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Abstract: The paper introduces support vector machines 
(SVM), a recent method in statistical learning theory, used to recognize 
and classify soils according to their geographic origin. The classification 
was performed based on activities of seven radionuclides determined by 
gamma-ray spectrometry. The radionuclides of uranium and thorium 
series (226Ra, 232Th, 235U, 238U) and 40K were used to differentiate 
investigated areas based on geology, while cosmogenic beryllium (7Be) 
and anthropogenic 137Cs were used to differentiate areas according to 
their susceptibility to fallout. The performances of the proposed method 
was compared to those of principal component analysis (PCA), linear 
discriminant analysis (LDA), k-nearest neighbours (kNN), soft 
independent modelling of class analogy (SIMCA) and artificial neural 
networks (ANN) applied to the same dataset. 

 Key words: Chemometrics; Lithology; Fallout; Prediction 
ability 

1. Introduction 

There are a number of well known and widely used methods for 
analysis of spatially dependent data. Chemometric analysis methods provide 
powerful tools for the analysis of environmental data which are characterized 
by strong variation of the element concentration in environmental 
compartments due to natural inhomogenities and complexity of interactions 
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within variables (Einax et al., 1997; Dragović et al., 2007). There are only few 
studies on employing the chemometric approach in spatial data analysis of 
radioactively contaminated areas (Kanevski et al., 1996, 1997; Kanevski, 
2008; Kanevski et al., 2009).  

Support vector machines (SVM) belong to new generation of learning 
algorithms used for classification and regression tasks (Vapnik, 1995, 1998; 
Xu et al., 2006). They have been introduced in chemometrics firstly to resolve 
mid and near infrared classification tasks (Belousov et al., 2002; Devos et al., 
2009).  

In addition to different classification applications of SVM in a wide 
variety of environmental sciences, there are a lot of researches based on SVM 
which are dealing with optimal sample selection in classification (Zomer et al., 
2004). For the purpose of estimation of the performance of SVM, many authors 
have judged this learning theory against artificial neural networks (ANN), very 
often obtaining opposite results (King et al., 2000, Li et al., 2006). In available 
literature there are no data on application of SVMs in classification of soils in 
respect to their radioactivity. 

The objective of this study was to test the efficiency of SVM in 
discrimination of soil samples from Serbia and Montenegro according to 
geographic origin. Soil samples were analyzed by gamma-ray spectrometry 
and then classified according to their origin based on their radionuclide 
content. The specific levels of natural environmental radiation are related to 
the geological composition of each lithologically separated area, and to the 
content of natural radionuclides in rocks the soils originate from (UNSCEAR, 
2000). Geologically, the territory of Serbia and Montenegro includes a great 
number of rock complexes (magmatic, sedimentary and metamorphic rocks) 
which are markedly different in respect to their age, genesis, mineral content 
and petrochemical and geochemical characteristics. Outstanding differences in 
natural radioactivity of soils can be connected with their geological origin 
(Dimitrijević, 1995). Therefore, the set of natural radionuclides (226Ra, 238U, 
235U, 40K and 232Th) was used in this work to differentiate investigated areas 
based on geology. In addition to natural radionuclides in all soil samples a man-
made radionuclide, 137Cs, derived from Chernobyl accident was also 
determined, which activity could be influenced by altitudes of sampling areas. 
Ecosystems at high alitudes are predisposed to receive higher fallout because 
of high precipitation rates which enhance the likelihood of deposition (Howard 
et al., 1991). In analyzed soil samples the cosmogenic radionuclide 7Be was 
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also detected. The activities of this radionuclide on the ground are higher in 
areas of high rainfall. Since the precipitation level is generally higher in upland 
regions, an increase in concentration of beryllium with altitude is to be 
expected (Salisbury and Cartwright, 2005). Therefore, radiocesium and 
beryllium were used in our work to differentiate areas according to their 
susceptibility to fallout. 

2. Materials and methods 

2.1. Samples 

A total of 103 samples including six to eight subsamples of surface 
soils were collected from fifteen geographic regions of Serbia and Montenegro 
in 2003. The geographic coordinates of sampling locations and the distribution 
of samples per location is shown in Table 1. After removal of vegetation and 
other debris samples were dried to constant weight and passed through a 2 mm 
mesh sieve. Prior to gamma-ray spectrometry measurements, the homogenized 
samples were stored in 1L Marinelli beakers for one month to ensure 
equilibrium between 226Ra and its daughters. 

Table 1. Geographic coordinates of locations and number of samples per each location 
Sampling 
location no. Location Geographic coordinates 

(Northing, Easting) 
Number of 

samples 
1 Slatina N 42o 45’, E 19o 46’ 7 
2 Beljanica N 44o 06’, E 21o 42’ 6 
3 Željevica N 42o 46’, E 19o 46’ 6 
4 Kopaonik N 43o 17’, E 20o 48’ 10 
5 Avala N 44o 41’, E 20o 31’ 6 
6 Devojački Bunar N 45o 00’, E 20o 57’ 8 
7 Bukulja N 44o 18’, E 20o 31’ 8 
8 Kosmaj N 44o 28’, E20o 33’ 7 
9 Stara Planina N 43o 24’, E 22o 39’ 5 
10 Surdulica N 42o 41’, E 22o 10’ 5 
11 Bogićevica N 42o 36’, E 20o 04’ 6 
12 Durmitor N 43o 09’, E 19o 07’ 8 
13 Kosovska Kamenica N 42o 35’, E 21o 34’ 7 
14 Kukavica N 42o 47’, E 21o 56’ 5 
15 Loznica N 44o 32’, E 19o 14’ 9 



18 

2.2. Radioactivity measurements 

Measurements were performed using an HPGe gamma-ray 
spectrometer ORTEC-AMETEK (model GEM 25) of 34% relative efficiency 
and 1.65 keV FWHM for 60Co at 1.33 MeV. All samples were measured for 
60 ks. The spectra obtained were processed using Gamma Vision 32 software 
(ORTEC, 2001). 

The 238U activity was evaluated through gamma ray emission at 63.3 
keV (branching 4.8%) of its daughter 234Th, neglecting the 63.8 keV gamma 
ray from 232Th, which has a branching as low as 0.27%. For the determination 
of 235U activity the gamma ray line at 143.8 keV was used. The 226Ra activity 
was determined through the gamma ray energies at 295.2 and 351.9 keV of 
214Pb and those at 609.3, 1120.3 and 1764.5 keV of 214Bi. For the 
measurements of the 232Th activity, the gamma ray lines at 911.1 and 969.1 
keV of 228Ac were used. The 137Cs, 40K and 7Be isotopes were directly 
measured at 661.7, 1460.8 and 477.6 keV, respectively. Background spectral 
intensities were determined before sample measurements and substracted from 
corresponding sample intensities. For quality assurance purposes checks on 
calibration were performed using standard reference materials and proficiency 
test on the determination of gamma emitting radionuclides (IAEA, 2007). 

2.3. Support vector machines 

A SVM represents state-of-the-art learning approach to pattern classifi-
cation and it is based on binary classification model (Vapnik, 1995). Binary 
model assumes that a soil sample belongs to just one class and that there are 
only two classes ( },{ 21 ccC = ). Usually c1 and c2 are called positive and negative 
classes respectively. Each classification task with n classes can be modelled as 

a sequence of 







2
n  binary tasks using the one-versus-one approach in which 

one trains n*(n-1)/2 binary classifiers, one for each pair of classes. The final 
decision is made using voting i.e. a class that is predicted the most is selected 
as an output. Let { } miyRy i

n
iii ,...,1,1,1  ,  ),,( =−∈∈xx  be the training set. Fig. 1 

is used to explain the basic idea of the SVM classification. White and grey 
squares represent samples from a training set comprised of two distinct classes. 
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Fig. 1. SVM used for classification: construction of a separation hyper-plane in a two 
dimensional case (hyper-plane is here a line). 

For a moment assume that classes are linearly separable, i.e. neglect 
circled examples in Fig. 1. During the learning phase one seeks a separating 
hyper-plane which best separates the examples of two classes. Let h1:

1=+⋅ bxw  (where “.” denotes the dot product) and                                                h–

1: 1−=+⋅ bxw , RbR n ∈∈ ,, xw , are possible hyper-planes so that all white 
examples lie above h1 (yi = 1) and all grey examples lie under h–1. (yi = 1− ).  
Hence for all training examples (xi, yi) it follows that:  

miby ii ,...2,1,1)( =≥+⋅ xw       (1) 
One chooses h: 0=+⋅ bxw to be the best separating hyper-plane lying 

in the middle between already-fixed hyper-planes h1 and h-–1. The notion of the 
best separation can be formulated to find the maximum margin M that 

separates data from both classes. Since the margin is equal to
w
2 , maximizing 

the margin is equal to minimizing w . The best separating hyper-plane can now 
be found by solving the following nonlinear convex programming problem (for 
solving optimization problem see Fletcher, 1987):  find w, b to be 

 
miby- ii

b

,...2,1,0)(1  :w.r.t
2
1  min 2

,

=≤+⋅xw

w
w      (2) 

In practical classification problems, examples are usually not linearly 
separable (circled examples from Fig. 2). Therefore, the additional positive 
slack variables iε are introduced, which represent the distances of points on the 
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wrong side of the separating hyper-plane (circled squares). The nonlinear 
convex program (2) now becomes: 

mi
by

C

i

iii

i
i

b

,...2,1,0
,0)(1  :w.r.t

2
1  min 2

,

=≤−
≤+⋅−−

+ ∑

ε
ε

ε

xw

w
w

     (3) 

Parameter C models the penalty for misclassified points in a training 
set. One wants to find a hyper-plane to minimize misclassification errors while 
maximizing the margin between the classes. The optimization problem (3) is 
usually solved in its dual form and the solution is: 

 ∑
=

=
m

i
iii y

1

* xw α , miC i ,...1,0 =≥≥α      (4) 

 

Fig. 2. Mapping examples (here one-dimensional) into high dimensional space (here two-
dimensional). 

Here a solution *w for an optimal hyper-plane is a linear combination 
of training examples. However, it can be shown that w* represents a linear 
combination of those vectors xi (support vectors) for which the corresponding 

iα  are non-zero values. Support vectors for which 0>> iC α  holds belong 
either to h1 or h-–1 (depending on yi). Let xa and xb be two support vectors (

0, >> baC αα ) for which holds ya = 1 and yb = 1− . Now )(
2
1 **

bab xxw +⋅−=  

and finally classification function becomes:  

∑
=

+⋅=
m

i
iii byf

1

*)(sgn)( xxx α       (5) 
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In order to cope with nonlinearity of the classification problem, SVM 
approach goes one step further. One can define the mapping of examples in a 
so-called feature space of very high dimension: dnRR dn <<→ ,:φ  i.e. 

)(xx φ→ . The basic idea of this mapping into high dimensional space is to 
transform the non-linear case into linear one as illustrated in Fig. 2 and then to 
use already explained linear algorithm. In such a space dot-product from (5) 
transforms into )()( xx φφ ⋅i . It is known that there is a certain class of functions 
called kernels (Burges 1998) for which )()(),( yxyx φφ ⋅=k , which means that 
they represent dot-products in some high dimensional spaces, but can be easily 
computed in the input space. Using kernels (5) becomes: 

∑
=

+=
m

i
iii bkyf

1

*),(sgn)( xxx α       (6) 

In all SVM experiments presented in this paper, an open-source 
package LIBSVM (Chang and Lin, 2001) as a standard implementation for 
SVM classification and regression algorithms was used. A detailed review of 
SVM for pattern classification can be found in Burges (1998). 

3. Results and discussion 

The basic statistics of activities of 226Ra, 238U, 235U, 40K, 137Cs, 232Th 
and 7Be in analyzed soil samples by sampling locations is presented in Table 
2. The range of natural radionuclide concentrations is a consequence of the 
variety of lithological components in the investigated areas. The highest 
activities of radionuclides of uranium and thorium series were measured in soil 
samples belonging to sedimentary formations as well as in soil samples that 
stem from magmatic rock complexes of silica oversaturated category. 
Numerous surveys worldwide have shown that the presence of radioactive 
elements in soils is strongly conditioned by those existing in the parent 
material, although the percentage of an element can vary in a given rock as a 
function of the process to which it has been subjected. The influence on the 
parent material and physicochemical phenomena associated with its 
weathering on concentrations of natural radionuclides in soil has been 
demonstrated in survey conducted by Baeza et al. (1995). Activity 
concentrations of natural radionuclides in Mediterranean soils have found to 
be lithologically-dependent (Schoorl et al., 2004; Laubenstein and Magaldi, 
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2008). Navas et al. (2005) have also shown that natural radioactivity of soils is 
largely controlled by the mineral composition of the parent material.  

Table 2. Basic statistics of radionuclide activity concentrations (Bq kg-1 d.w.) in soils from 
different sampling locations 

Radio-
nuclide 

Para-
meter 

Sampling location 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

226Ra 

Mean 17.8 37.8 25.5 25.0 29.8 18.3 38.2 34.0 32.1 37.4 49.2 44.7 23.3 31.6 25.6 
SD 1.55 2.68 1.76 1.16 1.95 2.37 2.43 1.80 1.17 1.47 4.00 2.09 1.31 1.45 1.60 
Min 15.9 34.5 23.4 23.2 27.6 13.6 35.2 31.8 30.8 35.8 45.1 41.5 21.4 29.3 23.3 
Max 19.8 41.9 27.5 26.5 32.7 20.9 41.6 36.9 33.8 38.7 54.9 47.2 24.9 32.7 28.0 

235U 

Mean 0.72 1.49 0.63 1.16 1.45 0.90 1.63 1.47 1.47 1.72 2.45 2.00 1.09 1.41 1.18 
SD 0.04 0.19 0.11 2.10 0.07 0.09 0.14 0.05 0.04 0.07 0.14 0.11 0.05 0.05 0.03 
Min 0.67 1.25 0.51 1.07 1.34 0.80 1.37 1.38 1.42 1.64 2.20 1.84 1.00 1.35 1.14 
Max 0.78 1.82 0.81 1.24 1.54 1.04 1.78 1.54 1.54 1.78 2.61 2.15 1.14 1.49 1.26 

238U 

Mean 16.0 32.8 25.0 22.7 31.1 16.7 37.6 33.3 31.5 37.6 49.8 43.1 21.9 30.7 25.2 
SD 1.15 3.01 1.69 0.06 0.66 0.98 2.62 1.57 1.54 1.10 3.84 2.60 0.92 0.77 1.48 
Min 14.6 30.3 23.2 19.9 30.2 15.6 34.3 30.2 30.0 36.1 43.5 39.5 20.5 29.5 23.4 
Max 17.7 38.4 27.7 27.7 31.8 18.8 41.9 35.3 33.5 38.9 53.4 46.1 23.1 31.4 27.3 

232Th 

Mean 23.5 47.5 32.1 35.9 40.6 21.3 44.6 43.9 36.0 47.5 47.6 77.0 32.6 44.7 37.5 
SD 1.18 4.84 4.80 2.85 2.03 2.03 2.43 1.56 1.64 1.84 1.70 4.24 2.09 2.30 1.67 
Min 22.4 40.3 26.3 30.5 37.1 18.3 41.5 41.4 33.6 45.6 45.3 71.0 30.2 41.1 35.2 
Max 25.0 53.6 37.7 40.1 42.5 24.5 48.9 45.9 38.1 50.6 49.5 83.4 35.5 46.8 40.3 

40K 

Mean 422 520 345 580 686 332 652 710 645 651 882 298 655 755 548 
SD 17.4 43.2 22.8 22.0 25.7 21.6 57.6 16.8 29.7 19.2 25.8 21.4 19.8 31.0 24.6 
Min 392 468 314 550 645 301 537 686 610 629 847 271 633 723 500 
Max 442 578 366 611 710 360 705 728 672 679 919 328 677 791 593 

137Cs 

Mean 30.5 15.7 84.7 25.8 77.8 60.0 101 41.3 5.60 40.3 42.8 61.8 60.2 13.8 43.2 
SD 2.00 2.03 3.87 1.86 1.61 4.82 8.53 1.31 0.29 1.38 2.53 2.96 3.16 0.22 3.07 
Min 27.5 13.2 80.9 23.5 75.1 52.7 89.7 39.8 5.25 38.4 40.6 58.4 55.9 13.5 38.1 
Max 32.8 18.9 91.8 29.5 79.9 64.5 112 43.2 5.88 41.8 46.8 68.4 65.0 14.0 46.8 

7Be 

Mean 2.58 1.69 1.48 1.55 1.09 0.82 2.43 3.68 0.77 0.80 3.06 3.57 0.67 1.44 0.72 
SD 0.37 0.08 0.13 0.17 0.09 0.13 0.17 0.30 0.09 0.06 0.18 0.08 0.09 0.06 0.09 
Min 2.09 1.58 1.32 1.26 0.93 0.56 2.14 3.11 0.67 0.73 2.82 3.46 0.54 1.38 0.61 
Max 3.02 1.78 1.65 1.78 1.20 0.98 2.66 3.94 0.89 0.88 3.29 3.70 0.79 1.50 0.86 

The variety of activity concentrations of  137Cs and 7Be was also 
observed in investigated soils depending on altitudes of sampling sites. A 
significant correlation between the accumulated deposition of man-made 
radionuclides (137Cs, 238Pu, 239+240Pu and 241Am) in soils and altitudes of 
sampling sites has been reported in studies conducted worldwide (Bunzl and 
Kracke, 1988; Blagoeva and Zikovsky, 1995; Legarda et al., 2001; Arapis and 
Karandinos, 2004). However, factors other than altitude, such as physical, 
chemical and biological properties of soil, influence the behaviour of any 
radionuclide in the soil, as well as its migration velocity.  
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Shapiro-Wilk's test (significance level α was 0.05) (Shapiro and Wilk, 
1965) for normality of activity distribution within each radionuclide was 
applied prior to any classification and revealed normal distribution of the data.  

For classification purposes Gaussian kernel 
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and linear kernel (no mapping, equation (5)) were used. After removing all 
training data that are not support vector points and retraining the classifier, the 
same solution will be obtained. Hence, support vectors represented the 
examples from the training set that best describe the classes. The ability to 
distinguish between support vectors and noisy data points enabled SVM to 
increase its generalization capacity in the learning process.  

To test the quality of proposed classification method the linear 
accuracy measure defined as ratio of the number of correctly classified 
samples to the number of samples in test set was used. 

In order to assure numerical stability of SVM classification, algorithm 
values of all parameters in data set were transformed to be roughly between -2 
and 2 by applying the log transformation. A SVM classifier with Gaussian 
kernel was compared to a classifier with the linear kernel. Kernel parameter 
gamma and penalty C were varied from the following values {0.1, 0.5, 1, 2} 
and {1, 10, 20, 50, 100, 1000} respectively.  

Results obtained after applying SVM to radionuclide data set are 
presented in Table 3. From this table it is evident that the performance of the 
Gaussian kernel is nearly identical to the linear one. This was a very interesting 
finding which indicates that the soil data points were linearly separable in the 
space of seven properties presented by seven radionuclides determined in soil 
samples. Therefore it was decided to use only linear kernel classifier in the 
remaining train-test splits (only parameter C needed). One can see that the 
linear SVM perfectly classifies our soil samples into 15 predefined classes – 
geographical areas.  

Table 3. SVM classification performance: in the first two splits both Gaussian and linear kernel 
SVM were tested 

Train-Test split Gamma C Gaussian accuracy (%) C Linear accur. (%) 
25 – 78 1 10 94.87 100 93.56 
35 – 68 0.5 100 97.06 50 97.06 
45 – 58    20 98.28 
55 – 48    10 100 
65 – 38    10 100 
75 – 28    10 100 
85 – 18    10 100 
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In Fig. 3 a comparison of prediction abilities of SVM and other pattern 
recognition methods applied to the same data set is presented. By applying 
PCA to experimental data, the classification rate of 86% was achieved 
(Dragović and Onjia, 2006). The application of linear discriminant analysis 
(LDA) as linear and parametric method, which maximizes the variance 
between classes and minimizes the variance within the classes, resulted in 
82.8% of correctly classified samples (Dragović and Onjia, 2007). When a 
non-parametric method, k-nearest neighbours (kNN), was applied the 
classification rate of 88.6% was obtained. The results obtained by soft 
independent modelling of class analogy (SIMCA) method were very poor 
compared to those of other methods, giving only 60.0% of correct assignation 
for samples from test set. A back-propagation ANN classifier, designed by an 
input layer consisting of the radionuclide activities in the soil samples, a hidden 
layer and an output layer, composed of regions the samples were collected 
from, resulted in a classification rate of 92.1%. The prediction ability obtained 
with SVM was 93.6 to 100% depending on the number of samples in the test 
set.  

 

Fig. 3. Prediction ability of SVM in comparison to other pattern recognition methods applied 
to the same data set 

The advantage of the SVM method over the ANN one became obvious 
in our problem setting: while in the ANN model one must choose between 
different topologies, a set of initial weights, learning rate, momentum and 
possibly other parameters, in the SVM approach one needs only one parameter 
(or two in the case of Gaussian kernel), and yet SVM will always find a global 
minimum (of error function) if it exists. In the case of ANN, initial random 
weights usually lead us to local optima.  
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