈ S1. It is easy to verify that (yxa)2, (bvu)2 ∈
E(S) and e = xa(yxa)2y = u(bvu)2bv. Now, based on (iii) we obtain that

(yxa)2 (bvu)2|e whence ab|e.

Now, we are ready to prove the main result of this section.

Theorem 7.2 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of nil-extensions of simple regular semigroups;

(ii) S is a band of nil-extensions of simple regular semigroups;

(iii) S is π-regular and S is a semilattice of Archimedean semigroups;

(iv) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ (ab)nSa2S(ab)n;

(v) S is π-regular and (∀a ∈ S)(∀e ∈ E(S)) a|e ⇒ a2|e;
(vi) S is π-regular and (∀a, b ∈ S)(∀e ∈ E(S)) a|e & b|e⇒ ab|e;
(vii) S is π-regular and (∀e, f, g ∈ E(S)) e|g & f |g ⇒ ef |g;
(viii) S is π-regular and in every homomorphic image with zero of S, the set

of all nilpotent elements is an ideal;

(ix) S is π-regular and every J -class of S containing an idempotent is a

subsemigroup of S;
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(x) S is intra-π-regular and every J -class of S containing an intra-regular

element is a regular subsemigroup of S;

(xi) S is a semilattice of nil-extensions of simple semigroups and Intra(S)=

Reg(S).

Proof. (i)⇔(ii) This is evident.

(i)⇒(iii) Clearly, S is π-regular and based on Theorem 3.15 S is a semi-

lattice of Archimedean semigroups.

(iii)⇒(i) Let S be a π-regular semigroup which is a semilattice Y of Ar-

chimedean semigroups Sα, α ∈ Y . Then Sα is also π-regular and based

on Theorem 3.15 we have that Sα is a nil-extension of a simple regular

semigroup, for every α ∈ Y .

(i)⇒(iv) Let S be a semilattice Y of nil-extensions of simple regular

semigroups Sα, α ∈ Y . Let a, b ∈ S. Then ab, a2b ∈ Sα, for some α ∈ Y .

Now according to Theorem 3.15 there exists n ∈ Z+ such that:

(ab)n ∈ (ab)nSαa
2bSα(ab)

n ⊆ (ab)nSa2S(ab)n.

(iv)⇒(iii) Let a, b ∈ S. Then there exists n ∈ Z+ such that

(ab)n ∈ (ab)nSa2S(ab)n ⊆ Sa2S,

and based on Theorem 5.1, S is a semilattice of Archimedean semigroups.

It is clear that S is π-regular.

(v)⇔(vi)⇔(vii) This follows from Theorem 7.1.

(iii)⇒(v) This follows form Theorem 5.1.

(v)⇒(iii) Let a, b ∈ S. Then (ab)n = (ab)nx(ab)n, for some x ∈ S and

n ∈ Z+. Since a |(ab)nx, we then have that a2 |(ab)nx, whence (ab)n =

(ab)nx(ab)n ∈ Sa2S, and based on Theorem 5.1, S is a semilattice of

Archimedean semigroups.

(iii)⇔(viii) This equivalence follows from Theorem 4.5, for n = 1.

(i)⇒(x) Let S be a semilattice Y of semigroups Sα, α ∈ Y , and for each

α ∈ Y let Sα be a nil-extension of a simple regular semigroup Kα. Based on

Theorem 5.5, S is an intra π-regular semigroup and every J -class containing

an intra regular element is a subsemigroup of S. Let a ∈ Intra(S). Then

a = xa2y, for some x, y ∈ S1, and a ∈ Sα, for some α ∈ Y , whence we

have that xa, ay ∈ Sα and a = (xa)nayn, for each n ∈ Z+. But xa ∈ Sα
yields (xa)n ∈ Kα, for some n ∈ Z+, whence a = (xa)nayn ∈ KαSα ⊆ Kα.
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This means that Kα is the J -class of a, which completes the proof of the

implication (i)⇒(x).

(x)⇒(iii) Let S be an intra π-regular semigroup whose every J -class

containing an intra regular element is a regular subsemigroup of S. Accord-

ing to Theorem 5.5, S is an intra π-regular semigroup and a semilattice of

Archimedean semigroups. Let a ∈ S. Then there exists n ∈ Z+ such that

an ∈ Intra(S). If we denote by J the J -class of an, then J is a regular

semigroup and we have that an ∈ anJan ⊆ anSan. Thus, S is a π-regular

semigroup.

(iii)⇒(ix) Since S is a π-regular semigroup, then based on the proof

of (iii)⇔(x) we have that each J -class of S containing an idempotent is a

regular subsemigroup.

(ix)⇒(iii) Let a, b ∈ S. Then there exist x ∈ S and n ∈ Z+ such that

(ab)n = (ab)nx(ab)n and (ab)nx, x(ab)n ∈ E(S). It is also true that

(ab)n = (ab)nx(ab)n = (ab)nx(ab)nx(ab)n ∈ Sx(ab)nS

and

x(ab)n = x(ab)nx(ab)n ∈ S(ab)nS.

Thus (ab)nJ x(ab)n, and in a similar way we show that (ab)nJ (ab)nxJ (ab)2n.

Therefore, (ab)n ∈ S(ab)2nS ⊆ S(ba)n+1S and (ba)n+1 ∈ S(ab)nS, which im-

plies (ab)n, (ba)n+1 ∈ J(ab)n . Since the J -class J(ab)n contains an idempotent,

then it is a subsemigroup of S. Now (ba)n+1(ab)n ∈ J(ab)n , whence

(ab)n ∈ S(ba)n+1(ab)nS ⊆ Sa2S.

Based on Theorem 5.1, S is a semilattice of Archimedean semigroups.

(i)⇒(xi) Let S be a semilattice Y of semigroups Sα which are nil-extensi-

ons of simple regular semigroups Kα, α ∈ Y . Consider an arbitrary a ∈
Reg(S). Then a ∈ Sα, for some α ∈ Y , and there exists x ∈ S such that

a = axa. Let x ∈ Sβ , for some β ∈ Y . Then α = αβ = βα. Thus xa ∈ Sα,

and xa ∈ E(Sα) = E(Kα), whence (xa)x ∈ KαSβ ⊆ SαSβ ⊆ Sαβ = Sα.

Now

a = a(xax)a ∈ aSαa

so

a ∈ Reg(Sα) ⊆ Kα ⊆ Intra(S).

Therefore

Reg(S) ⊆ Intra(S). (1)
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Conversely, let a ∈ Intra(S). Then there exists α ∈ Y such that a ∈ Sα, and

based on Lemma 2.7 we have that a ∈ Intra(Sα), i.e. there exist u, v ∈ Sα
such that

a = ua2v = uka(av)k,

for every k ∈ Z+. Since Sα is a nil-extension of a simple regular semigroup

Kα, then there exists n ∈ Z+ such that un, (av)n ∈ Kα. Hence,

a = un+1a2y(ay)n ∈ Kαa
2Kα ⊆ Kα ⊆ Reg(S).

Thus

Intra(S) ⊆ Reg(S). (2)

Based on (1) and (2) we have that Intra(S) = Reg(S).

(xi)⇒(i) Let S be a semilattice Y of semigroups Sα, α ∈ Y , and for each

α ∈ Y , let Sα be a nil-extension of a simple semigroup Kα. For an arbitary

a ∈ S there exists n ∈ Z+ such that an ∈ Kα ⊆ Intra(S) = Reg(S). Thus, S

is a π-regular semigroup, and using (i)⇔(iii) we have that S is a semlattice

of nil-extensions of simple regular semigroups.

Later we will consider chains of nil-extensions of simple regular semi-

groups.

Theorem 7.3 The following conditions on a semigroup S are equivalent:

(i) S is a chain of nil-extensions of simple regular semigroups;

(ii) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ anSabSan or bn ∈ bnSabSbn;

(iii) S is π-regular and (∀e, f ∈ E(S)) ef |e or ef |f ;
(iv) S is π-regular and Reg(S) is a chain of simple regular semigroups.

Proof. (i)⇒(ii) Let S be a chain Y of nil-extensions of simple regular semi-

groups Sα, α ∈ Y . Let a, b ∈ S. Then a ∈ Sα and b ∈ Sβ , for some α, β ∈ Y .

If αβ = α then a, ab ∈ Sα, and based on Theorem 3.15, there exists n ∈ Z+

such that an ∈ anSabSan. In a similar way, from αβ = β we obtain that

bn ∈ bnSabSbn, for some n ∈ Z+.

(ii)⇒(i) It is clear that S is π-regular. Let a, b ∈ S. Then, based on the

hypothesis, there exists n ∈ Z+ such that an ∈ SabS or bn ∈ SabS. Accord-

ing to Theorem 5.6 we have that S is a chain of Archimedean semigroups.

Since S is π-regular, then based on Theorem 7.2 we have that S is a chain

of nil-extensions of simple regular semigroups.
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(ii)⇒(iii) This is clear.

(iii)⇒(i) Let S be a π-regular semigroup and let e, f, g ∈ E(S) such that

f |e and g|e. Then there exist x, y, u, v ∈ S1 such that e = xfy = ugv,

whence (yxf)2, (gvu)2 ∈ E(S). Now we have that (yxf)2 ∈ S(yxf)2(gvu)2S

or (gvu)2 ∈ S(yxf)2(gvu)2S. If (yxf)2 ∈ S(yxf)2(gvu)2S, then (yxf)2 ∈
SfgS. Thus

e = eee = xfyxfyxfy = xf(yxf)2y ∈ xfSfgSy ⊆ SfgS,

so fg|e in S. If (gvu)2 ∈ S(yxf)2(gvu)2S, then fg|e in S. Now, based

on Theorem 7.2, S is a semilattice Y of nil-extensions of simple regular

semigroups Sα, α ∈ Y .

Let α, β ∈ Y and e, f ∈ E(S) be such that e ∈ Sα, f ∈ Sβ . If ef |e in S,

then αβ = α, and if ef |f , then αβ = β. Therefore, Y is a chain and S is a

chain of simple regular semigroups.

(i)⇒(iv) Let S be a chain Y of semigroups Sα, α ∈ Y , and for α ∈ Y , let

Sα be a nil-extension of a simple regular semigroup Kα. Let a, b ∈ Reg(S).

Then a ∈ Sα, b ∈ Sβ , for some α, β ∈ Y . It is clear that a ∈ Kα and b ∈ Kβ .

Since Y is a chain, then αβ = α or αβ = α. Suppose that αβ = α. Then

ab ∈ Sα, whence ab ∈ KαSα ⊆ Kα, i.e. ab ∈ Reg(S). Similarly, we prove

that αβ = β implies ab ∈ Reg(S). Hence, Reg(S) is a subsemigroup of S

and clearly

Reg(S) =
∪
α∈Y

Reg(Sα) =
∪
α∈Y

Kα.

Therefore Reg(S) is a chain Y of simple regular semigroups Kα, α ∈ Y .

(iv)⇒(iii) Let S be π-regular and let Reg(S) be a chain Y of simple

regular semigroups Kα, α ∈ Y . Consider arbitrary e, f ∈ E(S). Then

e ∈ Kα and f ∈ Kβ, for some α, β ∈ Y . Since Y is a chain, then e, ef ∈ Kα

or f, ef ∈ Kβ, whence ef |e or ef |f .

Exercises

1. A semigroup S is π-inverse and S is a semilattice of Archimedean semigroups if

and only if S is a semilattice of nil-extensions of simple inverse semigroups.
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7.2 Uniformly π-regular Semigroups

In this section we will give some general structural characteristics of

the semilattice of completely Archimedean semigroups, i.e. of uniformly π-

regular semigroups which are defined as π-regular semigroups whose any reg-

ular element is completely regular, i.e. semigroups whose Reg(S) = Gr(S).

We remind the reader that semigroups A2 and B2, which we used in the

following theorem, are defined by the presentations A2 = ⟨a, e | a2 = 0, e2 =

e, aea = a, eae = e⟩ and B2 = ⟨a, b | a2 = b2 = 0, aba = a, bab = b⟩.

Theorem 7.4 On a semigroup S the following conditions are equivalent:

(i) S is a semilattice of completely Archimedean semigroups;

(ii) S is a semilattice of Archimedean semigroups and completely π-regular;

(iii) S is uniformly π-regular;

(iv) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ (ab)nSa(ab)n;

(iv’) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ (ab)nbS(ab)n;

(v) S is completely π-regular and every D-class of S is its subsemigroup;

(vi) S is completely π-regular and between the factors of completely π-

regular subsemigroups of S there are no A2 and B2 semigroups;

(vii) S is completely π-regular, Reg(⟨E(S)⟩) = Gr(⟨E(S)⟩) and for all e, f ∈
E(S), f |e in S implies f |e in ⟨E(S)⟩;

(viii) S is right π-regular and a semilattice of left completely Archimedean

semigroups;

(ix) S is π-regular and a semilattice of left completely Archimedean semi-

groups;

(x) S is π-regular and every regular element of S is left regular;

(xi) S is π-regular and each L-class of S containing an idempotent is a

subsemigroup.
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Proof. (i)⇒(iv) Let S be a semilattice Y of completely Archimedean semi-

groups Sα, α ∈ Y . Assume a, b ∈ S. Then ab, ba ∈ Sα, for some α ∈ Y , so

according to Theorem 3.16 we obtain that

(ab)n ∈ (ab)nS(ba)(ab)n ⊆ (ab)nSa(ab)n,

for some n ∈ Z+.

(iv)⇒(ii) From (iv) it immediately follows that S is completely π-regular.

Assume a, b ∈ S. Based on (iv), (ab)n ∈ Sa2S, for some n ∈ Z+, so based

on Theorem 5.1, S is a semilattice of Archimedean semigroups.

(ii)⇒(i) This follows from Lemma 2.7 and Theorem 3.16.

(i)⇒(iii) Let S be a semilattice Y of completely Archimedean semigroups

Sα, α ∈ Y . Assume a ∈ Reg(S). Then a ∈ Sα, for some α ∈ Y . For a there

exists x ∈ Sβ , β ∈ Y such that a = axa ∈ SαSβSα ⊆ Sαβ , so it follows

that αβ = α. Since xax ∈ Sα, then based on Theorem 3.16 we obtain that

a ∈ Reg(Sα) = Gr(Sα) ⊆ Gr(S). Whence, Reg(S) ⊆ Gr(S) ⊆ Reg(S), i.e.

Reg(S) = Gr(S). Thus, S is uniformly π-regular.

(iii)⇒(ii) From (iii) it immediately follows that S is completely π-regular.

Assume a, b ∈ S. Then (ab)n ∈ Ge, for some n ∈ Z+, e ∈ E(S), so based

on Theorem 1.8 it follows that eab ∈ Ge. Let x be an inverse of eab in

the group Ge. Then e = eabx = eabxe, whence ea = eabxea. Thus, ea ∈
Reg(S) = Gr(S), i.e. ea = (ea)2y = (eae)(ay), for some y ∈ S. Now we

have that eae = eabxeae = (eae)(ay)(bx)(eae), so eae ∈ Reg(S) = Gr(S),

i.e. eae ∈ Gf , for some f ∈ E(S). It is easy to see that ef = fe = f . On

the other hand, e = eabx = (eae)(ay)(bx) = f(eae)(ay)(bx), whence fe = e.

Thus, e = f , i.e. eae, eab ∈ Ge, whence

ea2be = (ea)(abe) = (ea)e(ab) = (eae)(eab) ∈ Ge.

Thus, (ab)n, ea2be ∈ Ge, whence

(ab)n ∈ Geea
2be ⊆ Sa2S,

so according to Theorem 5.1, S is semilattice of Archimedean semigroups.

(i)⇒(vi) Let S be a semilattice Y of completely Archimedean semigroups

Sα, α ∈ Y . Assume a completely π-regular subsemigroup T of S. Then T is a

semilattice Z of semigroups Tα, α ∈ Z, where Z = {α ∈ Y |T ∩Sα ̸= ∅} and

Tα = T ∩ Sα, α ∈ Z. It is evident that Tα, α ∈ Z, is a completely π-regular

semigroup and all its idempotents are primitive. Based on Theorem 3.16
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semigroups Tα, α ∈ Z are completely Archimedean. Thus, T is a semilattice

of completely Archimedean semigroups. Since (i)⇔(iv), then every factor of

T is a semilattice of completely Archimedean semigroups. Hence, between

the factors of T there are no semigroups A2 or B2.

(vi)⇒(v) Assume that there exists a regular D-class Da, a ∈ S, which

is not a subsemigroup of S. Based on Lemma 1.32 D = J , so Da = Ja.

The ideal J(a) of a semigroup S is a completely π-regular semigroup and

it is also the principal factor K = J(a)/I(a). Based on Theorem 1.22, K

is a completely 0-simple semigroup, i.e. K = M0(G; I,Λ, P ), where P is a

regular matrix. Since Ja is not a subsemigroup of S, then K has the zero

divisor, i.e. there exists i ∈ I, λ ∈ Λ such that piλ = 0. On the other hand,

since P is regular, then there exists j ∈ I and µ ∈ Λ such that pµi ̸= 0 and

pλj ̸= 0. Let I0 = {i, j}, Λ0 = {λ, µ} and let P0 be a P0×Λ0 submatrix of P .

There is a subsemigroup M = M0(G; I0,Λ0, P0) of K. Then T =M• ∪ I(a)
is a completely π-regular subsemigroup of S, because and M and I(a) are

completely π-regular. Also, M is a factor of T , and since M is a completely

0-simple, then H is a congruence on M and M/H ∼= A2, for pµj ̸= 0, and

M/H ∼= B2, for pµj = 0, respectively. Thus, one of the semigroups A2 or

B2 is a factor of T , which is a contradiction according to hypothesis in (vi).

Therefore, (v) holds.

(v)⇒(ii) Assume a, b ∈ S. Based on Theorems 2.3 and 1.8 (ab)n, (ba)n ∈
Gr(S), for some Z+, whence (an)n ∈ (ab)n+1S ⊆ (ab)naS, (ba)n ∈ S(ba)n+1

⊆ Sa(ba)n, so (ab)nR(ab)na = a(ba)nL(ba)n. Thus, (ab)nD(ba)n, and since

every regular D-class of S is a subsemigroup, then (ab)nD(ba)n(ab)n. On

the other hand, from D ⊆ J we obtain that (ab)nJ (ba)n(ab)n. Whence,

(ab)n ∈ S(ba)n(ab)nS ⊆ Sa2S. Now, according to Theorem 5.1, S is a

semilattice of Archimedean semigroups.

(i)⇒(vii) Let S be a semilattice Y of completely Archimedean semigroups

Sα, α ∈ Y , and for every α ∈ Y , Sα is a nil-extension of a completely simple

semigroup Kα. Consider e, f ∈ E(S) such that e ∈ SfS, and let e ∈ Sα
and f ∈ Sβ , for some α, β ∈ Y . Then α = αβ = βα and ef ∈ Sα, whence

ef = eef ∈ KαSα ⊆ Kα. Now there exists x ∈ Kα such that ef = efxef .

Thus xef ∈ E(Sα). Based on Theorem 3.16, ⟨E(Kα)⟩ is (completely) simple,

whence

e ∈ ⟨E(Kα)⟩xef⟨E(Kα)⟩ = ⟨E(Kα)⟩xeff⟨E(Kα)⟩ ⊆ ⟨E(S)⟩f⟨E(S)⟩,

which was to be proved. Using Lemma 2.11 we have that ⟨E(S)⟩ is com-
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pletely π-regular and based on Lemma 2.5 we have

Reg⟨E(S)⟩ = S ∩ Reg(S) = S ∩Gr(S) = Gr⟨E(S)⟩.

(vii)⇒(i) Conversely, let S be completely π-regular. Then based on

Lemma 2.11, ⟨E(S)⟩ is completely π-regular and based on (i)⇔(iii) ⟨E(S)⟩ is
a semilattice of completely Archimedean semigroups. Consider e, f, g ∈ E(S)

such that e|g and f |g in S. Then from the hypothesis we have that e|g and

f |g in ⟨E(S)⟩. Now, based on Theorem 7.2, ef |g in ⟨E(S)⟩ (and also in S).

Again based on Theorem 7.2 we have that S is a semilattice of Archimedean

semigroups. Since S is completely π-regular, we then have based on (i)⇔(ii)

that S is a semilattice of completely Archimedean semigroups.

(i)⇔(viii) and (viii)⇔(ix) This follows from Theorem 5.27.

(i)⇒(xi) This follows from Theorem 5.27.

(xi)⇒(x) Assume a ∈ Reg(S), x ∈ V (a). Let L be the L-class of a.

Clearly, aLxa, i.e. xa ∈ L. Based on the hypothesis, L is a subsemigroup

of S, so xa2 = (xa)a ∈ L, i.e. aLxa2, whence a ∈ Sxa2 ⊆ Sa2, and

a ∈ LReg(S).

(x)⇒(ii) Clearly, S is left π-regular, so according to Theorem 2.3, it

is completely π-regular. Assume a, b ∈ S. Then (ab)n ∈ Ge, for some

n ∈ Z+, e ∈ E(S), and based on Lemma 1.8, abe ∈ Ge. Let x be the inverse

of abe in the group Ge. Then e = xabe = exabe, whence be = bexabe.

Therefore, be ∈ Reg(S) ⊆ LReg(S), so be = y(be)2 = (yb)(ebe), for some y ∈
S. Clearly, be = ym(be)m+1, for each m ∈ Z+. Assume that (ebe)m ∈ Gf ,

for some m ∈ Z+, f ∈ E(S). Then it is easy to verify that ef = fe = f .

On the other hand,

e = xabe = xaym(be)m+1 = xaymb(ebe)m = xaymb(ebe)mf = ef.

Hence, e = f , i.e. (ebe)m ∈ Ge, so again based on Lemma 1.8, ebe =

e(ebe) ∈ Ge. Now, eab
2e = (eab)(be) = (abe)(be) = (abe)(ebe) ∈ Ge, whence

(ab)n, eab2e ∈ Ge. Therefore, (ab)
n ∈ Geeab

2e ⊆ Sb2S, so based on Theorem

5.1, S is a semilattice of Archimedean semigroups.

Theorem 7.5 The following conditions on a semigroup S are equivalent:

(i) S is a chain of completely Archimedean semigroup;

(ii) S is completely π-regular and for all e, f ∈ E(S) is e ∈ efSfe or

f ∈ feSef ;
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(iii) S is completely π-regular and for all e, f ∈ E(S) is e ∈ efS or f ∈ Sef ;

(iv) S is completely π-regular and Reg(S) is a chain of completely simple

semigroups;

(v) S is completely π-regular and for all e, f ∈ E(S), e ∈ ef⟨E(S)⟩ fe or

f ∈ fe⟨E(S)⟩ef ;
(vi) S is completely π-regular and for all e, f ∈ E(S), e ∈ ef⟨E(S)⟩ or

f ∈ ⟨E(S)⟩ef ;
(vii) S is completely π-regular and ⟨E(S)⟩ is a chain of completely simple

semigrups.

Proof. (i)⇒(ii) Let S be a chain Y of completely Archimedean semigroups

Sα, α ∈ Y . It is evident that S is completely π-regular. Assume e, f ∈ E(S),

and assume that e ∈ Sα, f ∈ Sβ , α, β ∈ Y . Since Y is a chain, then αβ = α

or αβ = β. If αβ = α, then e, ef ∈ Sα, so based on Theorem 3.16 and

Lemma 3.15 we have that efe = e(ef)e ∈ eSαe = Ge. Thus, e, efe ∈ Ge, so

e ∈ efeGeefe ⊆ efSfe.

Similarly, if αβ = β it follows that f ∈ feSef .

(ii)⇒(iii) This follows immediately.

(iii)⇒(i) Assume a, b ∈ S. Then (ab)m, (ba)n ∈ Reg(S), for some m,n ∈
Z+. Assume x ∈ V ((ab)m), y ∈ V ((ba)n). Then y(ba)n, (ab)mx ∈ E(S), so

by (iii) we obtain that

y(ba)n ∈ y(ba)n(ab)mxS or (ab)mx ∈ Sy(ba)n(ab)mx,

so

y(ba)n ∈ (ba)n(ab)mxS or (ab)m ∈ Sy(ba)n(ab)m.

Thus, (ab)n+1 ∈ Sa2S or (ab)m ∈ Sa2S, so based on Theorems 5.1 and 7.4

we obtain that S is a semilattice Y of completely Archimedean semigroups

Sα, α ∈ Y . Assume α, β ∈ Y , e ∈ E(Sα), f ∈ E(Sβ). Then e ∈ efS or

f ∈ Sef . If e ∈ efS, then e = efu, for some u ∈ S. If we assume that

u ∈ Sγ , γ ∈ Y , then we obtain that α = αβγ, whence αβ = α. Similar, if

f ∈ Sef then it follows that αβ = β. Thus, Y is a chain.

(ii)⇒(iv) Let T = Reg(S). Assume a, b ∈ T , x ∈ V (a), y ∈ V (b).

Then xa, by ∈ E(S), so from (ii) it follows that xa ∈ xabySbyxa or by ∈
byxaSxaby. If xa ∈ xabySbyxa, then

ab = axabyb ∈ axabySbyxabyb = abySyxab ⊆ abSab,
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so ab ∈ T . Similar, if by ∈ byxaSxaby, then ab ∈ T . Thus, T = Reg(S) is

a subsemigroup of S. Since Gr(S) = Gr(T ) ⊆ T and since S is completely

π-regular, then we obtain that T is also completely π-regular.

Assume a ∈ T , x ∈ V (a). Then, from ax, xa ∈ E(S), from (ii) we obtain

that ax ∈ ax2aSxa2x or xa ∈ xa2xSax2a, whence a = axa ∈ Sa2S. Based

on Theorem 2.6 we obtain that T is a semilattice Y of simple semigroups Tα,

α ∈ Y , so based on Lemma 2.7 and Theorem 2.5, Tα, α ∈ Y are completely

simple semigroups. In the same way as in proof (iii)⇒(i) we obtain that T

is a chain.

(iv)⇒(ii) This follows from the fact that is E(S) = E(Reg(S)) and the

fact is (i)⇔(ii).

(i)⇒(v) Let S be a chain Y of completely Archimedean semigroups Sα,

α ∈ Y . Clearly, S is a completely π-regular semigroup. Let e, f ∈ E(S)

and let e ∈ Sα, f ∈ Sβ , for some α, β ∈ Y . Since Y is a chain, then

αβ = α or αβ = β. If αβ = α, then e, ef ∈ Sα, so based on Theorem 3.16

and Lemma 3.15, efe = e(ef)e ∈ eSαe = Ge. Thus, e, efe ∈ Ge, whence

e ∈ efeGeefe, i.e. e = efexefe = efxfe, for some x ∈ Ge. Therefore,

e = ef(fxfe)(efxf)fe ∈ ef⟨E(S)⟩fe. Similarly we prove that αβ = β

implies f ∈ fe⟨E(S)⟩ef .
(v)⇒(vi) This follows immediately.

(vi)⇒(i) Let a, b ∈ S. Then (ab)m, (ba)n ∈ Reg(S), for some m,n ∈ Z+.

Let x ∈ V ((ab)m), y ∈ V ((ba)n)). Then y(ba)n, (ab)mx ∈ E(S), so based on

(iii) we obtain that

y(ba)n ∈ y(ba)n(ab)mx⟨E(S)⟩

or

(ab)mx ∈ ⟨E(S)⟩y(ba)n(ab)mx,

whence

(ba)n ∈ (ba)n(ab)mxS

or

(ab)m ∈ Sy(ba)n(ab)m.

Therefore, (ab)n+1 ∈ Sa2S or (ab)m ∈ Sa2S , so from Theorem 5.1 it follows

that S is a semilattice Y of completely Archimedean semigroups Sα, α ∈ Y .

If α, β ∈ Y and e ∈ E(Sα), f ∈ E(Sβ), then e ∈ ef⟨E(S)⟩ implies αβ = α,

and f ∈ ⟨E(S)⟩ef implies αβ = β. Thus, based on (vi) we obtain that Y is

a chain.
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(vii)⇒(v) Since ⟨E(S)⟩ is a chain of completely simple semigroups, then

based on (i)⇔(v) we have the assertion.

(i)⇒(vii) Based on (i)⇔(iv), Reg(S) is a chain of completely simple semi-

groups. Based on this and Theorem 2.16 we have that ⟨E(S)⟩ is a union of

groups, whence from (i)⇔(v) we obtain that ⟨E(S)⟩ is a chain of completely

simple semigroups.

Exercises

1. A semigroup S is a semilattice of completely Archimedean semigroups if and

only if S is completely π-regular with the identity (ab)0 = ((ab)0(ba)0(ab)0)0.
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7.3 Semilattices of Nil-extensions of Rectangular
Groups

In the previous section we observed a decomposition of (completely) π-

regular semigroups into a semilattice of completely Archimedean semigroups,

i.e. a semilattice of nil-extension of completely simple semigroups (Theorem

3.16). In this section we will discuss one special case of these decompositions,

i.e. we will discuss semillatice decompositions in which every component is

an orthodox semigroup, i.e. a semigroup in which the set of all idempotents

is its subsemigroup.

We start with the following result.

Lemma 7.1 The following conditions on a semigroup S are equivalent:

(i) E(S) is a subsemigroup of S;

(ii) if a, b ∈ S and x ∈ V (a), y ∈ V (b), then yx ∈ V (ab);

(iii) for all a, b, x, y ∈ S, a = axa and b = byb implies ab = abyxab.
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If S is regular, then each of the previous conditions is equivalent to:

(iv) every inverse of every idempotent from S is an idempotent.

Proof. (i)⇒(ii) Assume a, b ∈ S, x ∈ V (a), y ∈ V (b). Then based on

xa, by ∈ E(S) and (i) we obtain that xaby, byxa ∈ E(S), whence

abyxab = axabyxabyb = a(xaby)2b = axabyb = ab
yxabyx = ybyxabyxax = y(byxa)2x = ybyxax = yx.

Therefore, yx ∈ V (ab).

(ii)⇒(iii) Let a = axa, b = byb, a, b, x, y ∈ S. Then xax ∈ V (a),

yby ∈ V (b), so by (ii), ybyxax ∈ V (ab). Hence,

ab = ab(yby)(xax)ab = abyxab.

(iii)⇒(i) This follows immediately.

(i)⇒(iv) Let e ∈ E(S) and let x ∈ V (e). Then xe, ex ∈ E(S), so based

on (i) we obtain that

x = xex = (xe)(ex) = [(xe)(ex)]2 = (xex)2 = x2.

Now, let S be a regular semigroup.

(iv)⇒(i) Assume e, f ∈ E(S). Since S is regular, then there exists x ∈
V (ef), whence

(ef)(fxe)(ef) = efxef = ef, (fxe)(ef)(fxe) = f(xefx)e = fxe,

so ef ∈ V (fxe). On the other hand, fxe = f(xefx)e = (fxe)2, i.e. fxe ∈
E(S), so based on (iv) we obtain that ef ∈ E(S).

According to the following lemma we describe some completely simple

semigroups which are not orthodox, i.e. which are not rectangular groups.

Lemma 7.2 Let R be the ring Z of all integers or the ring Zp of all the

rests of the integers by mod p, p ∈ Z+, p ≥ 2, and let I = {0, 1} ⊆ R. The

set R× I × I under multiplication defined by

(m; i, λ)(n; j, µ) = (m+ n− (i− j)(λ− µ); i, µ), m, n ∈ R, i, j, λ, µ ∈ I,

is a semigroup, in notation E(∞) = Z × I × I, E(p) = Zp × I × I. Also,

E(∞) and E(p), p ∈ Z+, p ≥ 2, are completely simple semigroups and they

are not rectangular groups.
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Proof. It is evident that E(∞) and E(p) are semigroups. Also, it is clear

that E(∞) (E(p)) is a rectangular band of I×I groups Ei,λ = {(m; i, λ) |m ∈
R}, i, λ ∈ I, where R = Z (R = Zp), so based on Corollary 3.8, E(∞) and

E(p) are completely simple semigroups. The set of all idempotents from

E(∞) (E(p)) is the set {(0; i, λ) | i, λ ∈ I}, and it is easy to prove that it is

not a subsemigroup of E(∞) (E(p)). Thus, according to Theorem 3.6 E(∞)

and E(p), p ∈ Z+, p ≥ 2 are not rectangular groups.

A factor K of a semigroup S is a completely π-regular factor of S if each

of its elements is completely π-regular.

The following theorem is the main result of this section.

Theorem 7.6 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of nil-extensions of rectangular groups;

(ii) S is a semilattice of completely Archimedean semigroups and for all

e, f ∈ E(S) there exists n ∈ Z+ such that (ef)n = (ef)n+1;

(iii) S is completely π-regular and (xy)0 = (xy)0(yx)0(xy)0;

(iv) S is π-regular and a = axa implies a = ax2a2;

(v) S is a semilattice of completely Archimedean semigroups and the in-

verse of every idempotent from S is an idempotent;

(vi) S is a semilattice of completely Archimedean semigroups and between

subsemigroups of S there are no E(∞) and E(p), p ∈ Z+, p ≥ 2

semigroups;

(vii) S is completely π-regular and between the completely π-regular factors

of subsemigroups of S there are no A2, B2 and E(p), p ∈ Z+, p ≥ 2

semigroups.

Proof. (i)⇒(ii) Let S be a semilattice Y of semigroups Sα, α ∈ Y , and

for α ∈ Y , let Sα be a nil-extension of a rectangular group Kα. Assume

e, f ∈ E(S). Then ef, fe ∈ Sα, for some α ∈ Y , so there exists n ∈ Z+ such

that (ef)n, (fe)n ∈ Kα. Furthermore, we have that (ef)n ∈ Gg, (fe)
n ∈ Gh,

for some g, h ∈ E(Kα), so (ef)nx = g, (fe)ny = h, for some x ∈ Gg,

y ∈ Gh and from Theorem 1.8 it follows that (ef)n+1 ∈ Gg. Since Kα is a

rectangular group, then ghg = g. Now we have that

(ef)n = (ef)ng = (ef)n(ef)nx = (ef)ne(ef)nx = (efe)ng
= e(fe)ng = e(fe)nhg = e(fe)n(fe)nyg = e(fe)nf(fe)nyg
= (ef)n+1hg = (ef)n+1ghg = (ef)n+1g = (ef)n+1.
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(ii)⇒(i) Let S be a semilattice Y of completely Archimedean semigroups

Sα, α ∈ Y , and let for all e, f ∈ E(S) there exists n ∈ Z+ such that

(ef)n = (ef)n+1. For α ∈ Y , let Sα be a nil-extension of a completely simple

semigroup Kα. Assume α ∈ Y , e, f ∈ E(Kα). Based on the hypothesis,

(ef)n = (ef)n+1, for some n ∈ Z+, so (ef)n = (ef)n+1 ∈ E(S). On the other

hand, ef ∈ Kα, so ef ∈ Gg, for some g ∈ E(Kα). Since ⟨ef⟩ ⊆ Gg, then

(ef)n = (ef)n+1 = g, whence ef = efg = ef(ef)n = (ef)n+1 = g ∈ E(S).

Thus, E(Kα) is a subsemigroup of Kα, so based on Theorem 3.6 Kα is a

rectangular group. Therefore, (i) holds.

(i)⇒(iii) Let S be a semilattice Y of semigroups Sα, α ∈ Y , and for

α ∈ Y , let Sα be a nil-extension of a rectangular group. According to

Theorem 7.4, S is completely π-regular. Assume x, y ∈ S. Then xy, yx ∈ Sα,

for some α ∈ Y , whence (xy)0, (yx)0 ∈ E(Sα), so based on Corollary 3.12

(xy)0 = (xy)0(yx)0(xy)0.

(iii)⇒(iv) From (iii) it immediately follows that S is π-regular. Let a =

axa, a, x ∈ S. Then ax, xa ∈ E(S), whence (ax)0 = ax, (xa)0 = xa, and

based on (iii) we obtain that a = (ax)a = (ax)(xa)(ax)a = ax2a2xa =

ax2a2.

(iv)⇒(v) Let (iv) hold. Assume a ∈ Reg(S), x ∈ V (a). Then from

(iv) we obtain that a = ax2a2 ∈ Sa2, and x = xa2x2, whence a = axa =

axa2x2a = a2x2a ∈ a2S. Thus, a ∈ Gr(S). Hence, Reg(S) = Gr(S),

so according to Theorem 7.4 S is a semilattice of completely Archimedean

semigroups. Assume e ∈ E(S), y ∈ V (e). Then based on (iv) we have that

y = ye2y2 = yey2 = y2. Therefore, (v) holds.

(v)⇒(vi) Let (v) hold. If S contains a subsemigroup isomorphic to E(∞)

or E(p), p ∈ Z+, p ≥ 2, then there exists an idempotent from S and its

inverse which is not an idempotent. Actually, the element (1; 0, 0) is inverse

of the idempotent (0; 1, 1) in E(∞), E(p) respectively, where (1; 0, 0) is not

an idempotent.

(vi)⇒(i) Let (vi) hold. If we want to prove (i), then it is enough to prove

that every completely simple subsemigroup of S is a rectangular group. Let

K be a completely simple subsemigroup of S. Assume that K is not a

rectangular group. According to Theorem 3.6 there exist e, f ∈ E(K) such

that ef /∈ E(K). Hence, ef is a group element of the order p ≥ 2 or of

an infinite order in a semigroup K, and it is easy to prove that ef, efe, fef

and fe are different elements of the same order (finite or infinite). Also, it

is easy to prove that ef, efe, fef and fe are in the different H-classes of K
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and for K it holds:

(1) efLfef, efRefe, feLefe, feRfef.

According to Theorem 3.8, K is a rectangular band of I × Λ groups Hiλ,

i ∈ I, λ ∈ Λ, which are H-classes of K. For the sake of simplicity, we use the

notation ef ∈ H00, fe ∈ H11, 0, 1 ∈ I, 0, 1 ∈ Λ. Based on (1), efe ∈ H01,

fef ∈ H10. With G00, G01, G10, G11 we respectively denote the monogenic

subgroups of H00, H01, H10 and H11 generated by elements ef , efe, fef

and fe, and let T = G00 ∪G01 ∪G10 ∪G11. Now, there are two cases:

(A) The elements ef , efe, fef and fe are of an infinite order, i.e. the

groups G00, G01, G10 and G11 are isomorphic to the additive group of inte-

gers. Then it is easy to prove that T is a subsemigroup of K isomorphic to

E(∞), where one isomorphism φ from E(∞) to T is given by: for n ∈ Z

(n; 0, 0)φ = (ef)n, (n; 0, 1)φ = (efe)n,

(n; 1, 0)φ = (fef)n, (n; 1, 1)φ = (fe)n.

(B) The elements ef , efe, fef and fe are of a finite order p ≥ 2, i.e.

the groups G00, G01, G10 and G11 are isomorphic to the additive group of

the rest of the integers by mod p. Then it is easy to prove that T is a

subsemigroup of K isomorphic to E(p), where one isomorphism φ from E(p)

to T is given by: for n ∈ Zp

(n; 0, 0)φ = (ef)n, (n; 0, 1)φ = (efe)n, (n; 1, 0)φ = (fef)n, (n; 1, 1)φ =(fe)n.

Hence, in both cases we obtain a contradiction to the hypothesis in (vi).

Therefore, K must be a rectangular group.

(vi)⇔(vii) This follows from Theorem 7.4 and from the fact that E(p) is

a factor of E(∞), for every p ∈ Z+, p ≥ 2.

Lemma 7.3 A semigroup S is a chain of rectangular bands if and only if

for all x, y ∈ S is x = xyx or y = yxy.

Proof. Let S be a chain Y of rectangular bands Sα, α ∈ Y . Assume

x, y ∈ S. Then x ∈ Sα, y ∈ Sβ , α, β ∈ Y , and since T is a chain then

αβ = α or αβ = β. If αβ = α, then x, xy ∈ Sα, so since Sα is a rectangular

band, then xyx = x(xy)x = x. Similarly, from αβ = β it follows that

yxy = y.
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Conversely, let xyx = x and yxy = y for all x, y ∈ S. Then, for x ∈ S

we have that x = x3, and x = xx2x or x2 = x2xx2, i.e. x = x4 or x = x5.

Thus, x = x3 or x2 = x5, whence x = x2. Hence, S is a band, so based on

Corollary 3.6, S is a semilattice Y of rectangular bands Sα, α ∈ Y . It is

easy to prove that Y is a chain.

The chain of nil-extension of rectangular groups will be described by the

following theorem.

Theorem 7.7 The following conditions on a semigroup S are equivalent:

(i) S is a chain of nil-extensions of rectangular groups;

(ii) S is completely π-regular and Reg(S) is a chain of rectangular groups;

(iii) S is completely π-regular and E(S) is a chain of rectangular bands.

Proof. (i)⇒(ii) Let S be a chain Y of semigroups Sα, α ∈ Y , and for α ∈ Y

let Sα be a nil-extension of the rectangular group Kα. Based on Theorem

7.4, S is completely π-regular. Assume e, f ∈ E(S). Then e ∈ Kα, f ∈ Kβ ,

α, β ∈ Y . Since Y is a chain, then αβ = α or αβ = β. If αβ = α, then

ef = e(ef) ∈ KαSα ⊆ Kα, while based on Theorem 7.6 we obtain that

(ef)n = (ef)n+1, for some n ∈ Z+, whence ef ∈ E(Sα) = E(Kα), so from

Lemma 3.8 it follows that e = e(ef)e = efe. Similarly, from αβ = β it

follows that ef ∈ E(Sβ) and f = fef . Thus, E(S) is a subsemigroup of S,

and based on Lemma 7.3, E(S) is a chain of rectangular bands.

(ii)⇒(iii) This is proved in a similar way as (i)⇒(iii).

(iii)⇒(i) and (iii)⇒(ii) This follows from Theorem 7.5.

A semigroup S is a singular band if S is either a left zero band or a right

zero band. A semigroup S is a Rédei band if for all x, y ∈ S, xy = x or

xy = y. The rectangular Rédei bands are described by the following lemma:

Lemma 7.4 A semigroup S is a rectangular Rédei band if and only if S is

a singular band.

Proof. Let S = I × Λ be a rectangular band. Assume that is |I| ≥ 2

and |Λ| ≥ 2, i.e. assume i, j ∈ I, i ̸= j, and λ, µ ∈ Λ, λ ̸= µ. Then

(i, λ)(j, µ) = (i, µ), so (i, λ)(j, µ) ̸= (i, λ) and (i, λ)(j, µ) ̸= (j, µ), which is

a contradiction of the hypothesis that S is a Rédei band. Thus, |I| = 1 or

|Λ| = 1, so S is a singular band.

The converse, follows immediately.
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Now, we discuss a semilattice of semigroups in which an arbitrary com-

ponent is a nil-extension or a nil-extension of a right group (”the mixed

properties”).

Theorem 7.8 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of nil-extensions of left or right groups;

(ii) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ (ab)nS(ba)n ∪ (ba)nS(ab)n;

(iii) S is π-regular and for all a, b ∈ S there exists n ∈ Z+ such that

(ab)n ∈ Sa ∪ bS;
(iv) S is a semilattice of completely Archimedean semigroups and for all

e, f ∈ E(S) there exists n ∈ Z+ such that (ef)n = (efe)n or (ef)n =

(fef)n;

(v) S is completely π-regular and (xy)0= (xy)0(yx)0 or (xy)0= (yx)0(xy)0;

(vi) S is π-regular and a = axa implies ax = ax2a or ax = xa2x.

Proof. (i)⇒(ii) Let S be a semilattice Y of semigroups Sα, α ∈ Y , and for

α ∈ Y let Sα be a nil-extension of a semigroup Kα, where Kα is a left or a

right group. Assume a, b ∈ S. Then ab, ba ∈ Sα, for some α ∈ Y , whence

there exists n ∈ Z+ such that (ab)n, (ba)n ∈ Kα, so according to Theorem

3.7 and from its dual we obtain that

(ab)n ∈ (ab)nKα(ba)
n ⊆ (ab)nS(ba)n,

if Kα is a left group, whence

(ab)n ∈ (ba)nKα(ab)
n ⊆ (ba)nS(ab)n,

if Kα is a right group. Therefore, (ii) holds.

(ii)⇒(iii) This is evident.

(iii)⇒(iv) Let (iii) hold. Assume a ∈ Reg(S), x ∈ V (a). Then, based

on (iii) we obtain that ax ∈ Sa ∪ xS and xa ∈ Sx ∪ aS. If ax = ua, for

some u ∈ S, then a = axa = ua2 ∈ Sa2. If ax = xv, for some v ∈ S, then

a = axa = xva, whence a2 = axva and a = xva = xaxva = xa2 ∈ Sa2.

Thus, ax ∈ Sa ∪ xS implies that a ∈ Sa2. Similarly, we prove that from

ax ∈ Sa∪ xS follows that a ∈ a2S. Hence, a ∈ Gr(S), i.e. Gr(S) = Reg(S),

so based on Theorem 7.4, S is a semilattice of completely Archimedean

semigroups.
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For e, f ∈ E(S), based on (iii), there exists n ∈ Z+ such that (ef)n ∈ Se∪
fS. If (ef)n = ue, for some u ∈ S, then (ef)n = ue = uee(ef)ne = (efe)n.

Similarly, from (ef)n ∈ fS it follows that (ef)n = (fef)n.

(iv)⇒(i) From (iv) it immediately follows that for all e, f ∈ E(S) there

exists n ∈ Z+ such that (ef)n = (ef)n+1, so based on Theorem 7.6 we obtain

that S is a semilattice Y of semigroups Sα, α ∈ Y , and for α ∈ Y , Sα is a

nil-extension of a rectangular group. Assume α ∈ Y , e, f ∈ E(Sα). From

(iv), using Corollary 3.12, it follows that ef = efe = e or ef = fef = f ,

whence E(Sα) is a rectangular Rédei band, so based on Lemma 7.4 E(Sα) is

a singular band. Thus, based on Theorem 3.17 Sα is a nil-extension of left

or right groups.

(i)⇒(v) This proves similar as (i)⇒(iii) in Theorem 7.6.

(v)⇒(vi) This proves similar as (iii)⇒(iv) in Theorem 7.6.

(vi)⇒(i) From (vi) we obtain that from a = axa it follows that ax = ax2a

or ax = xa2x, whence a = (ax)a = ax2a2 or a = ax(ax)a = ax(xa2x)a =

ax2a2xa = ax2a2. Thus, in both cases a = ax2a2, so based on Theorem

7.6, S is a semilattice Y of semigroups Sα, α ∈ Y , and for α ∈ Y , Sα is a

nil-extension of a rectangular group. Assume α ∈ Y , e, f ∈ E(Sα). Based

on Corollary 3.12, E(Sα) is a rectangular band, so e = efe, and from (vi) we

obtain that ef = ef2e = efe = e or ef = fe2f = fef = f . Hence, E(Sα)

is a rectangular Rédei band, so based on Lemma 7.4, E(Sα) is a singular

band. Thus, according to Theorem 3.17, Sα is a nil-extension of a left or

right group.

Using Theorem 7.8, the following result we prove in a similar way as

Theorem 7.7.

Corollary 7.1 The following conditions on a semigroup S are equivalent:

(i) S is a chain of nil-extensions of left or right groups;

(ii) S is completely π-regular and Reg(S) is a chain of left and right groups;

(iii) S is completely π-regular and E(S) is a chain of singular bands;

(iv) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ a2nS(ab)n ∪ (ba)nSa2n ∨ bn ∈ b2nS(ba)n ∪
(ab)nSb2n.

Just like Theorem 7.8, we prove the following theorem:
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Theorem 7.9 The following conditions on a semigroup S are equivalent:

(i) S is a semilattice of nil-extensions of left groups;

(ii) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ (ab)nS(ba)n;

(iii) S is π-regular and a semilattice of left Archimedean semigroups;

(iv) S is a semilattice of completely Archimedean semigroups and for all

e, f ∈ E(S) there exists n ∈ Z+ such that (ef)n = (efe)n;

(v) S is completely π-regular and (xy)0 = (xy)0(yx)0;

(vi) S is π-regular and a = axa implies ax = ax2a.

Corollary 7.2 The following conditions on a semigroup S are equivalent:

(i) S is a chain of nil-extensions of left groups;

(ii) S is completely π-regular and Reg(S) is a chain of left groups;

(iii) S is completely π-regular and E(S) is a chain of left zero bands;

(iv) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ a2nS(ab)n ∪ (ba)nSa2n.

Exercises

1. The following conditions on a semigroup S are equivalent:

(a) S is a semilattice of nil-extensions of rectangular bands;
(b) S is π-regular and E(S) = Reg(S);
(c) (∀a, b ∈ S)(∃n ∈ Z+) (ab)2n+1 = (ab)nba2(ab)n.

2. Prove that a semigroup S is a left (right) regular band if and only if S is a
semilattice of left zero (right zero) bands.

3. The following conditions on a semigroup S are equivalent:

(a) S is a semilattice of nil-extensions of left groups;
(b) (∀x ∈ S)(∀e ∈ E(S)) x | e⇒ ex = exe;
(c) S is a semilattice of completely Archimedean semigroups and for all e, f ∈

E(S) there exists n ∈ Z+ such that (ef)nL(fe)n;
(d) S is a semilattice of completely Archimedean semigroups and a = axa = aya

implies ax = ay.

4. A completely simple semigroup S is not a rectangular group if and only if S
contains some semigroup E(∞) or E(p), p ∈ Z+, p ≥ 2, as its own subsemigroup.

5. The following conditions on a completely π-regular semigroup S are equivalent:

(a) S is a band of left Archimedean semigroups;
(b) S satisfies the identity (xy)0 = (xy)0(x0y0)0;
(c) there are no semigroups A2, B2, R3,1, RZ(n), for all n > 1, among the

completely π-regular divisors of S.
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6. The following conditions on a completely π-regular semigroup S are equivalent:

(a) S is a semilattice of left Archimedean semigroups;

(b) S satisfies the identity (yx)0 = (yx)0(xy)0;

(c) there are no semigroups A2, B2, R2 among the completely π-regular divisors
of S;

(d) each regular D-class of S is a left group.
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Evseev [1]; V. A. Fortunatov [1], [2]; J. I. Garcia [1]; X. J. Guo [1], [2], [3]; P. R.

Jones [1], [2]; E. W. Kiss, L. Márki, P. Pröhle and W. Tholen [1]; M. S. Putcha [2],
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7.4 Locally Uniformly π-regular Semigroups

For any idempotent e of a semigroup S, the subsemigroup eSe is a max-

imal submonoid of S, and it is known under the name local submonoid of

S. If K is some class or some property of semigroups, then S is said to be

a locally K-semigroup if any local submonoid of S belongs to K or has the

property K. The main purpose of this section is to characterize a more gen-

eral kind of semigroups – π-regular semigroups whose any local submonoid

is uniformly π-regular, and which are called locally uniformly π-regular .

We define the sets Q(S) and M(S) by

Q(S) =
∪

e,f∈E(S)

eSf and M(S) =
∪

e∈E(S)

eSe.

Let us note that eSf = eS ∩ Sf , for all e, f ∈ E(S).

If T is a subsemigroup of S then

Reg(T )= {a ∈ T | (∃x ∈ T ) a = axa},

reg(T )= {a ∈ T | (∃x ∈ S) a = axa}.

Evidently, Reg(T ) ⊆ reg(T ).
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Recall that, a π-regular semigroup whose any regular element is com-

pletely regular is called uniformly π-regular.

Next we offer several results that describe some properties of the regular

and group parts of quasi-ideals eSf , e, f ∈ E(S), and bi-ideals eSe, e ∈
E(S), of a semigroup S.

Lemma 7.5 Let e, f be arbitrary idempotents of a semigroup S. Then the

following conditions hold:

(i) Reg(eSf) = Reg(eS) ∩ Reg(Sf);

(ii) Gr(eSf) = eSf ∩Gr(S).

Proof. (i) Let a ∈ Reg(eS) ∩ Reg(Sf). Then a = ea = af and a = axa =

aya, for some x ∈ eS and y ∈ Sf , and from this it follows that a ∈ eSf and

a = axaya ∈ aeSaSfa ⊆ a(eSf)a,

so a ∈ Reg(eSf). Thus, Reg(eS) ∩ Reg(Sf) ⊆ Reg(eSf). The opposite

inclusion is obvious.

(ii) Let a ∈ eSf ∩ Gr(S). Then a = ea = af and a ∈ Gg, for some

g ∈ E(S), and we have that g = aa−1a−1a = eaa−1a−1af , which yields

g = eg = gf . Now

Gg = gGgg = egGggf ⊆ eSf,

whence a ∈ Gr(eSf), so we have that eSf ∩Gr(S) ⊆ Gr(eSf). The opposite

inclusion is evident.

Lemma 7.6 Let e be an arbitrary idempotent of a semigroup S. Then the

following conditions hold:

(i) Reg(eSe) = reg(eSe) = Reg(Se) ∩ Reg(eS);

(ii) Gr(eSe) = eSe ∩Gr(S);

(iii) Gr(Se) = Se ∩Gr(S) and Gr(eS) = eS ∩Gr(S).

Proof. (i) Based on Lemma 7.5 it follows that Reg(eSe) = Reg(Se) ∩
Reg(eS). Let a ∈ reg(eSe). Then a = ea = ae and a = axa for some x ∈ S,

and we have that a = axa = aexea ∈ a(eSe)a, so a ∈ Reg(eSe). Thus

reg(eSe) ⊆ Reg(eSe). It is clear that the opposite inclusion also holds.

(ii) This is also an immediate consequence of Lemma 7.5.
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(iii) Evidently, Gr(Se) ⊆ Se ∩Gr(S). Let a ∈ Se ∩Gr(S). Then a = ae

and a ∈ Gf , for some f ∈ E(S), so by f = a−1a = a−1ae ∈ Se it follows

that f = fe. Therefore

Gf = Gff = Gffe ⊆ Se,

which implies a ∈ Gr(Se). Hence, Gr(Se) = Se ∩ Gr(S). In a similar way

we prove that Gr(eS) = eS ∩Gr(S).

Lemma 7.7 Let S be a semigroup with E(S) ̸= ∅. Then

Gr(S) =
∪

e∈E(S)

Gr(Se) =
∪

e∈E(S)

Gr(eS) =
∪

e∈E(S)

Gr(eSe) =
∪

e,f∈E(S)

Gr(eSf).

Proof. From Lemma 7.5 it follows that∪
e,f∈E(S)

Gr(eSf) =
( ∪
e,f∈E(S)

eSf
)
∩Gr(S) = Q(S) ∩Gr(S) = Gr(S),

since Gr(S) ⊆M(S) ⊆ Q(S). Similarly we prove the remaining equations.

For a semigroup S, let the set RegM (S) be defined by

RegM (S) =
∪

e∈E(S)

Reg(eSe).

Then the following equations hold:

Lemma 7.8 Let S be a semigroup with E(S) ̸= ∅. Then

RegM (S) =M(S) ∩ Reg(S) = Reg(M(S)).

Proof. It is obvious that RegM (S) ⊆ M(S) ∩ Reg(S) and RegM (S) ⊆
Reg(M(S)). Let a ∈ M(S) ∩ Reg(S). Then a ∈ eSe, for some e ∈ E(S), so

based on Lemma 7.6 we have that

a ∈ eSe ∩ Reg(S) = reg(eSe) = Reg(eSe) ⊆ RegM (S).

Thus M(S) ∩ Reg(S) ⊆ RegM (S), whence RegM (S) =M(S) ∩ Reg(S). On

the other hand

Reg(M(S)) ⊆M(S) ∩ Reg(S) = RegM (S),

so we have proved Reg(M(S)) = RegM (S).
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It is easy to verify that the following relationships between the setsGr(S),

RegM (S) and Reg(S) hold on an arbitrary semigroup S:

Gr(S) ⊆ RegM (S) ⊆ Reg(S).

The conditions under which the first inclusion can be turned into an equality

are determined by the following theorem.

Lemma 7.9 Let S be a semigroup with E(S) ̸= ∅. Then the following

conditions are equivalent:

(i) Gr(S) = RegM (S);

(ii) (∀e ∈ E(S)) Reg(eSe) = Gr(eSe);

(iii) (∀e ∈ E(S)) reg(eSe) = Gr(eSe).

Proof. (i)⇒(ii) Let Gr(S) = RegM (S) and let e ∈ E(S). Then based on

Lemma 7.6 we have that

Gr(eSe) = eSe ∩Gr(S) = eSe ∩ RegM (S) = Reg(eSe).

(ii)⇒(i) Let Reg(eSe) = Gr(eSe), for each e ∈ E(S). Then Lemma 7.7

yields

RegM (S) =
∪

e∈E(S)

Reg(eSe) =
∪

e∈E(S)

Gr(eSe) = Gr(S).

(ii)⇔(iii) This follows immediately from Lemma 7.6.

A bi-ideal of a π-regular semigroup is not necessarily π-regular. But,

the principal bi-ideals generated by idempotents, that is to say, the local

submonoids of a semigroup, have the following property:

Lemma 7.10 Let S be a π-regular or a completely π-regular semigroup.

Then for each e ∈ E(S), the local submonoid eSe has the same property.

Proof. Let S be a π-regular semigroup, and let e ∈ E(S) and a ∈ eSe.

Then there exists n ∈ Z+ such that an ∈ Reg(S), and based on Lemma 7.6

we have that an ∈ eSe ∩ Reg(S) = Reg(eSe). Thus eSe is π-regular, for

every e ∈ E(S).

Let S be a completely π-regular semigroup and let a ∈ eSe, for some

e ∈ E(S). Then there exists n ∈ Z+ such that an ∈ Gr(S), so again based

on Lemma 7.6 it follows that an ∈ eSe ∩ Gr(S) = Gr(eSe). Hence, eSe is

completely π-regular, for each e ∈ E(S).
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A semigroup S is called locally completely π-regular if it is π-regular

and eSe is completely π-regular, for every e ∈ E(S), and it is called locally

uniformly π-regular if S is π-regular and eSe is uniformly π-regular, for

every e ∈ E(S). The main result of this section is the following theorem

that characterizes locally uniformly π-regular semigroups.

Theorem 7.10 The following conditions on a semigroup S are equivalent:

(i) S is locally uniformly π-regular;

(ii) S is π-regular and if a ∈ S, n ∈ Z+ and a′ ∈ V (an), then a′San

( anSa′ ) is uniformly π-regular;

(iii) S is π-regular and RegM (S) = Gr(S);

(iv) S is π-regular and Reg(eSe) = Gr(eSe), for each e ∈ E(S);

(v) S is π-regular and reg(eSe) = Gr(eSe), for each e ∈ E(S);

(vi) S is locally completely π-regular, ⟨E(S)⟩ is locally uniformly π-regular

and

(∀e, f, g ∈ E(S)) e ≥ f, e ≥ g & f |g ⇒ f |⟨E(eSe)⟩g.

Proof. (i)⇔(iv) This equivalence is an immediate consequence of the defi-

nition of a uniformly π-regular semigroup.

(i)⇒(ii) Let a ∈ S, n ∈ Z+ and a′ ∈ V (an). Set e = a′an and f = ana′.

Then

eSe = a′anSa′an ⊆ a′San = a′ana′Sana′an ⊆ a′anSa′an = eSe,

whence eSe = a′San, and from (i) it follows that eSe = a′San is uniformly

π-regular. In a similar way we prove that anSa′ = fSf is uniformly π-

regular.

(ii)⇒(i) For each e ∈ E(S), from e ∈ V (e) and (ii) it follows that eSe is

uniformly π-regular.

(iii)⇔(iv)⇔(v) These equivalences are immediate consequences of Le-

mma 7.9.

(i)⇒(vi) It is clear that S is locally completely π-regular. Since S is π-

regular, then based on Lemma 2.11 we have that ⟨E(S)⟩ is π-regular, which
implies that e⟨E(S)⟩e, based on Lemma 7.10, is also π-regular, for every

e ∈ E(S). Based on (i)⇔(iv) we also have that Reg(eSe) = Gr(eSe) for

every e ∈ E(S). Further, from

a ∈ Reg(e⟨E(S)⟩e) ⊆ Reg(eSe) = Gr(eSe)
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it follows that for a ∈ Reg(e⟨E(S)⟩e) there are x ∈ eSe and y ∈ e⟨E(S)⟩e
such that a = axa = aya and ax = xa ∈ E(eSe). Now we have that

a = axa = xa2 ⊆ E(eSe)e⟨E(S)⟩ea2 ⊆ e⟨E(S)⟩ea2,

i.e. a ∈ LReg(e⟨E(S)⟩e). Therefore Reg(e⟨E(S)⟩e ⊆ LReg(e⟨E(S)⟩e) and

e⟨E(S)⟩e is π-regular, which based on Theorem 7.4 means that e⟨E(S)⟩e is

uniformly π-regular for every e ∈ E(S). Thus ⟨E(S)⟩ is locally uniformly

π-regular.

Let e, f, g ∈ E(S), such that e ≥ f , e ≥ g and f |g in S. Then f, g ∈
E(eSe) and f |g in eSe and based on Theorem 7.4 we have that f |g in

⟨E(eSe)⟩.
(vi)⇒(i) Let e ∈ E(S). Based on Lemma 2.11 we have that ⟨E(eSe)⟩ is

completely π-regular. On the other hand, from the hypothesis it follows that

e⟨E(S)⟩e is uniformly π-regular. On the other hand ⟨E(eSe)⟩ ⊆ e⟨E(S)⟩e,
so based on Theorem 7.4 and Lemma 2.5 we have that

Reg(⟨E(eSe)⟩)= ⟨E(eSe)⟩ ∩ Reg(e⟨E(S)⟩e)
= ⟨E(eSe)⟩ ∩Gr(e⟨E(S)⟩e) = Gr(⟨E(eSe)⟩).

Let f, g ∈ E(eSe) such that f |g in eSe. Then e ≥ f , e ≥ g and f |g in eSe,

and based on the hypothesis we have that f |g in ⟨E(eSe)⟩. Therefore, from
Theorem 7.4 we obtain that eSe is uniformly π-regular for every e ∈ E(S).

Hence S is locally uniformly π-regular.
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7.5 Bands of π-groups

In this section we will discuss a band decomposition of semigroups whose

components are π-groups, i.e. a nil-extension of groups.

First we prove the following theorem.
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Theorem 7.11 Let S be a π-regular semigroup and let for all a, b ∈ S there

exists n ∈ Z+ such that

(2) (ab)n ∈ a2Sb2.

Then S is a semilattice of retractive nil-extensions of completely simple semi-

groups.

Proof. Assume a ∈ Reg(S), x ∈ V (a). Based on (1), (ax)n ∈ a2Sx2, for

some n ∈ Z+, whence a = axa = (ax)na ∈ a2Sx2a ⊆ a2S. Similarly we

prove that a ∈ Sa2. Based on this, a ∈ Gr(S), i.e. Reg(S) = Gr(S), so

according to Theorem 7.4, S is a semilattice Y of completely Archimedean

semigroups Sα, α ∈ Y . For α ∈ Y , let Sα be a nil-extension of a completely

simple semigroup Kα.

Assume α ∈ Y , e, f ∈ E(Sα), a ∈ Te. We will prove that

(3) af = eaf and fa = fae.

First we will prove that for every m ∈ Z+ there exists n ∈ Z+ and u ∈ S

such that

(4) (af)n = amuf.

It is evident that (4) holds for m = 1. Assume that (af)n = amuf holds for

some m,n ∈ Z+ and some u ∈ S. Then based on (2) we obtain that there

exists k ∈ Z+ and v ∈ S such that (amuf)k = a2mv(uf)2, whence

(af)nk = ((af)n)k = (amuf)k = a2mv(uf)2 = am+1wf,

where w = am−1vufu. Now by induction for every m ∈ Z+ there exists

n ∈ Z+ and u ∈ S such that (4) holds.

Let m ∈ Z+ such that am ∈ Ge, and let n ∈ Z+, u ∈ S such that (4)

holds. Since af ∈ Kα = Gr(Sα), then af = (af2)y, for some y ∈ S, whence

af = (af)nyn−1 = amufyn−1 = eamufyn−1 = eaf.

By this we have proved the first part of statement (3). In a similar way we

prove the second part of (3).

Now, we define the mapping φ : Sα 7→ Kα with

aφ = ae, if a ∈ Te, e ∈ E(Sα).
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Assume a ∈ Te, b ∈ Tf , e, f ∈ E(Sα), and assume that ab ∈ Tg, for some

g ∈ E(Sα). Then based on (3) and based on Theorem 1.8 we obtain that

(ab)φ = abg = afbg = eafbg = eabg = eab = aeb = aebf = (aφ)(bφ).

Thus, φ is a homomorphism. Since aφ = a, then φ is a retraction, so Sα is

a retractive nil-extension of Kα.

From Theorem 7.11 we obtain the following corollary.

Corollary 7.3 Let S be a π-regular semigroup and let for all a, b ∈ S there

exists n ∈ Z+ such that (ab)n ∈ a2Sa. Then S is a semilattice of retractive

nil-extensions of left groups.

Proof. Assume a, b ∈ S. Then there exist m,n ∈ Z+ such that (ab)m ∈
a2Sa and (ba)n ∈ b2Sb, whence (ab)n+1 ∈ ab2Sb2, so

(ab)m+n+1 ∈ a2Saab2Sb2 ⊆ a2Sb2.

Thus, based on Theorem 7.11, S is a semilattice Y of semigroups Sα, α ∈
Y , and for α ∈ Y , Sα is a retractive nil-extension of a completely simple

semigroup Kα. Just like in Theorem 7.8 we prove that Kα is a left group.

By means of the following theorem we describe the relationship between

a decomposition into a band of π-groups and the retraction of a semigroup

on its regular part.

Theorem 7.12 Let S be a band of π-groups and let Reg(S) be a subsemi-

group of S. Then Reg(S) is a band of groups and a retract of S.

Conversely, if S has a retract K which is a band of groups and if
√
K = S,

then S is a band of π-groups.

Proof. Let S be a band B of π-groups Si, i ∈ B, and let Reg(S) be a

subsemigroup of S. For i ∈ B, let Si be a nil-extension of a group Gi with

the identity ei. Then, Reg(S) = Gr(S) = ∪{Gi | i ∈ B}, so it is evident

that Reg(S) is a band B of groups Gi, i ∈ B. Assume i, j ∈ B. From

eieij = (eieij)eij ∈ SijGij = Gij and eijej = eij(eijej) ∈ GijSij = Gij we

obtain that

(eieij)
2 = ei(eij(eieij)) = ei(eieij) = eieij ∈ Sij

(eijej)
2 = ((eijej)eij)ej = (eijej)ej = eijej ∈ Sij ,
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so since Sij has an unique idempotent eij , then eieij = eijej = eij .

Now, we define the mapping φ : S 7→ Reg(S) with:

xφ = xei, if x ∈ Si, i ∈ B.

For xi ∈ Si, xj ∈ Sj , i, j ∈ B we have that:

(xiφ)(xjφ) = (xiei)(xjej)
= eij(xiei)(xjej)eij (because xieixjej ∈ GiGj ⊆ Gij)
= eijeixixjejeij (from Theorem 1.8)
= eijeixixjeijejeij (because eijeixixj ∈ GijSij ⊆ Gij)
= eijeixixjeij (because eijej = eij)
= eijeieijxixjeij (because xixjeij ∈ SijGij ⊆ Gij)
= eijxixjeij (because eijei = eij)
= xixjeij (because xixjeij ∈ Gij)
= (xixj)φ.

Hence, φ is a homomorphism, so since aφ = a, for every a ∈ Reg(S), then

φ is a retraction from S onto Reg(S).

Conversely, if S has a retract K which is a band B of groups Gi, i ∈ B,

if
√
K = S, and if we assume that φ is a retraction from S onto K, then

S is a band B of a semigroups Si = Giφ
−1, i ∈ B, since for every i ∈ B it

holds that Si ∩K = Gi,
√
Gi = Si, then Si are π-groups.

From Theorem 7.12 it immediately follows:

Corollary 7.4 A semigroup S is a retractive nil-extension of a completely

simple semigroup if and only if S is a matrix of π-groups.

Corollary 7.5 A semigroup S is a retractive nil-extension of a left group if

and only if S is a left zero band of π-groups.

Let S be a semigroup. For e ∈ E(S), by Te we denote the set

Te =
√
Ge = {x ∈ S | (∃n ∈ Z+) xn ∈ Ge}.

According to Theorem 1.8 and Theorem 1.7, for e, f ∈ E(S), e ̸= f , is

Te ∩ Tf = ∅. On a semigroup S we define the relation T by:

aT b ⇔ ((∃e ∈ E(S)) a, b ∈ Te) ∨ a = b, a, b ∈ S.
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It is clear that T is an equivalence relation on S. If S is completely simple,

then

aT b ⇔ (∃e ∈ E(S)) a, b ∈ Te.

Now, we prove the main result of this section.

Theorem 7.13 The following conditions on a semigroups S are equivalent:

(i) S is a band of π-groups;

(ii) S is π-regular and for all a, b ∈ S there exists n ∈ Z+ such that

(ab)n ∈ a2bSab2;

(iii) S is completely π-regular and for all a, b ∈ S is abT a2bT ab2;
(iv) S is completely π-regular and (xy)0 = (x2y)0 = (xy2)0.

Proof. (i)⇒(ii) Let S be a band B of π-groups Si, i ∈ B. Let a ∈ Si,

b ∈ Sj , i, j ∈ B. Then ab, a2b, ab2 ∈ Sij , so (ii) holds.

(ii)⇒(iii) Let (ii) hold. Then based on Theorem 7.11 S is a semilattice

Y of semigroups Sα, α ∈ Y , and for α ∈ Y , Sα is a retractive nil-extension of

a completely simple semigroup Kα, while based on Corollary 7.4, for every

α ∈ Y , Sα is a matrix of π-groups.

Assume a, b ∈ S. Then ab, a2b, ab2 ∈ Sα, for some α ∈ Y . Assume

that Sα is a matrix I × Λ of π-groups Tiλ, i ∈ I, λ ∈ Λ. Assume that

ab ∈ Tiλ, a
2b ∈ Tjµ, ab

2 ∈ Tlν , for some i, j, l ∈ I, λ, µ, ν ∈ Λ. Let ejµ be an

idempotent from Tjµ. Then ejµa
2b ∈ T 2

jµ ⊆ Tjµ and

ejµa
2b = ejµejµaab ∈ TjµSαβTiλ ⊆ Tjλ,

so µ = λ. Similarly we prove that l = i. Also, from (ii) we obtain that there

exists n ∈ Z+ and u ∈ S such that (ab)n = a2buab2, whence uab2a2bu ∈ Sαβ ,

so

(ab)2n = a2b(uab2a2bu)ab2 ∈ TjλSαβTiν ⊆ Tjν .

Since (ab)2n ∈ Tiλ, then j = i and ν = λ. Therefore, ab, a2b, ab2 ∈ Tiλ, so

(iii) holds.

(iii)⇒(i) Assume a, b ∈ S. Let a ∈ Te, b ∈ Tf , for some e, f ∈ E(S).

Based on (iii), abT akb, for every k ∈ Z+. Let k ∈ Z+ such that ak ∈ Ge.

Then

eb = ak(ak)−1bT (ak)2(ak)−1b = akeb = akbT ab.
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Thus, abT eb. Similarly we prove that ebT ef . Hence, abT ef , so T is a

congruence relation on S. It is evident that T is a band congruence and

every T -class is a π-group. Therefore, (i) holds.

(iii)⇔(iv) This follows immediately.

Recall that a band S is a normal if for all x, y, z ∈ S is xyzx = xzyx.

Based on Theorem 7.13 we gave the characterizations of a band of π-

groups in general. Now, we will discuss some important types of bands of

π-groups: normal bands, semilattices and Reédei bands of π-groups.

Theorem 7.14 The following conditions on a semigroups S are equivalent:

(i) S is a normal band of π-groups;

(ii) S is π-regular and for all a, b, c ∈ S there exists n ∈ Z+ such that

(abc)n ∈ acSac;

(iii) S is completely π-regular and for all a, b, c, d ∈ S is abcdT acbd;
(iv) S is completely π-regular and (xyzu)0 = (xzyu)0.

Proof. (i)⇒(iii) This follows from Theorem 5.12.

(iii)⇒(ii) Let (iii) hold. It is evident that S is π-regular. Assume a, b, c ∈
S. From (iii) we have that

(abc)2 = ab(cab)cT a(cab)bc = acab2c and
(abc)2 = a(bca)bcT ab(bca)c = ab2cac,

whence it follows that there exist m,n ∈ Z+ such that

(abc)2m ∈ acS and (abc)2n ∈ Sac,

so (abc)2m+2n ∈ acSac. Hence, (ii) holds.

(ii)⇒(i) Let (ii) hold. Based on Corollary 5.7 S is a normal band B of

t-Archimedean semigroups Si, i ∈ B. Assume a ∈ Reg(S), x ∈ V (a). Based

on (ii), there exists n ∈ Z+ such that ax = (axax)n ∈ aaxSaax, whence

a = axa ∈ a2xSa2xa ⊆ a2Sa2.

Thus, a ∈ Gr(S), so, S is a completely π-regular semigroup. According to

Lemma 2.8, Si are completely π-regular semigroups, and based on Theorem

3.18, Si are π-groups.

(iii)⇔(iv). This follows immediately.
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Theorem 7.15 The following conditions on a semigroups S are equivalent:

(i) S is a semilattice of π-groups;

(ii) S is π-regular and a semilattice of t-Archimedean semigroups;

(iii) S is a semilattice of completely Archimedean semigroups and for all

e, f ∈ E(S) there exists n ∈ Z+ such that (ef)n = (fe)n;

(iv) S is a semilattice of completely Archimedean semigroups and every

regular element from S has a unique inverese element;

(v) S is completely π-regular and for all a, b ∈ S is abT ba;
(vi) S is completely π-regular and (xy)0 = (yx)0;

(vii) S is π-regular and a = axa implies ax = xa;

(viii) (∀a, b ∈ S)(∃n ∈ Z+) (ab)n ∈ b2nSa2n.

Proof. (i)⇒(viii) Let S be a semilattice Y of π-groups Sα, α ∈ Y , and for

α ∈ Y , let Sα be a nil-extension of a group Gα. Assume a, b ∈ S. Then

ab, bmam ∈ Sα, for some α ∈ Y and for allm ∈ Z+. Then there exists n ∈ Z+

such that (ab)n ∈ Gα. Now for m = 2n we have that (b2na2n)k ∈ Gα, for

some k ∈ Z+. Therefore, (ab)n ∈ (b2na2n)kGα(b
2na2n)k ⊆ b2nSa2n. Thus,

(viii) holds.

(viii)⇒(ii) This follows from Corollary 5.3.

(ii)⇒(i) This follows from Lemma 2.7 and from Theorem 3.18.

(viii)⇒(iii) From (viii), and by Theorem 7.8, S is a semilattice of com-

pletely Archimedean semigroups. Assume e, f ∈ E(S). By (viii), (ef)n =

(fe)nx(fe)n, for some n ∈ Z+, x ∈ S, so (fe)n+1= f(ef)ne = f(fe)nx(fe)ne

= (fe)nx(fe)n = (ef)n and (ef)n = (fe)nx(fe)n = (fe)nx(fe)ne = (ef)ne,

whence (ef)n+1 = (ef)nef = (ef)nf = (ef)n. Thus, (ef)n+1 = (fe)n+1, so

(iii) holds.

(iii)⇒(i) From (iii), for e, f ∈ E(S) we obtain that (ef)n = (fe)n, for

some n ∈ Z+, whence (ef)n = e(ef)nf = e(fe)nf = (ef)n+1, so based

on Theorem 7.6, S is a semilattice Y of semigroups Sα, α ∈ Y , and for

α ∈ Y , Sα is a nil-extension of a rectangular group Kα. Assume α ∈ Y ,

e, f ∈ E(Kα). Since E(Kα) is a rectangular band, then from (iii) we obtain

that ef = fe, so |E(Kα)| = 1, i.e. Kα is a group.

(i)⇒(v) Let S be a semilattice Y of π-groups Sα, α ∈ Y . Then ab, ba ∈
Sα, for some α ∈ Y , so for some e ∈ E(Sα) we have that ab, ba ∈ Sα = Te,

whence abT ba.
(v)⇒(vi) and (vi)⇒(vii) This is evident.
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(vii)⇒(iv) If (vii) hold, then a = axa implies ax = xa, whence a =

axaxa = axxaa = ax2a2, so based on Theorem 7.6, S is a semilattice of

completely Archimedean semigroups. Assume a ∈ Reg(S), x, y ∈ V (a).

Based on (vii), ax = xa and ay = ya, whence

x = xax = x2a = x2aya = xay = axy
= axyay = axay2 = ay2 = yay = y.

Hence, (iv) holds.

(iv)⇒(i) From (iv) it follows that every inverse of every idempotent from

S is also an idempotent, so based on Theorem 7.6, S is a semilattice Y of

semigroups Sα, α ∈ Y , and for α ∈ Y , Sα is a nil-extension of a rectangular

group Kα. Assume α ∈ Y , e, f ∈ E(Kα). Then E(Kα) is a rectangular

band, so e, f ∈ V (e), whence, based on (iv), e = f . Thus, |E(Kα)| = 1, so

Kα is a group. Therefore, (i) holds.

A semigroup S is an ordinal sum Y of semigroups Sα, α ∈ Y if S is a

chain Y of semigroups Sα, α ∈ Y , and for α, β ∈ Y , from α < β, a ∈ Sα,

b ∈ Sβ it follows that ab = ba = a. Based on the following lemma we give

the structural characterization of Rédei bands:

Lemma 7.11 A semigroup S is Rédei band if and only if S is an ordinal

sum of singular bands.

Proof. Let S be a Rédei band. Based on Lemma 7.3, S is a chain Y of

rectangular bands Sα, α ∈ Y , while based on Lemma 7.4, Sα are singular

bands. Assume that α, β ∈ Y are such that α < β, and assume that a ∈ Sα,

b ∈ Sβ . Then a, ab, ba ∈ Sα and ab, ba ∈ {a, b}, whence we obtain that

ab = ba = a.

The converse follows immediately.

Theorem 7.16 The following conditions on a semigroups S are equivalent:

(i) S is a Rédei band of π-groups;

(ii) S has a retract K which is a Rédei band and
√
K = S;

(iii) (∀a, b ∈ S)(∃n ∈ Z+) an ∈ (ab)nS(ab)n ∨ bn ∈ (ab)nS(ab)n.

Proof. (i)⇒(ii) Let S be a Rédei band B of π-groups Si, i ∈ B. For i ∈ B,

let Si be a nil-extension of a group Gi with the identity ei. It is evident that
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E(S) = {ei | i ∈ B}. Assume that ei, ej ∈ E(S), i, j ∈ B. Then eiej ∈ Sij .

If ij = i, then eiej ∈ Si, so eiej = ei(eiej) ∈ GiSi ⊆ Gi whence

(eiej)
2 = ((eiej)ei)ej = (eiej)ej = eiej .

Similarly, from ij = j it follows that (eiej)
2 = eiej . Thus, E(S) is a sub-

semigroup of S, so based on Lemma 7.1 Reg(S) is a subsemigroup of S,

whence based on Theorem 7.12 we obtain that (ii) holds.

(ii)⇒(i) This follows from Theorem 7.12.

(i)⇒(iii) Let S be a Rédei band B of π-groups Si, i ∈ B. For i ∈ B, let

Si be a nil-extension of group Gi. Assume a, b ∈ S. Then a ∈ Si, b ∈ Sj ,

for some i, j ∈ B. If ij = i, then ab ∈ Si, so there exists n ∈ Z+ such that

(ab)n, an ∈ Gi, whence

an ∈ (ab)nGi(ab)
n ⊆ (ab)nS(ab)n.

Similarly, from ij = j it follows that

bn ∈ (ab)nS(ab)n,

for some n ∈ Z+. Thus, (iii) holds.

(iii)⇒(i) Let (iii) hold. It is evident that S is completely π-regular. Also,

from (iii) it follows that e ∈ Sf or f ∈ eS, for all e, f ∈ E(S), so E(S) is

a Rédei band. Based on Lemma 7.11 and Corollary 7.1, S is a chain Y of

semigroups Sα, α ∈ Y , and for α ∈ Y , Sα is a nil-extension of a semigroup

Kα, where Kα is a left or right group.

Assume α ∈ Y , a, b ∈ Sα. Let Kα be a left group. Let a ∈ Te, b ∈ Tf ,

e, f ∈ E(Sα), e ̸= f . Based on (iii) we obtain that there exists n ∈ Z+ such

that

an ∈ (af)nS(af)n or f ∈ (af)nS(af)n.

Assume that f ∈ (af)nS(af)n ⊆ afSaf , i.e. f = afuaf , for some u ∈ S.

Since af ∈ SαKα ⊆ Kα, then af ∈ Gg, for some g ∈ E(Sα). Now, based on

Lemma 3.15 we obtain that

f = afuaf = g(afuaf)g = gfg ∈ gSαg = Gg,

whence f = g, i.e. af ∈ Gf . Also, fa = f(fa) ∈ GfKα ⊆ Gf , because Kα is

a left group, so af = f(af) = (fa)f = fa. Since ak ∈ Ge, for some k ∈ Z+,

and since Kα is a left group, then

ak = ake = akef = akf = fak ∈ GfGe ⊆ Gf ,
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that is impossible. Thus, an ∈ (af)nS(af)n, whence an ∈ afSαaf ⊆
afKαaf , so based on Lemma 3.15 anHaf in Kα. Thus, af ∈ Ge. In a

similar way we prove that be ∈ Gf , so from Lemma 1.8 it follows that

be = fbe = bfe = bf = fb and af = eaf = aef = ae = ea,

whence

abe = afb = eab.

Assume that (ab)m ∈ Gg, for some g ∈ E(Sα), m ∈ Z+. Then

(ab)me ∈ GgGe ⊆ Gg and (ab)me = e(ab)m ∈ GeGg ⊆ Gg.

Hence, g = e, i.e. (ab)m ∈ Ge, so ab ∈ Te = Tef . Thus, Sα is a left zero band

E(Sα) of π-groups Te, e ∈ E(Sα). If Kα is a right group, then in a similar

way we prove that Sα is a right zero band E(Sα) of π-groups Te, e ∈ E(Sα).

Assume a ∈ Te ⊆ Sα, b ∈ Tf ⊆ Sβ , α, β ∈ Y , α ̸= β. Let α < β, i.e.

αβ = βα = α (a similar case is β < α). Since E(S) is a Rédei band and

since ef, fe, e ∈ Sα, f /∈ Sα, then ef = fe = e. Based on (iii), there exists

n ∈ Z+ such that

bn ∈ (be)nS(be)n or e ∈ (be)nS(be)n.

If bn = (be)nu(be)n, for some u ∈ S, then u ∈ Sγ , for some γ ∈ Y , so

αβγ = β, whence αβ = β, which is impossible. Hence, e ∈ (be)nS(be)n,

whence

e ∈ beSαbe.

Since be = (be)e ∈ SαKα ⊆ Kα, from Lemma 3.15 it follows that be ∈
Ge. Similar we prove that eb ∈ Ge, so from Lemma 1.8 it follows that

eb = (eb)e = e(be) = be and abe = aeb = eab. Let (ab)m ∈ Gg, for some

g ∈ E(Sα), m ∈ Z+. Based on Lemma 3.15 we have that

(ab)m = (ab)mg = (ab)mgeg = (ab)meg = e(ab)mg = e(ab)m

= ee(ab)m = e(ab)me ∈ eSαe = Ge.

Hence, (ab)m ∈ Ge, i.e. ab ∈ Te = Tef . Thus, S is a Rédei band E(S) of

π-group Te, e ∈ E(S).

From Theorem 7.16 it immediately follows that

Corollary 7.6 A semigroup S is a Rédei band of periodic π-groups if and

only if S is π-regular and for all a, b ∈ S there exists n ∈ Z+ such that

(ab)n ∈ ⟨a⟩ ∪ ⟨b⟩.
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Exercises

1. A semigroup S which satisfies the condition

x1x2 · · ·xn+1 ∈ ⟨x1⟩ ∪ ⟨x2⟩ ∪ · · · ∪ ⟨xn+1⟩,

for all x1, x2, · · · , xn+1 ∈ S we call a Un+1-semigroup. A semigroup U2 we call
U-semigroup for short. Prove that the following conditions hold:

(a) G is a Un+1-group if and only if G is a U-group;
(b) G is a U-group if and only if G is a cyclic group of the order pk, k ∈ Z+, or

quasi-cyclic Zp∞ , for some prime p.

2. Let S be a monogenic semigroup. Then S is a U- (U3k-, U3k+1-, U3k+2-) semi-
group if and only if S is an ideal extension of a cyclic group by a 5- ((6k+1)-,
(6k+3)-, (6k+5)-) nilpotent monogenic semigroup.

3. The following conditions on a semigroup S are equivalent:

(a) S is a regular Un+1-semigroup;

(b) S is a regular U-semigroup;

(c) S is an ordinal sum of U-groups and singular bands.

4. A band (chain) Y of semigroups Sα, α ∈ Y , is a Un+1-band (chain) of semigroups
Sα, α ∈ Y , if

x1x2 · · ·xn+1 ∈ ⟨x1⟩ ∪ ⟨x2⟩ ∪ · · · ∪ ⟨xn+1⟩,

for all x1 ∈ Sα1 , x2 ∈ Sα2 , · · · , xn+1 ∈ Sαn+1 , where there are i, j ∈ {1, 2, . . . , n+1}
such that Sαi ̸= Sαj . The U2-band (chain) of semigroups we call the U-band (chain)
of semigroups.

Prove that the following conditions on a semigroup S are equivalent:

(a) S is a Un+1-semigroup;

(b) S is a Un+1-chain of ideal extension of U-groups by Un+1-nil-semigroups and
a retractive extension of singular bands by Un+1-nil-semigroups;

(c) S is a Un+1-band of ideal extension of U-groups by Un+1-nil-semigroups.

5. Let S be a Un+1-semigroup. Then Reg(S) is a retract of S.

6. A semigroup S is a Un+1-semigroup and Reg(S) is an ideal of S if and only if

x1x2 · · ·xn+1 ∈ ∪n+1
i=1 {x

k
i | k ∈ Z+, k ≥ 2},

for all x1, x2, · · · , xn+1 ∈ S.

7. A semigroup S is an n-inflation of Rédei’s band if and only if

x1x2 · · ·xn+1 ∈ {xn+2
1 , xn+2

2 , . . . , xn+2
n+1},

for all x1, x2, · · · , xn+1 ∈ S.
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8. A semigroup S in which for all x1, x2, · · · , xn+1 ∈ S there exists m ∈ Z+ such
that

(x1x2 · · ·xn+1)
m ∈ ⟨x1⟩ ∪ ⟨x2⟩ ∪ · · · ∪ ⟨xn+1⟩,

we call a GUn+1-semigroup. The GU2-semigroup is the GU-semigroup.

Prove that S is a π-regular GUn+1-semigroup if and only if S is a π-regular
GU-semigroup.

9. A chain Y of semigroups Sα, α ∈ Y , is a GU-chain of semigroups Sα, α ∈ Y , if
for all α, β ∈ Y , α ̸= β, and for all a ∈ Sα, b ∈ Sβ there exists m ∈ Z+ such that
(ab)m ∈ ⟨a⟩ ∪ ⟨b⟩.

Prove that the following conditions on a semigroup S are equivalent:

(a) S is a Rédei’s band of a periodic π-groups;
(b) S is a π-regular GU-semigroup;
(c) S is a periodic GU -semigroup;
(d) S is a GU-chain of retractive nil-extensions of periodic left and right groups;
(e) S has a retract T which is a regular GU -semigroup and

√
T = S.

10. Let C be a class of semigroups with a modular lattice of subsemigroups, or
a class of semigroups with a distributive lattice of subsemigroups or a class of U-
semigroups. Then the following conditions on a semigroup S are equivalent:

(a) S ∈ C;
(b) S is a U-band of ideal extensions of groups from the class C by U-nil-semi-

groups;
(c) S is a U-chain of ideal extensions of groups from the class C by U-nil-

semigroups and retractive extensions of singular bands by U-nil-semigroups.

11. Let S be a completely π-regular semigroup and xy = x y. Then S is a semi-
lattice of retractive nil-extensions of completely simple semigroups by commutative
maximal subgroups and x = x3, for every x ∈ ⟨E(S)⟩.
12. Let S be a completely π-regular semigroup and xy = x y. Then S is a semilattice
of retractive nil-extensions of completely simple semigroups.

13. Let S be a completely π-regular semigroup and J ⊆ T , then S is a semilattice
of π-groups.

14. Let S be a semilattice of π-groups. Then a relation ξ = {(x, y) ∈ S × S | (∃e ∈
E(S)) ex = ey} is the smallest congruence on S such that S/ξ is a group.

15. The following conditions on a semigroup S are equivalent:

(a) T (H) is a band congruence;
(b) S is a band of π-groups;
(c) (∀a, b ∈ S) abT (H)a2bT (H)ab2.

16. The following conditions on a semigroup S are equivalent:

(a) S is a semilattice of π-groups;
(b) S is completely π-regular and each regular D-class of S is a group;
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(c) S is completely π-regular and there are no semigroups A2, B2, L2, R2 among
the completely π-regular divisors of S;

(d) S is a semilattice of completely Archimedean semigroups and does not contain
L2 and R2 as subsemigroups.

17. Let V = ⟨e, f | e2 = e, f2 = f, fe = 0⟩ = {e, f, ef, 0}. The following conditions
on a semigroup S are equivalent:

(a) S is completely π-regular and xy = y x;
(b) S is completely π-regular and (xy)0 = (yx)0, x0y0 = (x0y0)0;
(c) S is a semilattice of π-groups and ef = fe, for all e, f ∈ E(S);
(d) S is π-regular and Reg(S) is a semilattice of groups;
(e) S is completely π-regular and there are no semigroups B2, L2, R2 and V

among the completely π-regular divisors of S.

18. The following conditions on a π-regular semigroup S are equivalent:

(a) S is a band of t-Archimedean semigroups;
(b) S satisfies the identity (xy)0 = (x0y0)0;
(c) there are no semigroups A2, B2, L3,1, R3,1, LZ(n), RZ(n) among the com-

pletely π-regular divisors of S.
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[1] Semigroups in which some ideal is a completely simple semigroups, Publ. Inst.
Math. 30 (44) (1982), 123–130.

D. W. MILLER

[1] Some aspects of Green’s relations on a periodic semigroups, Czeck. Math. J.
33 (108) (1983), 537–544.



292 BIBLIOGRAPHY

D. W. MILLER and A. H. CLIFFORD

[1] Regular D-classes in semigroups, Trans. Amer. Math. Soc. 82 (1956), 270–280.

M. MITROVIĆ
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L. RÉDEI and A. N. TRACHTMAN

[1] Die einstufigmichtkommutativen halbgruppen mit ausnahme von uendlichen
gruppen, Per. Math. Hung 1 (1971), 15–23 (on German).

D. REES

[1] On semigroups, Proc. Cambridge Phil. Soc. 36 (1940), 387–400.

X. M. REN and Y. Q. GUO

[1] E-ideal quasi-regular semigroups, Sci. China, Ser. A 32, No. 12, (1989), 1437–
1446.

X. M. REN, Y. Q. GUO and K. P. SHUM

[1] On the structure of left C-quasi- regular semigroups, Proc. of Inter. Conf. in
Wodrs, Languages and Combinatorics (II), Kyoto, Japan, 1993. World Scien-
tifics Inc. (1994), 341–364.

X. M. REN and K. P. SHUM

[1] Green’s star elations on completely Archimedean semigroups, Facta Universi-
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[1] ”Uber Halbgruppen, die ihre Ideale reproduzieren, Acta Sci. Math. (Szeged) 27
(1966), 141–146.
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Pröhle, P., 256
Preston, G. B., 2, 17, 20, 29, 39, 46, 52,

53, 67, 80, 84, 95, 104, 188, 241
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Stevanović, N., 132
Strecker, R., 111
Stuth, C. J., 46
Suškevič, A. K., 85, 95
Sukhanov, E. V., 178, 203, 247
Sun, Y., 74
Szász, G., 28, 29, 53, 84
Szép, J.,
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Ŝn, 149

∆, 7
∆A, 7
Λ, 15, 57, 87, 92, 189
Λ(A), 123
Λ(a), 122, 145
Λn(a), 122, 145
Φ, 13
Σ(A), 121
Σ(a), 121
Σ1(a), 96
ΣS , 122
Σn(a), 121

Λ̂(a), 153

Λ̂n(a), 153

Σ̂n(a), 150
α, 2, 7, 45, 80
αβ, 2, 7
α′, 45
β, 2, 7, 57, 80
η, 43, 57, 192, 222
ηk, 225
η′, 43
λ, 15, 57, 123, 248



320 NOTATION

λn, 123
λa, 9
µ, 15, 57, 163, 248
µ(m,n), 163
ν, 11
νS , 11
ω, 7, 11
ωA, 7
ωξ, 11
π, 47, 124
πR, 189
πi, 14, 24
ψ, 8, 28, 42
ψ/X, 8
ρ, 47, 123, 162
ρn, 123
ρ(m,n), 162
ρ(1,1), 162
ρa, 9
ϱ, 28, 133, 155, 211
ϱk, 211
σ, 123, 126
σ1, 96
σn, 123
τ , 123, 228
τn, 123
θ, 39, 51
ϕ, 8, 13, 23, 57
φ, 8, 21, 40, 47, 182
φx, 9
φ = ψ/X, 8
φ−1, 9
φ(a,b), 41
ξ, 7, 10, 12, 14, 16, 61, 131, 151, 230
ξX, 8
ξa, 7
ξ#, 12, 16
ξ♭, 12
ξ∞, 11
ξ♮, 10, 14
ξ−1, 8
ξc, 16
ξe, 11
ξn, 7
ξl, 10

ξr, 10
ξω, 11
η(m,n), 224
η(k;m,n), 227
τ , 233
τ (m,n), 229
σ̂n, 150
λ̂, 153
λ̂n, 153

A2, 241, 272, 273
B2, 139, 241, 272, 273
C2, 114
E(∞), 248
E(p), 248
Gp, 114
Her(A), 114
Her(kA), 215
L2, 273
L3,1, 273
LVB, 197
LZ(n), 273
RZ(n), 273
R2, 273
R3,1, 273
V, 273
Z, 248
Zp, 248
Z+, 2, 248

B(L), 26
B(S), 28
C, 16, 63, 131, 272
G(S), 29
L(G), 29
R(S), 96

0, 5, 25
1, 4, 25
∅, 6
·, 1, 87, 92
◦, 1, 2
∗, 2, 4, 40, 41, 44, 57
<, 21
>, 21
≤, 20, 21, 22, 64



NOTATION 321

≤C , 36
≤LC , 36
≤RC , 36
≥, 21
|l , 31
|r , 31
|T , 31
| , 31, 96
−→, 31, 96
l−→, 31
h−→, 122
r−→, 31
t−→, 31, 181
, 31

l , 31
p , 31
r , 31
t , 31

↑, 114
↑k, 215
↑l, 114
↑r, 114
↑t, 114
∼=, 13
←−
S , 4
[a, b], 23
[u = v], 197
⟨A⟩, 6
⟨E(S)⟩, 77
⟨a⟩, 6
⟨a1, a2, . . . , an⟩, 6
|S|, 19
|X|, 8
∨X, 21
∨, 22
∧X, 21
∧, 22
(S, ·), 1, 2, 88
(S, ◦), 1
(S,−→), 149
(S, ), 149
{Ai | i ∈ I}, 10, 14
{Li | i ∈ I}, 24
{Si | i ∈ I}, 14, 152

{Tn |n ∈ Z+}, 152
{xi | i ∈ I}, 21
{a}, 6
(a, b), 1
(a; i, λ), 87
(ai), 14
(ai)i∈I , 14
(pλi), 87
(i, λ), 15∪

α∈Y Lα, 80∏
i∈I Ai, 14∏
i∈I Li, 24∏
i∈I Si, 14√
A, 3

M(G; I,Λ;P ), 92
M0(G; I, I;P ), 91
M0(G; I,Λ;P ), 88



 

 

CIP ‐ Каталогизација у публикацији
Народна библиотека Србије, Београд 
 
512.53 
 
BOGDANOVIĆ, Stojan M., 1944‐ 
   Semilattice Decompositions of Semigroups 
/ 
Stojan M. Bogdanović, Miroslav D. Ćirić,      
Žarko Lj. Popović. ‐ 1st ed. ‐ Niš : Faculty  
of Economics, 2011 (Niš : M kops centar). ‐   
VIII, 321 str. : tabele ; 30 cm 
 
Tiraž 100. ‐ Bibliografija: str. 275‐304 i uz 
svako poglavlje. ‐ Registri. 
 
ISBN 978‐86‐6139‐032‐6 
1. Ćirić, Miroslav D., 1964‐ [аутор] 2.     
Popović, Žarko Lj., 1971‐ [аутор] 
a) Полугрупе (математика) 
COBISS.SR‐ID 186964492 






