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Preface

The basic aim of this book is to provide the reader with the complete in-
sight into the basics of the theory of proximity spaces, uniform spaces and
their generalizations. Although they are created in different time periods
and independent of each other, proximity spaces and uniform spaces are es-
sential connected not only with topological spaces, but also with each other.
Nowadays, being the parts of general topology, these spaces are examined in
almost all the books related to the study of general topology. However, not
many books are devoted to these two areas or to one of them. This book is
precisely of that kind. The author has made considerable effort to achieve
the balance while presenting these two areas and preserve the richness of
the materials resulting from their interconnection, if possible.

Over seventy years have passed since Dj. Kurepa implicitly and A. Weil
explicitly introduced uniform spaces, and almost sixty years since V. A.
Efremovich formulated the axioms of proximity spaces. Since then, a huge
number of papers have been devoted to the study of these spaces. Another
basic aim of this book is to collect at one place, the most significant results
obtained through the study of these spaces, which are spread in various
journals all over the world. This is the reason why in the end of the book
the author gives huge bibliography which should direct the reader towards
further study of the subject matter presented here.

The book is, first of all, dedicated to the students of Ph.D. studies, but
also to the students at higher courses who acquired knowledge in general
topology and want to expand their knowledge about uniform spaces and
proximity spaces. Each chapter of the book can be presented within elective
courses for the students of graduate studies. Chapter 2 and 3 can be read
independently and used for the lectures at the elective courses. However, for
better understanding of these chapters we need to know the subject matter
presented in Chapter 1.

Chapter 1 presents the results related to proximity and uniform spaces,
which were, historically, first introduced as axiomatic. Both of them repre-
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sent symmetric structures. In Chapter 2 the results related to symmetric
generalizations of these spaces is being exposed, while the results related to
non-symmetric generalizations was presented in Chapter 3.

Each chapter is divided into section, and these sections are further di-
vided into subsections. Each section ends with historical and bibliographical
notes. The proofs of assertions end with the symbol &. The same symbol
can be found in the formulation of the assertions whose proofs are obvi-
ous. For easier reading and orientation in the text, there are subject index
and index of symbols at the end of the book. The text of the book is for-
matted in the programme package IIEX, and the numeration of chapters,
sections, subsections, definitions, theorems, as well as all the citations of the
quotations in the book are predefined by this programme.

Anyone who has written the book of this kind is aware that, since the
beginning of writing, until the promotion of the book, the debts have been
accumulated. These debts must be acknowledged.

Therefore, I would like to thank professor G. Di Maio and professor Lj.
Kochinac who were reviewers of my book and who gave me useful suggestions
and contributed to the quality of this text. I am grateful to my students
who showed great interest in the subject matter while attending the seminars
about proximity spaces and uniform spaces held at the Faculty of Science
and Mathematics, University of Nish, and who motivated me to transform
the materials into the text of the book in front of you. I would like to
express my thanks to Vojislava Ignjatovic, an English teacher, for the review
of the English version of the book. Thanks to Miroslav Dimitrijevic for the
book cover design. The printing house SVEN gave its contribution to the
technical aspect of the book. In the end, I should thank my wife, Zlatica,
for her support and forbearance while I have been working on this book.

Such a voluminous material cannot be flawless, regardless of the multiple
reading by author, the reviewers and the lector. For all oversights and flaws
in the text I, being the author, am the only responsible, and the one who
read the manuscript for the last time before its printing. I am deeply grateful
and open for all the comments and suggestions.

Radoslav Dimitriyevic
U Nisu, Februara 2010



Chapter 1

Proximity spaces and
uniform spaces

1.1 Proximity spaces

1.1.1 Definition and basic properties of proximity relation

Definition 1.1.1.1 A relation § on the family P(X) of all subsets of a set
X is called o proximity on X if § satisfies the following conditions:

(By) if A0B, then BA;

(B2) AS(BUC) if and only if either AOB or AdC;

(B3) X60;

(By) {z}0{z} for each x € X;

(Bs) if ASB, then there exists E € P(X) such that ASE and X — E0B.
The pair (X,0) is called a proximity space. If (By) is replaced by

(By) {#}6{y} if and only if =y,
then § is called a separated or Hausdorff proximity relation and (X, J)
s called o separated or Hausdorff proximity space.

Strictly speaking, one should use the notation (A, B) € § or (A, B) € ¢
when the sets A and B are either near each other or not, but we shall simply
write A6B or ASB.

Just as the class of all topologies on a given set can be partially ordered
by inclusion, one can impose a partial order on the class P of all proximities
defined on a set X in the following manner:

Definition 1.1.1.2 If §; and d2 are two elements of P, we define
01 > 92 if and only if Aé1B implies AdaB .

1



2 Proximity spaces and uniform spaces

In this case we say that 61 is finer then 62, or d9 is coarser than d1.
According to the above definition we have the following;:

Proposition 1.1.1.1 Let §1, 2, 03 be proxzimities on X. Then
(a) 51 < 51,’
(b) if 61 < 02 and do < &1, then it implies that 51 = da;
(c) if 01 < b2 and 62 < d3, then it implies that 01 < 03. &

In other words, the set P of all proximities on the set X is partially
ordered by the relation <.

Example 1.1.1.1 Just as discrete and indiscrete topology can be defined
on any set, we have discrete and indiscrete proximity.

(a) If we define AdpB if and only if AN B # (), then dy is the discrete
proximity on X.

(b) On the other hand, if Ad;B for every pair of non-empty subsets A
and B of X, then we obtain the indiscrete proximity on X.

It is obvious that §y > ¢ > §; for any proximity J on X.

We shall often need the following simple proposition:

Proposition 1.1.1.2 Let (X,0) be a prozimity space. Then
(a) if AOB and B C C, then ASC;
(b) if A0B and C C B, then ASC;
(c) if there exists a point x € X such that Ad{x} and {z}dB, then AéB;
(d) if AN B #(, then AdB;
(e) ASD for every A C X;
(f) if AOB, then A # () and B # 0.

Proof: Statement (a) immediately follows from (Bs) and the fact that
C = BUC. (b) This statement follows from (a). (¢) Suppose that Adé{x}
and {r}dB for some z € X. If ASB, then from (Bs) there exists a set
E C X such that AJE and X — ESB. If x € E, then, taken from (b), there
follows A§{x}, which is a contradiction. If z € X — E, then also taken
from (b), there follows that {x}6B, which is a contradiction, too. (d) Let
x € AN B. It follows that {z}dé{x} from (B4). Since {x} C A, then {z}JA
according to the statement (a). In an analogous manner we can conclude
that Bo{x}, and therefore according to the statement (c¢) and (By) it follows
that AdB. (e) This statement follows from (Bs) and the statement (b). (f)
It immediately follows from (e). &
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Proposition 1.1.1.3 If§ is a prozimity relation on a set X, then the axiom
(B5) is equivalent to each of the following statements:

(BL) if AdB, then there are sets C and D such that ASC, B6D and
CuD=X;

(BY) if ASB, then there are sets C and D such that ASX —C, X — DB
and C6D;

(BY) if A6B, then there are sets C and D such that CND =), ASX —C
and B6X — D.

Proof: Let us prove that the axiom (Bs) is equivalent to the statement
(Bf). The fact that the other two statements are equivalent to the axiom
(Bs), can be proved immediately.

Let us suppose that the axiom (Bf) is true and let A6B. Then there
exists a set £ C X such that ASE and X —EdB. If E=C and X — E = D,
then it is obvious that ASC, D6B and D = EU (X — E) = X.

Conversely, let us suppose that (Bf) holds and let ASB. Then there
exist sets C' and D for which we have A6C, BSD and C UD = X. Let
E = (C. Then ASE. Since CUD = X, we have X — E =X — C C D, and
since BdD, according to Proposition 1.1.1.2 and the axiom (B;), X — E§B
follows. &

Definition 1.1.1.3 Let (X, ) be a proxzimity space. We say that the sets
A, B C X are in the relation < and write A < B if A6X — B. When
A < B, we call B a proximity or d-neighborhood of A.

Theorem 1.1.1.1 Let (X,d) be a prozimity space. Then the relation <
satisfies the following properties:

(01) X < X;

(O2) if AL B, then A C B;

(O3) AC B C C D implies A< D;

(O4) A< B implies X — B < X — A;

(0s5) A < By, is true for k=1,2,...,n if and only if A < N}_,By;

(O¢) if A < B, then there exists a set C C X such that A < C < B.
If § is a separated prozimity, then

(O7) {z} < X —{y} if and only if x # y.

Proof: (O;) According to the axiom (Bs) there follows that Xdf), and
therefore X < X holds from the definition of the relation < .

(0O2) If A < B, then AJX — B holds. By Proposition 1.1.1.2 (d) there
follows that AN (X — B) =0, hence A C B.
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(O3) Let A C B < C C D. Then BiX — C, and since A C B and
X — D C X — C, by Proposition 1.1.1.2 (b) it follows that A0X — D, i.e.
A< D.

(O4) If A < B, then A6X — B. Therefore, by (Bj) it follows that
X — BoA, ie. X —B< X — A.

(Os) It is sufficient to prove the statement for the case n = 2. Let
A < By and A < By. Then A6X — B; and AdJX — By; thus by (Bs)
we have that A5(X — By) U (X — By), i.e. ASX — (B1(\B2). But then
A < (B1() Bs) is true. It is obvious that the converse holds as well.

(Og) A < B implies A0X — B. By (Bs), there exists a set X — C such
that A6X — C and C0X — B. But then A < C < B.

(O7) By axiom (Bj), = # y is true if and only if {z}d{y}. This is
equivalent with {z} < X — {y}. &

Corollary 1.1.1.1 If Ay < By, fork=1,2,...,n, then
n n n n
NAr< (B and |JAr<|JBe. &
k=1 k=1 k=1 k=1

All of the separated proximity axioms are used in the above proofs.
In particular, we note that (Bs) is equivalent to the property (Og) of the
relation < in the above theorem, and (Bj)) is equivalent to the property
(O7). The following theorem is the converse of Theorem 1.1.1.1.

Theorem 1.1.1.2 If < is a binary relation on the power set of X satisfying
the properties (O1) — (Og) of Theorem 1.1.1.1, then the binary relation §
defined on P(X) with

ASB if and only if A< X — B,

is a proximity relation on X. Moreover, if < also satisfies the axiom (Or)
of Theorem 1.1.1.1, then § is a separated proximity on X. A set B is a
d-neighborhood of a set A if and only if A < B.

Proof: (B;) If AJB, then A < X — B. By the axiom (O4), B < X — A,
so BiA.

(B3) Let us suppose that (AU B)5C. Then (AU B) < X — C. Thus, by
the axiom (O3) it follows that A < X —C and B < X — C, i.e. ASC and
B6&C. To prove the converse, let us suppose that (AU B)JC, i.e. C§(AUB).
Then C £ X — (AU B), ie. C £ (X —A)N (X — B); hence by the axiom



1.1 Proximity spaces )

(O3), it follows that C' &« X — A or C « X — B. But then C0A or CéB,
and it follows, since J is symmetric, that AdC or BJC.

(B3) This axiom is a direct consequence of the axiom (Oy).

(B4) Let us suppose that {z}d{y}, ie. {z}6X — (X — {y}). Then
{z} < X — {y} holds, and therefore {z} < X — {y}. Now, by the axiom
(O2), there follows the inclusion {z} C X — {y}. Hence = # y.

(Bs) Let us suppose A0B, i.e. A < X — B. Then by the axiom (Og),
there exists a set C' C X such that A < X —C <« X — B. Thus, there exists
a C C X such that A6X —C and X — CéB.

(B}) According to the axiom (Or), x # y is true if and only if {z} <
X —{y}, i.e. if and only if {x}d{y}. &

Let us consider the family F(A) of all §-neighborhoods of a set A in a
proximity space (X, ). If A = (), then, by the axiom (Bs), F(A) consists of
all the subsets of X. On the other hand, the following proposition holds:

Proposition 1.1.1.4 If (X,4) is a prozimity space, A C X, A # (), then
F(A) is a filter on X.

Proof: First, let as note that each element of the family F(A) is a non-
empty set. Indeed, if B € F(A), then A0X — B, and thus, by Proposition
1.1.1.2 (d), A C B, which proves that B # (). Let B € F(A) and B C C.
Since B € F(A), we have that A5X — B. But then, by Proposition 1.1.1.2
(b), ASX —C holds, and therefore, C' € F(A). Finally, if B,C € F(A), then
ASX — B and ASX — C, thus, by the axiom (By) A6(X — B)U(X —C), i.e
ASX — (BN C). But then we have that BN C € F(A). Hence, F(A) is a
filter on X. &

The family F(A) of all d-neighborhoods of a set A, where A is a non-
empty subset of the proximity space (X,0), is called the proximity filter
or d-filter of A. Let us give some properties of J-filters.

Proposition 1.1.1.5 Let (X, ) be a proximity space. Then
(a) B € F(A) implies A C B;
(b) B € F(A) implies X — A e F(X — B);
(¢) if AC B, then F(A) C F(B);
(d) F(AU B) F(A)N F(B);
(e) if B € F(A), then there exists a C € F(A) such that B € F(C);
(f) F(A)nF(B) Cc F(AN B), where F(A)NF(B) ={CnND:C €
F(A),D € F(B)}. &

The proof of this proposition is left to the reader.
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1.1.2 Topology generated by a proximity

In this subsection we shall be consider the topology on X induced by a
proximity on X, and study its elementary properties.

Definition 1.1.2.1 Let (X,0) be a proximity space. A subset F' C X is
defined to be closed if and only if x0F implies x € F. By 75 denote the
family of complements of all the sets defined in such a way.

Theorem 1.1.2.1 If (X,0) is a prozimity space, then the family 75 is a
topology on the set X.

Proof: Obviously X and () are closed sets. Let {F;};c; be an arbitrary
collection of the closed subsets of X. If {x}d(),c; I, then, by Proposition
1.1.1.2 (a), {z}dF; for each i € I. Since the sets F; are closed, z € F; for
each i € I. Thus = € (;c; F;, which means that by the definition of a
closed set, ();c; F; is a closed set. Finally, if F; and Fy are closed sets and
xd(F1 U Fy), then by the axiom (Bsz), either x0F) or zdF» holds. Since the
sets F1 and F5 are closed, there follows that x € F; or x € F5. Therefore,
r € Fy UFy. Thus, I} U Fy is a closed set. &

Proposition 1.1.2.1 Let (X,0) be a prozimity space and T = 75. Then the
T-closure A of a set A is given by A = {x : zdA}.

Proof: If A denotes the intersection of all closed sets containing A and
A% = {x : x6A}, then it should be proved that A = A°. If z € A°, then
{z}6A. By Proposition 1.1.1.2 (a) this implies 26 A and, since A is closed,
z € A. Thus A° C A. To prove the reverse inclusion it suffices to prove that
A% is closed, i.e. z6A% implies x € A%. Assuming that = ¢ A°, then z6A so
that, by the axiom (Bjs), there exists a set E such that 6F and X — EJA.
Thus, no point of the set X — F is near A, i.e. A° C E, which, together
with 20 E, implies that 26A4°. &

An alternative method of introducing the same topology on a proximity
space (X, 6) would be to define the subset A% of X for each subset A of X
and to show that it is a Kuratowski closure operator.

Theorem 1.1.2.2 Let (X,8) be a proximity space. Then A — A°, where
A% = {x € X : 20A}, is a Kuratowski closure operator.
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Proof: (K;) By Proposition 1.1.1.2 (e), for each x € X it follows that
{x}60, from which #° = () follows.

(K2) If x € A C X, then {z}dA according to Proposition 1.1.1.2 (d).
Hence, z € A%, which proves that A C A°.

(K3) By (Bs), x € (AU B)? if and only if 2z6A U B if and only if {x}5A
or {x}éB if and only if x € A® or x € B® if and only if 2 € A% U B®. Thus,
(AUB)® = AU BY.

(K4) To prove that (A%)% C A% is true, let us suppose that z & A%, i.e.
x0A. Then, by the (Bs) there exists a set £ such that 26F and X — ESA.
Now A% C E and 26E, so that 26A% and x & (A°)°. &

It is known that, with the help of the proximity introduced in the pseudo-
metric space, the neighborhoods of each point can be characterized: the set
V' is a neighborhood of the point z if and only if {z} and X — V are far
from each other. In other words, this means that the neighborhood filter of
the point z is identical with the proximity filter of the set {z}. According
to this, a topology can be introduced in any proximity space as follows:

Theorem 1.1.2.3 Let (X, ) be a proximity space and let us call the neigh-
borhood filter of the point x € X the proximity filter F({z}) of the set {x}.
Then we obtain a topology on X, called the topology of the proximity space
(X,9), or the topology induced by the proximity 6 and also denoted by 15 or
7(6).

Proof: As a consequence of Proposition 1.1.1.4 F({z}) is a filter of every
set which contains {z} (by Proposition 1.1.1.5). Thus, 75 is in any case
a neighborhood structure. Moreover, by Proposition 1.1.1.5 (e), if V' €
F({z}), then there exists an U € F({x}) such that V € F(U). Theny € U
is implied, by Proposition 1.1.1.5 (c¢), V € F({y}); thus, the system of the
filters (F({z}))zex is a neighborhood structure which is, according to the
above facts, a topology on X. &

Let us give some properties of the sets which are open or closed in topol-
ogy Ts.

Proposition 1.1.2.2 If G is a subset of a prozimity space (X,7), then G
is open in topology 7s if and only if {x}dX — G for every x € G.

Proof: Let G be an open set in the topology 75 and let x € G. The set
X — @ is closed, so that from {y}0X — G it follows that y € X — G. Since
v € X — G, then {}5X — G. Conversely, let us suppose that {z}6X — G for
each z € G. This means that = ¢ (X — G)’ = X — G"°. Hence, no point of
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the set G is in closure of the set X — . But then all closure points of the
set X — G are in the set X — GG, which proves that it is closed. Therefore,
the set G is open as its complement. &

Proposition 1.1.2.3 If A and B are subsets of a proximity space (X,9),
then AdB implies:

(a) BCX—A, and (b) BCint(X —A),
where the closure and the interior are taken with respect to the topology Ts.

Proof: (a) Let us suppose that z ¢ X — A. Since BiX — (X — A), by
Proposition 1.1.1.2 (b), we have that xdB, from which follows that = & B.

(b) Since ASB, then by the axiom (Bj) and previously proved inclusion we
have that A C X — B. Therefore BC X — A =int(X — A). &

Proposition 1.1.2.4 For the subsets A and B of the proximity space (X, 0)
we have that
ASB  if and only if AdB,

where the closure is taken with respect to the topology 75.

Proof: If A0B, then according to Proposition 1.1.1.2 (a) we have that A6 B.
To prove the converse, let us suppose that A6B. Then by axiom (Bs) there
exists a set E such that ASE and X — E§B. Now by means of Proposition
2.3.1.1 from B6X — E we conclude that B C E. Since ASE and B C E, by
Proposition 1.1.1.2 (b) it follows that A B. In an analogous manner from
A6 B, by means of axiom (Bj), it follows that AJ B. &

Proposition 1.1.2.5 Let (X,0) be a prozimity space. If A and IntA de-
note, respectively, the closure and the interior of the set A with respect to
the topology 75, then

(a) A < B implies A < B, and

(b) A < B implies A < IntB.

Proof: (a) Let A < B. Then by Definition 1.1.1.3 we have that AJX — B,
from which, by the above proposition, it follows A §X — B. But then A < B.
(b) From A8 X — B, by the previous proposition, it follows that 40 X — B,
so that A0X —IntB, i.e. A< IntB. &
From the second assertion of this proposition it follows that any o-
neighborhood of some set is also a topological neighborhood of this set,
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of course, with respect to the topology generated by the proximity relation
6. However, a d-neighborhood in general is not an open set with respect to
this topology.

Proposition 1.1.2.6 The intersection of all d-neighborhoods of a set A is
equal to the closure of the set A.

Proof: If A < B, then by the previous proposition it follows that A < B.
But then, the set A is contained in the intersection of all J-neighborhoods
of A. To prove that intersection of all §-neighborhoods of the set A is equal
to the set A, it is sufficient to prove that for every point x ¢ A there exists
a d-neighborhood of the set A which does not contain the point z. If z & A,
then 28 A, so that by Proposition 1.1.1.3 there are disjoint §-neighborhoods
of the point x and the set A. &

Proposition 1.1.2.7 The topology 15 generated by a proximity relation §
on a space X 1is reqular.

Proof: Let U be any neighborhood of a point x € X. Then U € F ({z}), so
by Proposition 1.1.1.5 (e) there exists aset V' € F({z}) such that U € F(V),
i.e. V6X —U. Now V is a neighborhood of the point x for which, according
to Proposition 1.1.2.4, VX — U, from which, by means of Proposition
1.1.1.2 (d), it follows that V' C U. In this way we proved that the topology
75 on the space X is regular. &

Proposition 1.1.2.8 A proximity space (X,0) is separated if and only if
the topology 15 gemerated by the proximity relation § is a Ty-topology.

Proof: If the proximity relation § is separated and x # y, then X —
{y} € F({z}) is a neighborhood of the point z not containing the point y.
Conversely, if U is a neighborhood of the point x not containing the point
y, then U € F({z}). Since U C X — {y}, then X — {y} € F({z}), so that
{z}o{y}. &

The following proposition gives the connection between the comparison
of topologies and proximity relations:

Proposition 1.1.2.9 Let §; and d2 be two proximity relations defined on
the set X. If 61 < 02, then 7(d1) C 7(d2).

Proof: Let us suppose G € 7(d1). Then by Proposition 1.1.2.2 {z}6: X — G
for each x € G. Since ;1 < 092, then {x}d2 X — G for each = € G, so that
G € 7(62). Hence 7(01) C 7(d2). &
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Example 1.1.2.1 If § is an arbitrary proximity on a set X, then Jy < § <
d1. Thus, by the above proposition, it follows that 7(d1) C 75 C 7(dp).

On the other hand, the converse in general is not true.

1.1.3 Compatibility of topology with a proximity relation

Definition 1.1.3.1 Let 7 and § be a topology and a proximity relation re-
spectively, both defined on a set X. If 7 = 15, then 7 and & are said to be
compatible.

Theorem 1.1.3.1 Let (X, 7) be a completely regular space. Then the rela-
tion &, which is defined on the power set PX of the set X by

ASB if and only if A # 0 # B and there is not a continuous
(1) function f: X — I, such that f(x)=0 forz e A,
and f(x) =1 forz € B,

is a proximity relation compatible with the topology 7. If (X,7) is a Ty-
chonoff space, then the proximity § is separated.

Proof: From the definition of the proximity relation § immediately follows
that it satisfies axioms (Bj), (B3) and (By4). To prove that the axiom (B3)
holds, it suffices to show that from AdB and ASC, AS(BUC) is true. Since
ASB, there exists a continuous function f : X — I such that f(x) = 0 for
x € Aand f(z) =1 for x € B. There also exists a continuous function
g : X — I such that g(x) = 0 for x € A and g(z) = 1 for z € C. Function
h(z) = max{f(x),g(z)} is continuous on the set X, h(z) = 0 on the set A
and h(z) = 1 on the set BUC, so that AJ(BUC). Finally, let us prove that
axiom (Bjs) is satisfied. Let us suppose that ASB and let f : X — I be a
continuous function for which f(A4) = 0 and f(B) = 1 holds. Let us prove
that ASE and X — ESB holds for the set E = {z € X : 1/2 < f(z) < 1}.
Let us examine the function defined in the following way:

_f 2y, 0<y<1/2,
g(y)_{ 1,1/2<y<1.

It is obvious that g : I — I is a continuous function, so that go f : X — I
is also a continuous function for which (g o f)(4) = 0 and (go f)(E) =1
holds. Therefore ASE. In a similar way it can be proved that X — EéB.
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Let us prove now that 7 = 75. Let us suppose that G € 7 and let x € G.
Then x is not in the closed set X — G, so there exists a continuous function
f: X — I such that f(x) = 0 and f(X — G) = 1. Therefore {x}0X — G,
so that G € 15. Conversely, if G € 75 and * € G, then {z}6X — G. But
then, according to the definition of the proximity relation d, there exists
a continuous function f : X — I such that f(z) = 0 and f(X — G) = L.
Now there follows that f~1([0,1/2)) is a 7-open neighborhood of the point x
which is contained in the set G. In this manner we have proved that G € 7.

To prove that § is separated if (X, 7) is Tychonoff, let us note that if
x # y then z ¢ 7 since (X, 7) is T}. From the definition of completely
regular space, we are assured that x and 7 are functionally distinguishable,
implying that z0y. &

The proximity space (X,d) in the above theorem will be called a fine
proximity space.

Theorem 1.1.3.2 If (X, 7) is a normal topological space and
(2) ASB if and only if ANB =10,
then § is a proximity relation on the set X.

Proof: It is obvious that the axioms (Bj), (B3) and (B4) hold. Let us
prove that axiom (Bs) holds. Let A§(B U C). Then AN (BUC) # 0, so
that AN (BUC) # 0. But then (ANB)U (ANC) #0, so that ANB # 0
or AN C. Therefore ASB or ASC. To prove that the axiom (Bs) is true,
let us suppose that ASB. Then AN B = (), and since X is a normal space,
there exist open sets C and D such that A C C, B C D and CND = .
The set X — C is closed and AN (X — C) = (), so that A§X — C. But then,
according to Proposition 1.1.2.4, it follows that A5X — C. It can be proved
in an analogous manner that B6X — D, so that by Proposition 1.1.1.3 axiom

(Bs) is satisfied. &

In a normal space (X,7), the proximities defined by (1) and (2) are
equivalent.

Definition 1.1.3.2 The non-empty sets A and B are said to be discon-
nected in a topological space if they have disjoint neighborhoods. A and B
are said to be separated in a topological space if A has a neighborhood dis-
joint from B and B has a neighborhood disjoint from A; A and B are weakly
separated if at least one of them possesses a neighborhood not intersecting
the other one.
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Definition 1.1.3.3 A topological space X is said to be

-an S1-space if any two weakly separated points are separated;

-an Se-space if any two weakly separated points are disconnected;

-an Ss-space if any point x € X and any closed set not containing x
are disconnected.

A normal Sy-space is said to be an S4-space.

Definition 1.1.3.4 The proximity relation defined in the previous theorem
on an Sy-space is called the elementary proximity relation.

Theorem 1.1.3.3 Let (X, 7) be a normal topological space, and let 6* be the
proximity on the set X defined in the previous theorem. Then the topology
Ts« generated by the proximity relation §* is coarser than the topology T.
This topologies are identical if and only if the space (X, T) is an Sy-space.

Proof: The set U is a 7s«-neighborhood of the point x € X if and only
if {x}0" X — U, which is by Proposition 1.1.2.4 equivalent to {z}d X — U.
From this, according to Proposition 1.1.1.2, we have that mﬂ X -U=0,
so that x € X — X — U C U. Therefore U is a 7-neighborhood of the point
z. This proves that the topology 75+ is coarser than the topology .

Let us suppose now that 75+ = 7. Then for every 7-neighborhood U
of the point = the inclusion {z} € X — X — U C U holds, so that X is
an Si-space, and also an Ss-space. To prove converse, let us suppose that
(X, 7) is an Sy-space and let U be a 7-neighborhood of the point . Then
there exists a 7-open set V such that z € V C U. Since X is an Si-space,
the set V is a 7-neighborhood of the set {z}. Therefore {x} C V and
{z}N(X -V)={2}NX =V =0, so that {z} N X — U = (), which proves
that the set U is a 75«-neighborhood of the point z. &

Lemma 1.1.3.1 Let (X,6) be a proximity space. If K is a compact, and F
is a closed set in the topology 75 and if KN F = (), then KJF.

Proof: If x € K, then X — F is a neighborhood of the point z in topology
7s, so that {x}d0F. Then, by virtue of Proposition 1.1.1.3, for each point
r € K there exist the sets C,, and D, such that C, N D, = ), {x}6X — C,
and F6X — D,. Since C;, is a neighborhood of the point z, then, because of
compactness of the set K, there exists a finite set of the points x1, xo, ..., 2,
such that K C |J7 Cy,. For the set D = (] Dy, it holds (U} Cz,) N D =0,
so that K N D = (. Since X — D = |J7(X — D,,)dF, by Proposition 1.1.1.2
(b), it follows that K6F. &
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Theorem 1.1.3.4 On a compact Th-space the elementary proximity rela-
tion is the unique compatible proximity.

Proof: Every compact Th-space is a Ty-space, so the elementary proximity
4, by virtue of Theorem 1.1.3.3, is a proximity relation compatible with the
topology of this space. Let 6* be any proximity relation on X compatible
with the topology of this space. Let us prove that § = §*.

Let A" B. Then, by Proposition 1.1.2.4, As B, so that according to
Proposition 1.1.1.2 (d) it follows that AN B = (). Therefore, AJB, which
proves that " < 4.

To prove the converse, let us suppose that AdB, which is, by Proposition
1.1.2.4, equivalent to the fact that Aé B, i.e. AN B = (). Then by virtue
of the previous lemma it follows that A" B, so that, again by Proposition
1.1.2.4, it follows that A3 B. In this way we have proved that 6 = 0%
therefore, § is the unique proximity on X compatible with topology on the
space X. &

Theorem 1.1.3.5 On a compact Sa-space the elementary proximity is the
unique proximity compatible with the topology of that space.

Proof: Let (X, 7) be a compact Sz-space and let § be a proximity relation
on X for which 7 = 75. Let us prove that § = ¢*, where §* is the elementary
proximity relation defined in Theorem 1.1.3.3. The compact Ss-space X is
normal, so that the relation ¢* defined in Theorem 1.1.3.3 is a proximity
relation. Therefore, the proximity &, by the above proposition, is coarser
than the proximity relation defined in Theorem 1.1.3.3. Let us prove the
converse, i.e. that from AdB it follows AN B # (). Indeed, if AN B = 0,
then by Lemma 1.1.3.1 we have that A6 B, so that by Proposition 1.1.2.4
A0 B, contrary to the assumption. Now from the facts that AN B = (), and
that 0* is a proximity relation compatible with the topology 7, it follows
that A5" B. But then, according to Proposition 1.1.2.4, A% B holds. &

1.1.4 Comparison of proximity relations

In the first subsection of this section we have introduced the order defined
on the set P of all proximity relations on a set X. We have seen that every
proximity lies between the discrete and indiscrete proximities. We have also
proved that from &; < dy follows 7(d1) C 7(d2). The following example
proves that the converse in general is not true.
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Example 1.1.4.1 If X =R, d(z,y) = | — y| and 6; = 4, while 9y is the
proximity defined in Theorem 1.1.3.2 with the help of the topology 74, which
is a T5- and therefore an Sy-space, then 7(d1) = 7(d2), although ¢; # d2. To
prove this fact, let us take the sets A = Nand B = {n+1/2n : n € N}. Then
d(A, B) = 0 implies A6 B. On the other hand, A=A, B=B, ANB =),
so that A8y B. It should be observed that in this example §; < . This can
be seen from the following proposition:

Proposition 1.1.4.1 Let (X,7) be a normal space, 6 being the prozimity
defined in Theorem 1.1.3.2 and §* an arbitrary proximity on X for which
75+ < 7. Then 6* < 0.

Proof: Let AGB, ie. A' N B’ # (. Then Adé*B, because otherwise, by
Proposition 1.1.2.4, A™" 5" B™" would follows. But then, according to the
supposition that 75« < 7, it will be A" N B’ = ), which is in contradiction
with the supposition. &

Theorem 1.1.4.1 Let {§; : i € I # 0} be any family of prozimity relations
on X. For the sets A, B C X let us define the relation

1) AéB if for any finite decompositions A = U Aj, B= U By
j=1 k=1
there exist indecis j and k such that A;o; By, for eachi € I.

Then the proximity relation § is the coarsest of the prozimities finer than all
prozimities 6; and is denoted by § = sup{d; : i € I'}. For the corresponding
topologies we have:

Ts = sup{7(0;) :i € I}.

Proof: Let us first prove that § is a proximity relation on the set X. It
is obvious that the axioms (B7), (Bs) and (B4) are satisfied. Let us denote
Jp = {1,2,...,k}. Let us suppose that ASB and ASC. Then there exist
decompositions of the sets

p q
A=|]J4;, B=|]Bx,
j=1 k=1

such that for each j € J, and each k € J, there exists an index i = i(j, k)
for which Ajgin holds. There also exist decompositions of the sets

Ch

A= LT_JIA;R, C = :

S

n
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such that for each m € J, and for each n € J there exists some i’ =1i'(m,n)
for which A] 0,C,, holds. Let us consider decompositions of the sets

q s

A:U(JAQA BuC=|JBjulJCn.

j=1m=1 k=1 n=1

Since A;6;By for i = i(j, k) and every (j, k) € J, x J, and A}, 5;C,, for
i' = i'(m,n) and every (m,n) € J, x Js, so that A; N A! 8; By, for i = i(j, k),
every (j, k) € J, x J, and every m € J, and A; N A 5,C, for i’ =i'(m,n),
every (m,n) € J, x Js and every j € J,,. In both cases it follows that
Ad(B UC), so the axiom (Bs) holds.

To prove the axiom (Bs), let us suppose that ASB. Then there exist
decompositions of the sets

m n
=J4,, B=JB
j=1 k=1

such that A;6; By, for some i = i(j, k) and each (j, k) € Jy,, x Jy,. Therefore
for each pair (j, k) € Jp, X Jy, by virtue of Proposition 1.1.1.3 there exist sets
fjjk and ij for which Ajéz(],k)X — P’jk; Bkéz(],k)X — ij and ]Djk ﬂQj]c = @
hold. Let us consider the sets

P—ﬂ ik, P = U Q=i =@
k=1 Jj=1

First let us notice that Pj; N Qjr = 0 for each (j, k) € Jy, X Jy, so that
P;NQj = 0 for each j € Jp,, from which it follows that PNQ = (). Moreover
it is evident that if C'6;D at least for one i € I, then CSD. According
to this fact we can conclude that A; 60X — P; ik and Bio X — Qjr, for each
(4,k) € Jm x J,. But then A6X — P and B(SX Q. Let us prove now
that A6X — P. Since A;6X — Pj, for each (j, k) € Jy, X Jp, ie. Aj < By,
for each (j,k) € Jm x Jy, it follows by Corollary 1.1.4.1 that UA; < Bjy
holds for each k € J,. According to the same corollary we also have that
UA; < () Pjr, = P; holds for each j € J,, so that UA; < UP; = P. Hence
from Theorem 1.1.1.1 (O3) A < P, ie. ASX — P. In a snmlar way it can
be proved that B6X — Q.

Let us prove that the proximity relation d is finer than all proximities ¢;.
Indeed, we have already concluded that, if Ad; B for some ¢ € I, then AdB.
Therefore §; < §. Let now ¢* be a proximity relation which is finer than all
proximity relations §; and let A6B. Then there exist decompositions (1) of
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the sets A and B so that A;0;(; ;) By for each (j,k) € Jm x J,. Therefore
Ajg*Bk for each (j,k) € Jy X Jy, so that

A= GAJE*B,@? AS Lnj B, = B,
j=1 k=1

which proves that § < §*. In this manner we have proved that § = sup{9; :
iel}.

Since ¢; < ¢, according to Proposition 1.1.2.9 it follows that 7(4;) <
75 for every i € I, so that 7 < 75, where 7 = sup{7(d;) : ¢ € I}. To
prove the converse, let us take any 75-neighborhood G of the point x. Then
{z}6X — G, so there exists a decomposition of the set X — G = UF_, By,
such that {x}d; By for some i = i(k) € I and every k € J,. Thus X — By
is a 7(d;(k))-neighborhood of the point x, and also a T-neighborhood of that
point. Therefore G = (;_,(X — By) is also a 7-neighborhood of the point
z. In this way we have proved that 75 < 7 and the theorem is proved. &

Corollary 1.1.4.1 For any non-empty family of proximity relations &; on
the set X there exists a prorimity relation & which is the finest of all prox-
imities coarser than all §;. It is denoted by 6 = inf{d; : i € I}.

Proof: Since the indiscrete proximity of the set X is coarser than all prox-
imities §;, we can speak of the supremum of the proximities coarser than
all proximities ¢;. Denoting it by &, we clearly obtain a relation with the
required property. &

Corollary 1.1.4.2 If there exists a compatible proximity for a topology T,
then there exists the finest one among the proximities compatible with the
topology T.

Proof: The proof immediately follows from Theorem 1.1.4.1. &

Definition 1.1.4.1 The proxzimity relation in the above corollary is called
the Czech-Stone proximity of the topology T.
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1.1.5 The subspace of the proximity space

Theorem 1.1.5.1 Let (X,0) be a prozimity space and ) # Y C X. For
sets A, BCY let

(1) Ady B if and only if AdB.
Then (Y, dy) is a proximity space.

Proof: It is obvious that the relation dy satisfies the axioms (Bp)-(Bjy).
Let us prove that it satisfies also the axiom (Bs). Let us suppose Ady B,
A,B C Y. Then A$B, so there exists a set E* C X such that ASE* and
X — E*$B. Let E=YNE* ThenY-E=Y -E*C X —-FE* ECE"*,
and therefore, according to Proposition 1.1.1.2 (b), it follows that ASE and
Y — ESB. Hence, ASyE and Y — EéyB. &

Definition 1.1.5.1 Let (X,0) be a proximity space, and let ) #Y C X.
The proximity relation dy defined in the above proposition on the subset Y
of the set X is called the restriction on Y of the proximity 6 and is
denoted by Y. The ordered pair (Y,8|Y) is called the proximity subspace
of the proximity space (X, 9).

Proposition 1.1.5.1 If (X,§) is a proxzimity space and ) #Y C X, then a
O|Y -prozimity filter of any subset ACY, A#0, is F(A){Y}. Moreover,
the equality 751y = 75| holds.

Proof: Let us denote by Fy(A) a dy-proximity filter of the set A in the
subspace (Y,6|Y) and let F € Fy(A). Then F C Y and AdyY — F. Let
us denote by H = FU (X —Y). Then X — H =Y — F, so that A0X — H,
H € F(A)and F = HNY. From AJX — H it follows that H € F(A),
and since FF = HNY, we have that F' € F(A) N {Y}. This proves that
Fy(A) c F(A)n{Y}.

To prove the converse, let us suppose that F' € F(A), i.e. A5X — F.
Since Y — (FNY) C X — F, then AdyY — (FNY), from which it follows that
FNY € Fy(A), which had to be proved. The second part of the assertion
immediately follows if we put A = {z}. &

Finally, let us give some obvious consequences of the above considera-
tions.

Corollary 1.1.5.1 If §; and 02 are proximities on the set X, ) #Y C X,
and if 61 < 02, then 51|Y < §2Y. &
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Corollary 1.1.5.2 If § is a prozimity relation on the set X and if 0 #
ZCY CX,then (8|Y)Z=06|Z. &

Corollary 1.1.5.3 Let {0; : i € I} be a non-empty family of the prozimities
on the set X and let § =sup{d; :i € I}. If 0 #Y C X, then

sup{d;|Y :i eI} =0|Y . &

The restriction §|Y of the proximity relation 0 can be considered as the
special case of a more general concept.

Let us consider a mapping f : X — Y, where (Y, ) is a proximity space
and let us define a relation on the power set P(X) of the set X in the
following way:

(2) Aé*B if and only if f(A)df(B).

Let us prove that §* is a proximity relation on the set X. For this
purpose it is enough to check the axiom (Bj), because the other axioms
obviously hold. Let A5 B. Then f(A)df(B), so there exist sets P and @
such that f(A)§Y — P, f(B)dY —Q and PNQ = (). Since f(X — f~}(P)) =
f(f~/%(Y — P)) C Y — P, then by virtue of Proposition 1.1.1.2 we have
that f(A)df(X — f~1(P)), so that A" X — f~}(P). In a similar way it can
be proved that B X — f ~1(Q). Finally, from PN Q = () it follows that
fYP)N f71(Q) = 0. Thus the axiom (Bs) is true.

The proximity relation 6* defined in such a way is called the inverse
image of the proximity ¢ and denoted by f~!(§). According to Theorem
1.1.5.1 and the above consideration the following corollary holds.

Corollary 1.1.5.4 Let (X,0) be a prozimity space and let ) #Y C X. If
f:Y — X is the canonical injection, then f~1(6) = 0|Y. &

Proposition 1.1.5.2 If f: X — Y and § is a proximity on the set Y, then
fH(ms) = 7(f71(9)).

Proof: Let F € F({f(z)}), ie. {f(z)}dY — F. Then f~}(F) is an el-
ement of the neighborhood base of the point z in the topology f~!(7s)
and {z}f~1(0) f~1(Y — F) holds. Since f(f~}(Y — F)) C Y — F, then
{f(@)Yof(f~H(Y = F)),so that X — f~1(Y —F) = f~!(F) is a neighborhood
of the point z with respect to the topology 7(f~1(8)). To prove the con-
verse, let us suppose that F' is a neighborhood of the point x in the topology
7(f740)), ie. f(x)6f(X —F). But then F =Y — f(X — F) € F{f(x)}),
so that F € f~1(75). &
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Corollary 1.1.5.5 If f: X — Y and if 1 and d2 are the proximities on Y
for which &1 < 62, then f=1(01) < f71(82) holds. &

Corollary 1.1.5.6 Let f : X - Y, g:Y — Z, h=go f and let § be a
prozimity relation on the set Z. Then h=1(0) = f~1(g71(0)). &

Theorem 1.1.5.2 If f: X — Y and if {6; : i € I} is a non-empty family
of the proximities on the set' Y, and 6 = sup{d; : i € I}, then

sup{f~1(&) :i e I} = f(6)

Proof: Let Ad*B, where 6* = sup{f~1(&;) : i € I}. Then for every de-
compositions {A; : j € Jy,} and {By, : k € J,} of the sets A and B respec-
tively, there exist some indices j € J,, and k € J,, such that A;f~1(8;) B,
i.e. f(A;)8;f(By) for every i € I. But then Af~1(6*)B, i.e. f(A)5*f(B).
Indeed, let {4’ : j € Ji} and {B; : k € J;} be the decompositions of
the sets f(A) and f(B) respectively. Then {AN f~1(4}) : j € J/} and
{BNn f~1(B}) : k € J.} are the decompositions of the sets A and B, so that
f(Aﬂf_l(A;))éif(Bﬂf_l(B;)) for every ¢ € I. Since f(Aﬂf_l(A;-)) C A}
and f(BnN f~1(By)) C B}, then by Proposition 1.1.1.2 (a) it follows that
A%6;By, for every i € I.

Conversely, if Af~1(8)B, i.e. f(A)df(B), then for every two decompo-
sitions {f(A4;) : j € Jm} and {f(By) : k € J,} of the sets f(A) and f(B)
respectively, there exist indices j € J,, and k € J, such that f(A;)d;f(Bx)
for every i € I. Therefore A;f~1(8;) By, for every i € I, so that AJ*B. &

1.1.6 Proximally continuous mapping

Definition 1.1.6.1 Let (X,0x) and (Y,d0y) be two proximity spaces. The
mapping [ : X — Y is said to be proximally or §-continuous if Adx B
implies f(A)dy f(B) for every two sets A,B C X.

Proposition 1.1.6.1 A mapping f : X — Y of a proximity space (X,0x)
into a proximity space (Y, dy) is d-continuous if and only if for every two
sets P,Q C Y, Py Q implies f~1(P)éx f1(Q).

Proof: If f is §-continuous and Pdy @, then f~'(P)éx f~(Q) cannot hold
as this would imply f(f~1(P))dy f(f~1(Q)) although f(f~1(P)) C P and

F(HQ) cQ.
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To prove the converse, let us suppose that Ady B. Since f~1(f(A)) D A
and f~(f(B)) D B, then according to Proposition 1.1.1.2, it follows that
YN f(A)Sx f~Y(f(B)). But then f(A)Syf(B), because contrary to this
case there follows a contradiction to the fact that f=1(f(A))éxf~1(f(B)).
&

Corollary 1.1.6.1 A mapping f : X — Y of a proximity space (X, dx) into
a proximity space (Y, dy) is 6-continuous if and only if P <y Q implies that
f~HP) <x f~HQ) for every two sets P,Q CY. &

Corollary 1.1.6.2 Let f: X — Y be a mapping from a set X on a prox-
imity space (Y, 0y). Then dx = f~1(8y) is the coarsest prozimity on X for
which [ is a d-continuous mapping.

Proof: We have already proved that dx is a proximity on the set X. Let
8% be an arbitrary proximity on X and suppose that f is a J-continuous
mapping with respect to this proximity. Then for any two sets A, B C X
from Ad’ B follows f(A)dy f(B). Since f(A)dy f(B) is equivalent to the fact
that Af_1(5y)B, then (53( > f_l((;y) =0x. oo

The following proposition gives an interesting characterization of prox-
imity f~!(6) which considered in the previous corollary.

Proposition 1.1.6.2 Let f be a mapping from a set X into a proximity
space (Y,0y). The coarsest proximity dx which may be assigned to X in
order that f be d-continuous is defined by

ASx B if and only if there exists a set C CY
such that f(A)oy(Y —C) and f~1(C)C X — B.

Proof: Let us first prove that dx is a proximity on the set X. Let us
suppose that AdxB and let C C Y be the set for which f(A4)dy (Y — O)
and f~1(C) C X — B hold. Let us consider the set D = Y — f(A). Since
f(B) CY —C and f(A)SyY — C, we have that f(B)déyY — D. Moreover,
f~YD)=X - f"Y(f(A)) C X — A. Hence Bdx A, which proves the axiom
(B1).

To prove the axiom (Bs), let us suppose that (AU B)§xC. Then there
exists a set D C Y such that [f(A) U f(B)]dyY — D and f~1(D) Cc X - C,
from which AdxC and B xC follow. Conversely, if AdxC and BéxC, then
there exist D1 and Dg such that f(A)dyY — Dy, f(B)dyY — Dy, f~1(Dy) C
X —C and f~YD3) € X — C. Therefore [f(A) U f(B)]dy[Y — (D1 U Ds)]
and f~Y(D1UDy) C X —C,ie. (AUB)IxC.
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If A=), then for C = ) we have that f(A)dyY and f~'() c X — X.
Hence X6 x(); thus the axiom (Bz) is true.

Let us now prove the axiom (Byg). For this we shall prove that Adx B
implies ANB = (), because then it is obvious that {x}dx{x} for every x € X.
Since Adx B, then there exists a set C C Y such that f(A)dyY — C and
f~YC) € X — B. Therefore f(A)N(Y —C) =0 and f~1(f(A)NfHY -
C) =1. Since A C f~!(f(A)) and B C f~1(Y —C), AN B = ) follows.

If ASx B, then there exists a set C C Y such that f~1(C) C X — B and
f(A)6yY — C. Then according to the axiom (Bs) there exists a set D C Y
such that f(A)dy D and Y — DdyY — C. Let E = f~1(D). Since f(A)dy D,
so that AéxE. But now from f(X —E) C (Y — D), Y — DéyY — C and
f~HC) C X — B, it follows that X — EéxB. So, we have proved that 6x is
a proximity on the set X.

To prove that f : (X,0x) — (Y,dy) is a d-continuous mapping, let us
suppose that f(A)dy f(B). Since f(A) < Y — f(B), there exists a set C
such that f(4) < C <Y — f(B) by Corollary 1.1.6.1. Thus f(A4)dyY — C
and f~1C) c X — f~Y(f(B)) C X — B, i.e. AdxB.

It remains to show that if §; is any proximity on X such that f :
(X,81) — (Y, 6y) is d-continuous, then &; is finer than dy. If ASy B, then
there exists a set C' C Y such that f(A)dyY —C and f~1(C) C X —B. Since
f is d-continuous, we have that A6; X — f~(C). But then B C X — f~1(C)
implies A6;B. Thus 61 > 0x. &

Corollary 1.1.6.3 The composition of §-continuous mappings is a d-con-
tinuous mapping. &

Corollary 1.1.6.4 Let 61 and o be two proximities on the set X. The
identity mapping i : (X,01) — (X, d2) of the set X is a §-continuous mapping
if and only if 61 > 62. &

Corollary 1.1.6.5 Let f : (X,0x) — (Y,dy) be a d-continuous mapping.
If 0% is a prozimity on X finer than prozimity dx, and &y a proximity on
Y coarser than prozimity dy, then the mapping f : (X,d%) — (Y,0%) is
d-continuous. &

Proposition 1.1.6.3 Let 6x be a proximity relation on X, {6% :i € I} be a
non-empty family of prozimities on'Y and 8y = sup{&% :i € I'}. A mapping
f:(X,8x) — (Y,8y) is 6-continuous if and only if f: (X,0x) — (Y,d%) is
a d-continuous mapping for each i € I.
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Proof: By Corollary 1.1.6.2 the mapping f : (X,dx) — (Y,dy) is o-
continuous if and only if f~!(dy) < dx, while the mapping f : (X,dx) —
(Y, 8%) is 6-continuous if and and only if f~1(6%) < §x. Now the assertion
follows from Theorem 1.1.5.2. &

Proposition 1.1.6.4 Let {0% :i € I} be a non-empty family of prozimities
on X, §x = inf{d0% :i € I} and let Sy be a prozimity on Y. The mapping
[ (X,0x) — (Y,8y) is 6-continuous if and only if f : (X,8%) — (Y, dy) is
a d-continuous mapping for each i € I.

Proof: Let &% = f~1(0y). If f: (X,86%) — (Y,dy) is a d-continuous
mapping for each ¢ € I, then by Corollary 1.1.6.2 ¢% < 53( for each ¢ € I
holds. Therefore ¢ < dx, so that f: (X,dx) — (Y,dy) is a d-continuous
mapping. Conversely, if f : (X,0x) — (Y,dy) is a d-continuous mapping,
then by virtue of Corollary 1.1.6.5 the mapping f : (X,d%) — (Y,dy) is
o-continuous for eachi € 1. &

The proofs of the following three propositions are easy and left to the
reader.

Proposition 1.1.6.5 Let (X, ) be a proximity space and ) #Y C X. The
canonical injection f: (Y,d]Y) — (X,0) is -continuous. &

Proposition 1.1.6.6 Let (X,0x) and (Y,dy) be the proximity spaces, f :
X =Y, f(X) CYy CY. The mapping f : (X,0x) — (Y,dy) is 0-
continuous if and only if the mapping fg(o (X, 0x) — (Yo,0v|Yp) is -
continuous. &

Proposition 1.1.6.7 Let f : X — Y and 0 # Xo C X. If the mapping
f (X, 0x) — (Y,dy) is §-continuous, then f|Xo : (Xo,dx|Xo) — (Y,dy) is
also a §-continuous mapping. &

Proposition 1.1.6.8 If f is a §-continuous mapping of the proximity space
(X,dx) into the prozimity space (Y, dy), then it is continuous with respect
to the topologies T(0x) and T(dy).

Proof: Let x ¢ ZT((SX).

mapping, then {f(z)}dy f(A), ie. f(z) € mT((SY). This proves that

— —— (6
f(AT((SX)) C f(A4) Tt Y), thus the mapping is continuous with respect to the
topologies 7(dx) and 7(dy). &

Then {z}dx A, and since f is a J-continuous
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The converse in general case is not true. Indeed, if in Example 1.1.4.1
we take the identical mapping, then it is continuous with respect to the
topologies 7(d1) and 7(d2), but it is not a J-continuous mapping of the
proximity space (X, d1) onto the proximity space (X, dz). The following two
propositions give us the conditions when the converse is true.

Proposition 1.1.6.9 Let (X,dx) and (Y,dy) be the proximity spaces and
0x the Czech-Stone proximity of the topology T = 7(6x). If f : (X, 7(0x)) —
(Y, 7(dy)) is a continuous mapping, then f : (X,0x) — (Y,dy) is a J-
continuous mapping.

Proof: From the general topology it is known that f~(7(dy)) < 7(6x)
holds. Let &5 = sup{dx, f~1(6y)}. Then 7(&%) = sup{r(éx), f~*(r(éy))}
holds on account of Theorem 1.1.4.1, since by Proposition 1.1.5.2 it fol-
lows that 7(f~*(dy)) = f~1(7(dy)). According to the definition of the
Czech-Stone proximity there follows that d < dx, so that 0%y = dx, hence
f~Y(y) < 6x. Now by Corollary 1.1.6.2 and Corollary 1.1.6.5 it follows
that the mapping f: (X,dx) — (Y, dy) is d-continuous. &

Proposition 1.1.6.10 If (X,0x) and (Y,0y) are the prozimity spaces and
X is a compact space with respect to the topology T(dx ), then every mapping
[+ X — Y which is continuous with respect to the topologies T(d0x) and
7(dy) is also d-continuous with respect to the proximities dx and Jy .

Proof: Let ASxB. Then by Proposition 1.1.2.4 AN B # (), so that f(A) N
f(B) # 0. But then according to Proposition 1.1.1.2 (d) it follows that
f(A)dy f(B). Since f is a continuous mapping, then f(A4) C f(A) and

f(B) C f(B), so that by Proposition 1.1.1.2 (a) f(A)dy f(B). Now by
Proposition 1.1.2.4 it follows that f(A)dy f(B), so that f is a d-continuous
mapping. &

Definition 1.1.6.2 If f : (X,0x) — (Y,dy) is a bijective §-continuous
mapping and f~1 : (Y,0y) — (X,6x) is a 6-continuous mapping, then f
s said to be a proxrimally equimorphism, proximally isomorphism
or d-homeomorphism from X onto Y. The prozimity spaces (X,dx)
and (Y,dy) are proxrimally equimorphic, proximally isomorphic or
d-homeomorphic if there exists a §-homeomorphism between them.

This relation is reflexive, symmetric and transitive. Since an d-equimorp-
hism is a homeomorphism between (X,7s,) and (Y, 75, ), d-equimorphic
spaces are also homeomorphic.
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Proposition 1.1.6.11 Let f be a given mapping from the proximity space
(X,0x) into the prozimity space (Y,dy). Then

(a) f is d-continuous if and only if 6x > f~1(dy);

(b) if f is an injective mapping, then 6x = f~1(dy) if and only if the
mapping h = f]g((X) is a 0-homeomorphism from the prozimity space (X, dx)
onto the proximity space (f(X),dy|f(X));

() if f is bijective mapping, then 6x = f~'(dy) holds if and only if f is
a 0-homeomorphism from (X,0x) onto (Y,dy).

Proof: (a) Let f be a d-continuous mapping. If Adx B, then f(A)dy f(B),
so that Af~!(6y)B by the definition of the proximity f~!(dy). This proves
that §x > f~!(dy). Conversely, let us suppose that §x > f~!(dy) and let
ASxB. Then Af~1(dy)B, which is equivalent with f(A)dx f(B). But then
the mapping f is d-continuous.

(b) Since 6x = f~1(8y), then by Corollary 1.1.6.2 f : (X, f~(dy)) —
(Y, dy) is a d-continuous mapping. But then by Proposition 1.1.6.6 h|§<(X) :
(X, f~1(0y)) — (f(X),dy|f(X)) is a é-continuous mapping. Let g = h~!,
It is obvious that fog: f(X) — Y is a canonical injection. Thus, by Corol-
lary 1.1.5.4 and Corollary 1.1.5.6, it follows that y|f(X) = (fog) 1(dy) =
g Y (f~1(6y)). But then, by Proposition 1.1.6.2, g : (f(X),dy|f(X)) —
(X, f~1(dy)) is a 6-continuous mapping, so that h is a 6-homeomorphism.
To prove the converse, let h = f \g((X) be a d-homeomorphism from the
proximity space (X,dx) onto the proximity space (f(X),dy|f(X)). Then
the identical mapping g o h is a §-homeomorphism from (X, dx) onto space
(X, f~1(dy)). Now by Corollary 1.1.6.4 we have that 6x = f~1(dy).

(¢) The assertion is a special case of (b). &

1.1.7 Product of proximity spaces

Proposition 1.1.7.1 Let {(X;,0;) : i € I} be a non-empty family of the
prozimity spaces, X # () and f; : X — X; being a given mapping for each
i € I. Then there exists the coarsest proximity 6* on the set X for which
fi i (X,0%) — (X;,0;) is d-continuous mapping for every i € I. In this case
§* = sup{f; 1(;) :i € I}.

Proof: Let § be an arbitrary proximity on the set X for which f; : (X,6) —
(Xi,0;) is a d-continuous mapping for every ¢ € I. In this case by Propo-
sition 1.1.6.11 (a) there follows that § > f;(5;) for every i € I. However,
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according to Theorem 1.1.4.1, there is the coarsest of the proximities on
X, say 0%, which is finer than all the proximities fl-_l(éi). Therefore it is
coarsest than the proximity §. Since § is an arbitrary proximity on X, the
proof of the proposition is finished. &

Definition 1.1.7.1 The prozimity 0* in the above proposition is called the
proximity projectively generated by the system {f;, 6; :i € I}.

The inverse image f~1(§) of a proximity & is nothing other than the
proximity projectively generated by the system {f,d} of one element, where
f:X — (Y,0) is a given mapping. On the other hand, if X; = X for every
i € I, while f; is the identical mapping on X, then the system { f;,d; : i € I'}
generates projectively precisely the proximity sup{d; : i € I}.

In the following we shall always use the notation introduced in Proposi-
tion 1.1.7.1.

Corollary 1.1.7.1 For the sets in the prozimity space (X,0*) it holds that

Ad*B if and only if for any two finite decompositions {A; : j € Jpn}
and {By : k € J,} of the sets A and B respectively, there
are indices j and k such that f;(A;)6;fi(By) for every i € I.

Proof: The proof immediately follows from Theorem 1.1.4.1 and definition
of the inverse image of proximity. &

Corollary 1.1.7.2 If (Y,0y) is a proximity space and g : Y — X, then
g: (Y,dy) — (X, 06%) is 0-continuous if and only if fiog: (Y,dy) — (X, )
18 a d-continuous mapping for every i € I.

Proof: Let g : Y — X be a d-continuous mapping. Since f; : (X,0*) —
(Xi,0:), ¢ € I, is a d-continuous mapping according to Proposition 1.1.7.1,
then f;og: (X,9) — (X;,0;), ¢ € I, is a 6-continuous mapping by virtue of
Corollary 1.1.6.3. Conversely, let us suppose that fiog: (X,0%) — (Xj, d;) is
a d-continuous mapping for every i € I. If P3" Q, where §* = sup{f~1(8;) :
i € I}, then there are decompositions {P; : j € Jp,} and {Qy : k € J,} of
the sets P and @ respectively, so that for every (4, k) € J,, X J,, there exists
some i = i(j, k) for which f;(P;)d;fi(Qx) holds. Since f;og is a é-continuous
mapping for every i € I, then for every (j, k) € J,,, x J,, we have that (f; o
9) (P (fi 0 9)  (F1(@Qu)), e g (M (BB (£ (£:(Qn)))
where i = i(j, k). Since P; C f; ' (fi(P;)) and Qx C f;*(fi(Qx)), then
g1 (Pj)oyg 1 (Qx) for every (j, k) € Jm x Jp. But then according to the
axiom (Bg) it follows that ¢~1(P)dyg~1(Q), so that g is a J-continuous

mapping. &
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Corollary 1.1.7.3 Let J; # 0 be a set of indices for everyi € I, (Xij5,0i5) a
proximity space for i € I and j € J;, fij : Xi — Xij a mapping such that d;
is the prozimity on X; projectively generated by the system { fij, di; : j € J;}.
Then 6 is identical with the proximity projectively generated by the system
{fijofi,dijiel, je Ji}.

Proof: This immediately follows from the previous corollary. &

Corollary 1.1.7.4 Ifg: Y — X, Y # 0, then prozimity g~ (6*) coincides
with the prozimity projectively generated by the system {f; o g, d; 11 € I}.

Proof: This assertion is a special case of the previous corollary. &

Corollary 1.1.7.5 Let 0 #Y C X and f;(Y) CY; C X; for every i € I.
Then §*|Y is a proximity projectively generated by system {fl\¥, 0|Y; i€

1}.

Proof: The assertion immediately follows from Corollary 1.1.7.3, Corollary
1.1.5.4 and Proposition 1.1.6.11. &

Corollary 1.1.7.6 Let (Y;,0}) be a prozimity space, g; : X; — Y; a mapping

for which §; = g;l(ég) holds. Then 0* is a proximity identical with the
prozimity projectively generated by the system {g; o f!, o, :i € I}.

Proof: This follows from Corollary 1.1.7.3. &

Corollary 1.1.7.7 If g; : X; — Y; is a d-homeomorphism for every i € I,
then the proximity 6* is identical with the proximity projectively generated
by the system {g;o fi:1 € I}.

Proof: This immediately follows from Proposition 1.1.6.11 (c). &

Corollary 1.1.7.8 If 0] is a prozimity on X; such that §; < &, for every
,

i € I and 0™ is the prozimity projectively generated by the system {f;, o :
i €I}, then 6" < ™.

Proof: This follows from Corollary 1.1.5.5. &

Corollary 1.1.7.9 The topology projectively generated by the system {f;,
7(8;) 14 € I} coincides with the topology T(6*).
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Proof: The topology projectively generated by the system { f;, 7(d;) : i € I}

is defined as sup{fi_l( (0;)) : i € I}. According to Theorem 1.1.4.1 we have

the equality sup{f; *(7(;)) : z € I} = sup{7(f;*(6;)) : i € I'}. Since by

Proposition 1.1.5.2 sup{T( Yo :iely = T(sup{fl-_l(éi) ci e I}) =
7(6%), then sup{f; L (r(5:)) =1 € I} = 7(5°). &

Definition 1.1.7.2 Let (X;,0;) be a prozimity space for every i € I # ),
X =[Lier Xi and p; : X — X; the i-th projection. The proximity relation &
which is projectively generated on X by the system {p;, 0; : i € I} is called the
product of the proximities &; and is denoted by [[,c;0;. The proximity
space ([ [;c; Xi [ Licy 0i) is the product of the proxzimity spaces (X;, d;).

The above notations will be used henceforth.
Now by virtue of definition of the product of the proximities and Propo-
sition 1.1.7.1 we have the following

Corollary 1.1.7.10 For the sets A,B C X AdB holds if and only if for
any decompositions {A; : j € Jy} and {By : k € J,} of the sets A and B
respectively there exist indices j € Jp, and k € J,, such that p;(A;)d;pi(By)
foreveryiel. &

Corollary 1.1.7.11 Let (Y,0y) be a proximity space and g : ¥ — X a
mapping. The mapping g : (Y,0y) — (X,0) is a d-continuous if and only if
the composition p; o g : (Y,dy) — (Xi, ;) is d-continuous for every i € I.

Proof: This immediately follows by virtue of Corollary 1.1.6.3 and Corol-
lary 1.1.7.8. &

Corollary 1.1.7.12 If ¢} is a proximity relation on a set X;, so that 0; < 0,
for every i € I, then Hlelé < ILies ;-

Proof: This follows from Corollary 1.1.7.8. &

Corollary 1.1.7.13 If0 #Y; C X; and Y = [[,.; Vi, then [[;c;(6:Yi) =
SY. &

Corollary 1.1.7.14 If 0 # Y; C X; and Y = [[;;Yi, then [],c;(0:|Y3)
=9Y. IfY; = X; for some i € I, while for the other indices Y; = {y;},
where y; € Xy, then p;|Y : (Y,0]Y) — (Xi,6;) is a 6-homeomorphism.
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Proof: The first part of the assertion follows from Corollary 1.1.7.4. The
second part follows from Proposition 1.1.6.11 and the fact that any map-
ping from a proximity space onto one element set equipped with indiscrete
proximity is d-continuous. &

Corollary 1.1.7.15 Let (Yi,dé/) be a proximity space for every i € I, f; :
(Xi,6;) — (Y3,6%) a d-continuous mapping, Y = [[;c;Yi, 0y = [Lic; 64,
p; Y — Y, the i-th projection and f : X — Y the mapping for which
fiopi=piof. Then f:(X,0) — (Y,dy) is a §-continuous mapping. If f;
is a d-homeomorphism, then f is also a §-homeomorphism.

Proof: Since f; is a d-continuous mapping, then by Corollary 1.1.6.3 f;op; is
a 0-continuous mapping. But then plo f is also a d-continuous mapping, from
which, by Corollary 1.1.7.11, it follows that the mapping f is -continuous.
The last part of the assertion follows from the assertion previously proved
and the fact that f;l opl=piofl. &

Let f : I — J be a bijection and Y; = Xy;). Then the mapping g :
[Lic;Yi — [l;cs X, defined by: if g(b) = a, where b = (b;), then ayi) = b;,
is a bijection from the set ¥ = [[,;Y; onto the set X = [[,; X;. For the
mapping defining in such a way there follows:

Corollary 1.1.7.16 Let ; be a prozimity space on the set Y;, 5}(1) =0;,0 =

[Lic;6i and 0" =]1;c,0;. Then g: (Y,6) — (X,0') is a 5-homeomorphism.
[

Let us consider a bijection f: I — J. Let I = Uje I, I, N1, = for
Jv# J2, Yy = Hielj Xiy X = [Lies Xi» Y = [ljes ¥j, and let p; : X — X;,
q; : Y — Yjand rj : Y; — X; be the projections. If r5;(q;(f(x))) = pi(x)

for every x € X, then f : X — Y is a bijection for which the following
assertion holds:

Corollary 1.1.7.17 If §; is a prozimity on the set X;, § = [[;c; s, 53- =
[Lics, 6. o' =1les 05, then f:(X,0) — (Y,d') is a 6-homeomorphism. &

The last two assertions immediately follow from Corollary 1.1.7.11 while
from Corollary 1.1.7.9 the following assertion holds.

Corollary 1.1.7.18 If 0 = [[,c;di, then 75 = [[,c;7(0;). However, the
product of separated proximities is also a separated prorimity. &

Finally, let us give a theorem which is analogous to the embedding the-
orem in topological spaces.
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Theorem 1.1.7.1 Let (X;,8;) be a prozimity space for every i € I # (),
Y a given set, f; ' Y — X; a given mapping, 6* a proximity on the set
Y projectively generated by the system {fi, 6; i € I}, X = [[;c; Xi, § =
[Lic;6i pi ©+ X — X the i-th projection, f : Y — X the mapping for
which p; o f = f;, and h = f|{,(y). If for z,y € X from x # y follows
fi(z) # fi(y) for at least one i € I, then h: (Y,6*) — (f(X),0|f(X)) is a
d-homeomorphism. This assertion is certainly fulfilled if 6* is a separated
proximity.

Proof: According to Corollary 1.1.7.4 there follows that 6* = f~1(4).
Since h is a bijective mapping, then, by Proposition 1.1.6.11, it is a J-
homeomorphism. If the proximity 6* is separated and if for elements z,y €
X  # y holds, then {z}§ {y}, so that by Corollary 1.1.7.1 there exists some
index 4 € I for which {f;(z)}8;{fi(y)} holds. Therefore f;(z) # fi(y). &

1.1.8 Quotient space of proximity spaces

Let now (Xj;,0;) be a proximity space for every i € I £ 0, f; : X; — X a
given mapping and let us consider the finest proximity ¢* on the set X for
which each one of the mappings f; is d-continuous. This proximity exists
since every f; is §-continuous with respect to the indiscrete proximity on X
and then we have to take only all the proximities § for which every f; is
d-continuous and denote their supremum by §*:

Proposition 1.1.8.1 Let (X;, ;) be a proximity space for every i € I # (),
fi : X; — X a given mapping, and 0" the supremum of those proximities §
on the set X for which every f; : (X;,0;) — (X, 9) is d-continuous. Then §*
1s the finest among the proximities considered.

Proof: It needs only to be checked that every f; : (X;, ;) — (X,0%),
i € I, is d-continuous. By Proposition 1.1.6.11 this will hold if and only if
f7H(6*) < §; for every i € I. The last inequality, by Theorem 1.1.5.2, is
equivalent to supg fz-_l(d) < 6;, © € I, where supremum is considered with
respect to all the proximities 6 on X for which f; is §-continuous. Since
fi+ (X4,0;) — (X,9) is 0-continuous by Proposition 1.1.6.11 if and only if
8i > f;1(0), the inequality sups f; () < &; obviously holds. &

Definition 1.1.8.1 For the proximity §* in the above proposition it is said
to be inductively generated by the system {f;, d;:1 € I}.
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There is an essential difference with respect to the inductive generation
of topologies, namely that 6* cannot be constructed, in general, in a simple
way by means of the given f; and §;, not even in the special case of a single
proximity space (X’,¢') and a single mapping f : X’ — X. In this case
the notation §* = f(¢’) is used and we speak of the quotient proximity
belonging to ¢’ and f.

In fact, if there is a given proximity on X for which f is d-continuous,
then for the sets A, B C X, f~1(A)§f~1(B) implies that f(f~1(A)) C A
and f(f~1(B)) C B are near to each other. Therefore if a relation § is
defined in such a way that A6B holds if and only if f~1(A)d f~!(B) and §
defined in this manner is a proximity on X, then the fewest possible pairs of
sets will be near to each other with respect to d, and thus J will be identical
with f(¢"). Now it can be easily proved that, if f is surjective, then ¢ defined
in this way will certainly fulfil the axioms (Bj) to (By). The axiom (Bsj)
is fulfilled if and only if f *1(14)5/ f~1(B) implies that there exist the sets P
and Q such that PNQ =0, f~1(A)8 f~(X — P) and f~1(B)3 f~1(X — Q).

The latter condition is not always fulfilled. For that reason let us consider
the following:

Example 1.1.8.1 Let for example X’ = R, ¢’ = d4, (where d; is the
Euclidean metric), X being the set of integers, f : X’ — X defined by

f(z) = [z]. A={0}, B = {2} imply f~'(A) = [0,1), f~1(B) = [2,3), so
that f~1(A)8f~1(B). However, for the arbitrary sets P,Q C X, the con-
ditions [0,1)8'f~1(X — P), [2,3)8 f~}(X — Q) imply that both f~(P) and

f~H(Q) intersect the interval [1,2), hence 1 € PN Q is fulfilled.
As a result of the previous consideration the following proposition holds:

Proposition 1.1.8.2 Let (Y,dy) be a proximity space, f:Y — X a given
mapping and § be a relation on the set X defined by: AéB if and only
if fY(A)dy f 1 (B). Whenever &, defined in this way, is a prozimity on
X, then 6 = f(dy). This is the case if [ is surjective and if for A,B C X,
f~YA)Sy f~Y(B), there exist C, D C X such that C(\D =0, f~1(A)sy !
(X = C) and f~1(B)oy f~1(X - D). &

Corollary 1.1.8.1 Ifg: X — Y is a bijection, f = g~ ', 6y is a prozimity
on the set Y, then f(dy) = g '(dy) (with the notations introduced in the
previous proposition,).

Proof: Let us suppose that for the sets A, B C X holds f~'(A)dy f~'(B).
Then there exist sets C’, D’ C Y for which f~1(A)syY —-C’, f~1(B)syY D’
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and C'N D’ = () holds. Then for the sets C = f(C’) and D = f(D’) it follows
that f~H(A)oy f~1(Y - O), fY(B)oyf"(Y —=D)and CND =0. &

Starting from the definition, we have the following propositions.
Proposition 1.1.8.3 §* = inf{f;(6;):i € I}. &

Proposition 1.1.8.4 If 6! is a prozimity on X; for which §; < 0}, then the
prozimity inductively generated by the system {f;, 0, : i € I} is finer than
the proximity 0*. &

Proposition 1.1.8.5 Let (Y,dy) be a proximity space and g : X — Y a
given mapping. The mapping g : (X,0%) — (Y,dy) is 0-continuous if and
only if go fi : (Xi,0;) — (Y, dy) is a §-continuous mapping for every i € I.
&

Proposition 1.1.8.6 Let (X;j,d;5) be a prozimity space for every i € I # ()
and j € J; # 0, fij : Xij — X a mapping such that 6; is the proximity in-
ductively generated by the system { fi;, 0i; : j € Ji}. Then §* is the proximity
inductively generated by the system {f; o fi;, dij}. &

Proposition 1.1.8.7 If (Y;,0)) is a prozimity space for every i € I and
gi - Yi — X; a mapping for which 6; = g;(0}) holds, then the proximity 6* is
identical with the proximity inductively generated by the system { f; o g;, 9, :
i € I}. The statement also holds in the case when g; is a §-homeomorphism
foreveryicl. &

Proposition 1.1.8.8 Let (X,0x) and (Y,dy) be two proximity spaces, f :
X — Y a given mapping. Then the following statements are equivalent:
(a) f is a d-continuous mapping;
(b) dy < f(dx);
(c) 1 (0y) < ox.

Proposition 1.1.8.9 Let (X,dx), (Y,dy) and (Z,dz) be proximity spaces,
f:X =Y and g : Y — Z given mappings, and let 6y = f(6x). The
mapping g is 0-continuous if and only if go f is a d-continuous mapping. &

Proposition 1.1.8.10 If (X;,0;) is a proxzimity space for every i € I # (),
X = TLer Xi, 0 = [Lic;6i and p; : X — X; is the i-th projection, then
0; = pi(0) for everyi € I. &
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Proof: According to Proposition 1.1.8.2 it must be shown that if A;, B; C
X, then A;d;B; holds if and only if pj_l(Aj)(Spjfl(Bj). Now as p; is proxi-
mally continuous, it follows that the latter relation implies the former one.
Let us suppose therefore that A;6;B; and let A = p}l(Aj), B = pj_l(Bj)
and let {C, : r € I} and {Ds : s € I} be decompositions of the sets A
and B respectively. Let us consider the sets p;(C,) = Cy., r € I,, and let us
construct all the sets of the form (_, E,, where E, = C} or E, = A; — C],

for every r € I,. Let us denote these intersections by Pi, Ps, ..., P,. It is
obvious that A; = JP' _, P,,, the sets P, are disjoint, and every set C!. is the
union of those P, which are contained in it. Disjoint sets Q1,Q2,...,Q, can

be similarly constructed such that B; = |JI_; @, and every set D’ = p,(D;)
is the union of the sets (),, contained in it.

Now it is evident that there exist indices m and n such that P,,0,;Qp.
For every index i € I —{j} let x; = y; € X; be arbitrarily chosen element so
that z; € Py, and y; € Q. Then z = (z;) € Ur_, Cr, y = (y;) € ngl Dy,
so that x € Cy, y € D, for suitable indices r and s, thus z; € C)., y; € DL.
Therefore P,, C C}, Qn, C D, and thus p;(C;)d;p;(Ds). Furthermore, if
i # j then x; € p;(Cy), yi € pi(Ds) implies that p;(Cy)d;p;(D;), from which,
by Corollary 1.1.7.10, it follows that AJB. &

In the following by partition of a set X we understand a system S
of sets whose elements are pairwise disjoint, non-empty and their union is
X. The elements of the partition S are called the cells of the partition.
Often a partition on X is given by defining an equivalence relation on X
and identifying the cells of the partition with the equivalence classes. In this
case the quotient space obtained is called the quotient space belonging
to the equivalence relation

An important example of this is the following: let N'(x) be the neigh-
borhood filter of the point x in the topological space (X, 7). Let x be said
to be equivalent to y if and only if M'(z) = N (y). Then we obtain evidently
an equivalence relation on X. The partition S belonging to it is called the
separative partition belonging to the topology 7.

In the same way as in the case of topological spaces we can also speak of
the quotient space of a proximity space belonging to a partition or an
equivalence relation. It is worth to study in particular the quotient space
with respect to the separative partition of the topology 7s:

Proposition 1.1.8.11 Let (X, ) be a prozimity space, S the separative par-
tition corresponding to the topology 15, p : X — S the canonical surjection.
Then

(a) x and y belong to the same cell Z € S if and only if {x}o{y};
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b) A
c)p
d) 7(p
e) p(d

Proof: (a) If {z}6{y}, then X — {y} € F({x}) = F(x), so that F(y) #
F(z). Conversely, if F(y) # F(z), then there exists a 7s-open set G such
that z € G, y ¢ G. Therefore {z}6X — G, and since {y} C X — G, then
{z}o{y}.

(b) Let us notice first that the condition formulated in Proposition 1.1.8.2
is fulfilled by p. Indeed, if A,B C S, p~'(A)sp~(B), then let C,D C
X be such that p~1(4)6X — C, p~*(B)SX — D and C(\B = 0. Then
by Proposition 1.1.2.4 p~'(A)0 X — C, p~'(B)§ X — D holds. Since every
closed set in the topology 75 is a union of the classes of equivalence, then

“(p(X-C)) c X —Candp~!(p(X—D)) C X — D. But then the sets P =
S—p(X—C)and Q = S—p(X —D) are disjoint, and p~*(S—P) = p~ 1 (p(X —
C)op~HA), p~HS - Q) = p1(p(X — D))dp~Y(B) holds. Accordingly,
Proposition 1.1.8.2 can be applied and shows that the statement is true.

(c) Since p : (X,d) — (S, p(d)) is d-continuous mapping, then by Propo-
sition 1.1.6.11 we have that p~'(p(6)) < §. On the other hand, if ASB is
true, then by Proposition 1.1.2.4 A B holds, from where it follows that
p_l( (A))op~1(p(B)) (because it is closed in the topology 75 as the union
of the classes of equivalence). But then, according to the assertion (b),
p(A) p(6) p(B), from which it follows that Ap—1(p(s)) B.

(d) Since the projection p : (X,d) — (S,p(d)) is J-continuous mapping,
then by Proposition 1.1.6.8 p : (X, 75) — (S, 7(p(d)) is continuous mapping,
so that 7(p(d)) < p(75). To prove the converse, let us suppose that G is a
p(75)-open set, i.e. that p~1(G) is a 75-open set and let z € p~1(G). Then
{}6X —p~ (@), so that according to Proposition 1.1.2.4 {z}§ X —p~*(G)
holds. But then p~!(p(z))6 X —p~(G), so by (b) {p(z)}p(6) S—G. Therefore
G is a 7(p(d))-open set.

(e) This assertion follows from (d) and the fact that p(7s5) is a Tp-
topology. &

(5) if and only if p~'(A)op~!(B);
“H(p(9)) =
)(5)) ( )

18 a separated proximity.

N N N N

’B

Historical and bibliographic notes

Although it had been suggested as early as 1908 by F. Riesz [273] and
the idea was revived in 1941 by Wallace [329], the theory of proximity had
its real beginning with V. A. Efremovich in 1952 [92], and was developed
by several authors (largely in the Soviet Union), notably Yu. M. Smirnoff.
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The axioms for a proximity space were originally given by V. A. Efremovich,
although they appeared in a slightly different but equivalent form to those
presented in subsection 1.1. The theorems in this subsection are mainly due
to V. A. Efremovich, just as the concept of §-neighborhood. They have been
collectively presented by Smirnoff in his early survey of proximity spaces
[294]. The results concerning proximity mappings were first established by
Smirnoff [294]. For an account of a proximity on the product of proximity
spaces, see Leader [186].

1.2 Uniform spaces

The concept of a uniform space can be considered either as an axiomatization
of some geometric notions, close to yet quite independent of the concept of
a topological space, or as convenient tools for an investigation of topological
spaces. Uniformities, when introduced by Weil, were considered as such
tools, suitable, in contrast to metrics, for studying topological spaces with no
countability assumptions. Burbaki, who pays a great attention to the theory
of uniform spaces in their book, emphasizes its character as an independent
theory which is, however, strongly related to the theory of topological spaces.
The relation between the two theories consists in the fact that to uniform
spaces and uniformly continuous function one can assign, in a standard way,
topological space and continuous mappings.

1.2.1 Definition and basic properties of uniform spaces

In a pseudo-metric space (X, d) (z,) is a Cauchy sequence if, for every ¢ > 0,
there exists an index n. € N such that d(z,,,x,) < € whenever m,n > n..
If Ug. = {(z,y) € X% :d(z,y) < €}, then we can say that () is a Cauchy
sequence, if, beginning with an index n. € N, all its elements are in the set
Ude-

The uniform continuity of a function f : R” — R is well known and
plays an important role in mathematical analysis. A function f of this type
is said to be uniformly continuous if, for every £ > 0, there exists a § > 0
such that z,y € R", d,,(z,y) < ¢ implies |f(z) — f(y)| < e. The definition
can be extended word for word to real functions defined on a pseudo-metric
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space (X, d). The difficulty in extending it to an arbitrary topological space
is the fact that, in order to do this, we should have to extend the expression
"the points x and y are nearer to each other than ¢ for some § > 07, i.e. we
should need a suitable generalization of ”the system of pairs of points (z,y)
nearer to each other than § 7.

On account of this, it can be expected that the notion of a uniform
continuity can be extended to functions defined on a set X where some sets
of pairs-the elements of which belong to X -are distinguished. The set of
these pairs will then take the role played in the case of a pseudo-metric
spaces by pairs of points which are nearer to each other than §. In order
to obtain a suitable generalization, let us look at some simple properties of
sets of such pairs of a pseudo-metric spaces.

Every set Uy is non-empty, because A C Uy, for every ¢ > 0, where
A = {(z,x) : x € X} is the diagonal of the set X. Furthermore, Uy, C
Uie, NUqe,, where 0 < € < minf{ey,ea}, so that the system of the sets
{Uqe : € > 0} is a filter base in X x X.

The sets Uy are symmetric, because the pseudo-metric d is a symmetric
function, i.e. Uy = U, 81 Furthermore, for every Uy, there exists an Uy,
such that Uy, o Uy, c Uge. This assertion immediately follows from the
triangle inequality.

The sets of the form Uy . are said to be an e-surrounding of the pseudo-
metric space (X, d).

Definition 1.2.1.1 A non-void family U of subsets (called the entourages
of the diagonal) of the set X x X is a uniformity or a uniform struc-
ture on the set X, if the following conditions are satisfied:

(U1) A C U for every element U € U;

(Uz) if U €U, then U™t € U;

(Us) if U,V €U, then UNV € U;

(Usg) ifUel andU CV, then V € U;

(Us) for every U € U there exists a V € U such that VoV C U.

The pair (X,U) is called a uniform space. A uniformity U is called
separated or Hausdorff, if for x,y € X, x # y there exists an entourage
U € U such that (x,y) &€ U. A uniform space (X,U) is Hausdorff, if the
uniformity U is Hausdorff.

Definition 1.2.1.2 A subfamily B C U is called a base for the unifor-
mity U if for every U € U there exists a B € B such that B C U.

Obviously, a uniformity U/ can have many bases. However, every unifor-
mity U is completely determined by any of its bases in the following way.
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A subset U of the product X x X is an element of the uniformity U/ if and
only if there exists an element B € B such that B C U.

Definition 1.2.1.3 Let A and B be systems of sets. We say that A is
coarser than B, or B is finer than A, denoted by A < B, if for for each
set A € A there is a set B € B such that B C A. If A< B and B < A hold

simultaneously then we say that the systems of sets A and B are equivalent.

In spite of all this, the families &/ and B are equivalent. By definition
of the base, B > U holds. However, B < U also holds. Indeed, let B be
any element of B. Then B € U, because B C U, so there exists an element
Uelsuchthat UoU C B. But then U =Uoc A CUoU C B.

Proposition 1.2.1.1 A family B of the subsets of the product X x X is a
base of a uniformity on the set X if and only if the following conditions are
fulfilled:

(a) A C B for every element B € B;

(b) if U € B, then U™L contains an element of B;
(c) for every U € B there exists a V € B such that VoV C U;
(d) the intersection of every two elements of B contains an element of

B. &

According to the above proposition we have the following simple corol-
lary.

Corollary 1.2.1.1 A family B = {Ug. : € > 0} of e-entourages Uy defined
in the pseudo-metric space (X,d) is a base of some uniformity Uy on the set
X. The filter B generated by it is the uniformity of the pseudo-metric
space (X,d). &

Proposition 1.2.1.2 If B is a base of some uniformity on the set X, and
B’ is a family of symmetric subsets of the product X x X which is equivalent
to the family B (B < B' and B’ < B), then the family B’ is a base of the
uniformity on the set X.

Proof: Let B’ € B'. Since the families B and B’ are equivalent, then B > B/,
so there exists a B € B such that B C B’. Therefore A C B’, so that B is a
filter base on X. Let us choose an element B’ € B’ and let B € B be a set for
which B C B’. Since B is a base of the uniformity on X, then by Proposition
1.2.1.1 (c) there exists a By € B such that By o By C B. But then, since
B’ > B, for the set B; there exists a set B} € B’ for which B} C Bj holds,
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from where it follows the inclusion Bjo B} C BjoB; C B C B’. This proves
that B’ is a base of the uniformity on X. &

Furthermore we can suppose that entourages are symmetric elements of
uniformity which contains diagonal.

It is easy to see that all entourages of some uniformity U constitute a
uniform base generating /. This is at the same time the largest uniform
base generating U.

Definition 1.2.1.4 A subfamily S of a uniform structure U is a subbase
for U if the family of all finite intersections of elements of S form a base

forU.

Proposition 1.2.1.3 A family S of the subsets of the product X x X is a
subbase of a uniformity on the set X if and only if the following conditions
are fulfilled:

(a) A C U for every element U of S;

(b) for every U € S the set U~ contains an element V of S;

(¢) for every U € S there exists an element V € S such that VoV C U.

Proof: Let us prove that the family B of all finite intersections of the
elements of S fulfills the conditions of Proposition 1.2.1.1. It is therefore
sufficient to notice the following facts. If Uy, Us,..., U, and Vi, Va,..., V),
are any subsets of the product X x X, U = (\_, U;, V = ()., Vi, then
V Cc U™ (that is VoV C U), whenever V; C U; ! (that is V; o V; C U;) for
every i =1,2,...,n. &

Another important method to obtain uniformities is the following. Let
> be an arbitrary non-empty family of the pseudo-metrics defined on the
set X. For every o € X and every € > 0 the set

Use ={(z,y) :0(z,y) <e} C X x X

is evidently an entourage in X, because A C Uy and U, . = U, L. moreover,
I

Use20Uyes2 C Uspe, so that, by the above proposition, the family {Uspe :
o € 3, € > 0} is a subbase of some uniform structure on X. Let us assign
now to every finite subset () # ¥’ C ¥ and every € > 0 the set

Usre ={(z,y) s o(z,y) <e, 0¥} C X x X.

Let us denote by By, the family of all sets Usy ., where ¥’ runs over all finite
non-empty subsets of ¥, and ¢ runs over all positive real numbers. Then
the following proposition holds:
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Proposition 1.2.1.4 If ¥ is a non-empty family of pseudo-metrics on the
set X, then the system of sets

Bs ={Usy.: 0 #X' CX is a finite set, € > 0}
18 a uniform base on X.

Proof: According to the definition of a subbase, the finite intersections of
the sets Uy constitute a uniform base on X. On the other hand, By is

equivalent to this base since, for ¥/ = {01,09,...,0,},
n
UE’,& = ﬂ Um,a?
i=1
moreover, if 0 < e < {e1,¢€9,...,&,}, then

n

m UO'Z',SZ' - UE/,E . &
=1

The uniform structure U defined in this proposition is called the uni-
formity induced by the family of pseudo-metrics X.

The notion of a uniform structure can be introduced on the set X with
the help of a family of covers of the set X.

The following definition was given by Smirnoff (see [294]) and it presents
an insignificantly modification of the definition which was given by Tukey
(see [323]).

Definition 1.2.1.5 A family ¥ of the coverings of the set X is a uniform
structure or a uniformity on the set X, if the following conditions are
fulfilled:

(Py) if the covering a is inscribed in the covering 3 and if a € 3, then
B e

(Py) for any two coverings « and 3 of the family X the intersection aN
also belongs to the family X;

(P3) For any covering o € X5 there exists a covering 3 € ¥ such that the
covering {st(xz, ) : x € X} is inscribed in the covering c.

The pair (X,X) is called the uniform space. If it is satisfied the fol-
lowing additional condition:

(Py) for every pair of distinct points x € X and y € X there ezists a
covering vy € ¥ such that y & st(zx,7),
then the uniform structure ¥ on X is said to be separated or Hausdorff.
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Let us prove that Definition 1.2.1.5 is equivalent to Definition 1.2.1.1.
Let us denote with W the set of all uniform structures on the set X given by
A. Weil, and with T the set of all uniform structures given by J. Tukey. We
will show that the order in T and the topology defined on X by a structure
33 € T coincides with those of A. Weil.

First, to each set U € U we associate the corresponding covering v, =
{U[z] : * € X} consisting of neighborhoods Ul[z] of the points z € X.
The mapping £ : W — T is constructed as follows: the image of the Weil
structure U € W is the system X = £(U) consisting of all coverings v of the
set X in each of which is inscribed the covering of the form v, , U € U.

It is easy to see that the condition (P;) of Definition 1.2.1.5 is fulfilled
in ¥ = £(U). Furthermore, we see that if W = U NV, U,V € U, then
Wlz] = Ulz] N V[z] for any x € X. This means that for any U € U and
V' € U the covering v, ., is inscribed in the intersection of the coverings v,
and 7,,, whence the condition (FP») of Definition 1.2.1.5 follows. To prove
the condition (Ps), for any element U € U we choose a W € U such that
W oW CU. It is easy to prove that for the set V=W NW~! € U the star
st(zx,7, ) of each point z € X is contained in the neighborhood U[z] of the
point x. Thus for any U € W the system ¥ = £(U) is a uniform structure
from T.

To prove that £ is a bijection, let us construct a one-one mapping 7 from
the set T into the set W which is inverse to &, i.e. such that £(n(X)) =X
and n(€(UU)) = U for any ¥ € T and any Y € W. It is constructed as
follows: each covering v € X is made to correspond to the set V, O A
which is the union of the sets of the form I' X I' of each I' € v with itself:
Vy = Ure, (I' x I'); after this the image of the structure ¥ € T under the
mapping 7 is the system U = n(X) which consists of all sets V' C X x X
each of which containing a set of the form V,, v € X.

It is easy to see that the conditions (U;) and (Us) of Definition 1.2.1.1
are fulfilled in & = n(X). For any v € ¥ the set V{l = V,. Hence condition
(Usz) of Definition 1.2.1.1 is fulfilled. Since for any two sets A, B C X we
always have (AN B) x (AN B) = (A x A)N (B x B), then for any two
coverings a, f € ¥ the equality Vyng = Vi, N Vj holds. The condition (Us)
of Definition 1.2.1.1 now follows from this equality. To prove the condition
(Us) we note that if the covering o € ¥ is star-inscribed in the covering
B € %, then V2 C V. Thus the system U = n(X) € W.

Let now a € X. It follows that the covering « is inscribed in the covering
Y., € £(n(X)). This means that every covering v € £(n(X)) belongs to .
Conversely, for any covering « € 3 we choose a covering 8 € ¥ which is star-
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inscribed in the covering o. Then the covering T, € &(n(X)) is inscribed

in the covering . Consequently, every covering o € ¥ belongs to £(n(X)).
Thus the equality £(n(X)) = X has been proved. The inequality n({(U)) = U
can be proved analogously.

Let us suppose now that ¥ € T is a separated uniformity. If y & st(x,~),
then no element of the covering v simultaneously contains the points x and y,
and so, (z,y) € V,. Hence we get that for the Weil structure Y = n(¥) € W
the equality [,V = A is true. Conversely, if for the Weil structure
U = n(X) € W the equality ¢,V = A holds, then for any pair of
distinct points z,y € X there exists a V' € U such that (z,y) ¢ V. This
means that for the covering v, € 3, the point y & st(x,~y), which was to
be proved.

It follows immediately from the definition of the mappings £ and 7 that if
Y > ¥, then the Weil structure i = n(X) is finer than the uniform structure
U =n(¥'), and conversely, if the the Weil structure ¢/ is finer than U’, then
x> Y.

In the following subsection we shall prove that the topologies generated
by the uniform structures ¥ and U coincide. The proof about equivalence
of uniform structures introduced with the help of Definitions 1.2.1.5 and
1.2.1.1 were proved by A. Kochetkov, and this proof is given in the paper of
Ju. Smirnoff (see [294], p. 573-574).

1.2.2 Proximity and topology of uniform spaces

The sets A and B in a pseudo-metric space (X,d) are said to be near if
d(A, B) = 0. This means that for every € > 0 there are z € A and y € B
such that d(z,y) < e, i.e. (z,y) € U.. Accordingly, let us agree to say that,
in a uniform space (X,U), the sets A and B are near if there are, for every
entourage U € U, v € A and y € B such that (z,y) € U. Therefore the
following holds:

Proposition 1.2.2.1 If (X,U) is a uniform space, then the relation &y
defined by
AdyB if and only if (A x B)U #0
for every entourage U € U

18 a proximity on the set X which is called the proximity induced by the
uniformaty U.
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Proof: (Bj) follows from (Us). If Ady(BUC), then [Ax (BUC)|NU # 0
for every U e U, i.e. [[AX B)U (A x C)|NU # ) for every U € U. This is
equivalent to the fact that [(Ax B)NUJU[(Ax C)NU] # ( for every U € U,
so that (Ax B)NU # ) for every U € U or (Ax C)NU # () for every U € U.
Hence Ady B or AdyC, so (Bz) holds. (Bs) obviously holds, and (By) is true
according to (Uy). It remains to prove the axiom (Bj). In order to do this,
let us suppose that AdyB. Then there exists an element U € U for which
(A x B)NU = 0 holds. But then by (Us) there exists a V' € U such that
VoV CcU. Let C =V[A], D=V[B]. Then CN D = (. Indeed, if there
exists y € C'N D, then there exists x € A and z € B such that (z,y) € V
and (z,y) € V. Since the entourage V is symmetric, (y,z) € V, so that
(,2) € VoV CU. Then (x,z) € (A x B)NU, which contradicts the fact
that (A x B)NU = (. Let us prove that Asyy X — C and Béy X — D. It is
suffices to prove that (A x (X —C))NV =0 and (Bx (X —D)NV = 0.
Let (z,y) € Ax (X —V[A]). Then z € A and y ¢ V[A4], so that (z,y) €V,
from which the first equality follows. The second equality can be proved in
an analogous manner. &

Corollary 1.2.2.1 Let B be a base of the uniformity U on the set X. Then
Ady B if and only if (A x BYNU # 0 for every entourage U € B.

Proof: It is obvious that AdyB is equivalent to the relation ) ¢ {A x
B} (U, so that U can be replaced here by any system of subsets of the
product X x X equivalent to it. &

Corollary 1.2.2.2 The prozimity 64 of a pseudo-metric space (X,d) coin-
cides with the proximity &y, generated by the pseudo-metric uniformity Uy.

Proof: Applying the previous corollary to the system of e-entourages of
the pseudo-metric space (X, d), we come to the proof of the assertion. &

Proposition 1.2.2.2 Let (X,U) be a uniform space, B a base of the uni-
formity U, D # A C X, F(A) a dy-filter of the set A. Then the filter base
{U[A] : U € B} constitutes a base of the filter F(A).

Proof: Since (A x (X —U[A]))NU = 0, then Ajy X — U[A], so that U[A] €
F(A). On the other hand, if P € F(A), then by Corollary 1.2.2.1 there exists
a U € B such that (A x (X — P))NU = (. But then U[A] C P. Indeed, if
z € U[A] then (a,z) € U for some a € A. Since (A x (X — P))NU = 0,
then (a,z) ¢ Ax (X —P). Sincea € A,z ¢ X — P holds, so that x € P. &
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By the topology induced or generated by the uniformity U/, de-
noted by 7/, we mean the topology 7s,, induced by d,. Applying the previous
corollary for the case A = {z}, the following assertion holds:

Corollary 1.2.2.3 Let (X,U) be a uniform space, B a base of the unifor-
mity U. Then the filter base {Ulx] : U € B} is a y-neighborhood base of the
point x. &

Proposition 1.2.2.3 Let U be a uniformity on a set X. For every en-
tourage U € U let us define a relation <y for the subsets of X in the
following way:

A <y B if and only if U[A] C B.

Then the relation <y fulfills the conditions (O1) — (Os) of Theorem 1.1.1.1.
Moreover,

(Og) if for entourages U,Uy € U Uy oU; C U holds, then A <y B
implies that there exists a set C' such that A <y, C <y, B.

Proof: Since U[()] = 0, the condition (O1) obviously holds. The condi-
tion (Og2) holds, since A C U[A]. Since A C B implies U[A] C U|[B],
the condition (Os) is fulfilled. (O4) is fulfilled as well, since U[A] C B
and U[X — B] € X — A both mean, because U = U~!, that © € A,
(x,y) € U implies y € B. (Os) follows from the definition of the rela-
tion <. Finally, let us prove (Of). Let us suppose that for entourage
U and U; holds Uy oU; C U, and let A <y B, i.e. U[A] C B. Let
C = U1[4]. Then it is obvious that A <y, C. On the other hand, we have
that U;[C] = U1 [U1[A]] = (U1 o Uy)[A] C U[A] C B, so that C <y, B. &

According to Proposition 1.1.2.8 we can conclude:

Corollary 1.2.2.4 A uniformity U is separated if and only if the proximity
0y is separated, i.e. if and only if 74 is a Ty-topology.

The proximity &y, and topology 7, of the uniformity Uy, generated by
the family ¥ of pseudo-metrics are called the proximity and topology
induced by the family ¥ of pseudo-metrics and denoted by s and 75.

Let us consider the uniform structure on some set X introduced by
Definition 1.2.1.5.

Proposition 1.2.2.4 If the family of coverings ¥ is a uniform structure on
the set X, then by

AdB if and only if every covering v € ¥ contains some element
I' € v which has the non-empty intersection with both
sets A and B
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the proxzimity on the set X is defined.

Proof: The conditions (B;), (Bs) and (By4) of Definition 1.1.1.1 are ob-
viously fulfilled. Let us verify the condition (Bg). If the union of the sets
A and B is far from the set C, then obviously each of the sets A and B
is far from the set C. Conversely, let each of the sets A and B be far
from the set C. Then there exist coverings a € ¥ and § € ¥ such that
st(C,a)NA =0 and st(C, )N B = (). The covering aNf is by the condition
(P») of Definition 1.2.1.5 an element of the uniform structure ¥, and since
st(C,anB) C st(C,a) Nst(C, B), it follows that st(C,anB)N(AUB) = (),
which proves that the set C' is far from the union of the sets A and B.
Finally we will show that the condition (Bs) of Definition 1.1.1.1 is ful-
filled. According to Proposition 1.1.1.3 it is sufficient to prove that the sets
A and B, which are far in X, have disjoint §-neighborhoods. In order to do
this, let us choose a covering v € ¥ such that ANst(B,v) = 0. According to
the condition (P3) of Definition 1.2.1.5 we can choose a covering a which is
the star inscribed in v. We will now show that the §-neighborhoods st(A, a)
and st(B, «) of the sets A and B are disjoint. Indeed, if there were a point
x € st(A,a)Nst(B,a), then the set st(x, a) would meet both sets A and B.
Since the set st(x,«) is contained in some set I' € ~, then the set I' would
meet both sets A and B, which is impossible, because the sets A and B are

far. &

Proposition 1.2.2.5 Let a family of coverings ¥ be a uniform structure
on a set X. If § is a proximity relation on X generated by this uniform
structure, then the topology 15 can be obtained directly from the uniform
structure 3 in the following way: for any point x € X, the family int st(x,~),
v € X, is a base for the space X at x.

Proof: Indeed, since for every point z € X the set st(z,7) is a neigh-
borhood of the point z, then x € intst(z,7v). Conversely, if O, is any
neighborhood of the point z, since X — O, is a closed set, it follows that
20(X —O,). Therefore there exists a covering v € X such that st(z,7) C O,
which was to be proved. &

Proposition 1.2.2.6 The topology generated on the set X by the uniform
structure X € T coincides with the topology generated by the uniform struc-
ture U =n(X) € W.

Proof: Indeed, for every covering a € ¥ and every point x € X we have that
Valz] = st(z, a), where Vo, = (J o (A X A), so that intV,[z] C int st(x, a).
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Conversely, let U € U and x € X. Let us choose a set W € U for which
W oW C U holds and let V.= W N WL Then st(x,7,) C Ulz], where
vy ={Vlz] : @ € X}. Thus int st(z,,, ) C int U[z], which was to be proved.
&

1.2.3 Comparison of uniformities

The comparison of uniformities is based on the comparison of the filters. We
shall say that the uniformity U/ is coarser than the uniformity Us, i.e. that
the uniformity U» is finer than the uniformity &/, and denoted by U; < Uo,
whenever this relation holds for the filters /7 and Us.

It is obvious that the relation < is a partial order on the set of all uniform
structures defined on the set X. Let us notice that, on any set X # (), the
uniform base consisting only of the diagonal of X x X generates a uniformity
inducing the discrete proximity; this is evidently the finest uniformity on X
and is called the discrete uniformity. On the other hand, the uniformity
consisting only of X x X itself is the coarsest uniformity on X. It is called
the indiscrete uniformity and induces the indiscrete proximity.

Proposition 1.2.3.1 IflU; and Uy are uniformities on the set X for which
Uy < Uz holds, then oy, < du, and T4, < Tus, -

Proof: If Ady, B, then there exists a U € Uy such that (A x B)U = 0.
Since U; < Us, then U € Us, so that Ady, B. In this way we have proved that
0y, < Ou,. The second statement results from this by Proposition 1.1.2.9.
&

It is to be noticed here that, on the other hand, &, < d4, does not imply
Uy < Uz. Moreover, it may happen that 0y, = dy,, but Uy # Us. To prove
this fact, let us consider the following

Example 1.2.3.1 Let d be the metric defined on an infinite set X by the
formula
_ 1 itz #y,
d(z,y) = { 0, ifz=y,

and let Uy = Uy. Then dyy, is a discrete proximity on the set X. On the other
hand, let D be an arbitrary decomposition X = U'X; of the set X into a
finite number of pairwise disjoint subsets and let Up = U} (X; x X;). The sets
Up corresponding to all decompositions D of this type constitute a uniform
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base B since Up C Up, N Up,, where D1, Dy and D denote decompositions
X =Ul"4;, X = Uy B;j and X = |J" U7 (Ai N Bj) respectively, and it is
clearly that Up o Up = Up for every D. Let Us be the uniformity generated
by the above base B. Then ¢y, is the discrete proximity on the set X,
since AN B = () implies (A x B)(N\Up = 0 for the decomposition D :
X ={A,X — A}. Finally, U; # Us as in the uniformity U;, for 0 < & < 1,
U. is identical with the diagonal of X x X which cannot contain Up for
any finite decomposition D since at least one member of the decomposition
consists of several points.

Proposition 1.2.3.2 Let U; be a uniform structure on a set X, i€ I # 0,
B; a uniform base generating U;. Then U;c1B; is a uniform subbase and the
filter in X x X generated by it is identical with the coarsest of all uniformities
finer than each uniformity U;. It is denoted by sup{U; : i € I}.

Proof: It is easy to prove that the family P = U;;B; fulfills all the con-
ditions of Proposition 1.2.3.2, so that it is a subbase of some uniformity U
on the set X. Since B; C P C U, then U; < U for every 1 € I. If U is
any uniformity on the set X which is finer than every uniformity ;, then
U; C U for every i € I, so that P C U'. But then Y Cc U, ie. U < U,
which was to be proved. &

Let us observe that, with the help of the operation introduced above, the
uniformity induced by the family ¥ of pseudo-metrics can be constructed
from the uniformities induced by the single pseudo-metrics d € X

Proposition 1.2.3.3 Let X be a family of pseudo-metrics on the set X.
Then
Us =sup{Uy: d € X}.

Proof: In the proof of Proposition 1.2.1.4 we have seen that Uy, is generated
by the uniform subbase

U U= Ba.

deX e>0 dex

where By is a uniform base generating uniformity U,. &

Proposition 1.2.3.4 Let U; be a uniform structure on the set X for every
iel, U=sup{l:i€cl}. Then

Ty =sup{my, 1i€1}.
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Proof: On account of Propositions 1.2.3.4 and 1.2.1.4, 74, < 74 holds for
each ¢ € I, so that, with the notation 7 = sup{mny, : ¢ € I}, 7 < 17y. To
prove the converse, let us suppose that V' is a 1y-neighborhood of the point
x € X. Then by Proposition 1.2.1.4 and Corollary 1.2.2.3 it follows that
Niey Ui lz] €V, where Uy, € Us,, i, € I, k=1,2,...,n. T U =,_, Ui,
then Ulz] = N_, Ui, [z]. Since U;, [z] is a 7y, -neighborhood of the point z,
it is also a 7-neighborhood of the point . Therefore V is a 7-neighborhood
of the point x, ie. 7y < 7. &

Proposition 1.2.3.5 LetU;, i € I # 0, be a uniformity on the set X. Then
there exists a uniformity U on X which is the finest among all uniformities
coarser than all uniformity U;, denoted by U = inf{lf; : i € I}.

Proof: Since the indiscrete uniformity on X is coarser than all the unifor-
mities U;, we can speak of the supremum of the uniformities coarser than
all U;. This coincides with U. &

Corollary 1.2.3.1 If a topology T can be induced by a uniformity, then
there exists the finest among all uniformities inducing .

Proof: According to Proposition 1.2.3.4, this is the supremum of all uni-
formities inducing the topology 7. &

1.2.4 Subspaces of uniform spaces

Proposition 1.2.4.1 Let (X,U) be a uniform space, ) #Y C X, and B a
base of the uniformity U. Then U N{Y x Y} is a uniformity on'Y denoted
by UY , while BN{Y x Y} is a base of the uniformity U|Y denoted by B|Y .

Proof: It is suffices to prove that Y N{Y x Y} is a filter on the set ¥ x Y,
ie. that 0 ¢ U N{Y x Y}. It immediately follows from the fact that
(x,xz) e UN(Y xY) for every x € Y and all U € U. If B is a base of
the uniformity & and B|Y = BN (Y x Y), then it is easy to check that
the conditions (a), (b) and (d) of Proposition 1.2.1.1 are fulfilled. That the
condition (c) is true follows from the fact that V oV C U evidently implies
the inclusion

(VA xY)o (VA xY)CcUNY xY).

Thus B|Y is a uniform base on Y. &
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Definition 1.2.4.1 The uniform structure U|Y defined in the previous pro-
position is called the restriction of the uniformityU onY, and (Y,U|Y)
is said to be the uniform subspace of the space (X,U).

Proposition 1.2.4.2 Let 3 be a family of pseudo-metrics on the set X,
0 #Y C X and o* = o|Y for c € X. Then ¥* = {c* : 0 € ¥} is a family
of pseudo-metrics on the set' Y and Us+ = Us|Y .

Proof: For any finite set of pseudo-metrics () # 31 C ¥, let us denote by
Y] the set of the restrictions o* of the pseudo-metrics o € 3. Then it is
evident that

Us:e = {(z,y):z,y €Y, 0*(z,y) <e,0" € Xj} =
={(z,y):x,y €Y, o(z,y) <e,o€ X1} =
:Ughgﬂ(YX Y).

The assertion now follows from the fact that the sets on the left-hand side
of the above equality generate the uniformity Us+, while the sets on the
right-hand side of the same equality generate the uniformity Us|Y. &

Proposition 1.2.4.3 If (X,U) is a uniform space, and ) #Y C X, then
(5u|y = (Su’Y and Tu|y = Tu’Y.

Proof: The first equality follows from the fact that (A x B)NU = (A x
B)NnUN (Y xY) for every entourage U € U and every two sets A, B C Y.
The second equality follows from this according to Proposition 1.1.5.1. &

Corollary 1.2.4.1 If U; and Us are the uniform structures on the set X
withUy <Uz and if 0 Y C X, thenUr|Y <Us|Y. &

Proposition 1.2.4.4 Let U; be the uniformity on the set X, i € I # 0,
04£Y C X andU =sup{ll; :i € I'}. Then sup{U;|Y :i eI} =U|Y.

Proof: For an arbitrary family of the entourages U;, € U, , i € I, k =
1,2,...,n, the following equality is true:

<ﬁUik)m(YXY): ﬁ(Uikﬂ(YXY)),
k=1

k=1

The assertion follows from the fact that the uniformity U|Y is generated
by the filter base composed of the sets on the left-hand side of the above
equality, while the uniformity sup{l;|Y : i € I} is composed of the sets on
the right-hand of this equality. &
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Corollary 1.2.4.2 IfU is a uniformity on the set X, 0 # Xy C X; C X,
then (U\Xl)]XO = U‘XO &

The operation of the restriction can also be considered as a special case
of a more general operation.

Proposition 1.2.4.5 Let U be a uniform structure on the setY, f: X —
Y and let g : X x X — Y x Y be the mapping which carries (z,y) into
(f(x), f(y)). Then the filter in X x X generated by the filter base g~'(U) is
a uniformity on X.

Proof: Let B= {g !(U) : U is a entourage from U}. Then B is a uniform
base on X. Indeed, the conditions (a), (b) and (d) of Proposition 1.2.1.1

obviously hold. It remains to prove that the condition (c) is fulfilled. Indeed,
if VoV CU, then

g (V)og (V) Cg™(U).

To prove this inclusion, let us suppose that (z,y) € ¢~ (V) and (y,2) €
g (V). Then (f(z), f(5)) € V, (F(y), f()) € V, so that (f(2), f(2)) € U,
i.e. (r,2) € g~ Y(U). The family of all entourages of the diagonal of Y form
the base of the uniformity & which is equivalent to the family of subsets of
the product X x X. But then the family B is equivalent to g~!(2/), so that
the filter on X x X generated by the family g~ (I/) is equivalent to the filter
generated by the family B, for which we have already proved that it is the
base of the uniformity on the set X. &

Definition 1.2.4.2 The uniformity on the set X described in the previous
proposition will be called the inverse image of the uniformity U and
denoted by f~1(U).

Corollary 1.2.4.3 Let (X,U) be a uniform space, Y a non-empty subset of
the set X and f :Y — X a canonical injection. Then f~1(U) =U|Y. &

Proposition 1.2.4.6 Let f : X — Y, X be a family of pseudo-metrics on
Y. For every o € X let 0" be the pseudo-metric on X defined by

o (z,y) = o(f(x), f(y))-

Then Us+ = f~1(Us), where ¥* = {o* : 0 € T}
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Proof: It is obvious that ¢* is a pseudo-metric. If ) # 3y C X is a finite
set and X} = {0* : 0 € ¥1}, then

(x,y):0"(z,y) <e if o* € XF} =
(@,y) :0(f(x), f(y)) <e if 0 € £1} =
= g_l(Uzl,S) )
where ¢ is the mapping defined in Proposition 1.2.4.5. Since the filter base

composed of the entourages Uy, . generates Us;, while the one composed of
Uss e does the same for Us, then Usx = flUs). &

Uss e

=
~{

Proposition 1.2.4.7 If f : X — Y and U is a uniformity on the set Y,
then

S0 =610 ) =T -

Proof: If A, B C X and U € U is an entourage, then (A x B)Ng~Y(U) # 0
is equivalent to (f(A) x f(B))NU #0. &

Corollary 1.2.4.4 If f : X — Y, Uy and Uz are the uniformities on Y for
which Uy < Us holds, then f~1(Uy) < f~1(Us). &

Proposition 1.2.4.8 Let U;, i € I # (), be a uniformity on the set Y,
U=sup{U;:i €I} and f: X =Y. Thensup{f1U):icI}=f1U).

Proof: The uniformity ¢ is generated by the sets of the form (,_, U,
where U;, € U;,, i, € I, k = 1,2,...,n, is an arbitrary entourage in Y.
Thus the uniformity f~!(2/) is generated by the sets of the form

g (lﬁ Uik.) = @19_1(Uik) .

However, the same sets on the right-hand side of the last equality generate
the supremum of the uniformities f~1(2f;). &

Proposition 1.2.4.9 If fi : X — Y and fo : Y — Z are the given map-
pings, f3 = foo f1, and if U is a uniformity on the set Z, then fgl(U) =
@),

Proof: As in Proposition 1.2.4.5, let us define the mappings g1, g2 and
g3 = g2 09g1. Then g3 (U) = g; (g5 (U)). Since the families g5 ' (i) and
£y H(U) are equivalent, the families g; (g5 ' (U)) and g7 ' (f5 *(U) are also
equivalent. However, the last family is equivalent to the family f; (£ (U)).
s
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1.2.5 Uniformly continuous mappings

A mapping f: X — Y from a pseudo-metric space (X, dx) into a pseudo-
metric space (Y, dy) is uniformly continuous if, for every € > 0, there exists a
de > 0, such that, for every z,y € X, dx(x,y) < . implies dy (f(x), f(y)) <
€. On the other hand, a mapping f is uniformly continuous on the set X if,
for every set Uy, ., there exists a set Uy, 5 such that for every (z,y) € Uy, s
we have (f(x), f(y)) € Ugy . This formulation can be extended to arbitrary
uniform spaces.

Definition 1.2.5.1 The mapping f : X — Y from the uniform space (X,U)
into the uniform space (Y,V) is said to be uniformly continuous if, for
every entourage V€ V, there exists an entourage U € U such that (xz,y) € U

implies (f(x), f(y)) € V.

This can be also formulated by means of the mapping g introduced in
Proposition 1.2.4.5.

Proposition 1.2.5.1 Let (X,U) and (Y,V) be uniform spaces, f : X =Y
a given mapping, and g : X x X — Y xY the mapping which carries (x,y) €
X x X into (f(z), f(y)) € Y xY. The mapping f is uniformly continuous
if and only if gU) >V, or equivalently, if and only if U > g~ (V).

Proof: If A and B denote bases consisting of all entourages in & and V
respectively, then the condition in the definition can be written in the form
g(A) > Bor U > g~*(V). The statement follows from this by virtue of the
properties of the relation >. &

Corollary 1.2.5.1 If (X,U) is an arbitrary uniform space, (Y, V) a discrete
uniform space (especially if Y consists of a single point), then any mapping
f: X =Y is uniformly continuous. &

Corollary 1.2.5.2 Let f : X — Y and V be a uniformity on Y. Then U =
F7Y(V) is the coarsest uniformity on X for which f is uniformly continuous.

&

Corollary 1.2.5.3 The composition of uniformly continuous mappings is a
uniformly continuous mapping. &

Proposition 1.2.5.2 If f : (X,U) — (Y, V) is a uniformly continuous map-
ping, then it is also d-continuous with respect to the proximities &y and oy,
hence it is continuous with respect to the topologies 14 and Ty .
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Proof: Suppose AdyB, A,B C Y. Then there exists a V € V such that
(Ax B)NV = (. The mapping f is uniformly continuous, so there exists
an U € U such that g(U) € V. But then (f~'(A4) x f~YB))NU = 0,
ie. f71(A)Syf1(B), so that the mapping f, by Proposition 1.1.6.1, is
d-continuous. But then it is by Proposition 1.1.6.8 also continuous with
respect to the topologies 74 and 7. &

Let us notice that the converse of the above proposition in general is not
true.

Example 1.2.5.1 Let X = R, and let i be the usual metric uniformity on
X, and let V be a subspace uniformity on X induced by the uniformity of
its Smirnoff compactification corresponding to the usual metric proximity.
Clearly, U and V induce the same (metric) proximity on X. However, since
U is not totally bounded whereas V is totally bounded, U and V are different
uniformities. Identical mapping i : (X,V) — (X,U) is d-continuous, but it
is not uniformly continuous.

Proposition 1.2.5.3 Let U and V be two uniform structures on the set X.
The identity mapping i : (X,U) — (X,V) is uniformly continuous if and
only if U > V.

Proof: Follows from Proposition 1.2.5.1, where ¢ is the identical mapping
on X xX. &

Corollary 1.2.5.4 Let f: (X,U) — (Y, V) be a uniformly continuous map-
ping. If U’ is a uniformity on X finer than U, and V' a uniformity on Y
coarser than V, then the mapping f : (X,U") — (Y, V') is uniformly contin-
UOUS.

Proof: Follows from Corollary 1.2.5.3 and the above proposition. &

Proposition 1.2.5.4 Let U be a uniformity on X, U; a uniformity on Y
for everyi € I £ 0, U =sup{U; : i € I} and f : X — Y. The mapping
[ (X,U) — (Y,U') is uniformly continuous if and only if the mapping
[ (X, U) — (Y, U;) is uniformly continuous for every i € 1.

Proof: According to Corollary 1.2.5.2, Corollary 1.2.5.4 and Proposition
1.2.5.1 the uniform continuity of the mapping f : (X,U) — (Y,U') is equiva-
lent to the relation f~'(U’) < U, and the uniform continuity of the mapping
f: (X,U) — (Y,U;) to the relation f~1(U;) < U. Thus, the statement
follows from Proposition 1.2.4.8. &
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Proposition 1.2.5.5 Let U; be a uniformity on X for every i € I # 0,
U =inf{l; :i € I}, U a uniformity on'Y and f: X — Y a given mapping.
The mapping [ : (X, U") — (Y,U) is uniformly continuous if and only if the
mapping f: (X,U;) — (Y,U) is uniformly continuous for every i € I.

Proof: As in the proof of the above proposition, we have to deal with the
fact that f~1(U) < U’ holds if and only if f~1(U) < U; for every i € I. &

Proposition 1.2.5.6 Let U and V be the uniformities on X and Y re-
spectively, f : X — Y, f(X) C Yo CY and g = f\? The mapping
[+ (X,U) — (Y,V) is uniformly continuous if and only if the mapping
g: (X, U) — (Yo, V|Yo) is uniformly continuous.

Proof: Let h : Yy — Y denote the canonical injection. The mapping
f:(X,U) — (Y, V) is uniformly continuous if and only if f~1(V) < U. Since
f = hog, the last relation is equivalent to the relation g~1(h=1(V)) < U.
Since h~Y(V) = V|Yy by Proposition 1.2.4.3, then g~'(V|Yy) < U, so that
the mapping g : (X,U) — (Yo, V|Yp) is uniformly continuous. &

Proposition 1.2.5.7 If f : (X,U) — (Y, V) is a uniformly continuous map-
ping and ) # Xo C X, then f|Xo : (Xo,U|Xo) — (Y,V) is a uniformly
continuous mapping.

Proof: If g : Xy — X is the canonical injection, then by Proposition 1.2.4.5
U|Xy = g1 (U) holds. Therefore g : (Xo,U|Xo) — (X,U) is a uniformly
continuous mapping, so that f|Xo = fog is a uniformly continuous mapping
as the composition of the uniformly continuous mappings. &

Proposition 1.2.5.8 Let Uy and Us be uniformities on X and Y respec-
tively, and T and T topologies generated by them, and, let Uy, in particular,
be the finest uniformity generating the topology 7. If f : (X, 11) — (Y, 72) is
a continuous mapping, then f: (X,U1) — (Y,Us) is uniformly continuous.

Proof: Let U = sup{Ui, f~1(Uz)}. Then, by virtue of Proposition 1.2.3.4,
Proposition 1.2.4.7 and the fact that 74, is the coarsest among the topolo-
gies with respect to which f is a continuous mapping, we have that 77, =
Sup{ s, Tr- 1) b = sup{71, f 1(ms,)} = 71. By hypothesis U < U, i.e.
U = U; and then f 71(1/{2) < Uy, so that the statement follows from Propo-
sition 1.2.3.4 and Corollary 1.2.5.4. &

An important statement of the same type can be made in case of pseudo-
metric spaces.
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Proposition 1.2.5.9 Let (X,dx) and (Y,dy) be any pseudo-metric spaces,
and f: X =Y a given mapping. If f:(X,04,) — (Y, 04, ) is d-continuous
mapping, then f: (X,Uq, ) — (Y,Ug, ) is uniformly continuous mapping.

Proof: Otherwise, there would be € > 0 such that, for every n € N, we
could find points x,,y, € X such that

(1) A (2ns ) < % and dy (F(zn), f(an)) > <.

Let us suppose first that there exist an index ny and an infinite sequence of
natural numbers (n;) for which

(2) dy (f(yno): f(22,)) < 7 for every i €N.

In this case let A = {z,, : ¢ € N} and B = {yn, : ¢ € N}. Then
dy (f(A), f(B)) = €/2 as otherwise, for suitable i and j, dy (f(n,), f(yn;)) <
/2 would be valid and hence by (2) we should get

dy (f(@n;); f(Yn;)) < dy (f (@n;), f(Yno)) +

oy (F (o) F(n)) + dy (f(@n) flum,) < 5+ 5 5 =<

which contradicts (1). On the other hand, the first inequality of (1) would
imply dx(A,B) = 0 and the d-continuity of f would nevertheless follow
dy (F(A), (B)) = 0.

From this we can see that there cannot exist any index ng and any
sequence (n;) fulfilling (2). In the same way, there does not exist any ng
and any infinite sequence (n;) for which dy (f(xn,), f(yn;)) < /4 for every
1 € N. In other words, for every n € N, there exists an index k, such that
1 > k, implies
€ €

1 dy (f(xn), f(yi)) = 1

Therefore, starting from the value n; = 1, an increasing sequence n; < ns <
< ... can be constructed such that

(3) dy (F(yn). S (@) >  and dy(F(ea,). F(5a,)) >

dy (f(yn), f(2:i)) =

e~ ™

for every ¢ € N and every j = 1,2,...,7 — 1. For this purpose, it is enough
to choose n; larger than all the indices ky,, kp,, ..., kn, ,. Constructing the
sets A = {zp, : ¢ € N} and B = {yp, : ¢ € N} by means of this sequence
(n;), again dx (A, B) = 0, but dy (f(A4), f(B)) = /4 for, in addition to (3),
dy (f(zn;), f(yn,)) = €/4 also holds. &
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Definition 1.2.5.2 Let (X,U) and (Y,V) be uniform spaces, and f : X —
Y a given bijection. If f : (X,U) — (YV,V) and f~1 : (V,V) — (X,U)
are the uniformly continuous mappings, then the mapping f is said to be
the unimorphism or the uniform isomorphism. The uniform spaces X
and Y are called unimorphic or uniformly isomorphic if there exists a
unimorphism f : X — Y.

This relation is reflexive, symmetrical and transitive. As a uniform iso-
morphism is at the same time a d-isomorphism and a homeomorphism, there-
fore, if (X1,U;) and (X2,Us) are uniformly isomorphic, then (X1, dy, ) and
(X2, dy,) are o-isomorphic while (X1, 7, ) and (X2, 74, ) are homeomorphic.

Similar to Proposition 1.1.6.11, the following can be proved:

Proposition 1.2.5.10 Let (X,U) and (Y,V) be two uniform spaces, f :
X —Y a mapping. Then

(a) f is a uniformly continuous mapping if and only if U > f~1(V);

(b) if f is an injective, then U = f~1(V) holds if and only if h = f|§((X) :
(X,U) — (f(X),V|f(X)) is a uniform isomorphism;

¢) if f is a bijective mapping, then U = f~Y(V) holds if and only if
[ (X,U) — (Y,V) is a uniform isomorphism. &

1.2.6 Totally bounded uniform spaces

First let (X, d) be a pseudo-metric space. Let us call it totally bounded
if, for every € > 0, there exists a finite covering of the space X with sets
having diameters less than €. The terminology is motivated by the fact that
a totally bounded pseudo-metric space is bounded. Conversely, however,
an infinite discrete metric space is clearly bounded without being totally
bounded.

It is an important fact that these notions coincide in the case of the
subsets of the space R".

The totally bounded uniform spaces are a natural generalization of to-
tally bounded pseudo-metric spaces.

Definition 1.2.6.1 Let (X,U) be a uniform space. For a set A C X let us
call to be small of order U, where U € U, if Ax A C U. In this case we
shall write d(A) < U.
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Definition 1.2.6.2 The uniform space (X,U) (or the uniformity U) is said
to be totally bounded if, for every entourage U € U, there exists a finite
covering of X consisting of the sets which are small of order U.

According to the fact that, if U; C U, a set small of order U; is small of
order U, it would be enough to speak here of the entourages U belonging to
a uniform base generating /. From these circumstances and from the fact,
that, in a pseudo-metric space, the diameter of a set small of order U, is < &
and, on the other hand, if d(A) < e, then A is evidently small of order U,
can formulate the following:

Proposition 1.2.6.1 A pseudo-metric space (X, d) is totally bounded if and
only if (X,Uy) is a totaly bounded uniform space. &

Definition 1.2.6.3 The subset Y C X of the uniform space (X,U) is to-
tally bounded if Y = () orY # 0 and the uniformity U|Y is totaly bounded.

It is obvious that the set Y C X is totaly bounded if and only if, for
every entourage U € U there exists a finite covering of the set Y consisting
of the sets small of order U. It clearly follows from this and the fact that
all the subsets of the set small of order U have the same property:

Corollary 1.2.6.1 Every subspace of a totally bounded uniform space is
totally bounded. &

Corollary 1.2.6.2 If A;, i = 1,2,...,n, are totally bounded subsets of the
uniform space (X,U), then \J!_| A; is a totally bounded set. &

Proposition 1.2.6.2 If f: X — Y and ifU is a totally bounded uniformity
on'Y, then f~Y(U) is a totally bounded uniformity on X.

Proof: For the given entourage U € U, let Y = [J!' ; Y;, where Y; is small
of order U. Then X = [JI_, f~}(Vi) and f~1(Y;) is clearly small of order
g Y(U), where g is the mapping introduced in Proposition 1.2.4.5. &

Proposition 1.2.6.3 Let f : (X,U) — (Y,V) be a uniformly continuous
surjective mapping. If U s totally bounded uniformity, then V is also totally
bounded uniformity.

Proof: Let V € V. Since f is uniformly continuous, there exists an U €
U such that g(U) C V. The space X is totally bounded, so that there
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exists a finite covering {A1, A, ..., A} of the space X, where A; is small
of order U, for which A; x A; C U holds. The mapping f is surjective,
so that {f(A1), f(A2),...,f(A,)} is a finite cover of the space Y, where
f(A:) x f(A;) = g(4;) C g(U) C V,ie. f(A;) is small of order V for every
1=1,2,....n. &

Corollary 1.2.6.3 IfU and V are uniformities on X, U <V, and if V is a
totally bounded uniformity, then U is also a totally bounded uniformity. &

Proposition 1.2.6.4 Let U;, i € I # 0, be a totally bounded uniformities
on X. Then U = sup{l; : i € I} is a totally bounded uniformity on X.

Proof: Let U = (),_, U;, be any entourage of the uniform base which
generates the uniformity U, where U;, € U;,, i, € I, k = 1,2,...,n. If
X = U;Lil Ap;j is a finite covering, where Ay; is small of order U;, , then all
sets of the form

n
mAkjk7 1< jr <nyp
k=1
are small of order U and form a finite covering of the set X. &

Proposition 1.2.6.5 Let (X,U) be a uniform space. IfY is a 1y-dense
and totally bounded in X, then the space X 1is totally bounded.

Proof: Let U € U be an arbitrary entourage, V' € U an entourage for which
VoVoV CU holds. Let {S; :i=1,2,...,n} be a finite covering of Y
consisting of the sets small of order V. Since X =Y = |J} S, it is suffices
to show that S; is small of order U.

Now if ,y € S;, then, by Corollary 1.2.2.3, there are u,v € S; such that
u € V]z] and v € V[y], i.e. such that (z,u) € V and (v,y) € V. Since
(u,v) € V, then (z,y) € VoV oV C U. Furthermore JI_; S; =Y = X,
where {S; : i = 1,2,...,n} is a finite covering of X consisting of the sets
small of order U. &

In Example 3.1.1.1 we have proved that a d-continuous mapping does not
have to be uniformly continuous. The following theorem gives the conditions
under which this statement holds.

Theorem 1.2.6.1 Let (X,U) and (Y,V) be uniform spaces, where V is a
totally bounded uniformity. If f : (X, d6y) — (Y,0y) is a d-continuous map-
ping, then f: (X, U) — (Y, V) is uniformly continuous as well.
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Proof: Let V € V. Then there exists a V] € V such that VioVio0V; C V.
Since Y is totally bounded, there exists a finite covering {Y1,Ys,..., Y, } of
Y consisting of the sets small of order Vi. Let us consider those pairs of
indices (i,j) for which Y;0yY; holds. The mapping f is -continuous, so
that for these pairs we have that f~1(Y;)d;f~1(Y;). But then there exists
Ui; € U such that (f~1(Y;) x f71(Y;))NU;; = 0. Let U € U be an entourage
which is a subset of every U;;.

If now (z,y) € U and = € f~1(Y;), y € f~1(Y;), then the pair (4,7)
cannot belong to those considered above, so that Y;0yY; and therefore there
can be found a pair of points (u,v) such that (u,v) € (¥; x ¥;) N'Vi. Since
f(x),u €Y, f(y),v € Yj, then (f(z),u) € Vi and (v, f(y)) € Vi because
Y; and Yj are the sets small of order V. Furthermore (u,v) € Vi, so that
finally we have (f(z), f(y)) e V. &

Corollary 1.2.6.4 IfU is a totally bounded uniformity on X, then U is the
coarsest uniformity on X inducing the proximity 6 = oy on X. &

Proposition 1.2.6.6 Let Uy and Us be the two uniformities on X, where
Uy is totally bounded. If U = sup{U1,Us}, then oy = sup{du,, du, }-

Proof: Let us denote 6 = sup{dy,, o, }. Since U; < U, i = 1,2, by Propo-
sition 1.2.3.4 it follows that &y, < &y, ¢ = 1,2, so that § < .

To prove the converse, let us suppose that A6B and prove that AdyB.
Let Uy € Uy and Us € Uy be an arbitrary entourages. According to Corollary
1.2.2.1 and Proposition 1.2.3.2, we have to prove that (A x B)NU; NUs # 0.
Let now U] € U; be an entourage for which U] o U] o U] C U; holds,
and {G1,Ga,...,G,} a covering of X, where the sets G; are small of order
U;. This covering exists because U is a totally bounded uniformity. Let
Aj =AnN Gj, B; = BnN Gj. Then {Al,AQ, e ,An} and {Bl,BQ, ces ,Bn}
are the coverings of the sets A and B respectively, so by Proposition 1.2.3.2
there exist indices j and k such that A;dy, By and Aj;dy, By. Therefore
(Aj x B) NUj # 0, hence there exist an a € A; and a b € By, such that
(a,b) € Uj. Then for every x € A; and every y € By, (z,a) € U] and
(y,b) € Uj, because the sets A; and By, are small of order Uj. But then
(x,y) € Uy. Moreover, there are x € Aj and y € By, such that (z,y) € Us,
and then, for this pair, (z,y) € (4; x By) NU1NUz C (Ax B)NnU; NUs.
In this way we have proved that AdyB. &

Proposition 1.2.6.7 Let U;, i € I # (), be totally bounded uniformities on
X. If U =sup{U; : i € 1}, then

oy =sup{dy, :i€1}.
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Proof: Let § = sup{dy, : ¢ € I}. As in the previous proposition it can be
proved that & < &y. Thus we have to see again that A§B implies Ady B,
which means that, for any finite family of entourages U;, € U, , i, € I, k =

1,2,....n
(A x B) ﬂ

Let U] € U;, be entourage such that U] oU] oU] C U, k=1,2,...,n,
and

Nk
X=JGy, k=12...,n,
j=1
where the sets Gy;, j = 1,2,...,ng, are small of order Ui’k. All the sets of

the form

n
ﬂijk, 1< jp < nge,\

form a covering

S
x=JH,
r=1
and every set H, is small of order UZ»’k for every index k =1,2,...,n. Let
S S
A=JAnH,), B=|JBnH,).
r=1 r=1

According to Theorem 1.1.4.1, there exist indices p and ¢ such that the sets
AN Hy, and BN H, are dy,-near for every 7 € I. Therefore there exist, for
every k, vy € AN Hy, and y, € B() Hy such that (x4, yx) € U] . But then
x € ANHy and y € BN H, imply (x,y) € U;,, according to the fact that
(z,21) € U] and (yx,y) € U] . Thus, for every z € AN H, and y € BN Hy
it follows that

(z,y) € (Ax B)N ﬁ

Proposition 1.2.6.8 Let U;, i € I # (0, be the uniformities on X, where
U; are totally bounded with the exception of one of them at the most. If
U =sup{U; : i € I}, then &y = sup{dy, : i € I}.

Proof: Let the uniformity U; be totally bounded for every i € I — {ip}.
Then the uniformity U’ = sup{lf; : i # i} is totally bounded by Proposition
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1.2.6.4. It is obvious that U = sup{U,,,U'}. Then by Proposition 1.2.6.6
oy = sup{éuio,éuz}, and on account of the previous proposition it follows
that 0y = sup{dy, : i # ip}. Therefore oyy =sup{dy, : i € I}. &

1.2.7 The product of uniform spaces

The definitions and theorems in this subsection can be established in the
way analogous to the generation of proximities.

First of all, let us notice that from Proposition 1.2.3.2 and Proposition
1.2.4.5 we come to the following result:

Proposition 1.2.7.1 Let (X;,U;) be a uniform space for every i € I # 0,
X #0 and f; : X — X;. Then there exists the coarsest uniformity U* on X
for which every mapping f; is uniformly continuous, namely

(1) U =sup{f; 'U):ieT}. &

Definition 1.2.7.1 U* in (1) is called the uniformity projectively gen-
erated by the system {f;,U; : i € I}.

In the following we shall always use the notations from the of previous
proposition. The following proposition gives a more precise description of
the uniformity U*, and its proof is established according to Proposition
1.2.3.2 and Proposition 1.2.4.5.

Proposition 1.2.7.2 Let B; be a base of uniformity U;, and g; : X x X —
X; x X; the mapping given by the formula g;(x,y) = (fi(x), fi(y)). Then the
sets of the form gi_l(Ui), where i € I, U; € B;, constitute a uniform subbase
for the uniformity U*, while entourages of the form ﬂ?zl gi;l(Uij), where
ij €1, Uy €B;,, j=1,2,...,n, constitute a base of uniformity U*. &

Proposition 1.2.7.3 Let (Y,U) be a uniform space, f :' Y — X a given
mapping. f: (Y, U) — (X, U*) is uniformly continuous if and only if fio f :
(Y,U) — (X;,U;) is uniformly continuous for every i € I.

Proof: It follows by using Corollary 1.2.5.3, Proposition 1.2.5.10 (a), Pro-
position 1.2.4.9 and Proposition 1.2.4.8 and the proof is analogous to the
proof of the suitable proposition for proximity spaces. &
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Corollary 1.2.7.1 For every i € I, let J; # 0, (Xi;,Us;) and fi; : X; —
Xij, j € Ji, be such that U; is the uniformity projectively generated by the
system { fij,Usj : 7 € J;}. Then U* is identical with the uniformity projec-
tively generated by the system {fijo fi, Uij:i€l,j€ J;i} &

Corollary 1.2.7.2 If f : Y — X, then f~1(U*) is the uniformity projec-
tively generated by the system {fio f,U; i € I}. &

Corollary 1.2.7.3 Let 0 #Y C X and f;(Y) CY; C X;. ThenU*|Y coin-
cides with the uniformity projectively generated by the system {fi|¥,L{¢|Yi :
icl}. &

Corollary 1.2.7.4 Let (Y;,U]) be a uniform space and h; : X; — Y;, i €
I, a mapping for which U; = hi_l(l/{i’) holds. Then U* is identical with
the uniformity projectively generated by the system {h; o f;,U] : i € I}.
Especially, if h; is a uniform isomorphism, then U* is identical with the
uniformity projectively generated by the system {h;o fi,U] :i € I}. &

Corollary 1.2.7.5 Let I = UjeJ I; and Z/IJ’.k be the uniformity projectively
generated by the system {f;,U; : i € I;}. ThenU* =sup{U; :j € J}. &

Corollary 1.2.7.6 IfU! is a uniformity on X; for which U; < U] holds and
if U™ is a uniformity projectively generated by the system {fi,U! : i € 1},
thenU* <U™. &

Proposition 1.2.7.4 The topology 14+ coincides with the topology projec-
tively generated by the system {fi,my, :i € I}

Proof: According to Proposition 1.2.3.4 we have that 74~ = sup{Tf_fl(ui) :
i € I}. Since by Proposition 1.2.4.7 7,14, = £ (), then 1y =

sup{fi_l(mi) : 4 € I}, so that, by definition, the topology 7+ is projec-
tively generated by the system {f;, 7y, : ¢ € I}. &

Definition 1.2.7.2 Let (X;,U;) be a uniform space for every i € I # ),
X = TLer Xi, pi + X — X; the i-th projection. The uniformity U on X
projectively generated by the system {p;,U; : i € I} is called the product
of the uniformities U; and denoted by the symbol [[;,c;U;. The uniform
space ([ [;c; Xi, [[;c; Us) is the product of the uniform spaces (X;,U;).

In the following we shall always use the above notations. According to
Proposition 1.2.7.2 the following holds:
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Proposition 1.2.7.5 Let B; be a base for uniformity U; and g; : X x X —
X x X; a mapping defined with g;(z,y) = (pi(z),pi(y)). Then the sets of the
form g[l(Ui), 1 € 1, U; € By, constitute a subbase for uniformity U, while
the sets of the form ﬂ?:l gizl(Uij), where iy € I, U;, € B, j=1,2,...,n
constitute a base for U. &

Corollary 1.2.7.7 Let (Y,U') be a uniform space, g : Y — X. The map-
ping g : (Y,U') — (X,U) is uniformly continuous if and only if p;o g :
(Y,U') — (X;,U;) is uniformly continuous for everyi € I. &

Corollary 1.2.7.8 Let) #Y; C X;, Y =[[;c; Yi. Then [[,c; Us|Y; = U|A.
IfY; = X for an index j € I, while for the other indices Y; = {x;}, x; € X,
then p;|Y : (Y, U|Y) — (X;,U;) is a uniform isomorphism. &

Corollary 1.2.7.9 IfU] is a uniformity on X; and U; < U] for everyi € I,
then [Lic;Us < Tlic Ui &

Corollary 1.2.7.10 Let (Y;,U) be a uniform space, f; : (X;,U;) — (Yi,U))
a uniformly continuous for every i € I, Y = [[,c;Ys, U = [Le Ui, v -
Y — Y] the i-th projection, f : X — 'Y the mapping for which fiop; = plo f
for everyi € I. Then f: (X, U) — (Y,U') is uniformly continuous. If every
fi o (X, Usi) — (Y3, UY) is a uniform isomorphism, then f is again a uniform
isomorphism.

With the notations of Corollary 1.1.7.16 and Corollary 1.1.7.17, accord-
ing to Corollary 1.2.7.7, we can formulate the following statements:

Corollary 1.2.7.11 Let U; be a uniformity on Y;, u}(z‘) =U;, U = [L;e; Us,
U =Tle;U;- Then g is a uniform isomorphism. &

Corollary 1.2.7.12 Let U; be a uniformity on X;, U = [[;c; Ui, Z/l]’. =
Hz‘elj Ui iU =T1e U Then fis a uniform isomorphism. &

From Proposition 1.2.7.4 it follows that:
Corollary 1.2.7.13 IfU = [[;c; Ui, then 7y = [[;c; Tu;-
Of course, an embedding theorem is true for uniform spaces, too.

Theorem 1.2.7.1 Let (X;,U;) be a uniform space for every i € I # (),
Y # 0 a given set, f; : Y — X;, U* the uniformity projectively generated
by the system {fi,U; : i € I}, X = Hz‘eIXif U = Hie[uif pi + X — X;
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the i-th projection and f : Y — X the mapping for which p; o f = f;, and
finally h = f\é(y). If for the elements x,y € Y, x # y implies fi(x) # fi(y)
for at least one i € I, then h : (X,U*) — (f(X),U|f(X)) is a uniform

isomorphism. This condition certainly holds if U* is separated.

Proof: From Corollary 1.2.7.2 it follows that U* = f~!(i), so that by
Proposition 1.2.5.10 (b) the mapping A is a uniform isomorphism. If /* is a
separated uniformity, then = # y implies (f;(x), fi(y)) € U; for at least one
i € I and a suitable entourage U; € U;, with f;(x) # fi(y) in the end. &

1.2.8 Quotient spaces of uniform spaces

Let (X;,U;), i € I, be a non-empty family of uniform spaces, f; : X; — X
given mappings from the non-empty set X; into X for every ¢ € I. The
uniformity U* inductively generated by the system {f;,U; : i € I}
on the set X if U* is the finest uniformity for which every mapping f; :
(X5, U;) — (X,U*) is uniformly continuous. The existence of the uniformity
U* with this property can be proved in the same way as the analogous
statement according to the inductive generation of the proximities. Here
again the case, when a single mapping {f : ¥ — X} and a single uniform
space {(Y,V)} are given, is the most important one: in this case U* is called
the quotient uniformity belonging to f and V and is denoted by f(V).

Defining the mapping g : ¥ x Y — X x X by means of the formula
g(z,y) = (f(z), f(y)) as usual, it is clear that only entourages U such that
g 1(U) € V can belong to a uniformity for which f is uniformly continuous.
Thus, if all these U constitute a base of the uniformity on X, then f(V) is
certainly generated by them. In fact, these U fulfil conditions (a), (b) and
(d) of Proposition 1.2.1.1, whereas it fulfils the condition (¢) only if, for every
U of this kind, there is a Uy of the same property for which Uy o Uy C U
holds. Hence we obtain the following statement:

Proposition 1.2.8.1 Let (Y,V) be a uniform space, f : Y — X, g:Y x
Y — X x X defined by the formula g(z,y) = (f(z), f(y)) and let as suppose
that there are those entourages U in X for which f~Y(U) € V forms a
uniform base B. Then f(V) is generated by B. This condition is fulfilled if
and only if, for every entourage U in X for which g~'(U) € V holds, there
can be found an entourage Uy in X such that g~ *(U1) € V and UyoU; C U.
)
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Proposition 1.2.8.2 If (X;,U;) is a uniform space for every i € I # (),
X = [Ler X, U = [Lic;Us and p; : X — X is the i-th projection, then
Uj =p;U) for every j € I.

Proof: By previous proposition it is enough to show that gj_l(U) € U holds
for an entourage U in X; if and only if U € U, where g; : X x X — X; x X
is defined here by means of the formula g;(z,y) = (p;(x),p;(y)). However, if
U € U;, then gj_l(U) € U in view of Proposition 1.2.5.10. Conversely, if U is
an entourage in X and gj_l(U) € U, then there exist indices i1, i9,...,1, € T
and for k =1,...,n entourages U;, € U;, such that

ﬂ gzk Zk C g] (U> )

where g;, (z,y) = (pi, (), i, (y)). Let xj,y; € X, while for i # j, z; = y; €

X;. If j does not occur among the indices i1, s, ...,1,, then, for arbitrary

zj,y; € Xj, with the notation z = (x;), y = (v;), in view of (z,y) € U’, we

have (zj,y;) € U, i.e. U= E; x Ej, so that U € U;. On the other hand, if

j occurs among the ik, SAY U1y ylp = Jylptis.--in # J, then (z,y) € U’

for (zj,v5) € Mh_y Uiy, so that (z;,y;) € U. Thus (}_; U;, C U and since
b U €U, then U € Uj. &

As a particularly important example, the case of the separative partition
may again be mentioned.

Proposition 1.2.8.3 Let (X,U) be a uniform space, S the separative par-
tition belonging to the topology 74, p : X — S the canonical surjection.
Then

(a) x and y belong to the same cell Z € S if and only if (x,y) € U for
every entourage U € U;

(b) if U € U is an arbitrary entourage, then the sets

(*) U,:{(Zl,Zg):Zl,ZQES, Zl><Z2CU}

form a base of the uniformity p(U);
() p‘l(p(u)) =U;

(d) p(U (51/{)

(e) Tpuy = p(Tu);

(f) p(U ) is a separated uniformity.

Proof: (a) It can be obtained by applying Proposition 1.1.8.11 (a) to the
proximity dy.
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(b) Introducing the notation ¢(z,y) = (p(x), p(y)), we see that ¢~} (U’) =
U € U holds for entourage U’ € S if and only if U € U and U’ is given by
means of the formula (x). Accordingly the condition occurring in Proposition
1.2.8.1 is fulfilled by p: if ¢-}(U’') = U € U, let U; € U be an entourage
such that Uy o Uy C U, and let Uj be defined by means of (x) putting
Uy instead of U. By (a) U] is an entourage. Furthermore, U] o Uj C U’
holds. Indeed, if (Z1,Zs) € Uy and (Za, Z3) € Uj, then choosing a point
29 € Zo for the arbitrary points z; € Z; and z3 € Zs3, then (z1,22) € Uy
and (z2,23) € Uy implies (21,23) € U, i.e. Z1 x Z3 C U and (Z1,Z3) € U'.
Hence the statement follows from Proposition 1.2.8.1.

(c) We have seen that ¢~1(U’) = U for U’ defined by (x), hence the
statement follows from Proposition 1.2.4.5.

(d)Asp: (X,U) — (S,p(Uh)) is uniformly continuous, then p : (X, &) —
(S,0p@) is d-continuous, so that d,q) < p(&y). On the other hand, if
Ap(6y)B, i.e. if p~1(A)syp~1(B), then there exists an entourage U € U
such that (p~1(A) x p~1(B))NU = 0. Hence Z; € A and Z; € B imply
(Z1,7Z2) ¢ U', where U’ is again given by (x). Indeed, for any points 21 € Z;
and 29 € Za, 21 € p~1(A) and 29 € p~1(B) implies (z1,22) € U. Therefore
(Ax B)nU'" =0, and Agp(u)B.

(e) and (f) follow from (d) by means of Proposition 1.1.8.11. &

1.2.9 Complete uniform spaces

We have seen that some properties of the metric or pseudo-metric space can
be extended to the proximity and uniform spaces as more general spaces.
An important property of pseudo-metric spaces is the fact that for them
there is a necessary condition for the convergence of a sequence without
need of knowing its limit point. Let us examine the situation in the case of
uniform and proximity spaces from this point of view; more generally, we
shall consider the filter bases instead of sequences, since it is known that for
the convergence in the general topological spaces the role of the sequences
is played by the filter base.

First, let us notice that, in a pseudo-metric space (X, d), the sequence of
points (x,) is a Cauchy sequence if and only if, for every € > 0, there exists
an ne € N such that m,n > n. implies d(x,, z,) < €. The last inequality
can be noted in the form (2,,, x,) € Ue, where U, = Ug, is the entourage of
the pseudo-metrizable uniformity. In other words, (x,) is a Cauchy sequence
if, for every € > 0, there exists an element of the filter base of the sequence
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() small of order U.. By virtue of this idea, the following definition is now
plausible:

Definition 1.2.9.1 Let (X,U) be a uniform space and F a filter base on
X. F is said to be a Cauchy filter base or a U-Cauchy filter base if
for every entourage U € U there exists an element F' € F small of order
U. The sequence (xy,) is called Cauchy sequence if the corresponding
sequential filter base is a Cauchy filter base.

Obviously, it would be sufficient to speak of the entourages belonging to
a uniform base B generating the uniformity U instead of all the entourages
Uel.

Definition 1.2.9.2 Let us agree that the convergence of the filter base
in a uniform space (X,U) (or in a proximity space) means the convergence
with respect to the topology Ty (respectively Ts).

Then it can be seen that the definition introduced above will suit the
purpose required:

Proposition 1.2.9.1 If F is a convergent filter base in the uniform space
(X,U), then it is a Cauchy filer base.

Proof: Let us suppose F — x. For a given entourage U € U, let Uy € U
be an entourage such that U; o U; C U. Then there exists an F' € F such
that F' C Up[z]. But then the set F' is small of order U. Indeed, if y, z € F,
then (y,z) € Uy and (x, z) € Uy, so that (y,z) e UyoU; CU. &

Now we shall study some properties of the Cauchy filter bases.

Proposition 1.2.9.2 Let (X,U) and (Y,V) be uniform spaces and let f :
X =Y be a uniformly continuous mapping. If F is a Cauchy filter base in
X, then f(F) is a Cauchy filter base in'Y .

Proof: If U € U is an entourage choose for the set V € V such that
(z,y) € U implies (f(x), f(y)) € V, and F € F is small of order U, then
f(F) is the set small of order V. &

Corollary 1.2.9.1 If Uy and Us are the uniformities on X and Uy < Us,
then every Us-Cauchy filter base is also a Ui-Cauchy filter base. &
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Proposition 1.2.9.3 Let U;, i € I # 0, be the uniformities on X, and
U =sup{l; :i € I}. If F is a U;-Cauchy filter base for every i € I, then it
is also a U-Cauchy filter base.

Proof': It is sufficient to consider the entourages of the form U = (] U;, of
the uniformity U, where U;, € U;,, i, € I, k=1,2,...,n. If the set F}, € F
is small of order U;,, and F € F a set for which F' C (] Fj, then F is the
set small of order U. &

Proposition 1.2.9.4 Let f : X — Y and V be a uniformity on Y. A
filter base F in X is an f~1(V)-Cauchy filter base if and only if f(F) is a
V-Cauchy filter base.

Proof: For any entourage U € V a set F' is small of order g~ 1(U) if and
only if g7 1(U) is small of order U, where g = f x f : X x X — Y x Y is the
mapping with the usual notation. &

Corollary 1.2.9.2 Let (X,U) be a uniform space, ) #Y C X. A filter
base in'Y is a (U|Y')-Cauchy filter base if and only if it is U-Cauchy. &

Corollary 1.2.9.3 Every filter base finer than a Cauchy filter base is itself
a Cauchy filter base. Equivalent filter bases are simultaneously Cauchy. &

Proposition 1.2.9.5 Let (X,d) be a pseudo-metric space. A filter base F
in X is Cauchy (i.e. Ug-Cauchy) if and only if for every e > 0 there exists
a set F' € F with the diameter < €.

Proof: If d(F) < ¢, then the set F' is small of order U.. On the other hand,
if 0 < &1 < e and F' is the set small of order Uy, then d(F) <e; <ec. &

Definition 1.2.9.3 A uniform space (X,U) (or a uniformity U) is com-
plete, if every U-Cauchy filter base is m-convergent.

It is not evident that, by applying this definition for pseudo-metric
spaces, it will be equivalent to the previous one, for the completeness of
a pseudo-metric space was defined with the help of the Cauchy sequence
instead of the Cauchy filter bases. Nevertheless, the following holds:

Proposition 1.2.9.6 A pseudo-metric space (X, d) is complete if and only
if the uniformity Uy is complete.
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Proof: Let us suppose that U is a complete uniformity on X and let (x,)
be a Cauchy sequence with respect to the pseudo-metric d. Then the filter
base of the sequence (z,,) is a Uy-Cauchy filter base, it is convergent in the
topology 7,, and with it the sequence () is convergent as well.

Let us suppose now that the pseudo-metric space (X, d) is complete and
let F be a Uy-Cauchy filter base. Then by Proposition 1.2.9.5 for every n € N
there exists an element F,, € F of diameter smaller than 1/n. Let x,, € F}, be
an arbitrary point for every n € N. The sequence () is a Cauchy sequence.
To prove this assertion, let ¢ > be an arbitrary real number, and n. > 2/e.
Then, for m,n > ne, F, (\Fy # 0 implies d(zp, z,) < d(Fp) + d(Fy) <
1/n+1/m < e. Hence the sequence (x,) is convergent. If x,, — x, then
F — z. Indeed, if for given € > 0, n is so large that d(x,,z) < £/2 and
n > 2/e, then clearly F,, C S(z,¢). &

Proposition 1.2.9.7 Let (X,U) and (Y,V) be uniform spaces, f : X —Y
a bijection, f : (X,U) — (Y,V) uniformly continuous and f=% : (Y,7y) —
(X, 1) a continuous mapping. If the uniformity V is complete, then the
uniformity U is complete as well.

Proof: If F is a U-Cauchy filter base, then, by Proposition 1.2.9.2, f(F) is
a V-Cauchy filter base, so that f(F) — y € Y with respect to the topology
7y. Then by the well known fact from the general topology f~'(f(F)) =
F — f~1(y) € X with respect to the topology ;. &

Corollary 1.2.9.4 Let (X,U) and (Y,V) be uniformly isomorphic spaces.
If one of them is complete, then the other one is also complete. &

Corollary 1.2.9.5 LetU and V be uniformities on X for whichU < V. If
Ty = Ty and U is a complete uniformity, then V is also a complete unifor-
mity. &

Proposition 1.2.9.8 Let f : X — Y be a surjection. IfV is a complete
uniformity on'Y, then f~1(V) is a complete uniformity on X.

Proof: If F is a f~1(V)-Cauchy filter base, then by Proposition 1.2.9.4
f(F) is a V-Cauchy filter base, so that f(F) — y € Y with respect to the
topology 7. Let € X be such that f(z) = y. Then by the known fact
from the general topology F — x with respect to topology f~!(7y). Since
by Proposition 1.2.4.7 f~1(1y) = 74-1(y), then F — x with respect to the
topology Tp-1(y). &
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Proposition 1.2.9.9 Let (X,U) be a complete uniform space and ) #Y C
X a my-closed set. Then U|Y is a complete uniformity on Y.

Proof: If F is a U|Y-Cauchy filter base in Y, then by Corollary 1.2.9.2 F
is a U-Cauchy filter base, so that F — x with respect to the topology 7.
According to the well known proposition of the general topology, x € Y,
and then F — x with respect to the topology 74]Y. Now, on account
of Proposition 1.2.4.3, 74|Y" = 7y, so that F — z with respect to the

topology 7y &

Proposition 1.2.9.10 Let (X,U) be a separated uniform space, ) #Y C
X. IfU|Y is a complete uniformity, then'Y is a 1-closed set.

Proof: It is sufficient to show that if F is a filter base in Y and F — z € X
with respect to the topology 74, then z € Y. However, in this case by
Proposition 1.2.9.1 F is a U-Cauchy filter base and by Corollary 1.2.9.2 it
is also a U|Y-Cauchy filter base. Therefore F — y € Y with respect to the
topology 74|y, and by Proposition 1.2.4.3 with respect to the topology 74|Y’,
and hence with respect to the topology 7, as well. Since by Proposition
1.1.2.7 and Corollary 1.2.2.4 74 is a T3-topology and a fortiory a Th-topology,
therefore r =y €Y. &

1.2.10 Completely regular spaces

The notions of the proximity and uniformity previously introduced, raise
many further problems. First of all, it may be asked which topologies can
be induced by a proximity. It is known that a topology of this kind has to
be regular and that, on the other hand, all S4-topologies have this property.
Accordingly the condition looked for, has to be somewhere between axioms
Sg and S4.

Then we have seen that every uniformity induces a proximity. It may be
asked, on the other hand, which proximities can be induced by uniformities.
Every family of the pseudo-metrics induces a uniformity. On the other hand,
it may be asked which uniformities can be induced by a family of pseudo-
metrics, and by a single pseudo-metric in particular.

The answer to these questions, and many others as well, is based on an
important theorem, called Urysohn’s lemma. In order to prove this in a
sufficiently general form, it is useful to introduce suitable notations first and
study the basic relations connected with them.
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In order to do this, let us consider a sequence {<,: n =0,1,2...} of the
relations defined for the subsets of a set X. Let us suppose that, for each
of the relations <« =<, the statements (O;) — (Os) of Theorem 1.1.1.1 are
fulfilled as well as the additional condition:

if A<, B, then there exists a C' such that 4 <,,11 C <41 B.

A function f : X — R is said to be associated with the sequence (<),
if f(X) C I, where I = [0,1], and if for the sets P,Q C I, d(P,Q) > 1/2"
implies f~1(P) <pi2 f71(I — Q) for every n € N. d(x,y) = | — y| denotes
here the Euclidean metric on R, and d(P, Q) = inf{d(z,y) : x € P, y € Q}.

Lemma 1.2.10.1 (Urysohn’s lemma) Let us suppose that, for every re-
lation <, n = 0,1,2,..., defined for the subsets of a set X, (O1) — (Os)
are valid (with <, instead of <), and if A <, B, then there exists a set C
such that A <p41 C <y, B. If now M <o N, then there exists a function
[ associated with the sequence (<Ky,) for which f(M) =0 and f(X-N) =1
holds.

Proof: Let us first define, for each fraction between 0 and 1 and of the
form p/2" € [0,1], p=0,1,...,2", a set A,/on such that Ag = M, Ay = N
and Apjon <p A(pg1)/2n holds for each n = 0,1,2,...;p=0,1,...,2" — 1.
We do this by recursion with respect to n starting from the definition

(1) AQZM, AlzN;

then Ag < A; is indeed true.
Let us suppose that the sets A, /o have already been defined for some
integer n > 0 and all the values of p =0,1,2...,2" in such a way that

(2) Apjon Ln Apyryjon for p=0,1,...,2" — 1.

Then, by assumption, for every p of this kind, there exists a set C), such
that
Ap/2n <Kn+tl Cp Knt1 A(p+1)/2" ;

let us define the set A(y,41)/9n+1 by the formula
A(2p+1)/2n+1 == Cp fOI‘ p= 0, 1, 2, ceey 2” —1.

Then the definition of the sets Aq/2n+1, for every ¢ = 0,1,...,2""! is clear
and similarly to (2),

Aq/2n+1 K+l A(q+1)/2n+1 .
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Hence we can continue the recursion for all numbers n =0,1,2,..., and (1)
and (2) are fulfilled, the latter for every n.

Let us also define A, if r > 1 denotes a dyadic rational number (i.e.
having the form p/2"™ where n = 0,1,..., p = 2" +1,2" + 2,...) by the
formula

(3) Ar=X,r>1.
It can be seen from (O;) and (O3) that now
(4) Apjan Ln Apyryen for n=0,1,2,...;p=0,1,2,...
But then from (O2) it can be seen immediately that
Apjan C Apgryon for n=0,1,2,...;p=0,1,2,...

hence, in general, denoting the set of the non-negative dyadic rational num-
bers by R,

(5) A, CAsifr<s, rseR.
Now the required function f can be defined as:
(6) flz)=inf{r:z € A, reR}, z€X.

It is immediately clear that x € X implies f(z) > 0, while, from (3) and by
the definition of f, f(z) < 1 for every x € X holds, so that f(X) C I. From
(1) we have that f(M) = 0, while f(X — N) = 1. Indeed, if x € X — N,
then x ¢ N = Aj, and hence for every r < 1 z ¢ A, holds by (5). But then
according to (3) it follows that f(x) = 1.

It remains to show that the function f is associated with the sequence
(<y). For this purpose, let P,Q C I, d(P,Q) > 1/2", and

[p p+1] [p—1p+2
I, = , =

_ n+1
CYESRi Ty p—wﬂ7ywdap—oﬂw~ﬁ -1

Clearly, if PN 1, # 0, then Q@ NJ, = 0, as the distance of an arbitrary point
of I,, and any point of J,, is < 1/2". If P’ denotes the union of the intervals
I, intersecting P, and @' the union of the corresponding intervals .Jp,, then

PcPc@QnIcl-qQ.

Thus
i)y e iPYcr@nncfli-Q).



1.2 Uniform spaces 71

y (O3) and (Os), it suffices to show that
FHIp) g 1IN ) = f71(p)

for every p =0,1,...,2"t!1 — 1. However,

= () (2 )
o (o) or ([0

therefore, again by (Os), it is sufficient to show that

A= B ()
(e PR (=)}

If p = 27" — 1, then (7) goes over into the formula X <42 X, which holds
on account of (O1). On the other hand, if p < 2"*! — 1, then f(x) < (p+
1)/2"+! implies by (5) and (6) that = € Aapta)jant2, and T € Aoy g)jonte =
A(py2)/on+1 implies f(z) < (p+ 2)/2"*1 by (6). In other words, from (4),
we obtain now

_ p+1 _ p+2
f 1([0, WD C A(gpta)jante Knt2 Agprayjantz C f 1([0, Q"HD :

hence by (Os3) (7) is also valid.
In the case p = 0, (8) goes over into the relation X <42 X, and if

p =1, into
_ 1
f 1<|:2n+171:|> <<7Z+2X7

which holds by (O;) and (O3). In the case p = 2,...,2""! — 1 we obtain
from (Oy4) that it is sufficient to show that

_ -1 _
() <o (b))

However, if f(x) < (p —1)/2""L, then by (5) and (6) x € Agp 1y/2n+1. On
the other hand, x € A(gp_1)/on+2 implies f(r) < (2p — 1 /272 < p/2ntL so
that

-1 p—1 -1 p
f <|:O7 271_,_1:|> C A(Zp—?)/2"+1 <Kn42 A(Qp—l)/2"+2 C f <|:O7 2n+1:|) )
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and again by (Os), we get the statement. &

The Urysohn’s lemma can be formulated more briefly by introducing the
following terminology. A function f : X — R, defined on the set X, is said
to separate the sets A, B C X, if f(X) C I, f(A) = 0 and f(B) = 1.
Moreover if @ is a family of functions defined on the set X, then the sets
A, B C X are called ®-separable or ®-separated if there exists a function
f € ® separating them. Now the conclusion of Lemma 1.2.10.1 states that
there is a function f associated with the sequence (<) which separates M
and X — N. It is also worth mentioning the following:

Proposition 1.2.10.1 Under the hypotheses of the Urysohn’s lemma, let f
be a function associated with the sequence (<y). If |f(z) — f(y)| > 1/2",
n=12,..., then {z} <p12 X — {y}.

Proof: By hypothesis, d({f(z)},{f(y)}) > 1/2", so that

FHf@) <nga fTHUI = {FWH =X = [T (f(y).

But then from {z} C f~(f(z)), {y} C f~1(f(y)) and (O3) we have that
{2} <p2 X —{y}. &

As the first application of the Urysohn’s lemma, let us prove the following
proposition:

Proposition 1.2.10.2 Let (X, ) be a prozimity space, ® the family of those
d-continuous functions on X for which x € X implies 0 < f(z) < 1. If AdB,
then the sets A and B are ®-separable.

Proof: The conditions of the Urysohn’s lemma are fulfilled whenever for
all n, <, is identical with the relation < defined in Theorem 1.1.1.1. A5B
then implies A < X — B; hence, according to Urysohn’s lemma, there exists
a function f associated with this sequence separates the sets A and B. For
this f, f(X) € I = [0,1] and f is d-continuous. Indeed, if U,V C R and
d(U, V) > 0, then, with the notations P=UNI,Q =VNI,d(P,Q) > 1/2"
holds for suitable n, f~1(U) = f~4(P), f~1(V) = f~4Q) and f~1(P) <«
fYI-Q) =X - f~1(Q) implies f~1(P)df~(Q), thus Proposition 1.1.6.1
can be applied. &

From this, we obtain the following proposition (strictly speaking, this is
what Urysohn proved):

Proposition 1.2.10.3 Let (X, 7) be a normal topological space, and ® the
family of continuous functions on X. If A and B are closed and disjoint
sets, then A and B are ®-separable.
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Proof: Let us introduce on X the proximity § defined in Theorem 1.1.3.2.
Then ASB, and thus, by the previous proposition, the sets A and B can
be separated by a d-continuous function f € ®. By Proposition 1.1.6.8
d-continuous function f is 75-continuous. By Theorem 1.1.3.3 75 < 7, there-
fore, f is 7-continuous. &

Proposition 1.2.10.4 Let (X,0) be a prozimity space, F a 15-closed set
and x ¢ F. Then the sets {x} and F can be separated by a T5-continuous
Sfunction.

Proof: Since X — F is a 7s-neighborhood of the point x, then {z}5F. On
account of Proposition 1.2.10.2, the sets {x} and F' are separated by a o-
continuous function f which is 7s-continuous again by Proposition 1.1.6.8.

[ )

Our next task will be to show that a topology can be induced by a
proximity if and only if it is completely regular. In order to do this, and for
other purposes as well, the concept of a function family will be a suitable
tool.

Let X # () be an arbitrary set. By the function family on X we
understand an arbitrary non-empty set ® of real functions defined on X.
The function family & is said to be bounded if all the functions f € ® are
bounded, i.e. f(X) C R is a bounded set.

Every function family on X induces a family of pseudo-metrics on X.
This is a consequence of the following remark: if f: X — R, then

dy(z,y) = f(x) — f(y)]

is a pseudo-metric on X.
The family of pseudo-metrics induced by the function family ®
is the family of pseudo-metrics

Eq:.:{df:fE(I)}.

The uniformity Us,, the proximity s, and the topology 7, induced by
¢ are briefly called the uniformity, the proximity and the topology
induced by the function family ¢ and denoted by Ug, d¢ and ¢ respec-
tively.

Proposition 1.2.10.5 Let ® be a function family on X, § # Y C X,
and &y = {f|Y : f € ®}. Then Py is a function family on'Y for which
Up, =Us|Y, 0o, = 0a|Y and 1o, = Ta|Y hold.
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Proof: Immediately follows from Proposition 1.2.4.2. &

Proposition 1.2.10.6 Let @ be a function family on X, di Fuclidean met-
ric on R. If f € ®, then Uy, = f~'(Uq,), where dy is a pseudo-metric
generated by f, while Uy = sup{f~'(Uy,) : f € ®}.

Proof: Let (7,y) € Ua; e € Ua,. This holds if and only if [f(x) — f(y)| <&,
i.e. if and only if (f(z), f(y)) € Uq, « € Uq,, which is, by Proposition 1.2.4.5,
equivalent to the fact that (z,y) € g7 (Ug, ) € f~H(Ua,), where g(z,y) =
(f(x), f(y)). Now, according to the proved equality and Proposition 1.2.3.3
we have Up = Us, = sup{Ua, : f € ®} =sup{f Uy ) : f € ®}. &

Corollary 1.2.10.1 If ® is an arbitrary function family on X, then Ug is
the coarsest uniformity for which all functions f € ® are uniformly contin-
UOUS.

Proof: Follows from the previous proposition and Corollary 1.2.5.2. &

Proposition 1.2.10.7 If ® is a bounded function family on X, then Ug
and Ug,, | € @, are totally bounded uniformities.

Proof: If f € ® and g : f(X) — R is the canonical injection, h = f]QX),
then f = goh, thus f~Y(Uy) = R~ g (Us,)) = =1 ({Uy, | (X)) accord-
ing to Proposition 1.2.4.9 and Corollary 1.2.4.3. However, by Proposition
1.2.6.1, Ug, | f(X) is totally bounded so that, according to Proposition 1.2.6.2
and Proposition 1.2.10.6, Uy, = f1Ug) and, according to Proposition
1.2.6.4, uniformity Us is also bounded. &

Proposition 1.2.10.8 Let ® be a function family on X, dy the Fuclidean
metric on R. Then for every function f € @ there holds 64, = f~Y(6q,),
and if ® is bounded as well, then

dp = sup{dq, : f € @}.

Proof: First, let us notice that by Corollary 1.2.2.2 64, = 5udf. By Propo-
sition 1.2.10.6 (5udf = 5f*1(ud1) holds, and by Proposition 1.2.4.7 there holds
Of1(uy,) = f_1(5ud1)~ Since by Corollary 1.2.2.2 f_l(éudl) = f~1(d4,), then
6d; = f ~1(84,). The second part follows from the first part and Proposition
1.2.6.7, as Uy, , | € @, is totally bounded on account of Proposition 1.2.10.7.

&

Notice that the second statement of the previous proposition holds even
if all but one of the functions f € ® are bounded. Without this condition the
statement is not necessarily true. This is shown by the following example:
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Example 1.2.10.1 Let X = R? and let ® consist of two functions: f(x,%)
=z and g(x,y) = y. Let us choose A = {(z,y) : x +y < 0}, B = {(x,y) :
z+y > 1}. Then AdsB, since (A x B)NUgp1/2 = 0 as (z1,51) € A4,
|ze — 1] < 1/2, |y2 — y1| < 1/2 implies (x2,y2) ¢ B. On the other hand,
with the notation § = sup{dq,,dq, }, we have A0B. In fact, if {A; : i € Jp}
and {B; : j € J;} are two arbitrary decompositions of the sets A and B
respectively, then there exists an i for which A; contains a point (u, —u) and
a point (v, —v) such that v > u+1, since the sets A;, finite in number, cover
the line x + y = 0; thus, at least one of them has to contain an unbounded
part of this line. But in this case (v, —u) € B, therefore (v, —u) € Bj for
some j and then A;dq, Bj, A;dq,Bj, as d¢(Ai, Bj) = dg(Ai, Bj) = 0, since

[f(v,=v) = f(v,—u)| = Jo —v[ =0,
lg(u, —u) = g(v, —u)| = | —u— (—u)[ = 0.
This example also shows that the condition of total boundedness cannot be
omitted in Proposition 1.2.6.8.

As an immediate consequence of the previous Proposition and Corollary
1.1.6.2 we have the following:

Corollary 1.2.10.2 If ® is a bounded function family, then d¢ is the coars-
est proximity for which every f € ® is §-continuous. &

Proposition 1.2.10.9 For any function family ®, f € ® implies 74, =
f~YE), where € is the Euclidean topology of the real line and

1o =sup{f H(E): f € B}.

Proof: The first part follows from Proposition 1.2.10.8 and Proposition
1.1.5.2, the second from this on account of Proposition 1.2.3.3 and Proposi-
tion 1.2.3.4. &

Now we can show that every completely regular topology can be induced
by a function family. First, the following proposition will be proved:

Proposition 1.2.10.10 Let (X, 7) be a topological space, ® a function fam-
ily consisting of T-continuous functions such that, if v € X, F = F C X,
x & F, then {x} and F are ®-separated. Then 7¢ = T.

Proof: According to the previous proposition we have that 7¢ < 7. To
prove the converse, let us suppose that G is an open set in the topology 7
and let = € G. Then there exists a function f € ® which separates {z} and
X — G. Then Uy, 1[z] C G, so that G is open in the topology 7¢. Hence
T< Tp. oo
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Corollary 1.2.10.3 If (X, 7) is a completely reqular topological space and ®
is the function family consisting of all T-continuous functions, then 76 = T.

&

From the comparison of the above corollary and Proposition 1.2.10.4, by
applying the equality 7¢ = 75,, we have the following:

Corollary 1.2.10.4 A topology T can be induced by a proximity if and only
if it is completely reqular. &

This is the answer to one of basic questions put at the beginning of
this subsection. It should also be noticed that the proximity d¢ induced
by ® and occurring in Corollary 1.2.10.3 is a distinguished proximity of the
completely regular topology 7:

Proposition 1.2.10.11 Let 7 be a completely reqular topology, ® the func-
tion family consisting of all T-continuous functions, ®* that of all the boun-
ded T-continuous functions. Then dp = 0= = 0 coincides with the Czech-
Stone proximity of 7. ASB holds if and only if A and B can be separated by
a T-continuous function.

Proof: For the sake of brevity let 1 = dg, do = do+, and let  be the
Czech-Stone proximity compatible with the topology 7. Since ®* C ®, then
Yo+ C Yo, so that dy < 01 < 6, since, by Corollary 1.2.10.3, 75, = 7 and
§ is the finest proximity for which 75 = 7. If AJB, then by Proposition
1.2.10.2 there exists a d-continuous function f which separates A and B.
By Proposition 1.1.6.8 the function f is 7-continuous. On the other hand,
if some 7-continuous function f separates A and B, then 0 < f < 1 implies
f € ® and (A x B) N Udpn = (0, so that AdsB. Hence § < do, thus
dy = 61 = 6, and ASB holds if and only if A and B can be separated by
T-continuous function. &

With the help of the following proposition, an answer can be given to our
second basic question about the inducement of proximities by uniformities:

Proposition 1.2.10.12 Let (X,d) be a prozimity space and ® a bounded
function family consisting of d-continuous functions such that, if AOB, then
A and B are ®-separable. Then § = dg.

Proof: First, let us notice that dp < d holds by Corollary 1.2.10.2. To
prove the converse, let us suppose that AdB. Then there exists an f € ®



1.2 Uniform spaces 7

which separates A and B, hence for which (A x B) N Uy, 1 = 0. Therefore
Abde B, so that § < dp. &

As a direct consequence of this proposition and Proposition 1.2.10.2 we
have the following:

Corollary 1.2.10.5 If (X,0) is an arbitrary prozimity space, ® is the fam-
ily of the bounded d-continuous functions and ®* the family of the functions
for which 0 < f(z) < 1 for every x € X, then d¢ = dg= =9 &

From the equality g = dy,, we can now obtain the following corollary:
Corollary 1.2.10.6 Every proximity can be induced by a uniformity. &

Moreover, according to Proposition 1.2.10.7, we can add to this:

Corollary 1.2.10.7 FEvery proxzimity can be induced by a totally bounded
uniformity. &

Summarizing results of Corollary 1.2.6.4 and Corollary 1.2.10.5, the fol-
lowing can be concluded:

Corollary 1.2.10.8 The set of all proximities 6 on the set X and the set of
all totally bounded uniformities U on X are in a one-to-one correspondence
with each other. To the totally bounded uniformity U, there corresponds the
proximity 6§ = dy; on the other hand the totaly bounded uniformity U = Uy
corresponds to the proximity 6, where ® denotes the family of all the bounded
d-proximally continuous functions. &

Let us consider the question when a uniformity can be induced by a
family of pseudo-metrics. In order to clear up this basic question, let us
notice the following two lemmas.

Lemma 1.2.10.2 Let o;, i € I # 0, be an arbitrary set of the pseudo-
metrics defined on the set X and let us suppose that, for any x,y € X, the
set of numbers {o;(x,y) : i € I} is bounded from above. Then

o(z,y) = sup{oi(z,y) : i € I}
is a pseudo-metric on X.
Proof: Let us prove only the triangle inequality. If x,y, 2z € X, then
0, 2) < oi(@,y) + 03(y, ) < o(w,y) + (9, 2)

for every i € I, hence o(z,2) < o(x,y) +0(y,2).
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Lemma 1.2.10.3 Let o be a pseudo-metric on X, ¢ > 0. If o/ = min(o, ¢),
then o' is a pseudo-metric on X.

Proof: Again the triangle inequality should be proved. But o'(z,2) <
o'(z,y) +0'(y, ) is obvious if any member of the right-hand side is equal to
¢, while otherwise we can refer to the inequality concerning o. &

Theorem 1.2.10.1 Let us suppose that U = Uy, Uy, Us, ... is a sequence of
entourages in X such that Upy1 00Uyt C Uy, for everyn =0,1,2,.... Then
B={U,:n=0,1,2,...} is a base of some uniformity U on X. Let <,
denote the relation for the subsets of X for which A <, B holds if and only
if Up[A] C B. Let ® be the family of all the functions f associated with the
sequence (<) and

(%) ou(z,y) =sup{oyf(z,y): f € P}, z,y € X.
oy 1s then a pseudo-metric on X and U = Uy, .

Proof: To prove that B is a uniform base, we have to show that B is a
filter base. This follows from the fact that, by U,1+1 C Ups1 0 Upyr1 C Uy,
if n < m, then U, C U,. On account of Proposition 1.2.10.7, the sequence
(<) fulfils the conditions of Urysohn’s lemma, so that we can speak of the
functions associated with this sequence. As the values of these functions lie
in [0, 1], by Lemma 1.2.10.2, oy defined by (%) is a pseudo-metric on X.

It must be shown that 1/2" < e implies Us,e O Uny2. In fact, if
(2,y) € Us, e, Le. if 0, (z,y) > €, then, by o, (z,y) > 1/2", there exists
a function f € ® such that oy(z,y) > 1/2", ie. |f(x) — f(y)| > 1/2™.
However, f is associated with the sequence (<), so that by Proposition
1.2.10.1, {z} <pt2 X — {y}, hence (z,y) &€ Uy,42 holds.

On the other hand, it will be shown that UO-U,Qfm C Uy, for every m =
0,1,2,... In fact, if (z,y) &€ U,,, then Urysohn’s lemma can be applied for
the system {<,: n = m,m + 1,...}, since {z} <, X — {y} and hence
there exists a function f associated with the sequence <, <<m+1,... for
which f(z) = 0, f(y) = 1. Let us consider the function g(z) = f(z)/2™.
It is associated with the sequence <, <1, <2, ... Indeed, on the one hand
g(X) C [0,1/2™] C [0,1] =1, on the other hand, P,Q C I, d(P,Q) > 1/2",
n € N, imply either n > m and then |g(z') — g(v')| > 1/2™ for any points
2 € g7Y(P) and y € ¢g71(Q), thus |f(z') — f(¥')] > 1/2"™ so that, on
account of the fact that f is associated with the sequence <, Km+1,- - -
by 1.2.10.1 (2',9') € Unsn-mi2 = Unio, ie. g7H(P) <pnio X — g HQ) =
g {(I—Q), or n < m and then one of the sets g~'(P) and ¢g~!(Q) is empty
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so that according to (O1) and (O3) g7 H(P) <ns2 X —g7 Q) =g I~ Q)
is again true. Now from the fact that g is associated with the sequence
(<), l.e. g € @, it follows that o, (z,y) = |g(z) — g(y)] = 1/2™, hence

($, y) ¢ UUU,2*7"' &

Theorem 1.2.10.2 Let us suppose that (X,U) is a uniform space, B a base
of the uniformity U. For every entourage U € B, let us select entourages
U,eB,n=0,1,2,..., suchthat Uy =U, Up110Up+1 CU,, n=0,1,2,...,
and let o, be the pseudo-metric constructed from the sequence (Uy,) according

to the formula (x). If ¥ ={o, : U € B}, then U = Us,.

Proof: First, let us notice that, by Proposition 1.2.1.1 (c), for every en-
tourage U € B, a sequence (U,) with the above properties can be con-
structed. By the previous theorem for U € U there exists an € > 0 such
that Uy . C U (moreover, according to the proof, ¢ = 1 will do). On the
other hand, let us consider a finite subset () # ¥’ C X, and let us say that
Y ={o;:1=1,2,...,m}, o =0, U' € B. Then for any € > 0

m
UE/,S = m Uoi,s )
1=1

and by the previous theorem, for every i, there is an n; such that Uzi CUs, e
(moreover, according to the proof, n; = n + 2 will do whenever 1/2" < ¢).
Hence, let us choosing U € B such that U C (), U,ii, which is possible by
Uf%, € B. But then U C Uyy . holds. &

Now the answer to our basic question can be given:

Corollary 1.2.10.9 FEwvery uniformity can by induced by a family of pseu-
do-metrics. &

A further important statement can be obtained from Theorem 1.2.10.1.

Theorem 1.2.10.3 A uniformity U is pseudo-metrizable if and only if there
exists a countable uniform base generating U and it is metrizable if and only
if it admits a countable base and is separated.

Proof: If U = Uy, then {Ugy 1/, : n € N} is obviously a countable uniform
base which generates U. If U is a metrizable uniformity, then its topology
is a Tp-topology, thus it is separated by Corollary 1.2.2.4.

Conversely, let us suppose that {U], : n = 0,1,2,...} is a base of the
uniformity Y. Let U = Uy = U}, and, if the entourage U, is already chosen,
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let U,4+1 € U be a entourage such that U, 41 0Up+1 C Uy and Uyq1 C U7/1+1-
An entourage with this property can evidently be found by using properties
of the base of uniformity. Then B = {U, : n = 0,1,2,...} generates U
and therefore, according to Theorem 1.2.10.1, U = Uy, holds. Moreover,
if uniformity ¢ is separated, then its topology is Tp, thus o, is a metric
according to the known result from general topology. &

Proposition 1.2.10.13 If {U; : i € I} is a countable family of a (pseudo-
)metrizable uniformities on X, then U = sup{l; : i € I} is a (pseudo-
)metrizable uniformity on X .

Proof: Let B; be a countable base for the uniformity ¢/;. Then (J,;.; B; is
countable and the finite intersections of its elements constitute a countable
uniform base for & according to Proposition 1.2.3.2. Therefore the part of
the statement concerning the pseudo-metrizability follows from the previous
proposition. If the uniformities U; are metrizable, and even if at least one
of them is metrizable, then the topology of this one will be a Ty-topology,
and 73 has the same property, thus U/ is metrizable. &

Theorem 1.2.10.4 FEvery uniform space can be embedded with the help of a
uniform isomorphism into the product of pseudo-metrizable uniform spaces.

Proof: If ¥ = {0, : i € I} is a family of pseudo-metrics such that Us, = U*,
X; = X for every i, U; = Uy,,, and f; is the identity mapping of the set X,
then the system {f;,U; : ¢ € I} generates projectively the uniformity U*
by Proposition 1.2.3.3 and, for a given U*, there can always be found a X
of this kind by Corollary 1.2.10.9. The hypotheses of Theorem 1.2.7.1 are
clearly fulfilled, hence the statement follows. &

Completely regular spaces can be characterized by the property that they
admit bases or subbases with certain special properties. For this purpose,
let us first introduce some notations and a suitable terminology.

Let (X, 7) be a topology space, f : X — R a function defined on X. Let

Zy={xeX:f(x)=0}, Nr={reX:flx)#0}=X—-"Z;.
The elements of the systems

Z(t) ={Zs : f is T — continuous function},
N (1) ={Ny : f is 7 — continuous function}

are said to be the zero-sets and cozero-sets of the space (X, 7) respec-
tively.
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Proposition 1.2.10.14 Let (X, 7) be a topological space. Then:
(a) A, B € N(1) implies AUB, AN B € N(1);
(b) if v € N € N (1), then there exists a Z € Z(7) such that x € Z C N;
(¢) if A,B € Z(1), AN B =0, then there exist C,D € Z(1) such that
CuUD=X,AnC=BnND=0;
(d) 0, X e N(7).

Proof: (a) If A = Ny, B = Ny, then AUB = Ny, AN B = Ny, where
h = f?+ ¢°, k= fg. Together with f and g, h and k are continuous.

(b) If N =Ny, f(x) =c#0,9=f—c,thenx € Z;, C N, and, together
with f, g is continuous as well.

(¢c)If A=Z¢, B=Zg, then let

h—max(g2 1>—1 k—max(fQ 1)_1
f2+q¢*°2) 27 2+q¢*’2) 27
C =2y, D=7 Forx € X, either f(x) > g(z) or f(z) < g(x), accordingly
either h(z) =0 or k(z) =0and x € C or x € D. If x € A, then f(z) =0,
h(z) =1/2, hence = ¢ C; similarly, if x € B, then = ¢ D.

(d))=Nsfor f=0,X=Nyforg=1. o

Proposition 1.2.10.15 A topological space (X, T) is completely reqular if
and only if N (1) is a base for the topology T.

Proof: If 7 is a completely regular topology on X, x € X and G is an open
neighborhood of z, then there exists a continuous function f : X — I such
that f(z) = 0 and f(X —G) = 1. Then g = 1 — f is 7-continuous, and
x e Ny CQG.

Conversely, let us suppose that AV (7) is a base for 7, and let 2 and G be
as above. If f is a 7-continuous function and x € Ny C G, then let

c= f(z), g:%f, h = min{1, max{g,0}}, k=1—h.

Then h is a 7-continuous function and clearly separates {z} and X — G. &

Theorem 1.2.10.5 Let (X, 7) be a topological space, S a subbase for the
topology 7 and T = {X — S : S € S} the family of sets with the following
properties:

(a) 0, X € S;

(b) if x € S €S, then there exists a T € T such that x € T C S;

(¢) if AyB € T, AN B =, then there exists T; € T, i = 1,2,...,n,
such that \J{ T; = X and, for each i, either ANT; =0 or BNT; = 0.

Then (X, T) is a completely regular space.
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Proof: According to Corollary 1.2.10.4, it suffices to show that 7 is induced
by a suitable proximity 4.

In order to obtain this proximity, let

ASB if and only if there exist decompositions {A4; : i € J,,,}
and {Bj:j € J,} of A and B respectively such that for
every 4 and every j there exist C;; € 7 and D;; € T for
which A; C C’ij , Bj - Dij , Cij n Dij =0 hold ,

and let us first prove that § is a proximity on X. Condition (Bj) is obviously
fulfilled. Let us suppose AdB and ASC. Then there exist A;, B;,Ci;, D;j €
7T satisfying conditions of definition with respect to the sets A and B, and
also sets A}, B}, C},, D}, € T such that {4} : k € Jp} and {Bj : |l € J,;} are
decompositions of A and C respectively, where A) C C}, € T, B, C D}, € T
and Cp, N D;, =0 for every k € J, and every | € J,. Now we have

s
TC=

A= (A;NA,), BUC= UB UUBl,

(2

1k=1
AiNA, CcCiyjeT, Bj CD,]eT CwﬂDwa)
AiNA,cCLeT, B’cD eT, C,,NnD, =0,

so that A5(B U C) by definition of relation 6. The converse can be easily
proved, so (Bg) holds. Property (Bs) holds because §, X € 7, and (Bjy)
obviously holds. Let us prove (Bs). Let A6B and let A;, Bj, Ci;, D;j € T be
the sets described in the definition of the relation . Then by the condition
(c) of the theorem there exist sets Tj;, € 7, k =1,2,...,n;; such that

N5

UTp=X, i=12...,mj=12...n,

and, for k = 1,2,...,ny, either C;; N Ty, = 0 or D;j(Tijr = 0. Let P;; be
the union of those T;j;, for which Cj; NT;j, = 0, and similarly, let Q;; be the
union of those T;j;, for which D;; NT;j, = 0. Then P;; U Q;; = X for every
1 € Jp, and every j € J,. It is obvious that

Cijgpij R Dingij .
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By properties (By) — (By) established already

A;d UP”_P/ i=1,2,...,m,

7j=1
m

Bj 5UQU_QJ, =1,2,...,n,

=1
=UBisNa=
j=1 j=1

and moreover P’ U Q' = X. Indeed, if x ¢ P’, then there exists an index g
such that x ¢ Pi’o, so that x € P;,; for every j = 1,2,...,n. Hence x € Q;;
for every j = 1,2,...,n, thus = € Q; for every j, from which follows that
x € Q. Therefore P =X — P’ and Q = X — @’ fulfil

||C3

PNnQ=0, A6X — P, B6X —Q.

According to this, § is a proximity indeed. We show that § generates 7. If
G is a T-neighborhood of x, then there exist S1,S5,...,5, € S such that

re()SicaG.
i=1
By (b), there exist T; € 7 such that z € T; C S;, ¢ = 1,2,...,n. Hence
Ti0X —S; € T and {z}6X — G since
X-GclJx-9).
i=1

To prove the converse, let us suppose that {z}6X — G for some z € X
and G C X. Then

my—UA“ X-G= LJ
A, CCweT B CD;j;eT, CwﬂDJ*@

Hence z € A; for some i, so that

n n n
j=1 j=1 J=1
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so that x € B C G and
n
B=(\(X - Dy)
j=1

is the intersection of a finite number of the elements of the subbase S.
Therefore G is a T7-neighborhood of x. &

The following theorem summarizes the preceding results:

Theorem 1.2.10.6 A topological space (X, T) is completely regular if and
only if there exists a subbase S satisfying (with notation 7 = {X —S:S €
S}) conditions (a) — (c) of the previous theorem.

Proof: If 7 is completely regular, then by Proposition 1.2.10.14 and Propo-
sition 1.2.10.15 it follows that A/(7) is a base with the required properties.
)

1.2.11 Compact proximity spaces

As in uniform spaces, in proximity spaces can also be given necessary con-
ditions for convergence of a filter base. For this purpose, the following
terminology is used.

Definition 1.2.11.1 In a proximity space (X, ) the filter base F is said to
be compressed (or §-compressed) if, for any two sets A and B §-far from
each other, there exists an F' € F which intersects at the most one of them,
or equivalently, if the fact that ANF # () # BN F for every set F € F
implies A0B.

Proposition 1.2.11.1 FEvery convergent filter base in a proximity space
(X,9) is compressed.

Proof: If, in the proximity space (X,d), F — x and AJB, then according
to Proposition 1.1.1.3 there exist C' and D such that C N D =), 40X — C
and BSX — D. For the element € X at least one of the relations z ¢ C,
x ¢ D holds, let us say * ¢ C. Then by Proposition 1.1.1.2 (b) {x}dA,
so that X — A € F({z}). Therefore, by Theorem 1.1.2.3, X — A is a
Ts-neighborhood of z. Since F — =z, there exists an F' € F for which
FcX—-A ie ANF = (. Similarly, if x € D, then there is an F' € F such
that FC X —B. &
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Proposition 1.2.11.2 Let (X,dx) and (Y,dy) be proximity spaces, f :
X — Y a é-continuous mapping. If F is a compressed filter base in X,
then f(F) is compressed in'Y .

Proof: If for A, B CY Ady B holds, then f~(A)dx f~1(B) holds by Propo-
sition 1.1.6.1. Since F is a compressed filter base in X, there exists an F' € F
such that F N f~1(A) = 0. But then f(F)NA=10. &

Corollary 1.2.11.1 Ifd1 and 05 are the prozimities on X for which 61 < d9,
and the filter base F is do-compressed, then it is 61-compressed as well. &

Proposition 1.2.11.3 Let §;, i € I # (), be a proximities on X and § =
sup{d; : ¢ € I}. If F is 6;-compressed for everyi € I, then it is §-compressed
as well.

Proof: If AéB, then for any two decompositions {4; : j € J,} and {By :
k € Jg} of the sets A and B respectively, there exists an index i(j,k) € I
such that for every j € J, and k € J; Ajgi(jyk)Bk holds. Let Fj, € F be a
set which intersects at most one of the sets A; and By, and F' € F such that
F C ﬂ?zl Nizy Fjk- If ANF # 0, then, for an index j, A; N F # 0, and
then for this j and all k there follows A; N Fji, # 0. But then By () Fjr =0
and B, NEF =0. Hence BNEF =0. &

Proposition 1.2.11.4 Let f: X — Y, § be a proximity on'Y . A filter base
F in X is f~1(5)-compressed if and only if f(F) is §-compressed.

Proof: Let f(F) be a d-compressed filter base. If Af~1(§)B, then by
f(A)6f(B) there exists an F' € F such that e.g. f(F)N f(4A) = (. In
this case F N A = (). On the other hand, if F is a f~!(§)-compressed and
CoD, then by f~HC)f~1(8)f1(D), there exists an F € F such that e.g.
FNfY(C)=0. But then f(F)NC =0. &

Corollary 1.2.11.2 Let (X,6) be a prozimity space, 0 #Y C X. A filter
base F in'Y is §|Y -compressed if and only if it is §-compressed. &

Corollary 1.2.11.3 A filter base finer than a compressed filter base is itself
compressed. Equivalent filter bases are simultaneously compressed. &

The following propositions establish a connection between compressed
filter bases and Cauchy filter base.
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Proposition 1.2.11.5 If (X,U) is a uniform space and F alUd-Cauchy filter
base, then F is 0y -compressed.

Proof: If Ady B, then there exists an U € U such that (Ax B)NU = ). Let
F € F beaset small of order U. Then FxF C U, so that (Ax B)N(F'xF) =
(ANF) x (BNF)=1{0. But then at least one of the sets AN F, BN F is
empty. &

Proposition 1.2.11.6 If (X,U) is a totaly bounded uniform space, F a
Oy -compressed filter base, then F is a U-Cauchy filter base.

Proof: Let F be a §-compressed filter base. For a given entourage U € U,
let the entourage V' € U be chosen in such a way that VoV oV C U, and
let X =J-; Gi, where G; is small of order V. For all pairs of indices (¢, j)
for which G;6G; holds, let F;; € F be a set which intersects one of the sets
G; and G; at the most. Finally, let ' € F be a set for which F' C NFj;. Let
us prove that ' x ' C U. If (z,y) € F x F, then x € G; and y € G; for
some indices ¢ and j. For these indices G;dy/G; holds, because contrary to
this the set F' will intersect at least one of the sets G; and Gj. Therefore
(Gi x G;) NV # 0, so there exist u € G; and v € Gj such that (u,v) € V.
Since (z,u) € G;xG; C V, (v,y) € GjxG; C V, then (x,y) € VoVoV C U.
Hence F' is small of order U, which was to be proved. &

Definition 1.2.11.2 Let X be a non-empty set. A maximal filter A in X,
i.e. a filter A in X having the property that, if B is a filter in X and A C B
then A = B, is said to be an ultrafilter in X.

Proposition 1.2.11.7 If x € X, then the fundamental filter & = {S : = €
S C X} is an ultrafilter in X.

Proof: Let & C A, where A is a filter in X and let A € A. Since {z} €
& C A, then {z} € A. Therefore {z} N A € A. But then {z} N A # 0, so
that z € A, which proves that A € . Thus A C &, so that £ = A. &

Fundamental filters in X are called trivial ultrafilters in X, whereas
other ultrafilters are non-trivial ultrafilters.

Proposition 1.2.11.8 If A is an ultrafilter in X and A C X, then either
AcAor X —Ac A

Proof: If X — A ¢ A, then UN A # () for every U € A. But then AN{A}
is a filter base in X. If B is a filter generated by this filter base, then
AN{A} C B, so that A C B. Since A is ultrafilter, then A = B, so that
A=XNAecB. Therefore Ac A &
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Proposition 1.2.11.9 Let A be a filter in X. If for every A C X, either
AeAor X —Ac A holds, then A is an ultrafilter in X.

Proof: Let B be any filter in X for which A C B holds and let B € B.
Since BN (X — B) =, then X — B ¢ B, so that X — B ¢ A. But then
by the previous proposition B € A follows. Thus we proved that B C A, so
that A=8B. &

Proposition 1.2.11.10 If A is an ultrafilter in X, A€ A and A = U A;,
then there is some indices 1 such that A; € A.

Proof: Otherwise it would be the case that X — A; € A for every 4, and so
X —A={(X —A4;) € A which contradicts the fact that A € A. &

Proposition 1.2.11.11 If A is an ultrafilter in X, C a centered system in
X and ACC, then A=C.

Proof: Any centered system C is a subbase of some filter Bin X, and C C B.
But then A C B, and since A is an ultrafilter, then A = B. Therefore A = C.
)

Proposition 1.2.11.12 FEvery centered system C in X can be included in
an ultrafilter in X.

Proof: It suffices to show that every filter in X can be included in an
ultrafilter in X. However, this follows from the Kuratowski-Zorn lemma,
because the system of all filters in X is inductive. In fact, if {A4; : i € I}
is ordered with respect to the inclusion and every A; is a filter in X, then
A = U,er Ai is afilter in X, since A € Aand A C A’ C X imply A € A; for
some ¢ € I and then A’ € A; C A. Further, if A1, A3 € A, then A; € A;,
Ay € A; for suitable i,j € I and e.g. A; C A; implies A, Ay € Aj, thus
AiNAsc AjCc A &

The application of ultrafilters to the theory of the proximity spaces is
based on the following proposition:

Proposition 1.2.11.13 A filter in X is an ultrafilter if and only if it is
compressed with respect to the discrete proximity on X.

Proof: If a filter A is an ultrafilter and A N B = (), then according to
Proposition 1.2.11.8 either A € A or X — A € A, thus there exists in A a
set either not intersecting B or not intersecting A.
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To prove the converse, suppose that the filter A is compressed with
respect to the discrete proximity of X. Since A and X — A far from each
other, there exists in A either a set which is a subset of A or a set which
is a subset of X — A and then either A € A or X — A € A. But then, on
account of Proposition 1.2.11.8, filter A is an ultrafilter. &

Corollary 1.2.11.4 If (X,9) is a proximity space and A an ultrafilter in
X, then A is §-compressed.

Proof: Immediately follows from the previously proposition and Corollary
1.2.11.1. &

Theorem 1.2.11.1 Let (X,U) be a uniform space. Then the following
statements are equivalent:
(a) U 1is totally bounded;
(b) the 0y -compressed filter bases coincide with the U-Cauchy filter bases;
(c) every &y-compressed filter base is a U-Cauchy filter base;
(d) every ultrafilter in X is U-Cauchy.

Proof: (a) = (b): follows from Propositions 1.2.11.5 and 1.2.11.6.

(b) = (c): is evident.

(¢) = (d): results from the previously corollary.

(d) = (a): Suppose that (d) is fulfilled, but ¢ is not totally bounded.
Then there exists an entourage U € U such that X cannot be decomposed
into the union of a finite number of sets small of order U. Let us consider
now the sets of the form X — [} A;, where n € N, and A; is small of order
U for every ¢. By hypothesis, these sets are non-empty and the intersection
of two sets of this type has the same form, so that these sets constitute a
filter base F. On account of Proposition 1.2.11.12, F can be included in an
ultrafilter A. This is U4-Cauchy and therefore there is in it a set A € A small
of order U. However, in this case, X — A € F C A, which is impossible from
Proposition 1.2.11.8. &

A similar notion to the one of complete uniform spaces can be defined
in the case of proximity spaces.

Definition 1.2.11.3 A prozimity space (X, 9) (or prozimity §) is said to be
compact if every compressed filter base is convergent. The uniform space
(X,U) and the uniformity U are said to be compact if the prozimity &, is
compact.
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As the meaning of convergence is the same in the uniform space (X,U)
and the proximity space (X, &) (viz. the convergence with respect to the
topology 14 = 75,,) by Proposition 1.2.11.5, it can be asserted that:

Proposition 1.2.11.14 FEvery compact uniform space is complete. &
On the other hand, it follows from Theorem 1.1.3.4 that:

Proposition 1.2.11.15 A totally bounded uniform space is compact if and
only if it is complete. &

Therefore, instead of the term ”totally bounded uniform space” and
"totally bounded uniformity”, the term a precompact uniform space is
often used. In the following, we shall use this shorter expression.

The following important statement can be immediately obtained from
Theorem 1.1.3.4:

Proposition 1.2.11.16 FEvery compact uniform space is precompact.

Proof: If (X,U) is compact and F is a dy-compressed filter base, then F
is convergent, thus it is a U-Cauchy filter base by Proposition 1.2.9.1. By
Theorem 1.1.3.4, (X,U) is a precompact uniform space. &

As an immediate corollary of the last tree propositions there follows:

Corollary 1.2.11.5 A uniform space is compact if and only if it is precom-
pact and complete.

Proposition 1.2.11.17 A compact proximity can be induced by a unique
uniformity.

Proof: By the previous corollary, a compact proximity é can be induced
only by a precompact uniformity and exactly one of these types can be found
by Corollary 1.2.10.8. &

Let (x,) be an arbitrary sequence in the topological space (X, 7) and let

(1) Ry ={zp:n>=k}, neN,

(2) F={Ry: keN}.
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Definition 1.2.11.4 The filter base assigned to the sequence (x,) by for-
mulae (1) and (2) are called the sequential filter base belonging to (x,,).

Definition 1.2.11.5 Let (X, 7) be a topological space. A point x € X is
said to be a cluster point of the filter base F in X, if every neighborhood
of x intersects every set of the filter base. We understand by the cluster
point of a sequence of points (x,,) a cluster point of the sequential filter
base belonging to it.

Proposition 1.2.11.18 Let (X, 1) be a topological space, x € X, N(x) the
neighborhood filter, B(x) a neighborhood base of the point x, and F a filter
base in X. Then the following statements are equivalent:

(a) = is a cluster point of F;

(b) 0 € N(z)NF;

(c) 0 & B(x)NF;

(d) there exists a filter base finer than F converging to x;

(e)zen{F:F¢cF}

Proof: (a) = (b) = (¢): is evident.

(¢) = (d): Tt is known from general topology that the filter base F' =
B(z)NF is finer than F and F' > B(x). Since N (z) and B(x) are equivalent
families, then 7/ — .

(d) = (e): Let 7' > Fand F' — z. If F € F and U € N(z), then there
exists an F| € F' such that F{ C U, and an F; € F' such that Fj C F.
Finally, there exists an Fj € F’ such that F} C F{ N F; C UN F. Thus
x € F for every F € F.

(e) = (a): is obvious. &

Corollary 1.2.11.6 If F — x, then x is a cluster point of the filter base
F. &

Corollary 1.2.11.7 If x is a cluster point of the filter base F and F1 < F,
then x is a cluster point of the filter base F1. &

Proposition 1.2.11.19 Let (X, 1) be a topological space, 0 #Y C X, F a
filter base in'Y and x € Y. The point x is a 7|Y -cluster point of F if and
only if it is a T-cluster point.

Proof: Under our conditions N(z) NF =N(z) N{Y}F. &
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Proposition 1.2.11.20 If F is a compressed filter base in a prorimity space
(X,90) (in particular, if F is a Cauchy filter base in a uniform space (X,U))
and x is a cluster point of F, then F — x.

Proof: Let U be a neighborhood of z, i.e. {x}6X —U. Then by Proposition
1.1.1.3 there exist C and D such that C(\D =0, {z}6X -C, X ~UJX —D.
Hence C' is a neighborhood of x and therefore intersects every set of the filter
base F. Since C C X — D6§X — U and filter base F is compressed, there
exists F' € F which intersects one of the sets C' and X — U at the most.
Since C' is the neighborhood of z, then F' intersects C, so that F C U which
was to be proved. &

The following statement is similar to the preceding one:

Proposition 1.2.11.21 Let (X, 1) be a topological space, A an ultrafilter
in X. If x is a cluster point of A, then A — x.

Proof: Let U be any neighborhood of z. Then, by Proposition 1.2.11.8,
either U € Aor X —U € A holds. Since X —U € A is in contradiction with
the fact that x is a cluster point of A, then U € A. &

Now the following theorem can be proved:

Theorem 1.2.11.2 A prozimity space is compact if and only if every filter
base admits a cluster point.

Proof: Let (X,0) be a compact space. If F is a filter base in X, then by
Proposition 1.2.11.12 there exists an ultrafilter A in X containing F (thus
finer than F). On account of Corollary 1.2.11.4, A is compressed, hence
convergent. If A — x, then by Proposition 1.2.11.18 z is a cluster point of
A.

Conversely, if any filter base in X has a cluster point, and F is a com-
pressed filter base, then F converges to any of its cluster points according
to Proposition 1.2.11.20. &

This theorem shows that the compactness of a proximity space depends
only on the topology of the space as the existence of a cluster point of a filter
base is determined by the neighborhood filters of the points. Moreover,
in connection with Theorem 1.2.11.2, there is the possibility of defining
the compactness of topological spaces in the manner that is in accordance
with the compactness of proximity spaces defined earlier: let us call the
topological space (X, 7) and the topology 7 compact if every filter base in
X has a cluster point. Using this terminology, we can formulate Theorem
1.2.11.2 as follows:
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Theorem 1.2.11.3 The prozimity space (X, 0) is compact if and only if the
topology Ts is compact. &

In Theorem 1.1.3.4 we have proved that in every compact T>-space there
exists a unique proximity compatible with the given topology. According to
Proposition 1.2.11.17 following statement holds:

Theorem 1.2.11.4 For every compact Th-topology there exists a unique
uniformity which generates the given topology. &

In locally compact spaces there exists a proximity compatible with the
given topology, but it is not unique defined. The proximity described in
Definition 1.1.3.4 is only one among the topologies compatible with locally
compact topology.

It can be seen that every locally compact S-space is regular. Moreover,
these spaces are completely regular. This will be shown by giving a proximity
inducing the topology of the space:

Theorem 1.2.11.5 Let (X, 7) be a locally compact Sa-space and let ASB if
and only if ANB = () and at least one of the sets A and B is compact. Then
6 s a proximity inducing the topology T; more precisely, it is the coarsest of
the proximities inducing the topology T.

Proof: (Bj) obviously holds. Let ASC and BSC. Then ANC = BNC = 0,
so that from AUB = AU B it follows AUBNC = 0. If C is compact,
then A U B6C evidently holds while, if C is not compact, then A and B
are compact, so that their union is also compact, i.e. AU B is compact,
hence AU B6C. Conversely, if (AU B)§C, then AUB N C = (), so that
(ANC)U(BNC) = (. Therefore (ANC) = (BNC) = 0, and if C is
compact, then ASC and BSC. If AUB = AU B is a compact set, then
A and B are compact sets, so that ASC and BSC. Thus we prove (Bz).
(B3) holds on account to the fact that () = () is a compact set, while (By) is
obviously fulfilled. To prove (Bs), let us suppose that AN B = (), and, say,
let A be compact. Then for every point € A there exists a closed compact
neighborhood K, of x for which K, (B = 0. The compact set A is covered
by finite number of sets intK,, i = 1,2,...,n: A C U} intKy,, z; € A. Let
K = U} Ku;. Then K is compact, closed, K N B = (), and A C intK. Let
P=intK,Q=X—-K. Then PNQ =0, ANX —P =0 and BNX — Q = 0.
Finally, A and X — Q = K = K are compact. Thus (Bj) is fulfilled.

Let us prove that the proximity ¢ is compatible with the topology 7.

Let U be a d-neighborhood of z € X. Then 2N X —U = (), thus = ¢
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X —U and X — X —U C U is a neighborhood of z. Conversely, if V is
a neighborhood of z, then, by x € intV there follows that z ¢ X — intV/,
so that ZN X — intV = () and T is compact. Therefore {x}6X — intV, and
a fortiory {2}6X — V, V is a §-neighborhood of x. Hence § generates the
topology T.

Let 6; be any proximity on X compatible with the topology 7. If AdB,
then AN B = (), where at least one of the sets A and B is compact. By
Lemma 1.1.3.1 we have Ad; B, so that by Proposition 1.1.2.4 Ad; B holds.
This proves that § < §1. &

Historical and bibliographic notes

The concept of a uniform space was introduced in 1936 implicitly by Dj.
Kurepa in papers [179] and [180] (see also papers [177], [178] and [182]) and
in 1938 by A. Weil in paper [334] explicitly. The first systematic exposition
of the theory of uniform spaces was given by Burbaki, N. in 1940 ( see [38]).
A different but equivalent concept of a uniform space, defined in terms of
a collection of covers, was introduced and studied by J. W. Tukey in [323].
J. R. Isbell’s book [150], which contains an important development of the
theory of uniform spaces, is written in terms of covers.

The uniform spaces can be also described in terms of pseudo-metrics.
Such a description was given by N. Bourbaki in [38]. The ”pseudo-metric”
language is used in L. Gillman and M. Jerison’s book [123].

Subspaces and Cartesian products of uniform spaces were defined by Weil
in [334]. The notion of a totally bounded uniform space was introduced by
N. Bourbaki in [38].

Interesting generalizations of a total boundedness in uniform spaces have
been introduced and studied by Lj. Kochinac in [167] (see also [168]). For
example, it was shown in [167] that Corollary 1.2.6.1 and Proposition 1.2.6.5
remain valid if "totally bounded” is replaced by ”Hurewicz bounded”.

The notion of a complete uniform space was introduced by A. Weil in
paper [334].

1.3 Extensions of spaces and mappings

1.3.1 Extensions of topological spaces

It is well known that, through the omission of some points of a complete
metric space, the space can lose its completeness. As the converse of this
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phenomenon, the question arises quite naturally whether a non-complete
metric space, or more generally a non-complete uniform space, can be ex-
tended by adding points to it so as to make it complete. It is an analogous
question whether a proximity space or a topological space which is not com-
pact, because some filter bases in it have no cluster points, can be extended
so as to become compact by adding further points to it. In this extension
first the cluster points of the filter bases possessing no cluster points have
to be procured, taking care at the same time that all the filter bases which
can be constructed in the extended space have cluster points as well.

The task in all of these questions is to construct to the given space an
extended space containing the original space as a subspace and fulfilling
further prescribed conditions (e.g. to be complete or compact). In view of
the last mentioned problems, we first look for an extended space containing
the given space as a dense subspace; in fact, if e.g. a topological space can
be included in an extended compact space, then the closure of the given
space in the extended space is compact as well and the given space is dense
in it.

With respect to these considerations, restricting ourselves for the mo-
ment to topological spaces, and let us introduce the following:

Definition 1.3.1.1 A topological space (X', 7') is said to be an extension
of a topological space (X,7), if X C X', 7'|X =7 and X is 7/-dense in X'.

In this case it is also said that the topology 7' is an extension of the
topology 7. First we shall be dealing with the question how such extensions
can be constructed for a given topological space.

Thus let (X, 7) be a topological space and let X C X'. If (X',7/) is
an extension of (X,7), then X is a dense subset in X', so that every 7'-
neighborhood of each point z € X’ has a non-empty intersection with X.
Hence a filter F(z) = N'(x) N {X} can be constructed in X from the 7/-
neighborhood filter N’(z) of the point x. It will be called the trace in X
of the neighborhood filter N’(z). If x € X, the trace filter F(z) is identical
with the 7-neighborhood filter AV/(x) of the point x.

It is an obvious idea to define the topology 7" on the set X’ by joining
to every point x € X' the trace filter F(z) belonging to it. In connection
with these two questions it arises immediately: whether the trace filter F(z)
can be arbitrarily chosen or must it fulfil some restrictions and whether the
topology 7' is uniquely defined by the trace filters.

The first question can be answered immediately: for the points z € X
the trace filter is given; it is identical with the neighborhood filter N (x),
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but the trace filters belonging to the points z € X’ — X cannot be arbitrary,
because, in a topological space, the neighborhood filter of a point possesses a
base consisting of open sets and, since the intersection of a 7/-open set with
X is T-open, the same can be said of the trace filter F as well. Therefore
if say open filter for a filter in a topological space which possesses a base
consisting of open sets , the foregoing can be summarized in the following:

Proposition 1.3.1.1 Let (X',7') be an extension of a topological space
(X,7). If v € X', let N'(x) be the 1'-neighborhood filter of the point x,
and F(x) = N'(x) N {X} the corresponding trace filter. In this case F(x)
is a T-open filter in X, in particular, if v € X, F(x) = N(x) is the 7-
neighborhood filter of the point x. &

In general, a negative answer is to be given to the second question as
well.

Example 1.3.1.1 Let X = Q, X’ = R, and let us consider on the one hand
the Euclidean topology £ on R, on the other hand the topology 7 # &£ for
which the £-open sets and Q itself constitute a subbase. It is clear that
E|Q = 7'|Q, so that, denoting this topology by 7, both (R, ) and (R, 7’') are
extensions of (Q, 7). The fact that Q is not only £-dense but 7/-dense as well
follows from the fact that any 7/-neighborhood of a point z € R—Q is at the
same time an £-neighborhood of x and, since £ < 7/, the £-neighborhoods
of z are at the same time 7'-neighborhoods too so that the E-trace filters
are identical to the 7/-trace filters.

However it will be shown that if the trace filters, with the restrictions
given in Proposition 1.3.1.1, are arbitrarily given, then there exists always
an extension furnishing the given trace filters, moreover, there is a coarsest
one among them.

Theorem 1.3.1.1 Let (X, 7) be a topological space and X C X'. Let us
also assign to every point x € X' a T-open filter F(x) in X, in particular,
if v € X, then let F(x) = N(x) be the T-neighborhood filter of the point x.
For AC X, let

(1) s(A)={z:ze X', Ae F(x)}.

(2) S ={s(G): G C X is T— open}
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constitutes a base for the topology 7' on X'. 1’ is the coarsest topology on
X' such that, for every point x € X', the given filter F(x) is the trace filter.
Finally, 7'|X = 7 is true.

Proof: For every filter F in X and sets A,B C X, A C B, A € F imply
B e Fand AN B € F is true if and only if A € F and B € F. Therefore

3) AcCcB=s(A)cCs(B), s(AnB)=s(A)Nns(B), ABCX,

and of course s(X) = X’. It can be easily seen that S is a base for a topology
7" on X'. The 7/-neighborhood filter N’(z) of the point € X' is generated
by the system of sets

{s(G) : G'is T—open, z € s(G)}

and since x € s(A) is equivalent to A € F(z) by (1), this can be also written
in the form of

{s(G): G is T—open, G € F(x)}.
The trace filter N’(z) N {X} will be generated by the system
(4) {s(G)N X : G is T—open, G € F(x)}.

If z € X, then F(x) = N(x), so that G € F(x) holds for a 7-open set G if
and only if x € G, i.e.

(5) s(G)NX =G, GisT—open.

Therefore the system (4) is nothing other than the system of 7-open sets in
F(x), which generates F(z), since F(z) is a 7-open filter. Therefore

N'(z) N {X} = Fla),

in particular, if € X, then N(x) N {X} = N (z). This shows that 7’ is
indeed an extension of 7 furnishing the given trace filters F(x).

Now let 7{ be another topology on X', N{(x) the 7{-neighborhood filter
of the point x € X’ and let us suppose that, for each point z € X,

M(z)Nn{X} = F(z).

Let x € s(G) where G is a 7-open set. Then G € F(z), x has a 74-
neighborhood Uj such that G = Uj N X and then there exists a 7{-open
set G} such that x € G} C Uj. If y € G), then G} € N{(y), so that
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GiNX € Fly). Now GiNX Cc U{NnX = G implies G € F(y), and
y € s(G). Therefore if G is T-open, then s(G) contains a 74-neighborhood
G of any point z € s(G), so that s(G) is 7{-open. This shows that every
7/-open set is 7{-open as well, 7/ < 7{. &

The extensions arising in the way described in the previous theorem are
called strict extensions. More precisely:

Definition 1.3.1.2 A topological space (X', 7') is called a strict exten-
ston of a topological space (X,T) (or the topology 7' is a strict ex-
tension of the topology 7) if X ¢ X', 7 = 7|X, X is 7/-dense, and
if, denoting by F(x) for v € X' the trace filter N'(x) N {X} of the 7'-
neighborhood filter N”(x), and for A C Xby s(A), the set in (1), the system
of sets S in (2) is a base for 7'.

Corollary 1.3.1.1 Let (X,7) be a topological space, X C X', and let us
join a T-open filter F(x) in X to every point x € X' and let us suppose that
F(x) is the T-neighborhood filter of x for x € X. Then there exists a unique
topology " on X' which is a strict extension of T and furnishes the given
filters F(z) as trace filters; this is the coarsest of all topologies on X' leading
to the given trace filters. &

In order to give a further characterization of strict extensions, let us pay
attention to the following:

Proposition 1.3.1.2 Let (X', 7") be a topological space, X C X' 7'-dense,
7 =71X, N'(x) be 7'-neighborhood filter of v € X', F(z) = N'(z) N {X},
and

s(Ay={z:ze X', Aec F(zx)}

for AC X. Then:

(a) if B C X, then 7'-closure of the set B is X' — s(X — B);

(b) if G C X is T-open, then s(G) is the largest T'-open set whose inter-
section with X is G.

Proof: (a) x € X’ does not belong to the 7'-closure of B if and only if it
is not a 7’-limit point of B, i.e. if and only if there exists in N'(z) a set
not intersecting B which holds if and only if there exists in F(z) a set not
intersecting B, i.e. if and only if X — B € F(z), xz € s(X — B).

(b) According to the foregoing, X’ — s(G) is the 7/-closure of the set
X — G, i.e. the smallest 7/-closed set whose intersection with F is X — G.
Passing to the complements, we obtain the assertion. &
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Let us now introduce the following notion. A system < of the subsets of
a topological space (X, 7) is a closed base if the system {X — F : F € 3}
is a base for the topology 7, i.e. if the sets ' € & are 7-closed and every
7-closed set distinct from X is an intersection of sets belonging to .

Proposition 1.3.1.3 Let a topological space (X',7") be an extension of
(X, 7). The topology T’ is a strict extension of T if and only if the 7'-closures
of the (T-closed) sets B C X constitute a closed base for the topology 7.

Proof: If 7/ is a strict extension of 7, then the sets of the form s(G), where
G is T-open, constitute a base for 7/. By the previous proposition X’ — s(G)
is identical with the 7/-closure of X — G so that the 7/-closures of 7-closed
sets constitute a closed base for 7'.

Conversely, if the 7/-closures of sets in X constitute a closed base for
7/, then the same is true even for the 7/-closures of the 7-closed sets as the
7/-closure of a set B C X is identical with the 7/-closure of the 7-closure
of B. Therefore, in this case, by Proposition 1.3.1.2, the sets of the form
s(G), where G is T-open, constitute a 7'-base, so that 7/ is indeed a strict
extension of 7. &

Proposition 1.3.1.4 If, with the hypotheses and notations of Proposition
1.5.1.2, the topology 7' is reqular, then it is a strict extension of T.

Proof: For an arbitrary point € X’ and its 7’-neighborhood U’ we can
find a 7’-open set G’ and a 7'-closed set I’ such that x € G’ C F' C U’. Let
F=(X'-G")NnX. Then, by F C X' —G’, x cannot belong to the 7’-closure
of F. On the other hand, if y € X’ — U’, then by y € X' — F’, together
with every 7'-neighborhood U] of y, (X’ — F’")NUj is also a 7'-neighborhood
of y which intersects X since X is 7/-dense in X', i.e. U] intersects the set
(X'—=F')NnX C (X'—G')NX = F. Hence the complement of the 7'-closure
of F' is a 7/-neighborhood of x contained in U’. Therefore, by the previous
proposition, we have the proof of proposition. &

Proposition 1.3.1.5 Let X C X' C X", and let T, 7/, 7" be the topologies
on X, X', X" respectively. If 7" is an extension of T, and 7" the one of 7/,
then 7" is an extension of T.

Proof: If 7 = 7/| X, 7/ = 7| X', then 7 = 7”| X. If X is 7/-dense in X', and
X' is 7"-dense in X", then, for every 7"-open neighborhood G” of any point
ze X" G"NX" # 0, thus G"NX' being 7"-open, G"'NX'NX = G"NX # 0,
and X is 7"’-dense in X”. &
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Proposition 1.3.1.6 Let X C X' C X", 7" a topology on X", 7' = 7| X/,
T =7"X =7|X. If 7" is a (strict) extension of T, then 7' is a (strict)
extension of T and 7" the one of T'.

Proof: If X is 7”-dense, then its 7/-closure is equal to X" N X’ = X’ and
it is therefore 7/-dense in X', too. Further, the 7”-closure of X’ is X", thus
X' is also 7-dense in X”.

If 77 is a strict extension of 7, then the 7”-closures of the subsets of X
constitute a closed base for 7" by Proposition 1.3.1.3. Hence the 7"-closures
of the subsets of X’ constitute a closed base for 7" and 7" is a strict extension
of 7/. On the other hand, the 7/-closure of A C X is the intersection of X’
with the 7”-closure of A. But then these intersections constitute a closed
base for 7/ so that, by Proposition 1.3.1.3, 7’ is a strict extension of 7. &

Proposition 1.3.1.7 With the hypotheses and notations of Proposition
1.3.1.2, let 7' be a strict extension of T and x,y € X'. Then

(a) z and y are weakly separated if and only if F(x) # F(y);

(b) x and y are separated if and only if neither of the filters F(x) and
F(y) contains the other;

(¢) x and y are disconnected if and only if O € F(x) N F(y).

Proof: (a) It can be easily seen that the points x and y are weakly separated
if and only if N'(z) # N'(y). If F(xz) # F(y), then of course N'(z) #
N'(y) holds as well. Conversely, if N'(z) # N'(y), then e.g. x has a 7'-
neighborhood which is not a 7/-neighborhood of y and there exists a set
of the form s(G), where G is T-open, such that x € s(G), y € s(G), i.e.
G e F(z), G & F(y).

(b) If neither of filters F(x) and F(y) contains the other, then, as these
filters are open, there exist 7-open sets G and Gy such that G; € F(z),
G1 € F(y), G2 € F(y) and G2 € F(z). Then s(G;) is a 7'-neighborhood
of z not containing y, while s(Gs) is a 7/-neighborhood of y not containing
x. On the other hand, if x has a 7/-neighborhood not containing y and y
has one not containing x, then these can be taken in the form of s(G;) and
s(G2), where G and Gg are T-open, and G € F(z), G1 € F(y), G2 € F(y),

(¢) If  and y have disjoint 7'-neighborhoods Ui and Uj, then Uj N
X € F(z) and Uy N X € F(y) are disjoint sets as well. Conversely, if
0 € F(x) N F(y), then as they are open, there exist 7-open sets G; and Go
such that Gy € F(z), G2 € F(y), G1 NGz = 0. s(G1) and s(G2) will then
be disjoint 7/-neighborhoods of z and y respectively, for which, by the proof
of Theorem 1.1.3.4, s(G1) () s(G2) = s(G1 [ G2) = s(0) = 0 holds. &
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Definition 1.3.1.3 The extension (X',7') of the topological space (X, )
(or the extension 7' of the topology T) is called a reduced extension if x €
X' —X,ye X', x #y imply that x and y are weakly separated.

It follows directly from the definition:

Corollary 1.3.1.2 If the extension (X', ') of the space (X, T) is a Ty-space,
then it is a reduced extension. &

Proposition 1.3.1.8 If (X, 1) is a Ty-space, and (X', 7") is a reduced ex-
tension of (X, 1), then (X', 7') is a Ty-space.

Proof: It need only be shown that if x,y € X, x # y, then = and y are
weakly separated with respect to 7/. But in this case x and y are weakly
separated with respect to 7, thus there exists a 7-open set G such that x € G
and y € G. For a suitable 7"-open set G/, G = G’ N X and then z € G’,

ygEG. &

Proposition 1.3.1.9 Let (X',7') be a strict extension of (X, 1), let F(x)
be a trace in X of the 7'-neighborhood filter of x € X'. (X', 7') is a reduced
extension of (X,7) if and only if v € X' — X, y € X', x # y implies
Fla) # F(y)-

Proof: There follows immediately from Proposition 1.3.1.7 (a). &

Proposition 1.3.1.10 Let X ¢ X' C X", 7" be a topology on X", 7/ =
X', 7 =7|X = 7"X, and let X be 7"-dense in X". If 7" is a reduced
extension of T, then 7' has the same property. Conversely, if 7' is a reduced
extension of T, while 7" is the one of T/, then 7" is a reduced extension of T
as well.

Proof: If 77 is a reduced extension of 7 and z € X' — X, y € X/, = # v,
then there exists a 7”’-open set G such that v € G”, y € G”, so that G"N X’
is a 7/-neighborhood of x not containing y.

Conversely, let us suppose now that 7/ is a reduced extension of 7, 7”
the one of 7/, and let x € X" — X, ye X", v #y. If r € X" — X', then z
and y are weakly 7"-separated. If z € X' — X, y € X” — X', the same can
again be asserted because of the fact that 7" is reduced with respect to 7’.
Finally, if z € X' — X, y € X', then there exists a 7/-open set G’ such that
z € G,y & G and choosing a 7"-open set G” such that G’ = G”" N X', then
z € G’ and y € G” will hold. &
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The content of the following theorem is that strict extensions are essen-
tially defined uniquely by prescribing the trace filters. In order to formulate
this more precisely, let us give the following:

Definition 1.3.1.4 Let (X1, 7]) and (X}, 75) be two extensions of the space
(X,7), f: X{ — X}, a mapping such that f(x) = x for each x € X. A
mapping of this kind will be called a mapping fixing X .

Theorem 1.3.1.2 Let (X}, 7]) and (X}, 75) be two strict extensions of a
topological space (X,7), Fi(x) = N{(2) X}, Faly) = N(y) X} for
r € X{, y € X5, where N{(z) and N3(y) denote 1{- and 74-neighborhood
filter respectively, and let f : X| — X} be an injection fixzing X. The

mapping h = fI35 (X, ) = (F(X]), 71/ (X1) is a homeomorphism if

and only if y = f(x) implies Fi(x) = Faly). If 75 is a reduced extension of

7, and f1 : X] — X} as well as fo : X| — X} are mappings fizing X such
X! X}

that Al (XL r) = (XD, A and fl3 (XY ) —

(f2(X1), 51 f1(X])) are homeomorphisms, then fi = fa.

Proof: If h : (X|,7) — (f(X1),75|f(X])) is a homeomorphism, then
y = f(x) = h(z), = € X7 implies f(N](x)) = N3(y) N {f(X1)}, thus

Fi(e) = Ni(@) (X} = fFV] (@) N{X} =
= Na(y) S (XD XS = Na(y) {X} = Faly) -

Let us suppose now Fi(x) = Fa(y) whenever z € X| and y = f(x).
With the usual notations

s1(A) ={z:xe X|, Ac F(x)}, s2(4d)={y:ye X}, Aec Fy)},

the sets s1(G) constitute a 7{-base, the sets so(G) a 7j-base, and the sets
s2(G) N f(X]) a 15| f(X])-base; G always runs over all the T-open sets.
But, by the hypothesis, z € s1(G), i.e. G € Fi(x) holds if and only if
G € F(f(x)), ie. f(x) € s2(G) N f(X]) and therefore h : (X],7]) —
(f(X1), 75| f(X1)) is a homeomorphism.

If f1 and fo are homeomorphisms corresponding to the hypothesis, then
by the first statement x € X/ implies Fa(f1(x)) = Fa(f2(x)) = Fi(x). But if
z € X, then fi1(z) = fa(z) = z, and if x € X' — X, then, since 74 is reduced,
Fao(f1(z)) = Fa(f2(x)) can hold only if f1(x) = fo(x) by Proposition 1.3.1.9.
)

It was mentioned that the study of extensions of topological spaces is
particularly important for the construction of compact extensions. For this
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purpose strict extensions are very suitable since, if a compact extension of a
space is known, then the strict extension belonging to the same trace filters
is compact as well on account of Corollary 1.3.1.1. In connection to this, let
us notice:

Proposition 1.3.1.11 With the hypothesis and notations introduced in
Theorem 1.3.1.2 let T’ be a strict extension of 7. The topology T is compact
if and only if from any system of T-open sets {G; : i € I} such that for every
x € X' there exists a G; € F(x), a finite subsystem {G;, : k =1,2,...,n}
having the same property can be selected.

Proof: The assertion immediately follows from the fact that the topology
7/ is compact if and only if there can be select a finite cover from every cover
of X’ consisting of sets of the form s(G), where G is a T-open set. &

Definition 1.3.1.5 Every compact extension (X', 7') of a topological space
(X, 1) is said to be a compactification of the space.

As the first application of strict extensions, let (X,7) be an arbitrary
non-compact space. Let us consider the complements of compact closed sets
in X. These are non-empty as was supposed and constitute a filter base
consisting of open sets. Denote by M the (open) filter generated by this
filter base, and construct that strict extension (X', 7’) of (X, 7) in which X’
arises by adding a single new point w to X, and F(w) = M. By assigning
as F(z) the T-neighborhood filter N'(x) to the point x € X, the obtained
extension will be compact. In fact, if {G; : i € I} is a system of T-open
sets for which for every x € X' there exists an ¢ € I such that G; € F(z),
then this holds for = w, i.e. there are an i, € I and a compact 7-closed
set K C X such that X — K C G;,. To each point z € K there belongs an
iy € I such that G;, € N(z), i.e. x € G;,. Let us select a finite covering
from the covering obtained in this way for the compact set K:

n
K C UGixj’ aijK, iijI.
j=1
For the system {Gi,,Gi, - --,Gi,, } it is again the case that, if z € X', one
of its members belongs to F(z), viz. G;, if t =worxz € X — K, or a Gi:r]-
if x € K. Thus by Proposition 1.3.1.11 the following statement is proved:

Proposition 1.3.1.12 If (X, 1) is a non-compact topological space, X' =
X U{w}, F(x) is the filter M in X generated by the complements of the
compact closed sets, then the strict extension (X', 7') corresponding to this
choice is compact. &
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The extension described in the previous proposition is called the Alex-
androff compactification of the space (X, 7). It can be seen from Propo-
sition 1.3.1.2 that the Alexandroff compactification of a space (X,7) is
uniquely determined up to a homeomorphism fixing X.

Proposition 1.3.1.13 With the hypothesis and notations of Proposition
1.3.1.12, F(x) C F(w) cannot hold for any point x € X.

Proof: Assuming that F(z) C F(w), ie. N(z) C M, let X = U,c; Gi,
G; T-open. Then, for an index i € I, x € G}, and there exists a compact,
closed set K such that X — K C G;,. The set K is covered by a finite
number of G; although X is not compact, which is a contradiction. &

It follows from this on account of Proposition 1.3.1.8 and Corollary
1.3.1.2:

Proposition 1.3.1.14 The Alexandroff compactification of any space is a
reduced extension. If the space is a Ty-space, then its Alexandroff compacti-
fication has the same property. &

Proposition 1.3.1.15 The Alezandroff compactification of the space (X, T)
is an Sa-space if and only if (X, 7) is a locally compact Sa-space.

Proof: If (X, 7) is a locally compact Sa-space, then, again with the nota-
tions of Proposition 1.3.1.12, F(x) # F(y) implies () € F(z) N F(y), which
is true whenever z,y € X since 7 fulfils (S3), and for z € X and y = w as
a consequence of the fact that in a locally compact (S2)-space, every point
has a neighborhood base consisting of compact closed sets,  has a compact
closed neighborhood K and then (X — K)NK =0, X — K € F(w). Hence
by Proposition 1.3.1.7 (X', 7') is an Sa-space, where X’ = X U {w}.

On the other hand, if (X’,7') is an Ss-space, then (X,7) is an So-
space. Now x € X implies, by Proposition 1.3.1.13, F(z) # F(w) thus
0 € F(xr) N F(w) so that z has a neighborhood in (X, 7) which does not in-
tersect the complement of a compact closed set and has therefore a compact
neighborhood as well. &

1.3.2 Extension of mappings

In connection with the question of the extension of topological spaces stud-
ied above, the following problem arises quite naturally. Let (X’,7’) be an



104 Proximity spaces and uniform spaces

extension of a topological space (X,7), (Y,7*) a given topological space,
f(X,7) = (Y,7") a continuous mapping. The question can be raised
whether there exists a continuous extension of f onto X', i.e. a mapping
g: (X', 7") — (Y, 7*) which is continuous and for which ¢g|X = f.

A necessary condition for the existence of such a ¢ can be formulated
at once. For this purpose, let us denote as usual the 7/-neighborhood filter
of z € X' by N'(z), and its trace filter in X by N'(z) N {X} = F(x).
Since F(x) > N'(z), then F(xr) — z with respect to 7/. Thus, if ¢ :
(X', 7") — (Y, 7*) is continuous, then g(F(z)) — g(z) and g|X = f implies
f(F(x)) — g(x). According to this there follows:

Proposition 1.3.2.1 Let (X,7) and (Y,7*) be two topological spaces,
(X', 7") an extension of the space (X,7), f:(X,7) — (Y,7*) a given map-
ping, N'(z) the 1'-neighborhood filter of x € X', F(x) = N'(x) N {X}.
In order that a continuous mapping g : (X', 7") — (Y, 7*) exists for which
g|X = f, it is necessary that f : (X, 7) — (Y, 7*) be continuous and f(F(x))
a T*-convergent filter for each v € X'. &

Proposition 1.3.2.2 With the notations of the previous proposition, let T*
be regular, f : (X,7) — (Y,7") a continuous mapping, and let us suppose
that f(F(x)) is a 7*-convergent filter for every x € X'. For x € X, let
g(x) = f(x), and if v € X' — X, let us choose the point g(x) € Y such
that f(F(x)) — g(z) with respect to 7. Then g : (X', 7") — (Y,7%) is a
continuous mapping and g|X = f.

Proof: Since the mapping f : (X,7) — (Y,7*) is continuous, f(F(x)) —
f(z) = g(z) holds for x € X, too. Let us prove that g(N'(z)) — g(z) for
x € X'. Let U* be an arbitrary 7*-neighborhood of g(z), and V* C U* a
closed 7*-neighborhood of g(z). By f(F(x)) — g(x), there exists a 7/-open
neighborhood G of x with f(G N X) C V*. For an arbitrary point y € G,
G is a 7"-neighborhood of y, hence GN X € F(y), and, as a consequence of
f(F(y)) — g(y), then g(y) € fF(GNX) C V* C U*. Accordingly g(G) C
U*. &

Concerning the uniqueness of the continuous extension, the following
holds:

Proposition 1.3.2.3 With the notations of Proposition 1.3.2.1, let g1 :
(X', 7") = (Y, 7*) and g2 : (X', 7") — (Y, 7*) be continuous mappings, where
911X = g| X = f. If T is a Th-topology, then g1 = gs.
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Proof: If F(z) — x, z € X', then g1 (F(x)) — q1(z), g2(F(x)) — g2(z) and
g1(F(x)) = g2(F(x)) = f(F(x)). Since 7* is a Tr-topology, then g;(x) =
ga(). &

Now let (X,U) and (Y, V) be two uniform spaces, f: (X,U) — (Y,V) a
uniformly continuous mapping and examine the question whether f can be
extended in a uniformly continuous way to an extension (X', U’) of the space

(X,U), i.e. whether there can be found a uniformly continuous mapping
g: (X,U') — (Y,V) for which g|X = f. Of course, we have

Definition 1.3.2.1 A uniform space (X',U') is an extension of a uni-
form space (X,U) if X C X', U'|X =U and X is 1yy-dense in X'.

A necessary condition for the existence of such a g is, by Proposition
1.2.5.2, that f has a continuous extension g : (X', 7) — (Y, V) to X'. It is
an important fact that this condition is also sufficient:

Proposition 1.3.2.4 Let (X',U') be an extension of (X,U), (Y,V) a uni-
form space, f: (X,U) — (Y, V) uniformly continuous mapping, g : (X', )
— (Y, 1) continuous and g|X = f. Then g : (X', U") — (Y, V) is uniformly
continuous as well.

Proof: Let V € V be a given entourage, V7 € V an entourage such that
VioVioVi € V. Since f : (X,U) — (Y,V) is a uniformly continuous
mapping, there exists an entourage U € U such that (x,y) € U implies
(f(z), f(y)) € V1. Further, let U’ € U’ be an entourage such that U’ N (X x
X) C U; finally let U{ € U’ be an entourage for which is U{ o U] o U; C U'.
Let us prove that (z,y) € U{ implies (f(x), f(y)) € V.

Let N'(z) be the m-neighborhood filter of the point # € X’. Since
g : (X',me) — (Y,7p) is a continuous mapping, there exists for the 7-
neighborhood Vi (g(x)) of g(x) a V{ € N(x) such that g(V]) C Vi(g(x)).
Similarly there exists Vj € AN’(y) such that g(Vj) C Vi(g(y)). As V{ N
Ui(z) € N'(z) and X is 7p-dense, we can find a point z1 € V{ NU{(z) N X.
In the same way we can see that there exists a point y; € V5 NU{(y) N X.
Now (z1,2) € Uy, (x,y) € U] and (y,y1) € U, so that (z1,y1) € U'. But
then (z1,y1) € V, and hence (f(z1), f(y1)) = (9(z1),9(y1)) € V4. Since
g(z1) € Vi(g(x)), g(y1) € Vi(g(y)), then (g(z),g(y)) € V. &

Lemma 1.3.2.1 If (X',U’) is an extension of a uniform space (X,U), then
the topology Ty is a (strict) extension of the topology Ty.
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Proof: By hypothesis, X is 7y-dense in X'. From U'|X = U, it follows by
Proposition 1.2.4.3 that 774/|X = 74. Thus the topology 7 is an extension of
Ty, namely a strict extension by 1.3.1.4, because the topology 7 is regular
by Proposition 1.1.2.7 and 7y = 75,,,. &

Theorem 1.3.2.1 Let (X,U), (X', U'), (Y,V) be uniform spaces, (X',U")
an extension of (X,U), and let (Y, V) be complete. If f : (X,U) — (Y, V)
is a uniformly continuous mapping, then there is a uniformly continuous
mapping g : (X',U") — (Y, V) such that g|X = f.

Proof: According to Proposition 1.3.2.4, it suffices to show that f has a
continuous extension and to prove this, by Proposition 1.3.2.2, we must show
that if F(z) denotes the trace filter in X of the 7-neighborhood filter of
the point z € X', then f(F(x)) is Ty-convergent for every = € X’. Since
Ty = Ts,,, the topology 7y is regular from Proposition 1.1.2.7. The mapping
f: (X,my) — (Y,7p) is continuous by Proposition 1.2.5.2. Furthermore,
by the previous lemma, the space (X', 74/) is an extension of (X, 7). Now
F(x) — x with respect to 7, thus by Proposition 1.2.9.1 it is a U’-Cauchy
filter, and then it is, on account of Corollary 1.2.9.2, a U-Cauchy filter.
Hence, by Proposition 1.2.9.2, f(F(z)) is a V-Cauchy filter and, as V is
complete, it is Tp-convergent. &

Theorems similar to the preceding ones can be proved in connection with
proximally continuous mappings. For this purpose, the following terminol-
ogy will be introduced:

Definition 1.3.2.2 A prozimity space (X',8") is said to be an extension
of the proximity space (X,8) if X C X', §'|X =6 and X is 15:-dense in
X'. At the same time the proximity &' will be called an extension of the
proximity ¢.

Proposition 1.3.2.5 If (X',U’') is an extension of (X,U), then oy is an
extension of the proximity &y.

Proof: By Proposition 1.2.4.3, d/|X = & x = dy holds, and since 1 =
75,0> then X is 75 -dense in X'. &

Proposition 1.3.2.6 If (X', 0") is an extension of (X,0), then the topology
Tsr 1S a strict extension of the topology Ts.

Proof: Since, by Proposition 1.1.5.1, 75| X = Ts'|x = Ts, then, according
to the hypothesis, X is 75-dense. By Proposition 1.1.2.7 the topology 75 is
regular, thus, it is a strict extension of 75 by Proposition 1.3.1.4. &
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Proposition 1.3.2.7 Let (X',0") be an extension of (X,6), (Y,d6*) a given
proximity space, [ : (X,0) — (Y,0%) a d-continuous mapping, and g :
(X', 75) — (Y,7s+) a continuous mapping for which g|X = f. Then g :
(X',0") — (Y, 0%) is d-continuous as well.

Proof: Let U’ and U* be precompact uniformities inducing the prox-
imity relations ¢’ and §*. By Corollary 1.2.10.7 these uniformities exist.
Let U'|X = U. Then on account of Proposition 1.2.4.3 &y = 4, thus,
f(X,U) — (Y,U*) is uniformly continuous by Theorem 1.2.6.1. There-
fore, Proposition 1.3.2.4 can be applied to show that g : (X', U’) — (Y,U*)
is uniformly continuous, so that by Proposition 1.2.5.2 g : (X’,d") — (Y, %)
is d-continuous. &

Proposition 1.3.2.8 Let (X,4), (X',d), (Y,8%) be three prozimity spaces,
(X',0") an extension of (X,0), (Y,8%) compact. If f : (X,0) — (Y,0%) is
d-continuous, then there exists a d-continuous mapping g : (X',8") — (Y, %)
for which g|X = f.

Proof: Let us consider again the precompact uniformities &’ and U* in-
ducing ¢ and 0* respectively. If U = U'|X, then f : (X,U) — (Y, U") is
uniformly continuous, and uniformity U* is complete by Corollary 1.2.11.5.
Then, by Theorem 1.3.2.1, for the mapping f there exists a uniformly con-
tinuous extension ¢ : (X', U') — (Y,U*), which is also d-continuous by
Proposition 1.2.5.2. &

1.3.3 Extensions of uniform spaces

By former results, we can show that as well as in the case of strict extensions
of topological spaces, the extensions of uniform spaces and proximity spaces
are determined by prescribing the trace filters of the neighborhood filters:

Proposition 1.3.3.1 Let (X,U) be a uniform space, X C X', U] and U,
two uniformities on X' such that both (X', U;) and (X',U}) are extensions
of (X,U), and let Ni(z) and N3(x) be the 7y - and 74 -neighborhood filters
of the point x € X' respectively, and let us suppose that, for every x € X',

(1) Ni(@) N{X} = Ny(z) N {X} = F(a).

Then Uy = Us,.
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Proof: Let g : X’ — X’ be the identity mapping of the set X’, and let
f = g|X. Since by Lemma 1.3.2.1 topologies Ty, and 7 are identical with
the strict extension of 7, with respect to the trace filters 7 (z), then 7y = 7,
by Corollary 1.3.1.1. The mapping ¢ : (X/,Tu{) — (X/,Tué) is therefore
continuous and f : (X,U) — (X',U}) is evidently uniformly continuous.
Hence, Proposition 1.3.2.4 can be applied so that g : (X', Uj) — (X', U) is
uniformly continuous. An analogous reasoning shows that g : (X',U}) —
(X',Uy) is uniformly continuous. Hence, by Proposition 1.2.5.3 U] < U} <
Uy, so that U] =U;. &

We can prove by the same reasoning the following;:

Proposition 1.3.3.2 Let (X,0) be a prozimity space, X C X', 8] and 0}
two prozimities on X', (X', 87) and (X', 04) extensions of (X, ), N{(x) and
Nj(z) the s - and s, -neighborhood filters of the point x € X' respectively,
and let us assume that (1) holds for every x € X'. Then 87 = §,. &

Two questions arise now quite naturally. Let a proximity space (X, J) or
a uniform space (X,U) and a set X’ O X be given and let us assign to every
point € X’ a filter F(z) in X. What conditions do the filters F(z) have to
fulfil in order that there exist a proximity ¢’ or a uniformity &’ on X’ which
is an extension of § or U respectively and for which F(x) is equal, for every
x € X', to the trace filter in X of the 75- or 7-neighborhood filter of the
point 7 Propositions 3.2.2.6 and 3.5.1.2 show that there exists at most one
0" or U’ having this property, but the question is whether it exists at all.

In order to look for necessary conditions, let us consider first the case of
proximities; the conditions found will, of course, be necessary in the case of
uniformities as well, since, by Proposition 1.3.2.5, §; is an extension of §y
whenever U’ is an extension of U.

In order to formulate such a condition, let us introduce the following
definition:

Definition 1.3.3.1 Let (X,6) be a proximity space. A filter F in X is
said to be round if F' € F implies the existence of an Fy € F such that
F € P(F1), where P(F1) is a d-filter of the set F}.

Proposition 1.3.3.3 In a prozimity space (X,0), the d-filter P(A) of any
set ) # A C X, in particular, the T5-neighborhood filter N'(x) of any point
x € X, is a round filter.

Proof: Assertion immediately follows from Proposition 1.1.1.5 (e) as well
as the fact that V(z) = P({z}).
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Proposition 1.3.3.4 In a prozimity space (X,0), every round filter is a
Ts-open filter.

Proof: Let F be a round filter, F' € F. Then there exists F; € F such that
F € P(F}), so that F is a d-neighborhood of Fy, i.e. F10X — F. Then, by
Proposition 1.1.2.4, we have F1 6 X — F = X —int F, thus I, C F; C int F.
Butthenint F € F. &

Proposition 1.3.3.5 If F is a round filter in the prozimity space (X,0),
Y CX,and 0 & FN{Y}, then Fy = FNA{Y} is a round filter in the
subspace (Y, d]Y).

Proof: First of all let us notice that Fy is afilter in Y. Let Fy € Fy. Then
Fy = YNF, where F' € F; thus, there exists an F; € F such that F' € P(F}).
Let F, = Fi(\Y. Then F, € Fy. Furthermore, F' € P(F») holds by
Proposition 1.1.1.5 (c¢), so that, by Proposition 1.1.5.1, Sy = SNY €
Py (Fy), where Py (F3) denotes the (0|Y)-filter. &

Proposition 1.3.3.6 If F is a round filter in the proximity space (X,0)
andY C X is 75-dense, then ) ¢ F N{Y}.

Proof: If FF € F, then by Proposition 1.3.3.4 there exists a 75-open set
G C F such that G € F. For any x € G, G is a 7s-neighborhood of z for
which GNY # 0, so that SNY # (. &

Proposition 1.3.3.7 Let F1 and Fa be round filters in the proximity space
(X,0). If 0 & F1 N Fy, then F = Fy N Fy is a round filter.

Proof: First let us notice that F is a filter. Let F' = F} N Fy € F, where
Fy € Fi, F, € F,. Then there exist F| € F; and Fj € Fy such that
Fy € P(F{), F» € P(Fj). On account to Proposition 1.1.1.5 (f), we have
F=FNF,eP(F'), where I = F{NF) € F, hence F is a round filter. &

Proposition 1.3.3.8 Let (X,0) be a prozimity space. If B is a filter base
in X, then the collection of all §-neighborhoods of all sets R € B constitutes
a round filter called the §-filter of the filter base B and is denoted by
P(F).

Proof: If A; € P(By), Ay € P(Bs), where By, By € B, then there exists a
B € B such that B C B; N By. But then by Proposition 1.1.1.5 (f) and (c)
A1N Ay € P(BiNBy) C P(B). Now it is obvious that P(B) is a filter in X.
Let A € P(B),i.e. A€ P(B) for some B € B. Then by Proposition 1.1.1.5
(e) there exists an A; € P(B) such that A € P(A;). Therefore A; € P(B),
so that P(B) is a round filter. &
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Proposition 1.3.3.9 If B is a compressed filter base in the proximity space
(X,9), then P(B) is also a compressed filter base.

Proof: If ASB, let C,D C X be such that C N D = (), A6X — C and
B§X — D. Further, let C;, D1 C X be sets such that C;N Dy =0, A6 X —C,
and X — C9X — D;. Since B is a compressed filter base, there exists either
an F € B such that FN(X —C) =0, ie. F CC,or an F € B such that
FN(X—-D;)=0,ie. FCDy. If FeBisasetfor which FF C C, then
C C X — DéB implies X — B € P(F) C P(B). On the other hand, if F € B
is such that F C Dy, then from D; C X — C18A follows that FJA, so that
X—-—AcP(F)CPB). &

Proposition 1.3.3.10 If F — x in the prozimity space (X,0), then
P(F) — .

Proof: By Proposition 1.2.11.1, F is compressed, thus P(F) has the same
property according to the previous proposition. Of course, P(F) < F; thus
by Proposition 1.2.11.18 x is a cluster point of P(F) so the statement follows
from Proposition 1.2.11.20. &

It is an important fact that among the round filters, the compressed ones
are identical with the maximal ones. More precisely, the following statement
holds:

Theorem 1.3.3.1 Let F be a round filter in the proximity space (X,0).
If F is compressed, Fi is a round filter for which F C Fi, then F = Fj.
Conversely, if there is no round filter distinct from F and containing it, then
F 1is compressed.

Proof: Let us suppose that F is compressed and F C Fj, where F7 is a
round filter. If A € F;, then there exists a B € F; such that B6X — A.
Then there exists an F' € F such that either F C A or F C X — B. The
second case is impossible from the fact that F' € Fi, so that A € F, and
F =Fi.

Let us suppose now that F is not compressed. Then there exist the
sets A, B C X such that ASB, X —A ¢ F, X — B & F. Hence A # 0,
X — B € P(A) and applying Proposition 1.1.3.2 (c) a sequence (C,) can be
constructed such that Cy € X — B, C,, € P(A), C,, € P(Cp41) for every
n € N. The sets C),, obviously constitute a filter base. Let Fy be a filter
in X generated by it. Fy is a round filter. Indeed, if Fy € Fy, then there
exists an n € N such that C,, C Fy and then C, 1 € Fy, Fo € P(Cpi1).
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Finally, let 7, = F N Fy. By Proposition 1.3.3.7 F; is a round filter, and
since X — A ¢ F, then each set from F intersects the set A, and thus a
fortiori each C,. Evidently F C Fi, and F # Fq, since X — B € Fq, but
X—-B¢F. &

Let us introduce now a notion which gives a characterization of maximal
round filters, i.e. compressed round filters.

Definition 1.3.3.2 A collection F of subsets of a prozimity space (X, ) is
said to be an end if

(a) for arbitrary two sets B,C € F there exists a non-void subset A € F
for which A< B and A < C

(b) if A< B, then either X — A€ F or B€ F.

If a collection F of subsets of X is an end, then ) ¢ F and X € F. It is
easy to see that the system N (x) of d-neighborhood of any point x € X is
an end in X. P. S. Alexandroff introduced first the notion of an end in the
following way:

Definition 1.3.3.3 A collection of sets F from a proximity space (X,9) is
said to be a centered d-system if two following conditions are satisfied:
(a) if A,B € F, then AN B # 0;
(b) if A € F, then there exists a B € F such that B < A.
A mazimal centered §-system is said to be an end.

It is easy to prove that these definitions are equivalent.
Proposition 1.3.3.11 Every end is a mazximal round filter.

Proof: Let F be an end. Let us first prove that F is a filter. From condition
(a) of the definition of an end and the fact that X € F, there follows that
F is a non-empty filter base. Let C' € F and C C D. We must show that
D € F. By condition (a) of the definition of an end there exists a set A € F
such that A < C. Thus by Theorem 1.1.1.1 A <« D. Condition (b) of
Definition 1.3.3.3 demands that either X — A € F or D € F. Condition (a)
excluded the first possibility since A € F, so that D € F, which was to be
proved.

That F is a round filter follows immediately from condition (a) of the
definition of an end.

Finally, we must show that the round filter F is maximal. Let G be a
round filter for which 7 C G and let B € G. Then by the definition of round
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filter there exists a set A € G such that A < B. G is a filter, A € G, so that
X — A ¢ F. Hence by condition (b) of the definition of an end, there follows
that B € F, which proves that F =G. &

Proposition 1.3.3.12 Let F be a round filter in the prozimity space (X, 0)
and A < B. If A intersects every member of F, then B belongs to some
round filter finer than F.

Proof: Let G = {ANF : F € F}. Let us prove that the family G° =
{E C X : thereis an A € G such that A < E} is a round filter finer than
F and that it contains B. Let P and @ be arbitrary elements of G°. Then,
by definition of the family G°, there exist elements C' and D of the family F
such that ANC <« P and AND < Q. Since F is afilter, E=CND € F.
From Theorem 1.1.1.1, it is evident that ANE <« P and ANE < @, so that
ANE < PNQ. Since ANFE € G, it follows that PN Q € G°. Furthermore,
it is obvious that the supersets of elements of family G° are also contained
in G°, so that G° is a filter. By Theorem 1.1.1.1, there exists a set R such
that ANE <« R < PNQ. By taking P = ) and noting that ANE € G
implies R € G°, we can see that G° is a round filter.

Since A < B, by Theorem 1.1.1.1 there follows AN EF < B, so that
B € G°. To prove that G° is finer than F, let us suppose that £ € F.
Since F is a round filter, there exists an F' € F such that FF < E. Then
ANF <« E holds by Theorem 1.1.1.1 and so £ € G°. &

Theorem 1.3.3.2 F is an end if and only if it is a maximal round filter.

Proof: On account of Proposition 1.3.3.11 it is sufficient to show that every
maximal round filter F is an end. Condition (a) of the definition of an end is
clearly satisfied by any round filter. In verifying condition (b), let us suppose
A < B and B ¢ F. Since F is maximal, by the previous proposition there
exists a set F € F for which ANE = (). Therefore E C X—Aand X—A € F
since F is a filter, thus condition (b) of the definition of an end is satisfied.

&

Proposition 1.3.3.13 If F is a round filter in the proximity space (X, 0)
and F — x, then F = N (x), where N'(z) is the Ts-neighborhood filter of the
point x.

Proof: By Proposition 1.3.3.3 A/(z) is a round filter, and, by Proposition
1.2.11.1, it is compressed. Hence, if F is a round filter and F > N (x), i.e.
N(z) C F, then F = N(z). &
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In a uniform space (X, U) the notions "round filter” and ” proximity filter
of a filter base” are always understood with respect to the proximity d;,.

Proposition 1.3.3.14 If F is a Cauchy filter in a uniform space (X,U),
then its d-filter is a Cauchy filter.

Proof: Let U € U be an arbitrary entourage and U; € U an entourage such
that UyoUyolU; C U. If F € F is a set small of order Uy, then U [F| € P(F)
since (F' x (X — Ui[F]))N Uy = 0. Therefore FéyX — Uy[F] and Uy [F] is
small of order U. &

Now the question raised concerning uniform spaces can be answered.

Proposition 1.3.3.15 If (X',U’) is an arbitrary extension of the uniform
space (X,U), N'(z) denotes the 1 -neighborhood filter of v € X', and
F(x) = N(x) N {X} is its trace filter in X, then F(z) is a round Cauchy
filter in (X,U); in particular, if x € X, F(x) is identical with the 7-
neighborhood filter N'(z) of x.

Proof: Since 7y is an extension of 774 by Lemma 1.3.2.1, F(z) is identical
to N(z) if x € X. N'(x) is a §p-round filter by Proposition 1.3.3.3 and, on
account of Proposition 1.3.2.5, &, is an extension of dy;. Therefore F(z) is a
dy-round filter by Proposition 1.3.3.5. Finally N (z), being 74,-convergent,
is a U’-Cauchy filter by Proposition 1.2.9.1. Hence F(x) is a U’-Cauchy filter
base by Corollary 1.2.9.3 and a U-Cauchy filter by Corollary 1.2.9.2. &

Theorem 1.3.3.3 Let (X,U) be a uniform space, X C X', and let us assign
to every point x € X' a round Cauchy filter F(z) in X, in particular, if
r € X, let F(x) = N(z) be the my-neighborhood filter of x. Then there
exists exactly one uniformity U’ on X' such that U’ is an extension of U and
F(z) =N'(z)N{X} for every x € X', where N'(x) is the 1 -neighborhood
filter of the point x.

Proof: From Proposition 1.3.3.1 there exists one uniformity I’ with this
property at the most. It will be shown that there exists indeed at least one.

For an arbitrary entourage U € U’, let a subset U’ C X’ x X' be defined
as follows: (z,y) € U’ if and only if (P x Q) NU # () for every P € F(x)
and every @ € F(y). It will be shown that the sets U’ obtained in this way
constitute a uniform base B’ = {U’: U € U is an entourage} on X'.

If x =y, then PN Q # 0 for any sets P € F(z), Q € F(y), and if
z€ PNQ, then (z,2) € (P x Q)NU so that (z,x) € U'.
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From the definition, it is evident that (z,y) € U’ implies (y,z) € U’
since U = U~ L.

It is also clear that Uy C Us implies U; C Uj. From this, and by the
filter base property of the entourages in U, it follows that B’ is a filter base
as well.

Finally, for the entourage U € U, let Uy € U be an entourage such that
UioUioU; CU. It will be shown that Uj o Uj C U'. Indeed if (z,y) € U7,
(y,z) € U{, let P € F(x) and R € F(z) be arbitrary and Q € F(y) a set
small of order U;. There are then z; € P, y; € @ such that (z1,11) € Uy
and yo € @, 22 € R such that (y2,22) € Uy. Then (y1,92) € Up implies
(x1,22) € U, so that (P x R)(U # 0.

Thus B’ is a uniform base on X’ and it generates a uniformity 4’ on X’.
It will be shown that U’|X = U. For this purpose, let us select first, for an
entourage U € U, the entourage U; € U as before. It will be verified that
U N(X x X)CU. Indeed if z,y € X, (z,y) € U{, then by Uj[z] € F(x),
Uily] € F(y) there exist x; € Uy[z], y1 € Urly] such that (x1,y1) € Uy and
then (z,y) € U. On the other hand, for any entourage U € U, we have that
UcUnN(X x X)as (z,y) € U implies (z,y) € (P x Q) NU for all sets
P e F(z) and Q € F(y).

Now let N’ (z) be the m4-neighborhood filter of x € X'. If V! € N'(x),
then there exists an entourage U € U such that U’'[z] C V'. Let F' € F(x) be
a set small of order U. If y € F', P € F(x) and Q € F(y) are arbitrary, then
x1 € PNF implies (z1,y) € (PxQ)NU, thus (z,y) € U and y € U'[z]NX.
Therefore F C U'lz] N X Cc V/'NX, and V"N X € F(z). On the other
hand, if F' € F(x), then there exists an Fy € F(z) such that F16yX — F.
Hence, for a suitable entourage U € U we have (F} x (X — F))nU = 0.
Let Uy € U be an entourage for which U; o Uy C U. Then Uj[z] N X C F,
so that F € N'(z) N {X}. Indeed, if y € U{[z] N X, then, by (z,y) € U7,
there are in the sets F; € F(x) and Ui[y] € F(y) two points x; € F and
y1 € Ui[y] such that (z1,y1) € Uy. Hence (z1,y) € U, thus y € U[F1] C F.

According to this, N'(z) N {X} = F(x) for all x € X'. Tt is clear that
X is mp-dense in X’ so that U’ is an extension of U. &

From the above remark it is evident that Uy, Us € U, Uy C Us imply
Uj C Us:

Corollary 1.3.3.1 Under the hypotheses and with the notations of Theorem
1.3.8.3, let B be a uniform base generating U. Then the entourages U’
constructed from the entourages U € B constitute a uniform base generating
the uniformity U'. &
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From Proposition 1.3.3.1 and Proposition 1.3.3.15 we obtain:

Corollary 1.3.3.2 Every extension of a uniform space (X,U) can be ob-
tained by means of the construction described in Theorem 1.3.3.3. &

From this and on account of Corollary 1.3.3.1 and Theorem 1.2.10.3 the
following holds:

Corollary 1.3.3.3 Every extension of a pseudo-metrizable uniform space
s pseudo-metrizable as well.

Proposition 1.3.3.16 Under the hypotheses and with the notations of
Theorem 1.53.3.3, let X C X| C X'. IfU] is the extension of U corresponding
to the trace filters F(z) (v € X]) on X1, then U] = U'| X].

Proof: It follows from Proposition 1.2.4.3 and Corollary 1.2.4.2 that U’| X
is also an extension of U, namely precisely that one corresponding to the
trace filters F(z), € X|. Hence by Theorem 1.3.3.3 and Proposition 1.3.3.1
U =UX. &

Proposition 1.3.3.17 Let (X',U’) be an extension of the uniform space
(X,U) and, if x € X', F(x) the trace filter in X of the 1y -neighborhood
filter of the point x. Then the following statements are equivalent:

(a) Ty is a reduced extension of 1;

(b) if v € X' — X, then F(zx) is a non-convergent filter with respect to
wy and x,y € X' — X, x # y imply F(x) # F(y);

(c) forx e X' =X, F(x) — y € X' holds with respect to 7y if (and only
if) y = =x.

Proof: (a) = (b): By Lemma 1.3.2.1 and Proposition 1.3.1.9 (a) means
that if € X' — X, y € X' and z # y, then F(z) # F(y). However, this
implies (b); for, if x € X' — X, F(z) — y € X would hold with respect to
T, then, on account of Proposition 1.3.3.13, F(z) = N(y) = F(y) would
follow since F(x) is a round filter in (X,U) by Proposition 1.3.3.15.

(b) = (¢): If x € X' — X, then by (b) F(z) — y € X cannot hold
with respect to 734, because then the same would hold for 774. On the other
hand, if F(z) — y € X' — X with respect to 74, then F(x) is finer than the
Tyr-neighborhood filter of y and, of course, than its trace filter F(y) as well.
However, F(y) C F(z) can hold by Theorem 1.3.3.1 only if F(z) = F(y)
as F(z) and F(y) are round, compressed filters in (X,U) by Proposition
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1.3.3.15. Hence & = y on account of (b). Of course, F(z) — z holds in any
case.

(¢) = (a): Tt is to be shown that if (c) is fulfilled, then z € X' — X,
y € X', x # y imply F(x) # F(y). However F(z) = F(y) would imply
F(x) — y with respect to 7.

Definition 1.3.3.4 The extension (X', U") of the uniform space (X,U) is
reduced if Ty is a reduced extension of 1y, i.e. if one of conditions (b) or
(c) of the preceding theorem is fulfilled.

Proposition 1.3.3.18 If (X,U) is a separated uniform space and (X',U")
is a reduced extension of (X,U), then (X', U") is separated as well.

Proof: By Corollary 1.2.2.4 the property of U or U’ of being separated is
equivalent to the property of being Tj of the topology 774 or 134 respectively.
Thus Proposition 1.3.1.8 furnishes the statement. &

The following theorem is of fundamental importance in the theory of
uniform spaces.

Theorem 1.3.3.4 Let (X,U) be an arbitrary uniform space, X! D X a set
such that the points © € X, — X can be associated in a one-to-one manner
with all round Cauchy filters non-ty-convergent in (X,U). Denoting by F(x)
the filter associated in this way with the point x € X! — X and making F(x)
equal to the 1y -neighborhood filter N'(x) of © whenever x € X, let U, be
the uniformity on X. constructed in the proof of Theorem 1.3.3.3. Then
(XL, UL) is complete and a reduced extension of (X,U).

Proof: Only the completeness of (X/,U.) should be proved; the rest follows
from Proposition 1.3.3.17. Thus let Z' be a U/-Cauchy filter base. Let
us consider the d-filter P'(Z") of Z" with respect to the proximity &,. By
Proposition 1.3.3.17 this is a U/-Cauchy filter, and, on account of Proposition
1.3.3.8, also a dy-round filter. By Proposition 1.3.3.6, we can speak of the
filter F = P'(Z') N {X} which is, by Proposition 1.3.3.5, a round filter with
respect to the proximity & |X = & (this equality follows from Proposition
1.3.2.5). F is a U!-Cauchy filter base by Corollary 1.2.9.3 and hence a
U-Cauchy filter on account of Corollary 1.2.9.2. Therefore there exists an
x € X/ such that F = F(z). Namely, if F converges to a point z € X with
respect to 74, then F = F(z) by Proposition 1.3.3.13, while, if F is not -
convergent, then F = F(z) will hold for some point x € X — X. However,
denoting the 7-neighborhood filter of = by N'(x), F(z) = N'(z) N {X} >
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N'(z) implies F(x) — 2 with respect to 74, hence x is a 7-cluster point
of the filter P'(Z’) by Proposition 1.2.11.18. On account of Proposition
1.2.11.20, P'(Z') — =, and by Z' > N’(Z’) we have that Z' — z with respect
to Tu- *

Proposition 1.3.3.19 Let (X,U) be an arbitrary uniform space, (X.,U.)
its extension constructed in Theorem 1.3.3.4, X C X' C X[. If (X', Ul|X")
is complete, then X' = X!.

Proof: Lat us suppose that € X/ — X'. Then F(z) — x, but F(z) is also
a (U] X')-Cauchy filter base by Corollary 1.2.9.2 so that there is a y € X’
such that F(z) — y with respect to 1, x» = 77| X', i.e. with respect to 74
on account of Proposition 1.2.4.3. However, z and y are weakly separated,
thus disconnected by the regularity of 7, which is a contradiction. Thus

X =X &

Proposition 1.3.3.20 Let (X,U) be a uniform space, (X, U.) its extension
constructed in Theorem 1.3.3.4 and (X',U') an arbitrary reduced extension
of (X,U). Then there exists a uniquely defined isomorphism h fizing X
which maps (X',U'") into a subspace of (X.,UL). U’ is complete if and only
if (X)) = X].

Proof: If x € X', let N’ (x) be the 1-neighborhood filter of z. Its trace
filter 7' (z) = N'(z) N{X} is a round Cauchy filter in (X,U) by Proposition
1.3.3.15 and F'(x) is not 7y-convergent if x € X’ — X on account of Propo-
sition 1.3.3.17. Moreover z,y € X' — X and = # y imply F'(z) # F'(y).
Therefore it can be given a uniquely defined bijection h : X’ — X" onto
a suitable set X C X” C X/ such that h(x) = x for z € X and F'(x) =
F(h(z)) for z € X' — X, where F(h(x)) denotes the filter belonging to the
point h(z) € X/ according to Theorem 1.3.3.4. Let us denote by U” the ex-
tension of U constructed on the set X” by means of Theorem 1.3.3.3 starting
from the trace filters F(y), y € X”. In this case 7y» and 74 are, by Lemma
1.3.2.1, strict extensions of 73y with respect to the trace filters F”(y) and
F'(y) respectively, so that by Theorem 1.3.1.2 h : (X', 7p) — (X", 74r) is a
homeomorphism. Since h|X : X — X" is the canonical injection of X into
X" and U =U"|X, h|X : (X,U) — (X", UU") is uniformly continuous, thus
Proposition 1.3.2.4 can be applied and shows that h : (X', U') — (X", U")
is uniformly continuous. Interchanging the roles of X’ and X”, we get
in the same way that b= : (X", U") — (X',U") is uniformly continu-
ous. Since by Proposition 1.3.3.16 " = U| X', h : (X", U") — (X", U")
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is the required isomorphism. The uniqueness of h results from the fact
that uniform isomorphism h : (X', U’) — (X”,U/|X") is a homeomorphism
h: (X' ) — (X" 7p|X") if X € X" C X[. Thus Theorem 1.3.1.2 can
be applied.

On account of Corollary 1.2.9.4, Y’ and U/|h(X') are simultaneously
complete, namely by Proposition 1.3.3.19 if and only if h(X') = X!. &

Definition 1.3.3.5 The uniform space (X',U') is called a completion of
the uniform space (X,U) if U’ is a reduced complete extension of U.

Corollary 1.3.3.4 Every uniform space (X,U) has a completion: the space
(XL, UL) constructed in the proof of Theorem 1.3.3.4 is of this kind. Two
completions of the space (X,U) can be mapped onto each other by means of
a uniquely defined isomorphism fizing X .

Proof: It follows from Theorem 1.3.3.4 and Proposition 1.3.3.20. &

Corollary 1.3.3.5 Let (X,U) be an arbitrary uniform space, (X',U') its
reduced extension and (X", U") a completion of (X', U"). Then (X", U") is
a completion of the space (X,U).

Proof: It needs only to be proved that (X”,U") is a reduced extension of
(X,U) which follows from Corollary 1.3.2.1 and Proposition 1.3.1.10. &

Corollary 1.3.3.6 If the uniform space (X" ,U") is a completion of (X,U),
XcX cX”"andU =U"|X', then (X", U") is a completion of (X', U").

Proof: Corollary 1.3.2.1 and Proposition 1.3.1.10 can be applied again. &

Corollary 1.3.3.7 The completion of a separated uniform space is sepa-
rated as well.

Proof: The proof follows immediately from Proposition 1.3.3.18. &

Corollary 1.3.3.8 The completion of a pseudo-metrizable (‘metrizable )
uniform space is pseudo-metrizable (metrizable) as well.

Proof: By means of Corollary 1.3.3.7, it follows from Corollary 1.3.3.3. &

Corollary 1.3.3.9 Let (X,U) be a uniform space. The following statements
are equivalent:

(a) (X,U) is precompact;

(b) the completion of (X,U) is compact;

(¢) uniform space (X,U) has a compact extension.
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Proof: (a) = (b): If (X',U’) denotes the completion of (X,U), then by
Proposition 1.2.6.5 U’ is precompact as well, hence, by Proposition 1.2.11.15,
it is compact.

(b) = (c): Evident.

(¢) = (a): If (X',U") is a compact extension of the space (X,U), then U’
is precompact on account of Proposition 1.3.2.6. Thus, by Corollary 1.2.6.1,
U is precompact as well. &

1.3.4 Extensions of proximity spaces

Proposition 1.3.4.1 If (X',§') is an arbitrary extension of the proximity
space (X,0), N'(z) denoting for x € X' the 15 -neighborhood filter of x
and F(x) = N'(x) N {X} is its trace filter in X, then F(z) is a round
compressed filter in (X,0) and, in particular, if x € X, it is identical with
the t5-neighborhood filter N'(x) of x.

Proof: 74 is an extension of 75 by Proposition 1.3.2.6. Thus F(z) = N (x)
whenever z € X. On account of Proposition 1.3.3.3, N’(z) is ¢'-round
filter for every z € X', thus F(x) is a 0-round filter by Proposition 1.3.3.5.
According to Proposition 1.2.11.1, N’(z) is §’-compressed, thus by Corollary
1.2.11.3 F(z) is ¢’-compressed, and then by Corollary 1.2.11.2 -compressed,
t00. &

Proposition 1.3.4.2 Let (X',§') be an extension of the proximity space
(X,0), U and U’ the precompact uniformities inducing 6 and &' respectively.
Then U' is an extension of U.

Proof: dyx = d|X = 0'|X = & by Proposition 1.2.4.3 and U'|.X is pre-
compact on account of Corollary 1.2.6.1. U’'|X = U according to Corollary
1.2.6.4; further, by 7y = 75, = 75, X is mp-dense in X'. &

The following theorem corresponds to Theorem 1.3.3.3.

Theorem 1.3.4.1 Let (X,d) be a proximity space, X C X', and to every
point x € X' let us assign a round compressed filter in X, in particular, for
x € X, let F(x) = N(z) be the t5-neighborhood filter of . Then there exists
exactly one prorimity &' on X' such that &' is an extension of 5 and, for all
z e X', F(x) = N'(z) N {X} where N'(x) is the 15-neighborhood filter of
the point x.
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Proof: The uniqueness of the proximity ¢’ with the given property follows
from Proposition 1.3.3.2. Let us show that a ¢ of this kind exists.

Let U be the precompact uniformity inducing J; this exists by Corollary
1.2.10.5. The filters F(x) are U-Cauchy filters by Proposition 1.2.11.6 so
that the existence of an extension U’ of U which furnished the given trace
filters F(z) is guaranteed by Theorem 1.3.3.3. Then the proximity &' = &
will do, as on account of Proposition 1.3.2.5, &, is an extension of &, = 9.
)

In the preceding theorem the construction of 4’ was done by means of
the extension of the precompact uniformity inducing §. However, we ¢’ can
also be obtained by extending the topology induced by §. More precisely,
there exists:

Proposition 1.3.4.3 Under the hypotheses of the previous theorem, let 7/
be the strict extension of the topology T5 with respect to the trace filters F(x).
Then, for A', B' c X', A’6'B’ holds if and only if there are A, B C X such
that A0B, A" C A, B' C B, where Y denotes the 1'-closure of the set
Y cX.

Proof: On account of Proposition 1.3.2.6, 75 is a strict extension of 75 and
by Corollary 1.3.1.1 7/ = 75. If now A6B, then A B, and by Proposition
1.1.2.4 A3 B so that A’ C A and B’ C B implies A’0' B'. Conversely,
if A’0'B’, then X’ — B’ € P'(A’) (denoting by this the §’-proximity filter
of A’), hence by Proposition 1.1.1.5 (e) there exist C’, D’ C X’ such that
C' € PIA), D' e PC), X' — B € P(D'), ie. C'FX' — D' and by
Proposition 1.1.1.5 (b) X'— D’ € P'(B’). Let A= C'nX, B=(X'-D')nX.
Then A’ B, and, at the same time, A0B, further A’ C A, B’ C B. In fact, if
z € A, taking an arbitrary set V € N'(z) = P'({z}), then VNC’' € P'({z})
since C" € P'({z}) from Proposition 1.1.1.5 (c). Since X is 7'-dense, then
VNCa'NnX #0,ie. VN A#Q. It can be similarly proved that B’ C B. &

Proposition 1.3.4.4 Under the hypotheses of Theorem 1.3.4.1, let X C
X| C X' and 0] be the extension of 6 on X/ constructed with the help of the
trace filters F(x), x € X|. Then &8} = 0’| X].

Proof: ¢'|X] is also an extension of 6 by Proposition 1.1.5.1, namely that
one with the trace filters F(x). &

Proposition 1.3.4.5 The following two statements are equivalent under
the hypotheses of Theorem 1.3.4.1:
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(a) if v € X' — X, then F(x) is non-convergent with respect to 175 and
v,y € X' = X, x#y imply F(x) # F(y);

(b) 75 is a reduced extension of Ts.

Proof: On account of Propositions 1.3.2.6 and 1.3.1.9 (b) means that if
re X —X,ye X and x # y, then F(x) # F(y) which is the same as (a)
by Proposition 1.3.3.13. &

Definition 1.3.4.1 The extension (X',d") of the proximity space (X,0) is
said to be reduced if it fulfils the statement (b) of the previous theorem
(hence condition (a)).

According to Proposition 1.3.3.18, we obtain:

Corollary 1.3.4.1 Every reduced extension of a separated proximity space
1$ also separated. &

The following corresponds now to Theorem 1.3.3.4.

Theorem 1.3.4.2 Let (X, 6) be an arbitrary prozimity space, X; O X a set
such that, with the points v € X; — X, there are associated in a one-to-one
manner all non-ts-convergent, compressed, round filters in (X,0). Let us
denote by F(x) the filter associated in this way with the point x € X — X,
while F(x) = N (x) for x € X, where N (z) is a 15-neighborhood filter of x.
Then the prozimity 0, constructed according to Theorem 1.8.4.1 on X is
compact and is a reduced extension of 6.

Proof: If U denotes the precompact uniformity inducing ¢, then the non-
convergent round compressed filters in (X, d) are by Theorem 1.1.3.4 the
same as the non-convergent round Cauchy filters in (X,U). Accordingly,
with the notation of Theorem 1.3.3.4, we can write X; = X and §;, = &’
by Theorem 1.3.4.1. Since U. is compact by Corollary 1.3.3.9, all statements
are proved by Theorem 1.3.3.4. &

Proposition 1.3.4.6 Let (X,9) be an arbitrary prozimity space, (X},,0},)
its extension constructed in the proof of Theorem 1.3.4.2, X C X' C X. If
(X', 0| X") is compact, then X' = X

Proof: Let U’ be the precompact uniformity inducing d;. U’ is complete
by Proposition 1.3.2.6, and it is evidently a reduced extension of U’'|X = U,
hence, it is identical with the complete extension of U. If 6; | X" is compact,
then U'| X’ is complete, thus the statement follows from Proposition 1.3.3.19
and Corollary 1.3.3.4. &
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Proposition 1.3.4.7 Let (X},0}) be the extension of the prozimity space
(X, 0) described in Theorem 1.3.4.2 and (X',8") an arbitrary reduced exten-
sion of the same space. Then (X',8") can be mapped by means of a uniquely
determined §-homeomorphism h firing X onto a suitable subspace (X", 8")
of (X}.,0,), where X C X" C X}, 0" = §,|1X". &' is compact if and only if
h(X') = X" = X].

Proof: Let U, U, and U’ be the precompact uniformities inducing the prox-
imities d, ¢;, and ¢’ respectively. U, and U’ are extensions of U by Proposition
1.3.4.2, namely reduced extensions, U. is also complete according to Propo-
sition 1.3.2.6, thus there exists by Proposition 1.3.3.20 a uniform isomor-
phism h : (X' U") — (X", U|X") fixing X, X C X" C X. According to
Proposition 1.2.5.2, h : (X',¢") — (X”,6/|X") is a 0-homeomorphism. On
the other hand, if, for a set X C X" C X}, g : (X',0") — (X", 0,|X") is a
d-homeomorphism fixing X, then g is by Corollary 1.2.6.1 also a uniform iso-
morphism with respect to the uniformity &’ and U.| X", since, by Corollary
1.2.6.1, U/| X" is a precompact uniformity. Hence, according to Proposition
1.3.3.20, g = h. ¢’ and 0;|X"” are simultaneously compact, namely by the
previous proposition if and only if X" = X . &

Definition 1.3.4.2 The prozimity space (X', ') is said to be the Smirnoff
compactification of the proximity space (X,8) if & is a compact and re-
duced extension of 6.

The Smirnoff compactification of the proximity space (X,¢) will be de-
noted by uX. The set uX consists, by Theorem 1.3.4.1, from all compressed,
round filters in X, i.e. from maximal round filters by Theorem 1.3.3.1,
i.e. from ends in X by Theorem 1.3.3.2. Smirnoff defined the proximity
in uX with the help of the operator O( ), which corresponds to each set
A C X the set of all ends £ € uX which contain the set A as an element:
O(A) ={{cuX: Aec¢}.

Now let C' and D be any two sets of uX. We will say they are far apart
if and only if there are two sets A and B in X which are far apart such that
C C O(A) and D C O(B). It can be proved that a relation defined in such
a way is a proximity on uX which is equivalent to the proximity defined in
Proposition 1.3.4.3. Operator O( ) has the following simple, but important
properties:

(a) O(A)NO(B) = O(ANB) for any A,B C X

(b) UAO(Ay) C O(UA,) for any {Ay} C P(X);

(c)if X — A and X — B are far in X, then O(A) UO(B) = uX;



1.3 Extensions of spaces and mappings 123

(d) O{int A) = O(A) holds for any A C X;

(e) O(A) is open in uX for any A C X;

(f) the sets O(T"), where I is any open set in X, form a basis for compact
uX;

(g) for any set A of the proximity space X, the set O(A) is the largest
among the open sets of the space uX which trace is int A in X;

(h) O(H) N H" for cach H € T5;

(1) A —ux - O(X — A) for each A C X.

Let us prove some of these properties.

(c) For this it is enough to prove that any end in £ € uX contains either
Aor B,if X — A and X — B are far in X. In case that A = X it is clear
that X € £. Otherwise X — A = D is non-empty, so the system &p of all
d-neighborhoods of D is a centered by property (Og) formulated in Theorem
1.1.1.1. If every H of an end & meets D, then the union £ U&p of the system
¢p with the end ¢ will be centered d-system, so &p C &. But D6X — B,
which means B € £p and consequently B € £. Finally, in the remaining
case when D is non-empty and the end £ has an element H which does not
meet D, it follows that H C A, and so A € £, which proves our assertion.

(e) On account of Proposition 1.1.2.5, it suffices to prove that O(A) is a
d-neighborhood of each end £ € O(A). Indeed, if £ € O(A4), ie. if A €&,
then there are sets B and C in £ such that C < B <« A. Since B and
X — A are far, by (c) it follows that uX = O(X — B) U O(A), whence
uX —O(A) C O(X — B). But, as a matter of fact, £ € O(C) and the sets C
and X — B are far apart. This means by our definition of proximity in uX
that € is far from uX — O(A), which was to be proved.

We know that the system &, of all §-neighborhood of any point x € X
is an end. It is easy to prove that a mapping f : X — uX, assigning
to each point z € X the end & € uX, is a d-homeomorphism of X into
uX. However, it can be proved that this mapping is at the same time a
§-homeomorphism for which f~1(O(A)) = int A, where A is an arbitrary set
in X. Identifying each point z € X with the end &,, we can see that the
proximity space X is a subspace of the proximity space uX.

In other words, the operator O(P) = Op( ), considered only on the
system of all open sets of proximity space X, is, in fact, the well-known
operator O( ) = OX,( ), which corresponds to each open set I' of X the
largest open set H of uX excises I' from X (see [294]).

Theorem 1.3.4.2 and Proposition 1.3.4.7 give

Corollary 1.3.4.2 Every prozimity space (X,d) has a compactification;
(X}, 6,) in Theorem 1.3.4.2 is one of them. Two compactificatons of the
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space (X,0) can be mapped onto each other by means of a uniquely deter-
mined §-homeomorphism fixzing X. &

By Proposition 1.3.4.7 we have:

Corollary 1.3.4.3 The compactification of a separated prorimity space is
separated. &

Proposition 1.3.4.8 Let (X',0") be a compactification of the prozimity
space (X,0). If U is a uniformity inducing §, then there corresponds to
it a uniquely determined set X C X, C X' and a uniquely determined
uniformity U, on it such that (X[, U;,) is the completion of (X,U) and
Oy, = 8\ X[, is fulfilled. If Uy and Uy are uniformities inducing § and if
Uy < Us, then le/{l D) XZ//{2.

Proof: If & = ¢ and (X/,U.) is the completion of the space (X,U),
then (X7, &) is evidently a reduced extension of (X, ). Hence there ex-
ists a uniquely determined set X C X/, C X’ and uniquely determined
6-homeomorphism h : (X[, dy) — (X7, 0'|Xy,) fixing X. If f denotes its
inverse and Uy, = f~1(U.), then U/, is the required uniformity on Xj, since f
is a uniform isomorphism with respect to U, and U/, by Proposition 1.2.5.10,
dyy, = S~ (6uz) by Proposition 1.2.4.7 and hence oy = 0'|X7; by Proposi-
tion 1.1.6.11. On account of Theorem 1.3.3.4 and Proposition 1.3.3.20, X},
consists evidently of those points z € X’ whose 75-neighborhood filter in X
furnishes a trace filter F(z) which is a #/-Cauchy filter. From this and from
Corollary 1.2.9.1 it follows that U; < Us implies X{/,l ) le,tg- &

Let us consider compactification of completely regular spaces. First, let
us introduce the following notion.

Definition 1.3.4.3 The space (X',7') is said to be an ordinary com-
pactification of the completely reqular space (X, 1) if (X', 7") is a compact
Sa-space and a reduced extension of (X, 7).

Definition 1.3.4.4 Let (X1, 71) and (X}, 7}) be two ordinary compactifica-
tions of the space (X, 7). We say that (X],7]) is a coarser compactifi-
cation than (X5, 7)), or that (X}, 7}) is a finer compactification than
(X1,71), if there exists a continuous surjection f : X, — X{ fixing X. We
say that (X1,7) and (X}, 7}) are equivalent compactifications if there
exists a homeomorphism from X{ onto X} fixing X.

The latter relation is obviously reflexive, symmetric and transitive.
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Proposition 1.3.4.9 Let (X, 1) be a completely reqular space, 6 a prozimity
relation inducing T, and (X', 48") a compactification of the space (X, 7). Then
(X', 75) is an ordinary compactification of the space (X, ).

Proof: (X', 7s) is a reduced extension of (X, 7), it is compact, an Ss-space
and a fortiory Ss-space. é&

Proposition 1.3.4.10 Let (X, ) be a completely regular space, (X', 7') an
ordinary compactification of it. Then there exists ezactly one proximity &'
on X' inducing 7' such that (X', ") is the compactification of (X,d'|X) and
T = 7—6’|X'

Proof: By Theorem 1.1.3.4 there exists exactly one proximity ¢’ inducing 7/
and, on account of Proposition 1.1.5.1, 7 = 7'|X = 75x. Therefore (X', 7')
is a reduced, compact extension of (X,d'|X). &

Theorem 1.3.4.3 (Smirnoff’s theorem) Let (X, 7) be a completely reg-
ular space. Every ordinary compactification of this space can be obtained by
constructing the compactification (X',0") of (X,0) for a proximity 6 induc-
ing T and choosing 7' equal to 5. In this way an ordinary compactification
of (X, 7) is obtained from any proximity 6 inducing T. Let &1 and d2 be two
proximities inducing T, and (X{,7) and (X}, 75) ordinary compactifications
corresponding to them in the way mentioned above. The compactification
(X1, 71) is coarser than the compactification (X}, 75) if and only if 61 < da.
These two compactifications are equivalent if and only if 01 = 0s.

Proof: The first statements are repetitions of Propositions 1.3.4.9 and
1.3.4.10. Let us suppose that 01, d2, (X7, 71) and (X}, 75) have the properties
described in the theorem, and ¢} and &} are extensions of d; and Jy induc-
ing 71 and 7} respectively. If the compactification (X7, 7{) is coarser than
(X5, 75), then there exists a continuous surjection f : (X4,75) — (X1,7)
fixing X. By Proposition 1.1.6.10, f is at the same time d-continuous with
respect to 85 and 0] and then on account of Proposition 1.1.6.6 and Proposi-
tion 1.1.6.11 f |§ is d-continuous with respect to do and d1; thus by Corollary
1.1.6.4 §; < d5. Conversely, if 61 < Jo, then the identity mapping of X is
d-continuous with respect to d2 and d; and therefore by Proposition 1.1.6.6,
denoting by ¢ the canonical injection of X into X7, ¢ is d-continuous with
respect to 05 and ;. Hence Proposition 1.3.2.8 guarantees the existence
of a d-continuous mapping f : X} — X] such that f|X = g. Accordingly,
[ (X4,75) — (X{,7{) is a continuous mapping fixing X on account of
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Proposition 1.1.6.8. Since f is continuous, the topology 71|f(X%) is com-
pact and since X C f(X}) C X], on account of Proposition 1.3.4.6 and
Corollary 1.3.4.2 we have that f(X}) = X].

If the compactifications (X7, 7)) and (X}, 7)) are equivalent, then evi-
dently either of them is coarser than the other one and hence, by the fore-
going d1 < J2 < &1, which implies ;1 = §2. On the other hand, if §; = o,
then (X71,0]) and (X}, d5) are two compactifications of the proximity space
(X,9), where § = 6] = d5. Thus by Corollary 1.3.4.2 there exists a o-
homeomorphism with respect to the proximities 4] and ¢} fixing X which is
a homeomorphism with respect to the topologies 7 and 75 by Proposition
1.1.6.8. &

Proposition 1.3.4.11 The ordinary compactifications of a Tychonoff space
coincide with the Ts-compactifications of the space.

Proof': If (X, 7) is a completely regular Ty-space, then its ordinary compact-
ifications are by the previous theorem simultaneous Tp- and Se-spaces, thus
Thr-spaces. Conversely a Th-compactification is an Ss-space and Tp-space;
thus by Corollary 1.3.1.2 it is a reduced Se-compactification. &

The proximity belonging to a given ordinary compactification according
to Theorem 1.3.4.3 can be obtained directly:

Proposition 1.3.4.12 Let (X, 7) be a completely regular space, § a prox-
imity inducing 7, (X', 8") a compactification of the space (X 8) and 7' = T14.
Then, for A, B C X, A6B holds if and only if A" NB"~ # 0.

Proof: ASB holds if and only if A0’B, and this is valid by Proposition
1.1.2. 4 if and only if A" 5’ . The latter is by Theorem 1.1.3.4 equivalent
toA" NB" =0. &

With the help of this result, the following can be easily proved:

Theorem 1.3.4.4 Let (X,7) be a non-compact, completely regular space.
The Alexandroff compactification of this space is an ordinary compactifica-
tion if and only if the space is locally compact and then this is the coarsest
ordinary compactification of the space.

Proof: By Proposition 1.3.1.14 the Alexandroff compactification (X', 7")
is always a reduced extension and it is on account of Proposition 1.3.1.15
- for a completely regular topology 7 - an Ss-space if and only if 7 is lo-
cally compact. If (X, 7) is a space with this property, then the proximity
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d corresponding to (X’,7’) on X holds between A and B if and only if the
7/-closures of A and B intersect each other; in other words AdB holds if
and only if ZT/ N ET/ = (). The latter is equivalent to the fact that the 7-
closures of A and B do not intersect and moreover - with the usual notation
X'=XU{w}-oneof A" and B" at the most contains w. But if w ¢ A",
then A = ZTI N X is the 7-closure of A and it is compact. On the other
hand, if ZT/ N X is compact, then X — ZT/ belongs to the trace filter F(w),
so that (X — ZT/) U {w} is a 7'-neighborhood of w not intersecting A and

w ¢ A" . Finally, we can say that & is identical with the proximity defined
in Theorem 1.2.11.5 from which it is known that it is the coarsest proximity
inducing the topology 7. &

It is known that there exists the finest among the proximities inducing
the completely regular topology 7; this is called the Czech-Stone proximity.
By Theorem 1.3.4.3, the ordinary compactification corresponding to it is
the finest ordinary compactification. On account of Proposition 1.2.10.11
we have:

Proposition 1.3.4.13 Let (X, T) be a completely regular space, § the prox-
imity on X for which ASB holds if and only if A and B are separated by a
T-continuous function, (X', 8") the compactification of the space (X,0) and
7" = 15. Then (X', 7') is the finest ordinary compactification of the space

(X,7). &

Definition 1.3.4.5 The space (X', 7') in Proposition 1.3.4.13 and the to-
pology ' are called the Czech-Stone compactification of the space (X, 1)
and of the topology T respectively.

It follows from Theorem 1.3.4.3 that two Czech-Stone compactifications
of the space (X,7) can be mapped onto each other by means of a homeo-
morphism fixing X.

Important characteristic properties of the Czech-Stone compactification
are contained in the following theorem:

Theorem 1.3.4.5 Let (X', 7') be an ordinary compactification of the com-
pletely regular space (X, 7). The following statements are equivalent:

(a) (X', 7") is the Czech-Stone compactification of (X, 7);

(b) if (Y, 11) is a compact Sa-space and f: (X,7) — (Y, 71) is a contin-
uous mapping, then there exists a continuous mapping g : (X', 7)) — (Y, 11)
such that g|X = f;
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(¢) if f is a T-continuous bounded function, then there exists a T'-conti-
nuous function g such that g|X = f.

Proof: (a) = (b) : Let 6 be the Czech-Stone proximity of the topology T,
' its extension inducing 7/, d; the proximity inducing 7; (it is unique by
Theorem 1.1.3.4). If f: (X,7) — (Y, 71) is a continuous mapping, then it
is d-continuous by Proposition 1.1.6.9. Thus on account Proposition 1.3.2.8
there exists a §-continuous mapping g : (X', ") — (Y, 1) such that g|X = f.
Then g : (X', 7") — (Y, 71) is continuous as well.

(b) = (c) : Let I C R be a finite closed interval such that f(X) C I.
Then h = f|4 : X — I is continuous with respect to 7 and £|I, where
E|I is a compact Th-topology. Furthermore there exists continuous function
k: (X', 7") — (I,E|I) such that k|X = h. If m : I — R is the canonical
injection and g = mok, then g : (X', 7") — (R, €) is the required continuous
extension of f.

(¢) = (a) : Let 0; be the proximity inducing 7/, 69 = dp|X. It is to
be shown that §p is identical with the Czech-Stone proximity § of 7, i.e.
that 6 < &y, on account of g < 6. However, if A0B, i.e. if by Proposition
1.2.10.11 A and B are separated by a 7-continuous function f, then let
g : X " — R be a 7' -continuous functlon for which ¢g|X = f holds. Then

g(A” ) =0, g(B ) =1, s0 that A" N B" = (. But then according to
Proposition 1.3.4.12 it follows that A6pB. &

Proposition 1.3.4.14 Let (X,7) be a completely reqular space, (X1,71)
one of its completely regqular, reduced extensions. If (X1,71) is a subspace
of the Czech-Stone compactification of the space (X, T), then every bounded
T-continuous function has a Ti-continuous extension. If (X1,71) has the
latter property, then any Czech-Stone compactification (Xo,2) of the space
(X1,71) is at the same time the Czech-Stone compactification of (X, ).

Proof: The first statement follows directly from the previous proposition.
To prove the second part of the statement, let us notice that (Xo,7) is
a reduced extension by Proposition 1.3.1.10, and hence an ordinary com-
pactification of (X,7). If f is a bounded 7-continuous function, then it
has a 71-continuous extension which is itself bounded. Hence it can be 7o-
continuous extended over Xs. Thus the statement follows from Theorem
1.34.5. &

The Czech-Stone compactification was originally defined with the help
of the Czech-Stone proximity. However, it can be constructed by means of
a uniformity as well.
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Proposition 1.3.4.15 Let (X, 7T) be a completely reqular space, ®* the fun-
ction family consisting of all bounded, T-continuous functions. If (X',U') is
the completion of the uniform space (X,Ugp~), then (X', 7y) is the Czech-
Stone compactification of (X, 7).

Proof: The proximity dy,. = d¢~ is identical with the Czech-Stone prox-
imity of 7 by Proposition 1.2.10.11 and Ug~ is precompact on account of
Proposition 1.2.10.7. (X',U’) is a compact, reduced extension of (X, Usp~)
by Corollary 1.3.3.9, thus (X', &, ) is identical with the compactification
(X, 6g+) while (X', 75,,) = (X', 7y) is identical with the Czech-Stone com-
pactification of (X, 7). &

Therefore compact spaces can be also characterized among the com-
pletely regular spaces as follows:

Proposition 1.3.4.16 Let (X, ) be a completely reqular space, ®* the fun-
ction family consisting of bounded, T-continuous functions. The following
statements are equivalent:

(a) (X,7) is compact;

(b) Ugp~ is complete;

(¢) (X,7) is the Czech-Stone compactification of itself.

Proof: (a) = (b) : By Proposition 1.2.10.11 7. = 7, so that on account
of Proposition 1.3.2.6 the compactness of 7 implies the completeness of Ugp~.
(b) = (¢) : If Up+ is complete , then (X,Usp-) is a completion of itself
and by the previous proposition the Czech-Stone compactification of (X, 7)
is (X, 4,.) = (X, 7).
(¢) = (a) Obvious.

Historical and bibliographic notes

Specific examples of extensions of spaces, such as the completion of ra-
tional numbers by means of real numbers, or the compactification of the
complex plane by adding the ”point in infinity,” have been known for a long
time. The work on ”prime ends” by C. Caratheodory in 1913 gives further
impetus to the development of general theory of extensions (see [42]). The
beginnings of such a theory can be found in articles of H.Tietze in 1924, who
used the concept of ”one-point compactification” and ”absolute H-closure,”
(see [322]), P. S. Alexandroff in 1924 ( see [3]) and P.S. Urysohn in 1924 (see
[11]), who, besides using these concepts, introduce ”bicompactness”. A. Ty-
chonoff in 1930 made further significant advances, among others, by pointing
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out the importance of complete regularity in this context (see [324]). Elab-
orating and analyzing Tychonoff’s ideas further, E. Czech proved in 1937
that the compactification, now known as the Czech-Stone, is maximal in the
set of all compactification of a Tychonoff space (see [62]). M. H. Stone also
obtained the same results, as well as many other results for extensions (see
[312]). A large number of results concerning the Czech-Stone compactifica-
tion is collected in R. C. Walker’s book [328].

The centred system is used by the Soviet school instead of the filter.
An excellent survey of centred systems in topological spaces has recently
been published by S. Iliadis and S. V. Fomin [149]. The concept of an
end was originated by Alexandroff, while both H. Freudentahl (see [112])
and P. S. Alexandroff (see [5], p. 244) defined a round filter. Ju. M.
Smirnoff used these devices in his proximal extension theory. The results on
proximal extensions are due to Smirnoff [294], who was the first to explain
the relationship between proximities and compactifications.

1.4 Connectedness of uniform and proximity spaces

1.4.1 Definition and basic properties

Connectedness of topological spaces can be defined in terms of continuous
function to a discrete space. We will consider similar properties for prox-
imity and uniform spaces obtained by replacing continuous functions by
d-continuous or uniformly continuous functions.

Definition 1.4.1.1 A proximity space (X,0) is d-connected if every -
continuous function on X to a discrete space is constant. A subset A of X
18 0-connected if it is 6-connected as a prorimity subspace.

Since each d-continuous function, by Proposition 1.1.6.8, is 75-continuo-
us, then every 75-connected space is also §-connected. The converse in gen-
eral case is not true.

Example 1.4.1.1 To prove that the converse is not true, let us consider
the set Q of rational numbers as a proximity subspace of the space of real
numbers with the metric proximity d4. As a proximity subspace of R, the
space (@, £€]Q) is not connected.
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However, it is d4-connected. Indeed, let f be any J-continuous function
from Q to discrete space {0, 1}. If it is not constant, then the sets f~1({0})
and f~1({1}) are far, because the sets {0} and {1} are far in the space {0, 1}.
But then one of them must be empty. Indeed, in the opposite case these
sets will be downright subsets of Q whose union gives the space Q; but since
they are far, it follows that d(f~1({0}), f~1({1})) = > 0. This means that
there exists an interval (o, ) C R with the property that |3 — a| > 0, and
(o, 3) N Q = 0, which is a contradiction, because the set Q is dense in R.
Thus, one of the sets f~1({0}) and f~1({1}) must be empty, which proves
that the function f is constant.

Proposition 1.4.1.1 In any prozimity space (X,0) the following state-
ments are equivalent:

(a) the space (X,9) is §-connected;

(b) AS(X — A) for each subset A of X, 0 # A # X;

(c) if X = AU B and ASB, then one of the sets A and B is empty.

Proof: (a) = (b) : Let us suppose that there exists a non-empty set A # X
such that A5(X — A). Let us define the function f : X — {0,1} in the
following manner: f(A) = {0}, f(X — A) = {1}. Since {0,1} is a discrete
space, the sets {0} and {1} are only sets which are far. Also, we have that
FY{0Néf~1({1}), and therefore f is a d-continuous function which is not
constant.

(b) = (c¢) : Let us suppose that there are non-empty sets A, B C X such
that X = AU B and AdB. Since X = AU B, then X — A C B. Therefore,
by Proposition 1.1.1.2 (b) AdX — A holds.

(¢) = (a): Let f: X — {0,1} be a d-continuous function which is not
constant. Then A = f~1({0}) and B = f~!({1}) are non-empty sets for
which it is obvious that AU B = X, and since f is a d-continuous function,
we have that A0B. &

Corollary 1.4.1.1 A prozimity space (X, ) is 0-connected if and only if it
can not be presented as the union of two non-empty far sets.

Proposition 1.4.1.2 A subspace (Y,dy) of the proximity space (X,0x) is
d-connected if and only if for each two sets A and B for whichY = AU B
and Adx B holds, one of them is empty.

Proof: Let us suppose that the subspace Y is d-connected and let A and
B be the sets for which Y = AU B and Adx B holds. Then, Ady B, and
therefore, by the previous proposition, A = () or B = () holds.
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To prove the converse, let us suppose that Y is not a d-connected sub-
space of X. Then by previous proposition there are non-empty sets A and
B such that Y = AU B and Ady B. But then for the sets A and B we have
that Y = AU B and A0xB. &

Proposition 1.4.1.3 Let (Y,0y) be a d-connected subspace of proximity
space (X,0x). If the sets A and B are far in X and Y C AU B, then
either Y C A orY C B.

Proof: The sets ANY and BNY are far in X by Proposition 1.1.1.2 (b),
while their union is equal to Y. Therefore, by the previous proposition, one
of them must be empty. But then the set Y is contained in the other. &

Proposition 1.4.1.4 Let Y be a d-connected subspace of the d-connected
space X. If A and B are far subsets in the space X and if X —=Y = AU B,
then AUY and BUY are 6-connected sets.

Proof: Let us suppose that the set AU Y is not d-connected. Then by
Proposition 1.4.1.1 there exist non-empty far sets M and N for which AUY
= M UN holds. Since Y C AUY = M U N, the set Y is contained in
exactly one of the sets M or N by Proposition 1.4.1.3. Let us suppose that
Y ¢ N. Then YNM = (). So, from M C AUY follows M C A. Since AdB,
we have that M0B. Now, from MSN and M&B we have that Md(B U N).
It is obvious that X =Y UAUB =(MUN)UB =M U (NUB), so X is
not d-connected, which is a contradiction. &

Proposition 1.4.1.5 Let {Y; : s € S} be a family of d-connected subspaces
of the proximity space (X,0). If there exists an so € S such that the set Yy,
is mear to each of the sets Ys, then the union U{Ys : s € S} is a §-connected
subspace of the space X.

Proof: Let us suppose that Y = U{Y; : s € S} = AUB, where A and B are
far subsets of X. Then, by the previous proposition, the set Y, is contained
in one of the sets A or B. Let us suppose that Y;, C A holds. Then also
Y; C A for each Y;. Indeed, if Y; C B for some Y;, then by Proposition
1.1.1.2 (b) we have that Y;,8Ys, contrary to the supposition. Therefore we
have that Yy C A for each s € S. Hence Y C A. But then B = () holds, and
thus, by Proposition 1.4.1.2, Y is a §-connected subspace of the space X. &

Corollary 1.4.1.2 If the family {Ys : s € S} of §-connected subspaces of
the prozimity space X has a non-empty intersection, then the union |J,cq Ys
s a d-connected subspace of the space X. &
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Corollary 1.4.1.3 If a subspace Y of the prozimity space X is d-connected,
then every subspace Z of X which satisfies the condition Y C Z C 'Y s also
d-connected. &

Proof: The family {Y U{z} : x € Z} satisfies the condition in Proposition
1.4.15, with Y,, = V. &

Corollary 1.4.1.4 If the prozimity space X contains a §-connected dense
subspace, then X is a d-connected space. &

Corollary 1.4.1.5 If any two points of the proximity space X can be joined
by a §-connected subspace of X, then the space X is §-connected.

Proof: Let zyp € X be a fixed point of the space X. For every point z € X
let Y, denote a connected subspace of X joining xg and x. Then the family
{Y, : x € X} satisfies the assumptions of Consequence 1.4.1.2, which implies
that UxeX Y, = X is a d-connected space. &

Proposition 1.4.1.6 The Smirnoff compactification (X*,0*) of the prox-
imity space (X,0) is 0-connected if and only if the prozimity space X is
d-connected.

Proof: Let us suppose first that the space (X,d) is d-connected. If the
space (X*,0%) is not *-connected, then it is not 75«-connected. Therefore
there exist two non-empty sets A and B which are simultaneously open and
closed in X*, different from X*, such that

AUB= X", ANB=10.
But then
(ANnX)Uu(BNX)=X, (AnX)N(BNX)=10,

for which we have that AN X # () and BN X # (). Indeed, if the equality
AN X = is true, then X = BN X C B, and since X is dense in X*, and
B is closed in X*, we have that B = X*, which is in contradiction with
the choice of the sets A and B. In an analogous manner we can prove that
BNX # (. We can also see that A # X # B. Indeed, if X = A, then
B X =0, which is a contradiction.

Let us prove now that
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where 7* = 75+. To do this, let us first note that AT —=Aand B” =B. If

z € ANX" | then it is obvious that x € A" = A. To prove the converse
inclusion, let us suppose that there exists some point x € A which is not

contained in the set A X " . In this case there exists a neighborhood
U, of the point x in the space X* with the property U, N (AN X) = 0,
which is impossible, because X is dense in X*. In an analogous manner
it can be proved that B AX~ = B. Now from AN B = 0 follows the

equality AN X" NnBnx' =0. Thus, by Theorem 1.1.3.4 and Proposition
1.1.2.4 we have that (AN X)§ (BN X), i.e. (AN X)3(B N X). Since
X —-(ANnX)C BNX,then (AN X)§(X — (AN X)), from which, according
to Proposition 1.4.1.1, there follows that the space (X, d) is not J-connected,
which is in contradiction to the supposition.

To prove the converse, let us first note that the discrete space {0,1},
as a subspace of the space R of real numbers, is close and compact. Let
f: X — {0,1} be any d-continuous function. Then by Proposition 1.3.2.8
there exists a unique determined J-continuous extension f* : X* — {0,1} of
f from X to the compactification X*. Since X* is *-connected, the function
f* is constant. But then the function f is also constant, which proves that

the space X is d-connected. &

Proposition 1.4.1.7 The Czech-Stone compactification (X*,6*) of a proz-
imity space (X, 0) is -connected if and only if the prozimity space (X,9) is
d-connected.

Proof: Let us suppose that (X*,0*) is d-connected and let f: X — {0,1}
be any d-continuous function. Then by Proposition 1.3.2.8 there exists a
d-continuous extension f*: X* — {0,1} such that f*|X = f. Since X* by
supposition is d-connected, the f* is a constant function. But then f is also
a constant function, so that X is a d-connected space.

Conversely, if X is a d-connected space, then, by Corollary 1.4.1.4, the
space X* is d-connected. &

Proposition 1.4.1.8 If a space (X, T) is d-connected with respect to any
proximity relation on X which is compatible with the topology T, then the
space X is T-connected.

Proof: Let S be a set of all proximity relations on X compatible with the
topology 7. Then by Corollary 1.1.4.2 between them there exists the finest
proximity 0 and this is exactly the Czech-Stone proximity. It is compati-
ble with the topology 7, so that (X,d) is a d-connected space. According
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to Theorem 1.3.4.3, Smirnoff compactification (X*,§*) is the finest ordinal
compactification. Therefore (X*,0*) is the Czech-Stone compactification of
proximity space (X, 7). Since, by the previous proposition, (X*, d§*) is a
d-connected space, it is, on account of the compactness of the space X™* and
by Proposition 1.1.6.10, 7s«-connected. Therefore (X, 7) is 7-connected by
the well known theorem of general topology. &

Proposition 1.4.1.9 Let f be a §-continuous mappingfrom a §-connected
proximity space (X,0x) onto a proximity space (Y,0y). Then the space Y
s §-connected.

Proof: If the proximity space (Y, ) is not J-connected, then by Proposition
1.4.1.1 there exists a set B, ) # B # Y, such that Béy (Y — B). Since f is a
§-continuous mapping, we have that f~1(B)dxf~ (Y — B) = X — f~1(B).
The set f~!(B) is non-empty and different from X, so that the space X is
not d-connected by Proposition 1.4.1.1. &

Proposition 1.4.1.10 The Cartesian product [[;c; X;, where X; # 0 for
each i € I, is §-connected if and only if all spaces X; are §-connected.

Proof: If the Cartesian product X = J[,.; X; is d-connected, then all
spaces X; are §;-connected by previous proposition, because the projection
p; : X — X; is a d-continuous mapping of X onto X;.

We shall now prove that Cartesian product of d;-connected spaces
(Xi,0;), i € I, is a d-connected space. To begin with, let us consider
the Cartesian product X x Y of two J-connected proximity spaces. Any
two points (x1,y1) and (z2,y2) of the space X X Y can be joined by the set
(X x{y1})U({z2} xY"), which is -connected as the union of two d-connected
sets with a non-empty intersection. Hence, the space X x Y is §-connected
by Corollary 1.4.1.5.

By induction one can readily show that any finite Cartesian product of
d-connected spaces is also a d-connected space.

Let us consider the family {X; };er of non-empty d-connected spaces. For
every ¢ € I let us choose a point a; € X;. Let us denote by Z the family of
all finite subsets of the set I and for every L € T let Cp = [[;c; As, where
A;={a;} ifi € L, and A; = X; if i € L. By the finite case of our theorem,
the family {C,} ez consists of d-connected subspaces of the space X. Since
a = (a;) € ez Cr # 0, it follows from Corollary 1.4.1.2 that the union
C = Uz Cr is 0-connected. But C' is a dense subspace of X, so that we
conclude the proof by applying Corollary 1.4.1.4. &
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Definition 1.4.1.2 A J-continuous mapping f from a prozimity space X
to a prorimity space Y is called d-monotone if for every y € Y the set
f~Yy) is a 5-connected set.

Definition 1.4.1.3 A d-continuous mapping f : (X,0x) — (Y,dy) is 8-
quotient if for each C,D C Y, Céy D if and only if f~1(C)éxf~1(D).

Proposition 1.4.1.11 If f is a §-monotone and d-quotient mapping from
a prozimity space X onto a proximity space Y , then f~1(C) is a 6-connected
subset of X for each §-connected subset C' of Y.

Proof: Let us suppose that f~1(C) is not d-connected. Then by Corollary
1.4.1.1 there exist non-empty far sets A and B such that f~1(C) = AU B.
Since the mapping f is J-monotone, we have that for each y € C the set
f~Y(y) is 6-connected and contained in one of the sets A or B by Proposition
1.4.1.3. Let us define the sets P and @ in the following way:

P={yeC:f'yycA}, Q={yeC:f'(y)CB}.

It is obvious that A = P, B = f~YQ) and C = PUQ. Since f
is a d-quotient and AdB, then PJQ, i.e. C is not connected, which is a
contradiction. &

Definition 1.4.1.4 A finite sequence of the subsets Ai,As,..., A, of a
proximity space X is a d-chain if A;0A;41 for each i = 1,2,...,n — 1.
A family A of subsets of the proximity space X is called 6-chained if for
every two elements A and B of A, there exists a §-chain consisting of the
elements of the family A which joins the sets A and B.

Proposition 1.4.1.12 If Ay, As,..., A, is a §-chain and if the sets A;,
i=1,2,...,n, are d-connected, then the union U{A; : i =1,2,...,n} is a
d-connected set.

Proof: For n = 2 the assertion is true by Proposition 1.4.1.5. Now, the
assertion of the proposition can be proved easily by induction. &

Proposition 1.4.1.13 Let A = {A; : s € S} be a §-chained family. If A

is a 6-connected set for each s € S, then the set A = |J,cq As is §-connected.

Proof: Let a and b be any two points of the set A. Let us suppose that
a € As and b € Ag,. Since A is a d-chained family, there exists a J-chain
consisting of (d-connected) elements of the family .4 which joins the sets A,
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and As,. According to the previous proposition the union of all the sets of
this d-chain is a d-connected set. But then by Corollary 1.4.1.5 the set A is
O-connected. &

Definition 1.4.1.5 A coverlU of a prozimity space X is called a proximity
cover if for any two near sets A and B there exists a set U € U such that
ANU #0 and BNU # 0.

Proposition 1.4.1.14 FEwvery proximity cover of a d-connected proximity
space X is a d-chained family.

Proof: Let U = {Us : s € S} be a proximity cover of the J-connected
space X. Let us assume that there are the sets Uy, and U, in U4 which
cannot be joined by a d-chain composed from elements of the cover U. Let
us denote with A the union of all elements of ¢ which can be joined with
Us, by some d-chain C C U and let B be the union of all other elements of
U. It is obvious that X = AU B. Let us prove that AGB. Indeed, if A6B,
then there exists a set U € U such that UN A # () and UN B # (). Therefore
there exist the sets U, C A and U,,, C B for which we have U N Uy, # () and
UNU,y, # (. But then the set Uy, can be joined with U, by some §-chain
S C U, which is impossible. Thus AJB holds, so that X is not d-connected.
This contradiction proves the proposition. &

Definition 1.4.1.6 A uniformity space (X,U) is uniformly or U-connec-
ted if every uniformly continuous mapping from X to a discrete space {0,1}
18 constant.

Proposition 1.4.1.15 Let (X,U) be a uniform space and let § = oy be a
proximity on X generated by the uniformityU. Then the following conditions
are equivalent:

(a) the proximity space (X, ) is §-connected;

(b) for every d-continuous function f : X — R the set f(X) is dense in
some interval of R;

(c) the uniform space (X,U) is U-connected;

(d) for every uniformly continuous function f : X — R the set f(X) is
dense in some interval of R;

(e) the uniform space X is U-chain connected, i.e. for every pair
(p,q) € X x X and every U € U there exists n € N such that (p,q) € U™.

Proof: (a) = (b) Let us suppose that the set f(X) is not dense in the
interval (inf f(X), sup f(X)). In this case there exists a point z in this
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interval which is not in closure f(X) of the set f(X). Therefore there
exists some finite interval (a,b) C (inf f(X), sup f(X)) which contains point
x such that f(X) N (a,b) = 0. Let us define the function g on the set
(—o0,a] U[b,+00) into the discrete space {0, 1} in the following way:

|0, z€(-00,qa],
g(m)—{ 1, ze€b+00).

It is obvious that the function g is d-continuous, so that go f : X — {0,1}
by Corollary 1.1.6.3 is a J-continuous function which is not constant. But
this is in contradiction with the supposition that the proximity space X is
d-connected.

(b) = (d) According to Proposition 1.2.11.18 every uniformly continuous
function is J-continuous, and 74 = 75, holds. If the condition (b) holds for
a d-continuous function f, then it also holds for f as a uniformly continuous
function.

(d) = (¢) Let f: X — {0,1} be a uniformly continuous function. Ac-
cording to the supposition the set f(X) is dense in some interval of the real
line, i.e. the closure f(X) is a segment of the real line which contains the
points 0 and 1, which is impossible. Therefore we have that f(z) = 0 for
each z € X, or f(z) = 1 for each z € X. Consequently, the function f is
constant on X, so that the uniform space (X,U) is uniformly connected.

(¢) = (e) Let us suppose that the uniform space (X,U) is not U-chain
connected. Then there exist a pair (p,q) € X x X and a set U € U such
that (p,q) ¢ U™ for each n € N. Since (p,p) € U, the set of all the points
x € X for which (p,z) € U™ for some n € N holds is not empty. Let us
define the function f : X — R in the following way:

0, if there exists some n € N such that (p,z) € U™,
flz) = :
1, in others cases.

It is obvious that f(p) = 0 and f(q) = 1. Let us prove that the function
f is uniformly continuous. To do this we can note that the discrete space
{0,1} for the base of uniformity has the set {(0,0),(1,1)}. Let us prove
that U C f~1(A), i.e. f~1(A) € U, from which follows that the function f
is uniformly continuous. Let (x,y) € U. If f(z) = 0, then (p,x) € U™ for
some n € N, so that (p,y) € U oU" = U™ for some n € N, from which
follows that f(y) = 0. On the other hand, if we suppose that f(y) = 1, then
there must be f(z) = 1. Indeed, if f(x) = 0, then (p,z) € U™ for some n,
from which follows that (p,y) € U o U™ = U™l ie. f(y) = 0, which is in
contradiction with the supposition. Hence U C f~1(A),ie. f71(A) €U. In
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this manner we have proved that the function f : X — {0,1} is uniformly
continuous. Since it is different from the constant function, X is not a
uniformly connected space. A contradiction obtained in such a way proves
the implication (c) = (e).

(e) = (a) Let X be a U-chain connected uniform space and let A be a
non-empty subset of X different from X. Let us prove that A6X — A, from
which by Proposition 1.4.1.1 there follows §-connectedness of the space X.
Let us choose any point p € A and let ¢ be an arbitrary point of the set X —A.
Then for every U € U there exists a natural number n such that (p,q) € U"™.
Thus there exists a sequence of points p = xg,x1,...,TE_1,Tk,...,Tn = ¢
with the property that (zx_1,2;) € U for each k = 1,2,...,n. Since q €
X — A, there exists in this sequence the first point x; for which z; € X — A
holds and therefore we have that x;_1 € A. So we prove that for each U € U
there exists a pair (x;—1,x;) of the points z;_1 and x; of the set X with the
property that (x;_1,x;) € U. Hence (Ax (X —A))NU # 0§ for every U € U,
which proves that A6X — A. The proof of the proposition is completed.

In connection with parts (b) and (d), let us notice that one cannot replace
the condition given on the range of the function f by the requirement that
the range of f is an interval as the example of the rationales with f(z) =z
shows. It is natural to ask what would happen if one would require that
all d-continuous functions on a proximity space have the Darboux property.
The answer is rather unexpected.

Proposition 1.4.1.16 Let (X,0) be a Lindeldf space. If every real-valued
function on X has the Darbouz property, then X is connected (in topological
sense).

Proof: Let us suppose that X is not connected and let X = AU B, where
A and B are closed and disjoint sets. Let us denote by X* the Smirnoff
compactification of X associated with the proximity ¢ and let us set Z =
A B, where the closures of the sets A and B are taken in the space X*.
By the theorem of Smirnoff (see [293]), there exists a real-valued continuous
function f on X* for which f(p) = 0 holds if p € Z, but f(p) > 0 for
p € X. Let us define a real-valued function g on X* by setting g(p) = f(p)
for p € A and g(p) = —f(p) for p € B. Clearly, the range of the function
g/ X is not an interval since g|X is never 0, but does take on both positive
and negative values. Since f is continuous on A, —f is continuous on B,
and f and —f agree on A( B, g is continuous on X*. Hence the restriction
g|X of g to X is d-continuous. However, the function g does not have the
Darboux property. &
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1.4.2 J$-components

Definition 1.4.2.1 The §-component Cs(xz) of a point x in a prozimity
space X is the union of all 6-connected subsets of X which contain the point
x.

By Proposition 1.4.1.2 it follows that the d-component of each point is
a 0 connected set. It is easy to see that the d-components of two distinct
points of a proximity space X either coincide or are far sets in X. In this
way all d-components in X constitute a decomposition of the space X into
pairwise far d-connected subsets, which are called the )-components of the
proximity space X.

Let us point out that the d-components of a proximity space (X,d) in
general does not coincide with the components with respect to the topology
75 generated by the proximity §. For example, the set Q of rational numbers
is a d-connected space, as is well known, and therefore Q is the d-component
of every point z € Q, while the 75-component of the point x € Q is the set

Since each 7s-connected set is also d-connected, each 75-component is
contained in some §-component. However, if X is a compact proximity
space, then the d-component Cs(x) of a point z € X is contained in the
quasi-component (), of the point x. Indeed, let F' be both an open and
closed set (in the topology 75) such that x € F. Since X is a compact space,
the sets F' and X — F' are far. Therefore the sets Cs(x) N F and Cs(z) — F
are also far. Since Cs(x) N F # () and the set Cs(x) is d-connected, we have
that Cs(x) — F =0, i.e. Cs(z) C F. Thus Cs(z) C Q.

Proposition 1.4.2.1 The d-components of a proximity space (X,0) are
closed sets in topology T5.

Proof: The proof follows from Corollary 1.4.1.3. &

Proposition 1.4.2.2 Let X be a d-connected proximity space. If A is a
d-connected subset of X and C C X — A is a §-component in X — A, then
the set X — C is 6-connected.

Proof: Let us suppose conversely that X — C' is not d-connected. Then,
by Corollary 1.4.1.1, it can be presented as X — C'= M U N, where M and
N are non-empty, far sets. Since A C X — C = M U N, then according
to Proposition 1.4.1.3, A C M or A C N. Let us suppose that A C N.
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Then AN (CUM) = 0, and hence C UM C X — A. But then the set
C UM is é-connected by Proposition 1.4.1.4, and since C' is d-component in
the set X — A, we have that C = C' U M. This implies M = (), which is a
contradiction. This proves that the set X — C is a §-connected set. &

Proposition 1.4.2.3 The d-component of a point x = (x5) in the product
(X,0) =[[{(Xs,0s) : s € S} coincides with the product [ [{Cs,(xs) : s € S},
where Cs,(xs) is the ds-component of the point zs in the space Xs.

Proof: Let us denote the J-component of the point z in X with Cs(z).
Then the product [[{Cs.(zs) : s € S} is a J-connected set according to
Proposition 1.4.1.10, and therefore it is contained in Cs(z). Conversely, by
Proposition 1.4.1.9, the projection p;Cs(x) is a d-connected set for every
s € S and hence p;Cs(x) C Cs,(xs). Therefore Cs(z) C [[{psCs(z) : s €
S} CI{Cs.(xs) :s€S}. &

Proposition 1.4.2.4 If f : X — Y is a §-monotone and d-quotient map-
ping from a proximity space X onto a prorimity space Y, then C is a 6-
component of some set B CY if and only if f~1(C) is a §-component of the
set f~1(B).

Proof: Let us suppose first that the set C' is a J-component of B C Y (as
a subspace of the space Y). Let us suppose that there exists a d-connected
set K in f~1(B) satisfying f~1(C) ¢ K C f~1(B). Then C C f(K) C B
and since f(K) is a d-connected set, according to Proposition 1.4.1.9, there
follows that C' = f(K), because C is a -component of the set B. It also
holds that f~1(C) = f~1(f(K)) D K, so that K = f~!(C), which proves
that f~1(C) is a §-component in the set f~1(B).

Let us suppose now that f~1(C) is a 6-component of the set f~!(B), and
let us suppose that there exists a d-connected set L for which C C L C B
holds. Since the set f~!(L) is d-connected by Proposition 1.4.1.11, from
inclusion f~1(C) c f~YL) c f~Y(B) and the fact that f~1(C) is a 6-
component in the set f~!(B) as a subspace of the space X, the equality
f~HC) = f~Y(L) follows, i.e. C' = L. This proves that C is a J-component
of the set B. &

1.4.3 J-quasi-components

Let us define a relation ~ on a proximity space (X, ) in the following way:

x ~y if and only if there are not the sets A and B
far in X for which x € A, ye€ B and X = AU B hold.
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It is easy to check that ~ is an equivalence relation on X. Therefore it
determines a decomposition of X into disjoint sets - the equivalence classes
of the relation ~ .

Definition 1.4.3.1 We shall call the equivalence class of a point x € X with

respect to the relation ~ d-quasi-component of the point x in proximity
space (X, 8) and denote it by Qs(x).

Proposition 1.4.3.1 The §-quasi-components are closed sets in topology
Ts-

Proof: Let Qs(x) be the é-quasi-component of a point = and let us suppose
that y ¢ Qs(x). Then y 4 x and hence there exist the sets A and B far
in X for which x € A, y € Band X = AUB hold. If z € B, then z % «
and therefore BN Qs(x) = 0. From Qs(z) C A it follows that BéQs(z), and
therefore by Proposition 1.1.1.2 we have that y5Qs(z). In this way we have
proved that Qs(x) is a closed set in the topology 75. &

Proposition 1.4.3.2 In a compact proximity space X the quasi-component
Q. of the point = coincides with the §-quasi-component Qs(x) of the point
x.

Proof: First we shall prove the inclusion Q5(x) C Q.. Let us suppose that
y & Q.. Then there exists a set I’ which is simultaneously open and closed
and containing the point z, but not containing the point y. Since X is a
compact space, by Theorem 1.1.3.4 F§X — F and hence y o x. This proves
that y & Qs(z).

To prove the inclusion Q; C Qs(x), let us suppose that y & Qs(z). Then
there exist the sets A and B such that z € A, y € B, AéB and X = AUB.
Since X is compact, by Theorem 1.1.3.4 we have that AN B = (). Now from
AUB =X and AN B = ( it follows A = X — B, which proves that the set
A is open. In a similar way it can be proved that the set B is open, too.
Thus from AU B = X and AN B = 0 it follows that the sets A and B are
closed. Since the point x belongs to the set A which is both open and closed
and y € A, we have that y € Q.. The proposition has been proved. &

Proposition 1.4.3.3 If (X,0) is a prozimity space, then Cs(x) C Qs(x)
for every x € X.

Proof: Let us suppose that there exists a point y € Cs(x) such that y ¢
Qs(x). Then there are two far sets A and B such that x € A, y € B and
X = AUB. The sets Cs5(x) N A and Cs(x) N B are non-empty far subsets of
a d-connected set Cs(z), which is a contradiction.
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Corollary 1.4.3.1 If a separated proximity space X is compact, then C, =
Cs(z) = Qz = Qs(x) for each x € X.

Proof: This corollary follows immediately from Propositions 1.4.3.2 and
1.4.3.3, the comment after Definition 1.4.2.1 and the fact that in a compact
Ts-space the component of a point coincides with the quasi-component of
that point. &

Proposition 1.4.3.4 The 0-quasi-component of a point x = (x5) in the
product (X,9) of the proximity spaces (Xs,0s), s € S, coincides with the
product [[{Qs.(zs) : s € S}, where Qs,(xs) is a d-quasi-component of the
point xg in Xs.

Proof: Let x = (z5) and y = (ys) be any two points of the space X. Let
us prove that z ~ y if and only if x; ~ y, for each s € S.

If x5 o ys for some s € S, then there exist two sets A and B which are
far in X, such that zs € A, ys € B and X; = AU B. Since the projection
ps : X — X, is a d-continuous mapping, the sets p; !(A) and p; ! (B) are far
in X. Now from z € p;1(4), y € p;}(B) and p;'(A) Up;1(B) = X there
follows that x £ y.

Let us suppose now that z ¢ y and let A and B be two far subsets of
X for which x € A, y € B and AU B = X hold. From AJB it follows that
there exist covers {A1, Aa,..., Ay} and {By, Ba, ..., By} of the sets A and
B respectively, and some index s € S for which ps(A4;)dsps(B;) holds for each
i € Jy, and each j € J,. It is obvious that zs € (J{ps(4;) : i € Jn} = M,
ys € U{ps(Bj) 1 j € Ju} = N, M6;N and M UN = X,. This means that

Ts A Ys. o

1.4.4 Locally )-connected spaces

Definition 1.4.4.1 A proximity space X is locally d-connected at the
point x if every d-neighborhood of the point x contains some &-connected
d-neighborhood of the point x. The space X is locally §-connected if it
18 locally §-connected at each of its points. A subset Y C X is locally 6-
connected if Y is locally d-connected as a proximity subspace of X.

If a proximity space X is locally connected with respect to the topology
Ts, then it is also locally d-connected. Indeed, if € X is an arbitrary point
and U is any d-neighborhood of x, then = € int U by virtue of Proposition
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1.1.2.5. Since X is locally connected, there is a connected neighborhood V'
of the point x for which z € V C int U holds. But V is also a d-connected
set, and since = € int V, it follows that 20X — V. This proves that V is a
d-neighborhood of the point  which is §-connected.

The following example shows that the converse in general is not valid.

Example 1.4.4.1 The space QN ([0,1) U (2,3]) is locally §-connected, but
it is not locally connected (and d-connected).

Proposition 1.4.4.1 If x € AN B and if the sets A and B are locally §-
connected at the point x, then the set AU B is locally §-connected at the
point x.

Proof: Let U be a d-neighborhood of the point = in the set AU B. Then
Us =UNAand Ug = U N B are é-neighborhoods of the point z in A
and B respectively. Since A and B are locally d-connected at the point z,
there exist d-connected d-neighborhoods V4 and Vp of the point x such that
reVyCUgpand x € Vg CUpg. ThenV =V, UVg CcU,4UUg =U is a
d-connected set. On the other hand, from 264 — V4 and 6B — Vg it follows
that 26(A—V4)U(B—Vg) C (AUB) -V, and hence x6(AU B) — V. Thus
V' is a d-neighborhood of the point z in AU B. &

Proposition 1.4.4.2 A proximity space X is locally 6-connected if and only
if the §-component of every open subspace of the space X is open.

Proof: Let U be an open subspace of a locally d-connected space X and
let C' be a d-component of the set U. If 2 € C, then 20X — U because U is
open. But then U is a d-neighborhood of the point =, and therefore (since X
is locally d-connected) there exists a d-connected d-neighborhood V' of the
point x which is contained in U. Since C' is the §-component of the point x,
we have that V' C C. But since each d-neighborhood of the point x is also
a topological neighborhood of the point = with respect to the topology 7y,
the set C' is open.

Conversely, let us suppose that the d-components of any open subspace
of the space X are open and let U be a d-neighborhood of an arbitrary point
x € X. The d-component Cs(z) of the point  in U is an open set in X and
thus it is a d-connected J-neighborhood of the point x which is contained in
the set U. Therefore X is a locally d-connected space. &

Corollary 1.4.4.1 The d-components in a locally &-connected proximity
space are open and closed sets (in the induced topology 7s). &
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Corollary 1.4.4.2 In a locally §-connected proximity space the quasi-com-
ponent of a point is contained in the 6-component of this point. &

Corollary 1.4.4.3 If a locally §-connected proximity space is compact, then
it has a finite number of §-components. &

Proposition 1.4.4.3 Let {(Xs,d5) : s € S} be a family of prozimity spaces.
The product (X,0) = [[{(Xs,ds) : s € S} is locally §-connected if and
only if all the spaces X are locally d-connected and there exists a finite set
F ={s1,89,...,8:} C S such that X is -connected for each s € S — F.

Proof: By virtue of Proposition 1.4.4.2 it is enough to prove that the o-
components of any open subspace of the space X are open sets. Let U be
an arbitrary open set in X and let x = (z5) € X. Since the topology s
is equal to the product topology of (X,d), we can assume without a loss of
generality that U = [[{Us : s € S}, where Uy are open sets in X, Us = X
for s € S— F, and all X;, s € S — F, are d-connected. Let Cs(x) be a
d-component of the point z in the set U. We shall prove that z € int Cs(z).
Let Cs,(xs) be a d-component of the point =5 in Us. Then by Proposition
1.4.2.3 Cs(z) = [[{Cs.(xzs) : s € S} holds. For s € S — F we have that
Us = Xs. But then Cs,(zs) = X holds, because X is a d-connected set.
Now from z; € int Cs_(z5) and int Cs(xz) = [[{int Cs, (zs) : s € S} it follows
that = € int Cs(z), which completes the proof of the proposition. &

1.4.5 Treelike proximity spaces

Let (X, ) be a proximity space. If it can be present as the union of the far
sets A and B, then for the sets A and B we shall say that they separate
the space X and write X = A + B. If the sets A and B separate the
proximity space X, so that A contains a set P, and B contains a set ), we
shall write X = A(P)+ B(Q). Especially, if P = {z1,%2,...,2m}, and Q =
{y1,y2,...,yn}, we shall write X = A(x1,z2,...,Zm)+ BY1,Y2,.-.,Yn)-

Lemma 1.4.5.1 If X is a §-connected proximity space and if X — {z} =
A+ B, then x6A and z0B.

Proof: Since X — {z} = A+ B, then X — {z} = AU B, where AJB. Let
us suppose that z0A. Since ASB, i.e. BJA, by axiom (Bs) we have that
ASB U {z}, i.e. A6X — A. Therefore the space X is not d-connected by
Proposition 1.4.1.1, which is contrary to the supposition. &
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Definition 1.4.5.1 A prozimity space (X, 0) is called §-treelike if it is §-
connected and for each two distinct points x and y from X there exists
d-connected set K C X such that X — K = A(z) + B(y).

An example of the rational numbers with the usual proximity shows that
there exists a J-treelike proximity space which is not (topologically) treelike.

Proposition 1.4.5.1 Every 0-treelike proximity space (X,0) is separated.

Proof: Let us suppose that there exist two distinct points x,y € X for
which zdy follows. Then the set {z,y} is J-connected. On the other hand,
if K is a d-connected set which separates the points = and y: X — K =
A(x) + B(y), then the sets AN {x,y} and B N {z,y} make a disconnection
of the set {z,y} in non-empty far sets. But this is a contradiction. &

Definition 1.4.5.2 A subset S of a proxzimity space (X,0) is called a §-
segment (of the point x) if S is the §-component of X — {x} for some
e X.

Proposition 1.4.5.2 If (X,0) is a d-treelike proxzimity space, then each §-
segment on X is open in the topology 75.

Proof: Let C be an arbitrary §-segment in X. Then there exists a point
x € X such that C' is a J-component of the set X —{x}. Let us suppose that
the §-segment C' is not an open set. Then there exists a point y € C' —int C
for this point we have that {y}0X — C. Let K be a d-connected set which
separates the points x and y: X — K = A(z) + B(y). The set BU K is
d-connected in X — {x} and intersects the set C. Since C' is a §-component
in X — {z}, we have the inclusion BU K C C. But then X — C C A,
and therefore by Proposition 1.1.1.2 (a) it follows that {y}dA. Since y € B,
then again by virtue of Proposition 1.1.1.2 (a) we have that AdB which is a
contradiction. This means that the set C' must be open. &

Proposition 1.4.5.3 In a §-treelike proximity space (X, ) any two distinct
points x and y can be separated by an open d-connected set.

Proof: Let x,y € X be any two distinct points and let K be a §-connected
set which separates the points  and y: X — K = M(z) + N(y). Let X —
{z} = B(y) + C, where B is a J-connected set and let B — {y} = U{C, :
a € A} be a decomposition of the set B — {y} in d-components. Since K
is a d-connected set which is contained in union of two far sets B and C,
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it must be contained in one of them by Proposition 1.4.1.3. Let B is the
set with this property. Then the set K U N is d-connected by Proposition
1.4.1.4, and since y € K U N, we have that K UN C B. Therefore K C B,
or more precisely, K C B — {y}. Consequently, the set K is contained in
some d-component Cy, of the set B —{y}. According to Proposition 1.4.2.2
the set B — Cy, is d-connected in the set B and therefore the set B — Cy,, is
§-connected by Corollary 1.4.1.3. Since y € B—C,,, we have that 26 B—C,,,
because in contrary case the sets B — Cy, "M and B — C,, NN would make
a disconnection of B — C,,, on non-empty far sets, which is impossible. Since
X — {2z} = B(y) + C, then, by Lemma 1.4.5.1, 6B and z6C, i.e. * € B
and z € C. Now from the fact that 20B — Cy,, i.e. # € B — Cyy D B — Cy,
it follows that z6Cy,,. The set Cy, U{z} U C is J-connected. Moreover, it
is a d-segment of the point y. This immediately follows from the fact that
Ca, 1s d-component in the set B — {y}. But then the set C' U {x} U Cy, is
open according to the above proposition. Moreover, the set CU{x} is closed.
Indeed, since the space X is d-connected, we have that CU{z}6 X —(CU{z}).
But then ydC U {x} for every y € X — (C U {z}), which shows that the set
C U {z} is closed. Therefore the set Cyy = (Cqy U{z} UC) — (C U {z}) is
open. It is obvious that

X - Cao = (M - Cao)(x) + (N - Cao)(y)v
which proves the statement of the proposition. &

Proposition 1.4.5.4 Let (X,0) be a 0-treelike proximity space. Then, am-
ong any three distinct points of the space X, there exists at least one which
1s contained in an open d-connected set which separates the other two points.

Proof: Let us suppose that there exist three distinct points x1,x2, 3 € X
for which the assertion of the proposition is not true. Let K and L be
d-connected sets such that

X -—K= Al(:nl) + Bl(l‘g,xg) and X — L= AQ(.rQ) + BQ(iI}l,.%'g) .

First we shall prove that the set Ao U L U K is not d-connected. Let us
suppose contrary, that it is §-connected. Then from

X—(AQUKUL) :X—((X—BQ)UK):Bzﬂ(/hUBl):
:<BlﬂBQ)U(A1ﬁBQ>,

1 €EA1NBy, 19 € A UK UL, 3 € By N By and (Bl ﬂBg)5(A1ﬂBg) it
follows that As UK UL is a d-connected set which contains the point x5 and
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separates the points 1 and z3. But this contradicts the assumption about
these points. So As U K U L is not a d-connected set.

Since the set Ay U L is d-connected, according to Proposition 1.4.1.4 we
can conclude that K6(AaUL). Indeed, if K6(AaUL), then the set Ao UK UL
would be J-connected, which is impossible. In a similar way we obtain that
Li(A; UK).

Now we shall prove that A;0A4,. From LéK, i.e. L C X — K it follows
that the set L is contained in the union of far sets A; and Bj, so that
it is contained in one of them by virtue of Proposition 1.4.1.3. But the
set L can not be contained in the set A;. Indeed, if L C Ajp, then, by
d-connectedness of the set Ay U L, we have that As UL C A;. But then
Ay C Ay implies A28 By, which is impossible because xo € Ay and x9 € Bj.
Therefore L C By. So we have proved that Ay UL C B, from which follows
that Ay C By. Now A10B; implies A;0A,.

Now we are going to prove that the set (By N Bg) U K U L is not 0-
connected. Let us suppose that it is §-connected. From the equality

X—-(BiNB)UKUL)=(A1N(X—-L)U(A2N(X - K))

and the facts that A; N (X — L)dAs N (X — K) (which follows from A15A45),
1 € AAN(X —=L), 20 € AoN(X —K) and 23 € (BN By) UK UL, it follows
that (B1 N B2) UK UL is a 6-connected set which contains the point z3 and
separates the points 1 and x9. This contradicts the assumption about the
points z1, xg and x3. Thus the set (B1 N Bg) UK UL cannot be §-connected
and hence there exists a disconnection if this set of the form

(BiNB))UKUL=P(L)+ Q.

The d-connected set K is contained in the union of the far sets P and @
and hence it is contained in one of them by Proposition 1.4.1.3.

If K C P, then X = (A1 UAyUP) + Q. Indeed, since K UL C P, we
have that Q C By N By, so that Q6A; and Q5 As, which, together with QI P,
implies QJ(A; U Ay U P). But this contradicts the fact that the space X is
d-connected.

If K C @, then X = (A2 U P) + (41 U Q). To prove this assertion, let
us first note that Alg(Bl N By) U L; this immediately follows from the fact
that A10L and A10(By N Bg). Since P C (B N Bg) U L, then A;5P. From
this and A;0A4s we obtain that 416045 U P. We have also that A30K and
AQS(Bl N Bz), so that AQE(Bl N Bg) U K. Since @ C (Bl N BQ) U K, then
A20Q). But now we have that Q5As U P, because Q5P. Finally, from the
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facts that A16A2UP and Q5A U P, it follows that (4; UQ)d(A2U P), which
again obtains a contradiction.

In both cases we have a contradiction, which completes the proof of the
proposition. &

Historical and bibliographic notes

The notion of a §-connectedness of a proximity space was introduced by
S. Mréwka and W. J. Pervin in 1964 as an equiconnectedness of a proximity
space (see [228]). In this paper they also introduced the notion of a U-
connectedness of uniform space as a uniform connectedness. Propositions
1.4.1.15 and 1.4.1.16 were also proved there. The Example 1.4.1.1 is given
in [207]. The notions of local d-connectedness, d-components and J-quasi-
components were introduced 1987 by R. Dimitriyevi¢ and Lj. Kochinac
in [83]. All the results of subsections 4.1., 4.2. and 4.3. were proved in
paper [83]. The notion of a treelike space was introduced by R. Dimitriyevic
and Lj. Kochinac 1987 in [85] (see also [84]). All the results of subsection
4.5. were proved in paper [85]. Connectedness in syntopogenous spaces was
considered by Z. Mamuzic [206] (see also [207]) and J. L. Sieber and W. J.
Pervin [285].

1.5 Dimension functions of proximity spaces

1.5.1 Covering dimension of proximity spaces

Definition 1.5.1.1 Let (X, ) be a proximity space. We call a finite cov-
ering {T'1, T'y,...,I'y} of X a d-covering if there exist sets A1, A, ..., Ay
such that Uign A =X and A0 X —T; (i.e. A; <T;) for each i < n.

We shall note further that, if a proximity space X is compact, then
any two disjoint closed sets are far, which means that in this case, for any
closed set A and any neighborhood I' of A, A < I holds. From this, in
turn, it follows that for any compact proximity space X each finite open
covering {I'1, ..., 'y} is a d-covering, since, by a well-known lemma of P. S.
Aleksandroff, there exist closed sets A1, ..., A, such that L_JZ<,C A; =X and
each A; is contained in I';.
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Lemma 1.5.1.1 For each §-covering o = {A1, Ag, ..., An} of a prorimity
space X the sets O(A1),O(As),...,O(Ay,) form a d-covering O(a) of the

compact space uX.

Proof: Let a = {A;} be a d-covering of X and let 3 = {B;} be a covering of
X consisting of the elements for which B; < A;. According to the property
(c) of the operator O( ), for each i the equality uX = O(X — B;) U O(4;)
is true. By the property (g) of the operator O( ) and the property of O( )
which is given on page 122, for every set B; the following equality holds:

o —uX
B =B =X-mX_-B)" =
=uX —O(int (X — B;)) =uX —O(X — B;).

Now it follows that B; "~ C O(B;). Therefore, uX = UZEUX C U, 0(B;).
&

Definition 1.5.1.2 The d-dimension d-dim X of the proximity space X
is the smallest natural number n = 0 such that every §-covering of X can
be refined by a d-covering of order < n + 1; if there is no such n, we set
d-dim X = +o00. For the empty space ) we set §-dim X = —1.

It is clear from the definition that d-dimension is d-invariant, i.e. it is
unchanged by d-homeomorphic mappings. Also we can conclude that for
the dimension §-dim of the proximity space X the inequality §-dim X < n
(n is an integer > 1) holds if and only if every d-covering of X can be refined
by a d-covering of order n + 1 at the most.

Theorem 1.5.1.1 The §-dimension of any proximity space X coincides
with the topological dimension of its compact (absolutely closed) §-extension
uX: §-dim X =dimuX.

Proof: Let us prove first that 0-dim X <dimuX. Let dimuX = n. Take
any o-covering v = {I'1,I'2,...,T'x} of X. Let us apply to it the operator
O( ), which associates to each set I' C X the largest open set O(T") of uX
whose intersection with X is the interior int I'; of the set I';; this yields, by
Lemma 1.5.1.1, an open covering O, = {O(I'1),O(T's),...,O(I';)} of the
compact space uX. Let 0 = {UZ} be a finite open refinement of O, of order
< n+ 1. Since @ is a d-covering of uX, the restriction {X NU;} of & to X
is a d-covering w. The order of the restriction w is again < n + 1. For each
i < k we have X NO(T;) = intI'; C T';. Consequently w is a refinement of ~,
since w was a refinement of O,. Thus we see that 6-dim X <dimuX = n.
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To prove the converse, let §-dim X = n, and let @ be any finite open
covering of uX. Let 1 be some finite refinement of w consisting of regular
open sets H ;. Then 7 is a d-covering of uX and consequently, its restriction
toX,n={H; : Hj=Xn ﬁj}, is a d-covering of X. Let us refine n by a
d-covering v of order n+ 1 at the most and let us consider the open covering
O~ of uX obtained from v by the application of the operator O( ). From the
multiplicativity of this operator (see the property (a) on the page 122) we
conclude that the order of O, cannot exceed the order of . Further, using
the multiplicativity of operator O( ) again and the fact that for regular
open sets H; of X one has O(H;) = O(H,) = ﬁj (see [297], p. 210), we find
that if I C H; then O(I') C O(H;) = H;. This means that the covering O,
of uX is a refinement of 77 and hence also of w. Since O, has order < n +1,
we have dimuX < n = §-dim X, as was to be shown. &

Corollary 1.5.1.1 For compact proximity spaces, §-dimension coincides
with the topological dimension dim.

Proposition 1.5.1.1 For any subspace A of a proximity space X, §-dim A
< d-dimX.

Proof: Let us consider the compact §-extension uX of X. Since the closure
A% of the set A in uX is its compact d-extension uA, §-dim A =dimuA =
—dim A"¥ <dim uX = 6-dim X holds, as it is required. &

Proposition 1.5.1.2 If A is a dense subspace of the proximity space X,
then 6-dim A = §-dim X.

Proof: Let us consider again the compact extension uX. We can see that it
is also a compact d-extension of A. Therefore, according to Theorem 1.5.1.1,
it follows that d-dim A = §-dim X, as was to be shown. &

Corollary 1.5.1.2 The dimension 6-dim A of any subspace A of the proz-
mity space X coincides with the dimension d-dim A of the closure A of A
mX. &

The importance of Theorem 1.5.1.1 is clear from the last two proofs;
numerous propositions concerning the §-dimension of a proximity space can
be proved by reducing them to already known facts from the dimension
theory of compact spaces. We can also see that the §-dimension of even a
"good” J-space need not coincide with the topological dimension; taking in
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the n-dimensional cube Q™ (or the Hilbert parallelotope Q°°) a countable
dense set A" (respectively, A®°) we find that the J-dimension of A™ (or of
A>) is n (or o0), while, at the same time, the topological dimension of
each of these is zero. Observe thirdly that, since a countable metric space
can have a big d-dimension too, the §-dimension is not at all similar to the
topological dimension. In particular, the known sum theorem for countable
many closed sets cannot be generalized. None the less there follows

Proposition 1.5.1.3 The d-dimension of the union of any finite number
of the subsets of a given proximity space X is equal to the largest of the
d-dimension of the summands.

Proof: Let Ay, Ao, ..., A, be any n subsets of the proximity space X. Tak-
ing the compact d-extension uX of X, we can see that the closure EUX of
each summand A; is its compact d-extension uA;. But since the closure of
the union of finitely many sets is equal to the union of their closures, we ob-
tain u(UJ; 4:) = (U; Ai)ux =, ZiuX = {J, uA;. Therefore the topological
dimension of the set u(|J; Ai) is equal to the maximum of the dimension of
the summands ©A;. Then from Theorem 1.5.1.1 we immediately obtain the
required result. &

Let us consider next the case of the proximity space X embedded in
some proximity space Y. In this case it is convenient to define d-dimension
of X not with respect to its own d-coverings, but in terms of the systems
d-covering of X in the following sense:

Definition 1.5.1.3 We call a finite system of sets I'1,I's,... 'y in the
proximity space Y an exterior §-covering of the subspace X relative
to the space Y, if there exist sets B, Bo,..., By such that X C Uz‘gk B;
and B; <y T'; for each i < k.

To avoid any misunderstanding, recall that under the inclusion B; <y I;
we understand strong inclusion with respect to the space Y (i.e. B;dY —TY),
not with respect to X. Accordingly the d-coverings of X are not obligated
to be, generally speaking, exterior d-coverings of X (relative to V). We
remark further that by Proposition 1.1.2.5 (b) the interiors int I'; of the sets
I';, taken in Y, also constitute an exterior §-covering of the subspace X.

Lemma 1.5.1.2 If X is a compact subspace of a proximity space Y then
every exterior open covering of X is an exterior §-covering of X.
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Proof: Let us suppose I'1,I'g,...,I'x are open sets of the space Y whose
union contains the compact set X. By force of a known lemma of P. S.
Alexandroff, there exist closed subsets of X, By CI'y,By CI'y,..., By C I,
whose union is X. Since each B; is compact, its neighborhood I'; is a 6-
neighborhood in Y. The lemma has been proved. &

It is not difficult to see that every exterior d-covering of the subspace
X relative to a d-space Y O X intersects X in a d-covering of X itself. It
turns out that the converse is also true: every d-covering v of a subspace X
of a proximity space Y can be extended to an exterior J-covering of X, in
the sense that for each I'; € y one can select a I} so that X NI, = T'; for
each i and the system of all I} form an exterior d-covering of X. Indeed, a
somewhat stronger proposition is true:

Lemma 1.5.1.3 FEach 6-covering 7' of a subspace X of a proximity space
Y can be extended to a 6-covering of all of Y.

Proof: Let the sets I, T, ..., T, constitute a d-covering of the subspace
X of the proximity space Y. This means that there exist sets B, <x I
such that (J;<, Bj = X. This means that Bj6 X —T’ for each i, and therefore
B/ <y Y — (X -T)) = (Y — X)UT. It is also clear from this that the sets
I' = (Y — X)UTY, form an exterior d-covering of X. Let us prove that they
form a §-covering of all of Y. To this end, let us note that there exist sets B;,
for each i such that B <y B; <y I';. This implies that X C Uigk B! <y
Uik Bi and Y — U; ;. Bi <y Y — X. Then By U (Y — U, Bi) <y I'1.
But B1 U (Y — U, Bi) UlUagicr Bi =Y. Therefore {I';} is a d-covering of
Y, as was to be shown. &

Proposition 1.5.1.4 For any subspace X of a proximity space Y, the §-
dimension §-dim X is the least of the integersn = 0,1,2,..., such that every
exterior d-covering (relative to Y ) of the subspace X can be refined by an
exterior §-covering of X (relative to'Y ) of order < n + 1.

Proof: It suffices to show that §-dim X < n if and only if every exterior
d-covering of X can be refined by an exterior d-covering of order < n + 1.

We shall prove first the sufficiency of this condition. Let us assume that
every exterior d-covering of the subspace X can be refined by an exterior o-
covering of order < n+1. Let us take an arbitrary d-covering +' of X and let
us extend it to an exterior d-covering according to the previous lemma. For
the latter, we take a finer exterior d-covering v of order < n + 1. Evidently,
the exterior d-covering - intersects X in a §-covering of order < n + 1, a
refinement of 7/, as required.



154 Proximity spaces and uniform spaces

We shall now prove the necessity of the condition. Let §-dim X < n. Let
us take an arbitrary exterior §-covering v = {I'1,T'a, ..., I'x} of the subspace
X. From the definition, there exist sets B; such that X C Uz‘gk B; and
B; <y T'; for each i < k. Let us take now the compact J-extension uY
of the proximity space Y, and in it the closure X" of X , which is, as is
known, the compact é-extension uX of X. Since B;0Y —I; for each i, then
by Proposition 1.1.2.4, Eung — I'; also holds. Consequently, just as in
the above lemma, we have EUY Ly (WY =Y)UT;. Since X C U, Bi,

uX =X" ¢ Uinguy. Hence the sets Iy = (uY — Y) UTy, i < k, form
an exterior d-covering v of the compact set uX relative to uY. But the sets
intuyfi also form an exterior d-covering of uX; so, we may assume that the
sets fi, and thus also the sets I'; =Y N fi, are open in uY (respectively, in
the space V).

Since dimuX = d-dim X < n, there exists a finite closed covering ¢ of
uX, finer that 7, of order < n + 1. From the compactness of uX, we can
associate to each ®; € ¢ an open set ﬁj in uY so that ®; C (7]- C fi(j) (where

L';(;) is one of the sets fZ containing ®;) and that these sets U; form a family
w similar to ¢, therefore having order < n 4+ 1. By Lema 1.5.1.2, @ is an
exterior d-covering of the compact set uX relative to uY. Consequently it
intersects Y in the family w of the open sets U; = Y N U ; forming an exterior
d-covering of X relative to Y. It is easy to see that w is a refinement of v of
order < n + 1 and the proof is then complete. &

Let us now consider proximity spaces of the d-dimension zero. Let us
recall that topological spaces of the dimension zero are characterized by the
condition that the open-closed sets form a basis for closed sets, i.e. that
for any closed set A and neighborhood U of A there exists an open-closed
set H such that A C H C U. In the proximity spaces the open-closed
sets evidently must be replaced by those sets which are distant from their
complements, i.e. those which constitute d-neighborhoods of themselves.
We call such sets d-isolated.

Theorem 1.5.1.2 A non-empty prozimity space X has d-dimension zero if
and only if for every (closed) set F C X and every §-neighborhood U of F
there exists a 0-isolated set H such that AC H C U.

The proof of this theorem is not difficult; it proceeds just like the proof
of the analogous theorem for topological dimension (see [325], &1, chapter
Iv).
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Definition 1.5.1.4 Let there be given a proximity space X, a compact space
® and a d-covering o of X. We call a d-continuous mapping f of X into
® an a-mapping if for each point x of ® one can find a neighborhood O,
whose complete inverse image under f is contained in one element of the
covering .

Since every continuous mapping from one compact space to another is a
d-mapping, and every open covering of a compact space is a d-covering, it
follows that the concept of an a-mapping just introduced coincides in the
case of a compact space X with the standard topological definition of an
a-mapping.

Lemma 1.5.1.4 Let there be given a proximity space X, a d-covering a of
X, and a d-continuous mapping f of X into an arbitrary compact space .
The mapping f is an a-mapping if and only if its continuous extension f
over the compact §-extension uX is an Oy-mapping.

Proof: Let f be an a-mapping of the space X into a compact space ®. For
each point & € ® there is a neighborhood O, whose complete inverse image
under f is contained in some element A; of a. The complete inverse image
of each neighborhood O, under the mapping f is an open subset of uX,
which intersects X in the inverse image of O, under f, which is itself an
open set in X. But f~!(0,) is contained in some A; € «, and thus, in the
interior intA; of A; too. It is known that O(A;) is the largest open subset
of uX whose intersection with X is the interior of A;. That is, the complete
inverse image f~1(0,) is contained in O(4;). Consequently, the extension
fis an O,-mapping.

Conversely, let us suppose that the continuous extension f of f is an
Oq-mapping of the compact extension uX into ®. We choose for each point
x € ® a neighborhood O, whose inverse under f is contained in some O(4;).
But then, using the inclusion O(A4;)NX C A;, we conclude that the complete
inverse image of the neighborhood O, of z under f is contained in O(4;)NX,
and therefore in A;. Consequently the mapping f is an a-mapping, as was
to be shown. &

Theorem 1.5.1.3 The §-dimension d-dim X of a proximity space X is the
smallest integer n > 0 such that for every d-covering a of X there exists an
a-mapping of the space X into an n-dimensional finite polyhedron.

Proof: Let the proximity space X have d-dimension é-dim X = n. Then
by Theorem 1.5.1.1 the topological dimension of uX is also n. Therefore,
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by the well known theorem of dimension theory (see Theorem 4.3 in [6]), for
any d-covering « of the space X, there exists an O,-mapping f of uX into
some n-dimensional polyhedron II. By the above lemma, the §-continuous
mapping f obtained by restricting f to X is an a-mapping of X into II.

Now it remains to prove that for neither of any d-covering a of X does
there exist an a-mapping of this space into a compact space of the topological
dimension less than n. Let us suppose, on the contrary, that there is such a
mapping f : X — & for every a. Then the continuous extension f : uX — ®
is an O,-mapping by the above lemma. But for each open covering a’ of
uX consisting of regular open sets, the covering O,, obtained from the
restriction a of a’ to X by applying the operator O( ), is finer than a’.
That is, for every open covering o’ of uX there is an a’-mapping of uX
into a compact space of the topological dimension less than n, which is a
contradiction. The proof is complete. &

Definition 1.5.1.5 We call a mapping f of a space X into a spaceY dense
if the image of X under f is a dense subset of Y.

Lemma 1.5.1.5 In order that a §-continuous mapping f of proximity space
X into a prozimity space Y should be dense, it is necessary and sufficient
that the continuous extension f of f over the compact §-extension uX of X,
with values in the compact §-extension uY of Y, should be onto.

Proof: Let the j-continuous mappingf of the proximity space X into the
proximity space Y be dense. Then its extension f is also a dense mapping
of uX into uY, since f(X) is dense in Y and Y is dense in vY. But every
dense mapping of one compact space into another is an onto mapping.
Conversely, let the extension f of f be an onto mapping of the compact
extension uX on uY. The continuous image of a dense set is a dense set.

Therefore f(X) is dense in uY. Since f(X) = f(X) C Y, f(X) is also dense
nY. &

Theorem 1.5.1.4 The §-dimension §-dim X of a proximity space X is the
smallest n = 0 such that for every d-covering o of X there exists a dense
a-mapping of X into some finite polyhedron of dimension n.

Proof: In view of the preceding theorem there is only left to prove that
for every §-covering a of an mn-dimensional proximity space X, there ex-
ists a dense a-mapping f of X into some n-dimensional polyhedron II.
Indeed, since the compact space uX has dimension n, it follows that for
every d-covering « of X there exists an O,-mapping fv of uX onto some
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n-dimensional polyhedron IT (Theorem 4.3 in [6]). But then, by the last two

lemmas, the restriction f of f to X is a dense a-mapping of X into II, as
required. &

We remark here that, generally speaking, one cannot construct mappings
of an n-dimensional proximity space X onto n-dimensional polyhedra. As an
example of this we may take the countable set QN0, 1] of all rational points
in the segment [0, 1]. This set has d-dimension 1. Nevertheless, its mapping
onto a 1-dimensional polyhedron is impossible, for the simple reason that
every 1-dimensional polyhedron has the power of the continuum and QNJ[0, 1]
is countable.

Theorem 1.5.1.5 The §-dimension of a prozimity space X is the smallest
integer n = 0 such that every d-continuous mapping of an arbitrary (closed)
subset A of X into the n-sphere S™ can be extended to a d-continuous map-
ping of X into S™.

Proof: Let 6-dim X = n and let there be given any subset A of X and any
d-continuous mapping f of A into the sphere S™. In the compact §-extension
uX of X the closure of A is its compact d-extension uA. Therefore the
mapping f can be extended to a continuous mapping f of the closed subset
uA of uX into S™. But the compact space uX is n-dimensional by Theorem
1.5.1.1. It follows that f can be extended to a continuous mapping F on all
uX (Theorem 4.5 in [6]). If we restrict the mapping F to X, we obtain the
desired d-continuous mapping F' of X into S™, extending f.

It remains now to prove that for any non-negative number m less than
n there exists a d-continuous mapping of some closed subset of X into the
sphere S™ which cannot be extended to a §-continuous mapping on X. Let
us observe that uX is an n-dimensional compact space. This means that
there exists a continuous mapping h of some closed subset A into the sphere
S™ which cannot be continuously extended over uX (see Theorem 4.5 in [6]).
Since the closed ball Q™*! can be homemorphically mapped upon the cube
of the same dimension so that its boundary S™ goes onto the boundary of the
cube, it follows from a known theorem of P. S. Urysohn that the mapping h,
considered as a mapping into the ball @™*!, can be continuously extended
to a mapping H of uX into Q™. The complete inverse image U of the
open set @™T! which is obtained from Q™T! by deleting the center, will
be a neighborhood of A since no point of A is mapped to the center point
of @™*!. From the normality of the compact space uX, there exists a
neighborhood O 4 of A such that @ux cU.
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Let 7 denote the continuous mapping of Q™! upon S™ which associates
to each non-central point of Q™! its projection upon the boundary. The
mapplng H' = 7o H is a continuous mapping of U into the sphere S™. Let
f denote the restriction of H' to the regular closed set ®=0, A Ttis a
continuous extension of h. Consequently, the mapping f cannot be extended
to a continuous mapping from uX into S™ either.

It is known that the set ® = ®N X is a regular closed set in the space X
and that, therefore, [ (see [297], heading 2, remarks and Theorem
5). Therefore u® = ® also holds. Finally, let f denote the restriction of
f to ®. It is a J-continuous mapping of ¢ into S™. We show that it is
the desired mapping which is not extensible over X. To this end, let us
suppose, on the contrary, that there exists a d-continuous mapping F of
all X into S™ which extends f. Then F' can be extended to a continuous
function F defined on uX. Since each value of the continuous extension
F of F at each L point z € uX — X is uniquely determined, thus at points
r €u® — P =P — P it coincides with the extension f of f. Therefore the
mapping F is a continuous extension of f , which is, as we know, impossible.
The contradiction here concludes the proof of the theorem. o

Definition 1.5.1.6 We shall call a d-continuous mapping of a proximity
space into a closed ball Q™ essential if there is no §-continuous mapping g
of X into the boundary S~ of Q" which coincides with f on f~1(S"71).

It is easy to see that a continuous extension of an essential d-continuous
mapping of a proximity space X over the compact J-extension uX is also
essential. But the first natural formulation of the converse proposition is
false: take the proximity space X; consisting of the interior of the ball Q°
together with some boundary point p, with the proximity structure naturally
defined by the metric. Then Q' is itself the compact J-extension uX; of the
proximity space X;. The identity mapping h of X; into Q° is an inessential
d-continuous mapping, for the "null mapping” ho taking all of X; to the
point p coincides with h on h=1(S~1). Nevertheless the identity mapping h
of uX; onto itself, the continuous extension of the §-continuous mapping h,
is essential.

Theorem 1.5.1.6 The §-dimension §-dim X of a proximity space X is the
largest integer n = O for which there exists an essential mapping into the
closed n-dimensional ball.

Proof: Let the proximity space X have §-dimension é-dim X = n. Then by
the previous theorem there exists a §-continuous mapping f of some subset



1.5 Dimension functions of proximity spaces 159

A of X into the sphere S"~! which cannot be extended to a d-continuous
mapping of the whole space X into S"~!. At the same time, by Proposition
1.3.2.8, the mapping f considered as a mapping into the boundary of the
cube Q" can be extended to a d-continuous mapping F' of the whole space
X into Q™. This mapping F will be essential; otherwise f could be extended
to a d-continuous mapping of X into S™ L.

It remains to show that for each m > n every d-continuous mapping f
of X into Q™ is inessential. In order to do this, every J-continuous mapping
f of X into Q™, restricted to f~1(S™7!), can be extended, by the previ-
ous theorem, to a d-continuous mapping of X into S™~!. Therefore f is
inessential, and the proof is complete. &

Before going on to the further study of the é-dimension of arbitrary prox-
imity spaces, we shall test the theory so far developed on some important
special cases, where the spaces are subsets lying in Euclidean or Hilbert
spaces.

Proposition 1.5.1.5 FEach open set in Fuclidean or Hilbert space R"™ (n =
1,2,...,400) has §-dimension n.

Proof: Let us observe first that every open set I' in R completely contains
some n-dimensional closed parallelotope Q™. Therefore, by Corollary 1.5.1.1
and Proposition 1.5.1.1, we conclude that §-dim " > §-dim Q™ = dim Q" =
n. In the case n = +oo this is all there is to prove. In the remaining case
reverse inequality is yet to be proved. In view of the inclusion I' C R” it
suffices to prove that §-dim R™ < n. In order to do this we need the simple
geometric

Lemma 1.5.1.6 Let there be given in R™ a collection of parallelepipeds with
faces parallel to the coordinate hyperplanes. If one of them intersects all the
remaining ones and if these remaining ones have a non-empty intersection,
then the intersection of all the given parallelepipeds is also non-empty. &

This lemma is easy to prove by induction which we leave to the reader.

We shall now prove the inequality d-dim R"™ < n.

Let us observe first that in Euclidean space R™ of any dimension n,
for each € > 0 there exists a so called Lebesque tessellation ¢, a covering
of R™ of order n + 1 consisting of cubes (), which are non-intersecting or
intersecting only in faces (of various dimensions), with faces parallel to the
coordinate hyperplanes, and with each O, having edges of length & (see
[194], p. 266). From the construction of this tessellation it is clear that
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the distance between any two non-intersecting cubes of ¢ is bounded below
by some positive number 27 < e. This means that if each cube of the
tessellation ¢ is expanded by a similarity (with the center of similarity at
the center of the cube) in the ratio 1 4+ 7/ey/n, no new intersections are
obtained. If some cube @)y, is disjoint from the non-empty intersection of
some cubes (q,, where ¢ = 1,2,...,n + 1, then by the above lemma, it is
disjoint from at least one of them. But then the similar cube @7, will also
be disjoint from one of the similar cubes Qy,, (similar to Qq,). Consequently
the cube Qf,  will not meet the intersection of the cubes Q.. Thus the
covering we, consisting of the cubes @)+ expanded by similarity in the ratio
14 7/ey/n, will have just the same order n + 1. Though it is an infinite
covering, it still satisfies the defining condition for (finite) d-coverings. The
diameter of each cube @/, of this coverings is ey/n+ 27. From the definition
of a d-covering it follows that for every d-covering v of R™ there is a positive €
such that every covering of R whose elements have a diameter not exceeding
¢ is a refinement of y. Therefore an arbitrary d-covering v = {I';} of the
space R™ can be refined by a sufficiently fine (in the sense of the diameters
of its elements) infinite covering w. of order n + 1. Let us consider next the
union U; of all the cubes in the covering w. which lie completely in I'; € ~;
afterwards - the union Us of all those cubes in w. which lie in I'y but not in
I'y; the union Us of all those cubes in w. which lie in I's but neither in I'y
nor in I'y, and so on. Since the covering + is finite, and w; is a refinement
of v, we obtain in this way a finite cover w = {U;} refining + and having
the same order n + 1 as w, does. Clearly w is a d-covering. Therefore every
d-covering of the space R™ can be refined by a d-covering of order n + 1, as
was to be proved. &

Corollary 1.5.1.3 FEwvery set which is somewhere dense in R™, n =1,2,...,
has d-dimension n. &

Corollary 1.5.1.4 For every open subset of R®, n=1,2,..., the d-dimen-
sion is equal to the topological dimension. &

The first corollary can be strengthened for bounded sets.

Proposition 1.5.1.6 A bounded subset A of Euclidean space R™ has §-
dim A = n if and only if it is somewhere dense in R™.

Proof: Evidently it suffices to prove that if the bounded subset A of R™
has d-dim A = n, then it is dense in some open set. Let us take the closure
A of the set A. Since A is bounded, A is compact, and therefore A coincides
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with uA. Thus the dimension of the closure A is equal to n. From this it
follows that A contains some open set I' of R™. Since A is dense in A, we
conclude easily that A is dense in I', and this is what was to be proved. &

Let us notice here that for unbounded, even closed, sets in R™ the as-
sertion of this theorem is not true. Also the assertion of Corollary 1.5.1.4,
though it is clearly true for closed bounded sets, is false for unbounded closed
sets.

Let us consider in R™ a sequence of balls Q;‘ having the same radius r,
the pairwise distances between which all are r too. In each ball Q? let us
take some finite set A; which forms a 1/n-net in Q7. The set A = J; 4;
will be a countable closed set of the d-dimension n. This follows from the
following theorem:

Theorem 1.5.1.7 In order that a set A C R™ should have §-dimension -
dim A = n, it is necessary and sufficient that there exists a positive number
r such that for each ¢ > 0 one can find a sphere of radius r in which A
forms an e-net.

This is a basic theorem concerning the dimension of the subsets of Eu-
clidean space R™. The proof of this theorem is omitted, since it is compli-
cated and too long. (see [304], &3, Theorem 4.)

From this example it is clear that the d-dimension of a non-compact
d-space depends strongly on how it "recedes to infinity”. Of course this
"recession to infinity” is not yet clearly expressed.

Definition 1.5.1.7 Let there be given a proximity space X. We shall define
a 0-bordering of the space X as a finite family v of sets I'1,I's, ..., g,
for which one can select the sets By < I'1,..., By < T'k, so that the closure
of the complement X — J; B; is compact.

Definition 1.5.1.8 We shall define the boundary d&-dimension of the
proxzimity space X as the smallest of the integers n = —1,0,1,2,..., such
that every d-bordering of X can be refined by a §-bordering of order < n+1.
Let us agree to denote 0-dim™>X for the boundary §-dimension.

Lemma 1.5.1.7 Let there be given in the proximity space X a set B and
some exterior 0-covering v of B. Then the family O~ of the sets O(I'),

I’ € v, is an exterior §-covering of the set uB = B“Y in the compact space
uX.
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Proof: Let v = {I'1,T'9,..., 'y} be an arbitrary exterior d-covering of B
with respect to the proximity space X. This means that there exist sets
By «x I'y,..., By <x I'g, such that B C Uz‘gk B;. By Proposition 1.1.2.5
we may suppose that each I'; is open in X. Since for each i the set B; is
far from X —TI';, the closures EZ-UX and X — I} “X of these sets do not meet.
Since O(T';) is the largest open subset of uX whose intersection with X is I';,
o) =uX-X -1, “* holds for each i. This means that EuX C O(I;) for
each i. Consequently B ¢ Uik E;LX C Ui, O(I). From Lema 1.5.1.2,

the family O(y) = {O(I';)} constitutes an exterior J-covering of EUX, as
was to be shown. &

Theorem 1.5.1.8 For every proximity space X the boundary d-dimension
is equal to the 6-dimension of the set uX — X : §-dim>*X = §-dim (uX — X).

Proof: Let X be a proximity space for which d-dim (uX — X) = n. We
shall show that §-dim® X = n. In order to do this we shall first prove that
every d-bordering of the space X can be refined by a d-bordering of order

<n+1. Let v = {I'1,Ty,...,I'x} be an arbitrary d-bordering of X. This
means that there exist sets B; < I'; such that the set ® = X — Uigk BiX is

compact.

Evidently the §-bordering ~ is an exterior §-covering of the set B =
Uz‘gk B; with respect to X. This implies, by means of the above lemma, that
the sets O(I'1), ..., O(I'y) form an exterior é-covering O, of uB with respect

to uX. But since X = BU ®, and ® is compact, thus uX = BN ud™ =
uB U ®, and therefore uX — X C uX — ® C uB. Consequently, O, is an
exterior d-covering of the set uX — X (with respect to uX) as well.

Since §-dim (uX — X) = n, there exists an exterior J-covering & =
{U1,...,U} of uX — X (with respect uX) which refines O, and has an
order < n+ 1. For each i < k the intersection O(I';) N X C I'; holds, and
the family w is a refinement of O; this means that the family w of the sets
U; = ﬁj N X, j < s, is a refinement of the d-covering . The order of w is
evidently < n+1. Therefore it remains only to prove that w is a §-bordering
of the proximity space X.

For this we associate to the exterior d-covering w of uX — X the sets
D <yux ﬁj such that uX — X C UKS ®;, and to these again we associate
open sets ‘N/j of uX such that ¢; C ‘N/J Lux ﬁj (from the property (Og) in
Theorem 1.1.1.1 and Proposition 1.1.2.5 (b)). Since uX — X C UJ;, ®;,

thus uX — X C Ujgs 17j Consequently the sets V; = 17] N X, open in X,
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X ~
satisfy the equation X — ;. V;" = X — U, V; = uX — U, V- But

~ . . ~ 7 X .
each Vj is open in ©X, and therefore the closure X — i<sVj 1s compact.

J<s

But since each 17} <ux U j, consequently V; <x Uj for each j < s.

Thus we obtain the family w = {U;} which is a 6-bordering of X of order
< n+ 1 and a refinement of the d-bordering ~.

It remains to prove that there exists a d-bordering of X which is not
refined by a bordering of order < n. In order to do this we shall take an
exterior d-covering 7 = {T'1,..., Iy} of uX — X with respect to uX which
cannot be refined by any exterior d-covering of uX — X of order < n. Then,
as we have just seen, the sets I'; = X N T'; constitute a d-bordering v of
the space X. We may as well suppose that the sets I; are already regular
open sets in uX. But then the sets I'; are also open subsets of X, and for
each ¢ O(I';) = I'; holds. If there were a d-bordering w = {U;} of X of
order < n and refining «y, then the sets O(Uj), according to the first part of
the proof, would constitute an exterior d-covering of uX — X (with respect
to uX) which refines ¥ = O, and has the same order as w itself, which is
impossible. The proof is complete. &

Corollary 1.5.1.5 For every proximity space X there follows 0-dim™>©X <
d-dim X.

Proof: It immediately follows, because 0-dim>X = §-dim (uX — X) < 0-
dimuX =0-dimX. &

Definition 1.5.1.9 The relative dimension of a completely reqular space
X is the largest integer n = 0,1, ..., for which it contains a compact subspace
of the dimension n.

The relative dimension of the space X will be denoted as rd X. From
Theorem 1.5.1.1 and Proposition 1.5.1.1 it follows that rd X < §-dim X for
every proximity space.

Theorem 1.5.1.9 The d-dimension d-dim X of the prorimity space X is
the largest of the dimensions §-dim>X and rd X.

Proof: Since §-dim>X < §-dim X and rd X < d-dim X, we need only to
prove that if 6-dim>X < n and rd X < n, then d-dim X = dimuX < n, as
well. For this, by Theorem 1.5.1.5, it suffices to prove that every continuous
mapping [ of any closed subset A C uX into S™ can be extended to a
continuous mapping f of the compact space uX into S™. For this we can
notice that dimuX — X = o-dim(uX — X) = 6-dim>*©X < n.
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This means that the mapping f, restricted to the closed set ANuX — X,
can be extended to a continuous mapping f’ of all of uX — X into S™.
Evidently, the mapping F', which coincides with f on A and coincides with
f on uX — X, will be a continuous mapping of the closed subset A’ =
AUuX — X of uX into S™. Now, in just the same way as in the proof of
Theorem 1.5.1.5, we shall extend this mapping F' to a continuous mapping
F’ of some neighborhood U of A’ into S™. Since uX and A’ are compact,
there exists a neighborhood U’ of A’ such that U’ C U. Therefore we may
suppose immediately that F’ is defined on the closure of the neighborhood
U.

The set uX — U does not meet uX — X and therefore the compact set
® = uX — U is contained in X. Since rd X < n, then dim ® < n. Therefore
the mapping F', restricted to the closed set ® N U, can be extended to a
continuous mapping F” of the whole ® into S™. Evidently the function f,
which coincides with £/ on U and with F” on ®, is a continuous mapping
of the whole compact space uX into S™. At the same time, as can easily be
seen, it coincides with f on A. This proves the theorem. &

Corollary 1.5.1.6 If the prozimity space X satisfies the inequality
0 —dim*X <d—dimX < o,

then there exists a compact subset ® of X of the dimension dim® = §-
dim X. &

Returning to the example of the countable closed set A lying in R™ and
having §-dimension n, we can see that here rd A = 0 and -dim>A = n.
To conclude, "recession to infinity” in this or that proximity space is to be
understood as ”recession beyond any compact subspace”.

1.5.2 Definition and basic properties of the /-large inductive
dimension

Definition 1.5.2.1 Let (X,6) be a proxzimity space. Then we say that a set
L C X is a d-partition in X between A and B and denote this with
(L; U, V), if there exist open sets U,V C X such that

AU, BV, UNV=0 and UUV =X — L.

It is clear that if L is a partition between A and B, then L§(A U B).
Also, the proof of the following lemma is obvious.
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Lemma 1.5.2.8 Let (X,0) be a prozimity space and let Fy and Fs be two
of its closed subsets. If F10Fy and * is a partition between FTX, FEX m
uX (in the topological sense), then ¥ = ¢¥* N X is a §-partition between Fy

and Fy in X. &

Definition 1.5.2.2 We say that the prozimity space (X,0) is perfect if

rXHUX =r,O(H) for each H € 15, where rH denotes the boundary of
the set H in X.

Lemma 1.5.2.9 The prozimity space (X,0) is perfect if and only if for
every two disjoint open sets Hy, Hy € 15, O(H; U Hy) = O(H;) U O(H2)
holds.

Proof: Let (X,0) be a perfect proximity space and let Hy, Hy € 75, Hi N
Hy; = (. To prove that O(H; U Hy) = O(H;) U O(Hj), it suffices, by
properties (b) and (d) of the operator O( ) and the complementation, to
prove that if Fy, Fy € 7¢ and Fy UFy = X, then 7" NFy " C RN .

Let us suppose that ¢ € FfX N F;X but ¢ ¢ mux. Then ( €
ruxffx, otherwise ¢ has a neighborhood V' (in uX ) such that V' C FluX
and VN F;NF, =0. But VN Fy is a non-empty subset of X contained in
Ff XﬂX = F}, contradicting VN F;NFy = ). Thus, applying the perfectness
of (X,8) to H=X—Fy, ¢ € r F1 "~ holds. But r,Fy C Fy N Fy, proving
(e mu}(’ which is a contradiction.

Conversely, let us assume the condition of the lemma. Let H € 75 and
let H* = X — H. Then it is clear that r H = X — (H U H*). Consequently,

0 TH"Y =X —(HUHH" =uX — O(HUH*) =
=uX — (O(H*) UO(H)) .

Moreover, uX — O(H) Koux - T " = O(H"), i.e.

(2) r,cO(H) =uX — (O(H)UO(H")).

From (1) and (2) rH "~ =r_ O(H) holds. &
Corollary 1.5.2.1 Every compact proximity space (X,0) is perfect.

Proof: The proof is immediate if we note that O(H) = int H for every
HCX. &



166 Proximity spaces and uniform spaces

Lemma 1.5.2.10 If the closed subset 1 of a perfect proxzimity space (X, 0)
s a §-partition between two closed sets Fy, Fo C X, then @ux s a partition
between F?X and F;X mn uX.

Proof: Let v be a d-partition between F; and F>. Then, by definition,
there exist the sets Uy, Us € 75 such that

X—yYy=U,UUs, UyNU; =0 and U>F;,, i=1,2.

Let v; = ¢ UU;, ¢ = 1,2. Then v; € 75 and Y16 Fy, 198 F;. Consequently,
FiY cuX -9 = 0(h), Fy* c uX -3 = O(Us). Since Ui NUz = 0,
then O<U1> N O<U2> = O<U1 N U2> = (). Now from X — P =U; UU,, (X, (5)
is perfect and by property (h) of operator O( ) we have uX — QUX =
O(X — ) = O(Uy UUsy) = O(Uy) UO(Us), i.e. u is a partition between
uwFy and uF5 in uX, where uy) = JUX. &

Definition 1.5.2.3 To every proximity space (X, 0) one assigns the d-large
inductive dimension of X, denoted by 6—Ind X, which is an integer larger
then -1 or "infinite number” +oo. The definition of dimension function
0 — Ind X consists in the following conditions:

(LIDy) 6 — Ind X = —1 if and only if X = 0;

(LID3) 6 — Ind X < n, where n = 0,1,..., if for every two far closed
sets Iy and Fy there exists a d-partition L between Fy and Fy such that
0—IndL <n-—1;

(LID3) §—Ind X = n if and only if 60—Ind X < n andd—Ind X > n—1,
i.e. the inequality 6 — Ind X <n — 1 does not hold ;

(LIDy) 6 — Ind X = 400 if and only if 6 — Ind X > n, for each n =
-1,0,1,...

Theorem 1.5.2.1 For every proximity subspace (Y, dy) of a prozimity spa-
ce (X,0) we have § —IndY < § —Ind X.

Proof: The theorem is obvious if d — Ind X = 400, so that one can suppose
that § — Ind X < 4+o00. We shall apply induction with respect to § — Ind X.
Clearly, the inequality holds if § —Ind X = —1. Let us assume the theorem is
proved for all proximity spaces whose d-large inductive dimension is < n—1.
Let us consider a proximity space (X,d) with 6 — Ind X = n, a subspace
(Y,dy) and A, B two far closed subsets of Y. Then ASB and therefore

A0 B. Since 6 —Ind X = n, there exists a §-partition (L; U, V) in X between
A and B such that § — IndL < n — 1.



1.5 Dimension functions of proximity spaces 167

It is easy to see that the triple (LNY;UNY,V NY) is a §-partition in
Y between A and B. Hence by the inductive assumption, § — IndLNY <
n— 1 which, together with (LI D) in Definition 1.5.2.3, yields the inequality
O0—IndY <n=0—-IndX. &

Theorem 1.5.2.2 A prozimity space (X,0) satisfies the inequality 6—
Ind X < nif and only if for every closed set F' C X and each §-neighborhood
Ur of F there exists an open J-neighborhood U}, of F' such that F < Uf <
Up and 6 — IndrUp <n —1.

Proof: Let (X,d) be a proximity space satisfying 6 — Ind X < n, n > 0,
and let us consider a closed subset F' of X and an open d-neighborhood Up
of F. Then F < Up, and, by definition of the relation <, F6X — Up holds.
Let (L;U,V) be the d-partition between F' and X — Up in X, satisfying
0—IndL <n-—1,then we have: X —L=UUV,UNV =0, F < U and
X—Up < V. By Theorem 1.1.1.1 there follows that F < U C X -V < Up.
SincerU C (X -U)N(X-V)=X—-(UUV) =1L, thend—IndrU <n-—1
by Theorem 1.5.2.1.

Now, let us assume that a proximity space (X, J) satisfies the conditions
of the theorem. Let us consider two far closed sets A, B C X. By the
definition of relation <, A <« X — B holds. From the conditions of the
theorem, there exists U} such that A < U} < X — B and § — IndrU} <
n — 1. Using the property of the relation < it is easy to see that the triple
(rU}; Uy, X —=U}) is a 0-partition between A and B, so that § —Ind X < n.
)

Theorem 1.5.2.3 If (X,0) is a prozimity space and § —Ind X =n, n > 1,
then for k = 0,1,2,...,n — 1 the proximity space (X,d) contains a closed
proximity subspace Yy such that 6 — IndYy = k.

Proof: It suffices to show that X contains a closed subspace Y,,_1 such that
6—IndY, 1=n—1. As§—Ind X > n—1, there exists a closed set ' C X
and an open set U, F' < Up, such that for every open set Uy, F' < Up,
satisfying the condition F' < Uz < U we have § — Indr Uy >n —2. On
the other hand, since § — Ind X < n, there exists an open set Ux*, F < U,
satisfying the above condition and such that 6 — IndrUz" < n — 1. The
closed subspace Y,,_1 = r U;* C X has the required property. &

Theorem 1.5.2.4 For every prozimity space (X, ) we have that

60— IndX < InduX ,
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where InduX is the topological dimension of the Smirnoff compactification
uX of X.

Proof: We shall apply induction with respect to InduX. If InduX =
—1, then uX = () = X and our inequality holds. Let us assume that the
inequality holds for all proximity spaces X with InduX < n for some n > 0,
and let us consider a proximity space X such that InduX = n.

Let F7 and F5 be far closed sets in X. Then the sets uF; and uFy are
disjoint in uX so that there exists a partition QZ in uX between uly and uFs
such that Indiy < n — 1. From Lemma 1.5.2.10 we can see that ¥ =y N X
is a d-partition in X between F; and F5. Since uy = EUX, it follows from
Theorem 2.2.1 in [96] and the inductive assumption that § — Indy < n—1,
sothat § —Ind X <n=InduX. &

Definition 1.5.2.4 A perfect proximity space is called a strongly perfect
proximity space (or S-perfect proximity space) if every closed subspace
of (X,0) is perfect.

The following statements may be easily proved.

Lemma 1.5.2.11 Every compact proximity space, and every normal fine
proximity space is an S-perfect space. &

Proposition 1.5.2.1 FEwvery proximity space is homeomorphic with a closed
subset of a fine proximity space. &

Theorem 1.5.2.5 For every S-perfect proximity space X we have
0—IndX =InduX .

Proof: From Theorem 1.5.2.4 it suffices to show that InduX <d—Ind X.

As in the proof of Theorem 1.5.2.4, we shall suppose that § — Ind X <
400 and apply induction with respect to 6 — Ind X.

The inequality holds if 6 — Ind X = —1.

Let us assume that the inequality is proved for all S-perfect proximity
spaces with dimension d — Ind X smaller than n > 0, and let us consider an
S-perfect proximity space X such that § — Ind X = n. Let F, and F, be

disjoint closed sets in ©X. Then there exist open sets Vi and Vs in uX such
~ ~ =—uX =uX =—uX

that F; CV;,i=1,2and Vi NVy =0. Thesets V; =V; NX are

closed in X and far, so that there exists a §-partition ¢ in X between V;

and V5 such that § — Indy < n — 1. From Lemma 1.5.2.10 the set u1) is a
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partition between uV; and uV5 in uX. And from the inductive assumption

Ind X <n—1 follows.
~ =uX
Since F; CV; , then u is a partition between F} and F3; consequently

InduX <d—1IndX. &

Corollary 1.5.2.2 For every compact proximity space X, the topological
dimension Ind X coincides with the §-dimension 6 — Ind X.

Proof: This follows immediately from Theorem 1.5.2.5 and Corollary
1.5.2.1. &

Corollary 1.5.2.3 Every normal fine prozimity space X has § — Ind X =
Ind(X.

Proof: The proof of this corollary follows immediately from Theorem
1.5.2.5 and Lemma 1.5.2.11. &

Corollary 1.5.2.4 If X is an S-perfect prozimity space and F is a closed
subset of X, then 6 —IndF <6 — Ind X.

Proof:X From the above theorem we have that § — IndF = InduF =
IndF"" <InduX =6—IndX. &

Corollary 1.5.2.5 For every S-perfect proxzimity space X we have 6 —dim X
<o0—IndX.

Proof: From Theorem 1.5.1.1 we have that § — dim X — dimuX. From
Theorem 1.5.2.5 § — Ind X = InduX holds, and from Theorem 3.1.28 in
[96] we have that dimuX < InduX. Thus, for every S-perfect space, § —
dimX <6 —Ind X holds. &

Corollary 1.5.2.6 If (X,0) is an S-perfect proximity space, and A and B
are closed subsets of (X,9), then

d—Ind(AUB)<d—IndA+d6—IndB+1.
Proof:

§—Ind(AUB) =IndAUB"" =Ind @ UB"Y) <
<IndA" + ndB"* +1 = (see [96])
=0—IndA+6—IndB+1.
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Theorem 1.5.2.6 The perfect proximity space X has § — Ind X =0 if and
only if for every closed set F' C X and for every d-neighborhood U of F
there exists a d-isolated set H such that F C H C U.

Proof: Let § — Ind X = 0 and let F' be a closed subset of proximity space
(X,9), and let U > F; then F6X — U. Therefore, the empty set ) is a
d-partition between F and X — U. Thus, there exist the sets Uy, Uy € 74
such that X = Uy UU,, Uy NUy = and Uy > F, Uy > X — U. But
uX = O<X> = O<U1 U U2> = O<U1> U O(Ug), and O<U1> N O<U2> = @,
because Uy N Uz = (). Then O(U;) and O(Us) are open-closed sets in uX,
i.e. O(U1) N X50(Usz) N X, which implies that U16Us, i.e. UpdX — Up. Tt is
clear that U > U; > F. The converse is obvious. &

Corollary 1.5.2.7 For every perfect proximity space X the conditions § —
IndX =0 and § — dim X =1 are equivalent.

Proof: This follows immediately from the above theorem and Theorem
1.5.1.2. &

Definition 1.5.2.5 A subfamily 3 of the power set PX of X is said to be a
d-base of a proximity space (X, 0) if for every two subsets A,B C X, AdB,
there exist sets U,V € 3 such that AC U, BCV and USV.

Lemma 1.5.2.12 A family § C PX is a §-base for a proximity space (X, 0)
if and only if for every subset B of X and every d-neighborhood A of B there
exists H € 3 such that B < H < A.

Proof: Let 3 be a d-base for (X,d) and let A, B C X such that B < A.
Then B6X — A. By Proposition 1.1.1.3 there are sets C, D C X such that
B <« C, X —A <« D and C§D. Since 3 is a d-base, there exist sets
H,H* € B such that C C H, D C H* and H6H*. Hence B < C C H,
X-A<«DCH*and H<« X — H*. From Theorem 1.1.1.1 it follows that
B<H, X-H*<«<Aand H< X — H*. Hence B < H < A.

Conversely, let 3 C PX such that there exists H € (§ for which B <«
H < A whenever B < A. Assuming that A6B, we have B < X — A. Thus
there is H € [ such that B < H <« X — A. Since H <« X — A, then
A <« X — H and hence there exists H* € § such that A < H* < X — H.
Now it is clear that HOH*, A C H* and B C H. Therefore 3 is a d-base for
the proximity space (X, ). &

From Proposition 1.5.2.2 and the above lemma one can easily prove the
following:
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Theorem 1.5.2.7 A prozimity space (X,0) satisfies the inequality 6—
IndX < n if and only if it has a 6-base B consisting of open sets such
that 6 — IndrH <n—1 forevery He 3. &

From Theorem 1.5.1.2 and the fact that every d-isolated set is an open-
closed set, one may easily obtain the following:

Theorem 1.5.2.8 If a prozimity space (X,0) has 6 — dim X = 0, then it
has 6 — Ind X =0 as well.

Example 1.5.2.1 The converse of the last theorem, in general, is not true,
e.g., the space (Q N [0,1],d), where Q is the set of all rational numbers
and A5B if and only if A B = ¢, has 6 — dim (@ [0,1]) = 1 and
d—Ind(Qn0,1]) = 0.

Lemma 1.5.2.13 Let (X,0) be a proximity space such that (X,7s) is a
hereditarily normal space, and let (Y,dy) be a proximity subspace of (X, 0)
such that 6 —IndY < mn, n > 0. Then for every two far closed subsets Fy, Fy
of X, there exists a d-partition (L;U, V') in X between Fy and F» such that
d—Ind(LNY)<n—1.

Proof: Let F; and F5 be far closed subsets of X. By Propositions 1.1.1.3
and 1.1.2.5 there exist two open subsets U; and Us of X such that F; <« U;
and U16U,. Since Y C X, then Uy NYdyUs NY, and consequently, there
is a d-partition (L*; V", V) in Y between U; NY and Uy N'Y such that
§—1Ind L* < n—1. It is easy to see that U1 NV;* and U2 NV5" are separated,
so that there exist two open subsets V4 and Vs of X such that U; N V. CV,
ViNnVy = 0. The triple (L = X — (V4 U V4),V1,V3) is a d-partition in
X between Fy and Fy for which LNY C L*. Hence 6 — Ind(LNY) <
0—IndL*<n—-1. &

Theorem 1.5.2.9 For every pair of proximity subspaces X1, X2 of a hered-
itarily normal proximity space (X, ), we have

6—Ind(X1UX2)<5—IndX1+5—IndX2+1

Proof: The theorem is obvious if one of X7 or X9 has § — Ind = +o0, so
that we can suppose that I(X1, X2) =0 — Ind X1+ — Ind Xy < +00. We
shall apply induction with respect to I(X1, Xs). If I(X;, X2) = —2, then
X1 = X2 = 0 and our inequality holds. Let us assume that the inequality
holds for every pair of subspaces, the sum of which 6 — Ind is smaller than
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n, n > —1. Let us consider a pair of proximity subspaces X7, X5 such
that I(X1, X2) = n. Clearly, we can suppose that 6 — Ind X; > 0. Let
F1 and Fs be far closed subsets of X; U X5. By virtue of Lemma 1.5.2.13
there exists a d-partition (L; U, V') in X; U Xy between F; and F, such that
d—Ind(LNX;)<o—IndX; — 1.

Since I(LNX1,LNX2) <d—Ind X1 —1+6—Ind Xo =n—1, it follows
by the inductive assumption that § — Ind L < n. This implies

5—Ind(X1UX2)<5—IndX1+5—IndX2+1&

Corollary 1.5.2.8 If a hereditarily normal proximity space (X,d) can be
represented as the union of n+1 proximity subspaces X1, ..., Xn4+1 such that
6—IndX; <0 fori=1,2,...,n+1, then § — Ind X < n holds.

Lemma 1.5.2.14 If (Y,0y) is an open prozimity subspace of a prorimity
space (X,0) such that 6 — IndY < n, n > 0, then for every two far closed
subsets F1 and Fy of X, there exists a 6-partition (L;U, V) in X between Fy
and Fy such that 6 —Ind (LNY) <n—1.

Proof: Since Fi0F;, then by propositions 1.1.1.3 and 1.1.2.5 there exist
two open subsets U; and Us of X such that F; < U; and U;dU,. Let us
notice that U; NY and Uy NY are far closed subsets of Y, hence there
is a d-partition (L*,U;,U3) in Y between U; NY and U N'Y such that
0 —IndL* <n—1. Since Y is open in X, then U} and U; are also open in
X.

Let us consider V; = U UU; and L = X — (V3 U Va). It is easy to see
that the triple (L; Vi, V2) is a d-partition in X between F; and F3 for which
LNY =L* Hence § —Ind(LNY)=6—IndL*<n—1. &

In a similar way, to that used to proving Theorem 1.5.2.9, and by taking
into consideration Lemma 1.5.2.14, one can prove the following

Theorem 1.5.2.10 If a proximity space (X,9) can be represented as the
union of two proximity subspaces Y and Z, one of which being open, then
O—IndX <d—IndY +6—IndZ +1 holds. &

Corollary 1.5.2.9 If (X,0) is a prozimity space such that X =Y U Z and
Y is closed, then

O0—IndX <6—IndY +6—IndZ +1.
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Proof: Since X =Y UZ =Y U(X —-Y),then X - Y C Zand X —Y is
open in X. By Theorem 1.5.2.10 it follows that

§—Ind(YUZ)=6—Ind(YU(X-Y))<6—IndY +5—Ind (X —Y)+1.

But from Theorem 1.5.2.1 we have 6 — Ind(X —Y) < § — IndZ. Hence
d—Ind(YUZ)<d—IndY +6—IndZ+1. &

1.5.3 Definition and basic properties
of the /-small inductive dimension

Definition 1.5.3.1 To every prozimity space (X,6) one assigns the -
small inductive dimension of X, denoted by 6 — ind X, which is an
integer larger then or equal to -1 or ”infinite number” +oo. The definition
of dimension function § —ind X consists in the following conditions:

(SIDq) § — indX = —1 if and only if X = 0;

(SID3) 6 —ind X < n, where n =0,1,..., if for every point x € X and
every closed set F C X not containing x, there is a 0-partition (L;U,V)
between x and I such that 6 —ind L <n —1;

(SID3) d—ind X =n if and only if §—ind X <n and §—ind X > n—1,
i.e. the inequality 6 —ind X <n —1 does not hold ;

(SIDy4) 6 —ind X = +oo if and only if 6 —ind X >n, n=-1,0,1,...

Modifying slightly the proof of Theorems 1.5.2.1, 1.5.2.2 and 1.5.2.3 we
obtain the following parallel three theorems:

Theorem 1.5.3.1 For every proximity subspace (Y, dy) of a proximity spa-
ce (X,0) 0 —indY <6 —ind X holds. &

Theorem 1.5.3.2 A prozimity space (X, d) satisfies the inequality d—ind X
< n if and only if for every x € X and each open neighborhood O, of x
there exists an open neighborhood O} of x such that x € O} < Oy and
0—indrO:<n—1.&

Theorem 1.5.3.3 If (X,0) is a proximity space and 6 —ind X =n > 1,
then for k =0,1,2,...,n— 1 there exists Y, C X such that 6 —indYy = k.
&

Theorem 1.5.3.4 For every proximity space (X,d) indX < § —ind X
holds.
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Proof: We shall apply induction with respect to § — ind X. Clearly, the
inequality holds if 6 —ind X = —1. Let us assume that the theorem proved
for all the proximity spaces (X,0) whose 6 —ind X < n— 1. Let us consider
the proximity space (X, d) with § — ind X = n, a point z € X and a closed
set F C X not containing . Since 26 F, there exists a d-partition (L;U, V)
between z and F' such that § —ind L < n — 1. Using Proposition 1.1.2.5 it
is easy to see that the triple (L; U, V') is also a topological partition between
z and F. Hence, by the induction, ind L < n — 1, which together with
Proposition 1.1.4 in [96] yields the inequality ind X <n =9 —ind X. &

Theorem 1.5.3.5 For every prozimity space (X, ) it follows that § —ind X
<induX.

Proof: We shall apply induction with respect to induX. Clearly, the
inequality holds if induX = —1.

Let us consider the proximity space (X,0) with induX = n, a point
r € X andaclosedset F' C X, x € F. Since ZL‘SF, we have that E“XOFUX =
() and therefore = & F"Y. From the definition of induX , there exists a
partition (L; U, V) in uX between x and F"* such that ind L <n-—1.

It is easy to see that (LNX;UNX,VNX) is a d-partition in X between
x and F. Hence, by the inductive assumption and the fact that u(LNX) =
L ﬂXuX, 0—ind(LNX) <indu(LNX) = ind(LﬂX)UX =imdL<n-1,
which, together with (SI1D;), yields the inequality 6 —ind X < induX. &

Corollary 1.5.3.1 For every compact proximity space (X,6) the d-small
inductive dimension coincides with the topological small inductive dimen-
siom.

Proof: From Theorem 1.5.3.4 it follows that ind X < § — ind X. From
Theorem 1.5.3.5 it follows that § — ind X < induX = ind X. Therefore
indX =0—mdX. &

1.5.4 Some relations between dimension functions

Theorem 1.5.4.1 6 —ind X = ind X for any proximity space (X,9).

Proof: It suffices to show that § — ind X < ind X, because in Theorem
1.5.3.4 we have proved that ind X < § — ind X for any proximity space
X. Clearly we can assume that ind X < +oo. We shall apply induction
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with respect to ind X. The inequality holds if ind X = —1. Assuming the
inequality valid for all proximity spaces of ind X < n, n > 0, we consider a
proximity space (X, d) with ind X = n. Let x € X and F be a closed subset
of X with ¢ F; then x6F. From Propositions 1.1.1.3 and 1.1.2.5 there
exists an open subset U of X such that x ¢ U and F' < U. Since ind X = n,
there exists a topological partition (L;Us,Us) between x and U such that
d—ind L <n—1 (by 1.1.4. in [96]). It follows from the inductive assumption
that ind L < n — 1. Since F < U C Uy, then F' < U, and hence (L; Uy, Us)
is a d-partition in X between x and F. Thus § —ind X < n = ind X, and
the proof of the theorem is complete. &

Modifying slightly the above proof, we obtain the following;:

Theorem 1.5.4.2 § — Ind X < IndX for every normal proximity space
(X,0). &

Theorem 1.5.4.3 For every prozimity space (X, ) it follows that § —ind X
<d—IndX.

Proof: It is easy to prove by applying the induction with respect to § —
IndX. &

Corollary 1.5.4.1 For every proximity space (X,0) there follows ind X <
0 —IndX <InduX.

Proof': It follows from Theorems 1.5.3.4, 1.5.4.3 and 1.5.2.4. &

Corollary 1.5.4.2 ind X < 0—Ind X < Ind X for every normal proximity
space (X,5). &

The above corollary shows that § — Ind X = Ind X for each normal
proximity space (X, d) having the property ind X = Ind X.
Thus using 1.7.7 in [96] we have:

Corollary 1.5.4.3 For a separable metric space (X,T) the equality § —
Ind X = Ind X holds for each proximity § on X compatible with 7. &

Also, using 4.8.2 in [8] and 8.10. in [238], we have

Corollary 1.5.4.4 § — Ind X = Ind X for every normal proximity space
(X, ) having a countable base (a countable §-base). &

Using 1.6.5 in [96], we have:
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Corollary 1.5.4.5 §—Ind X = 0 if and only if Ind X = 0 for every Lindedf
prozimity space (X,0). &

Using 2.2.4 in [96], we have:

Corollary 1.5.4.6 § — Ind X = IndX for every strongly paracompact
strongly hereditarily normal prozimity space. &

By 2.4.2 and 2.4.3 in [96], we have:

Corollary 1.5.4.7 §—Ind X =0 if and only if Ind X =0 and 6 —Ind X =
1 if and only if Ind X = 1 for every strongly paracompact proximity space
(X,0). &

Using 3.1.4 in [96], we have

Corollary 1.5.4.8 § — Ind X < dim X for every metric proximity space
(X,0). &

Corollary 1.5.4.9 i—ind X = Ind X for every normal fine proximity space
(X,6). &

Proof: By 2.2.9 in [96] it follows that Ind X = Ind (X, where X is
the Czech-Stone compactification of (X, 7s5). By Corollary 1.5.2.3 we have
0—IndX =IndBX. Hence § —Ind X = IndBX =Ind X. &

Example 1.5.4.1 Dowker constructed a compact space Z, which contains
a normal subspace X such that Ind X =1 (see example 2.2.11 in [96]). The

pair (X, YZ) defines a proximity 0 on X as follows:
For A, B C X, A3B if and only if A N B” = (. By Theorem 1.5.2.4 it
follows that § — Ind X =0 # Ind X.

Historical and bibliographic notes

The definition of the covering dimension J-dim of proximity spaces was
formulated by Ju. M. Smirnoff in 1954 [296]. All the results of subsection 5.1.
were proved by Smirnoff in paper [302] (see also [303] and [305]). The notion
of the large inductive dimension d-Ind of proximity spaces was introduced
by A. Kandil in 1983 [160]. In the same year he introduced the notion of
the small inductive dimension J-ind of proximity spaces in paper [162]. All
the results in the other subsection of this section were proved by Kandil in
his papers [159], [160], [161] and [162].



Chapter 2

Semi-proximity spaces and
semi-uniform spaces

2.1 Semi-uniform spaces

2.1.1 Semi-uniformities and semi-pseudometrics

Definition 2.1.1.1 A semi-uniformity on a set X is a filtert on X x X
satisfying the following two conditions:

(SUy) Ax CU for eachU € U;

(SUy) if U €U, then U™L contains an element of U.
A semi-uniform space is a pair (X,U), where X is a set and U is a
semi-uniformity on X.

Since U is a filter, the condition (SUz) can be replaced by the following
formally stronger condition:

(SUS) if U eU, then U=t e U.

The elements of semi-uniformity are called entourages of X x X or en-
tourages on X.

Definition 2.1.1.2 A base for a semi-uniformity U is a subcollection
V of U such that each element of U contains an element of V. A sub-base
for a semi-uniformity U is a subcollection W of U such that the collection
of all finite intersections of elements of W is a base of U.

It is obvious that a base for a semi-uniformity i/ is a filter base for the
filter U, while a sub-base for a semi-uniformity U is a filter sub-base for the
filter U.

177
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Proposition 2.1.1.1 Conditions (SUy) and (SUs) are necessary and suf-
ficient for a filter base on X x X to be a base for a semi-uniformity for X.
These conditions are also sufficient (but not necessary) for a filter sub-base
on X x X to be a sub-base for a semi-uniformity for X. &

Proposition 2.1.1.2 A collection W of sets is a sub-base for a semi-unifor-
mity on a set X if and only if W # 0, each element of W being an entourage
of diagonal of X, and if W € W, then W~ contains a finite intersection of
the elements of W.

Proof: Let us consider the collection V consisting of all finite intersections
of the elements of W. If W is a sub-base for a semi-uniformity, then V
is a base and therefore, by Proposition 2.1.1.1, if V € V then V' C V!
for some V' € V; it follows that for each U € W the set U~! contains a
finite intersection of elements of W. It is obvious that each element of W
contains the diagonal and that W # (). Conversely, if the conditions of
proposition are satisfied, one can show without difficulty that V is a filter
base satisfying conditions (SU;) and (SUsz). Now by Proposition 2.1.1.1 V
is a base for semi-uniformity and finally, by definition, WV is a sub-base for
a semi-uniformity. &

Corollary 2.1.1.1 The collection of all symmetric elements of a given se-
mi-uniformity U is a base for U.

Proof: Indeed, if U € U, then U~! € U by (SU}) and thus UN U~ € U.
But U NU! is symmetric and contained in U. &

If U is a semi-uniformity for a set X, then U[z] = {U[z] : U € U} is a
filter on X and x € Ulz]| for each 2 € X. Then there exists a unique closure
u for X such that U[x] is a local base at x in the closure space (X, u) for
each x € X. This closure is defined to be closure induced or generated
by semi-uniformity &/. If V is a base (sub-base) for U, then V|[x] is a local
base (a local sub-base) at x in the closure space (X, u) for each z € X.

Example 2.1.1.1 (a) The collection U of all subsets of X x X containing the
diagonal is clearly a semi-uniformity on a set X. The collection consisting
of only one element, namely the diagonal of X x X, is a base for . Clearly
U is the largest semi-uniformity on X, that is, if V is a semi-uniformity for
X, then YV CU. Tt is obvious that U generates the discrete closure.

Let us consider now the collection V; of all subsets U C X x X of the
form | J,(G; x G;), where {G;} is a finite cover of X. Obviously V; is a filter
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base and satisfies conditions (SU;) and (SUs). Thus V; is a base for some
semi-uniformity V for X. Clearly V generates the discrete closure operation
for X. If X is infinite, then the diagonal of X x X does not belong to
V and hence V # U. Thus, if X is infinite, then & and V are distinct
semi-uniformities generating the same closure operation.

(b) Let d be a semi-pseudometric for a set X. Then the collection of
all sets of the form U, = {(z,y) : d(z,y) < r}, r > 0, is a filter base on
X x X satisfying conditions (SU;) and (SUsz). By Proposition 2.1.1.1 this
collection is a base for a semi-uniformity & which will be said to be induced
or generated by semi-pseudometric d. The semi-pseudometric d induces
also a closure for X. It is almost self-evident that these closures coincide.
Indeed, the family {U,[z] : r > 0} is a local base at x with respect to the
closure induced by the semi-uniformity and the same family is a local base
at « with respect to the semi-pseudometric closure because U, [z] is the open
r-sphere about .

Definition 2.1.1.3 A semi-uniformity is semi-pseudometrizable if it is
mduced by a semi-pseudometric.

Theorem 2.1.1.1 A semi-uniformity U is semi-pseudometrizable if and
only if it has a countable base.

Proof: If U is generated by a semi-pseudometric d, and M is a set of positive
real numbers the infimum of which is zero, then evidently, the collection of
all sets {(z,y) : d(z,y) <r}, r € M, is a base for U. Since M can be taken
as countable, the "only if” part is proved. Conversely, let {U, : n € N} be
a base for Y. Without loss of generality we may assume that Uy = X x X
and U,, = U, ! D U, for each n € N. Putting d(z,y) = 27" if and only if
(z,y) € Uy — Up41 and d(z,y) = 0 if and only if (z,y) € ), Un, we obtain
a semi-pseudometric d for X which generates . &

Definition 2.1.1.4 A semi-pseudometric d for a semi-uniform space
(X,U) is said to be uniformly continuous if the semi-uniformity induced
by d is contained in U, i.e. {(x,y) : d(z,y) < r} € U for each positive
real number r. A uniform collection of semi-pseudometrics is the col-
lection of all uniformly continuous semi-pseudometrics for a semi-uniform
space.

Proposition 2.1.1.3 Let M be a non-void collection of semi-pseudometrics
for a set X and let V be the collection of all sets of the form {(z,y) :
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d(z,y) <r},de M, r>0. ThenV is a sub-base for a semi-uniformity
and if M fulfils condition:

(a) if di,dy € M, then dy +dy € M,
then V is a base for a semi-uniformity. If V is a base for a semi-uniformity
U and M fulfils condition:

(b) if d is a semi-pseudometric for X and if for each r > 0 there exists a
d € M and an s > 0 such that d'(x,y) < r implies d(z,y) < r, thend € M;
then M is the set of all uniformly continuous semi-pseudometrics for (X, U).

Proof: Every element of the collection V is a symmetric entourage of the
diagonal of X x X and therefore, by Proposition 2.1.1.1 V is a sub-base
for a semi-uniformity. Let us suppose that the condition (a) is satisfied. It
will be shown that V is a filter base. If V; = {(x,y) : di(z,y) < ri} €V,
i = 1,2, where d; € M and r; > 0, then V3 N V5 contains the entourage
{(z,y) : (d1 +d2)(z,y) < r}, where r = min(ry,r2). Finally, if V is a base
for a semi-uniformity ¢/ and if d is a uniformly continuous pseudometric
for (X,U), then clearly d fulfils the supposition of condition (b). Thus if
M fulfils (b), then every uniformly continuous semi-pseudometric for (X, )
belongs to M. &

Theorem 2.1.1.2 A collection M of semi-pseudometrics is a uniform col-
lection of semi-pseudometrics if and only if M is non-void, all elements of
M are semi-pseudometrics for the same set,say X, and the following two
conditions are fulfilled:

(a) if di,dy € M, then dy + dy € M;

(b) if d is a semi-pseudometric for X and if for each r > 0 there exists a
d € M and an s > 0 such that d'(z,y) < s implies d(z,y) < r, thend € M.

Proof: Let us first suppose that M is the collection of all uniformly con-
tinuous semi-pseudometrics for a semi-uniform space (X,U). It is obvious
that {(z,y) — 0 : (z,y) € X x X} € M and hence M # (. Evidently
every d € M is a semi-pseudometric for X and hence all d € M are for the
same set. If di,do € M, d = dy 4+ da, r > 0 is a positive real number and
0 < s <r/2, then

{(@,y) : d(z,y) <7} 2 {(z,y) : di(z,y) <s}N{(z,y): daw,y) <s} €U,

which shows that d is a uniformly continuous semi-pseudometric for (X,U),
i.e. d € M. Condition (b) is an immediate consequence of the definition of
uniformly continuous semi-pseudometrics. The second part of the proof is
an immediate consequence of Proposition 2.1.1.3. &
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If M is a non-void collection of semi-pseudometrics for a set X, then by
Proposition 2.1.1.3 the set of all {(x,y) : d(z,y) <r},d e M, r > 0is a
sub-base for a semi-uniformity which is defined to be the semi-uniformity
generated by M.

Theorem 2.1.1.3 If a semi-uniformity U is generated by a non-void co-
llection M of semi-pseudometrics for a set X, then U € U if and only if
U C X x X and there exits a finite sequence {d; : i < n} in M and a
positive real number r such that 3, di(x,y) <r implies (z,y) € U.

Proof: The set M of all finite sums of semi-pseudometrics from M con-
tains with each d; and ds their sum di +ds. Now the statement follows from
Proposition 2.1.1.3. &

Let U be a semi-uniformity for a set X, M be the set of all uniformly
continuous semi-pseudometrics for (X,U) and let V be the semi-uniformity
induced by M. Obviously, V is contained in &. Now we shall prove that
u="y.

Proposition 2.1.1.4 IfU is a semi-uniformity for a set X, then U is gen-
erated by the set M of all uniformly continuous semi-pseudometrics for
(X, M) which take only two values, 0 and 1.

Proof: If U is a symmetric element of ¢/ and if d(z,y) = 0 for (z,y) € U
and d(z,y) = 1 otherwise, then it is clear that d = {(z,y) — d(z,y) :
(xz,y) € X x X} is a uniformly continuous semi-pseudometric for (X,U). &

As a corollary we obtain the following result which shows that a semi-
uniform space is uniquely determined by the collection of all uniformly con-
tinuous semi-pseudometrics, and that a semi-uniformity i/ is the smallest
semi-uniformity containing every semi-uniformity induced by a uniformly
continuous semi-pseudometric for (X,U).

Theorem 2.1.1.4 If (X,U) is a semi-uniform space, then U € U if and
only if U C X x X and there exists a uniformly continuous semi-pseudomet-
ric d for (X,U) such that d(z,y) < 1 implies (x,y) € U. &
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2.1.2 Semi-uniform closure operation

In this subsection we shall consider various descriptions of the closure u
induced by a semi-uniformity .

Definition 2.1.2.1 A continuous semi-uniformity for a closure spa-
ce (X,u) is a semi-uniformity for X such that the closure induced by U is
coarser than u. A closure operation u will be called semi-uniformizable
if u is induced by a semi-uniformity.

Let us recall that if X is a closure space, then a semi-neighborhood of
the diagonal of the product space X x X is a neighborhood of the diagonal
in ind(X x X), i.e. a subset U of X x X such that Ulz] N U~ ![z] is a
neighborhood of z in X for each z € X.

Proposition 2.1.2.1 If U is a continuous semi-uniformity for a closure
space (X, u), then each element of U is a semi-neighborhood of the diagonal
in (X,u) x (X,u). The set of all semi-neighborhoods of the diagonal of
(X,u) x (X,u) is a continuous semi-uniformity for (X,u).

Proof: Let v be the closure induced by U. If U € U, then Ulz] is a
neighborhood of x in (X,v) for each z € X, and v being coarser than wu,
Ulz] is also a neighborhood of z in (X, u). Since U~! belongs to U, U~1[z]
is also a neighborhood of x in (X, u). Thus U is a semi-neighborhood of the
diagonal of (X, u) x (X, u). Now let W be the set of all semi-neighborhoods
of the diagonal (X, u) x (X,u). Since W is the neighborhood of the diagonal
in ind((X,u) x (X, u)), W is a filter consisting of entourages of the diagonal,
and clearly U € W implies U~! € W. Thus W is a semi-uniformity which
is, evidently, continuous. &

Corollary 2.1.2.1 Let (X,u) be a closure space and let U be the set of all
semi-neighborhoods of the diagonal of (X,u) x (X,u). Then U is the largest
continuous semi-uniformity for (X,u) and the closure induced by U is the
finest semi-uniformizable closure coarser than u. Finally, d is a continuous

semi-pseudometric for (X, u) if and only if d is a uniformly continuous semi-
pseudometric for (X,U). &

Theorem 2.1.2.1 A closure space (X, u) is semi-uniformizable if and only
if x € u(y) implies y € u(x).
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Proof: Let us suppose that u is induced by a semi-uniformity I/ and let
V be the set of all symmetric elements of &. V is a base for U and thus
z € u(A) if and only if V[z] N A # 0 for each V € V. Now, if z € u(y),
then y € V[x] for each V € V, and each V' € V being symmetric, we obtain
x € V]y| for each V' € V, which means that y € u(x).

Conversely let us assume the condition and let us consider the largest
continuous semi-uniformity U for (X, u). We shall prove that & induces wu.
It is sufficient to show that, for each x € X and each neighborhood W of
x, there exists an element U € U such that U[z] C W. Let us choose a
family {V}, : y € X} such that Vj, is a neighborhood of y in (X, u) for each
y, Vo, C W, and if y ¢ u(x) then x € X — V). Let us put V = Uyex Vi,
U = VUV ~L. Obviously U is a semi-neighborhood of the diagonal and hence
U € U. It will be show that U[z] = V, and hence that U is the required
element of Y. Clearly Ulz] D V.. If y € (U[x] — V,), then y € V~1[z],
because V[z] = V, and hence z € V[y] = V,,. Thus by construction y € u(z)
and by our condition there follows x € u(y). Hence y € V, because V; is a
neighborhood of z. But this contradicts our assumption y € V,.. &

Theorem 2.1.2.2 Let X be a closure space. A symmetric subset U of X x
X is a semi-neighborhood of the diagonal of X x X if and only if A C U[A]
for each A C X.

Proof: Let us first suppose that a symmetric subset U of X x X is a semi-
neighborhood of diagonal and let A C X. If 2 € A, then Ulz] N A # 0, so
that y € Ulz] for some y € A. Since U is a symmetric set, we have that
x € Uly]. Thus A C U[A].

Conversely, let us suppose that the inclusion A C U[A] holds for each
A C X. Since U is symmetric, to show that U is a semi-neighborhood of the
diagonal, it is sufficient to prove that U[z] is a neighborhood of z in X for
each x € X. But by our condition there follows X — U[z] CU[X — Ulz]] =
X — {z} and hence U]z] is indeed a neighborhood of z. &

Let (X,u) be a closure space induced by a semi-pseudometric d and
let U, = {(z,y) : d(z,y) < r}, r > 0. For each A C X the set U,[4]
is the open r-sphere about the set A in (X, d) and therefore uA C U, [A].
Furthermore uA = (-, Ur[A] since uA is the set of all € X which have
zero distance from A. Now we shall prove that the same formula is true for
every semi-uniformity inducing the closure u.

Theorem 2.1.2.3 Let us suppose that a closure u for a set X is induced
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by a semi-uniformity U, and V is a base of U. Then
ud = {U[A]: Ut} =(|VIA: VeV}
for each A C X.

Proof: By Proposition 2.1.2.1 each element of i/ is a semi-neighborhood of
the diagonal of (X, u) x (X, u) and therefore, by Theorem 2.1.2.2, uA C U[A]
for each symmetric U € U and hence each U € U. To prove the converse
inclusion, let us suppose that x € X — uA. Then V]z] N A = ) for some
V € V. Selecting any element V; € V contained in V N V™!, we obtain
x ¢ V1 [A] which establishes the inverse inclusion. &

Lemma 2.1.2.1 IfU and V are relations on a set X, then
(%) UoVoU=|HU 2] x Uly] : (w,y) € V},
and if U is a symmetric relation, then

(%) UoVolU=| J{Ulz] x Uly] : (w,y) € V}.

Proof: To prove (x) it is sufficient to observe that the left side of (x) is the
set of all pairs (z,t) such that (z,2) € U and (y,t) € U for some (z,y) € V,
i.e. the set {(2,t): 2 € U[z], t € U[y| for some (x,y) € V'} which is the
set on the right side of (x). Formula (*x) follows immediately from (x). &

Now we shall give an interesting description of the product u x u, where
u is a semi-uniform closure.

Theorem 2.1.2.4 Let us suppose that a closure operation u for a set X
is induced by a semi-uniformity U and (X x X,u X u) is the product space
(X,u) x (X,u). Then

(uxu)V=({UoVoU:UeclU}
for each subset V of X x X.

Proof: Let V be the collection of all symmetric elements of ¢4. Thus V
is a base of U and V[z] is a local base at x in the closure space (X,u)
for each x € X. Then the collection consisting of all sets W[z] x W]y],
W €V, is a local base at (z,y) in the product space (X x X,u X u). Since
the relations W are symmetric, we have (z,t) € Wz| x Wly] if and only if
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(z,y) € W[z]xW][t]. But (z,t) € (uxu)V if and only if V(W [z]xWt]) # 0
for each W € V, i.e. for each W € V there exits a pair (z,y) in V such that
(z,t) € W[z] x W[y]. By virtue of formula (**) of Lema 2.1.2.1 we obtain
(2,t) € (ux w)V if and only if (z,¢) € WoV oW for each W e V. &

In concluding part of this subsection we shall describe semi-uniform clo-
sure in terms of uniformly continuous semi-pseudometrics.

Theorem 2.1.2.5 Let us suppose that a closure u for a set X is induced
by a semi-uniformity U and U is generated by a collection M of semi-
pseudometrics. Finally, let My be the set of all finite sums of semi-pseudo-
metrics from M. Then

(a) z € uA if and only if the distance from x to A is zero in (X,d) for
each d in Mq;

(b) A subset U of X is a neighborhood of x € X in (X,u) if and only if
U contains an open r-sphere about x in (X,d) for some d € My;

(¢) a net {zy} converges to x in (X,u) if and only if the net {d(xq,x)}
converges to zero in R for each d in M.

Proof: Statements (a) and (b) are evident by Theorem 2.1.1.3. Statement
(c), with M replaced by My, is also evident (e.g. one can use (b)). It
remains to notice that if the net {d(z,, )} converges to zero in R for each
d inM, then this net converges to zero for each d in M;. &

2.1.3 Uniformly continuous mappings

A mapping f of a semi-pseudometric space (X1, d;) into another one (X2, d2)
is uniformly continuous if for each r > 0 there exists an s > 0 such that
di(z,y) < s implies do(f(z), f(y)) < r, stated in other words, if U; is the
semi-uniformity induced by d;, then for each Uy € Us there exists a Uy € U
such that (z,y) € V7 implies (f(x), f(y)) € Us, i.e. that fo(U;) C Uy holds,
where fo((z,9)) = (/(2), f())-

Definition 2.1.3.1 A mapping f of a semi-uniform space (X,U) into a
semi-unform space (Y,V) is said to be uniformly continuous if for each
V €V there exits a U € U such that (x,y) € U implies (f(x), f(y)) € V.
A semi-uniformity U is said to be uniformly finer than a semi-uniformity
V, and V is said to be uniformly coarser than U, if they are for the same
set, say X, and the identity mapping of (X,U) onto (X,V) is uniformly
continuous. A uniform homeomorphism is a one-to-one mapping f of a
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semi-uniform space (X,U) onto a semi-uniform space (Y,V) such that both
f and f=' are uniformly continuous.

Thus a mapping f : (Xi1,d1) — (X2,d2) between semi-pseudometric
spaces is uniformly continuous if and only if f : (X1,U) — (Xo,Us) is
uniformly continuous, where U; is the semi-uniformity generated by d;.

Theorem 2.1.3.1 Let us suppose that f is a mapping of a semi-uniform
space (X,U) into a semi-uniform space (Y, V), U' is a base forU and V' is a
sub-base for V. Each of the following conditions is equivalent to the uniform
continuity of f:

(a) for each V€V there exists a U € U such that fo(U) CV;

(b) f,1(V) €U for each V € V;

(¢) £, 1(V) €U for each V € V';

(d) for each V€ V' there exists a U € U such that fo(U) C V, i.e.
f(Ulz]) CVI[f(x)] for each x € X.
Proof: Since the implication (z,y) € U = (f(z), f(y)) € V is equivalent
to f2(U) C V, condition (a) is a restatement of the definition. Since U is a
filter on X x X and fo(U) C V if and only if f, (V) D U, conditions (a)
and (b) are equivalent. It is obvious that (b) implies (¢). If (¢) is fulfilled
and V is an element of V, then there exits a finite family {V; : i < n}
in V' such that (), V; € V. By (c) f5 (Vi) € U for each 4, there holds
N [ (Vi) € U and finally f; (V) € U because U is a filter on X x X
and f, 1 (U) 2 f51(N; Vi) = Ny f2 1(Vi). Tt is obvious that (a) implies (d).
Indeed, if fo(U) C V for some U € U, then we can choose a U' € U’ with
U’ C U and hence fo(U’) C V. Conversely, if V € V, we can choose finite
families {V;} in V' and {U;} in U’ such that (), V; €V and f2(U;) C V; for
each i. Clearly U =, U; € U and f»(U) C V, which establishes (d) = (a).
&

Proposition 2.1.3.1 A semi-uniformity V is uniformly coarser than a se-
mi-uniformity U if and only if V CU. &

Proposition 2.1.3.2 The composition of two uniformly continuous map-
pings is a uniformly continuous mapping.

Proof: Let f : (X,U) — (Y,V) and g : (Y,V) — (Z,W) be uniformly
continuous mappings, h = g o f their composition and W € W. Then
V = g, (W) € V because g is uniformly continuous and U = f, (V) € U
because f is uniformly continuous. But then U = hy 1(W), which shows
that h is uniformly continuous. &
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Proposition 2.1.3.3 The identity mapping of a semi-uniform space onto
itself is a uniform homeomorphism. If f is a uniform homeomorphism then
f~1is also a uniform homeomorphism. If f and g are uniform homeomor-
phisms, then go f is also a uniform homeomorphism.

Proof: The first two statements are obvious. To prove the third one it is
sufficient to observe that (go f)~' = f~! o ¢g~! and to apply Proposition
2.1.3.2toboth go fand f~log™!. &

Corollary 2.1.3.1 The relation {(X,Y) :there exists a uniform homeo-
morphism of X onto Y} is an equivalence relation on the class of all semi-
uniform spaces. &

Let us recall that, if we say that a semi-pseudometric space (X, d) has a
property for closure space, it is to be understood that the induced closure
space (X, uq) has this property, and if a mapping f for semi-pseudometric
space has a property defined for closure spaces, it should be understood that
f transposed to a mapping for closure spaces has this property. Also, if we
say that a semi-uniform space (X, ) has a property defined for closure space
it is to be understood that the induced closure space has this property, e.g.
a semi-uniform space (X, ) is discrete means that the induced closure space
is discrete. Similarly, a semi-uniformity i/ is finer than a semi-uniformity V
means that the closure induced by U is finer than the closure induced by V.
If f is a mapping of a semi-uniform space (X1, ) into a semi-uniform space
(X2,Us), then the mapping f : (X1,u1) — (X2, uz2), where u; is the closure
induced by U;, is termed f transposed to a mapping for closure spaces, and,
if we say that the mapping f for semi-uniform spaces has a property defined
for mapping for closure spaces, it should be understood that f transposed
to a mapping for closure spaces has this property. Finally, if we say that a
semi-pseudometric space has a property defined for semi-uniform spaces, it
is to be understood that the induced semi-uniform space has this property,
and a similar convention is used for mappings.

Proposition 2.1.3.4 FEvery uniformly continuous mapping is continuous
and every uniform homeomorphism is a homeomorphism. &

Corollary 2.1.3.2 If a semi-uniformity U is uniformly finer than a semi-
uniformity V, then U is finer than V.

Proof: It is sufficient to show that every uniformly continuous mapping is
continuous. Let us suppose that f : (X,U) — (X,V) is uniformly continu-
ous. We have to show that the mapping f : (X,u) — (X,v) is continuous,
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where u and v are closures induced with &/ and V respectively. Since f is
a uniformly continuous mapping, then U = fy YV) e U for each V € V.
But then Ulz] = f~1(V[f(x)]) holds for each x € X. Since the sets V[f(z)],
V € V, form a neighborhood system at f(x) in (X,v), and the sets Ulx],
U € U, form a neighborhood system at z in (X, u), f is continuous. &

If U and V are distinct semi-uniformities inducing the same closure u
for a set X, then the identity mapping J : (X,U) — (X,V) is a homeomor-
phism, but neither J : (X,U) — (X, V) nor its inverse J : (X,V) — (X,U)
is uniformly continuous. Thus a homeomorphism need not be uniformly
continuous.

2.1.4 Subspaces and products

Definition 2.1.4.1 If (X,U) is a semi-uniform space andY C X, then the
collection {UN(Y xY) : U € U} is obviously a semi-uniformity for Y which
is called the relativization of U to Y. The corresponding semi-uniform
space is said to be a subspace of (X,U). A class of semi-uniform spaces is
said to be hereditary if, with each space X, it contains all subspaces of X.

Proposition 2.1.4.1 Let us suppose that (Y,V) is a subspace of a semi-
uniform space (X,U). Then

(a) the closure induced by V is a relativization of the closure induced by
U;

(b) V is the unique uniformly coarsest semi-uniformity for Y which ren-
ders the identity mapping of Y into (X,U) uniformly continuous;

(¢)if Z C Y, then (Z,W) is a subspace of (Y,V) if and only if (Z,W)
is a subspace of (X,U). &

Proposition 2.1.4.2 If (Y,v) is a subspace of a semi-uniformizable closure
space (X, u) and if a semi-uniformity V induces v, then V is a relativization
of a semi-uniformity inducing u.

Proof: Let U; be the largest continuous semi-uniformity for (X, u) and let
usput Y =VUU ={VUU; : V€V, Uy €U} Itis easily seen that U
has the required properties. &

Proposition 2.1.4.3 Every restriction of a uniformly continuous mapping
s a uniformly continuous mapping. &
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Proposition 2.1.4.4 A mapping f of a semi-uniform space X into a semi-
uniform space Y is uniformly continuous if and only if the restriction of f
to a mapping of X onto subspace f(X) of Y is uniformly continuous. &

Proposition 2.1.4.5 If g is a restriction of a mapping f for semi-uniform
space, and g1 and f1 are the transposes of g and f to mappings for closure
spaces, then gy is a restriction of f1. &

Definition 2.1.4.2 The product of a family {(X,,U,) : a € A} of
semi-uniform spaces, denoted by [[{(Xq,Us) : a € A}, is defined to be
the semi-uniform space (X,U), where X is the product of the family {X,}
of the underlying sets, and U, called the product semi-uniformaity, is the
collection of all subsets of X x X containing a set of the form

(%) {(z,y): (z,y) e X x X, a € F = (prox,prqy) € Uy},

where F is a finite subset of A and U, € U, for each a € A. The sets of
the form () are then called the canonical elements of the product semi-
uniformity.

It must be shown that the collection of all canonical elements of U is a
base for a semi-uniformity. It is sufficient to show that the collection of all
sets of the form (x) with F' one-point form a sub-base for a semi-uniformity;
this follows from Proposition 2.1.1.1. The main properties of products are
summarized in the following

Theorem 2.1.4.1 Let (X,U) be the product of a family {(X.,Uy,) : a € A}
of semi-uniform spaces. Then

(a) the product closure is induced by U, more precisely, if u, is induced
by Uy, for each a € A, then the product closure [[, uq is induced by U;

(b) each mapping prq : (X, U) — (Xqa,Uy) is uniformly continuous;

(¢) U is the uniformly coarsest semi-uniformity such that all the map-
pings prq : (X,U) — (Xq,U,) are uniformly continuous;

(d) a mapping f of a semi-uniform space (Y, V) into (X,U) is uniformly
continuous if and only if all the mappings proof : (Y,V) — (Xa,Uy), a € A,
are uniformly continuous;

(e) if the projection pro = (X,U) — (Xq,U,), where a is a fized ele-
ment in A, is surjective, then a mapping h of (X4,Uy) into a semi-uniform
space (Z, W) is uniformly continuous if and only if the composition ho pr, :
(X,U) — (Z,W) is uniformly continuous.
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Proof: (a) If U, is any subset of X, x X, and z is any point of X, then
the set

(1) {ly:ye X, pray € Uslpraz]}

coincides with the set

(2) {(x,y) : (x,y) eX xX, (prax,pray) € Ua}[x] :

Indeed, given x € X, the sets (1) with a € A and U, € U,, form a local sub-
base at x in (X, ][], ua), because U,[prqx] is a neighborhood system at pr,z
in (Xg,u,) and the sets (2) with a € A and U, € U, form a local sub-base
at x in (P, u), because the sets {(z,y) : (z,y) € X x X, (prox,prqy) € Uy}
form a sub-base for U.

(b) Let f, be the projection of (X,U) into (X,,U,). It follows that
(fax fo) X U) = {(z,9) : (2,9) € X x X, (prox, pray) € Uy} € U for each
U, € U, and this means that each f, is uniformly continuous and establishes
the statement.

(¢) If U’ is any semi-uniformity such that all the mappings pr, : (X,U’)
— (Xg,Uy), a € A, are uniformly continuous, then every set {(z,y) :
(x,y) € X x X, (prazx,pray) € Uy} with a € A and U, € U, necessar-
ily belongs to U’. But these sets form a sub-base for U and hence U C U'.
This shows that ¢’ is uniformly finer than &/ and establishes the statement.

(d) If f is uniformly continuous, then each mapping in question is uni-
formly continuous as the composition of two uniformly continuous mappings.
Conversely, let us suppose that all the mappings in question are uniformly
continuous. Let U; be the sub-base for U consisting of all the sets

U'={(z,y): (z,y) € X x X, (prox,pray) €Uy}, a € A, Uy, €U, .

By Theorem 1.1.3.4 it is sufficient to show that f, '(U.) € V for each a € A
and U, € U,. But this is almost self-evident since f, (U%) = (prao f)y* (Us)
and pr, o f is a uniformly continuous mapping of (Y, V) into (X4,U,)

(e) If h is uniformly continuous then the mapping h o pr, of (X,U)
into (Z,W) is uniformly continuous as the composition of two uniformly
continuous mappings, namely of the projection of (X,U) into (X,,U,) and
h. Conversely, let us suppose that k = ho pr, : (X,U) — (Z,W) is uni-
formly continuous and the projection f, into (X,,U,) is surjective. Clearly
ky HW) = (fa)y H(hy '(W) for each W € W. Now the proof will be accom-
plished if we show that U, C X, x X4, (fa)3 (Us) € U implies U, € U,
provided that f, is surjective. But this is evident. &
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Proposition 2.1.4.6 If{X,} and {Y,} are families of semi-uniform spaces
such that Yy is a subspace of X4 for each a € A, then the product of Yy is a
subspace of the product of X,. &

Let us recall that a pseudometric d for a closure space (X, u) is continuous
(i.e. the closure induced by d is coarser than u) if and only if the function
d: (X,u) x (X,u) — R is continuous. The following theorem asserts a
similar result for the uniform continuity.

Theorem 2.1.4.2 A pseudometric d for a semi-uniform space (X,U) is
uniformly continuous if and only if the function d : (X,U) x (X,U) — R is
uniformly continuous.

Proof: If d : (X,U) x (X,U) — R is uniformly continuous, then for each
r > 0 there exists a U € U such that (x1,22) € U, (y1,y2) € U implies
|d(x1,22) — d(y1,y2)| < r. In particular, if y; = yo, then (y1,y2) € U and
d(y1,y2) = 0, and hence (z1,x2) € U implies d(x1,z2) < r which proves that
d is a uniformly continuous semi-pseudometric for (X, ). Let us notice that
the triangle inequality has not been used.

Conversely, let us suppose that d is a uniformly continuous pseudometric.
We must show that for each r > 0 there exists a U € i and a V' € U so that
(x1,y1) € U, (x2,y2) € V implies |d(z1,22) — d(y1,y2)| < . Let us choose
a positive s such that 2s < r and a U € U such that (z1,22) € U implies
d(z1,22) < s. Now, if (x1,y1) € U and (z2,y2) € U, then

(21, 22) — d(y1,y2)| < d(21,91) + d(z2,92) <28 <7

which establishes the uniform continuity of the function d on (X,U) x (X,U).
s

Historical and bibliographic notes

The concept of a semi-uniform space was introduced by M. Hushek in
1964 (see [146] and [147]). The first systematic exposition of theory of semi-
uniform spaces was given by M. Katetov and Z. Frolik in the revised edition
of E. Czech’s book ”Topological spaces”.
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2.2 Semi-proximity spaces

2.2.1 Definition and basic properties of semi-proximity rela-
tion

Definition 2.2.1.1 A relation § on the family P(X) of all subsets of a
set X s called a semi-proximity or basic proximity if § satisfies the
following conditions:

(SP) 06X ;

(SPy) A0B implies B6A;

(SP3) AN B # 0 implies A0B;

(SPy) (AU B)6C if and only if either A6C or BSC.
The semi-prorimity satisfying the following condition:

(SP5) {z}é{y} implies z =y,
is said to be a separated or Hausdorff semi-proximity. The pair (X,0)
is called a space of basic proximity or semi-prorimity space. (X,0)
is said to be a separated semi-proximity space if the condition (SPs)
holds.

Proposition 2.2.1.1 If § is a semi-proximity for X, then the following
statements hold:

(a) if AC BC X and ASC, then BSC;

(b) if AC B C X and BSC, then ASC;

(c) ASD for every A C X;

(d) if {A;} and {By} are finite families of subsets of X for which

(J4nsJBr)
i K

then A;0By, for some indices j and k.

Proof: (a) If A6C and A C B, then on account of (SPy) it follows that
(AU B)dC, and since A C B, then AU B = B, so that BJC'.

(b) Follows from (a).

(c) Follows by (SP;) and (b).

(d) Let {A4;} be a finite family of subsets of X for which ({J; A;)é B holds.
Then on account of (SP;), by induction, it can be easily proved that A;6B
for some j. But then B§A; for some j according to (SP), i.e. (UBg)dA;
for some j. From this fact, there exists some k for which B0 A;, from where
again, by property (SP), it follows that A;0By, holds for some j and k. &
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Example 2.2.1.1 Let d be a semi-pseudometric for a set X, U the semi-
uniformity induced by d and § semi-proximity induced by U. It is almost
self-evident that

A6B if and only if d(A, B) =0.

We shall say that this semi-proximity has been induced or generated by
d.

Example 2.2.1.2 Let X = {r € Q : » > 0}. It is easy to see that the
following functions

di(z,y) =2 4yt da(z,y) =1 if £y

are semi-pseudometrics on X. Clearly both d; and ds induce the discrete
closure for X. On the other hand, d; and ds induce distinct proximities.
Indeed, Ady, B if and only if AN B # () or both A and B are infinite, but
Abg, B if and only if AN B # 0.

Definition 2.2.1.2 A set B C X of a semi-prozimity space (X,0) is a
d-neighborhood of A C X if A6X — B.

It is easy to prove the following proposition:

Proposition 2.2.1.2 Let (X, ) be a semi-proximity space. Then the rela-
tion < has the following properties:

(a) 0 < A for each A C X;

(b) if A< B, then A C B;

(c) if AC Ay < By C B, then A < B;

(d)if AL B;, i =1,2, then A < (B1 N Ba);

(e) if AL B, then X — B< X — A.

If a relation < defined on the power set P(X) of X is satisfying condi-
tions (a) — (e), then there exists a unique semi-proximity 6 on P(X) such

that A < B if and only if B is a d-neighborhood of A. &

Let (X,0) be a proximity space and let us be the closure induced by §.
Every subset of X is a proximal neighborhood of the empty set. If A is a
non-empty subset of semi-proximity space X, then the family 91(d, A) of all
d-neighborhoods of A is a proper filter on X.

If a set B is a d-neighborhood of a set A in a semi-proximity space (X, ),
then it is a neighborhood of a set A in the space (X, us). Let us suppose that
B is a §-neighborhood of a set A. Then A < B, or equivalently, A6X — B. If
x € A, then by Proposition 2.2.1.1 (b) 26X — B holds. But then » ¢ X — B.
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Therefore it holds that x € X — X — B, which implies that A C X — X — B.
This proves that B is a neighborhood of A in the closure space (X, us). The
converse, in general case, need not be true. However, every neighborhood
of z in the space (X, us) is a d-neighborhood of = in (X, d). Really, if U is a
neighborhood of the point z, then x € X — X — U. Therefore it holds that
x ¢ X — U from which it follows that 26X — U. This proves that the set U
is a d-neighborhood of the point .

Proposition 2.2.1.3 Let (X, ) be a semi-proxzimity space. Then the map-
ping u : P(X) — P(X) defined by

u(A) ={zx e X : xdA}
is a closure operation which is said to be induced by 6.

Proof: First, let us notice that, by Proposition 2.2.1.1 (d), uf) = 0 holds. If
x € A, then on the basis of (SP3) it follows that 20 A, so that € uA. Thus
we have proved that A C uA for every A C X. Let z € u(AU B). Then
xd(A U B), so that by (SPy) either xdA or zdB. Therefore, either z € uA
or x € uB is true, so that z € (uA UuB), hence u(AU B) C uA U uB.
The converse inclusion obviously holds, which proves that u is a closure
operation. &

For a closure space (X, u) or a neighborhood space (i.e. for the operator
of closure u) described in the previous proposition it is said to be induced by
a semi-proximity ¢ and this space (semi-proximity) is denoted by (X, u(d))
or (X, us) (u(d) or ug).

Note that us is completely determined by the family {6({z}): x € X}.
Here §(A) = {B: BoA}. It is also true that 6({z}) is completely determined
by ¢s, since

d{z})={A: zcus(4)}.
Thus the following proposition has been established.

Proposition 2.2.1.4 If two semi-proximities on X, 0 and §* are such that
for every x € X, §({z}) = §*({x}), then us = us«. Conversely, if us = us~,
then 6({x}) = 6*({z}) forallz € X. &

Proposition 2.2.1.5 us(A) =N{Na: Ng € N(0,A)}.

Proof: = & us(A) implies that {z} ¢ {B: BdA}. Hence X —{x} € M(5, A)
and N{N4 : Na € N(J, A)} C us(A). If there exists Ng D ¢5(A), then there
isay € X — Ny such that {y} € {B: BJA}. It follows that X — Ny € {B:
B0 A}, which is a contradiction. &
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Definition 2.2.1.3 IfU is a semi-uniformity for a set X, then
{(A,B): AABC X, UelUd=U[A]NB +# 0}
is a semi-prozimity & for X which is said to be induced by U.

Proposition 2.2.1.6 Let U be a semi-uniformity for a set X, § a semi-
prozimity induced by U and u closure induced by §. Then u is induced by
U.

Proof: By definition z € uA if and only if A, which means, by the
definition of induced proximities, that Ulz] N A # () for each U € U. Tt
follows that, for each # € X, the collection U[x] is a local base at z in
(X, u). By the definition of semi-uniform closure the closure u is induced by
U. &

If 6 is induced by a semi-uniformity U on X # (), then U[A] = {U[A] :
U € U} is a base for the filter of all proximal neighborhoods of A in (X, 0).
Moreover, U[A] coincides with this filter.

2.2.2 Jj-continuous mappings

Definition 2.2.2.1 A mapping f of a semi-proximity space (X,dx) into a
semi-proximity space (Y,dy) is said to be d-continuous if Adx B implies
f(A)oy f(B). A one-to-one mapping [ of a semi-proximity space (X,0x)
onto a semi-proximity space (Y,dy) is a d-homeomorphism if f, as well
as its inverse f=1, is §-continuous. A prowimity space (X,0x) is a 8-
homeomorphic to a prozimity space (Y, dy) if there exists a 6-homeomorp-
hism of X onto Y.

Definition 2.2.2.2 A semi-prozimity 01 is said to be finer than a semi-
proximity 62, and ds is said to be coarser than 61, if the identity mapping
of (X,81) onto (X, d2) is 0-continuous.

Proposition 2.2.2.1 If f is §-continuous mapping from a semi-proximity
space X onto a semi-prozimity space Y, and g is a §-continuous mapping
from 'Y to a semi-proximity space Z, then h = g o f is §-continuous map-
ping. If f and g are d-homeomorphisms, then g o f is also a d-homeo-
morphism. The identity mapping of a semi-proximity space onto itself is a
d-homeomorphism, and finally, if f is a 5-homeomorphism, then so is f~1.

&
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Corollary 2.2.2.1 The relation {(d1,02) : 81 is finer than 2} is an order
on the class of all proximities, and the relation {(X,Y): X and Y are 6 —
homeomorphic} is an equivalence on the class of all semi-proximity spaces.

&

Proposition 2.2.2.2 A mapping [ of a semi-proximity space (X,dx) into
a semi-prozimity space (Y,dy) is d-continuous if and only if the following
condition is fulfilled: if B is a §-neighborhood of A in'Y, then f~Y(B) is a
§-neighborhood of f~1(A) in X.

Proof: Let us suppose that f is d-continuous mapping and let B be a 6-
neighborhood of A in Y. We must prove that f~1(B) is a é-neighborhood
of f71(A) in X, i.e. that f~1(A)6xX — f~(B). Assuming the contrary, we
obtain ff~1(A)dy f(X—f~Y(B)). Since ff~1(A) C Aand f(X—f~1(B)) C
Y — B, then on account of Proposition 2.2.1.1 it follows that AdyY — B. But
this is in contradiction which our supposition that B is a d-neighborhood of
Ain Y. To prove the converse, let us suppose that the condition is fulfilled
and that Adx B. We have to show that f(A)dy f(B). Assuming the contrary,
we find that Y — f(B) is a d-neighborhood of f(A) in Y and by the condition,
f~YY — f(B)) = X — f~Y(f(B)) is a é-neighborhood of f~'(f(A)). But
then f~1(f(A))6f1(f(B)), which contradicts our assumption A§B because
AC FHF(A) and B C [~L(f(B)). &

Corollary 2.2.2.2 A mapping [ of a semi-proximity space X into a semi-
proximity space Y is d-continuous if and only if, for each subset A of X and
each §-neighborhood U of f(A) in'Y, there exists a d-neighborhood V' of A
in X such that f(V) CU.

Proposition 2.2.2.3 Let f be a mapping of a semi-proximity space (Xy,01)
into a semi-prozimity space (Xa,d2). If 6; is induced by a semi-uniformity
U;, and the mapping f : (X1,Ur1) — (Xo,Us) is uniformly continuous, then
the mapping f : (X1,01) — (Xa,02) is d-continuous. If u; is the closure
induced by the semi-prozimity 6; and f : (X1,01) — (X2, 02) is I-continuous,
then f: (X1,u1) — (Xo,u2) is continuous.

Proof: Let us suppose that f : (X1,U;) — (Xo,Us) is uniformly continuous
and A8 B. If f(A)d2f(B), then Us[f(A)] N f(B) = 0 for some Us € Uy, and
consequently Ui[A] N B = (), where Uy = f;l(Ug). But Uy € U; by the
uniform continuity of f, and hence A1 B which contradicts our assumption
and establishes the proximal continuity of f.
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Now let f: (X1,d1) — (X2,02) be d-continuous. If z € uj A, then xd A
and hence f(x)d2f(A) by the o-continuity. But then f(z) € ugf(A) holds,
which proves the continuity of f. &

Corollary 2.2.2.3 Let f be a Lipschitz continuous mapping of a semi-
pseudometric space (X1,d1) into another one (Xa,da). If ; is the proz-
imity induced by d;, i = 1,2, then the mapping f : (X1,01) — (X2,d2) is
d-continuous.

Proof: Let us suppose that Ad;B. Then we have that di(A,B) = 0, i.e.
infrea yepdi(z,y) = 0. Since f is a Lipschitz continuous mapping, there
exists some L > 0 such that da(f(x), f(y)) < Ldi(z,y) for each z,y € X;.
Therefore infrea,yep d2(f(2), f(y)) = 0, ie. do(f(A), f(B)) =0, and hence
f(A)d2f(B) holds. This proves d-continuity of f. &

Definition 2.2.2.3 The transpose of a mapping f : (X, U) — (V,V)
for semi-uniform spaces to a mapping for proximity spaces is the mapping
(X 0u) — (f(X),vlpx))- The transpose of a mapping f : (X,0x) —
(Y, dy) for proximity spaces to a mapping for closure spaces is the mapping
[ (X usy) = (f(X), usy [ p(x))-

If we say that a semi-uniform space (proximity space) has a property
defined for proximity spaces (closure spaces), it should be understood that
the induced proximity space (closure space) has this property. The same
conventions are made for mappings, i.e. if we say that a mapping f for
a semi-uniform spaces has a property defined for mappings for proximity
spaces, e.g. that f is proximally continuous, it should be understood that
the transpose of f to a mapping for proximity spaces has this property,
and if we say that a mapping f for proximity spaces has a property defined
for closure spaces, e.g. f is continuous, it should be understood that the
transpose of f to a mapping for closure spaces has this property.

Now Proposition 2.2.2.3 and its corollary can be restated as follows:

Proposition 2.2.2.4 FEvery Lipschitz continuous mapping and every uni-
formly continuous mapping is proximally continuous. Every proximally con-
tinuous mapping 1S continuous.

Corollary 2.2.2.4 Every uniform homeomorphism (uniform embedding) is
a proximal homeomorphism (proximal embedding). Every uniformly contin-
uous pseudometric is a proximally continuous pseudometric.
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We recall that a uniformly continuous mapping for semi-pseudometric
spaces need not be Lipschitz continuous, a proximally continuous mapping
for semi-uniform spaces need not be uniformly continuous and a continuous
mapping for proximity spaces need not be proximally continuous. The fol-
lowing theorem gives the conditions under which a proximally continuous
mapping is uniformly continuous.

Theorem 2.2.2.1 A proximally continuous mapping of a pseudometrizable
uniform space into a pseudometrizable uniform space is uniformly continu-
ous.

Proof: Let us suppose that f is a proximally continuous but not uni-
formly continuous mapping of a pseudometric space (X', d’) into another
one (X,d); we have to derive a contradiction. The mapping f is not uni-
formly continuous and therefore there exists a positive real  and sequences
(&,) and (1) in X’ such that the sequence (d'(&,,m,)) converges to zero but
d(f(&n), f(nn)) = r for each n € N. If n; is an unbounded sequence in N,
then the distance from {&,,} to {n,,} is zero in (X’,d’) and consequently,
f being proximally continuous, the distance from {f(&,,)} to {f(nm,)} in
(X,d) is zero. We write z,, = f(&,), yn = f(nn) so that

(a) d(xyn,yn) =1 >0 for each n € N, and

(b) the distance from {x, : n € M} to {yn, : n € M} is zero for each
infinite subset M of N.

We shall derive a contradiction.

L. If the net {d(zp, xm) : (n,m) € NxN} converges to zero where NxN is
endowed with the product order, then a contradiction is obtained as follows.
Let us choose ng € N such that n > ng, m > ng implies d(zp, xm) < r/2.
The distance from {zy : k > ng} to the set {yx : k > no} is zero and there-
fore, by (b), we can choose m > ng and n > ng such that d(z,,z,) < r/2.
Now d(Zm, Ym) < d(Zm, xn) + d(@n, Ym) < 7/2 + /2 = r which contradicts
our assumption (a).

II. If there exists an infinite subset M of N such that the net {d(zp, zn) :
(n,m) € M x M} converges to zero, then a contradiction is obtained as in
L.

III. If there exists an infinite subset M of N such that the net {d(yn, ym) :
(n,m) € M x M} converges to zero, then a contradiction is obtained by
applying the argument of I. with z,, and y,, interchanged.

IV. In the remaining case there exists no infinite subset M of N such
that the net {d(xn,zm) : (n,m) € M x M} or the net {d(yn,ym) : (n,m) €
M x M} converges to zero. Consequently, there exists a positive real s and
an infinite subset M of N such that
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(c) d(@n,zm) = s, d(Yn,ym) = s

for each n € M, m € M, n # m. Let us choose a positive real ¢ such
that ¢ < s/2 and t < r. It is easily seen that there exists an infinite
subset L of M such that the distance from z,, to {yx : k € L} as well as
the distance from y, to {zy : k € L} is smaller than ¢ for each n € L.
Indeed, assuming the contrary, we can construct an infinite subset K of
M such that the distance from {z,, : n € K} to the set {y, : n € K}
is at least s, which contradicts our assumption (b). Let p be the relation
consisting of all (n,m) € L x L such that d(z,,ymn) < t. We have p[n] #
0 # p~i[n] for each n. It follows from (c) that the relations p and p~! are
single-valued. Indeed, if d(zp,yr) < t, d(xm,yx) < t, k,m,n € L, then
d(Tpn, Tm) < d(Tp, yk) + d(Tm, yx) < 2t < s which contradicts (¢) and proves
that p~! is single-valued. The same argument with x and y interchanged
yields that p is single-valued. Thus p : L — L is a bijective mapping. If
n € L, then n € N and hence d(zy,yn) > 7 >t (by (a)) which shows that
pn # n for each n. Now it is easily seen that there exists an infinite subset
K of L such that p[K]N K = (. (Take a maximal element K of the ordered
subset of (P(L),C) consisting of all H such that H N p[H] = () and show
that K is infinite). Evidently the distance from {z, : n € K} to the set
{yn : n € K} is s at the most, which contradicts our assumption (b). The
proof is complete. &

Corollary 2.2.2.5 Two pseudo-metrics are uniformly equivalent if and on-
ly if they are proximally equivalent; in other words, if d1 and do are pseudo-
metrics for a set X, U; is the semi-uniformity induced by d; and d; is the
semi-proximity induced by d;, i = 1,2, then Uy = Us if and only if 61 = do.

Proof: Any uniform homeomorphism is a proximal homeomorphism by
Corollary 2.2.2.4 and therefore Uy = Us implies §; = ds. It follows immedi-
ately from Theorem 2.2.2.1 that 61 = o implies Uy = Us. &

Definition 2.2.2.4 The class of all semi-proximities ordered by the relation
{(61, 62) : &1 isproximally finer than o} will be denoted by P, and, given
a set X, the ordered subset of P consisting of all semi-proxzimities for X
will be denoted by P(X). The set of all prozimally continuous mappings of
a semi-prozimity space (X,0x) into a semi-prozimity space (Y,dy) will be

denoted by P(X,Y).

If (X,U) and (Y, V) are semi-uniform spaces, then U(X,Y") denotes the
set of all uniformly continuous mappings of X into Y. In accordance with



200 Semi-proximity spaces and semi-uniform spaces

our convention, the symbol P(X,Y) will denote the set of all proximally
continuous mappings of X into Y. Similarly, if (X,dx) and (Y,dy) are
semi-proximal spaces, then C(X,Y) will denote the set of all continuous
mapping of X into Y. Our earlier results can be restated as follows:

(%) C(X,Y) > P(X,Y) > U(X,Y)

for all semi-uniform spaces X and Y. The first inclusion holds for all prox-
imity spaces (X,0x) and (Y,dy) whereas U(X,Y) is not always defined.
Roughly speaking, inclusions (x) are true whenever the symbols are defined.
Theorem 2.2.2.1 asserts that P(X,Y) C U(X,Y) for all pseudometric spaces
(X,dx) and (Y, dy). Earlier, we have introduced the concept of a continuous
semi-uniformity and a continuous semi-pseudometric for a closure space, and
of a uniformly continuous semi-pseudometric for a semi-uniform space. In a
similar way we shall define a continuous proximity for a closure space, and
a proximally continuous semi-uniformity and a proximally continuous semi-
pseudometric for a proximity space. Although the definitions are evident we
give the precise formulations.

Definition 2.2.2.5 A continuous semi-proximity for a closure space
(X,u) is a semi-proximity 0 for X such that the closure induced by § is
coarser than u, i.e. the identity mapping of (X, u) onto (X, 0) is continuous.
A proximally continuous semi-pseudometric (a proximally continu-
ous semi-uniformity) for a semi-proximity (X, 9) is a semi-pseudometric
(semi-uniformity) & for X such that the semi-proxzimity induced by § is proz-
imally coarser than ¢, i.e. the identity mapping of (X,d) onto (X,§) is
proximally continuous.

It is to be noted that, according to earlier results, if d is proximally con-
tinuous semi-pseudometric for a proximity space (X, 0) and if ¢ is the semi-
uniformity induced by d, then U is a proximally continuous semi-uniformity
for proximity space, and similarly, for continuous semi-pseudometrics, semi-
uniformities and proximities for closure space.

Example 2.2.2.1 Let us suppose that X is a closure space.

(a) The relation §s = {(A,B) : A,BC X, (ANB)U(ANB) # 0} is
a proximally finest continuous semi-proximity for X. If § is any continuous
semi-proximity for X and Aé,B, then ANB # () or ANB # (). But ANB # ()
implies y € A for some y € B, and § being a continuous proximity, we obtain
ydA and hence BSA and thus ASB. Similarly AN B # () yields A6B. Thus
AéB there always holds whenever Ad;B, which shows that §s is proximally
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finer than §. On the other hand, if z € A, then clearly zd,A4, which means
that ds is a continuous proximity for the closure space X.

(b) The relation 6. = {(A, B) : AdsB or both A and B are infinite} is a
continuous proximity for X, and if some semi-proximity induces the closure
structure of X, then J. is the proximally coarsest semi-proximity inducing
the closure structure of X.

(¢) The relation 8, = {(A,B) : AN B # 0} is a continuous semi-
proximity. The semi-proximity &§,, is called the Wallman semi-proximity.

Definition 2.2.2.6 If (X,0x) is a semi-proximity space and Y C X, then
dy =0x N(P(X) x P(X)) is a semi-proximity for Y which will be called the
relativization of dx toY, and the space (Y, dy) will be called a subspace
of (X,0x).

The verification of the fact that dy is actually a semi-proximity for Y is
left to the reader. One can prove that dy is the proximally coarsest proximity
for Y such that the identity mapping J : (Y,dy) — (X, dx) is proximally
continuous. Now we have the following result:

Proposition 2.2.2.5 Let Y be a subset of a set X. IfV is the relativiza-
tion to Y of a semi-uniformity U for X, then the semi-prozimity induced
by V is the relativization of the semi-proximity induced by U. If 61 is the
relativization to Y of a semi-prozimity § for X, then the closure induced by
01 is the relativization of the one induced by 5. &

2.2.3 Semi-proximities and grills

In this subsection we shall present a new approach to semi-proximity struc-
tures based on the recognition that many of the entities important in this
theory are grills, a concept introduced by Choquet in 1947. Not only clus-
ters and bunches are grills but all the families §(A), A € P(X), and §(U),
U being an ultrafilter, are also grills. A grill is dual of filter and one of its
important properties is that it is a union of ultrafilters.

Definition 2.2.3.1 A stack S on X is a family of subsets of X satisfying
the condition

BD>DAeS=BeS.
A grill G on X is a stack on X satisfying 0 € G and

AUBegG=AecGorBeg.
G is a proper grill if G is a grill and G # ).
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For a fixed set X we shall denote by (X)), ®(X) and I'(X) the set of all
stacks on X, filters on X and grills on X, respectively. Finally, by Q(X) we
shall denote the set of all the ultrafilters on X. We shall use the convention
that F always denotes a filter, G a grill. U, A and B are used for ultrafilters.

Definition 2.2.3.2 For all G € 3(X) we define functions

c(G)={B: X-B¢G},
d(G)={B: BNS #0 for each S € G}.

Proposition 2.2.3.1 For all G € X(X), ¢(G) € ¥(X), d(G) = ¢(G) and
c(c(G)) = G holds. Moreover, c is a bijection from X to X3, from T to ® and
from ® toI'. Finally, c(UG;) = Nec(G;), ¢(NG;) = Uc(G;) and c(A) = A holds
forall A Q(X). &

The proofs of these assertions are straight forward.
Making use of the well known result that every filter F is the intersection
of all ultrafilters containing it, there follows that

Proposition 2.2.3.2 If G is a grill on X, then
G=U{A: AeQX), ADc(G)}.
Thus every grill is the union of all ultrafilters contained in it.
Proof: G = c(¢(G)) = ¢(NA) = Uc(A) =UA. &
Proposition 2.2.3.3 IfG;, € I'(X) foralli € I, then U{G; : i € I} € T'(X).

Proof: U;G; = ¢(c(U;Gi)) = c(Nic(G;)). Since the sets ¢(G;) are filters,
N(c(Gi)) is a filter and hence U;G; is the image of a filter under ¢, and hence
it is a grill. &

Proposition 2.2.3.4 FEvery ultrafilter is a grill and arbitrary unions of ul-
trafilters are grills.

Proof: Ultrafilters satisfy the condition AUB € f implies A e Y or B € U.
The second assertion follows from Proposition 2.2.3.3. &

Proposition 2.2.3.5 The ultrafilters on X are exactly the minimal proper
grills on X. Further,
NX)Ne(X) =92(X)

and ¢(G) = G if and only if G € Q(X).
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Proof: The first assertion follows from Proposition 2.2.3.4. A family of sets
satisfying both the conditions for a grill and a filter is an ultrafilter. Hence
only ultrafilters can satisfy ¢(G) = G; this, and the fact that they do satisfy
this condition follows from Proposition 2.2.3.1. &

Theorem 2.2.3.1 The mapping c is order reversing and thus (I'(X), C) is
a lattice which is order isomorphic to the lattice (®(X), D).

Proof: This is a direct consequence of the definition of ¢. ® is known to be
a lattice, and much of its structure is known, all this information can thus
be brought to bear on the lattice I'. &

Proposition 2.2.3.6 Let F be a filter and G a grill on X. Then F C G
holds if and only if there exists an ultrafilter B on X such that F C B C G.

Proof: F C G implies that F is a proper filter and G a proper grill. Then
G =U{U; : i € I}, where I # (. Then ¢(G) = N{U; : i € I}. Let us
consider F' € F. Clearly, there exists U; C G such that F € U;. Let F’
be an arbitrary element of ¢(G). Then F’ € U; and hence F N F' # ). Tt
follows that F U ¢(G) is a filter subbase. Thus there exists a B such that
FUc(G) C B. But then ¢(G) C B so that B=1U; for some i € I. &

Proposition 2.2.3.7 IfUU C G UGs thenUd C G orU C Gs.

Proof: Let us suppose the assertion is false. Then there exist Uy &€ G,
Us & Gy, Uy, Us € U. Then Uy NUy € U and hence Uy NUs € Gy UGy, Hence
either Uy NUs € G or Uy NUy € Go. Clearly both alternatives lead to a
contradiction. &

Proposition 2.2.3.8 A relation § on P(X) is a semi-proximity on X if
and only if the following conditions are satisfied:

(G1) 6=071;

(G2) 0(A) e T'(X) for each A € P(X);

(G3) U{A: Ae A} CH(A).

Proof: (SP;) and (SP;) together are equivalent to (G2). The fact that grills
cannot contain the empty set, proves to be convenient here. () = () need
not be stated explicitly since it follows from (G;) and (G2) together with
the fact mentioned above. (G3) is equivalent to (SPs) since U{A: A € A}
is exactly the set of all B satisfying BN A # (). &
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Proposition 2.2.3.9 The set N(J, A) of all 6-neighborhoods of A with re-
spect to 0 is equal to the set c(0(A)) and hence is a filter. In addition

N0, A)=n{U:UCA}C{B: AC B}.

Proof: 0(A) is a grill and hence ¢(6(A)) is a filter. Further, 91(d, A) =
c(0(A) =u{U : U Co(A)}={cUh) : U CO(A)}=n{U: U C A}
That (5, A) C {B: A C B} follows from Proposition 2.2.3.8 (G3). &

Proposition 2.2.3.10 B € §(A) if and only if BN Na # 0 for all Ns €
MN(3, A).

Proof: §(A) = ¢(c(6(A))) = d(c(6(A))) = d(N(4, A)). Hence B € §(A) if
and only if B € d(91(0, A)). &
Proposition 2.2.3.11 B € 6(A) implies the existence of an ultrafilter U
such that

UCA)NIB).

Proof: B € §(A) implies M(d, B) C 6(A) since all Np are supersets of B.
The existence of U then follows from Proposition 2.2.3.6 and Proposition
2.239. &

Proposition 2.2.3.12 §(AU B) = §(A) Ud(B).

Proof: C € §(AUB) if and only if AUB € §(C) if and only if A € 6(C) or
B € 4(C) if and only if C' € §(A) or C € §(B) if and only if C' € 6(A)Ud(B).
[ )

Proposition 2.2.3.13 Ny € M(5, A) and Np € N(0, B) implies that Ny U
Np € N(6,AUB).

Proof: If the proposition is false, there exist N4 and Ng such that N4 U
Np ¢ M(6, AUB). But then D = (X —N4)N(X —Np) =X —(NgsUNp) €
J(AUB) = 0(A)US(B). If D € §(A) then X —N4 € 6(A) since D C X —Ny.
This contradicts Ny € (5, A). Similarly, the assumption D € 6(B) leads
to a contradiction. &

Definition 2.2.3.3 For allU € Q(X) we define

dU)={B: BedU) for everyU eU} =n{o(U): U eU}.
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Proposition 2.2.3.14 For every semi-proximity 6 on X and every ultrafil-
ter U € Q(X) it holds:
(a) 5(2/{) is a grill;

(b) 6(A) =U{6U) : AcU};

() U CoU);
(d)BCé(A)=3U, AcU, BCIU);
(e) BCI(A) < UCHDB).

Proof: (a) Clearly 6(U) is a stack. If AU B € §(U), then U C §(A U B).
Hence by Proposition 2.2.3.7 and Proposition 2.2.3.12 U C 6(A) or U C
d(B). It follows that A € §(U) or B € 6(U) and hence 6(U) is a grill.

(b) It is an immediate consequence of Definition 2.2.3.3 that U{J(U) :
A €U} C 6(A). Now let Y € 6(A) and let us assume B ¢ §(U) for all
U with A € U. Then for all Y with A € U, U ¢ §(B) and it follows that
A & 6(B). This contradicts B € 6(A). This argument rests on the fact that
0(B) is a grill and thus is the union of ultrafilters. Hence A can be in 6(B)
only if there exists a U with A € U C 6(B).

(¢) follows from the observation that U € U implies i C §(U) by Propo-
sition 2.2.3.8 (G3). To prove (d), let us observe that B C §(A) implies
A € 0(B) which implies the existence of a Y with A € Y C §(B). Finally,
(e) follows from the definition of (/) and the symmetry of 0. &

Definition 2.2.3.4 Let 6 be a semi-proximity on X. A grill G on X will
be called a §-clan on X (or simply a clan) if A € §(B) for all A,B € G.
If this condition holds, we also say that G is §-compatible. A §-clan G is
said to be maximal if G C Gy, where G is another d-clan, implies G = Gy.

Definition 2.2.3.5 A §-clan G on X is called §-cluster (or simply a clus-
ter) if the following condition is satisfied: for each A C X, G C §(A) implies
AeqG. A grill G, which satisfies this condition, is called §-closed.

Let us note that a cluster is exactly a grill which is both d-compatible
and d-closed. Note also that for each A C X, 6(A) is d-closed. Indeed, since
0(A) C 6(B) implies A € §(B), then B € 6(A). In general, §(A) is not
d-clan.

The following facts are immediate: (a) if G; and Gy are clusters from X
and G1 C Ga, then G = Go; (b) if AN B # () for every B € G, where G is a
cluster, then 4 € G.

Proposition 2.2.3.15 For a grill G the following statements are equivalent:
(a) G is a 0-clan;
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bUCG=GCiU);
(c)gecn{od): UcCGy=n{6(A): AeG};
(dyUBCG=UCDB).

Proof: (a) = (b) : If Gisa d-clan and U C G, then G € 6(A) for all A € U,
so that G C 6(U).

(b) = (a) : If (b) holds, let A, B € G. Then there exists a U such that
BelU CG. Hence A€ G C 6(U) C §(B) so that G is a d-clan.

Clearly, (b) is equivalent to (c¢). Finally, (b) implies (d) and since U C
d(B) holds in (d) for all i C G, that is for all G, it follows that (d) implies
(b). &

Proposition 2.2.3.16 For a §-clan the following statements are equivalent:
(a) C is a cluster;

(b) C=n{5U): U Ct=n{5(A): AeC).

Proof: Let C = N{J(A) : A € C} and let us assume that C C §(C); then
C € §(A) for every A € C, that is C € N{§(4) : A€ C} =C so that C is a
cluster. If C is a cluster, let D € N{6(A) : A € C}; then D € 6(A) for all
A € C. Tt follows that C C §(D) and hence D € C or N{6(A): A€ C} CC.
That C C N{0(A) : A € C} follows from the fact that C is a d-clan. &

Proposition 2.2.3.17 If G is a cluster, then
(a) G=n{0(A): 6(A) D G};
(b) G=n{6(A): 6(A) D G}.
Here §(A)={B: Beo(U)VU e AcQX)}=n{é(U): Uec AcQX)}.

Neither of these conditions characterizes the clusters.

Proof: (a) Let us assume G is a cluster. Clearly G C NJ(A4). Now let
D € 6(A). Then, since G C §(A) for all A € G, it follows that A € §(D)
for all A € G and thus G C §(D), from which D € G follows. The proof of
(b) is analogous. Since §(A) is not in general a cluster but satisfies (a), and
d(A) is not in general a cluster but satisfies (b), neither (a) nor (b) alone
can characterizes clusters. &

Proposition 2.2.3.18 Let § be a semi-proximity on X. If G is a §-clan on
X, then there exists a mazimal d-clan containing G. Fvery §-cluster is a
mazimal d-clan.

Proof: The first assertion follows from a straight forward application of
Zorn’s lemma. If G is a cluster and G* a maximal d-clan containing it, let
C € G*. Then G C G* C §(C) so that C' € G and hence G = G*. &

Let us note that a maximal clan need not be a cluster.
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Proposition 2.2.3.19 Let § be a semi-proximity on X and A,B C X.
Then A € 6(B) if and only if there exists a d-clan G containing sets A and
B.

Proof: A € §(B) implies A € U{§(B) : B € B}, hence there exist A4 and
Bp with A € Ay and B € B such that A4 C §(Bp). Then Bp C §(A4) is
also valid and hence A4 U Bg, which contains A and B, is also a d-clan. If
A and B belong to the same J-clan, then A € §(B) by definition of a clan.
L)

This shows that the semi-proximity ¢§ is completely determined by knowl-
edge of all (maximal) d-clans.

A semi-proximity ¢ is said to be cluster generated if for each AdB there
exists a cluster G such that both A and B belong to G. A semi-proximity
need not be cluster generated in general.

In Proposition 2.2.3.17 the intersections of the form

A{5(A): 65(A) > G} and N {d(A): 6(A) S G}.

are encountered. This deserves further study. To facilitate this study, and
since it is presently unknown under what conditions intersections of grills
are grills, it is convenient to introduce the following notion.

Definition 2.2.3.6 Let G be a grill on X, then
Gl ={U:UcCg}.
If H C Q(X), then
HY =u{U:U€cEH}.

Thus for G € P(X), G € Q(X) and for H € Q(X), HY C P(X). In
particular, (GT)Y = G for all grills. However, (HY) is in general bigger than
‘H. On Q(X) a topology 7 can be defined by specifying that H = {U; : i € I}
is closed with respect to 7 if and only if B C H" implies B € H. The space
(©, 7) is homeomorphic to the Czech-Stone compactification of X with the
discrete topology. T is frequently referred to as an ultrafilter topology. We
conclude this observation by noticing that every G' is a closed set in (Q,7)
and that (HY)" is the closure of H.

Definition 2.2.3.7 For every U € Q(X) we define
DU) = (N{0T(A): U c 6(A)})V.
Here §T(A) means (6(A))T.
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Proposition 2.2.3.20 For allUd € Q(X), U C DU) = (N{6%(A) : A €
S(U)})Y C 6U) and D(U) is a d-clan.

Proof: U C D(U) is an immediate consequence of the definition. The
new intersection formula follows from the fact that & C §(A) if and only if
A € §(U). From this and from the fact that 6(U) = N{J(A4) : A € U}, it
follows that D(U) C §(U). Clearly D(U) is a grill. New let B,C € D(U).
Then B € §(A) for all A € §(U4) and hence §(U) C §(B). Thus C € D(U) C
(U) C §(B) and D(U) is a d-clan. &

Proposition 2.2.3.21 If C is a cluster containing U, then
DU)cCCcCélU).

Proof: C C 6(U) follows from Proposition 2.2.3.15 (b). D(U) C C fol-
lows from C C 6(U) together with Proposition 2.2.3.16 (b) and Proposition
2.2.320. &

Proposition 2.2.3.22 If §(U) is a d-clan, then 6(U) = D(U) and §(U) is
a cluster.

Proof: If 6(U) is a d-clan, then by Proposition 2.2.3.15 (¢) §(U) € N{o(A) :
A € §U)}, hence §T(U) c N{oT(A) : A € §U)} and hence SU) =
(6T(U))Y € DU). Since D(U) C 6(U) there always holds that the first as-
sertion is established. Now let C' be such that 6(U/) C §(C). Then U C 6(C)
and hence C' € §(U) so that §(U) is a cluster. &

Proposition 2.2.3.23 IfU(x) is the principal ultrafilter of x, then 6(U(x))
= 0({z}).

Proof: 6({z}) =U{o(U) : {z} eU} =0(U(z)). &
Proposition 2.2.3.24 The relation
BAsU < B C §(U)

is a reflexive and symmetric relation on Q(X) satisfying the additional con-
dition

(%) N{U{AsU) - AcU}: Ae B} = As(B).

Proof: Sinced C o(U) for allUd € Q(X), the relation Ay is reflexive. Since,
further, B C 6(U) if and only if U C §(B), it follows that As is symmetric.
That (%) is satisfied, follows from Proposition 2.2.3.14. &
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Theorem 2.2.3.2 Let A be an arbitrary reflexive and symmetric relation
on QUX). Let us set A(U) = U{B : BAU}, then the relation on P(X)
defined by

Ia(A) =U{AU): AclU}

18 a semi-prorimity on X.

Proof: da(A) is a union of grills and hence is itself a grill. Further U C
AU) leads to U{U : A € U} C da(A). Finally, let us assume B € da(A).
Then Y € B C A(U), with A € U. Since A is symmetric we have A € U C
A(B), with B € B, that is A € a(B). Hence 6a = 6,". &

It is not in general true that A(U) = da(U) nor is As, = A. The reason
is that A does not need to be satisfied (). Thus different A may induce
the same semi-proximity. However every semi-proximity 4 is induced by at
least one relation A on 2. This follows from the next theorem.

Theorem 2.2.3.3 For every semi-prozimity § on X, da; = 9.

Proof: oa;(A) =U{As(U): AcU}=U{dU): AcU}=6(A). &

2.2.4 Representation of semi-proximities

In 1908 F. Riesz asked to determine the class of proximity spaces (X, 0)
such that there exists an extension (¥, (Y,c)) of the closure space (X, cs)
satisfying the condition

AdB if and only if ¢(U(A)) Ne(V(B)) #0.

In Chapter 1., Proposition 1.3.4.12 showed that each separated proximity
has this property. Being motivated by this query, in this subsection there
will be proved two representation theorems, one being for all separated semi-
proximities and the other being for all separated cluster generated semi-
proximities.

Theorem 2.2.4.1 Let X be a set and let & be a relation on the power set
P(X). Then the following conditions are equivalent:
I. there exists a closure space (Y,d) and a relation ¥ from X to'Y such
that
(a) U71Y] = X;
(b) d(¥[z]) Nd(Tly]) =0 for each pair of distinct points x,y € X ;
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(c) U[X] is dense in (Y,d);
(d) ASB if and only if d(V[A]) N d(¥[B]) # 0;

I1. § is a separated semi-prozimity on X.

Proof: Let us suppose that I. holds. Then clearly § is a symmetric relation
on the power set P(X) of X. Let A, B,C be the subsets of X. Since
d(U[A]) Nd(¥[0]) = 0, it follows that AJP. Let us note that ASBUC' if and
only if d(V[A]) Nd(¥[BUC]) # 0 if and only if d(V[A]) Nd(¥[B]) # 0 or
d(U[A])Nd(P[C]) # 0 if and only if A6B or ASC. Finally, if ANB # (), then
there exists x € AN B and since Y~![Y] = X and hence, y € ¥[A] N ¥[B],
consequently A0B. Also, if z,y are two distinct points of X, then d(¥[x]) N
d(¥[y]) = 0 and hence {z}5{y}. Thus § is a separated semi-proximity on
X. Hence I. implies I1.

Conversely, let us suppose that 1. holds. Let Y be the set of all maximal
0-clans. For each subset A of X let us set

A" ={GeY: AeG}.

Since maximal d-clans are grills, it follows that if A, B are subsets of X,
and G is a maximal d-clan, then AUB € Gifandonlyif A€ Gor Be G
and hence (AU B)* = A* U B* for all the subsets A, B C X. Consequently,
{A* : A C X} is a base for the closed sets of a topology on Y and hence
c¢: P(Y)— P(Y) defined by

clay=n{A*: A*Da}, acCy,

is a Kuratowski closure operator on Y.
Let ¥ be the relation from X to Y defined by

{z}¥G if and only if {z} € G.

Since {x}d{z} for each x € X, it follows that there exists a maximal é-clan
G such that {2} € G and hence {z}¥G. Consequently ¥~[Y] = X.
For each a C Y let us define

d(e) = (¥ a])" Uc(a).

Since V is a relation and c¢ is a Kuratowski closure operator, it follows that
d is a closure operator on Y and hence (Y, d) is a closure space. Since ¢ is
separated and {z} belongs to a maximal J-clan for each z € X, it follows
that U~1[W[A]] = A for all A C X. Hence

d(W[A]) = A* U c(P[A]) for all A C X .
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Let us note that if G € W[A], then there is an z € A such that (z,G) € ¥ and
hence {z} € G. But then A € G and thus G € A*. Therefore U[A] C A* and
hence ¢(V[A]) € A*. Thus d(V[4]) = A* for all A C X. And in particular
d(¥[X]) = X* =Y and hence ¥[X] is dense in (Y, d).

Let us note that AdB if and only if there exists a maximal d-clan which
contains both A and B if and only if A* N B* # ) if and only if d(V[A]) N
d(¥[B]) # 0.

Also if z,y are distinct points of X, then, since ¢ is separated, it follows
that {x}0{y} and hence d(¥[z]) N d(¥[y]) = 0. Thus II. implies I. This
completes the proof. &

Definition 2.2.4.1 Let X be a set and (Y,d) be a closure space and let W
be a relation from X toY. The space X is said to be regularly dense in
Y under the relation ¥ if the following condition holds:
given B CY andy & d(B) there exists a subset A of X such that y
belongs to d(¥[A]) and d(V][A]) CY — d(B).

Theorem 2.2.4.2 Let X be a set and ¢ be a relation on P(X). Then the
following conditions are equivalent:
L there exist a closure space (Y,d) and a relation U from X toY such
that
(a) VY] = X;
(b) for each pair of distinct points x1,x2 € X
d(W[z1]) N d(V[zs]) = 0;
(¢) ASB if and only if d(¥[A]) N d(V[B]) # 0;
(d) X is regularly dense in (Y,d) under W.
II. § is a cluster generated separated proximity on X.

Proof: Let us suppose that I. holds. Then, by argument similar to the
one used in the corresponding part of the previous theorem, one can show
that 0 is a separated semi-proximity on X. To complete the proof of the
fact that I. implies 1., we need to check only that § is cluster generated.

Let AdB. Then d(V[A]) Nd(¥[B]) # (. Let us choose yo € d(¥[A]) N
d(¥[B]). Let us set Go = {D C X : yp € d(¥[D])}. Clearly Gy is a grill
containing both A and B. If E and F belong to Gy, then yo belongs to
d(¥Y[E]) N d(¥[F]) and hence EOF’; consequently it follows that Gy is a J-
clan. Let us suppose that H C X and H ¢ Gyp. Then yo ¢ d(¥[H]). Since
X is regularly dense in (Y, d) under ¥, it follows that there exists a subset
K of X such that yo € d(V[K]) C Y — d(¥[H]) and hence K € Gy and
d(V[K])Nd(¥[H]) = 0, consequently HOK. Thus Gy is a cluster containing
both A and B. Hence ¢ is cluster generated.
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Conversely, let us suppose that II. holds. Let Y be the set of all §-
clusters. For each A C X let us define

A*={GeY: Acg}.

Then by an argument similar to the one used in the theorem above, one can
show that the function ¢: P(Y) — P(Y) defined by

clay=nN{A*: A* Da}forallaCY,

is a Kuratowski closure operator on Y. Let us define a relation ¥ from X
to Y by %G if and only if {z} € G. Since ¢ is cluster generated, it follows
that {z} belongs to a cluster for each z € X and hence ¥~1[Y] = X. Let
us define d: P(Y) — P(Y) by

d(a) = (T Ha])*Ue(a) forall a C Y.

It can be verified easily that d is a closure operator on Y such that d(V[A])
= A* for all A C X. Since 4 is cluster generated, it follows that

AJB if and only if A* N B* # ) if and only if d(V[A]) Nd(V[B]) # 0.

Since ¢ is separated, it follows that for each pair of distinct points 1,29 € X,
d(P[z1]) Nd(¥[z2]) = 0. To complete the proof we need to check only that
X is regularly dense in (Y, d) under V.

Let Gop € Y and Gy ¢ d(«) for some a C Y. Hence Gy ¢ (V™1a])* Uc(a).
This means that ¥~1[a] € Gy and A ¢ Gy for some A* O a and hence
U~ la] UA ¢ Gy. Since Gy is a cluster, it follows that U~'[a] U A & 6(B)
for some B € Gy. Since §(B) is a grill, then ¥~1[a] € §(B) and A & §(B).
Clearly Gy € B* = d(¥[B]).

Let G € B*. Then B € G. Since G is a cluster and \Ilfl[a] Z0(B), A¢
§(B), it follows that ¥~'[a] € G and A & G, consequently G & (U~![a])* U
c(a) = d(a) and hence G € Y — d(«). Thus we have proved that Gy €
d(¥[B]) C Y —d(a). Hence X is regularly dense in (Y, d) under V. &

Definition 2.2.4.2 The closure space (X,c) is said to be an Rj-closure
space if for any x € X and A C X, c¢(x) Ne(A) # 0 implies x € c(A).

It is easily seen that a topological space is Ry if and only if, for any
points x and y, T # ¥ implies that & and y have disjoint neighborhoods. An
R; topological space is Ry (see Definition 2.3.2.1). Indeed, if z ¢ ¥, then
the points  and y must have disjoint neighborhoods, which means y ¢ 7.
Moreover, a topological space is R; if and only if T # 7 implies that T and
7 have disjoint neighborhoods.
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Proposition 2.2.4.1 Let (X, 7) be a topological space. Then the following
statements are equivalent:

(a) T is an Ry-topology;

(b) & = {(w,y): 7 =7} = &;

(¢) A is closed in the product topology.

Proof: (a) = (b) : If (z,y) € A, then T = . But then (z,y) € T X J C
G x Gy for all the open neighborhoods G, and G of x and y respectively.
Thus every neighborhood of (z,y) meets A and (z,y) € A. Conversely, let
(z,y) € A and G, Gy be arbitrary neighborhoods of z and y respectively.
Then G, x Gy meets A, i.e. Gy, Gy have a common point. Since G, G,
are arbitrary, this means that T =7 and (z,y) € A.

(b) = (¢) : Obvious.

(¢) = (a) : Let T # 7. Then (z,y) € X X X — A which is open. Hence
there exist neighborhoods G, Gy of x, y respectively such that G, x G, C
X xX-A. G, G, cannot have common points and so (X, 7) is an Ry
space. ¢

Proposition 2.2.4.2 If a semi-proximity 6 on X satisfies the condition
(RI) for each x € X and A,B € P(X), A,B € 6(x) implies A € 6(B),
then (X, ¢s) is an Ri-closure space.

Proof: On account of Proposition 2.2.1.3 ¢ is a closure operator. To prove
that (X, cs) is an Rj-closure space, let us suppose that y € cs(x) N cs(A).
Then y € §(z) and y € §(A) which, on the other hand, implies z € d(y) and
A € (y). Since the semi-proximity d satisfies the condition (RI), it follows
that z € 6(A). &

Proposition 2.2.4.3 Let (X,c) be an R;-closure space and let §p be a re-
lation on P(X) defined in the following manner:

AdoB if and only if c(A) Ne(B) # 0.
Then &g is a semi-proximity on X which satisfies the condition (RI) and it
s compatible with the given closure, that is cs, = c.

Proof: That Jp is a semi-proximity on P(X) is a trivial consequence of the
closure axioms. To prove that 0 satisfies the condition (RI), let us suppose
that A, B € do(x), where x € X. Then ¢(A) Nc(z) # 0 and ¢(B) Ne(z) # 0.
Since c is an Rj-closure, it follows that x € ¢(A)Ne(B) and hence A € dp(B).
The compatibility of the semi-proximity dy with the given closure ¢ follows
from the fact that the equality

cs,(A) ={reX:zxei(l)}=
={reX:c@)Nc(Ad) #0}={ze X :zecc(ld)} =c(A)
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holds for each A € P(X). &

Definition 2.2.4.3 A semi-prozimity § on X is called Riesz or RI-proxi-
maty if it satisfies the condition (RI).

Proposition 2.2.4.4 Let (X, ) be an RI-prozimity space. If g is a relation
on P(X) defined by AdoB if and only if cs(A)Ncs(B) # 0, then AdyB implies
A0B for all subsets A and B of X. Thus &g is the smallest RI-proximity
relation compatible with the closure of an Ri-closure space.

Proof: Follows from Propositions 2.2.4.2 and 2.2.4.3. &

Proposition 2.2.4.5 A semi-prozimity space (X, 0) is an RI-proximity spa-
ce if and only if §(x) is a cluster for all x € X.

Proof: Let us suppose that (X,d) is a Riesz proximity space. It is evident
that 6(x) is a grill for all z € X. Let A,B € §(z). Since 0 is a Riesz
proximity, it follows that A € §(B). If §(z) C 6(A), then = € §(A) and
hence A € §(z). The converse is an immediate consequence of the definition
of the cluster. &

Corollary 2.2.4.1 If G is a cluster containing {x}, then G = 6(x).

To state the representation theorem for RI-proximity spaces, we shall
need the following:

Definition 2.2.4.4 A subset Y of a closure space (X,c) is regularly
dense in X if for any set F C X and x € X — ¢(F) there exists a sub-
set E C'Y with the property x € ¢(E) C X — ¢(F).

Theorem 2.2.4.3 Let X be a set and ¢ a binary relation on P(X). Then
the following conditions are equivalent:

(I) There ezists an Ry-closure space (Y,c) and a mapping f of X into
Y such that f(X) is reqularly dense in'Y, where f is an isomorphism of X

onto f(X) satisfying cyx)(f(x)) = f(z) and
(%) AéB in X if and only if ¢(f(A))Ne(f(B)) # 0;

(II) § is a separated Riesz semi-prozimity satisfying the additional con-
dition:

if AOB in X, then there exists a cluster G to which both A and B belong.
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Proof: Let us suppose that (I) holds and let us define § on P(X) by (x).
That ¢ is a semi-proximity follows immediately from the properties of the
closure. Let us suppose that € §(y). Then c(f(x)) Ne(f(y)) # 0. Since
¢ is an Rj-closure, it follows that f(z) € ¢(f(y)). Thus f(z) € ¢(f(y)) N
f(X), that is, f(z) € cpx)(f(y)) = f(y). Since f is an isomorphism of X
onto f(X), it follows that x = y. This proves that ¢ is a separated semi-
proximity. We shall next show that § is a Riesz proximity. For x € X,
A, B € P(X), let us suppose that A, B € 6(x). Then c(f(z)) Ne(f(A)) #0
and c(f(z)) Ne(f(B)) # 0. That the closure operator is an R; implies
f(x) € e(f(A)) Nne(f(B)), that is, A € 6(B). It remains to prove that
for A € 0(B) there exists a cluster to which both A and B belong. Now
A € §(B), which implies that there exists a y € ¢(f(A)) Ne(f(B)). Let us
define 7, = {D C X : y € ¢(f(D))}. It is obvious that A, B € 7, We shall
omit the details of the fact that 7, is a cluster since they are quite similar
to the ones given in Lodato (see [202]).

To prove the converse, let us suppose that (/1) holds. By Proposition
2.2.4.5, 6(x) is a o-cluster for any x € X. For a subset A of X, let A* be the
set of all clusters to which A belongs. We will denote the set of all clusters
from X by Y. Let us observe that

(1) (AUB)* = A*U B*,

since clusters are grills.

We say that a subset A of X absorbs a subset § of Y if and only if A
belongs to every cluster in 3, that is, 3 C A*. For any subset § of Y, we
define ¢ () by:

B € c¢1(p) if and only if every subset £ C X which absorbs 3 is in B.
It follows as in [202] that
(2) c1(B1U B2) = e1(B1) Uer(B2)

for all subsets (31,32 in P(Y) and ¢;(B) = B for every Bin Y.
Let f be the mapping which assigns to each € X the cluster §(z)
determined by it. This mapping is well defined. Let us define

(3) c(B) = (f71(B))" ver(B).
Let us observe that ¢(f(A)) = A*. By definition

c(f(A)) = (FH(f(A)) Uer(f(A) = A" Ue(f(A) = A,
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since ¢1(f(A)) C A*. The inclusion ¢;(f(A)) C A* is a consequence of the
fact that A absorbs f(A).

Now we shall show that closure properties are satisfied by the closure
defined by (3).

Since B C c¢1(f), it follows that 8 C ¢(B). The fact that ¢(0) = 0 is
trivial. (2) and the fact that f~! distributes on unions imply the equality
c(B1 U B2) = ¢(B1) Ue(B2). Thus (Y, c) is a closure space. We shall next
show that (Y, ¢) is an Rj-closure space. For B € Y, f~1(B) is either empty
or equals z for some x € X. If f~1(B) = (), then ¢(B) = ¢1(B) = B. On the
other hand, if f~!(B) = x for some x € X, then B = §(z). Hence

e(B) = (f 7 (B))" Uer(B) = 5(x) Us(x) = 8(z) = B.

The separated character of the Riesz proximity implies that f is one-one.
That f is an isomorphism will be accomplished by showing that

() erx)(f(A)) D f(cs(A)) for every A in P(X), and

(it) f~epx)(f(A))) C cs(A) for each A C X,

For (i), let us suppose that € ¢s(A). Then A € 6(z). Thus §(z) € A* =
c(f(A)) which, in turn, implies d(x) € cyx)(f(A4)). In order to prove (ii),
let us suppose that B € cf(x)(f(A4)). Then there exists an # € X such that
B = d(x) and §(z) € cp(x)(f(A)) = c(f(A)) N f(X). Thus A € §(z), that is,
x € c5(A).

AéB if and only if there exists a cluster to which both A and B belong,
that is, A* N B* # (); thus ¢(f(A)) Ne(f(B)) # 0 if and only if AéB.

It remains to check that f(X) is regularly dense in Y. Let us suppose
that 8 CY and By € ¢(3) = (f~1(8))*Uc1(8). Then f~1(3) € By and there
exists a subset A which absorbs # and does not belong to By. Since By is,
in particular, a grill, it follows that AU f~1(3) & By. Taking into account
the fact that By is a cluster, it follows that there exists a B € By such that
AU f~YB) & 6(B), that is, A € §(B) and f~1(B) € §(B). Let B be any
element of B*. Then B € B and hence f~!(8) and A do not belong to B.
Thus it follows that B € Y — ¢(8). Clearly By € B* = ¢(f(B)) C Y — ¢(B).
This completes the proof. &

~— —

2.2.5 Proximally coarse semi-unifomities

Now we shall show that every semi-proximity is induced by a semi-uniformi-
ty, and that among all uniformities inducing a given semi-proximity there
exists a uniformly coarsest one which will be called the proximally coarse
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semi-uniformity of (X,d). It turns out that this semi-uniformity is a
uniformity if and only if § is induced by a uniformity.

Definition 2.2.5.1 A semi-proximity induced by a uniformity will be called
uniformizable.

Theorem 2.2.5.1 A semi-proximity § for a set X is uniformizable if and
only if the following condition is satisfied:

(SPs) if A6B , then there exists C, D C X such that CND =, AJX —C
and X — DOB.
It is obvious that the condition (SPs) is equivalent with the following condi-
tion:

(SPL) if ASB, then there exists §-neighborhoods C of A and D of B such
that CND = 0.

Proof: Let us suppose that ¢ is induced by a uniformity &/ and AJB.
By the definition of induced proximities, there exits a U € U such that
U[A]N B = (. Let us choose a symmetric element V' € U so that VoV C U
and let us put C' = V[A] and D = V[B]. By definition, C' and D are proximal
neighborhoods of A and B and it remains to show that CND = (). Assuming
the contrary, we obtain V o V[A] N B # () which implies U[A] N B # (), and
this contradicts our assumption U[A] N B = ().

To prove the converse we must construct a uniformity inducing . Three
lemmas will be given, concerning the construction of the uniformly coarsest
semi-uniformity inducing a given semi-proximity ¢ which will be proved to
be a uniformity if ¢ fulfils the condition (SPs).

If a semi-proximity § for a set X is induced by a semi-uniformity I/ and if
AdB, then U[A]NB # ) for each U € U. Therefore, if we want to find a semi-
uniformity inducing the given semi-proximity d, it is natural to consider the
collection U of all entourages U of diagonal of X x X such that U[A|NB # ()
whenever AJB. It is easily seen that U € & and U C V C X x X implies
Ul €4 and V € Y. On the other hand, the intersection of two elements
of U need not belong to U, and therefore U need not be a semi-uniformity.
It turns out that the collection U’ of all the elements V' € U of the form
U; Xi x X;, where {X;} is a finite cover of X, possesses the following two
properties: (1) if U € Y and U' € U', then UNU’' € U, and (2) if a semi-
uniformity V induces §, then &’ C V. It will follows from (1) that I’ is a base
for a proximally continuous semi-uniformity for (X, d). It turns out that this
semi-uniformity induces ¢, and if § fulfils (SPs), then this semi-uniformity
is a uniformity. For convenience we shall introduce some terminology.
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Definition 2.2.5.2 A finite square entourage of the diagonal of X x X
is an entourage of the form \J; X; x X;, where {X;} is a finite cover of X.
If (X,9) is a semi-proximity space, then a proximal entourage of the
diagonal of (X,0) x (X,0), or §-entourage of the diagonal of X x X, is
a subset U of X x X such that AdB implies U[A] N B # (.

A subset U of X x X is a symmetric entourage of the diagonal of X x X
if and only if U is a union of squares A x A. ”If” is obvious and to prove
"only if”, let us notice that V' = | J{((x,y) x (x,y)) : (z,y) € V'} provided
that V' is a symmetric entourage of the diagonal.

Every proximal entourage U of the diagonal of (X,d) x (X,d) is an
entourage of the diagonal of X x X. Indeed, if x € X, then zdx and hence
UlzlNx #0, ie. (xz,z)€U.

For convenience, Lemma 2.2.5.3, as the main result, will be preceded by
two preparatory lemmas which are also important by themselves.

Lemma 2.2.5.1 FEvery finite square entourage of the diagonal of X x X is
the intersection of a finite family of entourages of the form (Ax A)U(B x B).

Proof: Let us suppose that U = Uz‘gn A; x A;; n € N, is an entourage of
the diagonal of X x X, i.e. {A;} is a cover of X. Assuming that (z,y) €
X x X — U, let us consider the union A of all {A;} such that x € A,
and the union B of all the remaining sets A;. Since y ¢ A, it follows that
(x,y) ¢ X x X and since = ¢ B, it follows that (z,y) ¢ B x B. Thus
UcC((AxA)U(BxB))C (X xX)—{(x,y)}. This concludes the proof.
)

Lemma 2.2.5.2 Let (X,0) be a proximity space. Each of the following two
conditions is necessary and sufficient for a set V.= ((A1 x A1)U(Aa x Ag) C
X x X to be a prorimal entourage of the diagonal:

(a) X — A10X — As (and hence Ay U Ay = X );

(b) if A6B, then (A1 NA)6(A1NB) or (A2 N A)5(A2N B).

Proof: Let us first notice that X — A1 = Ay — A; and X — Ay = A1 — Ay
if AJU Ay = X.

Condition (a) is necessary because V[As—A1] = Ay and AsN(A1—As) =
0.

Condition (b) is sufficient, because (A; N A)d(A; N B) implies A;NA # 0,
A;NB #{, and hence V[A]N B D V[A;,NAN(A;,NB)=A;N(A;NB) =
A;iN B #0.
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It remains to show that (a) implies (b). Assuming (a), let us suppose
that AéB and let us consider the following decompositions of A and B:

A=((A1—A2)NA)U((A1NA)NA)U((A2 — A1) N A),
B:((A1—AQ)QB)U((AlﬁAQ)ﬁB)U((AQ—Al)ﬂB).

Since AdB, then, by Proposition 2.2.1.1, at least one of the sets of the
decomposition of A must be proximal to a set from the decomposition of
B. But Ay — A10A; — Ay and hence also AN (Ay — A1)6B N (A — As),
BN (Ay — A1)6AN (A} — Ag). Tt follows that both of the proximal sets in
question must be contained in A; or in As; this concludes the proof. &

Lemma 2.2.5.3 Let us suppose that (X,0) is a semi-proximity space, V
being the set of all finite square prozimal entourages (of the diagonal of
(X,0) x (X,d)) and W being the set of all elements of V of the form (A x
A)U (B x B). Obuiously V is a sub-base for a semi-uniformity U for X.
The following assertions hold:

(a) V consists of finite intersections of elements of W and hence W is a
sub-base for U;

(b) if W € W and U is any proximal entourage, then W NU s also a
prozimal entourage;

(¢) V is multiplicative, hence a base for U; thus every element of U is a
proxzimal entourage and hence U is a proximally continuous semi-uniformity
for (X,0);

(d) U induces §;

(e) if a semi-uniformity Uy induces 0, then U C Uy ;

(f) if & fulfils the condition (SPs), then U is a uniformity.

Proof: (a) Statement follows from Lemma 2.2.5.1 and the definition of a
sub-base of semi-uniformity.

(b) Let W = (A1 x A1) U (A2 x A2) € W, and let U be any proximal
entourage. Assuming AJB, we must show that (U N W)[A]N B # (. By
Lemma 2.2.5.2 we obtain that (A; N A)d(X; N B) for some i = 1,2. Since U
is a proximal entourage, it follows that U[A4; N A] N (A; N B) # 0. However,
(UnNnW)[A; N Al = A;NU[A; N A], and consequently (U N W)[A]N B D
(UNW)[A,NAINBD>ANU[ANANB#0.

(c) Follows immediately from (a) and (b) by induction.

(d) Tt remains to show that if ASB, then U[A] N B = () for some U € U.
Let us denote A; = X — A and B; = X — B. It follows from Lemma 2.2.5.2
(a) that U = (A; x A1) U (B1 x Byp) is a proximal entourage and hence
U e W CU. But, clearly, U[A] = B = X — B.
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(e) Let us suppose that a semi-uniformity ¢, induces §. To prove that
U is contained in U7, it is sufficient to show that the sub-base W of U is
contained in U;. Let W = (A x A) U (B x B) be any element of WW. By
Lemma 2.2.5.2 we obtain X — A6X — B. By our assumption there exists a
U € U; such that

(+) U[X — AN (X —B) =0.

Without any loss of generality we may assume that U is symmetric, i.e.
U = U~'. Now the proof will be accomplished if we show that U C W; and
this inclusion will be derived from (x) as follows:

It is sufficient to show that Ulx] C W]z] for each x € X. It follows
from () that U[X — A] € B. But clearly W[X — A] = B and hence
Ulz] € W]z| for each z € X — A. Since U is symmetric, we obtain from
(x) that U[X — B] N (X — A) = () and the same argument as the one above
gives Ulz] C W]z] for each x € X — B. It remains to consider the case
when z € X — (X — A)U (X — B)) = AN B. However, if x € AN B, then
Wlz] = AU B = X and therefore Ulzx] C X = W{z].

(f) Let us suppose that § fulfils the condition (SPs). To prove that
U is a uniformity, it is sufficient to show that for each element W of the
sub-base W for U, there exists an element V' € V such that VoV C W.
Let us suppose that W = (A x A)U (B x B) € W. Since X — A6X — B,
there exists a proximal neighborhood B; of X — A and A; of X — B such
that Ay N By = 0. Let us denote that V = (A; x A1) U((ANB) x (AN
B)) U (B x By). Now V € V because V is the intersection of two elements
of W, namely (A; x A1) U (B x B) and (B; x By) U (A x A), use Lemma
2.2.5.2 (a). It will be shown that V oV C W. By Lemma 2.1.2.1 it follows
that VoV = U,ex Viz] x V]z]. If x € Ay, then V[z] C A and hence
Vig] x V[z] c Ax A Cc W. If z € X — Aj, then V[z] C B and hence
V[g] x Vz] CBxBCW. &

It is to be pointed out that Lemma 2.2.5.3 accomplishes the proof of
Theorem 2.2.5.1. If § is a semi-proximity for a set X then by Lemma 2.2.5.3
the set of all finite square §-proximal entourages of the diagonal of X x X is
a base for a semi-uniformity U for X, which is the smallest semi-uniformity
inducing the proximity 6. If &’ is any semi-uniformity inducing & such that
the set V' of all finite square entourages from U’ is a base for U’, then
necessarily U C U’; but V' C U, and V' being a base for U’, we obtain
U'" € U and hence U’ = U. Thus we have proved the following proposition:
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Proposition 2.2.5.1 Let us suppose that a semi-uniformity U induces a
semi-prozimity 6. Then U is the uniformly coarsest (i.e. smallest) semi-
uniformity inducing ¢ if and only if the finite square elements of U form a

base for U. &

Definition 2.2.5.3 A semi-uniformity U will be called proximally coarse
if finite square elements of U form a base for U, i.e. by Lemma 2.2.5.3, if
a semi-uniformity U' induces the same proximity as U, then U C U, i.e. U
is uniformly coarser than U'.

Theorem 2.2.5.2 Fvery semi-proximity is induced by a semi-uniformity.
Among all the semi-uniformities inducing a given semi-proximity 0 there
exists a unique prorimally coarse semi-uniformity U. The set of all finite
square d-proximal entourages is a base for U and U is a uniformity if and
only if § is uniformizable.

Proof: Follows from Theorem 2.2.5.1, Lemma 2.2.5.3 and Proposition
2.25.1. &

Definition 2.2.5.4 A semi-uniformity U for a set X is said to be totally
bounded if for each U € U there exists a finite subset A C X such that
U4 =X.

Proposition 2.2.5.2 Fvery proximally coarse semi-uniformity is totally
bounded and every totally bounded uniformity is proximally coarse.

Proof: Let U be a proximally coarse semi-uniformity for a set X and let
V be the collection of all finite square elements of 4. Thus V is a base for
U. TEU e U, then V C U for some V = (J; A; x A; € V, where {4;} is a
finite cover of X. Now, if A is a finite set intersecting each A;, then clearly
VIA] = ; Ai = X and hence U[A] = X.

Conversely, let us suppose that U is a totally bounded uniformity for
a set X and let us suppose that U is any element of /. We must find a
finite square element W € U contained in U. Let us choose a symmetric
element V € U such that VoV oV oV C U and a finite subset A C X with
V[A] = X, and let us put that W = [J{(VoV)[z]x(VoV)[z] : x € X}. Since
(VoV)o(VoV) C U, the set W is contained in U by Lemma 2.1.2.1. To prove
that W € U, we shall show that W D V. Given any y € X, let us choose an
x € A with y € V[z]. It follows that V]y] C V[V[z]] = (V o V)[z] C W[z].
)
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Corollary 2.2.5.1 A uniformity is proximally coarse if and only if it is
totally bounded. &

The following example shows that a totally bounded semi-uniformity
need not be proximally coarse.

Example 2.2.5.1 Let X be an infinite set, x € X and let us consider the
semi-proximity d for X such that AdB if and only if ANB # (0 or A# 0 # B
and z € AU B. If u is the closure induced by d, then u(y) = {z,y} if
y € X —{z} and u(z) = X. Thus X is the only neighborhood of z in (X, u)
and consequently, if ¢/ is a continuous semi-uniformity for X, then U[z] = X
for each U € U. This shows that every continuous semi-uniformity for (X, u)
is totally bounded. Let U be the largest continuous semi-uniformity for
(X,u). Clearly the set U = Ax U ({z} x X) U (X x {z}) forms a base for
U and U induces §. On the other hand, U is not proximally coarse because
the set U contains no finite square element of ¢ (X is infinite).

Theorem 2.2.5.3 The class of all proximally coarse semi-uniformities is
hereditary and closed under arbitrary products.

Proof: If Y C X and U is a finite square entourage of the diagonal of
X x X, then (Y xY)NU is a finite square entourage of the diagonal of Y x Y’
and therefore every relativization of a proximally coarse semi-uniformity is
proximally coarse.

If (X,U) is the product of a family {(X,,U,)} and U, € U, is a finite
square, then {(z,y) : (prqez,prqay) € Uy} is a finite square and hence finite
square elements form a sub-base for Y. This shows that U is proximally
coarse. oo

Theorem 2.2.5.4 Let us suppose that there exists a uniformly continu-
ous mapping of a semi-uniform space (X,U) onto a semi-uniform space
(Y,V). IfU is a totally bounded semi-uniformity, then V is also a totally
bounded semi-uniformity. If U is a totally bounded and proximally coarse
semi-uniformity, and if V is a uniformity, then V is proximally coarse.

Proof: The first statement is an immediate consequence of the correspond-
ing definition and the second one follows from the first one and Proposition
2252. &

It is to be noted that there exists a uniformly continuous mapping of
a proximally coarse uniform space onto a semi-uniform space which is not
proximally coarse.
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By Proposition 2.2.2.3 every uniformly continuous mapping is proxi-
mally continuous but a proximally continuous mapping for semi-uniform
spaces need not be uniformly continuous (it is sufficient to take two differ-
ent proximally equivalent semi-uniformities). On the other hand following
holds:

Theorem 2.2.5.5 If (X,U) is a prozimally coarse semi-uniform space, then
every proximally continuous mapping of a semi-uniform space into X is
uniformly continuous.

Proof: Let us suppose that f is a proximally continuous mapping of a semi-
uniform space (Xi,U;) into a proximally coarse semi-uniform space (X,U).
To prove that f is uniformly continuous, it is necessary to find a sub-base
W for U such that f, (W) € U for each W € W. Of course, for W we take
the sub-base for I/ described in Lemma 2.2.5.3, i.e. the collection of all sets
W of the form W = (A x A)U(B x B) such that X — A5 X — B, where § is the
semi-proximity induced by U. Since f is proximally continuous, we obtain
X1—A101X1— By, where Ay = f~1(A), By = f~}(B) and §; is the proximity
induced by U;. Thus, from Lemma 2.2.5.2, W7 = (A1 x A1) U (B X By) is
a d1-proximal entourage of the diagonal of X; x X7, and consequently, by
Lemma 2.2.5.3, Wy € U;. But clearly Wy = f, *(W). &

Theorem 2.2.5.6 Let us suppose that (X,U) is the product of a non-void
family {(Xq.,U,) : a € A} of proximally coarse semi-uniform spaces. The
proximity 0 induced by U is the proximally coarsest proximity for X such
that all mappings prq : (X,0) — (Xa,Uy) are prozimally continuous.

Proof: All the mappings in question are proximally continuous because
all the mappings pr, : (X,U) — (X4, U,) are uniformly continuous and
every uniformly continuous mapping is proximally continuous. Let &; be
any proximity for X such that all the mappings prq : (X, 1) — (Xq,U,) are
proximally continuous and let V be a semi-uniformity inducing §;. Since U,
are proximally coarse, by Theorem 2.2.5.5 all the mappings pr, : (X,V) —
(Xa,U,) are uniformly continuous and consequently, by the definition of the
product semi-uniformity, ¥V D U. But this implies that §; is proximally finer
than 4, which completes the proof. &

Theorem 2.2.5.7 The proximally coarse semi-uniformity V prozimally
equivalent with a given semi-uniformity U for a set X is the unique semi-
uniformity for X with the following property:
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A mapping f of (X,U) into a proximally coarse semi-uniform space
(Z, W) is uniformly continuous if and only if the mapping f : (X,V) —
(Z, W) is uniformly continuous.

Proof: Let f be a uniformly continuous mapping of (X, ) into a proximally
coarse semi-uniform space (Z, W) and let V be the proximally coarse semi-
uniformity which is proximally equivalent to &. The collection W' of all
finite square elements of W is a base for W, and the set V' of all f, (W),
W € W', consists of finite square elements of &. The finite square elements
of U form a base for V and therefore V' C V. Since W' is a base for W,
the mapping f : (X,V) — (Z,W) is uniformly continuous. Conversely, if
f:(X,V) — (Z,W) is uniformly continuous, then f : (X,U) — (Z,W) is
uniformly continuous because U is uniformly finer than V. Thus V fulfils
the condition.
The uniqueness of V is evident. &

Proposition 2.2.5.3 A subset S of the uniform space of reals is proximally
coarse if and only if S is contained in a bounded interval in R.

Proof: If S is contained in no bounded interval, then one can easily con-
struct a sequence (x,) in S such that |z, — x| > 1 for n # m. If (yn)
is a sequence in S such that |z, — yn| < 1/2, then 1 < |z, — Tm| <
|Zn, — Yn| + [Yn — Ym| + |Zm — Ym| < 1+ |yn — ym| whenever n # m, and hence
|Yn —Ym| > 0 for n # m. But this implies that (y,) is a one-to-one sequence.
Consequently, S is not totally bounded and hence S is not proximally coarse
by Proposition 2.2.5.2.

Now let S be contained in a bounded interval I = [—r,r|. According
to Theorem 2.2.5.3 it is sufficient to show that I is proximally coarse. By
Proposition 2.2.5.2 this will follow if the interval I is totally bounded. Given
a positive s, let T' be the set of all the points s-n, n € Nor —n € N. Clearly,
T N [—r,r] is finite and if x € I, then |z — y| < s for some y € T". The proof
is complete. &

By our convention that every uniform concept applies to semi-pseudome-
trics, a semi-pseudometric is said to be totally bounded if the induced
semi-uniformity is totally bounded. It is evident that a semi-pseudometric d
for a set X is totally bounded if and only if for each real r > 0 there exists a
finite subset A C X such that the distance from each y € X to A is smaller
than r.

Theorem 2.2.5.8 Let U be a semi-uniformity for a set X, § the semi-
prozimity induced by U, and V the proximally coarse semi-uniformity induc-
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ing & (that is, V is the unique proximally coarse semi-uniformity which is
proximally equivalent to U). Then

(a) a pseudometric d for X is a uniformly continuous pseudometric for
(X, V) if and only if d is a totally bounded uniformly continuous pseudomet-
ric for (X,U);

(b) a function f on (X,V) is uniformly continuous if and only if the
function f: (X,U) — R is bounded and uniformly continuous;

(¢) if a function f on (X,U) is uniformly continuous, then f is proxi-
mally continuous, in symbols, U((X,U),R) C P((X,U),R);

(d) a function f on (X,V) is uniformly continuous if and only if f
is a bounded prozimally continuous function, in symbols U((X,V),R) =
P*((X,V),R).

Proof: (a) A totally bounded pseudo-metric is proximally coarse by Propo-
sition 2.2.5.2, and therefore, by Theorem 2.2.5.7, a totally bounded pseudo-
metric for X is uniformly continuous for (X, V) if and only if it is uniformly
continuous for (X,U). Thus, to prove the statement, it remains to show
that every uniformly continuous pseudo-metric for a proximally coarse semi-
uniform space is totally bounded, and this follows from Theorem 2.2.5.4.

(b) If f is a bounded function on X, then the subspace f(X) of R is
proximally coarse by Proposition 2.2.5.3 and therefore, by Theorem 2.2.5.7,
the function f : (X,U) — R is uniformly continuous if and only if the
function f : (X,V) — R is uniformly continuous. It remains to show that
every uniformly continuous function f on a proximally coarse semi-uniform
space is bounded. By Theorem 2.2.5.4, the subspace f(X) is proximally
coarse and therefore, by Proposition 2.2.5.3, f(X) is a bounded subset of R.

(c) This statement is a particular case of the fact that every uniformly
continuous mapping is proximally continuous.

(d) The statements (b) and (c¢) imply the inclusion C. Conversely, if f :
(X,V) — Ris abounded proximally continuous function, then f is uniformly
continuous by Theorem 2.2.5.5 because f(X) is a proximally coarse subset
of R. &

Proposition 2.2.5.4 If di and do are proximally continuous pseudo-met-
rics for a semi-proximity space (X, 9) and dy is totally bounded, then di + da
18 prorimally continuous.

Proof: Let V be the proximally coarse semi-uniformity which induces §
and let U;, i = 1,2, be the uniformity induced by d;. Since U; is proximally
coarse and proximally continuous, by Theorem 2.2.5.4, the identity mapping
of (X, V) into (X,U) is uniformly continuous and hence ¢; C V. By Lemma
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2.2.5.3, YV NU5 consists of d-proximal entourages and hence U; Ny consists
of §-proximal entourages. Since U; NUs is a base for the uniformity induced
by di + da, the pseudo-metric dy + dg is proximally continuous for (X,d). &

We ought to remember that the sum of two proximally continuous pseu-
do-metrics need not be proximally continuous and hence a uniformly finest
proximally continuous uniformity for a given semi-proximity need not exist.

Theorem 2.2.5.9 Let U be a uniformity and let § be the semi-proximity
induced by U. Every uniformly continuous pseudo-metric for (X,U) is a
prozimally continuous pseudo-metric for (X,0). If every prozimally contin-
uous pseudo-metric for (X,9) is a uniformly continuous pseudo-metric for
(X,U), then U is the uniformly finest uniformity inducing §. Finally, if U is
the uniformly finest uniformity inducing 8, then every proximally continuous
pseudo-metric for (X,0) is uniformly continuous for (X,U).

Proof: The first statement is a particular case of the fact that every uni-
formly continuous mapping is proximally continuous. If every proximally
continuous pseudo-metric for (X, d) is uniformly continuous for (X,U) and
W is any proximally continuous uniformity for (X, ¢), then every uniformly
continuous pseudo-metric for (X, V) is proximally continuous for (X, §) and
hence uniformly continuous for (X,%). This implies that ¢ is uniformly
finer than W and establishes the second statement. The last statement fol-
lows from Proposition 2.2.5.4. Indeed, if d is any proximally continuous
pseudo-metric for (X,d), then all totally bounded proximally continuous
pseudo-metrics for (X, 0) together with d generate proximally continuous
uniformity W for (X, d) by Proposition 2.2.5.4 which evidently induces 9,
and hence W C U. Thus d is a uniformly continuous pseudo-metric for
(X,U). &

Proposition 2.2.5.5 Let § be a semi-proximity for a set X induced by a
pseudo-metric d and let U be the uniformity induced by d. Then U is the
uniformly finest uniformity which induces d.

Proof: If D is a proximally continuous pseudo-metric for (X,d), then
the mapping J : (X,d) — (X, D) is proximally continuous and hence, by
Theorem 2.2.2.1, uniformly continuous. Thus every proximally continuous
pseudo-metric is a uniformly continuous pseudo-metric for (X,4). By the
preceding theorem U has the property in question. &
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Corollary 2.2.5.2 If d is a totally bounded pseudo-metric, then the uni-
formity U induced by d is the unique uniformity inducing the same semi-
proximity 6 as d.

Proof: Since U is proximally coarse, U is the smallest uniformity among all
the uniformities inducing §. By Proposition 2.2.5.5, U is the largest among
these uniformities. &

2.2.6 Uniformizable proximities

By Definition 2.2.5.1 a semi-proximity is uniformizable if it is induced by a
uniformity, and by Theorem 2.2.5.1 a semi-proximity is uniformizable if and
only if it fulfils the condition (SPs), i.e. if it is a proximity. Here we shall
describe uniformizable semi-proximities by means of proximally continuous
pseudo-metrics and functions.

Theorem 2.2.6.1 Fach of the following three conditions is necessary and
sufficient for a semi-proximity space (X, ) to be uniformizable:

(a) A0B provided that A, B C X and the distance from A to B is zero
for each totally bounded proximally continuous pseudo-metric for (X,9);

(b) AdB provided that A, B C X and the distance from A to B is zero
for each proximally continuous pseudo-metric for (X,4);

(c) if ASB then there exists a bounded prozimally continuous function f
on (X,0) which is 0 on A and 1 on B.

Proof: I. First we shall show that the conditions (a), (b) and (c) are equiv-
alent to each other. It is sufficient to prove (a) = (b) = (¢) = (a). Clearly
(a) = (b), and to prove (b) = (c) let us assume (b) and let ASB. By (b) we
can take a proximally continuous pseudo-metric d for (X, d) such that the
distance from A to B in (X, d) is positive, let us say r. Now let us consider
the function g(z) = d(z, A) on (X,d) and let us put f(x) = min(1, g(x)/r).
Clearly 0 < f < land fisOon A and 1 on B. Next, g : (X,d) — Ris a Lips-
chitz mapping, hence uniformly continuous and thus proximally continuous.
Since g is proximally continuous, f is also proximally continuous. It is to be
noted that it is easy to prove directly, without reference to semi-uniformities,
that f is proximally continuous. It remains to show that (¢) = (a). Assum-
ing (c), let A6B. We must find a proximally continuous, totally bounded
pseudo-metric d for (X,d) such that the distance from A to B in (X,d)
is positive. Let us take a bounded proximally continuous function f on
(X,0) which is 0 on A and 1 on B, and let us consider the pseudo-metric
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d={(x,y) — |f(x)—f(y)| : (z,y) € X xX}. Evidently d is totally bounded
and the distance from A to B in (X,d) is 1. It remains to show that d is
a proximally continuous pseudo-metric for (X, d). This follows immediately
from the fact that, denoting by U the proximally coarse semi-uniformity of
(X,9), the function d; = d : (X,U) x (X,U) — R is uniformly continuous
since it is the composition of two uniformly continuous mappings. Namely,
dy={(r,s) = |r—sl}: RxR—=R)o(f x f: (X,U) x (X,U) - RxR)
and this shows that d is a uniformly continuous pseudo-metric for (X, i)
and hence a proximally continuous pseudo-metric for (X, 6).

It is to be noted that the proximal continuity of d can be proved directly:
if AdB, then the distance from f(A) to f(B) is zero in R and therefore,
the distance from A to B in (X,d) is zero. This establishes the proximal
continuity of d.

I1. Condition (c) is sufficient. Assuming (c) we shall prove that condition
(SPs) is fulfilled. If A0B and f is a proximally continuous function on (X, )
which is 0 on A and 1 on B, then the sets U = {z : f(x) < 1/2} = f~1((«~
,1/2)) and V = {x : f(x) > 1/2} = f71((1/2,—)) are disjoint proximal
neighborhoods of A and B in (X, ).

III. Condition (b) is necessary. Let (X, ) be uniformizable and let U be a
uniformity which induces 8. If A0B, then U[A]NB = () for some U € U, and
U being a uniformity, we can choose a uniformly continuous pseudo-metric
d for (X,U) such that d(z,y) < 1 implies (z,y) € U. Clearly, the distance
from A to B in (X, d) is at least 1. Since d is a uniformly continuous pseudo-
metric for (X,U), d is a proximally continuous pseudo-metric for (X,0). &

Corollary 2.2.6.1 If 61 and 2 are uniformizable proximities for a set X,
then 61 is proximally coarser than do if and only if, for each bounded prox-
imally continuous function f on (X,01), the function f : (X,d2) — R is
proximally continuous. &

Roughly speaking, a uniformizable proximity space is uniquely deter-
mined by the collection of all bounded proximally continuous functions.

2.2.7 Proximally continuous functions

In this section our purpose is to prove that, for each semi-proximity space
(X, 0), the set of all bounded proximally continuous functions on X, denoted
by P*(X,R), is a closed sub-lattice-algebra of the topological lattice-algebra
unif F*(X, R) of all bounded mapping of X into R. The symbol F*(X,R)
denotes the normed lattice-algebra of all bounded function of X into R.
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Proposition 2.2.7.1 Let (X,0) be a semi-proximity space. The sum of two
proximally continuous functions on X of which one is bounded, is a proxi-
mally continuous function. The product of two bounded proximally continu-
ous functions on X is a proximally continuous function.

Proof: I. We shall need the following property of bounded proximally con-
tinuous functions: if f is a proximally continuous function on (X,J), r is a
positive real number and AJB, then there exist A’ C A and B’ C B such
that A’d B’ and the diameters of the sets f(A’) and f(B’) are at the most r.
As the set f(X) is contained in a bounded interval, we can choose a finite
family {I;} of intervals which covers f(X) and such that the length of each
Iy is r. Thus {f~1(I})} is a finite cover of X and the diameter of each set
f(f~Y(Iy)) C I is at the most 7. Now if A§B, then, by Proposition 2.2.1.6,
for some 4 and j, (AN f71(L))6(B N f~1(I;)) and the diameters of the sets
f(AN f~YI)) and f(B N f~(I})) are at the most 7.

II. Now let f and g be two proximally continuous functions, f bounded
and h = f + g. Let us suppose that A0B. To prove that the distance
from h(A) to h(B) is zero, it is sufficient to show that the distance from
h(A) to h(B) is at the most 3r for each positive real number r. Let r > 0.
Let us choose A’ C A and B’ C B such that A’§B’ and the diameters of
the sets f(A’) and f(B') are at the most r which is possible by 1. Now if
z € A" and y € B, then the distance from f(z) to f(y) is at the most 2r
because the distance of the set f(A’) from f(B’) is zero (f is proximally
continuous) and their diameters are at the most r. Since g is proximally
continuous, the distance from g(A’) to g(B’) is zero and therefore we can
choose z € A" and y € B’ so that |g(z) — g(y)| < r. Now |h(x) — h(y)| <
|f(z) — f(y)| +|g(z) — g(y)| < 2r +r = 3r, which shows that the distance
from h(A) to h(B) is at the most 3r.

ITI. Let us suppose that f and g are bounded proximally continuous
functions, |f(z)] < K and |g(x)] < K for each z € X, where K > 0,
h = f-g, and A6B. To prove that the distance from h(A) to h(B) is zero,
it is sufficient to show that, for each r > 0, the distance from h(A) to h(B)
is at the most 3Kr. Let » > 0. By I. we can choose A’ C A and B’ C B so
that A’6B’ and the diameters of the sets f(A’) and f(B’) are at the most
r. Since the distance from g(A’) to g(B’) is zero, we can choose x € A’
and y € B’ such that |g(z) — g(y)| < 7, since the distance from f(A’) to
f(B’) is zero and the diameters of these sets are at the most r, we obtain
[f(@)g(z) = W) < |f(@)llg(z) — gl + g f(z) — fy)] < K -3r,
and consequently the distance from h(A) to h(B) is at the most 3rK. This
concludes the proof. &
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The sum of two unbounded proximally continuous functions need not be
proximally continuous. The product of two proximally continuous functions
need not be proximally continuous. The product of two proximally continu-
ous functions need not be proximally continuous even if one of the functions
is bounded.

Proposition 2.2.7.2 The uniform limit of prozimally continuous functions
is a prozimally continuous function. In other words, P(X,R) is closed in
unif F(X,R) for each prozimity space X.

Proof: Let us suppose that a net { f,} of proximally continuous functions on
a proximity space (X, d) converges uniformly to f,i.e. {f,} converges to f in
unif F(X,R). Let AdB and r be a positive real number. We shall prove that
the distance from f(A) to f(B) is at the most 3r. Since { f,} converges to f
uniformly, there exists an index a so that |f,(x) — f(z)| < r for each z € X.
Since f, is proximally continuous, the distance from f,(A) to f,(B) is zero
and therefore we can choose an z € A and ay € B so that | f,(x)— fo(y)| < r.

So, [f(x) = F(y)| < [f(2) = fa(2) [+ [fa(@) = fa(y)| + [faly) — f(y)] <3r. &

Now we can prove the main result of this section.

Theorem 2.2.7.1 The set P*(X,R) of all bounded proximally continuous
functions on a prozimity space X is a closed sub-lattice-algebra of the normed
lattice-algebra F*(X,R) of all bounded mappings of X into R.

Proof: Clearly, every constant function on X is proximally continuous.
Further, if f is a proximally continuous function, then |f| is also proximally
continuous because d(|f[(4),|f|(B)) < d(f(A), f(B)) for each A,B C X.
This inequality follows from the inequality ||z| — |y|| < |z — y| which holds
for all real numbers x and y. Clearly, if f is proximally continuous and
r is a real number, then r - f is also proximally continuous. It remains
to show that f 4+ ¢ and f - ¢g are proximally continuous whenever f and
g are bounded proximally continuous functions, and that, if a net {f,} of
proximally continuous functions converges to f in unif F(X,R), then f is
proximally continuous. Indeed, the proximal continuity of the functions
sup(f,g) and inf(f,g), where f and g are bounded proximally continuous
functions, follows from the following obvious equalities:

sup(f,g) = f+sup(0,9—f)=f+(g—fl+(9—f)/2=
=(g—fl+(f—-9)/2,
inf(f,g) = —sup(—f,—g).
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The remaining statements are particular cases of Proposition 2.2.7.1 and
Proposition 2.2.7.2. &

Theorem 2.2.7.2 (a) If (X,U) is a semi-uniform space and (G, u; +) com-
mutative topological group, then U(X,G) is a closed subgroup of the group
unif F(X, G) and contains all constant mappings.

(b) If (X, U) is a semi-uniform space and (R,+,-;] ||) is a normed ring,
then the set U*(X, R) of all bounded uniformly continuous mappings of X
into R is an ring; if R = R, then U*(X,R) contains, with each f, the
function |f|.

Proof: (a) It is a well known fact that the set U(X,G) is closed in
unif F(X, G). Since (G, u;+) is commutative, the mapping h(z,y) =z —y
from G x G into G is uniformly continuous. Now, if f and g are uniformly
continuous mappings, then f — g = ho (f X g), and consequently f — g is
uniformly continuous as the composition of two uniformly continuous map-
pings. Hence U(X, G) is a subgroup.

(b) Let us suppose that d is the pseudo-metric corresponding to the norm
of R, i.e. d(z,y) = ||z — y||, and let d; be the pseudo-metric for R x R such
that di((z1,v1), (x2,y2)) = d(x1,22) + d(y1,y2). It is easily seen that the
mapping {(z,y) — z-y} = (Rx R,d;) — (R, d) is Lipschitz continuous and
hence uniformly continuous on each set A x A, where A is a bounded subset
of R. Now, as in (a), we find that f - ¢ is uniformly continuous whenever f
and g are bounded uniformly continuous mappings. Finally, if R = R, then,
evidently, h = {x — |z|} : R — R is uniformly continuous and hence, if f is
a uniformly continuous mapping into R, then |f| is uniformly continuous as
the composite of f and h. &

2.2.8 Stone-Weierstrass theorem

By the Weierstrass theorem, for each bounded continuous function f on a
bounded closed interval I of reals and for each positive real r there exists a
polynomial function g(z) = >, ., a;z’ such that |f(x) — g(z)| < r for each
x € I. In other words, if F is the set of all polynomial functions on I,
then F is dense in the normed algebra C*(I,R) of all bounded continuous
functions on I. Let us notice that F is the smallest subalgebra of C*(I,R)
containing the functions {x — 1} : I - Rand J = {2z — 2} : I — R. Thus
the Weierstrass theorem can be stated as follows: the smallest subalgebra
of F*(I,R) containing the constant function {z — 1} and the identity func-
tion J : I — R is dense in C*(I,R). Further, clearly, the proximity of I is
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the proximally coarsest proximity for I such that J: I — R is a proximally
continuous function, and it turns out that C*(I,R) = P*(I,R). This follows
from the compactness of I. Thus J : I — R entirely determines the prox-
imity of I, and the smallest subalgebra of P*(I,R) containing J : I — R,
and the constant function {x — 1} is dense in the normed algebra P*(I,R).
It turns out that this is true in general, for an appropriate definition of
”entirely determines”.

Definition 2.2.8.1 We shall say that a collection M of mappings of a semi-
prozimity space (X, ) into a semi-prozimity (Y, 01) projectively generates
the semi-proximity of X if § is the proximally coarsest semi-proximity
for X such that all mappings f € M are proximally continuous.

We will begin with a consideration of the proximity space projectively
generated by a family of mapping into proximity spaces.

Proposition 2.2.8.1 Let F be a collection of bounded functions on a set X .
There ezists a unique semi-proximity 6 for X such that (X, 0) is projectively
generated by the collection of all functions f : (X,0) = R, f € F. The set
D of all pseudo-metrics df = {(z,y) — [f(z) — f(y)] : (z,y) € X x X},
f € F, generates a proximally coarse semi-uniformity of (X,8). If D' is
the smallest set containing D and such that di,dy € D' = dy +dy € D/,
then AdB if and only if the distance in (X,d) from A to B is zero for each
deD.

Proof: I. Let U be the semi-uniformity generated by the collection D of
pseudo-metrics. Then the sets of the form {(z,y) : d(z,y) < r}, d € D,
r > 0, form a sub-base for U, and U is a uniformity. Clearly, each d € D is
totally bounded and hence U is totally bounded. U, being a uniformity, is
proximally coarse by Proposition 2.2.5.2.

IT. Let § be the proximity induced by . Clearly, the last statement of
this proposition holds. Hence every f : (X,§) — R, f € F, is proximally
continuous.

III. It remains to prove that J is the proximally coarsest proximity for X
such that all the functions f : (X,9) — R, f € F, are proximally continuous.
Let §; be any proximity for X such that all the functions f : (X,d) — R,
f € F, are proximally continuous. We shall show that ; is proximally finer
than §. Since each f : (X,01) — R, f € F, is proximally continuous, each
d¢, f € F, is a proximally continuous pseudo-metric for (X,d). Each dy
being totally bounded and all the elements of D" are proximally continuous
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pseudo-metrics for (X,0) by Proposition 2.2.5.4; hence, U is a proximally
continuous uniformity for (X, d;). Thus ¢ is proximally coarser than d;. &

Let us assume that a proximity space (X, ¢) is projectively generated by
a collection F of bounded functions, and for each f € F let ds be the pseudo-
metric defined in the formulation of Proposition 2.2.8.1. If AJB, then the
distance from A to B is zero in each (X,dy). It is easy to find an example
such that A and B are distant in (X, ) but not proximal in each (X, dy). If
the set of all dy is addition-stable, then by Proposition 2.2.8.1 A0 B implies
that A and B are distant in some (X, dy). Similarly, if AJB then f(A) is
proximal to f(B) in R for each f € F, but the converse is not true. This
follows from the similar results for dy. It is interesting to show that the
converse is not true even if F is a linear space. We shall only construct
such an F with the following algebraic property: fi,fo € F = f1+ fo € F.
Using this example the reader may construct without difficulty such a linear
space F.

Example 2.2.8.1 Let (X,0) be asubspace of R, X = [UIL,UI3, I; = [0, 1],
I, = [2,3], I3 = [4,5], and let us consider the following two functions f and
gon (X,0): f(z) =g(xr) =x forx € I, f(r) = x — 2 and g(z) = z for
x € Iy and finally, f(z) =2 —2 and g(z) = x — 4 for x € I5.

It is easily seen that the collection {f, g} projectively generates (X, J).
Let F be the set of all linear combinations Af + pug with non-negative A and
p. We shall show that h(I1) N h(l2 U I3) # () for each h € F (on the other
hand, I) and Iy U I3 are far in (X,9)). Let h=Af 4+ pg, A >0, > 0. It is
easily seen that h(I1) = [0, A\ + p], h(I2) = [2p, 3+ A], h(I3) = [2A, 3X + .
It is clear that ¢ = min(2A 4+ 2u) < A + p and hence ¢t € h(I1) N h(I2 U I3).

Let us suppose that a proximity space X is generated by a collection F
of bounded proximally continuous functions. By the preceding example it is
not true that, if A and B are distant in X, then f(A) and f(B) are distant
in R for some f € F. On the other hand, one has the following, essentially
weaker, result:

Proposition 2.2.8.2 Let us suppose that a semi-proximity space (X,0) is
projectively generated by a collection F of bounded functions. Then AdB if
and only if the following condition is fulfilled: if A is the union of a finite
family {A;} and B is the union of a finite family {B;}, then there exist
indices i and j such that f(A;) is proximal to f(Bj) for each f € F.

Proof: For each f € F let us put that 6; = {(A4, B) : f(A) is proximal to
f(B) in R}. It is easy to verify that each d¢ is a proximity for X and § is the
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proximally coarsest proximity for X proximally finer than each é;, f € F.
Now, the statement is implied by the following proposition:

Proposition 2.2.8.3 Let X be a set and let {6; : i € I} be a family of
semi-prozimity relations for X. There exists a proximally coarsest semi-
prozimity 6 for X prozimally finer than each 6;, i € I. If I # 0, then A0B
if and only if A, B C X and the following condition is fulfilled:

If {A;} is a finite cover of A, and {By} is a finite cover of B, then there
exist indices j and k such that A;; By, for each i € I.

Proof: See the proof of Theorem 1.1.4.1. &

Proposition 2.2.8.4 Let us suppose that F is a collection of functions on
a semi-proxzimity space (X,0) satisfying the following condition:
if A6OB and if v is a positive real number, then there exists an f € F
such that 0 < f(z) <71 for each x € X, f(A) =0, f(B) =r.
Then for each non-negative bounded proximally continuous function g on
X and each positive real r there exists a finite family {f;} in F such that
lg(x) —>_; filz)| <7 for each x € X.

Proof: Let g be a non-negative bounded proximally continuous function on
X and let r > 0. Let k be the smallest positive integer such that g(x) < kr
for each z € X. For each i < k let A; = {x : g(x) < ir}. If 1 < i <k,
then the sets A;_1 and X — A; are distant in X and therefore we can choose
an f; € F such that 0 < fi(z) < r for each 2 € X and f;(4;,-1) = 0,
fi(X — A;) = r. It is easy to verify that [g(x) — 21 ;< fi(@)] < r for each
zeX. &

Corollary 2.2.8.1 If a linear subspace F of P*(X,R) fulfils the above con-
dition, then F is dense in the normed space P*(X,R).

Proof: To prove the corollary, it is sufficient to notice that F contains
all constant functions. Given an r > 0, there exists an f € F such that
f(@) =0, f(X)=r (because 06X ), and hence f(x) =r for each z € X. &

Lemma 2.2.8.4 Let us suppose that (X,09) is a semi-prozimity space and
let F be a sublattice-module of P*(X,R) containing all constant functions,
and projectively generating X. Then for each ASB and each positive real
number r there exist an f € F so that f is 0 on A, ron B and 0 < f(z) <r
for each x € X.
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Proof: I. It will suffice to prove that, given A6B and r > 0, there exist
finite families {4;} and {B;} such that A = {J; 4;, B = J; Bj, and for each
of the indices i and j there exists a required function f;; for A; and Bj,
ie. fijis0on A;, r on Bj and 0 < fij(z) < r for each z € X. Indeed,
f = inf;sup,;{fi;} is then a required function for A and B.

II. Let us suppose ASB, A # () # B and let f be an element of F
such that the distance from f(A) to f(B) is positive, let us say r (such
an element need not exist). Let us choose a finite decomposition {A4;} of
A and {B;} of B such that the diameter of each set f(A;) as well as each
f(Bj) is smaller than /2. This is possible because f is bounded. We may
and shall assume that A; # () # B; for each i and j. If 2’ € A;, v € B;
and f(z') < f(v/), then f(z) < f(y) for each z € A; and y € B;. Indeed,
since the distance from f(A;) to f(Bj) is at least the one from f(A) to
f(B), ie. 7, and |f(z) — f(&')| < /2, |f(y) — f(¥)] < r/2, we obtain
fx) < f(@)+r/2< f(y)—r/2 < f(y). Similarly, if f(2") > f(y') for some
' € A;, y € Bj, then f(z) > f(y) for each z € A; and each y € B;. If
f(z) < f(y) for each z € A; and y € By, then let us put

hij = {z — min(f(z),inf f(B;))} : X = R,
9ij = {# — max(h;j(z),sup f(4;))}: X — R,
fij = {2 = (9ij(2) —sup f(A:;))}: X = R.

Clearly, the function h;;, and hence g;;, and finally f;; all belong to F, f;;
being zero on A; and d(f(A;), f(B;j)) = r. Now, given a positive real s,
for an appropriate real ¢, t - f;; is s on B; and zero on A;. Similarly, if
f(x) > f(y) for x € A; and y € By, then the same construction leads to a
function f € F which is zero on B;j and s on A;.

II1. Now let us suppose that ASB. Since F generates &, by Proposition
2.2.8.2 there exist finite decompositions {A;} of A and {B;} of B such that
for each ¢ and j there exists an f € F so that the distance from f(A4;)
to f(Bj) is positive. Applying II. to each pair A;, B; we obtain finite
decompositions {Cy} of A and {D;} of B such that for each k and [ there
exists a function in F which is zero on Cy, s on D; and its range is contained
in the interval [0, s]. The proof is complete. &

Theorem 2.2.8.1 Stone-Weierstrass Theorem (for semi-prozimity spa-
ces). Let (X,0) be a semi-proximity space projectively generated by a col-
lection M of bounded functions, and let F be the smallest subalgebra of
F*(X,R) containing M and the constant function {x — 1} : X — R. Then
the closure of F in F*(X,R) is P*(X,R). In other words, a bounded func-
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tion f on X is proximally continuous if and only if the following condition
is fulfilled:

For each positive real v there exists a polynomial function

P={(z0,21,---,2n) — E Qig..in2 -2 0 2z ER}: R" - R
ij<k

and functions fo,..., fn € M such that |f(x) — P(fo(x),..., fu(x)| <7 for
each z € X.

Proof: Let us suppose that a semi-proximity space (X,d) is projectively
generated by a collection M of bounded functions, and let F be the smallest
algebra containing M and the constant function {z — 1} : X — R, and
hence all constant functions. Let us consider the closure G of F in F*(X,R).
Since M C P*(X,R), {{x — 1} : X — R} € P*(X,R) and P*(X,R) is
a closed subalgebra of F*(X,R) by Theorem 2.2.7.1, G C P*(X,R) holds.
Clearly, G is closed in F*(X,R) (the closure structure of F*(X,R) is topo-
logical) and G is an algebra because it is the closure of an algebra, namely
of F. Since G is a closed algebra, G is a lattice. Since P*(X,R) D G D M
and M projectively generates (X,d), G also projectively generates (X,0),
and therefore by Lemma 2.2.8.4 , G is dense in P*(X,R). Since G is closed,
G=P*(X,R). &

The concluding theorems are intended to clarify the relations between
proximities and sets of bounded functions. We shall need the following
description of the proximity of bounded subsets of R.

Proposition 2.2.8.5 A bounded subset A of R is proximal to a subset B
of R if and only if AN B # (.

Proof: If AN B # (), then the distance from A to B is zero and hence
the sets A and B are proximal (without any supposition on A). Conversely,
assuming that a bounded set A is proximal to a set B, i.e. the distance
from A to B is zero, we can take sequences {z,} in A and {y,} in B such
that the sequence {|z, — y,|} converges to zero. Since A is bounded, some
subsequence {zy,} of {x,} converges to a point z. Clearly, z € A. Since
|z — yn,| < |z — xp,| + |20, — Yn,|, the sequence {y,,} also converges to x.
Thus z € B and hence x € ANB. &

Theorem 2.2.8.2 Let (X,6) be a uniformizable semi-proximity space and
let H be a closed linear subspace of F*(X,R) containing the constant func-
tion {x — 1} : X — R. The following statements are equivalent:
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(a) H = P*(X, R);

(b) H is a subalgebra of F*(X,R) (i.e. g1,92 € H = g1-92 € H), if AdB
and f € H, then f(A)N f(B) # 0, and if A0B then there exists an f € H,
0< f<1, which is 0 on A and 1 on B;

(t') H is a sublattice of F*(X,R) (i.e. g € H = |g| € H, or equivalently,
91,92 € H = sup(g1,92) € H, inf(g1,92) € H), if A0B and f € H, then
f(A)NF(B) # 0, and if ASB, then there exists an f € H, 0 < f < 1, which
is 0 on A and 1 on B;

(¢) H is a subalgebra of F*(X,R) and AdB if and only if f(A)Nf(B) # 0
for each f € H; -
() H is a sublattice of F*(X,R) and AdB if and only if f(A)Nf(B) # 0

for each f € H;
(d) H is a subalgebra of F*(X,R) and projectively generates §;
(d') H is a sublattice of F*(X,R) and projectively generates ¢.

Proof: Evidently (b) implies (¢), and (') implies (). By Proposition
2.2.8.5 (c) implies (d), and (¢) implies (d'). Every closed subalgebra is a
sublattice and therefore(d) implies (d'). By the proof of Theorem 2.2.8.1,
(d') implies (a). It remains to show that (a) implies both (b) and ('). This
follows from Theorem 2.2.6.1 and Theorem 2.2.7.1. &

Historical and bibliographic notes

The concept of the semi-proximity spaces was introduced by M. Hushek
in 1964 in paper [146] (see also [147]). In the revised edition of book ” Topo-
logical Spaces” from E. Czech (the first edition was published by Czech in
1959) Z. Frolik and M. Katetov in 1966 [63] gave the most complete exposi-
tion of the theory of semi-proximity spaces. The results in subsections 2.1.
and 2.2. were proved in that book. Filters were introduced by H. Cartan
[48], grills by G. Choquet [57] and stacks by G. Grimeisen [125]. Grills are
also mentioned by G. Nobeling [245] (see also [281]). Examples of grills in
theory of semi-proximity spaces, without awareness of the general concept,
go back to F. Riesz [273], who was dealing with certain grills which, in our
present terminology, are maximal d-clans. S. Leader [184] introduced clus-
ters which are also maximal d-clans. He further [187] pointed out the duality
between maximal round filters (the ends in Ju. M. Smirnoff’s terminology)
and clusters. M. W. Lodato [201], [202] introduced bunches. The proofs
of assertions explained in subsection are given by W. J. Thron [320]. The-
orems 2.2.4.1 and 2.2.4.2 were proved by K. C. Chattopadhyay in 1985 in
his paper [51]. Propositions 2.2.4.1-2.2.4.5 and Theorem 2.2.4.3 were proved
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by Chattopadhyay in [53]. The Stone-Weierstrass Theorem for proximity
spaces was proved by Smirnoff in 1960 [304]. Smirnoff devoted that paper
to the memory on E. Czech. In the revised edition of Czech’s book ”Topo-
logical Spaces” Frolik and Katetov proved the Stone-Weierstrass theorem
for semi-proximity spaces.

2.3 LO- and S-proximity spaces

2.3.1 The notion and basic properties of LO-proximities

Definition 2.3.1.1 Let X be a set. A semi-prozimity relation § defined on
the power set of X is called a Lodato or LO-proximity if it satisfies the
following condition:

(LO) AdB and boC for each b € B together imply ASC.
An LO-proximity § is separated if it is a separated semi-proximity.
The pair (X,0), where § is a (separated) LO-proximity, is referred to as a
(separated) Lodato- or (separated) LO-proximity space.

It is easy to show that the conditions (LO)- and
(LO") ¢5(A) € 6(B) = A€ d(B),

where ¢s(A) = {z € X : = € §(A)}, are equivalent. Indeed, if c¢5(A)0B
holds, then zdA for each z € ¢5(A) holds. Therefore A0B by (LO). To
prove the converse, let us suppose that the condition (LO) holds. Since b6C
for each b € B, b € ¢5(C) for each b € B holds and therefore B C ¢s(C).
But then Adcs(C) holds, from which, by (LO'), it follows that A5C.

It is evident that (by (LO’)) in every LO-proximity space AdB is true if
and only if ¢s(A)dcs(B).

It is obvious that every LO-proximity is an RI-proximity.

Proposition 2.3.1.1 Every proxzimity space (X,6) is an LO-prozimity spa-
ce.

Proof: It is sufficient to show that (Bs) implies (LO). Let us suppose A0B
and bdC for all b € B, but ASC. Then, by Proposition 1.1.1.3, there exist
E and F such that A0X — F, C6X — FE and ENF = (). Let us suppose
that AGJFE. Since E C X — F, by Proposition 2.2.1.1 AdX — F holds, which
is a contradiction. Hence AGE. Now BN (X — E) = () holds. Indeed, if
b€ BN (X — E), then, by Proposition 2.2.1.1, b6C' would imply C6X — E
which is also a contradiction. Hence B C E. But then, since AdB, by
Proposition 2.2.1.1, ASJE holds, and this is a contradiction. ¢
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Definition 2.3.1.2 Let (X,d) be an LO-proximity space. The set B €
P(X) is a é-neighborhood of a set A € P(X), in the notation A < B,
if A0X — B.

Proposition 2.3.1.2 The relation < in an LO-proximity space (X,9) ful-
fills the following conditions:

(NL)) X < X;

(NLs) A< B implies A C B;

(NL3) AC B C C D implies AL D;

(NLy) A< By, k=1,2, if and only if A < By N By;

(NLs) A< B implies X — B< X — A;

(NLg) A < B implies that, for all C, A < C or there exists x € X —C
such that © < B.
If § is a separated relation, then

(NL7) 2 < X —y if and only if v # y.

Conversely, if < is a binary relation on the power set of X fulfilling
(NLy1) — (NLg) and ¢ is defined by

A6B if and only if A < X — B,

then ¢ is an LO-proximity on X. Furthermore, B is a §-neighborhood of A
with respect to 0 if and only if A < B. Moreover, if < also fulfills (N Lz),
then § is a separated LO-proximity.

Proof: The proof of (NL;) — (NLs) is straightforward and is left to the
reader.

(NLg) Let us suppose that A < B and A &« C. Furthermore, let us
suppose that x &« B for every x € X — C. Then AdX — C and for each
x € X —C xz6X — B holds. But then A6X — B holds according to (LO),
which is a contradiction.

(NL7) Let us suppose that z < X —y. Then xdy, so that by (SP3)
x # y. Conversely, let us suppose that = # y. Then, by (SPs), 20y follows.
Consequently, z6(X — (X —y)), that is z < X —y.

To prove the converse of the theorem, let us suppose that the relation
< satisfies the conditions (NLj) — (N Lg).

(SP,) Let us suppose that ASB. Then A < X — B and therefore, by
(NLs), B< X — A holds. But then BJA holds.

(SPy) Since, by (NL1), X < X, it is X46(). But then $5X holds according
to (SPQ)

(SP3) ASB implies A < X — B. Consequently, by (NLs), A C X — B
holds, so that AN B = 0.
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(SP) Let us suppose that A6C and BSC, that is A < X — C and
B« X~—-C. Then C <« X — A and C <« X — B by (NL3) and hence by
(NLy),C < (X —A)N(X — B); so that C <« X —(AUB). Now, by (NLs),
we have that AU B < X — C, and consequently, AU BSC. It is obvious
that the converse also holds.

(LO) To prove this conditions, it is sufficient to show that A§B; implies
ASC, or there exists z € C) such that z6B;. Let By = X — B and C} =
X — C. A6X — B implies, by definition, that A < B. Thus, by (N Lg), we
have that A < C or there exists an x € X — C such that + < B. Hence
ASX — C or there exists an x € X — C such that 26X — B.

Hence 4 is an LO-proximity.

Let us suppose that B is a §-neighborhood of A with respect to §. Then
ASX — B, that is A < B.

Conversely, let us suppose that A < B. Then A0X — B. But then B is
a d-neighborhood of A with respect to 6.

Let us suppose that < satisfied (N L7), and 20y. Then 2 < X —y which
implies z # y.

Conversely, let us suppose that  # y. Then 2 < X — y so that zdy.
This completes the proof of the proposition. &

2.3.2 The compatibility of LO-proximity with topology

Theorem 2.3.2.1 Let (X, ) be an LO-proximity space. The function A —
cs(A), where cs(A) = {x € X : ©0A}, is a Kuratowski closure function.

Proof: According to Proposition 2.2.1.3, it is sufficient to show that inclu-
sion c¢5(cs(A)) C cs5(A) holds for any subset A of X. Let us suppose that
x € ¢5(cs(A)). Then xdcs(A). Since adA for all a € cs(A), by (LO) we have
that z0A. Therefore x € c5(A) is true. &

Definition 2.3.2.1 A topological space (X, T) is symmetric or Ry-space
if one of the following equivalent conditions is satisfied:

(a) for every x,y € X, x €y implies y € T;
(b) for every open set G x € G implies T C G;

(¢) for every closed set F' and any point © € X — F, there exists a
neighborhood of F' not containing x;

(d) x # y implies either T =7 or TNy = (.

Proposition 2.3.2.1 Let (X, 7) be a Ry-topological space. The relation d
on P(X), defined by AdyB if and only if A" NB" # 0, is an LO-prozimity on
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X for which 15, = T holds. Furthermore, if (X,6) is an LO-proximity space
such that 75 = 7, then 69 C 6, i.e. &y is the largest compatible LO-proximity.

Proof: It is obvious that the relation §g is a semi-proximity on X. We
must show that &g fulfills the condition (LO). Let us suppose that for some
point b and a set C we have b’ NC" # (). Then there exists a point ¢ € C"
such that ¢ € b'. Since 7 is Ro-topology on X, we have that b € ¢ c C.
Hence, if A" NB" £ 0 and b’ NC" # 0 for every b € B, then B c C" so
that A’ N C" # (). Consequently, 0y satisfies (LO).

To show that 75, = 7, it is sufficient to show that xzdpB if and only if
z € B'. Clearly, z € B' implies Z” N B" # (). Hence :60B.

Conversely, let us suppose that z8yB. Then, for some y, y € T N B’
holds. Hence " € B’ and y € Z7. But since 7 is a Ro-topology, y € T~
implies © € 7. Hence z € B'.

The proof of the last part of the theorem is straightforward. &

Corollary 2.3.2.1 A topology 7 on X is generated by some LO-proximity
on X if and only if T is a Ry-topology.

Proof: Let us suppose there exists an LO-proximity § on X such that
7T

75 =7. Let x € 7 =7". Then xdy so that ydzr and y € T0 =7
The converse is an immediate consequence of Proposition 2.3.2.1. &

Proposition 2.3.2.2 Let (X,d) be an LO-proximity space. Let 75 be the
topology on X. Then for all A, B € P(X) there follows:

(a) ASB if and only if ASB;

(b) A < B implies A < B;

(¢) A< B implies A < int B.

Proof: (a) Let us suppose that ASB. By definition for all b € B we have
that b0B. Hence by (LO), A6B and therefore B6A holds by (SP). But
for all a € A we have that adA, so that by (LO), BSA. Hence ASB. The
converse is a consequence of Proposition 2.2.1.1.

The proofs of the last two statements are similar to the proofs of the

corresponding statements for proximity spaces and are therefore left to the
reader. &

Proposition 2.3.2.3 Let § be an LO-proximity on X and A C X. Then
IntA={z: z< A}.
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Proof: It is easily shown that C € 75 if and only if z < C for every z € C.
Let B={x: z < A}. It is clear that int A C B C A. Consequently, it is
sufficient to show that if z € B, then + <« B. Let x € B. Then x < A;
hence by (NLg) x < B or there exists y € X — B such that y < A. But if
y < A, then y € B; hence x < B. &

Proposition 2.3.2.4 Let (X,dx) and (Y,dy) be LO-proximity spaces. If
[ (X,0x) — (Y,0y) is d-continuous, then f : (X,75,) — (Y,75,) ts
continuous. The converse is not true in general but it is true if 6x = do,
where &y is LO-proximity defined in Proposition 2.53.2.1.

Proof: It is sufficient to prove that f(A) C f(A) for each A C X. Let
x € A, that is x6xA. Since f is -continuous, we have that f(x)dy f(A).
Hence f(z) € f(A).

That in general the converse is not true, one can be see by taking X =
Y =R, where §x is the usual metric proximity, and dy = Jg.

Finally, let us suppose that f is a continuous mapping and dx = dg. To
show that f is a d-continuous mapping, we must show that Adx B implies
f(A)dy f(B). Since 6x = 6, Adx B implies ANB # ); so that f(A)Nf(B) #
. This shows that f(A)dy f(B). Since f is continuous, it follows that
f(A) c f(A) and f(B) C f(B), and so, by Proposition 2.2.1.1, f(A)dy f(B).
Finally, by Proposition 2.3.2.2, it follows that f(A)dy f(B). &

2.3.3 Extensions of LO-proximity spaces

Proposition 2.3.3.1 Let (X,9) be an LO-prozimity space. Then the class
7w of all subsets of X which are close to the point x € X is a cluster from
X.

Proof: Let us first suppose that A € m, and A C B. Then Adx and
therefore, by Proposition 2.2.1.1, Béx. Hence B € m,.

Let us suppose that A, B € m,. Then Adx and Bdx so that, by (LO),
AdB.

Now let us suppose that AU B € m,. Then (AU B)dzx and, by (SPx),
this means that either Adx or Bdx, that is, either A € 7, or B € m, holds.

Finally let us suppose that AJC for every C' € m,. Since, by (SP3),
{z} € 7, it follows that Adx. Therefore A € 7,. &

Proposition 2.3.3.2 Let us suppose that 7w is a cluster from an LO-prozi-
mity space (X,6). Then
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(a) if A€ and adB for every a € A, then B € 7;

(b) if {x} € 7, then T = 7y;

(¢) if AC X, then either Acmm or X — A€ m;

(d) if A is a subset of X which meets every member of w, then A € .

Proof: (a) Let C' € w. Then, CdA by the definition of a cluster. Since adB
for every a € A, it follows that CdB. But then, B € 7 by the definition of
a cluster.

(b) If A € w, then Adzx by the definition of a cluster.

(¢) Since AU (X — A) = X € 7, then, either A € m or X — A € 7 holds
by the definition of a cluster.

(d) If A is a subset of X which meets every member of 7, then AdB for
any member B of w. But then, A € 7 by the definition of a cluster. &

Definition 2.3.3.1 A subset X of a topological space Y is reqularly dense
in Y if, given U open in Y and p being a point in U, there exists a subset
E of X withp € E C U, the closure being taken in'Y .

Proposition 2.3.3.3 If X is regularly dense in'Y, then X is dense in Y.
If Y is reqular and X is dense in 'Y, then X is reqularly dense in'Y .

Proof: Y is open in Y, hence, for any point p € Y, there exists a subset F
of X such that p € E C X C Y. Since this is true for any p € Y, it follows
that Y c X C Y.

For Y regular, y € Y and U an open set of Y containing y there follows
the existence of an open set V of Y containing y such that V C U. Now
E=VNXisasubset of X and FE = VNX =V C U, with the second
equality following from the density of X in Y. Thus, y€ EC U. &

Theorem 2.3.3.1 Given a set X and some binary relation & on the power
set of X, the following conditions are equivalent:

(I) there exists a Ti-topological space Y and a mapping f: X — Y such
that f(X) is regularly dense in'Y and

(1) A6B in X if and only if f(A)Nf(B)#D inY;

(II) § is an LO-prozimity satisfying the additional condition:
(a) if AdB, then there exists a cluster w to which both A and B belong.

Proof: Let us suppose that (I) holds. That (X, J) is semi-proximity space is
a trivial consequence of the properties of the closure. To prove the condition
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(LO), let us suppose that A0B and bdC for all b € B. Then f(A)Nf(B) # 0
and f(b) N f(C) # 0 for all b € B, which, since Y is Tj, implies that
f(b) € f(C) for all b € B. Thus f(B) C f(C) or f(B) C f(C) so that

f(A) N f(C) # 0 showing that A6C. Let us prove that 0 satisfies the

condition (a). Since f(A) N f(B) # 0, let ¢ € f(A)N f(B). Let us define

to be the class of all subsets S of X such that ¢ € f(S). Clearly A and B
are in 7. It is obvious that 7 is a clan. Let us suppose that f(D)N f(C) # 0
for every C' € 7 but that D ¢ 7, i.e. ¢ & f(D). Therefore ¢ € Y — f(D)
and, since f(X) is regularly dense in Y, there exists a subset F of X such

that c € f(E) C Y — f(D). In other words, there exists an E in 7 such that

f(D)N f(E) = 0. This contradicts the hypothesis that f(D)N f(C) # 0 for
every C' € w. Thus (I1) is satisfied.

For the converse let us suppose that (/1) holds. For any subset A of X,
let A be the set of all the clusters 7w, determined by the points a in A. Let
A be the set of all the clusters to which A belongs. It is evident that A € 7,
for each a € A and so A C A. We will denote X, the set of all the clusters
from X, by Y.

A subset A of X absorbs a subset 3 of Y if and only if A belongs to
every cluster in 3, that is, if and only if A contains 3. For any subset 3 of
Y we define the closure cl(() of § by

m € cl(fB) if and only if every subset E of X
which absorbs (3 is in 7.

(2)
We will next show that
(3) c(A)=A.

Let us suppose that 7 € cl(A). Since A absorbs A, A € 7, so that 7 € A.
On the other hand, if 7 € A, then A € 7. Now let P be in every 7, in A, i.e.
Péa for every a € A and hence A C P° = {z : 6P}. Thus, by Proposition
2.3.3.2 (a), P € w so that m € cl(A).

We will now show that the Kuratowski closure axioms are satisfied by
the closure defined by (2).

(K1) Let us suppose m € cl(f)). Since it is obviously true that every
subset of X absorbs ), then every subset of X is in w. Thus, #.X, which
contradicts (SP).

(K2) It is evident that 5 C cl(f) . Indeed, if E absorbs (3, then E € 7
for every m € (3.

(K3) Let us suppose that m € cl(8 U +y), that B absorbs 5 and that
C absorbs 7. Then B U C absorbs U~ so that BUC € w. But, by
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the definition of the cluster, this means that either B € w or C' € 7, that
is m € c(B) or m € cl(y). Thus m € cl(f) U cl(y) and it follows that
c(BUy) Cc(B)Ucl(y). On the other hand, m € cl(3) U cl(vy) implies that
either m € cl(B) or m € cl(vy). Now, if E absorbs U+, then E absorbs
and it also absorbs . Hence, E € 7 showing that 7 € ¢l(5 U 7).

(K4) Let us suppose that 7 € cl(cl(f)) and that E absorbs 8. By (2),
E absorbing [ implies that E absorbs cl(3). Hence E € 7 showing that
7 € c(pB).

To show that the topology is 11, let us suppose 7’ € cl(w), where 7 and
7’ are clusters from X. This means that every set in 7 is also in 7/. Thus,
7 C 7 and therefore 7 = 7. Hence, cl(7) = 7 for every point 7 in the space
Y.

The correspondence which, to each point z € X, assigns the cluster m,
determined by it, is a well-defined transformation mapping X into Y which
we will denote by f. Let us note that f(A) = A for every subset A of X, so
in order to show that (2) holds, we must show that, using (3),

(4) ASB in X if and only if ANB#0inY .

If AdB, then, by (a), there exists a cluster = to which both A and B
belong. Thus, by the definition of A, it follows that 7 € AN B. On the
other hand, if 7 € AN B, then A and B are in 7 so that AJB.

To show that f(X) = X is regularly dense in Y let us suppose that « is
an open subset of Y and that 7 € . We thus have 1 € Y —a = cl(Y — a).
This means, by (2), that there exists some subset E of X such that F is in
every cluster of Y — « but that F is not in w. Hence, there is a C' € w such
that E5C.

Since C is the set of all clusters to which C' belongs, it follows that
7w € C. And since E belongs to every cluster in Y — o and ESC, then C
cannot belong to any cluster in Y — « by the definition of the cluster. Hence
C is contained in o and we have shown that X is regularly dense in Y. The
proof is now complete. &

Theorem 2.3.3.2 Given a set X and some binary relation § on the power
set of X, the following conditions are equivalent:

(I) there exists a Ty topological space (Y, T) in which X can be topologi-
cally embedded as a reqularly dense subset so that

ASB in X if and only if A’ N B #0 in Y;

(II) ¢ is a separated LO-proximity satisfying the condition (a) of Theo-
rem 2.3.3.1.
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Proof: The proof is similar to the one of Theorem 2.3.3.1. To see that LO-
proximity ¢ is separated, let us note that T N7y # () implies that x Ny # 0,
or T =y.

To show that our embedding is topological, let us note first that the
correspondence between X and X induced by the identification of x with
the cluster 7, determined by it is one-to-one. To see that the mapping is
6-homeomorphism, we must show that, if A is a subset of X, z € A° if and
only if 7, € cly(A), where cly (A) is the closure of A relative to the space
Y.

So, let us suppose & € A% and that P absorbs A. Then P is a member
of every 7, in A and it follows that ad P for every a € A. Thus, A C P% and
since A € m, it follows, from Proposition 2.3.3.2 (a), that P € m,. Thus,
Tz € cly (A).

On the other hand, let us suppose that m, € cly(A). Then since A
absorbs A, it follows that A € m,, i.e. Adx and hence z € A% This
completes the proof. &

Definition 2.3.3.2 A non-empty collection o of an LO-proximity space
(X,9) is called a bunch if the following conditions are satisfied:

(B1) if A,B € o, then AdB;

(B2) if AUB €0, then A€o or Beo;

(B3) if A€o and adB for every a € A, then B € o.

Proposition 2.3.3.4 A non-empty collection o of an LO-proximity space
(X,9) is a bunch if and only if the following conditions are satisfied:

(B}) if A, B € o, then AdB;

(By) AUB € o if and only if A€ o or B € o;

(By) A€o ifand only if A€ o.

Proof: Let us note that any bunch is closed under the operation of superset.
The collection which satisfies the condition (B])—(Bj) also has this property.
Therefore, to prove that o is a bunch, we must show only that the conditions
(Bs) and (Bj) are equivalent.

Let us suppose that (Bs) is true and let A € 0. Since adA for every
a € A, by (Bj3) it follows that A € 0. The converse obviously holds.

Let us suppose now that the condition (Bj) is true. Let us suppose that
A € g and adB for every a € A. Since adB for every a € A, it follows that
a € B for every a € A. Therefore the inclusion A C B holds which implies
that B € 0. But then B € ¢ according to the condition (Bj). &
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Proposition 2.3.3.5 In cvery LO-proximity space any cluster is a bunch,
but the converse need not be true.

Proof: Let o be a cluster in an LO-proximity space (X, d). To prove that
o is a bunch, it is sufficient to prove that the condition (Bs) is satisfied. Let
C be any member of a cluster o. Then C'0 A by the definition of the cluster.
Since adB for each a € A, by (LO), CéB is true. But then B € o by the
definition of the cluster.

If (X,0) is a non discrete proximity space and = € X, then {A C X :
A # {z} and Adzx} is a bunch which is not a cluster. &

If o is a bunch and {z} € o, then it is easy to show that o = 0.

Proposition 2.3.3.6 If L is an ultrafilter in an LO-prozimity space (X, 0),
then b(L) = {A C X : A € L} is a bunch called the bunch generated by
ultrafilter L.

Proof: (B}): If A, B € b(L), then A, B € L, so that ANB # (. Thus AJB,
and so AdB.

(BY): AUBeb(L)< AUBeLs AUBeL s AcLorBeL &
A€eb(L) or BebL).

(By): Acb(L)yes AcLes (A elLesAchL). &

Proposition 2.3.3.7 A separated LO-proximity space X is compact if and
only if every bunch b(L) generated by a closed ultrafilter £ in X is a point
cluster.

Proof: Let £ be a closed ultrafilter in X. Then b(L) = o4, for some
xo € X implies {zo} € b(L). This shows that xg € L for every L € L (since
each L is closed) and so {zo} € L, since £ is maximal. Conversely, if X is
compact and L is a closed ultrafilter, then £ has a cluster point z. Since £
is maximal, {z} € £L C b(L) and so b(L) = 0,. &

In [238] it is shown that a nonempty family 7 of the subsets of proximity
space (X, 9) is a cluster if and only if there exists an ultrafilter £ in X such
that 7 = n(£) = {A € X : AOL for every L € L}. 7(L) is called the
cluster generated by L.

Proposition 2.3.3.8 Let T be a ring of subsets of X, i.e. let T be closed
under finite unions and finite intersections. Let us suppose P is a subset of
T such that

(a) D ¢ P,
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(b) forAABeZ, AUBEeP < AP or BEP,

(c) Ae P and A C B €T implies B € P.
Then for given Ay € P, there exists a prime L-filter L such that Ay € L C P.
(Let us recall that L is a prime Z-filter means that L is a filter of subsets of
7 satisfying the additional condition: for A,B € I, AU B € L implies that
AeLorBeL) IfT=P(X), then L is an ultrafilter.

Proof: By Zorn’s lemma, there exists a maximal collection £ C P satisfying
(a) Ap € L and (b) A; € L, 1 < i < n, implies N;A; € P. Clearly, § € £ and
L#A0. If A,B € L, then AN B € P, and since £ is maximal, AN B € L.
Similarly, if A € £L and A C B € Z, then B € L. Thus £ is an Z-filter. To
show that L is prime, let us suppose that A, B € 7T — L. Then there exist
A1, By € L such that AN A, BN By € P. Setting £ = A1 N B; € L we find
that (AUB)NE ¢ P (by (b)), i.e. AUB ¢ L. The last part is obvious. &

Proposition 2.3.3.9 In a prozimity space (X,0), a nonempty family © of
subsets of X is a filter if and only if it is a maximal bunch.

Proof: Let us suppose that 7 is a cluster in X contained in a bunch o. If
A€o and B € «, then A, B € o, and so AdB. By the definition of the
cluster, A € m and therefore 7 = o.

Conversely, let us suppose that ¢ is a maximal bunch. By Proposition
2.3.3.8 there exists an ultrafilter £ C o. Clearly, 0 C o(£) = {A C X :
ASL for every L € L} which is a cluster. Since o is maximal, 0 = o(£) is a
cluster. &

Proposition 2.3.3.10 In a prozimity space (X,0) every bunch is contained
i a unique cluster.

Proof: If ¢ is a bunch in X, then by Zorn’s lemma, o is contained in a
maximal bunch which is a cluster by Proposition 2.3.3.9. To show unique-
ness, let us suppose, on the contrary, that ¢ is contained in two different
clusters: 7 and my. Then there exist sets A; € 7;, @ = 1,2, such that A;5As.
According to Proposition 1.1.1.3 there exist E; € P(X) such that A;0X — E;,
i=1,2, E10E;. Since A;6X — E; and A; € ; it follows that X — E; € o.
This implies that E; € o, i.e. F16F,, which is a contradiction. ¢

Definition 2.3.3.3 Let (X,0) be an LO-space and let X x be the family of
all bunches in X. A set A € P(X) is said to absorb A C Xx if A€ o for
every o € A.
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Lemma 2.3.3.1 Let (X,0) be an LO-proximity space and let X x be the set
of all bunches in X. The operator cl defined on P(X), ¥ C ¥x, by

c(A)={ceX: A absorb A implies A € o}

for each A € P(X), is a Kuratowski closure operator on ¥. The resulting
topology on 3. is called the absorbtion or A-topology.

Proof: (Kj): It is obvious cl(f)) = (. (K3): Clearly, A C cl A for every
A€ P(¥). (K3): Let us suppose that o € ¢l (AU B), that A absorbs A and
that B absorbs B. Then AU B absorbs AU B and so AU B € 0. By (B))
Ac€ocorBeo,ie geclAoroecB. Thus cl(AUB) CcdAUclB. To
show the converse, let us suppose that o € ¢l AU cl B. If C absorbs AU B,
then C € o, ie. 0 € cl(AUDB). (K4): Let us suppose that o € cl(cl.A)
and A absorbs A. Then A absorbs ¢l A, and so A € 0, i.e. 0 € clA. Thus
cl(cl A) C ¢l A and, using (K3), the equality follows. &

Lemma 2.3.3.2 Let (X,0) be an LO-prozimity space and let ¥ C Xx. The
A-topology on X is Ty if and only if 01,00 € X, 01 # o9 implies o1 ¢ 09
and o9 ¢ 07.

Proof: If X is a Ti-space, 01,09 € %, 01 # 09, then 01 ¢ ¢l o9, and so there
exists an A C X such that A € (02 — 01). The converse follows from the
fact that under the hypothesis clo = {o} for each 0 € £. &

Theorem 2.3.3.3 Let (X,0) be an LO-proxzimity space, and let ® : X —
Y x be the mapping defined by ®(x) = o, where o, is a point cluster gen-
erated by x. Then ® is continuous and closed. ®(X) is dense in Xx. If ¢
is a separated LO-prozimity, then X is homeomorphic to ®(X).

Proof: That ® is continuous and closed follows from the fact that xzdA if
and only if A € 0, i.e. x € A if and only if 0, € cl ®(A). P (X) = {0 €
Yx: X € 0} = Xx. Finally, if 0 is a separated LO-proximity, then x # y
implies 0, # 0y, and so ® is one-to-one. &

Corollary 2.3.3.1 If (a) ®(X) C ¥ C Xx, (b) A0B implies there ezists
a o € X containing both A and B, (c¢) the A-topology on ¥ is Ty, then
® is a §-isomorphism between X and ®(X), the latter having the subspace
LO-proximity induced by dy on X.

Proof: AJB if and only if there exists an ¢ € ¥ such that A, B € ¢ if and
only if there exists an o € cl ®(A) Nl O(B) if and only if (A)JpP(B). &
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Theorem 2.3.3.4 Let (X,0x), (Y,dy) be LO-prozimity spaces and let f :
(X,0x) — (Y, dy) be d-continuous. Then there exists an associated mapping
fs @ Bx — Xy defined by fs(o) = {E C Y : f~YE) € o} which is
continuous with respect to the A-topologies on Xx and Xy and for which
fs(02) = 0f(z) holds for each x € X. If 6x and dy are separated , then fs,
may be considered a continuous extension of f as follows:

x 1.y

<I>XJ( l@y

ExLEY

Proof: We will first show that if o € X, then fx(o) € Xy by verifying
(B}) — (BS). (By): If A, B € fs(0), then f~(A), f~}(B) € o which implies
that f~1(A)dxf~1(B). Since f is a d-continuous mapping, Ady B and by
Proposition 2.3.2.2 AdyB. (B}) AUB € fs(0) & f'(AUB) € 0 &
A UfYB) co e fYA) €oor fY(B) € 0 & A c fs(o) or
B € fs(0). (By): A€ fo(o) & fH(A) €0 & A€ fx(o).

Next we will show that the mapping f5; is continuous with respect to
the A topologies on Y x and Yy, i.e. if a 0 € ¢l A, where A C Xx, then
fu(o) € c(fs(A)). If this is not true, then there exists a set £ C Y which
absorbs fs(A) but E ¢ fs(o). Then f~(E) absorbs A, but f~}(E) ¢ o,
i.e. o & cl A, which is a contradiction. Finally, for z € X, fx(o,) = {A C
Y:fYA) €o}={ACY:abxf YA} ={ACY:xc f 1A} =
{ACY: f(x) € A} = 0f(z).

Identifying X with ®x(X) and Y with ®y(Y), we have the following
fundamental extension theorem.

Theorem 2.3.3.5 Let (X,0x) and (Y,dy) be separated LO-proximity spa-
ces. Then every §-continuous mapping f : X — Y has a continuous exten-
sion f:Xx = Xy. &

Theorem 2.3.3.6 Let X be a dense, separated subspace of an LO-proximity
space (T,9) (6 need not be separated). Then the mapping ¥r : T — Yx
defined by VUr(t) = ot = {E C X : t6E} is continuous. Ift € X, then
ol = oy, the point cluster being generated by t, i.e. Wp|X = ®x. If further

T s T3-space, then Wp is a homeomorphism of T into Xx.

Proof: We will first verify that o € Yx. Since X = T, it follows that
X € ot and so ot # 0. (By): If A, B € o', then t§A, t§B and hence AJB.
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(BY): AUB € o' & t5AUB < t6A or tdB < A € o' or B € o'. (Bj}):
Acot e tdA s tdA e Ac ot

Further, we will show that U is continuous by proving that =z € FE,
E C T, implies ¥ (z) € cl(Ur(E)). If, on the contrary, ¥r(z) & cl (¥ (E)),
then there exists an A C X which absorbs ¥r(E). But A € Y (z) = o”.
This implies that £ C A and = ¢ A, which is a contradiction.

It is obvious Up|X = ®x. Finally, let us suppose that T" is a T3-space.
If t1,to € T, t1 # to, then t; and to have disjoint neighborhoods N; and
Ny respectively. Clearly, Ny N X € ot — o2 and NN X € o2 — o't
i.e. ot # o' showing that ¥r is an one-to-one mapping. To prove that
Wy is a homeomorphism, it is sufficient to show that W is closed. Let us
suppose that E C T and = ¢ E. Since T is a T3-space, there exist disjoint
neighborhoods N, and Ng of x and E respectively. Since X =T, Np N X
absorbs ¥ (E) but does not belong to o*. Hence ¥r(z) = o® & cl (Vr(F)),
i.e. Wr is closed. &

Theorem 2.3.3.7 Let (X,0) be a separated proximity space and let X* be
its Smirnoff compactification (i.e. the space of all the clusters in X with the
A-topology). The mapping © = Ox : Xx — X* given by ©O(m) = mg, which
is the unique cluster containing m, is continuous. Moreover, ©(m;) = 7.

Proof: To show that © is continuous, we must prove that if 7 € clA,
A C ¥x, then O(r) € cl(O(A)). If, on the contrary, O(m) & cl(O(A)), then,
since X* is T3, there exist disjoint neighborhoods U; and Us of ©(7) and
©(A) respectively. Clearly, Us N X absorbs A but does not belong to m, i.e.
7 & cl(A), which is a contradiction. It is clear that ©(m,) = 7, is clear from
the fact that 7, is a cluster. &

Definition 2.3.3.4 If o is a bunch in an LO-proximity space (X,0), then
o converges to x if the neighborhood filter N of x is a subclass of o.

Theorem 2.3.3.8 Let (X,00) be a T3 LO-proximity space and let ¥ C Xx
be such that each o € ¥ converges to a (unique) v, € X. Then the mapping
© =0x:¥ — X given by O(0) = z, is continuous.

Proof: Similar to the one of Theorem 2.3.3.7. &

Theorem 2.3.3.9 Let (X,0) be a separated LO-proximity space and let X*
be the family of all maximal bunches in X with the A-topology. Then X* is
a compact T1-space containing a dense homeomorphic copy of X.
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Proof: By Theorem 2.3.3.3 and Lemma 2.3.3.2 we need only prove that X*
is compact. Since {AL : A, is closed in X}, where A = {oc € X*: A, €
o}, is a base for closed sets in X*, it is sufficient to show that if {A], : « € A}
has the finite intersection property, then N{A, : a € A} # (. Clearly, if
{Al, : o € A} has the finite intersection property, thenZ = {4, : « € A}isa
family of closed subsets of X with the property: every finite subfamily of 7 is
a subclass of some o € X*. Let A be the family of all collections 7 of closed
subsets of X such that (a) Z C J and (b) {G; : 1 < i < n} C J implies
there exists a o € X* such that G; € 0, 1 < i < n. By Zorn’s lemma, A has
a maximal element M. It is easily verified that b(M) = {E C X : E € M}
is a bunch in X. By Zorn’s lemma b(M) is contained in a gg € X*. Clearly,
oo € {AL : o€ A}, and so X* is compact. &

Theorem 2.3.3.10 Let (X,9) be a separated LO-proximity space such that
if A0B, then there exists a bunch in X containing both A and B. Then
there exists a compact T1-space X* containing a dense homeomorphic copy
®(X) of X and such that ASB if and only if cl®(A) Nl ®(B) # 0 in
X*. Furthermore, every d-continuous mapping f from one separated LO-
prozimity space to another (Y,dy) has a continuous extension fs, from X*
to Ey.

Proof: Let X* be the family of all maximal bunches in X with the A-
topology. Then by Theorem 2.3.3.9 X* is a compact, T1-space containing a
dense homeomorphic copy of X. That AJB if and only if cl ®(A)Necl (B) #
() follows as in Corollary 2.3.3.1 by noting that every bunch is contained in
a maximal bunch. The last part has been established in Theorem 2.3.3.4.

&

Theorem 2.3.3.10 generalized Smirnoff’s theorem, for, in every proxim-
ity space (X,0), AdB implies there exists a cluster 7 in X which contains
both A and B. Also, Proposition 2.3.3.9 shows that X* is the Smirnoff
compactification of X. Finally, let us suppose that dx and dy are separated
proximities and that f : (X,dx) — (Y,dy) is d-continuous. By Theorem
2.3.3.7 the mapping Oy : Xy — Y™ which assigns to each bunch in Y
the unique cluster containing it, is continuous. Hence f has an extension
f:X* = Y* given by f = Oy o f.

Theorem 2.3.3.11 Let X be a separated dense subspace of an LO-proxi-
mity space (T,d0). Let (Y,0) be a separated proximity space and let Y™ be
its Smirnoff compactification. Then a continuous mapping f : X — Y has
a continuous extension f: T — Y* if and only if f is 6-continuous.
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Proof: If f has an extension f, then by Theorem 2.3.2.4, f : T — Y* is
d-continuous and so is its restriction f = f|X. To prove the sufficiency, let
us suppose that f is d-continuous and let us consider the following diagram:

T Y, %, 2,5, O,y
(1.39) (1.38) (1.40)
idx f Y Dy

f = 0Oy o fs o Wr is a continuous extension from T to Y*. &

If Y is a compact Ts-space, then Y is homeomorphic to Y*, and we may
consider f to be a mapping from T to Y. Thus we get a result of Taimanov
(see [316]): A necessary and sufficient condition that a continuous function
f: X =Y, where X is dense in a Ti-space T and Y is a compact Th-space,
has a continuous extension f : T — Y is that for every pair of disjoint closed
sets [, Fo in Y, clpf~H(Fy) Nelpf~H(Fy) = 0.

2.3.4 The notion and basic properties of S-proximity spaces

Definition 2.3.4.1 A semi-proximity relation § defined on the power set of
X is called an S-proximity if it satisfies the following condition:

(S) zd6B # 0 and b6C for every b € B implies xdC.

An S-proximity § is separated if it is a separated semi-proximity. The
pair (X,9), where ¢ is a (separated) S-proximity, is called o (separated)
S-proximity space.

Every S-proximity d on X induces a Tj-topology 75 in the following
manner: G € 75 if and only if, for each x € G, 60X — G. Conversely, every
Ti-space (X, 7) has a compatible S-proximity ¢* defined by

A§*B if and only if (ANB)U(ANB) #0.

The S-proximity ¢* is the largest compatible S-proximity on X , that is, if
¢ is any other compatible S-proximity on X, then Ad*B implies AdB.
Every (separated) proximity is a (separated) LO-proximity which, in
turn, is an S-proximity. If § is an S-proximity, then, as in the proximity
or LO-proximity, AdB, A C C, B C D implies C6D. But ASB does not
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imply AdB. For example, if X is the reals with the S-proximity §*, then
(0,1)3"(1,2) although [0, 1]6*[1,2].

A function f from one S-proximity space (X,dx) to another (Y,dy) is
called S-proximally continuous if Ajx B implies f(A)dy f(B).

Proposition 2.3.4.1 FEvery S-proximally continuous function is continu-
ous. The converse is not true in general, but it holds in the case that dx = 5.

Proof: The first part is obvious. If X =Y =R, dx = §, and dy = Js,
then the identity mapping is continuous, but not S-proximally continuous.

Finally, let us suppose that f is continuous and d0x = d;. If Ad;B then
(ANB)U(ANB) # (. This implies that (f(A)N f(B))U(f(A)Nf(B)) # 0.

Since f is continuous, f(A) C f(A), f(B) C f(B) and so (f(A) N f(B)) U
(F(A) N F(B)) # 0, showing that f(A)dy /(B). &

Proposition 2.3.4.2 Let (Y,dy) be an S-prozimity space and let f : X —
Y be a one-to-one mapping. Then éx, defined by Adx B if f(A)dy f(B), is
the smallest S-proximity on X which makes f S-prorimally continuous.

Proof: We need verify only (S) as the other properties of an S-proximity
follow easily. Let us suppose that xdx B and bdxC for each b € B. Then
f(z)oy f(B) and f(b)dy f(C) for every f(b) € f(B). Since dy is an S-
proximity, f(x)dy f(C) showing that zdxC. If ¢ is any S-proximity on X
such that f is S-proximally continuous, then AdB implies f(A)dy f(B) and
this, in turn, implies that Adx B showing that § > dx. &

Now we introduce the concept of a band which is analogous to that of a
cluster or a bunch.

Definition 2.3.4.2 A non-empty family o of subsets of an S-proximity
space (X, 9) is a band if:

(a) A, B € o implies ASB;

(b) AUB € o implies A€ o or B € o;

(¢) A€o and adB for every a € A implies B € o.

In an S-proximity space, clearly, every cluster is a bunch and every bunch
is a band. In an LO-proximity space every band is a bunch. However, in
the S-proximity space (R,ds), 01 = {A C R: {1}§5A4} is a band but not a
bunch; this can be seen from the fact that (0,1) and (1,2) are both in oy,

but (0,1)ds(1,2).
The following results follow easily from the definitions.
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Proposition 2.3.4.3 Let (X,0) be an S-prozimity space and let o be a band
over X. Then

(a) A€o, AC B implies B € o, and hence X € o;

(b) AC X implies Aco or X —Aco;

(c) A€o if and only if A € o;

(d) for eachz € X, 0, ={A C X : dA} is a band, called a point band;

(e) if {x} € o, then 0 = 0,; consequently, if o, C o, then o0 = oy;

(f) x #y implies o4 # oy;

(g) if £ is a closed ultrafilter in X, then (L) ={E C X : E€ L} is a
band, called a band generated by L. &

The proof of the following theorem is essentially the same as the one
given in Proposition 2.3.3.7.

Theorem 2.3.4.1 An S-proximity space is compact if and only if every
band b(L), generated by a closed ultrafilter L on X, is a point band. &

Proposition 2.3.4.4 Let Y be a T1-space and let f : X — Y be a one-to-
one mapping. Let dx be the S-proximity as defined in Proposition 2.3.4.2
corresponding to §y = 65 on Y. Then for each y € f(X), oY ={ACY :
y € f(A)} = o, holds, where x = f~1(y).

Proof: A € oY if and only if y € f(A) if and only if x € A if and only if
oA ifand only if A € o,. &

2.3.5 Embedding of an S-proximity spaces. Extension
of continuous function

In this subsection we will prove that every S-proximity space (X, J), satisfy-
ing condition (/1) of Theorem 2.3.5.1 below, can be S-proximally embedded
in a Hausdorff space Y with the S-proximity J,. This result generalizes the
results of Smirnoff [294] and Lodato [201].

Theorem 2.3.5.1 Let X be a non-empty set and let § be a binary relation
on the power set of X. For each A C X let A* ={x € X : x0A}. Then the
following statements are equivalent:

(I) There exists a Hausdorff space Y and a one-to-one mapping f : X —
Y such that
(a) f(X) =Y;
(b) F(A%) = F(A) N F(X);
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(¢) AdB if and only if f(A)dsf(B) inY.
(II) ¢ is a separated S-proximity on X satisfying the following condition:
there exists a family X2 of bands over X such that
(a) ASB implies that there exists a 0 € ¥ such that A,B € o and
o = o, for somex € AU B;
(b) if 0,0t € ¥ and if either A € o or B € o' for all subsets A, B
of X such that AUB = X, then o = o".

Proof: (I) = (II) : Proposition 2.3.4.2 and condition (I)(c) show that
0 is an S-proximity on X. Also f is S-proximally continuous and so X
is a Hausdorff space. Let us note that A* = A. Let ¥ = {0V : y €
f(X)} which, by Proposition 2.3.4.4, is a family of bands. We will now
show that the conditions (I7)(a) and (II)(b) are satisfied. AJB implies
(F(ANF(B)U(f(A)NF(B)) # 0. Without loss of generality, let us suppose
y € f(A)N f(B). Then 0¥ € ¥ and clearly A € o¥. From (I)(b), y € f(B)
i.e. B € o¥. By Proposition 2.3.4.4, ¢¥ = o, for some x € A. To prove
(1I)(b), let us suppose that o¥ o¥2 € 3, y; # yo. Since Y is Hausdorff,
there exist disjoint neighborhoods Vi, Vs of y1,ys respectively. Let us set
that A = f~Y(f(X) - W), B= f~Y(f(X)—V1). Then A & 0¥, B & o¥?
and f(AUB) = f(X) implies AUB = X.

(II) = (I) : Since zdx, by (II) (a) there exists a o € X such that
{z} € o and by Proposition 2.3.4.3 (e), 0 = 05. Let us set that ¥ = X
and let us define f : X — Y by f(z) = 0, € ¥. Clearly f is one-to-one.
Let us define a closure operator ¢l on ¥ by o € cl(A), A C ¥ if and only
if every subset F of X which absorbs A belongs to o. It is easily verified
that ¢l is a Kuratovski closure operator and that (I7)(b) implies that Y
is Hausdorff (see the proof of Theorem 2.3.3.1). We need to verify only
(I)(c). If A6B, then there exists a o € ¥ such that A, B € 0 = 0, for some
xr € AU B. Without loss of generality, let us suppose that x € A; then
o =0, € f(A) and B € o implies ¢ € cl(f(B)) i.e. f(A)Ncl(f(B)) # 0.
Clearly, f(A)dsf(B). Conversely, ify € (cl(f(A))Nf(B))U(f(A)Nc(f(B))),
then y = o, for some x € AU B. Again, let us suppose that x € A; then
o, € cl(f(B)) implies B € o,. This shows that z6B i.e. 2 € AN B i..
AdsB in X, which, in turn, implies A6B. &

We will now consider the problem of extending a continuous function
from a dense subspace of an S-proximity space and obtain several general-
izations of the known results in this area.

Let (X, 6) be an S-proximity space and let X x be the family of all bands
over X. The mapping ¢ = ¢, : X — Yx defined by ¢(x) = 04, where o,
is the point band, can be shown to be a homeomorphism of X onto a dense
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subspace of X x (with the A-topology) as in Theorem 2.3.3.3. The proof of
the following result is similar to the one of Theorems 2.3.3.4 and 2.3.3.5.

Theorem 2.3.5.2 Let (X,0x) and (Y,dy) be S-proximity spaces and let
f: X — Y be an S-proximally continuous mapping. Then there exists an
associated mapping fx : x — By defined by fs(c) ={ECY : fY(E) €
o}. The mapping fx is continuous and fs(0z) = 0y(y). Hence, identifying
X with px(X) and Y with oy (Y), fs is a continuous extension of f. &

The following is an improved version of Theorem 2.3.3.11.

Theorem 2.3.5.3 Let X be a dense subspace of an S-proximity space
(aX,ds), let (Y, ) be a separated proximity space and let Y* be its Smirnoff
compactification. Then a continuous mapping f from X to Y has a con-
tinuous extension f from aX to Y* if and only if f is an S-proximally
continuous mapping. &

Historical and bibliographic notes

M. W. Lodato introduced and developed the LO-proximity relation in
papers [201] and [202]. The notion of a regular dense subset of topological
space was introduced by Lodato in [201]. In that paper Lodato proved
Theorems 2.3.3.1 and 2.3.3.2. The notion of a bunch in an LO-proximity
space was introduced by Lodato in paper [202]. Theorems 2.3.3.3-2.3.3.9
were proved by M. S. Gagrat and S. A. Naimpally in 1971 in paper [115].
Theorem 2.3.3.10 was first proved by Lodato [202]. We have shown the
short proof of this theorem which was given by Gagrat and Naimpally in
[115]. Theorem 2.3.3.11 as a generalization of A. D. Taimanov’s Theorem
[316] was also proved in [115] by Gagrat and Naimpally (see also [224]). The
concept of S-proximity spaces were defined independently by S. B. Krishna
Murti [169], P. Szymanski [315] and A. D. Wallace [329] (see also [330]).
Proposition 2.3.4.3, Theorems 2.3.4.1, 2.3.5.1, 2.3.5.2 and 2.3.5.3 were given
in [116] by Gagrat and Naimpally.

2.4 M-uniform spaces

2.4.1 The notion and basic properties of M-uniform spaces

Let U be a non empty subset of P(X x X), where X is a non empty set.
Let us consider the following properties of U:
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==

)

2) (U : U elU} = A,
) U =U""! for every U € U;
)

M) UNV €U for every U,V € U,

(Mg) for each A,B € P(X)and U e U, if V[A]NB #( for all V € U,
then there exists an € B and there exists a W € U such that W(z] C U[A];

(My) for every U € U there exists a V' € U such that VoV C U;

(Mg) if UeUd and U C V=V~ C X x X, then V € U.

It is obvious that (Ms5) implies (My). Also (M7) implies (Mg). Indeed,
let A,B € P(X) and let U € U. By (My) there exists a V' € U such that
VoV C U. By hypothesis, there exists an x € V[A] N B. Hence there
exists a z € A such that (z,2) € V. Let p € V[z]. Then (x,p) € V; hence
(z,p) € U. Thus p € U[A] and V[z] C U[A].

Definition 2.4.1.1 Let U be a non empty subset of P(X x X). U is an
M -uniformity or symmetric generalized uniformity on X if U sat-
isfies the conditions (My), (Ms), (M), (Ms) and (Ms). U is a correct
uniformity on X if U satisfies (M), (Ms), (My), (M7) and (Mg). U is a
symmetric uniformity if it satisfies (My), (Ms), (Ms), (My) and (Msg).
A pair (X,U) is called an M-uniform space or symmetric generalized
uniform space if U is an M-uniformity on X. Similarly, we define correct
uniform spaces and symmelric uniform spaces.

Lemma 2.4.1.1 Let (X,U) be an M-uniform space. If (z,y) € V for every
Vel and (y,z) € V for every V € U, then (x,z) € V for every V e U.

Proof: Let U € U. By hypothesis, V[z]N{y} # 0 for every V € U. Hence by
(Mg) there exists Wi € U such that Wi[y|] C Ulz]. But since V[y|N{z} # 0
for every V' € U, there exists Wa € U such that Wa[z] C Wily]. Hence
z € Wily] C Ulz], so that (z,2) € U. &

Theorem 2.4.1.1 Let (X,U) be an M-uniform space. If U has the smallest
element with respect to the set inclusion, then (X,U) is a symmetric uniform
space.

Proof: By the hypothesis & immediately satisfies (M5). We will now show
that U satisfies (M7). Let U € U and let V' be the smallest element in .
Let us suppose that (z,y) € V and (y,z) € V. Then by Lemma 2.4.1.1
(x,2z) € V holds, so that VoV CU. &
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Proposition 2.4.1.1 Let (X,U) be an M-uniform space. Then the function
g: P(X) — P(X), defined by x € g(A) if Ux]NA# D for allU € U, is a

Kuratowski closure function.

Proof: (Kj): Let us suppose that there exists a point z € g(0). Then
Ulz] N0 # ( for every U € U which, of course, is impossible.

(K2): Let x € A. Then U[z] N A # ) for all U € U, so that = € g(A).
Thus A C g(A) holds for every A € P(X).

(K3): Let us suppose that & g(A)Ug(B). Then there exists Uy, Us € U
such that Uy[z] N A = 0 and Usz] N B = (). Then by (M,) there exists a
W € U such that W[z] C Ujlz] N Uszlz]. But then W[z] N (AU B) C
(Ui[z] N A) U (Uz]z] N B) = 0 which implies = ¢ g(A U B). It is clear that
the converse inclusion holds.

(K4): Let us suppose z € g(g(A)). Let U € Y. Then V]z]Ng(A) # 0
for every V € U. But by (Mg) there exists an zg € g(A), and there exists a
W € U such that Wzg] C Ulx]. Since W[zg] N A # 0, U[z] N A # () holds.
Consequently = € g(A). The converse is obviously true. &

Definition 2.4.1.2 The topology induced on X by the Kuratowski closure
function g in the above theorem is called the uniform topology on X
induced by U, and is denoted with 1.

Proposition 2.4.1.2 Let (X,U) be an M-uniform space. Then A € 1y if
and only if for every x € A there exists a U € U such that Ulx] C A.

Proof: Let us suppose that A € 7;. Then X — A is closed. Let x € A.
Since z ¢ X — A, there exists a U € U such that U[z] N (X — A) = (). Thus
we have that Ulx] C A.

Conversely, let us suppose that © € A and that there exists a U € U such
that Ulz] C A, ie. Uz]N(X —A) =0. Thenz ¢ X — A, so that X — A
contains all its accumulation points. Hence X — A is closed and therefore A
is open. &

The following theorem and corollary are very important for the develop-
ment of the theory of M-uniform spaces.

Theorem 2.4.1.2 Let (X,U) be an M-uniform space. Then Int A = {x :
Ulz] C A for some U € U} holds for every A € P(X).

Proof: Let B = {z : Ulx] C A for some U € U}. It is clear that Int A C
B C A. Consequently, it is sufficient to show that X — B is closed. Let us
suppose that y € X — B. Then V[y] N (X — B) # () for every V € U. Let
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us suppose that y € B. Then there exists Uy € U such that U;[y] C A. But
then, by (Mg), there exists an € X — B and there exists a W € U such
that W{z] C Uj[y] C A. So, z € B which is a contradiction. Consequently,
y € X — Band X — B is closed. &

Corollary 2.4.1.1 For every x € X the family {Ulz] : U € U} is a base
for the neighborhood system of x.

Proof: Let M be an open set that contains a point z € X. There exists, by
Proposition 2.4.1.2, a U € U such that U[z] C M. But by Theorem 2.4.1.2
x € Int (U[z]) holds. Hence UJz] is a neighborhood of z. &

Theorem 2.4.1.3 Let (X,U) be an M-uniform space. Then for every A C
X A=N{UIA]: U €U} holds.

Proof: Let # € A. Then U[z] N A # () for all U € U, so that x € U~ 1[A]
for all U € U. But since U = UL, this implies z € U[A] for all U € U.

Conversely, let us suppose that x € U[A] for all U € U. Then x € U~ 1[A]
for all U € U, so that U[z] N A # () for all U € Y. Hence z € A. &

Proposition 2.4.1.3 If (X,U) is an M-uniform space, then the following
statements are equivalent:

(a) Ty is a To-topology;

b)) {U:Ueclu}=A;

(¢) Ty is a Ti-topology.

Proof: (a) = (b): Let us suppose that 74 is a Tp-topology and x # y.
Let us suppose that there exists an open set M such that y € M and
x & M. Then by Corollary 2.4.1.1 there exists a U € U such that Uly] C M.
Consequently, x € Uly]; so that (z,y) ¢ U. Hence ({U : U e U} = A.

(b) = (c¢): Let us assume that ({U : U € U} = A and let us suppose
that © # y. Then (x,y) ¢ U; and (y,z) ¢ U; for some U; € U. Hence
y € Uplz] and = € Uy [y]; so, by Corollary 2.4.1.1, we have that 7, is 7. &

Definition 2.4.1.3 A decomposition of a set X is a disjoint family D
of the subsets of X whose union is X. A decomposition D of a topological
space (X, T) is upper semi-continuous if for each D € D and each open
set A containing D, there exists an open set B such that D C B C A, and
B is the union of members of D.
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Proposition 2.4.1.4 Let (X,U) be an M-uniform space. Then R = ({U :
U € U} is an equivalence relation on X, and X/R is an upper semi-
continuous decomposition of (X, 1y).

Proof: Clearly, R is reflexive and symmetric, and by Lemma 2.4.1.1, R is
transitive. Let z € A € 7y. Then there exists U € U such that Ulz] C A.
Since R C U for every U € U, we have that R[z] C A for every x € A.

Hence A = |J{R[z] : = € A}. But R[z] € X/R for every x € A. Therefore
X/R is an upper semi-continuous decomposition of (X, 77/). &

Definition 2.4.1.4 B is a base for an M-uniformity U on X if:

(a) BCU;

(b) for every U € U there exists a V' € B such that V C U.
B is called an open base if each element of B is open with respect to the
product topology on X x X. Similarly we define a closed base.

Definition 2.4.1.5 S is a subbase for an M-proximity U on X if the set
B of all finite intersections of the elements of S is a base for U.

Lemma 2.4.1.2 Let (X,U) be an M-uniform space. If V is a closed set in
X x X with the product topology of 1y, then, for each © € X, the set V]z]
is closed with respect to Ty.

Proof: Let zp € X and let {y, : n € D} be a net in V[zg]. Then
{(z0,yn) : n € D} isanetin V. Let us suppose that (y,) converges to b. We
know that the constant net (xg) converges to zg. Hence {(zo,y,) : n € D}
converges to (zg,b) € V; so that b € V[z] and V]zo] is closed. &

Proposition 2.4.1.5 Let (X,U) be an M-uniform space. If U has a close
base, then 1y is regular.

Proof: This is an immediate consequence of Lemma 2.4.1.2 and Corollary
24.1.1. &

Theorem 2.4.1.4 A subset B of P(X x X) is a base for some M-uniformity
on X if and only if B satisfies (My), (M3) (Ms) and (Ms).

Proof: Clearly, if B is a base for some M-uniformity on X, then B satisfies
(My), (My), (My) and (M).

Conversely, let Y = {U : U = U tand V C U for some V € B}.
Clearly, U satisfies (M), (M3) and (Mg). We will now show that U satisfies
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(My). Let A € P(X) and let U,V € U. There exists Uy, V) € B such that
Uy Cc U and Vi C V. But since B satisfies (My), there exists W € B such
that W[A] C U;[A] N Vi[A]. Since Ui[A]NVi[A] C U[A]NV[A], U satisfies
(My). We will now show U satisfies (Ms). Let A, B € P(X) and let U € U,
and let us suppose that V[A]N B # () for all Ve Y. Then V[A]N B #
for all V € B. But there exists U; € B such that U; € U. But since B
satisfies (Ms), there exists an = € B and there exists a W € B such that
Wiz] C Up[A]. But U;[A] C U[A]. Consequently, U satisfies (Mg). &

2.4.2 LO-proximity induced by an M-uniformity

Theorem 2.4.2.1 Let U be a subset of P(X x X) with the property that
for allU € U, U~ contains a member of U. Let us define a relation &y on
P(X) by

AdyB if U[A]NB # 0 for allU e U .

Then & is an LO-proximity on X if and only if U satisfies (M), (My) and
(Ms).

Proof: Let us suppose that U satisfies (M;), (M4) and (Ms). We will show
that &y satisfies the conditions (SP;) — (SPy) and (LO). To simplify the
notation we will write § in place of .

(SP;): Holds immediately from the definition of 6 and the fact that the
members of U are non empty by (M).

(SP,): Let us suppose that A6B. There exists, by hypothesis, a U € U
such that U[A] N B = ). Let us suppose that U~ '[B]N A # (). Let zo €
U'YB] N A. Then 29 € U~'[B] and therefore there exists yo € B such
that (yo,z0) € U™!, and consequently, (zo,10) € U. But this means that
Yo € U[A] N B which is a contradiction. Hence U~[B]N A = (. But, by
hypothesis, V .C U~!, where V € U so that V[B] N A = (). Hence BJA.

(SPs3): Let us suppose that AN B # (. By (My) U[A] N B # ( for all
U € U. Therefore AdB is true.

(SPy): Let us suppose that CdA and CSB. Then there exist U,V € U
such that U[C]N A = () and V[C] N B = . But, by (M), there exists a
W € U such that W[C] c U[C]NV|[C]. Consequently, W[C]N (AU B) = 0.
Thus we have that C6(A U B).

(LO): Let us suppose that A6B and bdC for all b € B, but ASC. Then
there exists a U € U such that U[A] N C = ). Since AdB, V[A|NB # 0
for all V' € U holds, so that by (Ms), there exists zp € B and there exists
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W € U such that W(xg] C U[A] C X — C. This implies that W{zo]NC = 0,
so that z¢dC which is a contradiction since z¢ € B.

Conversely, let us suppose that § is an LO-proximity on X and let us
show that U satisfies (M), (My4) and (Ms).

(My): Let U eU. If x € X, then {x} N {x} # 0 implies by (SP3) that
xzdz. Consequently, Ulzx] Nz # () so that (z,2) € U. Hence A C U.

(My): Suppose that this is not true. Then there exists A € P(X) and
U,V € U such that for every W € U there exists + € W[A] such that
z ¢ UA]NV[A]. For each W € U let BWW) = {z: z € W[A] and z ¢
U[AINV[A]}. Let B=U{B(W): W € U}. Let us suppose that there exists
U, € U such that U,[A] N B = {). Then, since B(U,) C B, U,[A] C U[A] N
V[A] holds, but, by assumption, this is not possible. Hence M[A]NB # () for
all M € U, so that AdB. Let By = B — U[A] and By = B — V[A]. Clearly,
U[A]N By =0 and V[A] N By = 0, so that A6B; and AdB,. Consequently,
by (SP;) Ad6(B1 U Bs). By the definition of B, B = By U Bs holds. Hence
A B which is a contradiction.

(Mg): Let us suppose that (Mg) is not true. Then there exist A, B €
P(X) and U € U such that V[A]N B # () for all V € U and every b € B
and for every W € U we have that W [b] N (X — U[A]) # (). Consequently,
AéB and bd(X — U[A]) for every b € B, so that by (LO), Ad(X — U[A]).
But U[A] N (X — U[A]) = 0, so that A5(X — U[A]). Hence our assumption
leads to a contradiction. &

Definition 2.4.2.1 The LO-proxzimity induced on X in the above theorem
is called the uniform LO-proximity and is denoted by dy.

Corollary 2.4.2.1 If (X,U) is an M-uniform space, then 1y = 75,,.

Proposition 2.4.2.1 If (X,U) is an M-uniformity on X, then:
(a) AdyB if and only if (Ax B)NU # 0 for every U € U;
(b) A < B if and only if there exists a U € U such that U[A] C B.

Proof: (a) Let us suppose that (A x B)NU # ) for every U € U. Then
U[A] N B # 0 for every U € U, so that AéB.

Conversely, let us suppose that AdyB and U € U. Then, since U[A]NB #
(), there exists a b € U[A] N B. Hence there exists a € A for which (a,b) € U
so that (A x B)NU # (.

(b) Let us suppose that A < B. Then AjX — B so that there exists a
U € U such that U[A] N (X — B) = (). Hence U[A] C B.

Conversely, let us suppose that there exists an U € U such that U[A] C
B. Then U[A]N (X — B) = 0. Hence AdyyX — B so that A < B. &



264 Semi-proximity spaces and semi-uniform spaces

Theorem 2.4.2.2 Let (X,0) be an LO-prozimity space. Then there exists
an M-uniformity Uis on X such that 6y 5 = 9.

Proof: For every A,B € P(X)let Usp =X x X — ((Ax B)U (B x A)).
Let V ={Uap: ASB}. It is clear that V satisfies (M;) and (M3). We will
now show that A§B if and only if for some C, D, CdD and Uc,p[A]NB = 0.
Let us suppose that AJB and that there exists t € Ug p[A] N B. Then
there exists s € A such that (s,t) € Uy p. But this is a contradiction since
(s,t) € A x B. Hence Ugp[A] N B = (). Consequently, let us suppose
that there exist C, D such that C6D and Ucp[A] N B = 0. We will first
assume that A C CU D; for, if t € A — (C' U D), then Uc p[t] = X and so
Uc.p|A] = X, which is also a contradiction. Next, we will show that A C C
or A C D. Let us suppose that there exist ¢,y € A such that ¢t; € C and
ty € D. Then Uc,p[t1] = X — D and Ug plts] = X — C. But since C6D, we
know by (SP3) that (X —C)U(X —D) = X. Hence Uc p[t1]UUc,plt2] = X
so that Uc p[A] = X which is a contradiction. Consequently, A C C or
A C D. Let us suppose that the first case is true. Then Uc p[A] = X — D
so that B C D, and by Proposition 2.2.1.1, A§B. The proof in the second
case is similar.

By the above argument and Theorem 2.4.2.1 V also satisfies (M) and
(Mg). Consequently, by Theorem 2.4.1.4 U5 = {U : U =Utand V C
U for some V' € V} is an M-uniformity on X. It is clear that dy,; = . &

Corollary 2.4.2.2 A topology 7 on X 1is the uniform topology for some
M-uniformity on X if and only if T is a Ry-topology.

Proof: This is an immediate consequence of Corollary 2.3.2.1 and Theorem
24.22. &

Corollary 2.4.2.3 An M-uniformity Uys constructed in Theorem 2.4.2.2 is
totally bounded.

Proof: If Uy p € Uy and if (24, yp) is any element of Ax B, then Uy g[z,] =
X —B and Uy glzp] = X — A, so that, since ANB =), Ua p[z,]UUA glxp] =
X &

Example 2.4.2.1 There exists an M-uniform space that does not satisfy
(Ms).

Let § be the usual proximity for the reals R. Let U5 be the M-uniformity
on R as constructed in Theorem 2.4.2.2. Let A = [1,2], B = [2,3], A1 = [3,4]
and By = [4,5]. Clearly A5A; and BiB;. We will show that there does not
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exist P, Q such that P5Q and Upg C Uaa,NUp,B,. For let us suppose that
there does exist such a P and ). Then B} = (A x A;)U(Bx B;) C PxQ
and Fy = (A1 x A)U (B1 x B) C @ x P. But (3,5) € B x By implies that
(3,5) € Eq so that (3,5) € P x @ and hence 3 € P. Also, (3,1) € A; X A, so
that (3,1) € E5 and hence (3,1) € @ x P. This means that 3 € Q. Hence,
PNQ #0, so that, by (SP3), PdQ which is a contradiction. &

2.4.3 Proximity class of M-uniformities

Definition 2.4.3.1 If § is an LO-proximity on X, then the class of all
M-uniformities U on X such that § = &y is called a proximity class of
M-uniformities on X and is denoted by m(0).

Theorem 2.4.3.1 Let (X,8) be an LO-prozimity space. Then Uys con-
structed in Theorem 2.4.2.2 is the smallest element of w(8), where the partial
order on m(0) is the set inclusion.

Proof: Let U € w(0). If Us p € U5, then AJB. According to Proposition
2.4.2.1 (a), there exists a V € U such that (A x B)NV = (. But since
V = V! we have that (B x A)NV = (. Hence V C Ugap, so that
UspelU. &

Theorem 2.4.3.2 Let (X,6) be an LO-prozimity space. The union B of an
arbitrary family of members of w(9) is a base for an M-uniformity in mw(J).

Proof: It is clear that B satisfies (M;) and (M3). By the definition of 7 (¢),
A B holds if and only if U[A] N B # () for every U € B. Hence, by Theorem
2.4.2.1, B satisfies (M) and (Mg). Consequently, by Theorem 2.4.1.4, B is
a base for an M-uniformity on X which is clearly in 7(5). &

Corollary 2.4.3.1 Let (X,0) be an LO-prozimity. Then ©(3) has the big-
gest element.

Proof: It is an immediate consequence of Theorem 2.4.3.2. &
Definition 2.4.3.2 Let (X,U) be an M-uniform space. (X,U) is j-correct

if there exists an LO-prozimity 6 on X such that the family S = {Uap :
AdB} is a subbase for U. § is called the generator proximity for U.
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Lemma 2.4.3.3 Let (A1,...,Ay) and (B, ..., By,) be n-tuples of non-void
subsets of a set X. Let U =Uyx, g, N...NUa, B, and let Iy = {ky,..., kp}
and Iy = {j1,...,Jq} be subsets of {1,2,...,n}. Let us suppose that xo €
(Ak1 n.. .ﬂAkpﬂle ﬂ...ﬂqu) andxg € A; ifi € Iy and xg & B; if i & 1.
Then Ulxo] = E, where E is equal to

(X = Bi) Moo (X = B, ) N (X —A;)N...0 (X — A;,).

Proof: To simplify the language we will abbreviate the hypothesis of the
lemma as follows: ”Let us suppose that zo € (A, N...NA, NB; N...NB; )
and let xg be in no other A; or B;.” By De Morgan’s law U = X x X —
Ui~ [A4i x B;) U(B; x A;)]. Let us suppose that t € U[zg]. Then (x¢,t) € U,
so that, since zg € (A, N...N A, N Bj, N...N Bj, ) we have that ¢ ¢ By,
i=1,...,p,and t ¢ Aj,,i=1,...,q. Consequently, ¢t € E and Ulzg| C E.
To show the reverse inclusion, let us suppose that there exists t; € E—U]|xg].
Then (z0,t1) € U, so that (xo, ¢1) is an element of | J;", [(Ai x B;)U(B; x 4;)].
Let us suppose that (zg,t1) € A,y X By, where 1 < m < n. Then, since
t1 € E, we have that m # k; for i = 1,...,p, so that zg € A,,, and m & I;,
which is a contradiction. Let us suppose that (zo,t1) € By, x Ay, where
1 < m < n, Then since t; € E, we have that m # j; for i = 1,...,q, so that
xog € By, and m ¢ Iy, which is a contradiction. Hence E = Ulxg]. &

Definition 2.4.3.3 Let (Ay,...,Ay) and (By,...,By,) be n-tuples of non-
void subsets of a set X. Let Iy = {k1,...,ky} and I = {j1,...,jq} be any
two subsets of {1,...,n} and let

E={z:zvcA;<icliandx € B; =ic l}.

If E # 0, we will call that the set E a residual intersection of the sets A;
and B;.

It is clear that residual intersections are mutually disjoint so that the
family B of all residual intersections of A; and B; provides a decomposition
of J{A; UB;: i =1,...,n} into mutually disjoint sets.

Theorem 2.4.3.3 Let (X,U) be a §-correct M-uniform space. Then (X,U)
1s totally bounded.

Proof: Let U € U and let § be a generating proximity for . Then there
exists a finite family of sets A1,..., A, and Bi,..., B, such that A;6B; for
i=1,...,nand Ug, g, N...NUa, B, =V CU. Now, if U{A; UB,; : i =
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1,...,n} # X, then, for any xg € X —U{4A; UB; : i = 1,...,n} we have
that V[zg] = X, and the theorem follows; so we assume that U{A; U B; :
i=1,...,n} = X. Let Q be the family of all residual intersections of A;
and B;. From each R € Q let us choose one and only one point and let
us denote that point as zr. Let S = {zg : R € Q}. Clearly, since Q
is finite, S is also finite. We will now show that V[S] = X. Let z € X.
Since we assume that U{A; UB; : i = 1,...,n} = X, we have that z € R
for some R € Q. Consequently, for some ki,...,k, and ji,...,74, 2 €
A, N...NA,NB;j;N...NBj, and 2 is in no other A; or B;. But by definition
of S there exists zp € S such that zr € Ay, N...NAx, N Bj; N...N By,
and xR is in no other A; or B;. By Lemma 2.4.3.3 we have that V]zp] is
equal to (X — By,)N...N (X — Bg,)N (X —A;;)N...N (X —4;,). But
since A;0B; for all i, we have that z & By, for i = 1,...,p and z € Aj, for
i =1,...,q. Consequently, z € V[zg|. But z is an arbitrary point in X.
Hence V[S] = X, so that U[S] = X. &

Theorem 2.4.3.4 Let (X,U) be a §-correct M-uniform space. Then (X,U)
has an open base.

Proof: Let U € U. Then there exists a finite family of sets A4,..., A, and
By, ...,Bysuch that A;6B; fori=1,...,nand V =Uyx, g, N...NU4, B, C
U. But for each i, 1 <i<n, 4; C A; and B; C B; so that Uz, B, CUa,.B;-
But by Theorem 2.3.2.2 (a), A;0B; for i = 1,...,n, so that Uz, 5, €U for
1 <4 < n. But it is easily shown that Uz, B, is open fori=1,.. ,n. Hence
V is open. &

It is clear that U5 as constructed in Theorem 2.4.2.2 has an open base;
for, if Uy g is an element of U;s, then by the same argument that is given
above, we have that UZ,E C Ua,B; UZE € U5 and UZ,E is open.

Lemma 2.4.3.4 Let us suppose that {A;} and {B;}, i =1,...,n, are finite
sequences of non empty subsets of a set X such that B; C A; for all i and
U{B;:i=1,...,n} = X. Then we have that

F:XXX*O[[(X*AZ)XBl]U[le(X*Al)]]CCJAlXAZ
=1 =1

Proof: Let (x,y) € F. Since U{B; : i = 1,...,n} = X, we have that
(x,y) € By, X By, where 1 < ky, ko < n. It is clear that (z,y) € (X — Ay, ) X
By,, so that x € Ay,, since y € By,. But By, C Ak, and therefore we have
that (z,y) € A, X Ag,. &
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Lemma 2.4.3.5 Let (X,0) be a proxzimity space. Let U be a totally bounded
M-uniformity on X that is in a prozimity class 7 (8) of symmetric unifor-
mities on X. Then for every U € U there exist sets Ay,..., A, and By, ...,
By, such that Ua, g, N...NUa, B, CU and A;dB; fori=1,...,n.

Proof: Let U € Y. We know that there exists V € U such that V = V!
and VoV oV C U. Since (X,U) is totally bounded, there exist the sets
Bi,...,By such that |J!; Bi = X and |J;" | B; x B; C V. Let A; = V[B;].
Since V[B;]N (X = V[B;]) =0, i = 1,...,n, we have that B; < A; for
i = 1,...,n. Also, by a straightforward calculation, we can show that
A;x A CVoVoV fori=1,...,n. Hence we have that |J;_,; Ai x A; C U.
By Lemma 2.4.3.4

XXX—O[[(X_Az)XBZ]U[BzX(X_AZ>HCLnJAle“
=1

i=1
so that Ug,, x—a,N...NUp,, x-4, CU, and Bi6X —A;fori=1,....,n. &

Theorem 2.4.3.5 A symmetric uniform space (X,U) is totally bounded if
and only if the family S = {Ua p : A0B} is a subbase for (X,U) for some
proximity & on X.

Proof: Let us suppose that S = {Ua p : AJB} is a subbase for U for some
proximity § on X. Then U is a d-correct symmetric uniformity on X and,
hence, by Theorem 2.4.3.3, U is totally bounded.

Conversely, let us suppose that U is totally bounded. It is known (see
[317]) that for some proximity &, U € 7*(5). Let us suppose that A;6B; for
t =1,...,n. For each ¢ = 1,...,n there exists a symmetric V; € U such
that (A; x B;) NV; = () and hence such, that V; C Uy, p,. Consequently, we
have that Vin...NV, CUa, B, N...NU4, B, = U, so that U € U. By this
fact and Lemma 2.4.3.5 there follows that the family S = {Ua p : ASB} is
a subbase for U. &

Lemma 2.4.3.6 Let (X,6) be an LO-prozimity space. Let (C1,...,Cy) and
(D1,...,Dy) be n-tuples of non empty subsets of X such that C;dD; for

i=1,...,n. Then (C1N...NCR)(D1U...UDy).

Proof: Let us suppose that (C1N...NC,)0(D1U...UD,). Then, by (SP;)
there holds (C1N...NCy)0 Dy for some k, 1 < k < n. But (C1N...NC,) C Cy,
so that by Proposition 2.2.1.1 Cxé Dy, which is a contradiction. &
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Lemma 2.4.3.7 Let (X,6) be an LO-proximity space. Then PSQ if and
only if there exist n-tuples (Ai,...,An) and (Bi,...,By) of subsets of X
such that (Ua, g, N...NUa, B,)PINQ =0 and A;dB; fori=1,...,n.

Proof: If P§Q, then, by the same argument that is given at the beginning
of the proof of Theorem 2.4.2.2, Upg[P] N Q = 0.

Conversely, let V. = Uy, g, N...NUa, p,. Since VI[PINQ =0, P C
U{A; UB; : i = 1,...,n} holds. Let & = {Ey,...,E,} be the pairwise
disjoint family of all residual intersections of the sets A; and B; that have
a non empty intersection with P. Clearly, PC M = U{E.: ¢=1,...,m}.
By Lemma 2.4.3.3, since &£ is a pairwise disjoint family, if ¢ € P N E, and
to € PN E; where 1 < ¢ < m, then V[t;] = V[ta]. Let F. = V][t.] for
¢ =1,...,m, where t. is a fixed point in E.. Then, V[P] = U{F. : ¢ =
1,...,m} holds. But, since V[P| N Q = 0, we have that @ C X — V[P], so
that by De Morgan’s law, @ C N where N = n{X — F.: ¢ =1,...,m}.
Let E. € £ where 1 < ¢ < m. We may assume that E. C Ef = A, N...N
A, N By, N...N By, for some kq,...,kp,j1,...,Jq and that E. intersects
no other A; or B;. Consequently, by Lemma 2.4.3.3 and De Morgan’s law,
X —F.= By U...UBp,, UA; U...UA, . Hence, by Lemma 2.4.3.6,
E!6X — F. where 1 < ¢ < m, so that by Proposition 2.2.1.1, E.6X — F,
where 1 < ¢ < m. Hence, again by Lemma 2.4.3.6, MJN, so that, by
Proposition 2.2.1.1, P6Q. &

Lemma 2.4.3.8 Let (X,U) be a d-correct M-uniform space with a generat-
ing prorimity . Then oy = 9.

Proof: Let us suppose that P6Q. Then, by Lemma 2.4.3.7, there exists
U € U such that U[P] N Q = 0, so PoyQ.

Conversely, let us suppose that Pé;Q. Then there exists V € U such
that V[P] N Q = 0 so that, by Lemma 2.4.3.7, P5Q. &

Theorem 2.4.3.6 Let (X,09) be an LO-prozimity space. In () there exists
one and only one §-correct M-uniformity Uss on X.

Proof: Let § = {Ua p : ASB} and let B = {all finite intersectins of mem-
bers of S}. It is clear that B satisfies (M) and (Mj3). By Lemma 2.4.3.7
and Theorem 2.4.2.1 we have that B also satisfies (My) and (Ms). Conse-
quently, by Theorem 2.4.1.4, we have that Uss = {U : U =U "' and U C
V for some V' € B} is an M-uniformity on X. It is clear that Usgs is d-correct,
and that Uss € 7(9) by Lemma 2.4.3.8. We will now show that Uss is the
only d-correct M-uniformity on X that is in 7(d). For this, let us suppose
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that V € 7(0) and that (X, V) is d-correct uniformity with generating prox-
imity d;. Clearly, 1 # § if Uss # V. But by Lemma 2.4.3.8 we have that
dy = &1 which is a contradiction, since we assume that V € 7(d). Hence
V=Uy. &

Let us note that, if U, V' € Uss (as constructed in proof of above theorem),
then U NV € Uys. Hence if § is the usual proximity of the reals R, then
U5 (as constructed in the proof of Theorem 2.4.2.2) is properly contained
in Uss. Hence we can see that a proximity class of M-uniformities may
contain two distinct, totally bounded uniformities. It can easily be shown
that a proximity class may contain more than two distinct, totally bounded
uniformities.

Corollary 2.4.3.2 Let (X,0) be a proximity space. There exists in 7(J)
one and only one totally bounded symmetric uniformity on X.

Proof: By Theorem 2.4.3.5 and Theorem 2.4.3.6 it is sufficient to show
that Usys satisfies (My). Let us note that if Vo V; C U; fori = 1,...,n,
then (ViNn...Vy)o (Vin...NV,) C Uy N...NUy,, where V; and U; are
subsets of X x X for ¢ = 1,2,...,n. Consequently, it is sufficient to show
that for each U g € Uss there exists a V' € Uys such that V oV C Uy g.
We will now show the existence of such a V. By Proposition 1.1.1.3 there
exist sets C' and D such that CND = () and A < C and B < D. Let
V =Uax-cNUpx—_p. We will show that V oV C Uy p. Let us suppose
that (z,y) € V and (y,z) € V. We must show that (z,2) € Uy p or,
equivalently, that (z,z) ¢ (A x B) U (B x A). Clearly, if z ¢ AU B, then
for every t € X, (x,t) € Ua,p holds. Hence we may assume that z € AU B.
Two cases now occur. Case 1: x € A and case 2: x € B. These are the only
possibilities for x since AN B = (.

If z € A, then z ¢ B. Let us suppose that z € B. Then (y,z) € C x B.
But since CND = (), ie. C C X — D, we have that C x B C (X — D) x B.
Hence (y, z) ¢ V which is a contradiction. Therefore, if z € A, then (z, z) &
A x B, so that (z,2) € Uy p.

By a similar argument we get that x € B implies z ¢ A. Now from
x € B, there follows (z,2) € B x A, so that (z,2) € Usp.

The uniformity Uss satisfies (M.5), but might fail to satisfy (My). For,
let (X, 7) be any Ryp-topological space which is not completely regular. Let
us define the relation §y on P(X) by AdgB if and only if AN B # (), so that
75, = 7. Then Uas, cannot satisfy (My): for, if so, then Uss, would be a
symmetric uniformity and hence 7 would be a completely regular topology.



2.4 M-uniform spaces 271

2.4.4 Complete M-uniform spaces

Definition 2.4.4.1 Let (X,U) be an M-uniform space. A filter F on X is
weakly Cauchy with respect to the uniformity U if for every U € U there
erists x € X such that Ulx] € F. F is Cauchy filter with respect to U if
for every U € U there exists A € F such that Ax ACU.

Definition 2.4.4.2 A Cauchy filter in (X,U) is an infrafilter if it does
not properly contain a Cauchy filter.

Definition 2.4.4.3 An M-uniform space (X,U) (or M-uniformity U) is
complete if every weakly Cauchy filter on X has a cluster point in X.
(X,U) is A-complete if, whenever (X,U) is uniformly isomorphic to a
dense subspace (Xq,Uy) of (Xp,Up), then X, = Xp.

In a similar way we define a A-complete (separated) correct uniform
space by taking U, and U, to be (separated) correct uniformities.

Definition 2.4.4.4 An M-uniform space (Xp,Up) is a completion of the
M-uniform space (X,U) if (Xp,Up) is complete and (X,U) is uniformly iso-
morphic to a dense subspace (Xq,Uy) of (Xp,Up).

Proposition 2.4.4.1 Every Cauchy filter on (X,U) is weakly Cauchy filter.

Proof: Let U € U. There exists F' € F such that F x ' C U. Let xg € F.
Then F' C Ulxo| so that Ulzg] € F. &

The following theorem points out that it is not reasonable to require
every weakly Cauchy filter in an M-uniform space to converge in order for
the space to be ”complete”.

Proposition 2.4.4.2 If (X,7) is a connected Ry-topological space, then
there exists a totally bounded M-uniformity U on X such that 7y = 7 and
every filter in X s weakly Cauchy with respect to U.

Proof: We know by Corollary 2.3.2.1 that there exists an LO-proximity §
on X such that 75 = 7. Let U;s be the uniformity on X that we constructed
in the proof of Theorem 2.4.2.2. U5 € 7(d), so that 7y, = 7. Let U € Uss.
Then there exist sets A C X and B C X such that UZ,E CUyp CU. But

since T is connected, there exists zg € X — (AU B), so that Uz g[zo] = X.
Hence every filter on X is weakly Cauchy with respect to U. &
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Example 2.4.4.1 There exists an M-uniform space (X,U) and there exists
a filter 7 on X such that F is weakly Cauchy with respect to U, but F is
not Cauchy with respect to U.

Indeed, let (X, 7) be any connected Ti-topological space with at least
two distinct points. By Corollary 2.3.2.1 there exists an LO-proximity d on
X such that 75 = 7. Since 7 is 11, it follows by Proposition 2.4.1.3 that J is
separated. Let Uis be the uniformity on X constructed in Theorem 2.4.2.2.
Let us consider the filter 7 = {X} on X. As it was shown in the proof of
Proposition 2.4.4.2, F is weakly Cauchy with respect to U;s. Let 1 and xo
be any two distinct points in X. Let us consider Uy, 4,. Since ¢ is separated,
2109, so that Uz eo € Urs. Hence F is not Cauchy filter with respect to
Uys.

Proposition 2.4.4.3 If an M-uniform space (X,U) has an open base, then
every convergent filter on X relative to 1y is a Cauchy filter.

Proof: Let U € U. Since U has an open base, there exists U; € U such that
Uy C U and U; is open in the product topology on X x X. Let us suppose
that F is a filter on X which converges to xo. Since U is open, there exists
an open set A € N, where N, is a neighborhood system of the point x,
such that A x A C U;. But A € F. Hence F is Cauchy with respect to U.
&

Proposition 2.4.4.4 FEvery convergent filter on an M-uniform space (X,U)
1s a weakly Cauchy filter.

Proof: Let F be a filter on X which converges to xg € X relative to 7. If
U € U, then, by Corollary 2.4.1.1, Ulzo] is an element of the neighborhood
system of the point z9. Hence Ulxo] € 7. &

Proposition 2.4.4.5 Let (X,U) be a correct uniform space. A filter F on
X is Cauchy with respect to U if it is weakly Cauchy with respect to U.

Proof: Let us suppose that F is a weakly Cauchy filter with respect to U.
If U € U, then there exists a V' € U such that V oV C U; there also exists
xo € X such that V[zg] € F. Let (a,b) € V]zrg] x V]zg]. Then a € Vx|
and b € V]zo]. Consequently, (a,b) e VoV CU. &

The following facts about infrafilters are easily established.

Proposition 2.4.4.6 Let F be an infrafilter and let F1 be a Cauchy filter in
a correct uniform space (X,U). Let U(F) = {U[F]: F € Fi and U € U}.
Then
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(a) U(F1) is an infrafilter contained in Fi;

(b) F1 is an infrafilter if and only if, for every A € Fy, there exists a
B e Fy and a U € U such that U[B] C A;

(¢) the neighborhood system N of the point x is an infrafilter in (X,U);

(d) F has an open base;

(e) for every U,V € U there exists a W € U such that, if F € F and
FxFCW,then FxFCUNV;

(f) if (Xa,Uy) is a dense subspace of a correct uniform space (Xy,Uy) and
if Fo is an infrafilter in (Xp,Up), then B = {U[F|NX,: F € Fy and U € Uy}
is a base for an infrafilter Fg in (X,,U,). &

Let us note that in the proof of Proposition 2.4.1.1 we actually only used
the following weak form of (My):

(M) for every € X and U,V € U there exists a W € U such that
Wiz] Cc Ulx] N V]x].

Definition 2.4.4.5 Let X be a non empty set. A non empty subset U of
P(X x X) is a semi-correct uniformity on X if U satisfies (M), (Ms),
(My), (M7) and (Ms).

By the above statement, if (X,U) is a semi-correct uniform space, then
the function g : P(X) — P(X) defined by = € g(A) if and only if U[z]N A #
() for all U € U, is a Kuratowski closure function. By a straightforward
computation it is possible to show that if (X,,U,) is a dense subspace of
the semi-correct uniform space (Xp,Up), then (X,,U,) is a separated correct
uniform space if and only if (Xj,U,) is a separated correct uniform space.
Also, it is easy to show that a subset B of P(X x X) is a base for some
semi-correct uniformity on X if and only if B satisfies (Mz), (M3), (M)
and (M7)

Theorem 2.4.4.1 Let (X,U) be a separated, correct uniform space. Then
the following statements are equivalent:

(a) (X,U) is A-complete;

(b) every infrafilter is a neighborhood system of some point;

(c) every Cauchy filter on (X,U) converges;

(d) (X,U) is complete.

Proof: (a) = (b): The neighborhood system of the point = will be denoted
by N,. Let us suppose that there exists at least one infrafilter on X which
is not a neighborhood system of a point in X. Let X; be the family of all
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infrafilters on X. Let X, be the family of all neighborhood systems of the
points in X. It is clear that X, C X;. For each U € U let U = {(Py, P») :
Fx F CUforsome F € PLNP}. Let B={U: U € U}. To show that
B is a base for a semi-correct uniformity i, on Xy, it is sufficient to prove
that B satisfies (M2), (M3), (M}) and (M7).

(M3): Let us suppose that Py, Py € X3, Py # P, and (P, P,) € U for
every U € B. Then, for every U € U there exists F € P, N P, such that
F x F CU. Hence P3 = P, N P, is a Cauchy filter, so that, since P3 C P}
and P3 C P, we have by Definition 2.4.4.1 that P, = P>, = P3 which is a
contradiction.

(M3) Since U = U~! for every U € U, it is clear that U ' =T for every
UeB.

(M}): Let P € X and let U,V € B. By Proposition 2.4.4.6 (), there
exists W € B such that forall F e Pif F x FC W then FxFcUNV.
We claim that W[P] c U[P] N V[P]. For, let us suppose that P, € W[P].
Then (P, P;) € W, so that there exists F € PN Py such that F x F C W
and hence F x F C UNV. Consequently, P, € U[P]NV|[P].

(M7): Let us suppose that U € B. There exists V € U such that V Cc U
and VoV C U. We claim that VoV C U. Let us suppose that (P, ) € V
and let (P2, P3) € V. Then there exists FF € Py N P, such that F x F C V
and there exists G € P, N P53 such that G x G C V. But this implies that
E x E CU for some E € Py N P3. Hence (P, P3) €U. (Let E=GUF.)

Consequently, Uy, = {U : U = T ' and V C T for some V € B} is a
semi-correct uniformity on Xj.

Let us consider the mapping h : X — Xj, defined by h(z) = N,. Since
(X,U) is separated, 1y is Tp, so that h is 1-1. Clearly, h is onto X,. Let
U € B. There exists an open set V € I such that V C U and VoV C U.
Let us suppose that (z,y) € V. Then, by a straightforward calculation, it
can be shown that if F' = V[z]NV[y], then F x FF C U and F' € N; NN, so
that (N, NVy) € U. Conversely, let us suppose that (AN, N;) € U. Then it
immediately holds that (z,y) € U. Hence we have that (X,i) is uniformly
isomorphic to (X,,U,) where U, is the relativization of U to X,,.

Let us suppose that Pj is any point in X;. Let U be any element of
B. (P1,P2) € U, so that, by Proposition 2.4.4.6 (d), there exists an open
set ' € P; such that F x FF C U. Let 9 € F. Then F € N, so
that (Py,Ng,) € U. Hence X, is dense in X;,. Consequently, (Xp,Up) is a
separated correct uniform space.

Thus we can see that if there exists at least one infrafilter which is
not the neighborhood system of some point in X, then it is possible to
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construct a separated correct uniform space (Xp,Up) such that (X,U) is
uniformly isomorphic to a dense subspace (X,,U,) of (Xp,Up) and X, # Xp.
Consequently, (X,U) is not A-complete.

(b) = (a): Let us suppose that (X,U) is not A-complete. Then (X,U) is
uniformly isomorphic to a dense subspace (X,,U,) of (Xp,Up) and X, # Xp.
Let us suppose that P € X, — X,. Let F = Np. Since F is an infrafilter,
by Proposition 2.4.4.6, it induces in (X,,U,) an infrafilter F*. But, by
hypothesis, F* = Np, for some point P; € X,. Hence P € N{F : F € F}
and P, € "{F : F € F}. But since F is a Cauchy filter, this means that
(P,P) € U for every U € Uy, and since (Xp,Us) is separated, this is a
contradiction.

(b) = (¢): Let F be a Cauchy filter in (X,U). By Proposition 2.4.4.6
(a), F contains an infrafilter 7y in (X,U). But, by hypothesis, 73 = N,
for some xy € X. Hence F converges to xg.

(c) = (b): Let F be an infrafilter in (X,U). By hypothesis, N, C F for
some zo € X. But N, is a Cauchy filter in (X,U). Hence F = Np,.

(¢) = (d): Let F be a weakly Cauchy filter with respect to U. By
Proposition 2.4.4.5 F is a Cauchy filter with respect to ¢4. But then F is
convergent and hence has a cluster point.

(d) = (c): Let F be a Cauchy filter with respect to . By Proposition
2.4.4.1 F is a weakly Cauchy filter with respect to i and hence has a cluster
point. By Proposition 2.4.4.6 (g), F is convergent. &

Proposition 2.4.4.7 If (X,U) is a totally bounded M-uniform space, then
every ultrafilter on X is a weakly Cauchy filter.

Proof: Let F be an ultrafilter in (X,U) and let V' € U. There exist
x1,T2,...,%, in X such that X = V]z;]U... U V[z,]. But then, since
X € F, there holds by Proposition 2.4.4.6 (c), that for some m, where
1<m<n, Vg, €F. &

Theorem 2.4.4.2 An M-uniform space (X,U) is complete and totally bo-
unded if and only if (X, 1y) is compact.

Proof: Let us assume that (X, 7y) is compact and let U € U. Let us
consider the family {U[z] : = € X}. By Corollary 2.4.1.1, for each = € X,
IntU[z] # () holds. Therefore for each 2 € X there exists an open set O,
such that x € O, C Ulx]. Hence, since 74 is compact, there exist z1,..., 2,
such that X = Ulz1] U ... U UJzy,], so that (X,U) is totally bounded. Let
F be a weakly Cauchy filter. Since 7134 is compact, F has a cluster point, so
that (X,U) is complete.
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Conversely, let F be an ultrafilter on X. Since (X, ) is totally bounded,
F is a weakly Cauchy filter by Proposition 2.4.4.7. But since (X,U) is
complete, F has a cluster point, so that by Proposition 2.4.4.6 (d), F is
convergent. Consequently, by Proposition 2.4.4.6 (f), 74 is compact. &

Corollary 2.4.4.1 Let (X,U) be a separated, correct uniform space. Then
(X, 1) is compact if and only if (X,U) is totally bounded, and every in-
frafilter on X is a neighborhood system of some point in X.

Proof: This is an immediate consequence of Theorem 2.4.4.1 and Theorem
2.4.4.2. &

Corollary 2.4.4.2 Every closed subspace (Y,V) of a complete M-uniform
space (X,U) is a complete space.

Proof: Let (Y,V) be a closed subspace of (X,U). Let F1 be any weakly
Cauchy filter on Y relative to V. Fi can be considered as a filter base for a
filter 7 on X. It is clear that F; is a weakly Cauchy filter on X, relative
to U and hence has a cluster point 9 € X. But then z( is a cluster point
of F1, so that xg is an accumulation point of Y. Since Y is closed, zg € Y.
Hence (Y, V) is complete. &

Definition 2.4.4.6 Let (X, T) be a topological space. LetU be any structure
on X which generates a topology 1y on X. Then U is compatible with the
topology T if iy = T.

Theorem 2.4.4.3 A Ry topological space (X, T) is compact if and only if
it is complete with respect to every compatible M-uniformity U on X.

Proof: Let (X,U) be compatible with (X, 7). By Theorem 2.4.4.2, (X,U)
is complete.

Conversely, we know by Corollary 2.3.2.1 that there exists a an LO-proxi-
mity § on X such that 75 = 7. Let U5 be the M-uniformity on X constructed
in Theorem 2.4.2.2. We know that 74, = 7, so that, by hypothesis, U5
is complete. But, by Corollary 2.4.2.3 U;s is totally bounded. Hence by
Theorem 2.4.4.2, 7 is compact. &

Let us note the analogy between the above theorem and the theorem of
Niemytzki and Tychonoff who states that a metrizable topological space is
compact if and only if it is complete in every compatible metric (see [241]).
Also, let us recall the theorem of Doss which states that a completely regular
space (X, 7) is compact if and only if it is complete with respect to every
compatible uniformity ¢ on X (see [89]).
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Proposition 2.4.4.8 An M-uniform space (X,U) is totally bounded if and
only if every filter on X is contained in a weakly Cauchy filter.

Proof: Let us suppose that (X,U) is totally bounded and let F be a filter
on X. By Proposition 2.4.4.6 (b), F is contained in an ultrafilter F; which,
by Proposition 2.4.4.7, is a weakly Cauchy filter.

Conversely, let us suppose that every filter on X is contained in a weakly
Cauchy filter. Let U € U. For every finite subset £ C X let us as-
sume that U[E] # X, so that X — U[E] # 0. The family {X — U[E] :
E is a finite subset of X } is easily shown to be a base for a filter, which
is, by hypothesis, contained in a weakly Cauchy filter F. For some point
xzg € X Ulxg] € F is true. On the other hand, since {z¢} is a finite set,
X — Ulzo] € F. But since Ulzg] N (X — Ulxg]) = 0, we have that § € F
which is a contradiction. &

Proposition 2.4.4.9 Let an M-uniform space (X,U) be a totally bounded,
dense subspace of M-uniform space (Xqo,U,). If every element of every
weakly Cauchy filter on X, has a non empty interior (relative to 1,), and
if every weakly Cauchy filter (relative toU) on X has a cluster point in X,
then (Xq,Uy) is complete.

Proof: Let F be a weakly Cauchy filter on X, such that Int F # () for
every F' € F. Since X is dense in X,, FNX # () for every FF € F. Let
B={FnX: F e F}. Clearly, Bis a base for a filter F; on X which is,
by Proposition 2.4.4.8, contained in a weakly Cauchy filter 75 on X. But,
by hypothesis, F2 has a cluster point zg € X,. Let U € U, and let F' € F.
Then Ulxo) N (F N X) # 0, so that Ulzg] N F # 0. Hence z is a cluster
point for F and (Xg,U,) is complete.

Theorem 2.4.4.4 If an M-uniform space (X,U) is separated and A-comp-
lete, then every weakly Cauchy filter on X is the neighborhood system of
some point in X.

Proof: The neighborhood system of the point z will be denoted by N,. Let
us suppose that there exists at least one weakly Cauchy filter on X which
is not the neighborhood system of a point in X. Let X; be the family of
all weakly Cauchy filters on X. Let X, be the family of all neighborhood
systems of the points in X. It is clear that X, C X. To construct the
uniformity Uy on X} in the proper way, let us assign to each filter P in the
set X a point zp € X in the following way: xp = x7 if P = N,, and
xp is any point in X if P # N, for every x € X. For each U € U let
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U={(P,P): (zp,zp,) € U}. Let B be equal to {U : U € U}. We will
show that B is a base for an M-uniformity U, on X;. By Theorem 2.4.1.4 it
is sufficient to show that B satisfies (M7), (M3), (M4) and (Ms).

(My): Let U € B. Since (zp,zp) € U for every P € X}, we have that
(P, P) € U for every P € X,.

(M3): Since U = U~ for every U € U, we have that U ' =T for every
U e B.

(My): Let A* C Xy and let U,V € B. Let A = {zp: P € A*}. There
exists, by (My), a W € U such that W[A] C U[A] N V[A]. Let P, € W[A*].
Then (P,, P;) € W for some P, € A*, so that (zp,,zp, ) € W. Consequently,
xp, € W[A], so that xp, € U[A]NV[A]. But this means that there exists
zp. € A and zp, € A such that (zp.,xp) € U and (xp,zp,) € V, so
that P; € U[A*] N V[A*]. Hence, there exists a W € B such that W[A*] C
U[A*] N V[A*].

(Bg): Let A*, B* C X, and let U,V € B. Let us suppose that V[A*] N
B*#0(. Let A={xp: P € A*}, B={xp: P € B*} and let P, €
V[A*]NB*. Then P, € V[A*] and P. € B*, so that for some P, € A* we have
that (P, P.) € V and hence (xp,,zp,) € V. Consequently, since V is any
element in B, V[A]NB # @ for all V- € U. But by (Ms) there exists a W € U
and an element zp, € B such that W[zp,] C U[A]. Let P, € W[P]. Then
(xp,,xp,) € W and xp, € W(zp,], so that there exists an zp, € A such that
(zp,,zp,) € U or equivalently, (Py, P1) € U and P, € U[A*]. Hence W[P,] C
U[A*]. Consequently, U, = {U : U = U 'and V C U for some V € B} is
an M-uniformity on Xj.

Let us consider the mapping h : X — X, defined by h(x) = N,. Since
(X,U) is separated, 7 is Tp, so that h is 1-1. Clearly h is onto X,. Let
U € U and let (z,y) € U. Then (N, N,) € U. Conversely, let us suppose
that (N, N,) € U. Then (z,y) € U. Hence (X,U) is uniformly isomorphic
to (X, U,) where U, is the relativization of Uy to X,,.

Let us suppose that P; is any point in X;. Let U be any element of B.
(P, P) € U, so that (zp,,xp) € U. Hence (P,N;) € U, so that X, is
dense in Xj.

Thus we can see that if there exists at least one weakly Cauchy filter
which is not the neighborhood system of some point in X, then it is possi-
ble to construct an M-uniform space (Xp,U) such that (X,U) is uniformly
isomorphic to a dense subspace (X, U,) of (Xp,Up) and X, # X;. Conse-
quently, (X,U) is not A-complete. &

If (Xp,Up), as constructed in the proof of Theorem 2.4.4.4, is complete,
then (X,U) is complete. To prove this fact, let us suppose that F is a weakly
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Cauchy filter on X and let F* = {h(F) : F € F}. It is obvious that F* is a
base for a filter 7} € X}, where F} is a weakly Cauchy filter with respect to
Up. Thus F7 has a cluster point P € X;. P is also a cluster point for F*.
Let FF € F and F'* = h(F). Let U € Y. Then there exists N, € U[P;]NF*,
so that 1 € Ulzp, | N F. Consequently, xp, is a cluster point for F; and
(X,U) is complete. Thus we see that the construction used in the proof of
Theorem 2.4.4.4 does not yield a completion for (X,U).

Theorem 2.4.4.5 Fvery separated correct uniform space has a unique com-
pletion.

Proof: We will show that (Xj,U;), as constructed in the proof of Theorem
2.4.4.1, is complete. Let U € B and let F be an infrafilter in (X,,Uy).
By Proposition 2.4.4.6 (f), F induces in X, the infrafilter F* in (X,,U,)
which is the natural image under the mapping h (as defined in the proof of
Theorem 2.4.4.1) of the filter F in (X,U). We will now show that F, which,
of course, is an element of X, is a cluster point for F. By Proposition 2.4.4.6
(d) there exists an open G € F such that G x G C U. Let G* = G N X,
Let G = h=1(G*). Tt is clear that G is open in X, G € F and G x G C U.
Hence for every x € G we have that A, € U[F], so that G* C U[F]. But by
Proposition 2.4.4.6 (f) every element of F meets G*. Hence F is a cluster
point for . But by Proposition 2.4.4.6 (g), Nr C F, so that, since F is an
infrafilter, 7 = Nr. Consequently, by Theorem 2.4.4.1, (X3, U,) is complete.

That the completion is unique is shown in a straightforward manner. &

The existence of a completion for more general types of M-uniform spaces
is an open question.

Historical and bibliographic notes

The results of this section are based on papers [201] and [202] by M.
W. Lodato, the paper [217] by Mordkovich and paper [94] by V. A. Efre-
movich, A. G. Mordkovich and V. Ju. Sandberg. In papers [219] by C. J.
Mozzochi the notion of an M-uniform space is generalized in such a way
that every uniformity of that kind generates an LO-proximity in a natural
way. It is then shown that the classical theorem, which states that every
proximity class of M-uniformities contains one and only one totally bounded
uniformity, can be generalized to these M-uniform and LO-proximity spaces
in such a way that the classical theorem follows as an immediate corollary.
Generalizations and partial generalizations are also obtained for many other
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classical theorems concerning a uniform continuity, uniform convergence,
convergence in proximity, completeness and compactness.

The correct spaces of Efremovich, Mordkovich and Sandberg are a special
subclass of M-uniform spaces. The axioms for the correct spaces are almost
as strong as those for an M-uniform space.

All the results of this section were proved by C. J. Mozzoochi in [219]
(see also [220], [222], [223] and [224]).

2.5 R- and RC-proximity spaces

2.5.1 The notion and basic properties of R-proximities

Definition 2.5.1.1 A semi-proximity relation § defined on the power set of
X is called an R-proximity if it satisfies the following condition:

(R) (Aziom of regularity ) if {x}5A, then there is B C X such
that {x}0X — B and B6X — A.

An R-prozimity § is separated if it is a separated semi-proximity. The pair
(X,0), where § is a (separated) R-proximity, is referred to as a (separated)
R-proximity space.

Clearly the concept of an R-proximity is a generalization of the Efre-
movich proximity.

Proposition 2.5.1.1 If (X,0) is an R-proximity space, then it is an S-
proximity space.

Proof: The proof is essentially the same as the one given in Proposition
2.3.1.1. &

Definition 2.5.1.2 A §-neighborhood of a set A C X in an R-prozimity
space (X,0) is a set B such that A6X — B.

One can prove the following proposition in a manner similar to the proof
of Proposition 2.3.1.2.

Proposition 2.5.1.2 Let < be a relation on P(X) such that the following
conditions are satisfied:

(a) ) < A for each A C X;

(b) if A< B, then A C B;



2.5 R- and RC-proximity spaces 281

(¢c) if AC Ay < By C B, then A < B;

(d) if A< By, i=1,2, then A < By N By;

() if A B, then X — B< X — A;

(f) if x < A, then there exists a set B C X such that © < B < A.
Then there exists a unique R-proximity d for X such that A < B if and
only if A6SX — B, that is, the set B is a -neighborhood of the set A. &

Proposition 2.5.1.3 If A and B are subsets of an R-prozimity space (X,
J), then A < B implies that

(a) ACcACB, and (b)) AC X —c¢(X —-B)CB,
where cA = {x: z0A}.

Proof: The proof of this inclusions is the same as the one given in Propo-
sition 2.3.1.1. &

Proposition 2.5.1.4 Let (X,d) be a separated R-proximity space. The
function A — cA, where cA = {x € X : xdA}, is a Kuratovski closure
function. The topology induced by the proximity & is regular and c is the
closure operator induced by the topology.

Proof: It is sufficient to show that ccA = cA for every A C X. To verify
that ccA = cA, we need only to show that ccA C cA. Now if x &€ cA,
we have 204, that is, * < X — A, so by (P) there exists a set B C X
such that r < B <« X — A. According to Proposition 2.5.1.3 we have that
B C X —cA C X — A, and hence, from Proposition 2.5.1.2, we have that
x < X — cA, which is equivalent to = ¢ ccA.

We have now shown that c is the closure operator of the topology that
it induces: the closed sets are precisely the sets of the form cA for some
A C X. Now this fact, along with Proposition 2.5.1.3, shows that the
proximal neighborhood filter of each point of X is a regular filter (that is,
a filter with a base of open sets and a base of closed sets). In particular, the
proximal neighborhood filter of each point is contained in the neighborhood
filter of the point. Since, by the definition of the topology, the converse
inclusion also holds, equality of the two filters holds. It therefore holds that
the neighborhood filter of each point of the space is regular, that is, the
topology is regular. &

The next result includes a generalization of the converse of Proposition
2.5.1.4.
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Proposition 2.5.1.5 Let us suppose that Z is a regular topological space
and that X is a dense subspace of Z. Let us define a relation between subsets
of X by setting AdB if clzANclyB # ).

(a) The relation § is a separated R-proximity on X .

(b) A filter on X is round if and only if it is the trace of a filter that is
regqular on Z.

Proof: (a) (SP1)—(SPs3) and (SPs) are immediate, and (SPy) follows from
the distributivity of the closure with respect to finite unions. To show (R),
we observe that if V' is a neighborhood (in X)) of 2 € X, there exists a closed
neighborhood (in Z) B of x € Z and an open neighborhood (in Z) W of
x € Z such that WNX =V and B C W. Setting A = BN X, we find that
K< AKV.

(b) Let us suppose that v is a round filter on X, and let ¢ be the filter
on Z generated by {clzF : F € ~}. Then ( certainly has a base of closed
sets. Now if FF € v and G € v with G < F, then clzGNclz(X — F) = .
Since X is dense in Z, it also holds that clzF U clz(X — F) = Z. It follows
that clz;G C Z — clz(X — F) C clzF, and we have thus shown that ( also
has a base of open sets. Thus ( is a regular filter, and it clearly induces ~
on X.

Conversely, let us suppose that ¢ is a regular filter on Z. Since X is
dense in Z and ¢ has a base of open sets, every member of ( intersects X
and so the trace v on X of ( exists. If V' € 7, so that V =W N X for some
open set W € (, let P be any member of ( such that clzP C W. Then if
Q = PN X there follows that clzQNeclz(X —V) =0,s0 Q < V and Q € ~.
Thus we have shown that v is a round filter. &

The proximity defined on a regular space by declaring sets to be near if
their closures intersect is, according to Proposition 2.5.1.5, an R-proximity
that induces the topology of the space. We can state the following;:

Theorem 2.5.1.1 A topology is regular if and only if it is the topology
induced by a separated R-proximity. &

There may, of course, be many R-proximities that induce a given regular
topology.

2.5.2 R-proximities and LO-proximities

There are three semi-proximities that can be defined on any T; space and
that will be useful in the examples below. These semi-proximities are con-
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sidered in Example 2.2.2.1. It is appropriate here to observe that the semi-
proximities considered in Example 2.2.2.1 are more general than those that
we consider, since the property (SP5) need not be satisfied by the semi-
proximity of Example 2.2.2.1.

The proximities considered below do satisfy (SPs); however, since the
associated topologies are Tp, the following results are readily established
from the definitions.

Proposition 2.5.2.1 If X is a T} space, then Aé.B if and only if Ad,B
or both A and B are infinite. &

Proposition 2.5.2.2 If X is a T} space, then the proximity &, is the finest
LO-prozimity that induces the topology of X. &

If X is regular, then J,, is an LR-proximity, that is, the separated
semi-proximity that is simultaneously an LO-proximity and an R-proximity.

Proposition 2.5.2.3 Let X be a T space with no isolated point. Then the
LO-prozimity 6. induces the topology of X and is not an R-proximity.

Proof: Let us suppose that . is an R-proximity. Then the topology of X
is regular. If X has the cofinite topology, then it is finite and so every point
is isolated. If X does not have the cofinite topology, then there is z € X
and a neighborhood V' of z such that X — V is infinite. Now there is a
neighborhood W of x such that W <« V', and it follows that W is finite, and
therefore x is an isolated point. &

Corollary 2.5.2.1 There exists a compact Hausdorff space X such that .
is not an R-proximity and thus . 7 Oy e

The interest of the corollary lies in the fact that it has shown that we
can have two distinct LO-proximities inducing the topology of a compact
Hausdorff space, although, according to Proposition 2.5.2.4 below, d,, is the
unique LR-proximity that induces the topology.

Lemma 2.5.2.1 Any prozimity finer than an R-prozimity and inducing the
same topology is also an R-prorimity.

Proof: Let § be an R-proximity and let us suppose that d; is a finer prox-
imity giving the same topology, and let us write >, > for the corresponding
proximal neighborhood relations. Now, if V' > x, then, since both topologies
are the same, there also follows x < V, and since ¢ is an R-proximity, there
isa W with x <« W <« V. It now follows, since §; is finer than §, that
c<W<LV. &
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Corollary 2.5.2.2 The proxzimity 6s on a reqular T space is an R-proxi-
maty.

Proof: It is finer than the R-proximity §,,, and induces the same topology.
&

Corollary 2.5.2.3 The proximity d; on a normal but not hereditarily nor-
mal (=completely normal) Hausdorff space is an R-proximity that is not an
LO-prozimity. &

An example of a compact Hausdorff space for which the three proximities
dc, 0y and &g are all distinct, is provided by an uncountable product of
unit intervals, since such a space is not hereditarily normal and has no
isolated points. This also shows that two distinct R-proximities can induce
the topology of a compact Hausdorff space. The following result is now quite
interesting; although LO-proximities and R-proximities need not be unique
on a compact Hausdorff space, the combined property is unique.

Proposition 2.5.2.4 The proximity d,, is the only LR-proximity on a com-
pact Hausdorff space.

Proof: By Proposition 2.5.2.2 such a proximity is certainly coarser than
dw, s0 we need only to show that it is also finer than d&,. This can be
shown by a device similar to the one usually used to show that a compact
Hausdorff space is normal. This is a generalization of the usual theorem
that a compact Hausdorff space has only one completely regular proximity.

&

2.5.3 RC-proximities

First we will establish some properties of round filters with respect to an
R-proximity that will be needed in this subsection.

Proposition 2.5.3.1 Let (X,d) be an R-proximity space. Then
(a) every round filter is a regular filter;
(b) every neighborhood filter is a maximal round filter;
(c) every round filter is contained in a maximal round filter;
(

d) distinct mazimal round filters contain disjoint open members.
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Proof: Property (a) follows from Proposition 2.3.1.1 and Proposition
2.5.1.3. Property (b) follows from (a) together with the facts that neigh-
borhood filters are round and maximal regular in a regular space. Property
(c) is established in the usual manner using Zorn’s lemma. To show (d), let
us observe that by (a), round filters are open filters. Also, if the sup of two
round filters is a filter, then by Proposition 2.5.1.2, this sup is a round filter.
Thus, if two round filters do not contain disjoint open sets, then their sup
is a round filter containing each, and this establishes (d). &

Definition 2.5.3.1 A topological space is said to be regular-closed if it is
regular, and cannot be nontrivially densely embedded in a reqular space.

The term regular as used herein includes T separation.

Since every compact space is regular-closed, then any completely regular
space can be embedded in a regular-closed space, namely, any compactifi-
cation of it. It is known that a regular-closed space need not be compact
(see [26]); also, it is known that there exists a regular space that cannot be
densely embedded in a regular-closed space (see [141]).

Definition 2.5.3.2 A topological space is said to be an RC-regular space
if it can be densely embedded in a reqular-closed space.

It follows from the above remarks that the class of RC-regular spaces
lies properly between the class of regular spaces and the class of completely
regular spaces.

We shall now give the axiom that is used for the connection with the
regular-closed spaces. It deals with a different type of neighborhood relation
between subsets of an R-proximity space X.

Definition 2.5.3.3 A subset B of X surrounds the subset A if every max-
imal round filter that intersects A (that is, every member of the filter inter-
sects A) contains B.

Definition 2.5.3.4 A separated R-prozimity that satisfies the condition:

(RC) (axiom of RC-regularity) the subset B
surrounds the subset A if and only if A < B,

s said to be an RC-proximity.
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Proposition 2.5.3.2 Let Z be a regular-closed topological space, and let X
be a dense subspace of Z. If § is a separated R-proximity induced on X by Z
by the method described in Proposition 2.5.1.5, then

(a) the relation § is an RC-proxzimity on X;

(b) the mazimal round filters on X are precisely the traces on X of the
neighborhood filters of the points of Z.

Proof: We will show (b) first. Since Z is regular, by Proposition 2.5.1.5 (b)
the trace = of the neighborhood filter ¢ of a point z € Z is a round filter. If
7 is a round filter and v C 7, by Proposition 2.5.1.5 (b) there exists a regular
filter v on Z whose trace on X is 7. Since ( is a maximal regular filter, we
must have v C ¢ and thus n C . Conversely, if v is a maximal round filter,
it is the trace on X of a regular filter on Z, and since Z is regular-closed,
this regular filter has a cluster point. The trace on X of the neighborhood
filter of this cluster point must be the given maximal round filter.

To show (a), let us suppose that A and B are the subsets of X and B <
A. By definition of the proximity this is equivalent to clz (X —A)Neclz B = .
Now if 7 is a maximal round filter on X, then by (b) we know that v is the
trace on X of the neighborhood filter of some point z € Z. If v intersects B,
then z € clz B, and so there is a neighborhood V' of z disjoint from X — A,
from which we find that A € v. We have thus shown that if B <« A, then A
surrounds B.

Conversely, let us suppose that A and B are subsets of X and that A
surrounds B. Let z € clzB and let v be the trace on X of the neighborhood
filter of z. Then by (b) 7 is a maximal round filter. Since v intersects B we
must have A € v, from which it follows that z & clz(X — A). Thus B < A.
)

According to this proposition, we can now state:

Theorem 2.5.3.1 The topology of every RC-reqular space is induced by an
RC-proximity. &

2.5.4 Absolutely closed RC-proximities

We now introduce a completness condition on RC-proximities that is a gener-
alization of a condition given by Smirnoff in [294]. It will prove to be charac-
teristic for a regular-closed space in the same way that Smirnoff’s condition
is characteristic for compact spaces. We will also show that a regular-closed
space has the topology induced by precisely one RC-proximity, just as a
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compact space has the topology induced by precisely one completely regular
proximity:.

Definition 2.5.4.1 An RC-prozimity is absolutely closed if every maxi-
mal round filter is the proximal neighborhood filter of some point of the space
(that is, converges in the topology induced by the proximity).

It will later become apparent that this is equivalent to stating that there
is no proper dense embedding (in either the proximal or topological space) of
the space into an RC-proximity space, which is the condition corresponding
to Smirnoff’s definition.

Theorem 2.5.4.1 If an RC-proximity space is absolutely closed, then its
nduced topology is a reqular-closed topology, and the proximity is given by:
A and B are far if and only if they have disjoint closures.

Proof: We will establish the second statement first. Let us suppose that
A and B are subsets of an RC-proximity space X, and that AdB, that is,
A < X — B. Since the proximity satisfies (RC) it follows that X — B
surrounds A, and so every maximal round filter that intersects A contains
X — B. Now, by Proposition 2.5.3.1 (a), neighborhood filters are maximal
round, and thus we can see that any neighborhood filter that intersects A
fails to intersect B, that is, A and B have disjoint closures.

Conversely, let us suppose that AdB, that is, A « X — B. Then, by
(RC), X — B does not surround A, so there is some maximal round filter that
intersects A and intersects B. Since we are assuming that the proximity is
absolutely closed, this maximal round filter must be the neighborhood filter
of some point of the space, and this point is in the closure of both A and B.

Having characterized the proximity, we will establish that the induced
topology is regular-closed. According to Proposition 2.5.3.1 (a) every round
filter is a regular filter. Observing that every open set containing a closed
set is a round neighborhood of the closed set, by the above characterization
of the proximity, we can see that every regular filter is a round filter, thus
every maximal regular filter converges and the topology is regular-closed. &

The following theorem is a generalization of Theorem 8. in [294].

Theorem 2.5.4.2 An RC-prozimity space is absolutely closed if and only
if the induced topology is regular-closed.
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Proof: That an absolutely closed RC-proximity induces a regular-closed
topology is a part of Theorem 2.5.4.1. To show the converse, that an RC-
proximity space whose induced topology is regular-closed is absolutely clo-
sed, we can see that a maximal round filter (being a regular filter by Propo-
sition 2.5.3.1 (a)) must have a cluster point, to which it must then converge
(since neighborhood filters are round by Proposition 2.5.3.1 (b)). &

Using Theorems 2.5.3.1, 2.5.4.1 and 2.5.4.2, we can establish the follow-
ing two results:

Theorem 2.5.4.3 A topological space is reqular-closed if and only if it has
the topology induced by an absolutely closed RC-proximity. &

Theorem 2.5.4.4 There is precisely one RC-proximity that induces the
topology of a regular-closed space. &

2.5.5 The ideal space of an RC-proximities

The final link in chain connecting RC-proximities and RC-regular spaces is
to show that a space having topology induced by an RC-proximity is an
RC-regular space, and it is this problem that we will pay our attention to.

Let 0 be an RC-proximity on X. We shall construct a set 7X and an
absolutely closed RC-proximity m on rX such that X is naturally embedded
in X as a dense subspace both in the topological and the proximal sense.

Let rX be the disjoint union of X with an index set for the family of
nonconvergent maximal round filters on X. For p € r X, let us define OF as
follows: if p € X then OP is the filter of proximal neighborhoods of p, and if
p € rX — X, then OP is the nonconvergent maximal round filter for which
p is the index.

Let us define a relation 7 on subsets of X by PnQ if there is p € rX
such that for each V € OP there is (a,b) € P x Q with V € 0% and V € O°.
We shall show that 7 is an absolutely closed RC-proximity on rX, that it
induces the proximity § on the subset X, and that every point of rX is
related to X under w. An immediate consequence will be that the topology
induced on X by § is RC-regular.

Properties (SP;) and (SPs3) are clear, and (SPy) is readily shown. Prop-
erty (SPs) follows from Proposition 2.5.3.1 (d). Since the relation § satisfies
(RC), it is easy to see that for the subsets A and B of X, it follows that
AéB if and only if AwB; thus the relation 7 does indeed induce the relation
0 on the subset X. To show that every point of X is related to X under T,
we can merely see that if p € rX and V € OP, there is x € X with V € O”.
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We will now introduce some useful notation. For A C X, let A’ = {p €
rX : A€ OP}, and let A* = AUA. Alsolet A°={z e X:z< A} It
is easy to see that (A4°)" = (A°)* = A’. Given a filter v on X, let v* be the
filter on X generated by {F* : F € v}. Finally, we will note that P < @
for Pm(rX — Q). The following lemma is useful in proving that = has the
properties (R) and (RC).

Lemma 2.5.5.2 (a) p < R if and only if there is V € OP with V' C R.

(b) For A,B C X, A* < B* if and only if A < B.

(¢) If ¢ is a round filter on rX, then the trace v of ¢ on X exists and
¢=7"

(d) v* is a (mazimal) round filter on rX if and only if v is a (mazimal)
round filter on X.

Proof: (a) If {p}7(rX — R), then, since for each V' € OP there is p € {p}
with V' € OP, we must have some V € OP such that V ¢ O° for any
b € rX — R; equivalently, V' C R. Conversely, if {p}7(rX — R), it can easily
be seen that we must have V' ¢ R for each V € OP.

(b) Let us suppose that A6(X — B). Then, using (RC) we can see that
there is OP such that OP intersects A and OP intersects X — B. Since A C A*
and X — B C rX — B*, then A*n(rX — B*). Conversely, let us suppose
that A*w(rX — B*). Then there is OF such that for each V' € OP there
is (a,b) € A* x (rX — B*) with V € 0% and V € 0. Now, if a € A,
thena € ANV # (; ifa € A* — A then a € A, so A € O%, and since
V € O% as well, it also follows that ANV # 0. If b € (rX — B*) N X, then
be (X -B)nV;ifbe (rX — B*) — X, then B ¢ O° thus V ¢ B, and
so VN (X — B) # 0. Therefore the set B does not surround A and so, by
(RC) we have A £ B, that is, A6(X — B).

(c) Let A € ¢. Since ( is a round filter, there exists B € ¢ with B < A.
Since B # 0, there exists p € B, and thus p < A. It follows immediately
from (a) that AN X # (. We have thus shown that every member of ¢
intersects X, and so the trace v of ( on X exists.

We shall now show that (BN X)* C A, which will establish that ¢ C v*.
It certainly holds that BN X C AN X; now if p € (BN X)* — (BN X),
then BN X € OP, and so, for each V € OP, there is b € BN X with
BN X € 0% thus, since BT(rX — A), there must be W € OP with W’ C A,
and p € W' C A follows.

To show the converse that v* C ¢ we shall show that B C (AN X)*. If
p € B, then p < A, and so, by using (a), (ANX) € OP holds and p € (ANX)*
follows.
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(d) This follows immediately from (b) and (c). &

Lema 2.5.5.2 (¢) and (d) establishes a one-to-one correspondence from
the maximal round filters on X onto the maximal round filters on rX. They
show in particular that the maximal round filters on rX are precisely the
filters (OP)* for some p € rX.

It is immediate from Lema 2.5.5.2 (a) and (b) that 7 satisfies (R). We
shall now demonstrate that 7 also satisfies (RC'). Let us suppose that P, Q C
rX and Pm(@. Then there exists a maximal round filter OP on X such that
for each V' € OP there exists (p,q) € P x Q with V € OP and V € O%; then
the maximal round filter (OP)* on rX intersects P and does not contain
rX — @, so rX — @ does not surround P.

Conversely, let us suppose that rX — @) does not surround P. Then
there is a maximal round filter on X that intersects P and does not contain
rX — @, that is, it intersects P and (). Letting OP be the trace of this filter
on X, it follows that for each V' € OP there is (a,b) € P x @ such that
V € 0% and V € 0%, and therefore PrQ.

We have now shown that 7 is an RC-proximity on X, that 7 induces
on its subspace X and that X is proximally dense in rX. This establishes
in particular that the space X with the topology induced by ¢§ is densely
embedded in the space r X with the topology induced by 7. If we show that
rX with this topology is regular-closed, then we will have shown that X with
topology induced by ¢ is RC-regular. To show that r X is regular-closed, we
shall show that 7 is absolutely closed and shall apply Theorem 2.5.4.1.

The proximity 7 is absolutely closed if every maximal round filter on rX
converges in the topology of the proximity. Now one need only observe that
a maximal round filter on 7 X is of the form (OP)* for some p € rX, and that
the following sets are all bases for (OP)*: {V*: V € OP}; {V': V € OP}
and {A C rX : p < A}. Thus, (OP)* converges to p € rX.

Definition 2.5.5.1 The set rX with the proximity w s called the ideal
space of the proximity J.

Summing up the preceding conclusions, we have the following results:

Theorem 2.5.5.1 The ideal space of an RC-proximity is an absolutely clo-
sed RC-proximity space, and its induced topology is reqular-closed. The given
space is a dense subspace of its ideal space, in both the topological and the
proximal sense. &

Corollary 2.5.5.1 FEvery RC-proximity space is RC-reqular. &
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The following theorem, which is a generalization of the corresponding
result for completely regular proximities, is an immediate consequence of
the preceding results.

Theorem 2.5.5.2 There is a one-to-one correspondence from the collection
of RC-proximities for an RC-reqular space onto the collection of regular-
closed embeddings of the spaces, given by letting an RC-proximity correspond
to its ideal space. &

We will order regular-closed embeddings of an RC-regular space by stat-
ing Z > X if there is a mapping h from the regular-closed embedding Z
(necessarily) onto the regular-closed embedding Y that reduces to the iden-
tity on the subspace X. Then it is not difficult to show that the correspond-
ing proximities are comparable in the sense that sets which are far in the
proximity of Y are far in the proximity of Z when Z > Y.

Historical and bibliographic notes

The notions of R-proximities, RC-proximities and absolutely closed RC-
proximities were introduced in 1975 by D. Harris in paper [131]. The R-
proximities are the generalization of V. A. Efremovich’s proximities in the
class of regular spaces. The RC-proximities were introduced by Harris to
characterize the space that can be embedded in a regular-closed space. All
the results of this section, except the results of subsection 5.2., were proved
by Haris in that paper. In paper [132] he introduced the notion of an LR-
proximity space and proved Propositions 2.5.2.1-2.5.2.4 The notion of base
and subbase of an R-proximity was introduced by the author in 1987 [76].
In a very specific manner V. Fedorchuk introduced #-proximities in regular
topological spaces [97]. In 1989 G. Di Maio and S. A. Naimpally in their
paper [68] introduced the concept of a D-proximity (D standing for D, D*,
d, d*) which is distinct from the known proximities such as EF, LO, R and S.
Each of these D-proximities , besides satisfying the axioms of semi-proximity,
fulfils a condition which is weaker than the one of an EF or R-proximity and
stronger than the one of an LO or S-proximity. In paper [69] Di Maio and
Naimpally introduced the class of a D-proximity (D standing for G,,, G,
Ims 9oy 9, and pf, where m is an infinite cardinal) (see also [67] and [71]).
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2.6 Proximity approach to semi-metric and devel-
opable spaces

2.6.1 The introductory notions

In this section we will study semi-metric and developable spaces via gen-
eralized proximities and uniformities. We assume that all the proximities
considered in this section are separated.

Definition 2.6.1.1 A semi-pseudo-metizable space (X,d) is a T} - spa-
ce together with a real-valued function d on X x X such that
(a) d(z,z) =0 for each x € X;
(b) d(z,y) =d(y,xz) 20 for allx,y € X;
(c) clA={zx e X : d(z,A) =0} for each A C X.
If
(d) d(z,y) =0 implies © =y,
then X is called a semi-metrizable space.

Let (X, d) be a semi-metrizable space. It can easily be verified that the
relation d4 defined on the set X by

AdyB if and only if d(A, B) =0
is an S-proximity on X. For € > 0 we will set
Ve=A{(z,y) e X x X : d(z,y) <e}.

Clearly Vi[z] = S(z,¢), the sphere with center z and radius e. We will set
Uy={U=U"1C X xX:Vy, CU for some n € N}. For Y C P(X x X)
let us define a relation dyy on P(X) by

AdyB if and only if (A x B)NU # () for each U € U .

Clearly, if d is a semi-metric on X, then dq = dy,.

Definition 2.6.1.2 A refining family 3 on a topological space (X, T) is
a family {c; = © € I} of open covers of X such that for each v € G € T,
there exists an i € I such that st(z,a;) C G. In the case when I = N, ¥
is called a development on X and the pair (X,X) is called a developable
space.
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In this case, it is well known that 3 may be replaced by another develop-
ment ¥’ = {f3; : j € N} such that if j < k then 8 C 3;; we will assume that
> already satisfies this condition. We will also assume that the developable
spaces are T7.

Lemma 2.6.1.1 Every refining family ¥ = {o; : i € I} on a 11 space
(X, 7) induces a compatible LO-proximity dyx, on X, where 0x; is defined by

AdsB if and only if st(A,a;) N B # 0 for eachi € 1.

Proof': It is obvious that dy, is a separated semi-proximity compatible with
the topology 7. We will now show that Jy, satisfies the condition (LO). Let
us suppose that Adx.B and bdxC for each b € B. Then Adx B implies that
for each i € I, there exists a b € B such that b € st(A, a;). Since st(A, o)
is open, there is a j € I such that b € st(b,a;) C st(A, ;). Since boxC,
CNst(b,a;) # 0 and this, in turn, implies that C N st(A, ;) # 0, i.e. AdxC.
&

For a developable space (X, X), ¥ = {\, : n € N}, we will define dyx, by

1
d =inf{ ——: t(x, A\n) ¢ -
o) = int { sy e s ) |

It can easily be seen that dy is a compatible semi-metric on X and that
04 = 0x. For each n € N, let us set that

B,=U{GxG: Ge\,}.
Lemma 2.6.1.2 B,, =V ,.

Proof: (z,y) € Vi, if and only if d(z,y) < 1/(n + 1) < 1/n if and only if
y € st(x, A\y) if and only if (z,y) € B,,. &

Definition 2.6.1.3 An S-uniformity base B on X is a family of subsets
of X x X such that

(S1) {U : U eB}DA;
(S9) U=U"1 for each U € B;

(S3) for each A C X and U,V € B, there exists a W € B such that
WIA] Cc U[A]NV[A];

(S4) for eachpe X, BC X and U € B, if V[p]N B # 0 for each V € B,
then there exists an x € B and a W € B such that Wz| C Ulp|;

(S5) for eachU € B,U CV =V~ C X x X implies V € B.
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An S-proximity on X is separated if

(Se) {U : U € B} =A.
U C X x X is said to be an S-uniformity (separated S-uniformity) in X if
there exists a family B C U satisfying conditions (S1) — (S5) ((S1) — (S6))
above and for each U € U there exists a B € B such that B C U.

If U is an S-uniformity, then 77, is defined as usual: G € 7, if and only
if for each = € G, there exists a U € U such that U[z] C G. If 7 = 7y, we
will say that 7 and U are compatible.

Theorem 2.6.1.1 IfU consists of symmetric subsets of X x X, then U is
an M-uniformity base (resp. S-uniformity base) if and only if &y is a LO
prozimity (resp. an S-proximity).

Let (X, d) be a semi-metrizable space and let us set that Vi, = {(z,y) :
d(x,y) < 1/n}. Then {Vi;, : n € N} is a countable base for a compatible
S-uniformity. &

2.6.2 Semi-metrizable spaces

In this subsection we will suppose that (X, d) is a semi-metrizable space and
consider the effects of the various forms of continuity properties of d on the
topology of X and on the proximity dg4.

Lemma 2.6.2.3 In the following consideration (a) and (b) are equivalent
and each implies (c):

(a) semi-metric d is separately upper semi-continuous;

(b) for each e >0 and x € X, S(x,¢) is open;

(¢) 64 is a LO-prozimity on X.

Proof: (a) = (b) : Let y € S(z,¢), i.e. d(z,y) < e. Since d is upper
semi-continuous in y, for every n > 0 there is a neighborhood N, of y such
that d(z,z) < d(z,y) + n for each z € N,. Let us choose n < ¢ — d(z,y).
Then clearly N, C S(z,¢), showing thereby that S(z,¢) is open.

(b) = (a) : Let us suppose that d(z,y) = r and € > 0. Clearly y €
S(x,r + €), which is open, and hence there exists a neighborhood NN, of y
such that N, C S(z,r 4 ¢). But this means that for each z € N, d(z,2) <
d(x,y) + ¢, i.e. d is separately upper semi-continuous.

(a) = (c¢) : Let us suppose that AdyB and bégC for each b € B. Then
for each € > 0 there exists an a € A and a b € B such that d(a,b) < e. Since
d is upper semi-continuous at b, there exists a neighborhood N; of b such
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that d(a,z) < e for each x € Np. Also, bdyC' implies the existence of a point
¢ € C'N Ny and hence, d(a,c) < e, i.e. AogC. &

Corollary 2.6.2.1 If a semi-metric d is separately upper semi-continuous,
then Uy is an M-uniformity (obviously with a countable base). &

Lemma 2.6.2.4 If semi-metric d is separately lower semi-continuous, then
X is reqular.

Proof: Let A be a closed set in X and p € X — A. Then d(p,A) =r >0
and hence for each a € A, d(p,a) > r. Since d is lower semi-continuous at a,
there exists a neighborhood N, of a such that for each x € N, d(p,x) > r/2.
Let us set that Ny = U{N, : a € A}. Then N4 is a neighborhood of A and
Nan S(p,r/2) = 0, thereby showing that X is regular. &

Theorem 2.6.2.1 If semi-metric d is separately continuous, then X is Ty-
chonoff space.

Proof: Let us suppose that