UNIVERZITET U NIŠU PRIRODNO-MATEMATIČKI FAKULTET

mr Dragan Stevanović

NEKE KOMPOZICIJE GRAFOVA I GRAFOVI SA CELOBROJNIM SPEKTROM

— doktorska disertacija —

Niš, 1999.

Za Sanju

Sadržaj

Pr	redgovor	vii
Ι	NEPS grafova	1
Št	a je NEPS grafova?	3
1	Povezanost i bipartitnost NEPSa grafova1.1Povezanost1.2Broj komponenti povezanosti1.3Bipartitnost	5 9 10
2	 O hipotezi D. Cvetkovića 2.1 Teorema o višestrukostima	13 15 16
Π	Regularni grafovi sa celobrojnim spektrom	19
U	vod u potragu	21
3	Mogući spektri 3.1 Polazni rezultati 3.2 Slučaj $x = 0$ 3.2.1 Podslučaj $(z, w) = (0, 3)$ 3.2.2 Podslučaj $(z, w) = (4, 0)$ 3.3 Slučaj $x > 0, y = 0$	 23 23 24 24 25 25

iii

3.5 Slučaj $x > 0, y > 0, z > 0, w > 0$ 27 3.6 Slučaj $x > 0, y > 0, z > 0, w > 0$ 28 4 Nepostojanje nekih integralnih grafova 33 4.1 Gornja granica za broj čvorova 33 4.2 Uglovi bipartitnih, 4-regularnih, integralnih grafova 34 4.3 Nemogući spektri 36 4.3.1 Nemogući spektri sa $x, y, z, w > 0$ 36 4.3.2 Ostali nemogući spektri sa $x, y, z, w > 0$ 37 4.3.3 Nemogući spektri sa $x, y, z, w > 0$ 37 4.3.3 Nemogući spektri sa $x, y, z, w > 0$ 37 4.3.3 Nemogući spektri sa $x, y, z, w > 0$ 38 5 Grafovi koji ne sadrže ± 3 u spektru 41 5.1 Trivijalni slučajevi 42 5.2 Kako napasti netrivijalne slučajeve? 42 5.2 Kako napasti netrivijalne slučajeve? 42 5.3 Integralni grafovi sa $(x, z, w) = (0, 0, 3)$ 44 5.3.1 Grafovi sa spektrom $4, 2^{4}, 0^{6}, -2^{4}, -4$ 44 5.3.3 Grafovi sa spektrom $4, 2^{1}, 0^{6}, -2^{1}, -4$ 46 5.3.3 Grafovi sa spektrom		3.4	Slučaj $x > 0, y > 0, z = 0$	26							
3.6 Slučaj $x > 0, y > 0, z > 0, w > 0$ 28 4 Nepostojanje nekih integralnih grafova 33 4.1 Gornja granica za broj čvorova 33 4.2 Uglovi bipartitnih, 4-regularnih, integralnih grafova 34 4.3 Nemogući spektri sa $x, y, z, w > 0$ 36 4.3.1 Nemogući spektri sa $x, y, z, w > 0$ 36 4.3.2 Ostali nemogući spektri sa $x, y, z > 0, w = 0$ i $n = 630$ 38 4.3.4 Nemogući spektri sa $x > 0, y = 0$ 38 4.3.4 Nemogući spektri sa $x > 0, y = 0$ 38 5 Grafovi koji ne sadrže ± 3 u spektru 41 5.1 Trivijalni slučajevi 42 5.3 Integralni grafovi sa $(x, z, w) = (0, 0, 3)$ 44 5.3.1 Grafovi as spektrom $4, 2^4, 0^6, -2^4, -4$ 44 5.3.2 Grafovi sa spektrom $4, 2^{10}, 0^6, -2^2, -4$ 44 5.3.3 Grafovi sa spektrom $4, 2^{10}, 0^6, -2^2, -4$ 44 5.3.2 Grafovi sa spektrom $4, 2^{10}, 0^6, -2^2, -4$ 44 5.3.3 Grafovi sa spektrom $4, 2^{11}, -1^4, -2^4, -4$ 52 5.4.1 Grafovi sa spektrom $4, 2^{11}, 1^4, -1^4, -2^7, -4$ 5		3.5	Slučaj $x > 0, y > 0, z > 0, w = 0 \dots \dots \dots \dots \dots \dots \dots$	27							
4 Nepostojanje nekih integralnih grafova 33 4.1 Gornja granica za broj čvorova 33 4.2 Uglovi bipartitnih, 4-regularnih, integralnih grafova 34 4.3 Nemogući spektri 36 4.3.1 Nemogući spektri sa x, y, z, w > 0 36 4.3.2 Ostali nemogući spektri sa x, y, z, w > 0 37 4.3.3 Nemogući spektri sa x, y, z, w > 0 37 4.3.3 Nemogući spektri sa x, y, z w > 0 37 4.3.3 Nemogući spektri sa x, y, z w > 0 38 4.3.4 Nemogući spektri sa x, y, z w > 0 38 5 Grafovi koji ne sadrže ±3 u spektru 41 5.1 Trivijalni slučajevi 42 5.2 Kako napasti netrivijalne slučajeve? 42 5.3 Integralni grafovi sa (x, z, w) = (0, 0, 3) 44 5.3.1 Grafovi sa spektrom $4, 2^{4}, 0^{6}, -2^{4}, -4$ 44 5.3.3 Grafovi sa spektrom $4, 2^{10}, 0^{6}, -2^{12}, -4$ 49 5.4 Integralni grafovi sa (x, z, w) = (0, 4, 0) 52 5.4.1 Grafovi sa spektrom $4, 2^{4}, 1^{4}, -1^{4}, -2^{4}, -4$ 52 5.4.2 Graf		3.6	Slučaj $x > 0, y > 0, z > 0, w > 0$	28							
4.1 Gornja granica za broj čvorova 33 4.2 Uglovi bipartitnih, 4-regularnih, integralnih grafova 34 4.3 Nemogući spektri 36 4.3.1 Nemogući spektri sa x, y, z, w > 0 36 4.3.2 Ostali nemogući spektri sa x, y, z, w > 0 37 4.3.3 Nemogući spektri sa x, y, z, w > 0 37 4.3.3 Nemogući spektri sa x, y, z, w > 0 37 4.3.3 Nemogući spektri sa x, y, z, w > 0 38 5 Grafovi koji ne sadrže ±3 u spektru 41 5.1 Trivijalni slučajevi 42 5.2 Kako napasti netrivijalne slučajeve? 42 5.3 Integralni grafovi sa (x, z, w) = (0, 0, 3) 44 5.3.1 Grafovi sa spektrom $4, 2^4, 0^6, -2^4, -4$ 44 5.3.2 Grafovi sa spektrom $4, 2^4, 0^6, -2^4, -4$ 44 5.3.3 Grafovi sa spektrom $4, 2^4, 0^6, -2^4, -4$ 44 5.3.2 Grafovi sa spektrom $4, 2^4, 0^6, -2^4, -4$ 44 5.3.3 Grafovi sa spektrom $4, 2^4, 1^4, -1^4, -2^4, -4$ 52 5.4.1 Grafovi sa spektrom $4, 2^7, 1^4, -1^4, -2^7, -4$ 59 5.4.4 <	4	4 Nepostojanje nekih integralnih grafova 33									
4.2 Uglovi bipartitnih, 4-regularnih, integralnih grafova 34 4.3 Nemogući spektri 36 4.3.1 Nemogući spektri sa x, y, z, w > 0 36 4.3.2 Ostali nemogući spektri sa x, y, z, w > 0 37 4.3.3 Nemogući spektri sa x, y, z > 0, w = 0 i n = 630 38 4.3.4 Nemogući spektri sa x > 0, y = 0 38 5 Grafovi koji ne sadrže ±3 u spektru 41 5.1 Trivijalni slučajevi 42 5.2 Kako napasti netrivijalne slučajeve? 42 5.3 Integralni grafovi sa (x, z, w) = (0, 0, 3) 44 5.3.1 Grafovi sa spektrom 4, 2 ⁴ , 0 ⁶ , -2 ⁴ , -4 44 5.3.2 Grafovi sa spektrom 4, 2 ⁸ , 0 ⁶ , -2 ⁸ , -4 46 5.3.3 Grafovi sa spektrom 4, 2 ¹² , 0 ⁶ , -2 ¹² , -4 49 5.4 Integralni grafovi sa (x, z, w) = (0, 4, 0) 52 5.4.1 Grafovi sa spektrom 4, 2 ⁷ , 1 ⁴ , -1 ⁴ , -2 ⁴ , -4 52 5.4.2 Grafovi sa spektrom 4, 2 ⁷ , 1 ⁴ , -1 ⁴ , -2 ⁷ , -4 59 5.4.3 Ne postoji graf sa spektrom 4, 2 ⁷ , 1 ⁴ , -1 ⁴ , -2 ⁷ , -4 59 5.4.4 Grafovi sa spektrom 4, 2 ¹⁰ , 1 ⁴ , -1 ⁴ , -2 ¹⁰ , -4 </th <th></th> <th>4.1</th> <th>Gornja granica za broj čvorova</th> <th>33</th>		4.1	Gornja granica za broj čvorova	33							
4.3 Nemogući spektri 36 4.3.1 Nemogući spektri sa $x, y, z, w > 0$ 36 4.3.2 Ostali nemogući spektri sa $x, y, z, w > 0$ 37 4.3.3 Nemogući spektri sa $x, y, z, w > 0$ 37 4.3.3 Nemogući spektri sa $x, y, z, w > 0$ 38 4.3.4 Nemogući spektri sa $x > 0, y = 0$ 38 5 Grafovi koji ne sadrže ± 3 u spektru 41 5.1 Trivijalni slučajevi 42 5.2 Kako napasti netrivijalne slučajeve? 42 5.3 Integralni grafovi sa $(x, z, w) = (0, 0, 3)$ 44 5.3.1 Grafovi sa spektrom $4, 2^4, 0^6, -2^4, -4$ 44 5.3.2 Grafovi sa spektrom $4, 2^8, 0^6, -2^8, -4$ 46 5.3.3 Grafovi sa spektrom $4, 2^{10}, 0, -2^{12}, -4$ 49 5.4 Integralni grafovi sa $(x, z, w) = (0, 4, 0)$ 52 5.4.1 Grafovi sa spektrom $4, 2^5, 1^4, -1^4, -2^5, -4$ 54 5.4.2 Grafovi sa spektrom $4, 2^{7}, 1^4, -1^4, -2^7, -4$ 59 5.4.4 Grafovi sa spektrom $4, 2^{10}, 1^4, -1^4, -2^7, -4$ 59 5.5 Nebipartitni grafovi 67 6		4.2	Uglovi bipartitnih, 4-regularnih, integralnih grafova	34							
4.3.1 Nemogući spektri sa $x, y, z, w > 0$ 36 4.3.2 Ostali nemogući spektri sa $x, y, z, w > 0$ 37 4.3.3 Nemogući spektri sa $x, y, z > 0, w = 0$ i $n = 630$ 38 4.3.4 Nemogući spektri sa $x > 0, y = 0$ 38 5 Grafovi koji ne sadrže ±3 u spektru 41 5.1 Trivijalni slučajevi 42 5.3 Integralni grafovi sa $(x, z, w) = (0, 0, 3)$ 44 5.3.1 Grafovi sa spektrom $4, 2^4, 0^6, -2^4, -4$ 44 5.3.2 Grafovi sa spektrom $4, 2^8, 0^6, -2^8, -4$ 46 5.3.3 Grafovi sa spektrom $4, 2^{12}, 0^6, -2^{12}, -4$ 49 5.4 Integralni grafovi sa $(x, z, w) = (0, 4, 0)$ 52 5.4.1 Grafovi sa spektrom $4, 2^4, 1^4, -1^4, -2^4, -4$ 52 5.4.2 Grafovi sa spektrom $4, 2^7, 1^4, -1^4, -2^7, -4$ 59 5.4.3 Ne postoji graf sa spektrom $4, 2^7, 1^4, -1^4, -2^7, -4$ 59 5.4.4 Grafovi sa spektrom $4, 2^{10}, 1^4, -1^4, -2^7, -4$ 59 5.5 Nebipartitni grafovi 61 5.6 Za kraj ove glave 72 63 6.1 Polazni rezultati 69		4.3	Nemogući spektri	36							
4.3.2 Ostali nemogući spektri sa $x, y, z, w > 0$ 37 4.3.3 Nemogući spektri sa $x, y, z > 0, w = 0$ i $n = 630$ 38 4.3.4 Nemogući spektri sa $x > 0, y = 0$ 38 5 Grafovi koji ne sadrže ±3 u spektru 41 5.1 Trivijalni slučajevi 42 5.2 Kako napasti netrivijalne slučajeve? 42 5.3 Integralni grafovi sa $(x, z, w) = (0, 0, 3)$ 44 5.3.1 Grafovi sa spektrom $4, 2^4, 0^6, -2^4, -4$ 44 5.3.2 Grafovi sa spektrom $4, 2^4, 0^6, -2^4, -4$ 44 5.3.3 Grafovi sa spektrom $4, 2^4, 0^6, -2^4, -4$ 44 5.3.3 Grafovi sa spektrom $4, 2^1, 0^6, -2^{12}, -4$ 49 5.4 Integralni grafovi sa $(x, z, w) = (0, 4, 0)$ 52 5.4.1 Grafovi sa spektrom $4, 2^5, 1^4, -1^4, -2^4, -4$ 52 5.4.2 Grafovi sa spektrom $4, 2^7, 1^4, -1^4, -2^7, -4$ 59 5.4.3 Ne postoji graf sa spektrom $4, 2^7, 1^4, -1^4, -2^7, -4$ 59 5.4 Grafovi sa spektrom $4, 2^{10}, 1^4, -1^4, -2^{10}, -4$ 59 5.5 Nebipartitni grafovi 61 5.6 Za kraj ove glave 72 <th></th> <th></th> <th>4.3.1 Nemogući spektri sa $x, y, z, w > 0$</th> <th>36</th>			4.3.1 Nemogući spektri sa $x, y, z, w > 0$	36							
4.3.3Nemogući spektri sa $x, y, z > 0, w = 0$ i $n = 630$ 384.3.4Nemogući spektri sa $x > 0, y = 0$ 385Grafovi koji ne sadrže ±3 u spektru415.1Trivijalni slučajevi425.2Kako napasti netrivijalne slučajeve?425.3Integralni grafovi sa $(x, z, w) = (0, 0, 3)$ 445.3.1Grafovi sa spektrom $4, 2^4, 0^6, -2^4, -4$ 445.3.2Grafovi sa spektrom $4, 2^8, 0^6, -2^8, -4$ 465.3.3Grafovi sa spektrom $4, 2^2, 0^6, -2^{12}, -4$ 495.4Integralni grafovi sa $(x, z, w) = (0, 4, 0)$ 525.4.1Grafovi sa spektrom $4, 2^5, 1^4, -1^4, -2^4, -4$ 525.4.2Grafovi sa spektrom $4, 2^5, 1^4, -1^4, -2^5, -4$ 545.4.3Ne postoji graf sa spektrom $4, 2^{10}, 1^4, -1^4, -2^7, -4$ 595.4.4Grafovi sa spektrom $4, 2^{10}, 1^4, -1^4, -2^{10}, -4$ 595.5Nebipartitni grafovi615.6Za kraj ove glave676Regularni, integralni NEPS grafova696.1Polazni rezultati636.2NEPS grafova izomorfnih sa K_2 746.4NEPS kubnih, integralnih grafova i K_2 766.5Za kraj ove glave787Poznati 4-regularni, integralni grafovi79ASpisak mogućih spektara sa $x, y, z, w > 0$ 85			4.3.2 Ostali nemogući spektri s a $x,y,z,w>0$	37							
4.3.4 Nemogući spektri sa $x > 0, y = 0$ 38 5 Grafovi koji ne sadrže ±3 u spektru 41 5.1 Trivijalni slučajevi 42 5.2 Kako napasti netrivijalne slučajeve? 42 5.3 Integralni grafovi sa $(x, z, w) = (0, 0, 3)$ 44 5.3.1 Grafovi sa spektrom $4, 2^4, 0^6, -2^4, -4$ 44 5.3.2 Grafovi sa spektrom $4, 2^4, 0^6, -2^8, -4$ 46 5.3.3 Grafovi sa spektrom $4, 2^1, 0^6, -2^{12}, -4$ 49 5.4 Integralni grafovi sa $(x, z, w) = (0, 4, 0)$ 52 5.4.1 Grafovi sa spektrom $4, 2^4, 1^4, -1^4, -2^4, -4$ 52 5.4.2 Grafovi sa spektrom $4, 2^5, 1^4, -1^4, -2^5, -4$ 54 5.4.3 Ne postoji graf sa spektrom $4, 2^{10}, 1^4, -1^4, -2^7, -4$ 59 5.4.4 Grafovi sa spektrom $4, 2^{10}, 1^4, -1^4, -2^{10}, -4$ 59 5.5 Nebipartitni grafovi 61 5.6 Za kraj ove glave 67 6 Regularni, integralni NEPS grafova 69 6.1 Polazni rezultati 69 6.2 NEPS grafova izomorfnih sa K_2 72 6.3 NEPS gr			4.3.3 Nemogući spektri sa $x, y, z > 0, w = 0$ i $n = 630 \dots$	38							
			4.3.4 Nemogući spektri sa $x > 0, y = 0$	38							
5.1 Trivijalni slučajevi 42 5.2 Kako napasti netrivijalne slučajeve? 42 5.3 Integralni grafovi sa $(x, z, w) = (0, 0, 3)$ 44 5.3.1 Grafovi sa spektrom $4, 2^4, 0^6, -2^4, -4$ 44 5.3.2 Grafovi sa spektrom $4, 2^8, 0^6, -2^8, -4$ 44 5.3.3 Grafovi sa spektrom $4, 2^8, 0^6, -2^8, -4$ 46 5.3.3 Grafovi sa spektrom $4, 2^{12}, 0^6, -2^{12}, -4$ 49 5.4 Integralni grafovi sa $(x, z, w) = (0, 4, 0)$ 52 5.4.1 Grafovi sa spektrom $4, 2^4, 1^4, -1^4, -2^4, -4$ 52 5.4.2 Grafovi sa spektrom $4, 2^5, 1^4, -1^4, -2^5, -4$ 54 5.4.3 Ne postoji graf sa spektrom $4, 2^{7}, 1^4, -1^4, -2^7, -4$ 59 5.4.4 Grafovi sa spektrom $4, 2^{10}, 1^4, -1^4, -2^{10}, -4$ 59 5.5 Nebipartitni grafovi 61 5.6 Za kraj ove glave 62 6.1 Polazni rezultati 69 6.2 NEPS grafova izomorfnih sa K_2 72 6.3 NEPS grafova izomorfnih sa K_2 74 6.4 NEPS kubnih, integralnih grafova i K_2 76 6.5	5	Gra	ofovi koji ne sadrže ± 3 u spektru	41							
5.2 Kako napasti netrivijalne slučajeve? 42 5.3 Integralni grafovi sa $(x, z, w) = (0, 0, 3) \dots 44$ 5.3.1 Grafovi sa spektrom $4, 2^4, 0^6, -2^4, -4 \dots 44$ 5.3.2 Grafovi sa spektrom $4, 2^8, 0^6, -2^8, -4 \dots 44$ 44 5.3.3 Grafovi sa spektrom $4, 2^{12}, 0^6, -2^{12}, -4 \dots 49$ 46 5.4 Integralni grafovi sa spektrom $4, 2^{12}, 0^6, -2^{12}, -4 \dots 52$ 54.1 Grafovi sa spektrom $4, 2^{12}, 0^6, -2^{12}, -4 \dots 52$ 54.1 Grafovi sa spektrom $4, 2^{12}, 0^6, -2^{12}, -4 \dots 52$ 54.1 Grafovi sa spektrom $4, 2^4, 1^4, -1^4, -2^4, -4 \dots 52$ 54.2 Grafovi sa spektrom $4, 2^5, 1^4, -1^4, -2^5, -4 \dots 52$ 54.3 S.4.4 Grafovi sa spektrom $4, 2^{10}, 1^4, -1^4, -2^{10}, -4 \dots 59$ 5.5 Nebipartitni grafovi $\dots \dots \dots$		5.1	Trivijalni slučajevi	42							
5.3 Integralni grafovi sa $(x, z, w) = (0, 0, 3) \dots (44$ 5.3.1 Grafovi sa spektrom $4, 2^4, 0^6, -2^4, -4 \dots (44)$ 5.3.2 Grafovi sa spektrom $4, 2^8, 0^6, -2^8, -4 \dots (46)$ 5.3.3 Grafovi sa spektrom $4, 2^{12}, 0^6, -2^{12}, -4 \dots (49)$ 5.4 Integralni grafovi sa $(x, z, w) = (0, 4, 0) \dots (52)$ 5.4.1 Grafovi sa spektrom $4, 2^4, 1^4, -1^4, -2^4, -4 \dots (52)$ 5.4.2 Grafovi sa spektrom $4, 2^5, 1^4, -1^4, -2^5, -4 \dots (54)$ 5.4.3 Ne postoji graf sa spektrom $4, 2^7, 1^4, -1^4, -2^7, -4 \dots (59)$ 5.4.4 Grafovi sa spektrom $4, 2^{10}, 1^4, -1^4, -2^{10}, -4 \dots (59)$ 5.5 Nebipartitni grafovi $\dots (57)$ 6 Regularni, integralni NEPS grafova 6.1 Polazni rezultati $\dots (53)$ 6.2 NEPS grafova izomorfnih sa $K_2 \dots (53)$ 6.3 NEPS grafova izomorfnih sa C_3 i $K_2 \dots (57)$ 72 6.3 6.5 Za kraj ove glave $\dots (53)$ 78 78 7 Poznati 4-regularni, integralni grafovi i $K_2 \dots (57)$ 79 A Spisak mogućih spektara sa $x, y, z, w > 0$ 85		5.2	Kako napasti netrivijalne slučajeve?	42							
5.3.1 Grafovi sa spektrom $4, 2^4, 0^6, -2^4, -4$ 44 5.3.2 Grafovi sa spektrom $4, 2^8, 0^6, -2^8, -4$ 46 5.3.3 Grafovi sa spektrom $4, 2^{12}, 0^6, -2^{12}, -4$ 49 5.4 Integralni grafovi sa $(x, z, w) = (0, 4, 0)$ 52 5.4.1 Grafovi sa spektrom $4, 2^4, 1^4, -1^4, -2^4, -4$ 52 5.4.2 Grafovi sa spektrom $4, 2^5, 1^4, -1^4, -2^5, -4$ 54 5.4.3 Ne postoji graf sa spektrom $4, 2^7, 1^4, -1^4, -2^7, -4$ 59 5.4.4 Grafovi sa spektrom $4, 2^{10}, 1^4, -1^4, -2^{10}, -4$ 59 5.5 Nebipartitni grafovi 61 5.6 Za kraj ove glave 67 6 Regularni, integralni NEPS grafova 69 6.1 Polazni rezultati 72 6.3 NEPS grafova izomorfnih sa K_2 72 6.3 NEPS grafova izomorfnih sa C_3 i K_2 74 6.4 NEPS kubnih, integralnih grafova i K_2 78 7 Poznati 4-regularni, integralni grafovi 79 A Spisak mogućih spektara sa $x, y, z, w > 0$ 85		5.3	Integralni grafovi sa $(x, z, w) = (0, 0, 3) \dots \dots \dots \dots \dots$	44							
5.3.2 Grafovi sa spektrom $4, 2^8, 0^6, -2^8, -4$ 46 5.3.3 Grafovi sa spektrom $4, 2^{12}, 0^6, -2^{12}, -4$ 49 5.4 Integralni grafovi sa $(x, z, w) = (0, 4, 0)$ 52 5.4.1 Grafovi sa spektrom $4, 2^4, 1^4, -1^4, -2^4, -4$ 52 5.4.2 Grafovi sa spektrom $4, 2^5, 1^4, -1^4, -2^5, -4$ 54 5.4.3 Ne postoji graf sa spektrom $4, 2^7, 1^4, -1^4, -2^7, -4$ 59 5.4.4 Grafovi sa spektrom $4, 2^{10}, 1^4, -1^4, -2^{10}, -4$ 59 5.5 Nebipartitni grafovi 61 5.6 Za kraj ove glave 67 6 Regularni, integralni NEPS grafova 69 6.1 Polazni rezultati 72 6.3 NEPS grafova izomorfnih sa K_2 74 6.4 NEPS kubnih, integralnih grafova i K_2 74 6.4 NEPS kubnih, integralnih grafova i K_2 74 6.5 Za kraj ove glave 78 7 Poznati 4-regularni, integralni grafovi 79 A Spisak mogućih spektara sa $x, y, z, w > 0$ 85			5.3.1 Grafovi sa spektrom $4, 2^4, 0^6, -2^4, -4$	44							
5.3.3 Grafovi sa spektrom $4, 2^{12}, 0^{6}, -2^{12}, -4$ 49 5.4 Integralni grafovi sa $(x, z, w) = (0, 4, 0)$ 52 5.4.1 Grafovi sa spektrom $4, 2^{4}, 1^{4}, -1^{4}, -2^{4}, -4$ 52 5.4.2 Grafovi sa spektrom $4, 2^{5}, 1^{4}, -1^{4}, -2^{5}, -4$ 54 5.4.3 Ne postoji graf sa spektrom $4, 2^{7}, 1^{4}, -1^{4}, -2^{7}, -4$ 59 5.4.4 Grafovi sa spektrom $4, 2^{10}, 1^{4}, -1^{4}, -2^{10}, -4$ 59 5.5 Nebipartitni grafovi 61 5.6 Za kraj ove glave 67 6 Regularni, integralni NEPS grafova 69 6.1 Polazni rezultati 72 6.3 NEPS grafova izomorfnih sa K_2 74 6.4 NEPS kubnih, integralnih grafova i K_2 74 6.4 NEPS kubnih, integralnih grafova i K_2 74 6.5 Za kraj ove glave 78 7 Poznati 4-regularni, integralni grafovi 79 A Spisak mogućih spektara sa $x, y, z, w > 0$ 85			5.3.2 Grafovi sa spektrom $4, 2^8, 0^6, -2^8, -4$	46							
5.4 Integralni grafovi sa $(x, z, w) = (0, 4, 0) \dots $			5.3.3 Grafovi sa spektrom $4, 2^{12}, 0^6, -2^{12}, -4$	49							
5.4.1 Grafovi sa spektrom $4, 2^4, 1^4, -1^4, -2^4, -4$ 52 5.4.2 Grafovi sa spektrom $4, 2^5, 1^4, -1^4, -2^5, -4$ 54 5.4.3 Ne postoji graf sa spektrom $4, 2^7, 1^4, -1^4, -2^7, -4$ 59 5.4.4 Grafovi sa spektrom $4, 2^{10}, 1^4, -1^4, -2^7, -4$ 59 5.5 Nebipartitni grafovi 61 5.6 Za kraj ove glave 67 6 Regularni, integralni NEPS grafova 69 6.1 Polazni rezultati 69 6.2 NEPS grafova izomorfnih sa K_2 72 6.3 NEPS grafova izomorfnih sa C_3 i K_2 74 6.4 NEPS kubnih, integralnih grafova i K_2 78 7 Poznati 4-regularni, integralni grafovi 79 A Spisak mogućih spektara sa $x, y, z, w > 0$ 85		5.4	Integralni grafovi sa $(x, z, w) = (0, 4, 0)$	52							
5.4.2 Grafovi sa spektrom 4, 2 ⁵ , 1 ⁴ , -1^4 , -2^5 , -4			5.4.1 Grafovi sa spektrom $4, 2^4, 1^4, -1^4, -2^4, -4$	52							
5.4.3 Ne postoji graf sa spektrom 4, 2', 1*, $-1^{*}, -2^{*}, -4$ 59 5.4.4 Grafovi sa spektrom 4, 2 ¹⁰ , 1 ⁴ , $-1^{4}, -2^{10}, -4$ 59 5.5 Nebipartitni grafovi 61 5.6 Za kraj ove glave 67 6 Regularni, integralni NEPS grafova 69 6.1 Polazni rezultati 69 6.2 NEPS grafova izomorfnih sa K_2 72 6.3 NEPS grafova izomorfnih sa C_3 i K_2 74 6.4 NEPS kubnih, integralnih grafova i K_2 76 6.5 Za kraj ove glave 78 7 Poznati 4-regularni, integralni grafovi 79 A Spisak mogućih spektara sa $x, y, z, w > 0$ 85			5.4.2 Gratovi sa spektrom $4, 2^5, 1^4, -1^4, -2^5, -4$	54							
5.4.4 Grafovi sa spektrom 4, 2 ¹⁰ , 1 ⁴ , -1 ⁴ , -2 ¹⁰ , -4			5.4.3 Ne postoji graf sa spektrom 4, 2', $1^{+}, -1^{+}, -2', -4$	59 50							
5.3Neopartitili gratovi615.6Za kraj ove glave676Regularni, integralni NEPS grafova696.1Polazni rezultati696.2NEPS grafova izomorfnih sa K_2 726.3NEPS grafova izomorfnih sa C_3 i K_2 746.4NEPS kubnih, integralnih grafova i K_2 766.5Za kraj ove glave787Poznati 4-regularni, integralni grafovi79ASpisak mogućih spektara sa $x, y, z, w > 0$ 85		- -	5.4.4 Gratovi sa spektrom $4, 2^{10}, 1^{1}, -1^{1}, -2^{10}, -4$	59 61							
6Regularni, integralni NEPS grafova696.1Polazni rezultati696.2NEPS grafova izomorfnih sa K_2 726.3NEPS grafova izomorfnih sa C_3 i K_2 746.4NEPS kubnih, integralnih grafova i K_2 766.5Za kraj ove glave787Poznati 4-regularni, integralni grafovi79ASpisak mogućih spektara sa $x, y, z, w > 0$ 85		0.0 E C		01 67							
6Regularni, integralni NEPS grafova696.1Polazni rezultati696.2NEPS grafova izomorfnih sa K_2 726.3NEPS grafova izomorfnih sa C_3 i K_2 746.4NEPS kubnih, integralnih grafova i K_2 766.5Za kraj ove glave787Poznati 4-regularni, integralni grafovi79ASpisak mogućih spektara sa $x, y, z, w > 0$ 85		5.0		07							
6.1Polazni rezultati696.2NEPS grafova izomorfnih sa K_2 726.3NEPS grafova izomorfnih sa C_3 i K_2 746.4NEPS kubnih, integralnih grafova i K_2 766.5Za kraj ove glave787Poznati 4-regularni, integralni grafovi79ASpisak mogućih spektara sa $x, y, z, w > 0$ 85	6	Reg	gularni, integralni NEPS grafova	69							
6.2NEPS grafova izomorfnih sa K_2 726.3NEPS grafova izomorfnih sa C_3 i K_2 746.4NEPS kubnih, integralnih grafova i K_2 766.5Za kraj ove glave787Poznati 4-regularni, integralni grafovi79ASpisak mogućih spektara sa $x, y, z, w > 0$ 85		6.1	Polazni rezultati	69							
6.3NEPS grafova izomorfnih sa C_3 i K_2 746.4NEPS kubnih, integralnih grafova i K_2 766.5Za kraj ove glave787Poznati 4-regularni, integralni grafovi79ASpisak mogućih spektara sa $x, y, z, w > 0$ 85		6.2	NEPS grafova izomorfnih sa K_2	72							
6.4NEPS kubnih, integralnih grafova i K_2 766.5Za kraj ove glave787Poznati 4-regularni, integralni grafovi79ASpisak mogućih spektara sa $x, y, z, w > 0$ 85		6.3	NEPS grafova izomorfnih sa C_3 i K_2	74							
6.5Za kraj ove glave787Poznati 4-regularni, integralni grafovi79ASpisak mogućih spektara sa $x, y, z, w > 0$ 85		6.4	NEPS kubnih, integralnih grafova i K_2	76							
7Poznati 4-regularni, integralni grafovi79ASpisak mogućih spektara sa $x, y, z, w > 0$ 85		6.5	Za kraj ove glave	78							
A Spisak mogućih spektara sa $x, y, z, w > 0$ 85	7	Poz	mati 4-regularni, integralni grafovi	79							
	Α	A Spisak mogućih spektara sa $x, y, z, w > 0$									

Literatura

Predgovor

Još pre nekoliko decenija, prikaz grafa preko matrice susedstva sugerisao je mogućnost primene rezultata linearne algebre, posebno dobro razvijene teorije matrica, u teoriji grafova. Tako je došlo do nastanka *spektralne teorije grafova*, u kojoj se osobine grafa izučavaju preko sopstvenih vrednosti, vektora i, u novije vreme, sopstvenih potprostora matrice susedstva grafa. Medjutim, ovo ne znači da se spektralna teorija grafova može u potpunosti svesti na teoriju matrica — ona poseduje sasvim karakteristične osobine i načine zaključivanja koji joj daju za pravo da može biti posmatrana kao posebna matematička teorija. Svi značajniji rezultati spektralne teorije grafova dobijeni do 1995. godine sumirani su u monografijama [21, 20, 27].

Disertacija se sastoji iz dva dela. U prvom delu ove disertacije proučavamo neke osobine *nepotpune proširene p-sume* (kraće NEPS) grafova, dok se u drugom delu bavimo regularnim grafovima sa celobrojnim spektrom.

Glavni doprinos autora u prvom delu disertacije predstavlja tehnika za proučavanje NEPSa grafova pomoću koje pitanja u vezi sa NEPSom grafova možemo svesti na pitanja iz linearne algebre, tako što bazu NEPSa, koja je 0-1 matrica, ujedno posmatramo i kao skup vektora iz prostora GF_2^n . Primenom ove tehnike u glavi 1 unapredjujemo poznate rezultate o povezanosti i bipartitnosti NEPSa grafova (videti [10], sekciju 7.4 u [21] ili sekciju 2.3 u [27]), dok u glavi 2 dajemo beskonačno mnogo kontraprimera za hipotezu D. Cvetkovića [16] o skoroj kospektralnosti komponenti NEPSa povezanih, bipartitnih grafova. Prikazani rezultati u ovom delu preuzeti su iz radova autora [57, 58].

U drugom delu disertacije bavimo se regularnim grafovima sa celobrojnim spektrom. Graf koji ima celobrojni spektar zvaćemo *integralan*. Iako integralni grafovi u ovom trenutku ne predstavljaju ništa više od kurioziteta, brojni su primeri u matematici da se važna primena nekog matematičkog objekta otkrije tek mnogo kasnije nakon što on bude u potpunosti izučen.

vii

Potragu za integralnim grafovima pokrenuli su F. Harary i A. J. Schwenk u radu [34]. Do sada su pronadjeni svi kubni, integralni grafovi [13, 5, 51] i nebipartitni, neregularni, integralni grafovi kod kojih je najveći stepen čvora jednak 4 [54]. Značajan uspeh je učinjen i u pronalaženju bipartitnih, neregularnih, integralnih grafova sa najvećim stepenom čvora 4 [3]. Sledeću klasu integralnih grafova po složenosti predstavljaju 4-regularni, integralni grafovi. U glavi 3 nalazimo moguće spektre bipartitnih, 4-regularnih, integralnih grafova. Pošto je broj ovih spektara veoma veliki, u glavi 4 zainteresovani smo za njegovo smanjivanje: najpre nalazimo gornju granicu za broj čvorova u bipartitnom, 4-regularnom, integralnom grafu, a zatim koristeći uglove grafova pokazujemo da ne postoje grafovi sa nekim od mogućih spektara.

Mogući spektri podeljeni su u grupe u zavisnosti od najvećeg celog broja manjeg od 4 koji se ne pojavljuje u spektru. U glavi 5 bavimo se prvom grupom spektara i nalazimo svih 24 4-regularnih, integralnih grafova koji ne sadrže ± 3 u spektru. Dobijanje ovog rezultata značajno je potpomognuto korišćenjem ekspertskog programskog sistema GRAPH [29], koji je implementirao D. Cvetković sa grupom saradnika na Elektrotehničkom fakultetu Univerziteta u Beogradu.

Pošto je NEPS grafova zatvoren u skupu regularnih i integralnih grafova, u glavi 6 iznalazimo sve 4-regularne, integralne grafove koji mogu biti prikazani kao NEPS grafova. Grafovi nadjeni u glavama 5 i 6 nisu jedini poznati 4-regularni, integralni grafovi, već je deo njih bio poznat i ranije u literaturi. Zbog lakšeg korišćenja, u glavi 7 dajemo spisak svih trenutno poznatih 4-regularnih, integralnih grafova.

Veći deo rezultata u ovom delu disertacije objavljen je u radovima autora [30, 59, 60]. Rezultati iz glave 6 po prvi put se pojavljuju u ovoj disertaciji.

Originalni doprinos autora predstavljaju sledeći rezultati:

- Glava 1: lema 1.1.3 koja pokazuje da povezanost NEPSa grafova zavisi samo od njegovih bipartitnih faktora, teorema 1.1.4 koja daje potreban i dovoljan uslov za povezanost NEPSa povezanih bipartitnih grafova, teorema 1.1.5 koja daje potreban i dovoljan uslov za povezanost NEPSa povezanih grafova, teorema 1.2.1 koja daje broj komponenti povezanosti NEPSa povezanih, bipartitnih grafova, posledica 1.2.2 koja daje broj komponenti povezanosti NEPSa nepovezanih grafova i teorema 1.3.3 koja daje potreban i dovoljan uslov za bipartitnost NEPSa povezanih grafova;
- Glava 2: teorema 2.1.1 koja daje uslov za deljivost višestrukosti sopstvenih

vrednosti NEPSa brojem njegovih komponenti, beskonačna familija kontraprimera za hipotezu D. Cvetkovića iz sekcije 2.2 i hipoteza 2.2.1 o skoroj kospektralnosti komponenti NEPSa bipartitnih grafova;

- Glava 3: mogući spektri bipartitnih, 4-regularnih, integralnih grafova;
- Glava 4: nejednakosti (4.8), (4.9) i (4.10) izmedju broja čvorova, četvorouglova i šestouglova u bipartitnom, 4-regularnom, integralnom grafu, teorema 4.3.1 da povezan, bipartitan, 4-regularan, integralan graf ima najviše 1260 čvorova, osim ako ima jedan od 5 posebnih spektara, posledica 4.3.2 da povezan, nebipartitan, 4-regularan, integralan graf ima najviše 630 čvorova, osim ako njegov proizvod sa K_2 ima jedan od 5 posebnih spektara;
- Glava 5: teorema 5.6.1 koja opisuje 4-regularne, integralne grafove koji ne sadrže ± 3 u spektru i odgovarajuće propozicije 5.1.1, 5.3.1, 5.3.2, 5.3.3, 5.4.1, 5.4.2, 5.4.3 i 5.5.2;
- Glava 6: teorema 6.1.1 da je NEPS grafova regularan i integralan ako i samo ako su njegovi faktori regularni i integralni, teorema 6.1.2 da je NEPS nekoliko NEPSa grafova takodje NEPS tih grafova, teorema 6.2.2 da komponente NEPSa grafova izomorfnih sa K_2 takodje predstavljaju NEPS grafova izomorfnih sa K_2 , teorema 6.2.4 da komponente NEPSa čiji su bipartitni faktori izomorfni sa K_2 takodje predstavljaju NEPS nekoliko grafova izomorfnih sa K_2 i istih nebipartitnih faktora, teorema 6.5.1 koja opisuje 4-regularne, integralne grafove koji se mogu predstaviti u obliku NEPSa grafova i odgovarajuće propozicije 6.2.3 i 6.3.1;
- Glava 7: spisak poznatih 4-regularnih, integralnih grafova.

Autor se zahvaljuje na svesrdnoj pomoći prilikom izrade disertacije akademiku profesoru dr Dragošu Cvetkoviću i profesoru dr Slobodanu Simiću.

Niš, oktobra 1999.

D.S.

Deo I NEPS grafova

1

Šta je NEPS grafova?

NEPS grafova je prvi put definisan u [23]. Sledeća definicija uzeta je iz monografije [21, str. 66], sa manjim izmenama.

Definicija 0.0.1 Neka je \mathcal{B} skup binarnih n-torki, tj. $\mathcal{B} \subseteq \{0,1\}^n \setminus \{(0,\ldots,0)\}$ pri čemu za svako $i = 1, \ldots, n$ postoji $\beta \in \mathcal{B}$ tako da je $\beta_i = 1$. Nepotpuna proširena p-suma (NEPS) grafova G_1, \ldots, G_n sa bazom \mathcal{B} , koju označavamo sa NEPS $(G_1, \ldots, G_n; \mathcal{B})$, predstavlja graf sa skupom čvorova $V(G_1) \times \ldots \times V(G_n)$, u kome su dva čvora (u_1, \ldots, u_n) and (v_1, \ldots, v_n) susedna ako i samo ako postoji $(\beta_1, \ldots, \beta_n) \in \mathcal{B}$ tako da je u_i susedno sa v_i u G_i kadgod je $\beta_i = 1$, i $u_i = v_i$ kadgod je $\beta_i = 0$.

Grafovi G_1, \ldots, G_n nazivaju se *faktori* NEPSa. Uslov da za svako $i = 1, \ldots, n$ postoji $\beta \in \mathcal{B}$ tako da je $\beta_i = 1$, koji se ne pojavljuje u definiciji u [21, str. 66], nalaže da NEPS efektivno zavisi od svakog grafa G_i . Naime, ako za neko $i \in \{1, \ldots, n\}$ važi ($\forall \beta \in \mathcal{B}$) $\beta_i = 0$ tada je lako videti da je

NEPS $(G_1, \ldots, G_n; \mathcal{B}) = |G_i|$ NEPS $(G_1, \ldots, G_{i-1}, G_{i+1}, \ldots, G_n; \mathcal{B}^{-i}),$

gde je $|G_i|$ broj čvorova grafa G_i , a \mathcal{B}^{-i} matrica koja se dobija od matrice \mathcal{B} odbacivanjem *i*-te kolone. Stoga, ako je $|G_i| = 1$, tada graf G_i nema nikakvog uticaja na NEPS, pa ćemo nadalje pretpostaviti da svi razmatrani grafovi imaju bar dva čvora. Takodje, u slučaju da je NEPS grafova povezan ovaj uslov je automatski ispunjen, pa zato ne moramo da ispitujemo njegovu ispunjenost u rezultatima vezanim za NEPS grafova.

Primer Za n = 2 imamo sledeće primere NEPSa: proizvod $G_1 \times G_2$, kada je $\mathcal{B} = \{(1,1)\}$; sumu $G_1 + G_2$, kada je $\mathcal{B} = \{(0,1), (1,0)\}$; jaku sumu $G_1 \oplus G_2$, kada je $\mathcal{B} = \{(1,1), (0,1)\}$; i jaki proizvod $G_1 * G_2$, kada je $\mathcal{B} = \{(0,1), (1,0), (1,1)\}$.

3

Jedno od najvažnijih svojstava NEPSa grafova je da se njegov spektar može jednostavno izraziti preko spektara faktora. Naime, važi sledeća teorema (videti npr. teoremu 2.23 u [21]).

Teorema 0.0.2 Spektar grafa NEPS $(G_1, \ldots, G_n; \mathcal{B})$ sastoji se od svih mogućih vrednosti Λ datih sa

(1)
$$\Lambda = \sum_{\beta \in \mathcal{B}} \lambda_1^{\beta_i} \cdots \lambda_n^{\beta_n},$$

gde je λ_i proizvoljna sopstvena vrednost grafa G_i , i = 1, ..., n.

Glava 1

Povezanost i bipartitnost NEPSa grafova

D. Cvetković je u svojoj doktorskoj disertaciji [10] (videti takodje i sekciju 7.4 u [21] ili sekciju 2.3 u [27]) dao potrebne i dovoljne uslove za povezanost, odnosno bipartitnost, NEPSa povezanih grafova. Skoro trideset godina kasnije, u ovoj glavi ponovo se proučava ista tema, ovaj put drugačijom tehnikom, uz čiju pomoć nalazimo nove potrebne i dovoljne uslove za povezanost, odnosno bipartitnost, NEPSa povezanih grafova. Novi uslovi su naravno ekvivalentni starim, ali se njihova prednost sastoji u jednostavnijem zapisu i naglasku na pravu ulogu ranga baze NEPSa u polju GF_2 .

U sekciji 1.1 dajemo potreban i dovoljan uslov za povezanost NEPSa povezanih grafova, čime uopštavamo veći broj ranije poznatih rezultata za specijalne slučajeve NEPSa prikazanih u [21]. Zatim, u sekciji 1.2 nalazimo broj komponenti povezanosti NEPSa, u slučaju da on nije povezan. Na kraju, u sekciji 1.3 dajemo potreban i dovoljan uslov za bipartitnost NEPSa grafova.

1.1 Povezanost

Da bismo formulisali teoremu D. Cvetkovića o povezanosti NEPSa povezanih grafova moramo uvesti sledeću

Definicija 1.1.1 Funkcija više promenljivih je parna (neparna) u odnosu na

5

dati neprazan skup promenljivih ako funkcija ne menja svoju vrednost (menja samo svoj znak) kada sve promenljive iz tog skupa istovremeno promene znak. Funkcija je parna (neparna) ako postoji bar jedan neprazan skup promenljivih u odnosu na koji je funkcija parna (neparna).

Teorema 1.1.2 (D. Cvetković [10]) Neka su G_1, \ldots, G_n povezani grafovi, od kojih svaki sadrži bar jednu granu. Pretpostavimo da su, medju grafovima G_1, \ldots, G_n , bipartitni grafovi G_{i_1}, \ldots, G_{i_s} ($\{i_1, \ldots, i_s\} \subseteq \{1, \ldots, n\}$). Tada je NEPS (G_1, \ldots, G_n ; \mathcal{B}) povezan graf ako i samo ako funkcija

(1.1)
$$\sum_{\beta \in \mathcal{B}} x_1^{\beta_1} \cdots x_n^{\beta_r}$$

nije parna ni za jedan neprazan podskup skupa $\{x_{i_1}, \ldots, x_{i_s}\}$. U slučaju nepovezanosti broj komponenti jednak je višestrukosti indeksa NEPSa.

Dalje u ovoj sekciji dajemo novi potreban i dovoljan uslov za povezanost NEPSa. Tačan broj komponenti (koji se ne vidi iz prethodne teoreme) nalazimo u sekciji 1.2.

Neka je $G = \text{NEPS}(G_1, \ldots, G_n; \mathcal{B})$. Za dva čvora $u = (u_i)_{i=1}^n$ i $v = (v_i)_{i=1}^n$ grafa G definišimo vektor rastojanja $\overrightarrow{d}(u, v) = (d_{G_i}(u_i, v_i))_{i=1}^n$, gde je $d_{G_i}(u_i, v_i)$ rastojanje izmedju čvorova u_i i v_i u G_i . Iz definicije 0.0.1 možemo videti da su $u = (u_i)_{i=1}^n$ i $v = (v_i)_{i=1}^n$ susedni u G ako i samo ako postoji $\beta = (\beta_i)_{i=1}^n \in \mathcal{B}$ tako da je $d_{G_i}(u_i, v_i) = 1$ kadgod je $\beta_i = 1$ i $d_{G_i}(u_i, v_i) = 0$ kadgod je $\beta_i = 0$. Pošto ovo znači da je $\overrightarrow{d}(u, v) = \beta$, zaključujemo da su u i v susedni u G ako i samo ako je $\overrightarrow{d}(u, v) \in \mathcal{B}$.

Nadalje ćemo *n*-torke iz \mathcal{B} posmatrati kao vektore u GF_2^n , a bazu \mathcal{B} i kao skup vektora i kao matricu čije vrste predstavljaju ovi vektori. Prema tome, kolone matrice \mathcal{B} odgovaraju faktorima NEPSa. Rang matrice \mathcal{B} u polju GF_2 označavaćemo sa $r(\mathcal{B})$.

Sledeća lema pokazuje da povezanost NEPSa zavisi samo od njegovih bipartitnih faktora.

Lema 1.1.3 Neka su B_1, \ldots, B_n povezani bipartitni grafovi, a C_1, \ldots, C_m povezani nebipartitni grafovi. Tada $G = \text{NEPS}(B_1, \ldots, B_n, C_1, \ldots, C_m; \mathcal{B})$ ima isti broj komponenti povezanosti kao i $G' = \text{NEPS}(B_1, \ldots, B_n; \mathcal{B}')$, gde se \mathcal{B}' sastoji od kolona matrice \mathcal{B} koje odgovaraju bipartitnim grafovima. Ako je C skup čvorova komponente grafa G' tada je $C \times V(C_1) \times \ldots \times V(C_m)$ skup čvorova komponente grafa G.

Dokaz U nebipartitnom povezanom grafu A izmedju svaka dva čvora u, v uvek postoji put parne dužine. Naime, ako su q_1, \ldots, q_k čvorovi neparne konture u A, a P(x, y) je najkraći put u A izmedju čvorova x i y, tada ili put koji se sastoji od puteva $P(u, q_1)$ i $P(q_1, v)$ ili put koji se sastoji od puta $P(u, q_1)$, grana $(q_1, q_2), (q_2, q_3), \ldots, (q_k, q_1)$ i puta $P(q_1, v)$ ima parnu dužinu.

Neka je $u_i \in V(B_i)$, i = 1, ..., n, $v_1, w_1 \in V(C_1)$ i $v_j \in V(C_j)$, j = 2, ..., m. Izaberimo $\beta \in \mathcal{B}$ tako da je $\beta_{n+1} = 1$ i neka je $v_1 = p_0, p_1, ..., p_{2l} = w_1$ put parne dužine u C_1 . Neka je u'_i proizvoljni sused čvora u_i u B_i , i = 1, ..., n, a v'_j proizvoljni sused čvora v_j u C_j , $j \geq 2$. Posmatrajmo niz čvorova $a^k = (a_1^k, \ldots, a_{n+m}^k)$, $k = 0, \ldots, 2l$ definisan sa

$$a_{j}^{k} = \begin{cases} u_{j}, & \beta_{j} = 1 \text{ i } k \text{ je parno, ili } \beta_{j} = 0, \ j \leq n \\ u_{j}', & \beta_{j} = 1 \text{ i } k \text{ je neparno, } j \leq n \\ p_{k}, & j = n+1 \\ v_{j-n}, & \beta_{j} = 1 \text{ i } k \text{ je parno, ili } \beta_{j} = 0, \ j > n+1 \\ v_{j-n}', & \beta_{j} = 1 \text{ i } k \text{ je neparno, } j > n+1 \end{cases}$$

Vidimo da je $\overrightarrow{d}(a^k, a^{k+1}) = \beta$, pa je tada niz a^0, a^1, \ldots, a^{2l} put izmedju čvorova $(u_1, \ldots, u_n, v_1, v_2, \ldots, v_m)$ i $(u_1, \ldots, u_n, w_1, v_2, \ldots, v_m)$ u G.

Ponavljajući gornji postupak vidimo da su za svako $u_i \in V(B_i), i = 1, \ldots, n$, i $v_j, w_j \in V(C_j), j = 1, \ldots, m$ čvorovi $(u_1, \ldots, u_n, v_1, \ldots, v_m)$ i $(u_1, \ldots, u_n, w_1, \ldots, w_m)$ povezani putem u G, što dokazuje tvrdjenje leme.

Posledica sledeće teoreme daje potreban i dovoljan uslov za povezanost NEPSa povezanih grafova. Ona pokazuje da povezanost NEPSa zavisi samo od onog dela baze koji odgovara bipartitnim faktorima, a ne od samih faktora.

Teorema 1.1.4 Neka su B_1, \ldots, B_n povezani bipartitni grafovi. Tada je graf $G = \operatorname{NEPS}(B_1, \ldots, B_n; \mathcal{B})$ povezan ako i samo ako je $r(\mathcal{B}) = n$.

Dokaz G je povezan ako i samo ako su za svaka dva susedna čvora u'_i i u''_i u B_i i $u_j \in V(B_j)$ za $j \neq i$ (i = 1, ..., n) čvorovi $u' = (u_1, ..., u_{i-1}, u'_i, u_{i+1}, ..., u_n)$ i $u'' = (u_1, ..., u_{i-1}, u''_i, u_{i+1}, ..., u_n)$ povezani putem.

Neka je $u' = q_0, q_1, \ldots, q_l = u''$ proizvoljan put izmedju ovih čvorova. Pošto u bipartitnim grafovima proizvoljna dva puta izmedju proizvoljna dva čvora imaju istu parnost, imamo da je

$$\sum_{t=0}^{l-1} \overrightarrow{d} (q_t, q_{t+1}) = \overrightarrow{d} (u', u'') + 2k,$$

za neko $k \in \mathbb{Z}^n$. Neka je $\mathcal{B} = \{\beta^1, \ldots, \beta^m\}$, a a_t broj pojavljivanja vektora β^t u nizu $\overrightarrow{d}(q_0, q_1), \ldots, \overrightarrow{d}(q_{l-1}, q_l)$. Neka je $a = (a_1, \ldots, a_m)^\mathsf{T}$ i $e_i = \overrightarrow{d}(u', u'') = (0, \ldots, 0, 1, 0, \ldots, 0)^\mathsf{T}$ sa 1 na *i*-tom mestu. Tada je

$$\sum_{t=0}^{l-1} \overrightarrow{d}(q_t, q_{t+1}) = \sum_{t=1}^m a_t \beta^t = \mathcal{B}^\mathsf{T} \cdot a = e_i + 2k_i$$

S druge strane, ako sistem $\mathcal{B}^{\mathsf{T}} \cdot a = e_i + 2k$ ima rešenje za $a \in \mathbb{Z}^m$ i $k \in \mathbb{Z}^n$ tada su u' i u'' povezani putem. Neka je $\gamma^1, \ldots, \gamma^{a_1 + \cdots + a_m}$ niz dat sa

$$\gamma^{a_1 + \dots + a_{t-1} + j} = \beta^t, \quad j = 1, \dots, a_t, \ t = 1, \dots, m.$$

Neka je v_j proizvoljan sused čvor
a u_j za $j\neq i,$ i konstruišimo ni
z $u'=w^0,w^1,\ldots,w^{a_1+\cdots+a_m}$ čvorova grafaGtako da se čvo
r $w^c~(c\geq 1)$ dobija od čvora w^{c-1} na sledeći način

$$w_{j}^{c} = \begin{cases} w_{j}^{c-1}, & \text{if } \gamma_{j}^{c} = 0\\ u_{i}^{\prime\prime} & \text{if } \gamma_{i}^{c} = 1, \ w_{i}^{c-1} = u_{i}^{\prime}, \ j = i\\ u_{i}^{\prime} & \text{if } \gamma_{i}^{c} = 1, \ w_{i}^{c-1} = u_{i}^{\prime\prime}, \ j = i\\ v_{j}, & \text{if } \gamma_{j}^{c} = 1, \ w_{j}^{c-1} = u_{j}, \ j \neq i\\ u_{j}, & \text{if } \gamma_{j}^{c} = 1, \ w_{j}^{c-1} = v_{j}, \ j \neq i \end{cases}$$

za $1 \leq c \leq a_1 + \dots + a_m$. Očigledno, $\overrightarrow{d}(w^{c-1}, w^c) = \gamma^c$ i iz $\mathcal{B}^{\mathsf{T}} \cdot a = e_i + 2k$ sledi da je $w^{a_1 + \dots + a_m} = u''$, što dokazuje tvrdjenje.

Prema tome, G je povezan ako i samo ako sistem

(1.2)
$$\mathcal{B}^{\mathsf{T}} \cdot a = e_i + 2k$$

ima rešenje za $a \in Z^m$ i $k \in Z^n$ za svako i = 1, ..., n. Lako je videti da sistem (1.2) ima rešenje ako i samo ako sistem

(1.3)
$$\mathcal{B}^{\mathsf{T}} \cdot a = e_i$$

ima rešenje za $a \cup GF_2^m$. Iz Kronecker-Cappelijeve teoreme sledi da sistem (1.3) ima rešenje ako i samo ako je $r(\mathcal{B}^{\mathsf{T}} | e_i) = r(\mathcal{B}^{\mathsf{T}})$. Ovo važi za svako $i = 1, \ldots, n$ ako i samo ako je $r(\mathcal{B}) = n$. Naime, pretpostavimo da ovo važi za svako i, ali da je $r(\mathcal{B}) < n$. Ako vrste $R_1, \ldots, R_{r(\mathcal{B})}$ i kolone $C_1, \ldots, C_{r(\mathcal{B})}$ odredjuju nesingularnu podmatricu matrice \mathcal{B}^{T} , tada za $i \notin \{R_1, \ldots, R_{r(\mathcal{B})}\}$ imamo da je $r(\mathcal{B}^{\mathsf{T}} | e_i) = r(\mathcal{B}^{\mathsf{T}}) + 1$, što je kontradikcija.

Iz leme 1.1.3 i teoreme 1.1.4 direktno dobijamo sledeću

Teorema 1.1.5 Neka su B_1, \ldots, B_n povezani grafovi, pri čemu je njih k bipartitno. NEPS $(B_1, \ldots, B_n; \mathcal{B})$ je povezan graf ako i samo ako je $r(\mathcal{B}') = k$, gde se \mathcal{B}' sastoji od kolona matrice \mathcal{B} koje odgovaraju bipartitnim grafovima.

1.2 Broj komponenti povezanosti

Sledeća teorema uopštava teoremu 1.1.4 dajući broj komponenti povezanosti NEPSa povezanih bipartitnih grafova.

Teorema 1.2.1 Neka su B_1, \ldots, B_n povezani bipartitni grafovi. Broj komponenti povezanosti grafa NEPS $(B_1, \ldots, B_n; \mathcal{B})$ je $2^{n-r(\mathcal{B})}$.

Dokaz Neka su $v = (v_i)_{i=1}^n$ i $w = (w_i)_{i=1}^n$ čvorovi grafa NEPS $(B_1, \ldots, B_n; \mathcal{B})$. Definišimo binarni vektor rastojanja $\overrightarrow{bd}(v, w)$ pomoću

$$(\overrightarrow{bd}(v,w))_i = \begin{cases} 0, & d_{B_i}(v_i,w_i) \text{ je parno} \\ 1, & d_{B_i}(v_i,w_i) \text{ je neparno} \end{cases}$$

gde je $d_{B_i}(v_i, w_i)$ rastojanje izmedju čvorova v_i i w_i u B_i , i = 1, ..., n. Pošto u bipartitnim grafovima proizvoljna dva puta izmedju proizvoljna dva čvora imaju istu parnost, imamo da za proizvoljne $u, v, w \in V(G)$ u polju GF_2 važi

(1.4)
$$\overrightarrow{bd}(v,w) = \overrightarrow{bd}(u,v) - \overrightarrow{bd}(u,w)$$

Pošto su grafovi B_1, \ldots, B_n netrivijalni, imamo da za proizvoljno $u \in V(G)$ važi

(1.5)
$$\{\overrightarrow{bd}(u,v): v \in V(G)\} = GF_2^n.$$

Iz dokaza teoreme 1.1.4 sledi da se čvorovi v i w nalaze u istoj komponenti povezanosti ako i samo ako sistem $\mathcal{B}^{\mathsf{T}} \cdot a = \overrightarrow{bd}(v, w)$ ima rešenje za $a \in GF_2^{|\mathcal{B}|}$ ako i samo ako

(1.6)
$$\overrightarrow{bd}(v,w) \in P = \{ \mathcal{B}^{\mathsf{T}} \cdot a : a \in GF_2^{|\mathcal{B}|} \}$$

Primetimo da je $P \cong GF_2^{r(\mathcal{B})}$ kao homomorfna slika $GF_2^{|\mathcal{B}|}$. Izaberimo čvor u. Iz (1.4) i (1.6) sledi da se čvorovi v i w nalaze u istoj komponenti povezanosti ako i samo ako je $\overrightarrow{bd}(u, v) + P = \overrightarrow{bd}(u, w) + P$. Odavde i iz (1.5) zaključujemo da je broj komponenti povezanosti jednak broju koseta u GF_2^n/P , a to je $2^{n-r(\mathcal{B})}$. **Posledica 1.2.2** Neka su B_1, \ldots, B_n proizvoljni grafovi, pri čemu je njih k bipartitno, tako da nebipartitni grafovi nemaju bipartitne komponente. Neka c(G) označava broj komponenti povezanosti grafa G. Tada je

$$c(\operatorname{NEPS}(B_1,\ldots,B_n;\mathcal{B})) = \prod_{i=1}^n c(B_i) \cdot 2^{k-r(\mathcal{B}')},$$

gde se \mathcal{B}' sastoji od kolona matrice \mathcal{B} koje odgovaraju bipartitnim grafovima.

Dokaz Označimo komponente grafa B_i sa $B_{i,1}, \ldots, B_{i,c(B_i)}, i = 1, \ldots, n$. Tada iz definicije 0.0.1 vidimo da važi

NEPS
$$(B_1, \ldots, B_n; \mathcal{B}) = \bigcup_{j_1=1}^{c(B_1)} \ldots \bigcup_{j_n=1}^{c(B_n)} \operatorname{NEPS} (B_{1,j_1}, \ldots, B_{n,j_n}; \mathcal{B}).$$

Kako su $B_{1,j_1}, \ldots, B_{n,j_n}$ povezani grafovi, pri čemu je njih k bipartitno, to iz leme 1.1.3 i teoreme 1.2.1 sledi da je

$$c(\operatorname{NEPS}(B_{1,j_1},\ldots,B_{n,j_n};\mathcal{B})) = 2^{k-r(\mathcal{B}')}.$$

1.3 Bipartitnost

Neka je $G = \text{NEPS}(G_1, \ldots, G_n; \mathcal{B})$, gde su grafovi G_1, \ldots, G_n povezani, i neka je Λ indeks grafa G, dok je r_i indeks grafa G_i , $i = 1, \ldots, n$. Tada iz (1) sledi

$$\Lambda = \sum_{\beta \in \mathcal{B}} r_1^{\beta_1} \cdots r_n^{\beta_n}.$$

Sve komponente NEPSa povezanih grafova imaju indeks Λ . Prirodno, NEPS je bipartitan ako su sve njegove komponente bipartitne. Tada svaka komponenta mora sadržati broj $-\Lambda$ u spektru (videti, na primer, teoremu 1.3.14 iz [27]). Pošto nijedna komponenta ne sadrži broj $-\Lambda$ u spektru sa višestrukošću većom od 1, zaključujemo da je potreban i dovoljan uslov za bipartitnost NEPSa da brojevi Λ i $-\Lambda$ imaju istu višestrukost u spektru NEPSa. Iz jednačine (1) vidimo da se broj $-\Lambda$ pojavljuje u spektru NEPSa samo ako su neki od faktora bipartitni i ako postoje podskupovi skupa promenljivih x_1, \ldots, x_n u odnosu na koje je funkcija (1.1) neparna.

Shodno tome, D. Cvetković je u [10] dobio sledeću

Teorema 1.3.1 Neka su G_1, \ldots, G_n povezani grafovi, od kojih svaki sadrži bar jednu granu. Pretpostavimo da su medju grafovima G_1, \ldots, G_n bipartitni grafovi G_1, \ldots, G_k . NEPS $(G_1, \ldots, G_n; \mathcal{B})$ je bipartitan graf ako i samo ako je broj nepraznih podskupova skupa $\{x_1, \ldots, x_k\}$, u odnosu na koju je funkcija (1.1) parna, manji za 1 od broja nepraznih podskupova u odnosu na koje je ta funkcija neparna.

M. Petrić je ovaj rezultat poboljšao u svojoj doktorskoj disertaciji [44].

Teorema 1.3.2 Neka su G_1, G_2, \ldots, G_n povezani grafovi, od kojih svaki sadrži bar dva čvora. Pretpostavimo da su grafovi $G_{i_1}, G_{i_2}, \ldots, G_{i_s}$ ($\{i_1, i_2, \ldots, i_s\} \subseteq$ $\{1, 2, \ldots, n\}$) bipartitni. NEPS ($G_1, \ldots, G_n; \mathcal{B}$) je bipartitan graf ako i samo ako postoji (bar jedan) neprazan podskup skupa $\{x_{i_1}, x_{i_2}, \ldots, x_{i_s}\}$ u odnosu na koji je funkcija (1.1) neparna.

Ako, bez gubitka opštosti, pretpostavimo da su medju grafovima G_1, \ldots, G_n bipartitni grafovi G_1, \ldots, G_k , iz posledice 1.2.2 vidimo da je višestrukost indeksa Λ grafa G jednaka $2^{k-r(\mathcal{B}')}$, gde se \mathcal{B}' sastoji od kolona matrice \mathcal{B} koje odgovaraju bipartitnim grafovima.

Neka su $\lambda_1,\ldots,\lambda_n$ sopstvene vrednosti grafova $G_1,\ldots,G_n,$ redom, tako da je

(1.7)
$$-\Lambda = \sum_{\beta \in \mathcal{B}} \lambda_1^{\beta_1} \cdots \lambda_n^{\beta_n}.$$

Pošto je $|\lambda_i| \leq r_i, i = 1, \dots, n$, to je

$$\Lambda = \left| \sum_{\beta \in \mathcal{B}} \lambda_1^{\beta_1} \cdots \lambda_n^{\beta_n} \right| \le \sum_{\beta \in \mathcal{B}} |\lambda_1|^{\beta_1} \cdots |\lambda_n|^{\beta_n} \le \sum_{\beta \in \mathcal{B}} r_1^{\beta_1} \cdots r_n^{\beta_n} = \Lambda.$$

Odavde sledi da (1.7) važi ako i samo ako je $|\lambda_i| = r_i$ za svako $i \in \{1, \ldots, n\}$ i $\lambda_1^{\beta_1} \cdots \lambda_n^{\beta_n} = -r_1^{\beta_1} \cdots r_n^{\beta_n}$ za svako $\beta \in \mathcal{B}$. Za $i \in \{k + 1, \ldots, n\}$ graf G_i nije bipartitan, pa je jedino moguće $\lambda_i = r_i$. Za $i \in \{1, \ldots, k\}$ graf G_i je bipartitan i, pored r_i , ima i sopstvenu vrednost $-r_i$. Zato, neka je $\lambda_i = (-1)^{s_i} r_i$ za $i = 1, \ldots, k$, gde je $s_i \in \{0, 1\}$. Tada je

$$\lambda_1^{\beta_1}\cdots\lambda_n^{\beta_n}=(-1)^{\sum_{i=1}^k s_i\cdot\beta_i}r_1^{\beta_1}\cdots r_n^{\beta_n},$$

odakle sledi da u polju GF_2 važi

(1.8)
$$(\forall \beta \in \mathcal{B}) \quad \sum_{i=1}^{k} s_i \cdot \beta_i = 1.$$

Neka je $s = (s_1, \ldots, s_k)^{\mathsf{T}}$, a \mathcal{B}' matrica koja se sastoji od kolona matrice \mathcal{B} koje odgovaraju bipartitnim grafovima. Tada sistem jednačina (1.8) možemo zapisati u obliku (1.9)

 $\mathcal{B}' \cdot s = (1, \dots, 1)^{\mathsf{T}}.$

Iz Kronecker-Cappelijeve teoreme sledi da sistem (1.9) ima rešenje ako i samo ako je $r(\mathcal{B}' | (1, ..., 1)^{\mathsf{T}}) = r(\mathcal{B}')$. Pritom, sva rešenja pripadaju istom kosetu podprostora ker \mathcal{B}' prostora GF_2^k , pa je broj rešenja jednak $2^{k-r(\mathcal{B}')}$, čime smo dokazali sledeću

Teorema 1.3.3 Neka su G_1, \ldots, G_n povezani grafovi. NEPS $(G_1, \ldots, G_n; \mathcal{B})$ je bipartitan graf ako i samo ako je $r(\mathcal{B}' | (1, \ldots, 1)^{\mathsf{T}}) = r(\mathcal{B}')$, gde se \mathcal{B}' sastoji od kolona matrice \mathcal{B} koje odgovaraju bipartitnim grafovima.

Glava 2

O hipotezi D. Cvetkovića ili o višestrukostima sopstvenih vrednosti NEPSa grafova

Za dva grafa kaže se da su *skoro kospektralni* ako se njihove sopstvene vrednosti, različite od 0, poklapaju zajedno sa višestrukostima. D. Cvetković je u radu [16] postavio hipotezu da su komponente NEPSa bipartitnih grafova skoro kospektralne. U istom radu hipoteza je dokazana za proizvod grafova, a u radu[18] za još neke specijalne slučajeve NEPSa.

Medjutim, ova hipoteza nije tačna. Verovatno najmanji kontraprimer za hipotezu predstavlja graf $(P_3 \times P_3) + K_2$ sa spektrom $[3^2, 1^7, -1^7, -3^2]$, prikazan na sl. 2.1, koji ima dve komponente povezanosti: graf $K_2 + K_2 + K_2$ sa spektrom $[3, 1^3, -1^3, -3]$ i graf $K_{1,4} + K_2$ sa spektrom $[3, 1^4, -1^4, -3]$.

Ovaj kontraprimer nije usamljen. Neka su G_1, G_2 proizvoljni bipartitni grafovi sa neparnim brojevima čvorova n_1 i n_2 , redom. Iz teoreme 1.1.4 vidimo da proizvod $G_1 \times G_2$ ima tačno dve komponente povezanosti C' i C'', a iz rada [16] da su komponente C' i C'' skoro kospektralne. Neka C' i C'' imaju različite sopstvene vrednosti $\lambda_1, \ldots, \lambda_k$ ($\lambda_i \neq 0, i = 1, \ldots, k$) sa višestrukostima m_1, \ldots, m_k redom, i neka C' ima sopstvenu vrednost 0 sa višestrukošću m', a

13

Slika 2.1: Kontraprimer $(P_3 \times P_3) + K_2$.

C'' sa višestrukošću m'' (moguće je m' = 0 ili m'' = 0). Važi da je $m' \neq m''$, inače bi broj čvorova grafa $G_1 \times G_2$ bio paran. Kako je za svaki povezan graf Ggraf $G + K_2$ takodje povezan, zaključujemo da graf $(G_1 \times G_2) + K_2$ ima tačno dve komponente povezanosti $C' + K_2$ i $C'' + K_2$. Komponente $C' + K_2$ i $C'' + K_2$ imaju sopstvene vrednosti $\lambda_1 \pm 1, \ldots, \lambda_k \pm 1$, sa višestrukostima m_1, \ldots, m_k redom, dok komponenta $C' + K_2$ ima sopstvenu vrednost ± 1 sa višestrukošću m', a komponenta $C'' + K_2$ nisu skoro kospektralne, pa zaključujemo da data hipoteza ima beskonačno mnogo kontraprimera.

Iako gornja konstrukcija daje beskonačno mnogo kontraprimera, ona koristi samo jednu bazu NEPSa, dok smo u ovoj glavi zainteresovani da otkrijemo što više baza za koje hipoteza ne važi, kako bismo u budućnosti lakše mogli da pronadjemo sve baze za koje hipoteza važi.

Očigledno je da su višestrukosti nenula sopstvenih vrednosti NEPSa deljive brojem njegovih komponenti, u slučaju da su komponente NEPSa skoro kospektralne. U sekciji 2.1 nalazimo uslov za bazu NEPSa iz kojeg sledi deljivost višestrukosti sopstvenih vrednosti brojem komponenti, što upućuje na to da kontraprimere za hipotezu treba tražiti medju onim bazama NEPSa koje ne zadovoljavaju ovaj uslov. U sekciji 2.2 pokazujemo da za svaku takvu bazu NEPSa postoji beskonačno mnogo skupova bipartitnih grafova čiji NEPS sa tom bazom predstavlja kontraprimer. Glavu završavamo hipotezom da su komponente NEPSa bipartitnih grafova skoro kospektralne ako i samo ako baza NEPSa zadovoljava dati uslov.

2.1 Teorema o višestrukostima

Neka su G_1, \ldots, G_n bipartitni grafovi, i neka je $G = \text{NEPS}(G_1, \ldots, G_n; \mathcal{B})$. Izaberimo sopstvene vrednosti $\lambda_1, \ldots, \lambda_n$ grafova G_1, \ldots, G_n , redom, i neka je Λ odgovarajuća sopstvena vrednost grafa G predstavljena pomoću (1). Pretpostavimo da je $S = \{i \in \{1, \ldots, n\} : \lambda_i = 0\} \neq \{1, \ldots, n\}$ i neka je

$$\mathbf{Z}(\mathcal{B},S) = \{\beta \in \mathcal{B} \colon (\forall i \in S) \ \beta_i = 0\} \neq \emptyset.$$

Za $u \in GF_2^n$ definišimo $u^{-S} \in GF_2^{n-|S|}$, sa koordinatama u skupu $\{1, \ldots, n\} - S$, pomoću $u_i^{-S} = u_i$ za $i \notin S$. Neka je sada

$$z(\mathcal{B}, S) = \{\beta^{-S} : \beta \in Z(\mathcal{B}, S)\}.$$

Primetimo da važi $r(\mathbf{Z}(\mathcal{B}, S)) = r(\mathbf{z}(\mathcal{B}, S)).$

Lako je videti da ako $\beta \notin \mathbb{Z}(\mathcal{B}, S)$, tada $\prod_{i=1}^{n} \lambda_{i}^{\beta_{i}} = 0$, pa jednačinu (1) možemo pisati u obliku

(2.1)
$$\Lambda = \sum_{\beta \in \mathbb{Z}(\mathcal{B},S)} \prod_{i \notin S} \lambda_i^{\beta_i} = \sum_{\beta^{-S} \in \mathbb{Z}(\mathcal{B},S)} \prod_{i \notin S} \lambda_i^{\beta_i^{-S}}$$

Kako je graf G_i bipartitan, za svaku sopstvenu vrednost $\lambda_i > 0$ grafa G_i važi da je $-\lambda_i$ takodje sopstvena vrednost grafa G_i sa istom višestrukošću, pa u (1) možemo staviti bilo λ_i , bilo $-\lambda_i$. Zbog toga, uvek možemo birati samo nenegativne sopstvene vrednosti $\lambda_1, \ldots, \lambda_n$ grafova G_1, \ldots, G_n , redom, a naknadno izabrati znakove vrednosti $\lambda_i, i \notin S$. Svakom izboru znakova vrednosti $\lambda_i, i \notin S$, možemo obostrano jednoznačno da pridružimo vektor $s \in GF_2^{n-|S|}$, sa koordinatama u skupu $\{1, \ldots, n\} - S$, definisan sa

$$s_i = \begin{cases} 0, & \text{ako je izabrano } \lambda_i > 0\\ 1, & \text{ako je izabrano } -\lambda_i < 0 \end{cases}$$

Primetimo da se, po izboru znakova kojem odgovara vektor s, u (2.1) umesto λ_i pojavljuje $(-1)^{s_i}\lambda_i$ i da je zato sada

(2.2)
$$\Lambda = \sum_{\beta^{-S} \in \mathbf{z} (\mathcal{B}, S)} \prod_{i \notin S} ((-1)^{s_i} \lambda_i)^{\beta_i^{-S}} = \sum_{\beta^{-S} \in \mathbf{z} (\mathcal{B}, S)} (-1)^{\sum_{i \notin S} s_i \cdot \beta_i^{-S}} \prod_{i \notin S} \lambda_i^{\beta_i^{-S}}$$
$$= \sum_{\beta^{-S} \in \mathbf{z} (\mathcal{B}, S)} (-1)^{s \cdot \beta^{-S}} \prod_{i \notin S} \lambda_i^{\beta_i^{-S}},$$

gde je $s \cdot \beta^{-S}$ standardan skalarni proizvod vektora u $GF_2^{n-|S|}$. Očigledno je da izbori znakova s_1 i s_2 daju istu vrednost Λ ako je $s_1 \cdot \beta^{-S} = s_2 \cdot \beta^{-S}$ za svako $\beta^{-S} \in z(\mathcal{B}, S)$. No, tada je $(s_2 - s_1) \cdot \beta^{-S} = 0$ za svako $\beta^{-S} \in z(\mathcal{B}, S)$, pa je $s_2 \in s_1 + \ker z(\mathcal{B}, S)$. Prostor $\ker z(\mathcal{B}, S)$ ima dimenziju $n - |S| - r(z(\mathcal{B}, S))$, pa skup $s_1 + \ker z(\mathcal{B}, S)$ ima kardinalnost $2^{n-|S|-r(z(\mathcal{B},S))}$.

Ako sa m_i označimo višestrukost sopstvene vrednosti λ_i , $i = 1, \ldots, n$, vidimo da odredjeni izbor znakova i svi njemu ekvivalenti izbori znakova sopstvenih vrednosti λ_i , $i = 1, \ldots, n$, učestvuju u višestrukosti sopstvene vrednosti Λ grafa G sa sabirkom $2^{n-|S|-r(z(\mathcal{B},S))} \prod_{i=1}^{n} m_i$. Ovim smo dokazali sledeću

Teorema 2.1.1 Neka je $G = \text{NEPS}(G_1, \ldots, G_n; \mathcal{B})$, gde su G_1, \ldots, G_n proizvoljni bipartitni grafovi. Ako za svako $S \subset \{1, \ldots, n\}$ za koje je $\mathcal{B}'_S \neq \emptyset$ važi $|S| + r(z(\mathcal{B}, S)) \leq r(\mathcal{B})$, tada je višestrukost svake nenula sopstvene vrednosti grafa G deljiva sa $2^{n-r(\mathcal{B})}$.

2.2 Postoji beskonačno mnogo kontraprimera

U ovoj sekciji pokazujemo da za bazu \mathcal{B} , za koju postoji $S \subset \{1, \ldots, n\}$ tako da je z $(\mathcal{B}, S) \neq \emptyset$ i $|S| + r(z(\mathcal{B}, S)) > r(\mathcal{B})$, postoji beskonačno mnogo skupova bipartitnih grafova čiji NEPS sa tom bazom ima komponente koje nisu skoro kospektralne.

Neka je $S^* \subset \{1, \ldots, n\}$ skup najveće kardinalnosti za koji je z $(\mathcal{B}, S^*) \neq \emptyset$ i

$$|S^*| + r(\mathbf{z}(\mathcal{B}, S^*)) > r(\mathcal{B}).$$

Dalje, neka su *a* i *b* proizvoljni prirodni brojevi različite parnosti, ali tako da je $\{a, b\} \neq \{1, 2\}$. Neka je $D_i = K_{a^{2^i}, b^{2^i}}, i = 1, \ldots, n$. Graf D_i ima proste sopstvene vrednosti $\pm (ab)^{2^{i-1}}$ i sopstvenu vrednost 0 sa neparnom višestrukošću $a^{2^i} + b^{2^i} - 2$. Neka je $D = \text{NEPS}(D_1, \ldots, D_n; \mathcal{B})$. Izaberimo sopstvene vrednosti $\lambda_1, \ldots, \lambda_n$ grafova D_1, \ldots, D_n , redom, tako da je

$$\lambda_i = \begin{cases} (ab)^{2^{i-1}}, & i \notin S^*, \\ 0, & i \in S^* \end{cases}$$

i vektor $s^* \in GF_2^{n-|S^*|}$, sa koordinatama u skupu $\{1, \ldots, n\} - S^*$, koji odgovara izboru znakova vrednosti $\lambda_i, i \notin S^*$. Nešto kasnije ćemo dokazati da je sopstvena vrednost Λ , koja se dobija iz (2.2), različita od 0.

Neka je $m_{\beta} = \sum_{i=1}^{n} \beta_i 2^{i-1}$. Jasno je da važi $\beta_1 \neq \beta_2 \Leftrightarrow m_{\beta_1} \neq m_{\beta_2}$. Tada za $\beta \in \mathcal{Z}(\mathcal{B}, S^*)$ važi $m_{\beta} = \sum_{i \notin S^*} \beta_i^{-S^*} 2^{i-1}$, pošto je $\beta_i = \beta_i^{-S^*}$ za $i \notin S^*$ i $\beta_i = 0$ za $i \in S^*$. Definišimo sada ϕ_j za $j = 1, \ldots, 2^n - 1$ pomoću

$$\phi_j = \begin{cases} (-1)^{s^* \cdot \beta^{-S^*}}, & \text{ako je } j = m_\beta \text{ za neko } \beta \in \mathcal{Z}(\mathcal{B}, S^*), \\ 0, & \text{inače.} \end{cases}$$

Kako je $\lambda_i = (ab)^{2^{i-1}}$ za $i \notin S^*$, to je

$$\prod_{i \notin S^*} \lambda_i^{\beta_i^{-S^*}} = (ab)^{\sum_{i \notin S^*} \beta_i^{-S^*} 2^{i-1}} = (ab)^{m_\beta},$$

pa je tada sopstvena vrednost Λ graf
aD,dobijena ovim izborom vrednosti $\lambda_1,\ldots,\lambda_n$ i njihovih znakova, jednaka

$$\Lambda = \sum_{\beta^{-S^*} \in \mathbf{z} \ (\mathcal{B}, S^*)} (-1)^{s^* \cdot \beta^{-S^*}} \prod_{i \notin S^*} \lambda_i^{\beta_i^{-S^*}} = \sum_{\beta \in \mathbf{Z} \ (\mathcal{B}, S^*)} (-1)^{s^* \cdot \beta^{-S^*}} (ab)^{m_\beta} = \sum_{j=1}^{2^*-1} \phi_j (ab)^j.$$

Sada ćemo dokazati da se sopstvena vrednost Λ na jedinstven način prikazuje u obliku $\sum_{j=1}^{2^n-1} \phi_j(ab)^j$. Pretpostavimo da je $\Lambda = \sum_{j=1}^{2^n-1} \psi_j(ab)^j$, pri čemu je $(\psi_1, \dots, \psi_{2^n-1}) \neq (\phi_1, \dots, \phi_{2^n-1})$. Neka je $\omega_j = \psi_j - \phi_j$ za $j = 1, \dots, 2^n - 1$, što znači da $\omega_j \in \{0, \pm 1, \pm 2\}$. Tada je $\sum_{j=1}^{2^n-1} \omega_j(ab)^j = 0$, a zatim neka je J najveći indeks za koji je $\omega_J \neq 0$, tako da je $\sum_{j=1}^{2^n-1} \omega_j(ab)^j = \sum_{j=1}^J \omega_j(ab)^j = 0$. Pošto je $ab \geq 3$, jer je $\{a, b\} \neq \{1, 2\}$, to važi $(ab)^J > 2\sum_{j=1}^{J-1} (ab)^j$ i sledi $|\omega_J|(ab)^J > \sum_{j=1}^J |\omega_j|(ab)^j$, što daje kontradikciju sa $\sum_{j=1}^J \omega_j(ab)^j = 0$. Ovo je ujedno i dokaz da je $\Lambda \neq 0 = \sum_{j=1}^{2^n-1} 0(ab)^j$.

Da bismo odredili višestrukost sopstvene vrednosti Λ , moramo naći na koliko se načina izborom skupa $S \subset \{1, \ldots, n\}$, sopstvenih vrednosti μ_i , $i = 1, \ldots, n$ i njihovih znakova $s \in GF_2^{n-|S|}$ mogu dobiti koeficijenti ψ_j , dobijeni analogno koeficijentima ϕ_j , za koje je $\psi_j = \phi_j$, $j = 1, \ldots, 2^n - 1$. Primetimo najpre da skup S odredjuje sopstvene vrednosti μ_i , jer je

$$\mu_i = \begin{cases} (ab)^{2^{i-1}}, & i \notin S, \\ 0, & i \in S \end{cases}$$

Dalje je istovremeno $\psi_j \neq 0$ i $\phi_j \neq 0$ za svako $j = 1, \ldots, 2^n - 1$ ako i samo ako je $j = m_{\beta^*}$ za neko $\beta^* \in \mathbb{Z}(\mathcal{B}, S^*)$ i $j = m_\beta$ za neko $\beta \in \mathbb{Z}(\mathcal{B}, S)$, iz čega zaključujemo da je Z $(\mathcal{B}, S) = Z(\mathcal{B}, S^*)$, pa

$$S \in \Theta = \{T \subset \{1, \dots, n\} : Z(\mathcal{B}, T) = Z(\mathcal{B}, S^*)\}.$$

Na osnovu definicije skupa Θ vidimo da za svako $T_1, T_2 \in \Theta$ važi $r(z(\mathcal{B}, T_1)) = r(z(\mathcal{B}, T_2)) = r(z(\mathcal{B}, S^*))$ i još $T_1 \cup T_2 \in \Theta$. Sada zaključujemo da za svako $S \in \Theta$ važi $S \subseteq S^*$, jer ako $S \not\subseteq S^*$ tada je $S \cup S^*$ skup veće kardinalnosti od S^* za koji važi $S \cup S^* \in \Theta$ i, zato, $|S \cup S^*| + r(z(\mathcal{B}, S \cup S^*)) > r(\mathcal{B})$, što daje kontradikciju sa izborom skupa S^* .

Iz $\psi_{m_{\beta}} = \phi_{m_{\beta}}$ za svako $\beta \in \mathbb{Z}(\mathcal{B}, S^*)$ sledi $s \cdot \beta^{-S} = s^* \cdot \beta^{-S^*}$. Kako je $\beta_i^{-S} = 0$ za $i \in S^* - S$, to je $s \cdot \beta^{-S} = s^{-S^*} \beta^{-S^*}$, pa važi $s^{-S^*} \in s^* + \ker z(\mathcal{B}, S^*)$. Odavde sledi da vektor s^{-S^*} možemo izabrati na $2^{n-|S^*|-r(z(\mathcal{B},S^*))}$ načina. Koordinate s_i za $i \in S^* - S$ možemo izabrati proizvoljno, pa zaključujemo da vektor s možemo izabrati na $2^{n-|S^*|-r(z(\mathcal{B},S^*))}$ načina.

Sada dobijamo da je višestrukos
tm sopstvene vrednosti Λ jednaka

$$m = \sum_{S \in \Theta} 2^{n - |S| - r(z(\mathcal{B}, S^*))} \prod_{i \in S} (a^{2^i} + b^{2^i} - 2).$$

Brojeviai
brazličite su parnosti, tako da je proizvo
d $\prod_{i\in S}(a^{2^i}+b^{2^i}-2)$ neparan za svako $S\in \Theta$. Kako još za svako
 $S\in \Theta, S\neq S^*$, važi $|S|<|S^*|$, zaključujemo da je broj
 m deljiv sa $2^{n-|S^*|-r(\mathbf{z}\,(\mathcal{B},S^*))}$, ali nije deljiv sa $2^{n-|S^*|-r(\mathbf{z}\,(\mathcal{B},S^*))+1}$, pa prema tome nije deljiv ni sa $2^{n-r(\mathcal{B})}$. Kako je broj komponenti grafa D jednak
 $2^{n-r(\mathcal{B})}$, zaključujemo da njegove komponente nisu skoro kospektralne.

Prema gore pokazanom zaključujemo da komponente NEPSa povezanih bipartitnih grafova mogu da budu skoro kospektralne samo ako baza NEPSa zadovoljava uslov iz teoreme 2.1.1. Kako do sada nismo našli kontraprimer koji zadovoljava ovaj uslov, niti smo uspeli da pokažemo skoru kospektralnost komponenti, ovaj deo završavamo sledećom

Hipoteza 2.2.1 Neka je $G = \text{NEPS}(G_1, \ldots, G_n; \mathcal{B})$, gde su G_1, \ldots, G_n povezani bipartitni grafovi. Ako za svako $S \subset \{1, \ldots, n\}$ za koje je $z(\mathcal{B}, S) \neq \emptyset$ važi $|S| + r(z(\mathcal{B}, S)) \leq r(\mathcal{B})$, tada su komponente grafa G skoro kospektralne.

Deo II

Regularni grafovi sa celobrojnim spektrom

19

Uvod u potragu

Potragu za integralnim grafovima pokrenuli su F. Harary i A. J. Schwenk u radu [34]. Sve takve povezane, kubne grafove pronašli su D. Cvetković i F. C. Bussemaker [13, 5] i, nezavisno od njih, A. J. Schwenk [51]. Postoji tačno 13 povezanih, kubnih, integralnih grafova. Pritom, D. Cvetković je u [13] dokazao da je skup povezanih, regularnih, integralnih grafova bilo kog odredjenog stepena konačan. Slično tome, skup povezanih, integralnih grafova sa ograničenim stepenom čvorova je takodje konačan. Z. Radosavljević i S. Simić [54] odredili su svih 13 povezanih, nebipartitnih, neregularnih, integralnih grafova kod kojih je najveći stepen čvora jednak 4.

U ovom delu bavimo se povezanim, 4-regularnim, integralnim grafovima. Potraga za integralnim grafovima postaje lakša ukoliko koristimo proizvod grafova. Ako su $\lambda_1, \ldots, \lambda_n$ sopstvene vrednosti grafa G, a μ_1, \ldots, μ_m sopstvene vrednosti grafa H, tada su sopstvene vrednosti grafa $G \times H$ jednake $\lambda_i \mu_j$ for i = $1, \ldots, n, j = 1, \ldots, m$ (videti [21]). Ako je G povezan, nebipartitan, 4-regularan i integralan graf, tada je proizvod $G \times K_2$ povezan, bipartitan, 4-regularan i integralan, pošto su sopstvene vrednosti grafa K_2 jednake 1 i -1. Prema tome, za odredjivanje 4-regularnih, integralnih grafova dovoljno je posmatrati samo takve bipartitne grafove, a kasnije se takvi nebipartitni grafovi mogu dobiti iz razlaganja bipartitnih u proizvod $G \times K_2$. S druge strane, ako je G bipartitan, tada je $G \times K_2 = 2G$ tako da se ponovljenim množenjem sa K_2 ne mogu dobiti novi grafovi.

Zbog toga u glavi 3 nalazimo moguće spektre bipartitnih, 4-regularnih, integralnih grafova. Pošto je broj ovih spektara veoma veliki, u glavi 4 zainteresovani smo za njegovo smanjivanje: najpre nalazimo gornju granicu za broj čvorova u bipartitnom, 4-regularnom, integralnom grafu, a zatim koristeći uglove grafova pokazujemo da ne postoje grafovi sa nekim od mogućih spektara.

Mogući spektri podeljeni su u grupe u zavisnosti od najvećeg celog broja

21

manjeg od 4 koji se ne pojavljuje u spektru. U glavi 5 bavimo se prvom grupom spektara i nalazimo svih 24 4-regularnih, integralnih grafova koji ne sadrže ± 3 u spektru. Kako je NEPS grafova zatvoren u skupu regularnih i integralnih grafova, to u glavi 6 nalazimo sve 4-regularne, integralne grafove koji mogu biti prikazani kao NEPS grafova. Grafovi nadjeni u glavama 5 i 6 nisu jedini poznati 4-regularni, integralni grafovi, već je deo njih bio poznat i ranije u literaturi. Zbog lakšeg korišćenja, u glavi 7 dajemo spisak svih trenutno poznatih 4-regularnih, integralnih grafova.

Glava 3

Mogući spektri bipartitnih, 4-regularnih, integralnih grafova

3.1 Polazni rezultati

Neka je G bipartitan, 4-regularan, integralan graf. Bipartitni, regularni grafovi imaju isti broj čvorova u svakom delu tako da možemo da pretpostavimo da G imap=2n čvorova. Koristeći stepene za predstavljanje višestrukosti sopstvenih vrednosti, spektar grafa G zapisivaćemo u obliku

$$[4, 3^x, 2^y, 1^z, 0^{2w}, -1^z, -2^y, -3^x, -4].$$

Neka dalje q i h označavaju, redom, brojeve četvorouglova i šestouglova u G. Dobro je poznato je zbir k-tih stepena sopstvenih vrednosti jednak broju zatvorenih puteva dužine k. Ovaj rezultat daje nam sledeću lemu:

Lema 3.1.1 Za parametre n, x, y, z, w, q, h važi:

(3.1)
$$\frac{1}{2}\sum_{i}\lambda_{i}^{0} = 1 + x + y + z + w = n_{i}$$

(3.2) $\frac{1}{2}\sum \lambda_i^2 = 16 + 9x + 4y + z = 4n,$

0	9
4	0

(3.3)
$$\frac{1}{2}\sum_{i}\lambda_{i}^{4} = 256 + 81x + 16y + z = 28n + 4q,$$

(3.4)
$$\frac{1}{2}\sum_{i}\lambda_{i}^{6} = 4096 + 729x + 64y + z = 232n + 72q + 6h.$$

Drugu korisnu lemu dao je A. J. Hoffman [37]. Neka regularan graf G ima različite sopstvene vrednosti $\mu_1 = r, \mu_2, \ldots, \mu_k$, i neka je A matrica susedstva grafa G, dok je J matrica čiji su svi elementi jednaki 1, a I jedinična matrica.

Lema 3.1.2 Za matricu susedstva A važi

(3.5)
$$\prod_{i=2}^{k} (r - \mu_i) J = p \prod_{i=2}^{k} (A - \mu_i I).$$

Potragu za mogućim spektrima podelićemo na slučajeve u zavisnosti od najvećeg celog broja manjeg od 4 koji se ne nalazi u spektru (videti 3.2–3.6).

3.2 Slučaj x = 0

Stavljajući x = 0 u jednačine (3.1)-(3.4), a zatim eliminišući n i y iz (3.1) i (3.2) dobijamo 3z + 4w = 12 i, pošto je $z, w \ge 0$, jedine mogućnosti su (z, w) = (0, 3) i (z, w) = (4, 0).

3.2.1 Podslučaj (z, w) = (0, 3)

Zamenjujući vrednosti za x,zi
 wu $(3.1)\mathchar`-(3.4)$ i stavljajući
 y=n-4iz (3.1) u(3.3)i (3.4) dobijamo

$$(3.6) 3n+q = 48,$$

$$(3.7) 28n + 12q + h = 640$$

Iz (3.6) sledi 3 | q, pa je q = 3q₁ i (3.6) se svodi na $n + q_1 = 16$, što pokazuje da je $n \leq 16$. Dalje, iz (3.6) i (3.7) sledi da je h = 8n + 64. Ako je y = 0 tada je n = 4 i odgovarajući spektar je prikazan u tabeli 3.1. Ako je y > 0 Hoffman-ova jednakost (3.5) glasi $384J = 2n(A^4 - 4A^2) + 8n(A^3 - 4A)$. Graf G je bipartitan i ako uzmemo čvorove u, v iz različitih delova grafa tada je $(A^{2k})_{u,v} = 0$. Posmatrajući (u, v)-elemente u Hoffman-ovoj jednakosti dobijamo $384 = 8n((A^3)_{u,v} - 4A_{u,v})$, odakle $8n \mid 384$, tj. $n \mid 48$. Pošto je $n \leq 16$, jedine mogućnosti za n su 6, 8, 12 i 16. Odgovarajući spektri prikazani su u tabeli 3.1.

Ovde i u drugim tabelama mogućih spektara kolona "Oznaka" daje referencu na spisak poznatih 4-regularnih, integralnih grafova, datim u glavi 7, ukoliko graf sa odgovarajućim spektrom postoji. Ako je dokazano da graf sa datim spektrom ne postoji, tada se u ovoj koloni nalazi "—". Ako su svi grafovi sa datim spektrom poznati, tada kolona "Svi" sadrži simbol "+".

n	x	y	z	w	q	h	Oznaka	Svi
4	0	0	0	3	36	96	$I_{8,1}$	+
6	0	2	0	3	30	112	$I_{12,4}$	+
8	0	4	0	3	24	128	$I_{16,1-2}$	+
12	0	8	0	3	12	160	$I_{24,1-2}$	+
16	0	12	0	3	0	192	$I_{32,1}$	+

Tabela 3.1: Mogući spektri integralnih grafova sa (x, z, w) = (0, 0, 3).

3.2.2 Podslučaj (z, w) = (4, 0)

Zamenjujući vrednosti za x,zi
 wu $(3.1)\mathchar`-(3.4)$ i stavljajući
 y=n-5iz(3.1)u(3.3)i(3.4)dobijamo

$$(3.8) 3n+q = 45,$$

$$(3.9) 28n + 12q + h = 630.$$

Iz (3.8) sledi 3 | q, pa je q = 3q₁ i (3.8) se svodi na $n + q_1 = 15$, što pokazuje da je $n \le 15$. Dalje, iz (3.8) i (3.9) sledi da je h = 8n + 90. Ako je y = 0 tada je n = 5 i odgovarajući spektar je prikazan u tabeli 3.2. Ako je y > 0 Hoffman-ova jednakost (3.5) glasi $1440J = 2n(A^5 - 5A^3 + 4A) + 8n(A^4 - 5A^2 + 4I)$, pa stoga $n \mid 180$ i pošto je $n \le 15$, jedine moguće vrednosti za n su 6, 9, 10, 12 i 15. Odgovarajući spektri prikazani su u tabeli 3.2.

3.3 Slučaj x > 0, y = 0

Stavljajući y = 0 u jednačine (3.1)-(3.4) i oduzimajući (3.2) od (3.3) dobijamo 240 + 72x = 24n + 4q, odakle je q = 6q' i

$$(3.10) 3x = n + q' - 10.$$

n	x	y	z	w	q	h	Oznaka	Svi
5	0	0	4	0	30	130	$I_{10,1}$	+
6	0	1	4	0	27	138	$I_{12,2}$	+
9	0	4	4	0	18	162	$I_{18,1-3}$	+
10	0	5	4	0	15	170	$I_{20,1-3}$	+
12	0	7	4	0	9	186		
15	0	10	4	0	0	210	$I_{30,1}$	+

Tabela 3.2: Mogući spektri integralnih grafova sa (x, z, w) = (0, 4, 0).

S druge strane, oduzimanje (3.1) od (3.2) daje

$$(3.11) 8x = 3n + w - 15.$$

Eliminišući x iz (3.10) i (3.11) dobijamo n = 8q' - 3w - 35. Iz činjenice da su q', w, x, z, h nenegativni celi brojevi, dobijamo sledeći sistem linearnih nejednačina:

(3.12)
$$x = 3q' - w - 15 \ge 0,$$

(3.13)
$$z = 5q' - 3w - 21 \ge 0,$$

(3.14) $h = -16q' - 6w + 210 \ge 0.$

Hoffman-ova jednakost (3.5) u ovom slučaju glasi

$$3360J = 2n(A^6 - 10A^4 + 9A^2) + 8n(A^5 - 10A^3 + 9A).$$

Prema tome $n \mid 420$. Rešavajući sistem (3.12) - (3.14) po q' i w, i eliminišući spektre koji ne zadovoljavaju $n \mid 420$, dobijamo sve mogućnosti koje su prikazane u tabeli 3.3. Nepostojanje grafova sa spektrima označenim sa "—" u ovoj tabeli pokazano je u sekciji 4.3.4.

3.4 Slučaj x > 0, y > 0, z = 0

Stavljajući z = 0 u jednačine (3.1)-(3.4) i eliminišući n iz (3.1) i (3.2) dobijamo 4w = 12+5x, pa je $x = 4x_1$. Zamenjujući vrednost za n iz (3.2) u (3.3) dobijamo

¹Ovo će biti dokazano na drugom mestu.
n	x	y	z	w	q	h	Oznaka	Svi
7	1	0	3	2	36	102	$I_{14,1}$	$+^{1}$
10	2	0	6	1	36	108		
12	3	0	5	3	42	80		
14	4	0	4	5	48	52		
15	4	0	8	2	42	86		
20	6	0	10	3	48	64		
21	6	0	14	0	42	98		
28	9	0	15	3	54	84		
42	14	0	26	1	60	44		

Tabela 3.3: Mogući spektri integralnih grafova s
ax>0, y=0.

$$q = 36 + 18x_1 - 3y$$
, pa je $q = 3q_1$ i

$$(3.15) q_1 = 12 + 6x_1 - y.$$

Zamenjujući sada vrednost za n iz (3.2) i vrednost za q_1 iz (3.15) u (3.4) dobijamo $\frac{1}{2}h = 48 - 39x_1 + 4y \ge 0$, odakle je

$$(3.16) y \ge 9.75x_1 - 12.$$

Iz (3.15) i (3.16) sledi

$$(3.17) 0 \le q_1 \le 24 - 3.75x_1,$$

što pokazuje da je $1 \le x_1 \le 6$. Eliminišući y iz (3.2) i (3.15) dobijamo $n = 15x_1 - q_1 + 16$, pa iz (3.17) sledi $18.75x_1 - 8 \le n \le 15x_1 + 16$. Hoffman-ova jednakost (3.5) sada glasi

$$2688J = 2n(A^6 - 13A^4 + 36A^2) + 8n(A^5 - 13A^3 + 36A),$$

odakle $n \mid 336$. Svi mogući spektri u ovom slučaju prikazani su u tabeli 3.4.

3.5 Slučaj x > 0, y > 0, z > 0, w = 0

Eliminišući y i z iz jednačina (3.1) i (3.2) dobijamo
 $y = n - \frac{8}{3}x - 5$ i $z = \frac{5}{3}x + 4$, odakle je
 $x = 3x_1 \ (x_1 \in \mathbf{N})$. Eliminišući sada q
ihiz jednačina (3.3) i (3.4),

n	x	y	z	w	q	h	Oznaka
14	4	1	0	8	51	26	
16	4	3	0	8	45	42	
21	4	8	0	8	30	82	
24	4	11	0	8	21	106	
28	4	15	0	8	9	138	
42	8	20	0	13	12	100	
56	12	25	0	18	15	62	

Tabela 3.4: Mogući spektri integralnih grafova s
ax,y>0,z=0.

dobijamo $q=-3n+30x_1+45$ i $h=8n-80x_1+90.$ Iz nejednačina $y\geq 1,\,q\geq 0,$
 $h\geq 0,$ dobijamo uslov

$$\max\left\{1, \frac{n}{10} - \frac{3}{2}\right\} \le x_1 \le \min\left\{\frac{n}{10} + \frac{9}{8}, \frac{n}{8} - \frac{3}{4}\right\}.$$

Hoffman-ova jednakost (3.5) u ovom slučaju glasi

$$10080 \cdot J = 2n(A^7 - 14A^5 + 49A^3 - 36A) + 8n(A^6 - 14A^4 + 49A^2 - 36I),$$

odakle $n \mid 1260$, iz čega lako nalazimo sve moguće spektre, koji su prikazani u tabeli 3.6. Nepostojanje grafova sa spektrima označenim sa "—" u ovoj tabeli pokazano je u sekcijama 4.3.1 i 4.3.3.

3.6 Slučaj x > 0, y > 0, z > 0, w > 0

Eliminišući z, w, q, h iz jednačina (3.1)-(3.4) dobijamo

$$z = -9x - 4y + 4n - 16,$$

$$w = 8x + 3y - 3n + 15,$$

$$q = 18x + 3y - 6n + 60,$$

$$h = -96x - 26y + 34n - 40.$$

Hoffman-ova jednakost (3.5) u ovom slučaju glasi

$$40320 \cdot J = 2n(A^8 - 14A^6 + 49A^4 - 36A^2) + 8n(A^7 - 14A^5 + 49A^3 - 36A),$$

prema tome $n \mid 5040$. Iz ovoga i nejednačina $z \geq 1, w \geq 1, q \geq 0, h \geq 0$, možemo lako (koristeći računar) da dobijemo sve moguće spektre. Postoji 1803 takvih spektara, koji su dati u dodatku A. U sekciji 4.1 pokazuje se da je gornja granica za n jednaka 2520, pa je slučajn = 5040 nemoguć. U sekcijama 4.3.1 i 4.3.2 koriste se uglovi grafova da bi se pokazalo nepostojanje grafova sa nekim od ovih spektara, smanjujući pritom ukupan broj mogućih spektara u ovom slučaju na 1259. Tamo je takodje pokazano da postoji samo 5 mogućih spektara sa 630 $< n \leq 2520$. U tabeli 3.5 za svako $n \mid 5040, n \leq 630$ dajemo broj SPmogućih spektara, dok su u tabeli 3.7 prikazani oni sa $n \leq 20$ i ovih 5 posebnih spektara.

n	SP	n	SP	n	SP	n	SP	n	SP	n	SP	n	SP
21	12	40	24	63	38	90	44	140	40	240	28	360	17
24	14	42	27	70	40	105	44	144	42	252	32	420	22
28	17	45	29	72	35	112	39	168	32	280	40	504	33
30	18	48	31	80	35	120	44	180	37	315	47	560	40
35	22	56	35	84	39	126	47	210	47	336	14	630	47
36	23	60	33										

Tabela 3.5: Broj mogućih spektara integralnih grafova s
ax,y,z,w>0i 21 $\leq n\leq 630.$

n	x	y	z	w	q	h	Oznaka	1	n	x	y	z	w	q	h	Oznaka
14	3	1	9	0	33	122			105	27	28	49	0	0	210	
15	3	2	9	0	30	130			105	30	20	54	0	30	130	
18	3	5	9	0	21	154			105	33	12	59	0	60	50	
20	3	7	9	0	15	170			126	36	25	64	0	27	138	
21	3	8	9	0	12	178			126	39	17	69	0	57	58	
28	6	7	14	0	21	154			140	39	31	69	0	15	170	
30	6	9	14	0	15	170			140	42	23	74	0	45	90	
30	9	1	19	0	45	90	$I_{60,3}$		140	45	15	79	0	75	10	
35	6	14	14	0	0	210	$I_{70,1}$		180	51	39	89	0	15	170	
35	9	6	19	0	30	130			180	54	31	94	0	45	90	
36	9	7	19	0	27	138			180	57	23	99	0	75	10	
42	9	13	19	0	9	186			210	60	45	104	0	15	170	
42	12	5	24	0	39	106			210	63	37	109	0	45	90	
45	9	16	19	0	0	210	$I_{90,1}$		210	66	29	114	0	75	10	
45	12	8	24	0	30	130			252	72	55	124	0	9	186	
60	15	15	29	0	15	170			252	75	47	129	0	39	106	
60	18	7	34	0	45	90			252	78	39	134	0	69	26	
63	15	18	29	0	6	194			315	90	70	154	0	0	210	
63	18	10	34	0	36	114			315	93	62	159	0	30	130	
63	21	2	39	0	66	34			315	96	54	164	0	60	50	
70	18	17	34	0	15	170			420	123	87	209	0	15	170	
70	21	9	39	0	45	90			420	126	79	214	0	45	90	
70	24	1	44	0	75	10			420	129	71	219	0	75	10	
84	21	23	39	0	3	202			630	186	129	314	0	15	170	
84	24	15	44	0	33	122			630	189	121	319	0	45	90	
84	27	7	49	0	63	42			630	192	113	324	0	75	10	
90	24	21	44	0	15	170			1260	375	255	629	0	15	170	
90	27	13	49	0	45	90			1260	378	247	634	0	45	90	
90	30	5	54	0	75	10			1260	381	239	639	0	75	10	

Tabela 3.6: Mogući spektri integralnih grafova s
ax,y,z>0,w=0.

n	x	y	z	w	q	h	Oznaka							1	01
8	1	1	3	2	33	110		$\frac{n}{10}$	x	<u>y</u>	2	w	<i>q</i>	<i>n</i>	Oznaka
9	1	2	3	2	30	118		18	1	11	3	2	3	190	_
10	1	3	3	$\frac{1}{2}$	27	126	Ino 5	18	2	8	6	1	12	172	$I_{36,1}$
10	$\frac{1}{2}$	1	2	4	30	82	-20,5	18	2	9	2	4	15	146	
12	1	5	2	2	21	1/2		18	3	6	5	3	24	128	$I_{36,2}$
12	1	0 9	6	1	21	194	<i>T</i>	18	3	7	1	6	27	102	
12	2	2	0	1	00 99	124	124,3	18	4	3	8	2	33	110	
12	2	0 1	1	4	33 45	90 E 4		18	4	4	4	5	36	84	$I_{36,3}$
12	ა 1	1	1	0	40	04 150		18	5	1	7	4	45	66	
14		1	3	2	15	158		18	5	2	3	7	48	40	
14	2	4	0	1	24	140		20	2	10	6	1	6	188	
14	2	5	2	4	27	114		20	2	11	2	4	9	162	
14	3	2	5	3	36	96		20	3	8	5	3	18	144	
14	3	3	1	6	39	70	_	20	3	9	1	6	21	118	
15	1	8	3	2	12	166	$I_{30,2-3}$	20	4	5	8	2	27	126	
15	2	5	6	1	21	148		20^{-0}	4	6	4	5	30	100	I40 1 2
15	2	6	2	4	24	122		$\frac{-0}{20}$	5	$\overset{\circ}{2}$	11	1	36	108	-40,1-2
15	3	3	5	3	33	104		20	5	3	7	4	30	82	
15	3	4	1	6	36	78		20	5	4	י ז	7	42	56	
15	4	1	4	5	45	60		20	6	1	6	6	42 51	38	
16	1	9	3	2	9	174		20	6	1 9	0	0	54	10	
16	2	6	6	1	18	156		20	0	4	204	9	04	12	
16	2	7	2	4	21	130		120 840	200	106	304 264	00 25	0	0	
16	3	4	5	3	30	112		040	244	190	504	აე ელ	0	0	
16	3	5	1	6	33	86		1200	310	280	0/4	35 95	0	U	
16	4	1	8	2	39	94		1680	496	364	784	35	0	0	
16	4	2	4	5	42	68		2520	748	532	1204	35	0	0	

Tabela 3.7: Mogući spektri integralnih grafova s
ax,y,z,w>0i $n\leq 20,$ i 5 posebnih spektara.

Glava 4

Nepostojanje nekih integralnih grafova

Mogući spektri bipartitnih, 4-regularnih, integralnih grafova, koji su nadjeni u prethodnoj glavi, veoma su brojni i ne možemo očekivati da će svi 4-regularni, integralni grafovi biti poznati u skoroj budućnosti. Zato smo u ovoj glavi zainteresovani za smanjivanje broja mogućih spektara: najpre u sekciji 4.1 nalazimo gornju granicu za broj čvorova u bipartitnom, 4-regularnom, integralnom grafu, a zatim u sekciji 4.2 uvodimo uglove grafova, pomoću kojih u sekciji 4.3 dokazujemo da ne postoje grafovi sa nekim od mogućih spektara. Dalji rezultati o nepostojanju grafova sa nekim od preostalih mogućih spektara biće dobijeni posmatranjem odgovarajućih svojstava grafova, ali će sigurno još mnogi drugi spektri ostati za razmatranje.

4.1 Gornja granica za broj čvorova

Ovde dajemo gornju granicu za broj čvorova u regularnom, bipartitnom grafu, odakle sledi da ne postoje 4-regularni, bipartitni, integralni grafovi sa n = 5040. Ova gornja granica predstavlja poboljšanje u slučaju bipartitnih grafova u odnosu na poznatu gornju granicu (videti [33]) za regularne grafove sa datim dijametrom.

33

Teorema 4.1.1 (D. Cvetković, S. Simić, D. Stevanović [30]) Neka je p broj čvorova u povezanom r-regularnom, bipartitnom grafu G = (V, E) sa radijusom R. Tada je

$$p \le \frac{2(r-1)^R - 2}{r-2}.$$

Dokaz Neka je u čvor grafa G sa ekscentricitetom R. Označimo sa $N_k(u) = \{v \in V \mid d(u, v) = k\}$ k-tu okolinu čvora u, a sa $d_k(u) = |N_k(u)|$ broj čvorova u njoj. Tada je $d_0(u) = 1$ i $d_1(u) = r$. Kada je $2 \le k \le R - 1$, tada važi $d_k(u) \le (r-1)d_{k-1}(u)$, pošto svaki čvor iz $N_{k-1}(u)$ može da bude susedan sa najviše r-1 čvorova iz $N_k(u)$. Odatle indukcijom sledi da $d_k(u) \le r(r-1)^{k-1}$ za $2 \le k \le R - 1$. S druge strane, svaki čvor iz $N_R(u)$ je susedan sa r čvorova iz $N_{R-1}(u)$ (pošto je G bipartitan, bilo koja dva čvora iz $N_R(u)$ nisu susedna) pa je $d_R(u) \le \frac{r-1}{r}d_{R-1}(u) \le (r-1)^{R-1}$. Sada je $p = \sum_{k=0}^{R} d_k(u) \le \frac{2(r-1)^R-2}{r-2}$. ■

Po teoremi iz [10], za dijametar D povezanog grafa G važi $D \leq s - 1$, gde je s broj različitih sopstvenih vrednosti grafa G. Kada je G povezan, regularan, integralan graf stepena r, dobijamo $D \leq 2r$. Iz teoreme 4.1.1 tada sledi da povezan, bipartitan, 4-regularan, integralan graf ima dijametar najviše 8 i može da ima najviše $p = 2n \leq 6560$ čvorova. Iz sekcije 3 vidi se da je najveća moguća vrednost za n koja nije veća od 3280 jednaka 2520. Ova granica ne može se spustiti, ali koristeći uglove grafova u sekciji 4.3.1 ćemo pokazati da postoji samo 5 mogućih spektara sa $630 < n \leq 2520$.

4.2 Uglovi bipartitnih, 4-regularnih, integralnih grafova

Neka je G bipartitan, 4-regularan, integralan graf. Bipartitni, regularni grafovi imaju isti broj čvorova u svakom delu, pa možemo pretpostaviti da G ima p = 2n čvorova. Neka je A matrica susedstva grafa G. Neka $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_{2n}\}$ čini standardnu ortonormalnu bazu za R^{2n} . Tada matrica A ima spektralno razlaganje $A = \mu_1 P_1 + \mu_2 P_2 + \ldots + \mu_m P_m$, gde su $\mu_1 > \mu_2 > \ldots > \mu_m$ različite sopstvene vrednosti matrice A, a P_i predstavlja normalnu projekciju prostora R^{2n} na sopstveni prostor $\mathcal{E}(\mu_i)$ koji odgovara sopstvenoj vrednosti μ_i . Nenegativne veličine $\alpha_{i,j} = \cos \beta_{i,j}$, gde je $\beta_{i,j}$ ugao izmedju $\mathcal{E}(\mu_i)$ i \mathbf{e}_j , nazivaju se uglovima grafa G. Uglovi grafa prvi put su eksplicitno spomenuti u [17], a njihova osnovna svojstva opisana su u [19] i [26]. Dalja svojstva uglova mogu se naći u monografiji [27]. Videti i magistarsku tezu autora [56], u kojoj je obradjivana konstrukcija grafova sa datim spektrom i uglovima.

Pošto P_i predstavlja normalnu projekciju R^{2n} na $\mathcal{E}(\mu_i)$ važi $\alpha_{ij} = ||P_i \mathbf{e}_j||$. Kako je $\alpha_{ij}^2 = ||P_i \mathbf{e}_j||^2 = \mathbf{e}_j^T P_i \mathbf{e}_j$, sledi da se brojevi $\alpha_{i,1}^2, \alpha_{i,2}^2, \ldots, \alpha_{i,2n}^2$ pojavljuju na glavnoj dijagonali matrice P_i . Prema tome, $\sum_{j=1}^{2n} \alpha_{i,j}^2$ jednak je višestrukosti sopstvene vrednosti μ_i . Iz spektralnog razlaganja matrice A imamo $A^s = \sum_{i=1}^m \mu_i^s P_i$, odakle je

(4.1)
$$(A^s)_{j,j} = \sum_{i=1}^m \alpha_{ij}^2 \mu_i^s,$$

što je broj zatvorenih puteva dužine skoji polaze i završavaju se u čvoruj.

Sledeća dva zapažanja uzeta su iz [26]. U regularnim grafovima, sopstveni prostor koji odgovara indeksu razapet je vektorom **j**, čiji su svi elementi jednaki 1, i prema tome svi uglovi koji odgovaraju indeksu jednaki su $\frac{1}{\sqrt{2n}}$. Dalje, ako je λ sopstvena vrednost bipartitnog grafa, tada sopstvene vrednosti λ i $-\lambda$ imaju iste uglove.

Neka je j proizvoljan, fiksiran čvor grafa G. Neka q_j i h_j označavaju, redom, broj četvorouglova i šestouglova kojima pripada čvor j. Neka su u_1, u_2, u_3, u_4 susedi čvora j i $Q_j = \sum_{i=1}^{4} q_{u_i}$. Za $\mu \in \{-4, -3, \ldots, 4\}$ neka je $\alpha_{\mu,j}$ ugao koji odgovara sopstvenoj vrednosti μ i čvoru j (ako μ nije sopstvena vrednost grafa G, tada jednostavno $\alpha_{\mu,j} = 0$). Pošto je G bipartitan graf, važi $\alpha_{\mu,j} = \alpha_{-\mu,j}$ i iz (4.1) imamo sledeći sistem jednačina

- (4.2) $\alpha_{0,j}^2 + 2\alpha_{1,j}^2 + 2\alpha_{2,j}^2 + 2\alpha_{3,j}^2 + 2\alpha_{4,j}^2 = 1,$
- (4.3) $2\alpha_{1,j}^2 + 4 \cdot 2\alpha_{2,j}^2 + 9 \cdot 2\alpha_{3,j}^2 + 16 \cdot 2\alpha_{4,j}^2 = 4,$
- $(4.4) 2\alpha_{1,j}^2 + 16 \cdot 2\alpha_{2,j}^2 + 81 \cdot 2\alpha_{3,j}^2 + 256 \cdot 2\alpha_{4,j}^2 = 28 + 2q_j,$
- $(4.5) 2\alpha_{1,j}^2 + 64 \cdot 2\alpha_{2,j}^2 + 729 \cdot 2\alpha_{3,j}^2 + 4096 \cdot 2\alpha_{4,j}^2 = 232 + 28q_j + 2Q_j + 2h_j.$

Ove jednačine uopštavaju jednačine (3.1)-(3.4) iz sekcije 3.1. Naime, iz definicije q_j, Q_j i h_j vidimo da je $\sum_{j=1}^{2n} q_j = 4q, \sum_{j=1}^{2n} Q_j = 4\sum_{j=1}^{2n} q_j = 16q$ i $\sum_{j=1}^{2n} h_j = 6h$, gde q i h označavaju, redom, broj četvorouglova i šestouglova u grafu G. Pošto je $\sum_{j=1}^{2n} \alpha_{\mu,j}^2$ višestrukost sopstvene vrednosti μ , vidimo da sabiranje jednačina (4.2)-(4.5) za sve čvorove j grafa G daje jednačine (3.1)-(3.4).

4.3 Nemogući spektri

U ovoj sekciji dokazaćemo nepostojanje bipartitnih, 4-regularnih, integralnih grafova sa nekim od mogućih spektara nadjenih u glavi 3, koristeći tehniku koja se zasniva na jednačinama (4.2)-(4.5) i sledećem zapažanju.

Neka je $f(j) = Aq_j + BQ_j + Ch_j$, gde je j čvor grafa G i A, B, C su proizvoljne konstante. Iz $\sum_{j=1}^{2n} q_j = 4q$, $\sum_{j=1}^{2n} Q_j = 16q$ i $\sum_{j=1}^{2n} h_j = 6h$ sledi da je

$$\sum_{j=1}^{2n} f(j) = 4Aq + 16Bq + 6Ch,$$

pa uvek postoje čvorovi j' i j'' grafa G tako da je

$$f(j') \le \left\lfloor \frac{2Aq + 8Bq + 3Ch}{n} \right\rfloor$$
 i $f(j'') \ge \left\lceil \frac{2Aq + 8Bq + 3Ch}{n} \right\rceil$

Ove nejednakosti se, zajedno sa činjenicom da su kvadrati uglova nenegativni, koriste za dobijanje raznih nejednakosti koje uključuju samo parametre n, q i h. Ova tehnika predstavlja proširenje tehnike sa spektralnim momentima, korišćene ranije u radovima [13, 30].

U podsekciji 4.3.1 dobijamo najjaču takvu nejednakost, iz koje sledi da bipartitan, 4-regularan, integralan graf ima najviše 1260 čvorova, osim za 5 posebnih spektara. U ostalim podsekcijama dobijamo neke druge nejednakosti iz kojih sledi nepostojanje grafova sa još nekim spektrima.

4.3.1 Nemogući spektri sa x, y, z, w > 0

Koristeć
i $\alpha_{4,j}=\frac{1}{\sqrt{2n}}$ i eliminišući $\alpha_{1,j},\,\alpha_{2,j}$ i
 $\alpha_{3,j}$ iz (4.2)-(4.5) dobijamo

(4.6)
$$\alpha_{0,j}^2 = \frac{35}{n} - \frac{Q_j + h_j}{18}$$

Iz $\sum_{j=1}^{2n}Q_j+h_j=16q+6h$ vidimo da postoji čvorjtako da je

(4.7)
$$Q_j + h_j \ge \left\lceil \frac{8q + 3h}{n} \right\rceil$$

Pošto je $\alpha_{0,j}^2 \ge 0$, iz (4.6) i (4.7) sledi

(4.8)
$$n \cdot \left\lceil \frac{8q+3h}{n} \right\rceil \le 630.$$

Ovu nejednakost ne zadovoljava 494 spektara iz sekcije 3.6 kod kojih je x, y, z, w > 0 i $n \leq 2520$. Takodje sledi i da je n > 630 moguće samo ako je q = h = 0. Pošto postoji samo 5 mogućih spektara sa n > 630 i q = h = 0, imamo sledeću

Teorema 4.3.1 Povezan, bipartitan, 4-regularan, integralan graf ima najviše 1260 čvorova, osim ako ima jedan od sledećih spektara:

- a) $[4, 3^{208}, 2^{172}, 1^{304}, 0^{70}, -1^{304}, -2^{172}, -3^{208}, -4]$ i 1440 *čvorova;*
- b) $[4, 3^{244}, 2^{196}, 1^{364}, 0^{70}, -1^{364}, -2^{196}, -3^{244}, -4]$ i 1680 čvorova;
- c) $[4, 3^{370}, 2^{280}, 1^{574}, 0^{70}, -1^{574}, -2^{280}, -3^{370}, -4]$ i 2520 čvorova;
- d) $[4, 3^{496}, 2^{364}, 1^{784}, 0^{70}, -1^{784}, -2^{364}, -3^{496}, -4]$ i 3360 čvorova;
- e) $[4, 3^{748}, 2^{532}, 1^{1204}, 0^{70}, -1^{1204}, -2^{532}, -3^{748}, -4]$ i 5040 čvorova.

Kao što smo već ranije rekli, ako je G povezan, nebipartitan, 4-regularan, integralan graf, tada je $G \times K_2$ povezan, bipartitan, 4-regularan, integralan graf, Iz ove činjenice i teoreme 4.3.1 dobijamo sledeću

Posledica 4.3.2 *Povezan, nebipartitan,* 4-*regularan, integralan graf* G *ima najviše* 630 čvorova, osim ako $G \times K_2$ *ima jedan od spektara* a)–e) *iz teoreme* 4.3.1.

Napomena Nejednakost (4.8) takodje ne zadovoljavaju i spektri iz tabele 3.6 koji su označeni sa "—", osim onih sa n = 630.

4.3.2 Ostali nemogući spektri sa x, y, z, w > 0

Pošto je G 4-regularan graf, za svaki četvorougao u G postoji najviše 8 čvorova koji ne pripadaju tom četvorouglu, ali mu pripada bar jedan od njihovih suseda. Pošto četvorougao ima 4 čvora, zaključujemo da postoji najviše (4+8)q čvorova grafa G sa osobinom da ili sam čvor ili neki od njegovih suseda pripadaju nekom četvorouglu.

Prema tome, ako je 2n > 12q tada postoji bar 2n - 12q čvorova (možemo pretpostaviti da su numerisani sa $1, 2, \ldots, 2n - 12q, \ldots$) koji ne pripadaju nijednom četvorouglu zajedno sa svojim susedima. Stavljajući $q_j = Q_j = 0$ i

 $\alpha_{4,j}=\frac{1}{\sqrt{2n}}$ u (4.2)-(4.5) i eliminišuć
i $\alpha_{0,j},\alpha_{2,j}$ i $\alpha_{3,j}$ dobijamo

$$2\alpha_{1,j}^2 = \frac{1}{2} - \frac{56}{n} + \frac{h_j}{12}$$

Iz $2\alpha_{1,j}^2 \ge 0$ sledi da je $n\left(1+\frac{h_j}{6}\right) \ge 112$. Pošto je $\sum_{j=1}^{2n-12q} h_j \le 6h$, postoji čvor j sa $q_j = Q_j = 0$ i $h_j \le \left\lfloor \frac{6h}{2n-12q} \right\rfloor$, i zaključujemo da

(4.9)
$$n\left(1+\frac{1}{6}\left\lfloor\frac{3h}{n-6q}\right\rfloor\right) \ge 112.$$

Spektri iz sekcije 3.6 s
ax,y,z,w>0koji ne zadovoljaju (4.9) prikazani su u tabeli 4.1.

n	x	y	z	w	q	h
72	15	34	1	21	0	84
105	24	46	4	30	0	30
105	25	43	7	29	9	12

Tabela 4.1: Nemogući spektri integralnih grafova sa x, y, z, w > 0.

4.3.3 Nemogući spektri sa x, y, z > 0, w = 0 i n = 630

Koristeći isto zaključivanje kao u prethodnoj podsekciji, možemo videti da postoji najviše 12q + 6h čvorova u 4-regularnom grafu sa osobinom da ili sam čvor pripada nekom četvorouglu ili šestouglu ili neki od njegovih suseda pripada nekom četvorouglu.

Iz tabele 3.6 vidimo da za sve spektre s
an=630važi2n>12q+6h. Prema tome, postoji čvor
 j tako da je $q_j=Q_j=h_j=0$. No, za takav čvor jednačine
 (4.2)-(4.5) zajedno sa $2 \cdot \alpha_{4,j}^2 = \frac{1}{n}$ čine nemoguć sistem, i zaključujemo da ne postoji graf ni sa jednim od ovih spektara.

4.3.4 Nemogući spektri sa x > 0, y = 0

Ovde je $\alpha_{2,j} = 0$, $\alpha_{4,j} = \frac{1}{\sqrt{2n}}$ i eliminišući $\alpha_{1,j}$ i $\alpha_{3,j}$ iz (4.2)-(4.4) dobijamo

$$q_j = \frac{3}{2} + \frac{105}{2n} + \frac{9\alpha_{0,j}^2}{2} \ge \frac{3}{2} + \frac{105}{2n}.$$

Iz $\sum_{j=1}^{2n} q_j = 4q$ sledi da postoji čvorj s
a $q_j \leq \left\lfloor \frac{2q}{n} \right\rfloor,$ pa je

(4.10)
$$\frac{3}{2} + \frac{105}{2n} \le \left\lfloor \frac{2q}{n} \right\rfloor.$$

Spektri iz tabele 3.3 koji ne zadovoljavaju (4.10) prikazani su u tabeli 4.2.

n	x	y	z	w	q	h
20	6	0	10	3	48	64
28	9	0	15	3	54	84
42	14	0	26	1	60	44

Tabela 4.2: Nemogući spektri integralnih grafova s
ax>0, y=0.

Glava 5

4-Regularni, integralni grafovi koji ne sadrže ±3 u spektru

Osnovni i najteži problem u spektralnoj teoriji grafova jeste da li postoji graf sa datim spektrom. Zbog toga je svaki metod koji pomaže u rešavanju ovog problema veoma važan. U ovoj glavi predstavljamo jedan takav metod uz čiju pomoć nalazimo sve povezane, 4-regularne, integralne grafove koji ne sadrže ± 3 u spektru. Postoje tačno 24 takva grafa, od kojih je 16 bipartitno.

Bipartitan, 4-regularan, integralan graf sa najviše 12 čvorova (najviše 6 u svakom delu) može se smatrati trivijalnim, pošto je njegov bipartitni komplement regularan sa stepenom 2. Takve grafove lako nalazimo u sekciji 5.1. Metod koji koristimo za nalaženje preostalih grafova iznosimo u sekciji 5.2. Bipartitni, 4-regularni, integralni grafovi za koje je (x, z, w) = (0, 0, 3) nalazimo u podsekcijama sekcije 5.3, dok one sa (x, z, w) = (0, 4, 0) nalazimo u sekciji 5.4. Naposletku, u sekciji 5.5 nalazimo nebipartitne, 4-regularne, integralne grafove koristeći razlaganja bipartitnih u obliku $G \times K_2$.

41

5.1 Trivijalni slučajevi

U ovoj sekciji nalazimo bipartitne, 4-regularne, integralne grafove G sa najviše 12 čvorova, tj. one za koje je $4 \le n \le 6.$

Za n = 4 dobijamo kompletan, bipartitan graf $D_1 = K_{4,4}$ (sl. 5.1) sa spektrom $4, 0^6, -4$.

Za n = 5 bipartitni komplement \overline{G}^b grafa G je 1-regularan, tj. $\overline{G}^b = \overline{5K_2}$. Tada je G ima spektar $4, 1^4, -1^4, -4$ i to je graf D_2 iz sl. 5.1.

Za n = 6 bipartitni komplement \overline{G}^b grafa G je 2-regularan, pa je on unija kontura. Postoji nekoliko mogućnosti:

- (i) $\overline{G}^b \cong 3C_4$. Spektar grafa G je 4, 2², 0⁶, -2², -4 i to je graf D_3 iz sl. 5.1;
- (ii) $\overline{G}^b \cong C_4 \cup C_8$. Spektar grafa G je $4, 2, \sqrt{2}^2, 0^4, -\sqrt{2}^2, -2, -4$, i on nije integralan;
- (iii) $\overline{G}^b \cong 2C_6$. Spektar grafa G je 4, 2, 1⁴, -1⁴, -2, -4 i to je graf D_4 iz sl. 5.1;
- (iv) $\overline{G}^b \cong C_{12}$. Spektar grafa G je 4, $\sqrt{3}^2$, 1^2 , 0^2 , -1^2 , $-\sqrt{3}^2$, -4, i on nije integralan.

Prema tome, imamo sledeću

Propozicija 5.1.1 Postoje tačno 4 bipartitna, 4-regularna, integralna grafa sa najviše 12 čvorova i to su grafovi D_1, \ldots, D_4 sa sl. 5.1.

5.2 Kako napasti netrivijalne slučajeve?

U ovoj sekciji predstavljamo rezultate koje koristimo za nalaženje bipartitnih, 4-regularnih, integralnih grafova sa više od 12 čvorova, a koji ne sadrže ± 3 u spektru.

Posmatrajmo opšti slučaj bipartitnog, r-regularnog grafa G = (U, V, E). Neka G ima različite sopstvene vrednosti $r = \lambda_1, \lambda_2, \ldots, \lambda_k$ i neka je A matrica susedstva grafa G.

Označimo sa $n_{u,v}$ broj zajedničkih suseda čvorova u i v $(u, v \in V)$. Broj puteva dužine 2 koji polaze iz čvora u r-regularnog grafa jednak je r^2 . S druge strane, taj broj je jednak i $\sum_{v \in V} n_{u,v}$. Pošto je $n_{u,u} = r$, dobijamo

(5.1)
$$\sum_{v \in V - \{u\}} n_{u,v} = r(r-1).$$

Slika 5.1: Trivijalni slučajevi

Za regularni graf sa 5, odnosno 6, različitih sopstvenih vrednosti vidimo da je stepen polinoma po A s desne strane Hoffman-ove jednakosti (3.5) jednak 4, odnosno 5. Posmatrajući (u, u)-članove s obe strane jednakosti, pritom uzimajući u obzir da u slučaju bipartitnih grafova važi $A_{u,u}^{2k-1} = 0, k \in N$, vidimo da za neke a_0, a_1, a_2 (koji zavise samo od $r = \lambda_1, \ldots, \lambda_k$) važi sledeća jednakost

$$a_0(A^4)_{u,u} + a_1(A^2)_{u,u} + a_2 = \prod_{i=2}^k (r - \lambda_i)$$

Kako je $A_{u,u}^2 = r$, zaključujemo da broj $A_{u,u}^4$ ne zavisi od u. Dalje, pošto $A_{u,u}^4$ označava broj zatvorenih puteva dužine 4 koji počinju iz usledi da je $A_{u,u}^4 = r^2 + r(r-1) + 2q_u$, gde q_u označava broj četvorouglova kojima pripada čvoru. Važna posledica koju koristimo jeste da q_u ne zavisi od u, pa je zato $q_u = \frac{2q}{n}$. S druge strane, iz $A_{u,u}^4 = \sum_{v \in V} n_{u,v}^2$ i $n_{u,u} = r$ sledi

(5.2)
$$\sum_{v \in V - \{u\}} n_{u,v}^2 = r(r-1) + 2q_u$$

Pored ovih rezultata, takodje koristimo i čuvenu Cauchy-jevu *teoremu o* preplitanju.

Teorema 5.2.1 (videti, na primer, [21], str. 19) Neka je I indukovani podgraf grafa H. Neka su $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n$ sopstvene vrednosti grafa H, dok su $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_m$ sopstvene vrednosti grafa I. Tada je $\lambda_i \geq \mu_i \geq \lambda_{n-m+i}$ ($i = 1, \ldots, m$). Sada ćemo ukratko opisati metod koji koristimo za nalaženje integralnih grafova. Koristeći q_u i jednačine (5.1) i (5.2) (sa r = 4) dobijamo nekoliko mogućnosti (a u većini slučajeva samo jednu) za familiju brojeva $\{n_{u,v}|v \in V - \{u\}\}$ za $u \in V$. U sekciji 5.3, osim u podsekciji 5.3.3, ovo je dovoljno da bi se konstruisao traženi graf ili videlo da takav ne postoji. U podsekciji 5.3.3 moramo još i da uvedemo novi kombinatorni objekat i iskoristimo njegova svojstva. U sekciji 5.4, familija $\{n_{u,v}|v \in V - \{u\}\}$ omogućava da se konstruiše veći deo hipotetičkog integralnog grafa. U tom trenutku za smanjivanje broja različitih mogućnosti koristimo teoremu o preplitanju tako što pokazujemo da su neki od ovih podgrafova u suprotnosti sa njom. Obiňo se ovo dešava zato što je njihova druga najveća sopstvena vrednost veća od 2, ali u nekoliko slučajeva koristimo i ostale sopstvene vrednosti.

5.3 Integralni grafovi sa (x, z, w) = (0, 0, 3)

5.3.1 Grafovi sa spektrom $4, 2^4, 0^6, -2^4, -4$

v

Hofmann-ova jednakost (3.5) u ovom slučaju glasi $24J = (A^4 - 4A^2) + 4(A^3 - 4A)$. Iz tabele 3.1 vidimo da je q = 24 i $q_u = 6, u \in V$. Zato je

$$\sum_{\in V-\{u\}} n_{u,v}^2 = 24$$

pa postoje dve mogućnosti za familiju $\{n_{u,v} | v \in V - \{u\}\}$: $\{3, 2^3, 1^3\}$ i $\{2^6, 0\}$, gde stepeni označavaju višestrukosti.

Postoje dva slučaja za razmatranje. Najpre pretpostavimo da za svaki čvor u grafa G važi da je $\{n_{u,v}|v \in V - \{u\}\} = \{2^6, 0\}$. Neka je a proizvoljan čvor grafa G, i neka je b čvor za koji je $n_{a,b} = 0$. Označimo susede čvora a sa a_1, \ldots, a_4 , a susede čvora b sa b_1, \ldots, b_4 . Označimo sa c_1, \ldots, c_6 preostale čvorove grafa G. Za svako k i $l, k \neq l$, čvorovi a_k i a_l imaju čvor a kao zajedničkog suseda, pa prema tome moraju da imaju još tačno jednog zajedničkog suseda u skupu čvorova $\{c_1, \ldots, c_6\}$. Pošto je $n_{a,c_i} = 2, i = 1, \ldots, 6$, sledi da je čvor c_i zajednički sused za tačno jedan par čvorova iz $\{a_1, \ldots, a_4\}$. Dalje, za svako $a_i, i = 1, \ldots, 4$ postoji čvor iz $\{b_1, \ldots, b_4\}$ koji nema nijednog zajedničkog suseda sa a_i i, bez gubitka opštosti, možemo da pretpostavimo da je to čvor b_{5-i} . Time smo konstruisali graf D_5 (sl. 5.2), koji je integralan.

Pretpostavimo sada da postoji čvor a grafa G tako da je $\{n_{a,v} | v \in V - \{a\}\} = \{3, 2^3, 1^3\}$. Neka je $b \in V$ čvor za koji je $n_{a,b} = 3$, neka su $c_1, c_2, c_3 \in U$

Slika 5.2: Integralni grafovi sa spektrom $4, 2^4, 0^6, -2^4, -4$

zajednički susedi čvorova a i b, i neka je $a' \in U$ preostali sused čvora a, dok je $b' \in U$ preostali sused čvora b. Neka su d_1, \ldots, d_6 preostali čvorovi iz V, dok su e_1, e_2, e_3 preostali čvorovi iz U. Dalje, neka je $n_{a,d_1} = n_{a,d_2} = n_{a,d_3} = 2$ i $n_{a,d_4} = n_{a,d_5} = n_{a,d_6} = 1$.

Iz Hoffman-ove jednakosti dobijamo da je

$$36 = A_{a,b}^4 = 24 + \sum_{j=1}^6 n_{a,d_j} \cdot n_{b,d_j},$$

gde 24 stoji za broj puteva dužine 4 izmedju a i b čiji je srednji čvor ili a ili b. Pošto je dalje

$$\prod_{j=1}^{6} n_{a,d_j} \cdot n_{b,d_j} = 2^6,$$

jedina mogućnost je da za $j = 1, \ldots, 6$ važi $n_{a,d_j} \cdot n_{b,d_j} = 2$, tj. mora biti $n_{b,d_1} = n_{b,d_2} = n_{b,d_3} = 1$ i $n_{b,d_4} = n_{b,d_5} = n_{b,d_6} = 2$.

Tada je očigledno da je svaki od čvorova d_1, d_2, d_3 susedan sa a' i čvorom iz $\{c_1, c_2, c_3\}$, dok je svaki od čvorova d_4, d_5, d_6 susedan sa b' i čvorom iz $\{c_1, c_2, c_3\}$. Možemo pretpostaviti da je čvor c_i susedan sa čvorovima d_i i $d_{i+3}, i = 1, 2, 3$. Čvor $c_i, i = 1, 2, 3$ ne može imati više od 2 zajednička suseda sa bilo kojim od preostalih čvorova i zato mora biti $\{n_{c_i,u}|u \in U - \{c_i\}\} = \{2^6, 0\}$. Dalje možemo pretpostaviti da je $n_{c_i,e_i} = 0, i = 1, 2, 3$ i time je graf D_6 (sl. 5.2) u potpunosti odredjen.

Ovim smo dokazali sledeću

Propozicija 5.3.1 Postoje tačno 2 grafa sa spektrom $4, 2^4, 0^6, -2^4, -4$ *i* to su grafovi D_5 *i* D_6 sa sl. 5.2.

5.3.2 Grafovi sa spektrom $4, 2^8, 0^6, -2^8, -4$

Hofmann-ova jednakost (3.5) u ovom slučaju glasi

(5.3)
$$16J = (A^4 - 4A^2) + 4(A^3 - 4A).$$

Iz tabele 3.1 sledi q = 12 i zato je $q_u = 2, u \in V$. Odatle je

$$\sum_{v \in V - \{u\}} n_{u,v}^2 = 16,$$

i jedina mogućnost za familiju $\{n_{u,v} | v \in V - \{u\}\}$ je $\{2^2, 1^8, 0\}$.

Uzmimo proizvoljan čvor $a_1 \in V$, i neka $a_2 \in V$ bude onaj čvor za koji je $n_{a_1,a_2} = 0$. Označimo susede čvora a_1 sa b_1, \ldots, b_4 , a susede čvora a_2 sa b_5, \ldots, b_8 . Neka $c_1, c_2 \in V$ budu oni čvorovi za koje je $n_{a_1,c_1} = n_{a_1,c_2} = 2$, i neka d_1, \ldots, d_8 budu preostali čvorovi u V za koje važi $n_{a_1,d_i} = 1, i = 1, \ldots, 8$. Označimo preostale čvorove u U sa e_1, \ldots, e_4 .

Pošto je $n_{a_1,a_2} = A_{a_1,a_2}^2 = 0$, tada za (a_1,a_2) -element u (5.3) važi

$$16 = A_{a_1, a_2}^4 = \sum_{i=1}^2 n_{a_1, c_i} \cdot n_{a_2, c_i} + \sum_{j=1}^8 n_{a_1, d_j} \cdot n_{a_2, d_j}$$

Dalje je

$$\{n_{a_i,c_1}, n_{a_i,c_2}, n_{a_i,d_1}, \dots, n_{a_i,d_8}\} = \{2^2, 1^8\} \quad (i = 1, 2)$$

i

$$\prod_{i=1}^{2} n_{a_1,c_i} n_{a_2,c_i} \cdot \prod_{j=1}^{8} n_{a_1,d_j} n_{a_2,d_j} = 16$$

Prema tome, mora da bude

$$\{n_{a_1,c_1}n_{a_2,c_1}, n_{a_1,c_2}n_{a_2,c_2}, n_{a_1,d_1}n_{a_2,d_1}, \dots, n_{a_1,d_8}n_{a_2,d_8}\} = \{4^2, 1^8\},\$$

Slika 5.3: Integralni grafovi sa spektrom $4, 2^8, 0^6, -2^8, -4$

tj. $n_{a_1,c_i} = n_{a_2,c_i} = 2$ (i = 1, 2) i $n_{a_1,d_j} = n_{a_2,d_j} = 1$ $(j = 1, \dots, 8)$.

Za čvorove c_1 i c_2 važi $n_{c_1,c_2} = 0$, inače postoji čvor iz $\{b_1, \ldots, b_8\}$, recimo b_8 , koji je susedan sa čvorovima c_1 i c_2 . Tada izmedju a_1 i b_8 postoje dva puta dužine 3 koja idu preko c_1 , dva puta dužine 3 koja idu preko c_2 i po jedan put dužine 3 koji ide preko svakog čvora d_j koji je susedan sa b_8 . Prema tome, tada bi postojalo bar 6 puteva dužine 3 izmedju čvorova a_1 i b_8 , dok iz Hoffman-ove jednakosti dobijamo $A_{a_1,b_8}^3 = 4$, što daje kontradikciju.

Dalje možemo pretpostaviti da je čvor c_1 susedan sa b_1, b_2, b_5, b_6 , a da je čvor c_2 susedan sa b_3, b_4, b_7, b_8 . Jedino preostaje da važi $n_{c_i,d_j} = 1$ $(i = 1, 2; j = 1, \ldots, 8)$. Tada svaki čvor d_j $(j = 1, \ldots, 8)$ mora biti susedan sa dva od čvorova b_i $(i = 1, \ldots, 8)$, i da bismo imali $n_{d_j,a_1} = n_{d_j,a_2} = n_{d_j,c_1} = n_{d_j,c_2} = 1$ čvor d_j mora kao svoje susede imati jedan od sledećih parova čvorova: { $(b_1, b_7), (b_1, b_8), (b_2, b_7), (b_2, b_8), (b_3, b_5), (b_3, b_6), (b_4, b_5), (b_4, b_6)$ }. Tada je podgraf G', indukovan čvorovima $b_1, \ldots, b_8, d_1, \ldots, d_8$, regularan stepena 2, pa je G' unija ciklusa. Iz skupova mogućih suseda vidimo da ovi ciklusi mogu biti ili C_4 ili C_8 . Postoje tri mogućnosti:

(i) $G' \cong 2C_8$.

Ako sa $\mu_1 \geq \ldots \geq \mu_{20}$ označimo sopstvene vrednosti grafa indukovanog čvorovima $a_1, a_2, c_1, c_2, b_1, \ldots, b_8, d_1, \ldots, d_8$, tada je $\mu_{16} = -\sqrt{2}$, dok je $\lambda_{16} = -2$, suprotno teoremi o preplitanju. Shodno tome, ovaj slučaj je nemoguć.

(ii) $G' \cong 2C_4 \cup C_8$.

Bez gubitka opštosti možemo da pretpostavimo da čvorovi b_1, d_7, b_7, d_1, b_2 , d_8, b_8, d_2 , ovim redom, formiraju ciklus dužine 8. Tada dalje možemo da pretpostavimo da je svaki od čvorova d_3 i d_6 susedan sa čvorovima b_3 i b_6 , dok je svaki od čvorova d_4 i d_5 susedan sa čvorovima b_4 i b_5 . Ako posmatramo čvor b_1 , vidimo da je $n_{b_1,b_2} = 2$, dok je $n_{b_1,b_i} = 1$ $(j = 3, \dots, 8)$. Tada mora da postoje *i* i k $(1 \le i, k \le 4)$ tako da je $n_{b_1,e_i} = 2$ i $n_{b_1,e_k} = 0$. Bez gubitka opštosti, možemo pretpostaviti da je i = 1 i k = 2. Iz istog razloga kao i za čvorove a_1, a_2, c_1, c_2 na početku ove podsekcije, možemo zaključiti da je $n_{e_2,b_2} = n_{e_2,e_1} = 2$ i $n_{b_2,e_1} = 0$. Ako, s druge strane, posmatramo čvor b_8 , vidimo da je $n_{b_8,b_7} = 2$, dok je $n_{b_8,b_i} = 1$ $(j = 1, \ldots, 6)$. Tada mora da postoje i' i k' $(1 \le i', k' \le 4)$ tako da je $n_{b_8,e'_i} = 2$ i $n_{b_8,e'_k} = 0$, i mora da važi $\{i',k'\} \cap \{1,2\} = \emptyset$. Možemo pretpostaviti da je i' = 4 i k' = 3. Kao i ranije, možemo zaključiti da je $n_{e_3,b_7} = n_{e_3,e_4} = 2$ i $n_{b_7,e_4} = 0$. Zajednički susedi čvorova e_1 i e_2 , kao i zajednički susedi čvorova e_3 i e_4 , sadržani su u skupu $\{d_3, d_4, d_5, d_6\}$. Pošto je $n_{d_3,d_6} = 2$ i $n_{d_4,d_5} = 2$, možemo pretpostaviti da su d_3 i d_4 zajednički susedi čvorova e_1 i e_2 , dok su d_5 i d_6 zajednički susedi čvorova e_3 i e_4 . Time smo u potpunosti konstruisali integralni graf D_7 (sl. 5.3).

(iii) $G' \cong 4C_4$.

Bez gubitka opštosti, možemo da pretpostavimo da su čvorovi d_i, d_{9-i} susedni sa čvorovima b_i i b_{9-i} za $i = 1, \ldots, 4$. Čvor e_j $(1 \leq j \leq 4)$ zato ne može da bude istovremeno susedan sa čvorovima d_i i d_{9-i} , pa mora da bude susedan sa tačno jednim od njih. Odavde je $n_{e_j,b_k} = 1$ $(j = 1, \ldots, 4; k = 1, \ldots, 8)$. Prema tome, za svako e_j $(1 \leq j \leq 4)$ postoji j' $(1 \leq j' \leq 4)$ tako da je $n_{e_j,e_{j'}} = 0$. Dalje, možemo da pretpostavimo da je $n_{e_1,e_4} = 0$ i $n_{e_2,e_3} = 0$. Tada je $n_{e_j,e_k} = 2$ (j = 1,4; k = 2,3). Takodje možemo da pretpostavimo da je čvor e_1 susedan sa čvorovima d_i za $i = 1, \ldots, 4$, dok je čvor e_4 susedan sa čvorovima d_{9-i} za $i = 1, \ldots, 4$. Još možemo da pretpostavimo i da je čvor e_2 susedan sa čvorom d_1 , i da je čvor e_3 susedan sa čvorom d_8 . Ako je d_2 drugi zajednički sused čvorova e_1 i e_2 , tada dobijamo integralni graf D_8 , prikazan na sl. 5.3, a u preostala dva slučaja dobijamo integralni graf izomorfan sa D_7 .

Propozicija 5.3.2 Postoje tačno 2 grafa sa spektrom $4, 2^8, 0^6, -2^8, -4$ *i* to su grafovi D_7 *i* D_8 sa sl. 5.3.

5.3.3 Grafovi sa spektrom $4, 2^{12}, 0^6, -2^{12}, -4$

U ovom slučaju iz tabele 3.1 dobijamo q=0i shodno tom
e $q_u=0,\,u\in V.$ Sledi da je

$$\sum_{v \in V - \{u\}} n_{u,v}^2 = 12$$

i jedina mogućnost za familiju $\{n_{u,v}|v \in V - \{u\}\}$ je $\{1^{12},0^3\}$. Hofmann-ova jednakost sada glasi

$$12J = (A^4 - 4A^2) + 4(A^3 - 4A).$$

Uzmimo proizvoljan čvor $a_1 \in V$. Neka $a_2, a_3, a_4 \in V$ budu oni čvorovi koji nemaju zajedničkih suseda sa a_1 . Pokazaćemo da je $n_{a_k,a_l} = 0$ za $k \neq l$. Pretpostavimo suprotno, i neka, na primer, čvorovi a_2 i a_3 imaju zajedničkog suseda b. Tada čvor a_1 nije susedan sa b $(A_{a_1,b} = 0)$, pa je $A_{a_1,b}^3 = 3$. Ali, ovo je kontradikcija, pošto čvor b može da bude susedan sa najviše 2 čvora iz skupa $V - \{a_1, \ldots, a_4\}$ i samo jedan put iz b u a_1 dužine 3 može da prolazi preko svakog takvog suseda čvora b.

Na ovaj način, čvorove iz V možemo da podelimo u 4 skupa V_1, V_2, V_3, V_4 sa po 4 čvora u svakom skupu tako da nikoja dva čvora iz istog skupa nemaju zajedničkog suseda. Isto važi i za čvorove iz U, i neka su oni podeljeni u skupove U_1, U_2, U_3, U_4 . Čvorove u svakom skupu indeksiraćemo brojevima 1, 2, 3, 4.

Svakom skupu V_i (i = 1, ..., 4) možemo da dodelimo 4×4 matricu M^i tako da je $M_{j,k}^i = l$ ako je *j*-ti čvor skupa V_i susedan sa *l*-tim čvorom skupa U_k . Matrice M^1, \ldots, M^4 imaju sledeća interesantna svojstva:

- (i) Svaka kolona matrice M^i (i = 1, ..., 4) je permutacija skupa $\{1, 2, 3, 4\}$, inače bi postojao par čvorova iz V_i sa zajedničkim susedom;
- (ii) Proizvoljna vrsta matrice M^i i proizvoljna vrsta matrice M^j $(i \neq j)$ imaju isti simbol na istom mestu u vrsti tačno jedanput;
- (iii) Za proizvoljan par simbola (s_1, s_2) i proizvoljan par kolona (c_1, c_2) , gde je $c_1 \neq c_2$, postoji tačno jedna matrica M^i sa tačno jednom vrstom u kojoj se simbol s_i pojavljuje u koloni c_i (i = 1, 2).

Primetimo da je svojstvo (iii) u suštini posledica svojstava (i) i (ii).

Pretpostavimo sada je *i*-ti čvor skupa V_1 susedan sa *i*-tim čvorom skupa U_j , tj. neka je $M_{i,j}^1 = i$ (i, j = 1, ..., 4). Takodje možemo da pretpostavimo da

je *i*-ti čvor skupa U_1 susedan sa *i*-tim čvorom skupa V_j , tj. da je $M_{i,1}^j = i$ (i, j = 1, ..., 4).

Problem se sada svodi na odredjivanje permutacija π skupa $\{1, 2, 3, 4\}$ koje trebaju da budu smeštene u preostale kolone matrica M^2, M^3, M^4 tako da svojstva (i)-(iii) budu ispunjena. Posmatrajući svojstvo (ii) vidimo da ovakve permutacije zadovoljavaju uslov $\pi(j) \neq j$, $(j = 1, \ldots, 4)$. Ima samo 9 takvih permutacija i one su date u sledećoj tabeli:

	$\pi(1)$	$\pi(2)$	$\pi(3)$	$\pi(4)$
π_1	2	1	4	3
π_2	2	3	4	1
π_3	2	4	1	3
π_4	3	1	4	2
π_5	3	4	1	2
π_6	3	4	2	1
π_7	4	1	2	3
π_8	4	3	1	2
π_9	4	3	2	1

Dalja primena svojstva (ii) povlači da dve permutacije π_i i π_j ne mogu da budu smeštene u kolone iste matrice ako postoji k tako da je $\pi_i(k) = \pi_j(k)$, u kom slučaju za permutacije π_i i π_j kažemo da su *nekompatibilne*. U suprotnom, kažemo da su π_i i π_j *kompatibilne* permutacije. Graf čiji čvorovi predstavljaju permutacije π_1, \ldots, π_9 i u kome su dva čvora susedna ukoliko su odgovarajuće permutacije kompatibilne zovemo graf kompatibilnosti. Permutacije π_i, π_j, π_k mogu da budu smeštene u istu matricu ako i samo ako formiraju trougao u grafu kompatibilnosti. U njemu postoje 4 trougla: $A = {\pi_1, \pi_5, \pi_9}, B = {\pi_1, \pi_6, \pi_8}, C = {\pi_2, \pi_5, \pi_7}, D = {\pi_3, \pi_4, \pi_9}.$

Donekle je zamoran posao pokazati da permutacije iz istog trougla moraju da budu smeštene u sve matrice M^2 , M^3 i M^4 . Kao primer, dokazaćemo da ako se permutacije iz trougla A nalaze u matrici M^i , a permutacije iz B u matrici M^j , tada svojstvo (ii) nije ispunjeno. Ako se permutacije $\pi_1 \in A$ i $\pi_6 \in B$ nalaze u istoj koloni, tada $\pi_5 \in A$ i $\pi_8 \in B$ takodje moraju da se nalaze u istoj koloni, što je kontradikcija, s obzirom da se tada u trećoj vrsti matrica M^i i M^j brojevi 3 i 1 pojavljuju na istim mestima. Ako se, s druge strane, permutacije $\pi_1 \in A$ i $\pi_8 \in B$ pojavljuju u istoj koloni, tada $\pi_9 \in A$ i $\pi_6 \in B$ moraju takodje da se nalaze u istoj koloni, što je kontradikcija, s obzirom da se tada u trećoj vrsti matrica M^i i M^j brojevi 3 i 2 pojavljuju na istim mestima. Dokazi za druge slučajeve su slični.

Slika 5.4: Integralni graf sa spektrom $4,2^{12},0^6,-2^{12},-4$

Dalje, koristeći isto zaključivanje kao i gore, možemo pokazati i da je stavljanje permutacija iz nekog od trouglova B, C i D u sve matrice takodje zabranjeno. Prema tome, postoji samo jedan mogući slučaj – staviti permutacije iz trougla A u kolone matrica M^2, M^3, M^4 . Tako dobijamo integralni graf D_9 (sl. 5.4).

Propozicija 5.3.3 Postoji tačno jedan graf sa spektrom $4, 2^{12}, 0^6, -2^{12}, -4$ i to je graf D_{11} sa sl. 5.4.

5.4 Integralni grafovi sa (x, z, w) = (0, 4, 0)

5.4.1 Grafovi sa spektrom $4, 2^4, 1^4, -1^4, -2^4, -4$

U ovom slučaju iz tabele 3.2 dobijamo q=18,pa je stoga $q_u=4,\,u\in V.$ Sledi da je

$$\sum_{v \in V - \{u\}} n_{u,v}^2 = 20,$$

i jedina mogućnost za familiju $\{n_{u,v} | v \in V - \{u\}\}$ je $\{2^4, 1^4\}$.

Neka je $a \in V$ proizvoljan čvor. Označimo njegove susede sa a_1, \ldots, a_4 . Neka je $B = \{b_1, \ldots, b_4\}$ skup čvorova koji imaju dva zajednička suseda sa čvorom a, a $C = \{c_1, \ldots, c_4\}$ skup čvorova koji imaju jednog zajedničkog suseda sa čvorom a. Skup preostalih čvorova grafa G označimo sa $D = \{d_1, \ldots, d_5\}$.

U onom što sledi, posmatramo dva različita slučaja. Najpre, neka svaki od čvorova a_i (i = 1, ..., 4) bude susedan sa tačno dva čvora iz B. Tada je podgraf H indukovan čvorovima $a_1, \ldots, a_4, b_1, \ldots, b_4$ regularan stepena 2. Ne sme biti $H \cong 2C_4$, jer bi tada neka dva čvora a_i, a_j $(1 \le i, j \le 4)$ imala tri zajednička suseda, i zato mora da važi $H\,\cong\,C_8.$ Tada možemo da pretpostavimo da je čvor a_j (j = 1, ..., 4) susedan čvorovima b_j i b_{j+1} , gde je sabiranje po modulu 4. Pošto je čvor a_i (i = 1, ..., 4) susedan sa tačno jednim čvorom iz skupa $\{c_1, \ldots, c_4\}$, možemo da pretpostavimo da je čvor a_i susedan sa čvorom c_i . Čvor d_l (l = 1, ..., 5) ne može da bude susedan sa tačno tri čvora iz C, jer u svim mogućim slučajevima teorema o preplitanju nije zadovoljena za graf indukovan čvorovima $a, a_1, \ldots, a_4, b_1, \ldots, b_4, c_1, \ldots, c_4, d_l$. Pošto podgraf K indukovan čvorovima $c_1, \ldots, c_4, d_1, \ldots, d_5$ ima 12 grana, iz prethodnog zaključujemo da postoji jedinstven čvor iz skupa $\{d_1, \ldots, d_5\}$ koji je susedan sa svakim od čvorova c_k (k = 1, ..., 4). Bez gubitka opštosti, možemo da pretpostavimo da je d_5 ovaj jedinstveni čvor. Tada je podgraf $K - d_5$ regularan stepena 2, i nije izomorfan sa $2C_4$, jer bi tada neka dva od čvorova c_1, \ldots, c_4 imala tri zajednička suseda. Prema tome, $K - d_5 \cong C_8$ i možemo da pretpostavimo da je čvor c_k (k = 1, ..., 4) susedan sa čvorovima d_k i d_{k+1} , gde se sabiranje vrši po modulu 4.

Podgraf L indukovan čvorovima $b_1, \ldots, b_4, d_1, \ldots, d_4$, regularan stepena 2, i izomorfan je ili sa $2C_4$ ili sa C_8 . Ako je $L \cong 2C_4$ tada za $j = 1, \ldots, 4$ čvorovi b_j i b_{j+1} $(d_j \ i \ d_{j+1})$ ne mogu da budu u istom ciklusu C_4 , pa stoga postoje samo dve mogućnosti koje daju neizomorfne integralne grafove D_{12} i D_{13} prikazane na sl. 5.5. Ako je $L \cong C_8$ tada za $j = 1, \ldots, 4$ čvorovi b_j i b_{j+1} $(d_j \ i \ d_{j+1})$ ne mogu da imaju bilo čvor d_j , bilo čvor d_{j+1} (bilo čvor b_j , bilo čvor b_{j+1}) kao

Slika 5.5: Integralni grafovi sa spektrom $4,2^4,1^4,-1^4,-2^4,-4$

zajedničkog suseda, pošto bi čvor a_j (c_j) tada pripadao bar 5 četvorouglova, što je kontradikcija. U tom slučaju postoje samo četiri neizomorfna grafa: dva od njih su neintegralna, jedan je izomorfan sa D_{11} , a poslednji je novi integralni graf D_{12} , prikazan na sl. 5.5.

Sada možemo da pretpostavimo da postoji čvor a_i $(1 \le i \le 4)$ susedan sa tri čvora iz skupa B. Ne mogu da postoje dva takva čvora a_i i a_j , inače je $n_{a_i,a_j} \ge 3$, što je kontradikcija. Prema tome, možemo da pretpostavimo da je skup grana grafa indukovanog čvorovima $a_1, \ldots, a_4, b_1, \ldots, b_4$ jednak

 $\{(a_1, b_1), (a_1, b_2), (a_1, b_3), (a_2, b_1), (a_3, b_2), (a_4, b_3), (a_2, b_4), (a_3, b_4)\}.$

Bez gubitka opštosti, možemo dalje da pretpostavimo da je čvor a_2 susedan sa čvorom c_1 , čvor a_3 susedan sa čvorom c_2 , dok je čvor a_4 susedan sa čvorovima c_3 i c_4 . Neka je $d \in D$, a N podgraf indukovan čvorovima $a, a_1, \ldots, a_4, b_1, \ldots, b_4, c_1, \ldots, c_4, d$. Ako je čvor d susedan sa svakim od čvorova c_1, \ldots, c_4 , tada je druga najveća sopstvena vrednost podgrafa N jednaka 2.113, što je u suprotnosti sa teoremom o preplitanju. Razmatrajući dalje sve slučajeve gde je čvor d susedan sa tri čvora iz skupa C i jednim čvorom iz skupa B, jedina mogućnost koja nije u suprotnosti sa teoremom o preplitanju je da je čvor d susedan čvorovima c_1 i c_2 , zatim jednom od čvorova b_1 i b_2 i jednom od čvorova c_3 i c_4 . Broj grana u podgrafu indukovanom čvorovima skupa $C \cup D$ je 12, pa postoje bar dva čvora iz skupa D koja su susedna sa tačno tri čvora iz skupa C. Ne mogu da postoje tri takva čvora u skupu D, zato što je svaki od njih susedan sa čvorovima c_1 i c_2 , pa bi bilo $n_{c_1,c_2} \geq 3$. Takodje možemo da pretpostavimo da je čvor d_4 susedan sa čvorovima b_2, c_1, c_2, c_4 , a da je čvor d_5 susedan sa čvorovima b_1, c_1, c_2, c_3 . Tada

su u bipartitnom podgrafu J, indukovanom čvorovima $d_1, \ldots, d_3, c_1, \ldots, c_4$, stepeni čvorova c_1, \ldots, c_4 jednaki 1, 1, 2, 2, dok su stepeni čvorova d_1, d_2, d_3 jednaki 2, 2, 2. Podgraf J je tada izomorfan ili sa P_7 ili sa $P_3 \cup C_4$. Ne može biti $J \cong P_3 \cup C_4$, jer bi se tada čvorovi c_3 i c_4 nalazili u C_4 i važilo bi $n_{c_3,c_4} = 3$ (jer je a_4 takodje njihov zajednički sused). Shodno tome, možemo da pretpostavimo da je čvor d_1 susedan sa čvorovima c_4 i c_2 , čvor d_2 susedan sa čvorovima c_4 i c_3 , dok je čvor d_3 susedan sa čvorovima c_3 i c_1 .

U bipartitnom podgrafu M indukovanom čvorovima $d_1, \ldots, d_3, b_1, \ldots, b_4$ stepeni čvorova b_1, \ldots, b_4 takodje su jednaki 1, 1, 2, 2, pa je podgraf M, kao i ranije, izomorfan ili sa P_7 ili sa $P_3 \cup C_4$. Jednakost $M \cong P_3 \cup C_4$ važi samo ako se čvorovi b_3 i b_4 nalaze u C_4 , i tada su čvorovi b_1 i b_2 susedni jednom od čvorova d_1, d_2, d_3 , dok su čvorovi b_3 i b_4 susedni sa preostala dva. Pošto je $n_{d_1,d_3} \ge 1$, a čvorovi d_1 i d_3 nemaju zajedničkog suseda medju čvorovima c_1, \ldots, c_4 , jedina mogućnost je da su čvorovi b_3 i b_4 susedni čvorovima d_1, d_3 , dok su čvorovi b_1 i b_2 susedni sa čvorovi d_1 i d_3 nemaju zajedničkog suseda medju čvorovima d_1, d_3 , dok su čvorovi b_1 i b_2 susedni sa čvorovi b_3 i b_4 susedni čvorovima d_1, d_3 , dok su čvorovi b_1 i b_2 susedni sa čvorovi d_2 , dajući graf izomorfan sa D_{11} (Fig. 5.5). Ako važi $M \cong P_7$, tada postoji više mogućnosti, i proveravajući svaku od njih ponaosob, vidimo da se u ovom slučaju ne dobijaju integralni grafovi.

Time smo dokazali

Propozicija 5.4.1 *Postoje tačno tri grafa sa spektrom* $4, 2^4, 1^4, -1^4, -2^4, -4$ *i to su grafovi* D_{10}, D_{11} *i* D_{12} *sa sl.* 5.5.

5.4.2 Grafovi sa spektrom $4, 2^5, 1^4, -1^4, -2^5, -4$

Iz tabele 3.2 sledi q = 15, pa je zato $q_u = 3$, $u \in V$. Sledi da je

$$\sum_{v \in V - \{u\}} n_{u,v}^2 = 18,$$

i jedina mogućnost za familiju $\{n_{u,v}|v \in V - \{u\}\}$ je $\{2^3, 1^6\}$. Vidimo da ukoliko uzmemo proizvoljne čvorove a i b, takve da je $n_{a,b} = 1$, tada postoji čvor c takav da je $n_{a,c} = n_{b,c} = 1$.

Pretpostavimo da postoji čvor z susedan sa čvorovima a, b i c. Označimo preostalog suseda čvora z sa d. Označimo preostale čvorove susedne čvoru a sa a_1, a_2 i a_3 , one susedne sa b sa b_1, b_2 i b_3 , a one susedne sa c sa c_1, c_2 i c_3 . S obzirom da postoje 3 četvorougla koja sadrže čvor z, a svaki od njih takodje sadrži i čvor d, vidimo da čvor d sa svakim od čvorova a, b i c ima još jednog zajedničkog suseda sem čvora z. Bez gubitka opštosti, možemo da pretpostavimo da su ovo čvorovi a_1, b_1 i c_1 , redom. Čvor a ima dva zajednička suseda sa

Slika 5.6: Integralni graf sa spektrom $4, 2^5, 1^4, -1^4, -2^5, -4$

čvorom d, po jedan sa svakim od čvorova b i c, pa stoga postoje čvorovi a'_1 i a'_2 takvi da je $n_{a,a'_1} = n_{a,a'_2} = 2$ i $a'_1, a'_2 \neq d$. Dalje, neka su b'_1 i b'_2 oni čvorovi $(\neq d)$ za koje je $n_{b,b'_1} = n_{b,b'_2} = 2$, dok su c'_1 i c'_2 oni čvorovi $(\neq d)$ za koje je $n_{c,c'_1} = n_{c,c'_2} = 2$. Svaki od čvorova $a'_1, a'_2, b'_1, b'_2, c'_1$ i c'_2 susedan je tačno sa jednim od čvorova a_1, b_1 i c_1 , inače bi broj četvorouglova kojima pripada čvor d bio veći od 3.

Najpre pretpostavimo da je čvor a_1 susedan sa čvorovima a'_1 i a'_2 , čvor b_1 susedan sa čvorovima b'_1 i b'_2 , a čvor c_1 susedan sa čvorovima c'_1 i c'_2 . Čvor a_1 je jedini zajednički sused čvorova a'_1 i a'_2 , jer bi u suprotnom kroz čvor a_1 prolazilo više od 3 četvorougla. Slično važi i za parove čvorova (b'_1, b'_2) i (c'_1, c'_2) , pa zaključujemo da je svaki od čvorova a'_1 , a'_2 , b'_1 , b'_2 , c'_1 i c'_2 susedan sa tačno jednim od čvorova a_2 i a_3 , sa tačno jednim od čvorova b_2 i b_3 i sa tačno jednim od čvorova c_2 i c_3 . Bez gubitka opštosti, možemo da pretpostavimo da je čvor a'_1 susedan sa čvorovima a_2, b_2 i c_2 , a da je čvor a'_2 susedan sa čvorovima a_3, b_3 i c_3 , kao i da je čvor a_2 susedan sa čvorovima b'_1 i c'_1 , a da je čvor a'_3 susedan sa čvorovima b'_2 i c'_2 . Podgraf indukovan čvorovima $\{b_2, b_3, c_2, c_3, b'_1, b'_2, c'_1, c'_2\}$

Slika 5.7: Integralni graf sa spektrom $4, 2^5, 1^4, -1^4, -2^5, -4$

je regularan stepena 2 i postoji svega 16 mogućnosti koje treba ispitati. Tako dobijamo dva nova integralna grafa D_{13} i D_{14} , prikazana na sl. 5.6 i sl. 5.7.

Čvorovi a'_1 i a'_2 ne mogu istovremeno da budu susedni čvorovima a_2 i a_3 , jer je tada $n_{a_2,a_3} > 2$, što je nemoguće. Slično važi i za parove čvorova (b'_1, b'_2) i (c'_1, c'_2) . Bez gubitka opštosti, možemo da pretpostavimo da je čvor a'_1 susedan sa čvorovima a_1 i a_2 , čvor a'_2 susedan sa čvorovima a_2 i a_3 , čvor b'_1 susedan sa čvorovima b_1 i b_2 , čvor b'_2 susedan sa čvorovima b_2 i b_3 , čvor c'_1 susedan sa čvorovima c_1 i c_2 , a da je čvor c'_2 susedan sa čvorovima c_2 i c_3 . Tada je podgraf indukovan čvorovima $\{a_1, b_1, c_1, a'_2, b'_2, c'_2\}$ regularan stepena 1, pa postoje svega 2 slučaja (s obzirom da čvorovi a_1 i a'_2 nisu susedni, kao ni čvorovi b_1 i b'_2 , ni čvorovi c_1 i c'_2). U svakom od tih slučaja, podgraf indukovan čvorovima $\{a_2, a_3, b_2, b_3, c_2, c_3, a'_1, a'_2, b'_1, b'_2, c'_1, c'_2\}$ je bipartitan i u njemu postoji 6 čvorova stepena 1 i 6 čvorova stepena 2, pa je on izomorfan jednom od grafova: $P_2 \cup P_2 \cup$ $P_2 \cup C_6, P_2 \cup P_2 \cup P_8, P_2 \cup P_4 \cup P_6$ i $P_4 \cup P_4 \cup P_4$. Ispitivanjem ovih mogućnosti dobija se integralni graf D_{15} , prikazan na sl. 5.8.

Ostaje još da ispitamo slučaj kada ne postoji čvor susedan sa bilo koja tri

Slika 5.8: Integralni graf sa spektrom $4, 2^5, 1^4, -1^4, -2^5, -4$

čvora u, v i w, za koje važi $n_{u,v} = n_{v,w} = n_{w,u} = 1$. Ako su dati čvor a i njegovi susedi a_1, \ldots, a_4 , ovo znači da u svakoj trojci (a_i, a_j, a_k) postoje dva čvora sa zajedničkim susedom različitim od čvora a. Neka su b_1, b_2, b_3 oni čvorovi za koje je $n_{a,b_i} = 2$ (i = 1, 2, 3). Graf indukovan čvorovima $a, a_1, \ldots, a_4, b_1, b_2, b_3$, nazivamo delimična 2-okolina čvora a. Iz prethodnog razmatranja sledi da postoje dve mogućnosti, nazovimo ih A i B, za delimičnu 2-okolinu svakog čvora u grafu. Ove mogućnosti su prikazane na sl. 5.9.

Ako je delimična 2-okolina čvora a tipa A, tada delimična 2-okolina čvora a_4 takodje mora biti tipa A, inače bi broj četvorouglova u čvoru a bio bar 4. Neka su c_1, c_2, c_3 susedi čvora a_4 , različiti od čvora a, i neka su d_1, d_2, d_3 oni čvorovi za koje je $n_{a_4,d_i} = 2$ (i = 1, 2, 3) (videti sl. 5.10). Čvorovi a_i i c_j (i, j = 1, 2, 3) nisu susedni. Posmatrajmo podgraf N indukovan čvorovima $b_1, b_2, b_3, d_1, d_2, d_3$. On je bipartitan, njegovi čvorovi imaju stepen najviše 2, i ne sadrži četvorouglove, inače bi neka dva čvora b_i i b_j imala bar tri zajednička suseda, pošto već imaju zajedničkog suseda u skupu $\{a_1, a_2, a_3\}$. Ovo ostavlja svega 12 mogućnosti za podgraf N, i sve su u suprotnosti sa teoremom o preplitanju.

Slika 5.9: Moguće delimične 2-okoline

Slika 5.10: Duplo-A delimična okolina

Još uvek preostaje slučaj kada svaki čvor u grafu ima delimičnu 2-okolinu tipa *B*. Tada svaki sused proizvoljnog čvora pripada bar jednom četvorouglu koji prolazi kroz taj čvor. Neka je c_1 preostali sused čvora a_2 , c_2 preostali sused čvora a_3 , c_3 i c_4 preostali susedi čvora a_1 , a c_5 i c_6 susedi čvora a_4 . Označimo sa *M* podgraf indukovan čvorovima $a, a_1, \ldots, a_4, b_1, b_2, b_3, c_3, \ldots, c_6$. Pošto je delimična 2-okolina čvora a_1 tipa *B*, i čvor *a* ima dva zajednička suseda sa čvorom b_1 , dok je a_1 jedini zajednički sused čvora *a* sa čvorovima c_3 i c_4 , zaključujemo da čvorovi c_3 i c_4 imaju još jednog zajedničkog suseda kojeg označavamo sa e_1 . Isto zaključivanje važi i za delimičnu 2-okolinu čvora a_4 , odakle sledi da čvorovi c_5 i c_6 imaju još jednog zajedničkog suseda kojeg označavamo sa e_2 . Ne može biti $e_1 = e_2$, jer tada podgraf indukovan čvorom e_1 i čvorovima podgrafa *M* ima drugu najveću sopstvenu vrednost jednaku 2.1162. Ako dalje proverimo sve moguće susede čvorova e_1 i e_2 medju čvorovima podgrafa *M*, uključujući i čvorove c_1 i c_2 u razmatranje u nekim slučajevima, vidimo da su sve te mogućnosti u suprotnosti sa teoremom o preplitanju.

Time smo dokazali

Propozicija 5.4.2 *Postoje tačno tri grafa sa spektrom* $4, 2^5, 1^4, -1^4, -2^5, -4$ *i to su grafovi* D_{13}, D_{14} *i* D_{15} *sa sl.* 5.8.

5.4.3 Ne postoji graf sa spektrom $4, 2^7, 1^4, -1^4, -2^7, -4$

Iz tabele 3.2 vidimo da je q = 9. Ovo je nemoguće, jer iz činjenice da q_u ne zavisi od čvora u sledi da je $q = \frac{2q_u}{n}$, pa bi bilo $9 = 6q_u$. Time smo pokazali da ne postoji graf sa ovim spektrom.

5.4.4 Grafovi sa spektrom $4, 2^{10}, 1^4, -1^4, -2^{10}, -4$

Iz tabele 3.2 vidimo da u ovom slučaju važiq=0,zbog čega je $q_u=0,\,u\in V.$ Sledi da je

$$\sum_{v \in V - \{u\}} n_{u,v}^2 = 12$$

pa je $\{1^{12}, 0^2\}$ jedina mogućnost za familiju $\{n_{u,v} | v \in V - \{u\}\}$.

Uzmimo proizvoljan čvor $a_1 \in V$. Neka su tada $a_2, a_3 \in V$ oni čvorovi koji nemaju zajedničkog suseda sa čvorom a_1 . Označimo preostale čvorove u hromatskoj klasi čvora a_1 sa v_1, \ldots, v_{12} . Označimo susede čvora a_1 sa u_i (i = 1, 2, 3, 4). Možemo da pretpostavimo da je čvor u_i $(i = 1, \ldots, 4)$ susedan sa čvorovima v_i, v_{i+4}, v_{i+8} , jer bi u suprotnom slučaju postojala dva čvora u_k i u_l $(1 \leq k < l \leq 4)$ sa zajedničkim susedom v_j , pa oni zajedno sa čvorom a_1 čine četvorougao.

Najpre dokazujemo da ne važi $n_{a_2,a_3} = 1$. Pretpostavimo da je tako i označimo sa d zajedničkog suseda čvorova a_2 i a_3 . Čvor d tada mora da bude susedan sa dva čvora iz skupa $\{v_1, \ldots, v_{12}\}$, koja nisu susedna sa istim čvorom iz skupa $\{u_1, \ldots, u_4\}$. No, onda je u podgrafu indukovanom čvorovima $a_1, a_2, a_3, d, u_1, \ldots, u_4, v_1, \ldots, v_{12}$ druga najveća sopstvena vrednost jednaka $\mu_2 = 2.0876$, što je u suprotnosti sa teoremom o preplitanju.

Prema tome, važi $n_{a_2,a_3} = 0$. Označimo susede čvora a_2 sa u_5, \ldots, u_8 , a susede čvora a_3 sa u_9, \ldots, u_{12} . Označimo sa b_1, b_2 i b_3 preostala tri čvora grafa. Pošto je $n_{a_i,v_j} = 1$ $(i = 1, 2, 3; j = 1, \ldots, 12)$, svaki od čvorova v_i $(i = 1, \ldots, 12)$ je susedan sa tačno jednim od čvorova b_1, b_2 i b_3 . Bez gubitka opštosti, možemo da pretpostavimo da je čvor b_i (i = 1, 2, 3) susedan sa čvorovima $v_{4i-3}, v_{4i-2}, v_{4i-1}$ i v_{4i} . Takodje možemo da pretpostavimo da je čvor v_j $(j = 1, \ldots, 4)$ susedan sa čvorovima u_j, u_{j+4} i u_{j+8} . Na taj način smo delimično konstruisali ovaj graf (sl. 5.11), i sada ćemo odrediti podgraf indukovan čvorovima $u_5, \ldots, u_{12}, v_5, \ldots, v_{12}$.

Neka je

$$U_1 = \{u_5, \dots, u_8\}, U_2 = \{u_9, \dots, u_{12}\}, V_1 = \{v_5, \dots, v_8\} \text{ i } V_2 = \{v_9, \dots, v_{12}\}.$$

Slika 5.11: Delimična konstrukcija grafa ${\cal D}_{16}$

Slika 5.12: Tipovi podgrafa G_{kl}

Zbog nepostojanja četvorouglova, vidimo da je svaki čvor iz skupa U_k susedan sa tačno jednim čvorom iz skupa V_l i da *i*-ti čvor iz skupa U_k ne može da bude susedan sa *i*-tim čvorom iz skupa V_l (k = 1, 2; l = 1, 2; i = 1, ..., 4). Označimo sa G_{kl} podgraf indukovan čvorovima iz skupa $U_k \cup V_l$. Iz prethodnih činjenica sledi da svaki podgraf G_{kl} ima jedan od tipova a, b, ..., i, prikazanih na sl. 5.12. Kažemo da je podgraf G_{kl} tipa x ako se *i*-ti čvor skupa U_k identifikuje sa *i*-tim čvorom gornje polovine čvorova tipa x, a *i*-ti čvor skupa V_l identifikuje sa *i*-tim čvorom donje polovine čvorova tipa x.

Neka je podgraf G_{11} tipa a, a podgraf G_{12} tipa b. Tada čvorovi u_1, u_5, v_6 i v_{10} čine četvorougao, što je kontradikcija. U tom slučaju kažemo da su tipovi a i b nekompatibilni, a inače su kompatibilni. Proveravajući medjusobnu kompatibilnost za sve parove tipova, nalazimo da je skup mogućih parova tipova za podgrafove G_{k1} i G_{k2} (k = 1, 2) (kao i za podgrafove G_{1l} i G_{2l} (l = 1, 2)) jednak

$$P = \{ \{a, d\}, \{a, e\}, \{a, g\}, \{a, h\}, \{b, d\}, \{b, f\}, \\ \{c, h\}, \{c, i\}, \{d, f\}, \{d, h\}, \{e, g\}, \{h, i\}\}.$$

Sada, ako je $G_{11} = a$ i $G_{12} = d$, tada je $G_{21} \in \{d, e, g, h\}$ i $G_{22} \in \{a, b, f, h\}$, pa su mogući sledeći parovi tipova za podgrafove G_{21} i $G_{22} : (d, a), (d, b), (d, f),$ (e, a), (g, a), (h, a). Nastavljajući u ovom stilu dobijamo sve moguće parove za podgrafove G_{21} i G_{22} . Postoji ukupno 60 mogućnosti za podgraf H indukovan čvorovima skupa $U_1 \cup U_2 \cup V_1 \cup V_2$. Eliminišući one koji sadrže četvorouglove, preostaje 24 mogućnosti od kojih samo 6 daje novi integralni graf D_{16} prikazan na sl. 5.13.

Propozicija 5.4.3 Postoji tačno jedan graf sa spektrom $4,2^{10},1^4,-1^4,-2^{10},-4$ i to je graf D_{16} sa sl. 5.13.

5.5 Nebipartitni grafovi

Ako je G nebipartitni, 4-regularni, integralni graf koji ne sadrži ± 3 u spektru, tada je graf $G \times K_2$ takodje 4-regularan, integralan i ne sadrži ± 3 u spektru, ali je on bipartitan i zbog toga je izomorfan jednom od grafova D_1 - D_{16} nadjenih u prethodnim podsekcijama. Zbog toga je dovoljno pronaći koji se od grafova D_1 - D_{16} mogu razložiti u obliku $G \times K_2$. Sledeća lema, čiji je dokaz trivijalan, i konstatacija iza nje uzeti su iz [51].

Slika 5.13: Integralni graf sa spektrom $4,2^{10},1^4,-1^4,-2^{10},-4$

Slika 5.14: Nebipartitni, 4-regularni, integralni grafovi

Lema 5.5.1 Bipartitan graf B = (U, V, E) može da se razloži u proizvod $G \times K_2$ ako i samo ako postoji bijekcija $f: U \to V$ tako da čvor u nije susedan sa čvorom f(u) i ako je čvor u susedan sa čvorom f(v) tada je čvor v susedan sa čvorom f(u), za svako $u, v \in U$.

Dalje primećujemo da ako je

$$u = u_0, f(u_1), u_2, f(u_3), u_4, \dots, u_{2n}, f(u_{2n+1}) = f(u)$$

put koji spaja čvorove u i f(u), tada lema 5.5.1 zahteva da

$$f(u) = f(u_0), u_1, f(u_2), u_3, f(u_4), \dots, f(u_{2n}), u_{2n+1} = u$$

bude drugi put koji spaja čvorove u i f(u). Ovi putevi su neophodno različiti, jer ako bi bili isti tada bi čvorovi u_n i $f(u_n)$ bili susedni, što je u suprotnosti sa lemom 5.5.1. Ova konstatacija vodi ka zaključku da je za svaki čvor $u \in U \cup V$ broj najkraćih puteva neparne dužine koji spaja čvorove u i f(u) paran.

Graf $D_1 = K_{4,4}$ očigledno ne može da bude razložen u proizvod $G \times K_2$, jer bi tada graf G bio 4-regularan sa 4 čvora, što je nemoguće.

Graf $D_2 = \overline{5K_2}$ ima jedinstveno razlaganje u obliku $K_5 \times K_2$, pa je $E_1 = K_5$ prvi nebipartitni, integralni graf sa spektrom 4, -1^4 (sl. 5.14).

Iz činjenica da čvorovi u i f(u) nisu susedni, vidimo da graf D_3 ima jedinstveno razlaganje i dobijamo drugi nebipartitni, integralni graf E_2 (sl. 5.14) sa spektrom $4, 0^3, -2^2$.

Graf D_4 (sl. 5.1) nema razlaganje u obliku $G \times K_2$, jer u suprotnom, bez gubitka opštosti, možemo da pretpostavimo da je b' = f(a), odakle sledi a' = f(b), pa mora biti c' = f(c), što je u suprotnosti sa lemom 5.5.1.

Pošto za čvorove a i b u grafu D_5 (sl. 5.2) važi $n_{a,b} = 0$, to mora da važi $n_{f(a),f(b)} = 0$, pa je par (f(a), f(b)) jednak jednom od parova (b_1, a_4) , (b_2, a_3) , (b_3, a_2) , (b_4, a_1) . U svakom od ovih slučajeva, funkcija f je u potpunosti odredjena i lako dobijamo graf E_3 sa spektrom $4, 2, 0^3, -2^3$ (sl. 5.14).

Graf D_6 nema razlaganje, jer čvorovi a i b (sl. 5.2) imaju tri zajednička suseda, dok nijedan drugi par čvorova, koji se nalaze na neparnom rastojanju od čvorova a i b, nema tri zajednička suseda.

Posmatrajmo graf D_7 (sl. 5.3). Kako je $n_{a_1,a_2} = 0$, to je $n_{f(a_1),f(a_2)} = 0$, i pošto je $n_{e_i,e_j} \ge 1$ ($1 \le i < j \le 4$), bar jedan od čvorova $f(a_1)$ i $f(a_2)$ ne pripada skupu $\{e_1, \ldots, e_4\}$. Pretpostavimo najpre da je $f(a_1) \in \{b_5, \ldots, b_8\}$. Ako je $f(a_1) = b_5$, tada je $f(a_2) = b_3$ i $f(\{c_1, c_2\}) = \{b_4, b_6\}$. S obzirom da čvorovi ui f(u) nisu susedni ni za jedan čvor u, sledi da je $f(c_1) = b_4$ i $f(c_2) = b_6$. Tada je $f^{-1}(\{b_1, b_2\}) = \{d_4, d_5\}$ i $f^{-1}(\{b_7, b_8\}) = \{d_3, d_6\}$. Ovo je nemoguće, pošto je $n_{b_i,b_j} = 1$ (i = 1, 2; j = 7, 8) i $n_{d_k,d_l} \neq 1$ (k = 3, 6; l = 4, 5). Slično važi i ako je $f(a_1) = b_6$. Ako je $f(a_1) = b_7$, tada je $f(a_2) = e_4$. Iz $n_{c_i,a_j} = 2$ (i = 1, 2;j = 1, 2) vidimo da je $f(\{c_1, c_2\}) = \{b_8, e_3\}$, a odavde je $f(c_1) = b_8$ i $f(c_2) = e_3$. Kako su čvorovi b_1 i b_2 susedni sa čvorovima a_1 i c_1 , sledi da su čvorovi $f^{-1}(b_1)$ i $f^{-1}(b_2)$ susedni sa čvorovima b_7 i b_8 , odakle je $f^{-1}(\{b_1, b_2\}) = \{a_2, c_2\}$, što je kontradikcija. Slično važi i ako je $f(a_1) = b_8$.

Pretpostavimo sada da je $f(a_2) \in \{b_1, \ldots, b_4\}$. Ako je $f(a_2) = b_1$ tada je $f(a_1) = e_2$ i $f(\{c_1, c_2\}) = \{e_1, b_2\}$. Pošto čvorovi u i f(u) nisu susedni, sledi da je $f(c_1) = e_1$ i $f(c_2) = b_2$. No, čvor b_1 je susedan sa čvorovima a_1 i c_1 , prema tome čvor a_2 mora da bude susedan sa čvorovima e_1 i b_2 , što nije slučaj, pa imamo kontradikciju. Ako je $f(a_2) = b_2$ tada je $f(a_1) = e_1$ i $f(\{c_1, c_2\}) = \{e_2, b_1\}$, pa je stoga $f(c_1) = e_2$ i $f(c_2) = b_1$. No, čvor b_1 je susedan sa čvorovima a_1 i c_1 , prema tome čvor c_2 treba da bude susedan sa čvorovima e_1 i e_2 , što nije slučaj, pa jo novo imamo kontradikciju. Ako je $f(a_2) = b_1$. No, čvor b_1 je susedan sa čvorovima e_1 i e_2 , što nije slučaj, pa jo novo imamo kontradikciju. Ako je $f(a_2) \in \{b_3, b_4\}$ tada je $f(a_1) \in \{b_5, b_6\}$ i ovaj slučaj smo već razmatrali (videti prethodni pasus).

Sada razmatramo graf D_8 (sl. 5.3). Ako je $f(a_1) \in \{e_1, \ldots, e_4\}$, tada je takodje $f(a_2) \in \{e_1, \ldots, e_4\}$. Možemo pretpostaviti da je $f(a_1) = e_1, f(a_2) = e_4$.

Tada je $\{f(c_1), f(c_2)\} = \{e_2, e_3\}$. Za svaki izbor vrednosti $f(c_1)$ i $f(c_2)$ preostale vrednosti funkcije f jedinstveno su odredjene i dobijamo dva neizomorfna, kospektralna, nebipartitna, integralna grafa E_4 i E_5 sa spektrom $4, 2^3, 0^3, -2^5$, koji su prikazani na sl. 5.14. S druge strane, ako je $f(a_1) \in \{b_5, \ldots, b_8\}$, tada je $f(a_2) \in \{b_1, \ldots, b_4\}$. Možemo pretpostaviti da je $f(a_1) = b_5$, $f(a_2) = b_3$. Tada je $f(c_1) = b_4$, $f(c_2) = b_6$, i $\{f(b_1), f(b_2)\} = \{d_4, d_5\}$. Za svaki izbor vrednosti $f(b_1)$ i $f(b_2)$ preostale vrednosti funkcije f jedinstveno su odredjene i dobijamo dva nebipartitna, integralna grafa izomorfna sa E_4 .

Graf D_9 (sl. 5.4) nema razlaganje u obliku $G \times K_2$, jer je broj najkraćih puteva dužine 3 izmedju proizvoljnih nesusednih čvorova iz različitih hromatskih klasa jednak 3, što je u suprotnosti sa lemom 5.5.1.

Razmotrimo sada grafove D_{10} , D_{11} i D_{12} (sl. 5.5). Pretpostavimo da je $f(a) = d_5$. Tada je

$$f^{-1}(\{a_1,\ldots,a_4\}) = \{c_1,\ldots,c_4\}.$$

Ako znamo vrednosti $f^{-1}(a_1), \ldots, f^{-1}(a_4)$, tada možemo da odredimo vrednosti $f(b_1), \ldots, f(b_4)$ iz

 $f(\{b_1, \dots, b_4\}) = \{d_1, \dots, d_4\}$

i činjenice da je svaki od čvorova b_i (i = 1, ..., 4) zajednički sused čvorova a_{i-1} i a_i (oduzimanje je po modulu 4) različit od čvora a. Pošto su čvorovi a_i i c_i susedni, važi $f^{-1}(a_i) \neq c_i$, pa je broj mogućih četvorki $(f^{-1}(a_1), \ldots, f^{-1}(a_4))$ samo 9. Ovaj broj se dalje smanjuje koristeći činjenicu da zajednički sused čvorova a_i i a_j , koji je različit od čvora a, ne sme da bude susedan sa zajednički sused čvorova $f^{-1}(a_i)$ i $f^{-1}(a_j)$, koji je različit od čvora d_5 . U preostalim mogućnostima dobijamo dva nebipartitna, integralna grafa: E_7 , sa spektrom $4, 2, 1^2, -1^2, -2^3$ i E_8 , sa spektrom $4, 1^4, -2^4$ (sl. 5.14). Pritom važi $E_7 \times K_2 \cong$ $E_8 \times K_2 \cong D_{10}$.

Pretpostavimo da u grafu D_{10} važi $f(a) = d_i$ $(1 \le i \le 4)$. Tada je

$$f^{-1}(\{a_1,\ldots,a_4\}) = \{b_{i-1},b_{i+1},c_{i-1},c_i\}.$$

Čvorovi b_{i+1} i c_i susedni su sa čvorom a_i , pa je stoga $f^{-1}(a_i) \in \{b_{i-1}, c_{i-1}\}$. Slično dobijamo $f^{-1}(a_{i-1}) \in \{b_{i+1}, c_i\}$. Pošto je $n_{a_i, a_{i-1}} = 2$, takodje je i

$$n_{f^{-1}(a_i), f^{-1}(a_{i-1})} = 2,$$

pa važi ili $f^{-1}(a_i) = b_{i-1}, f^{-1}(a_{i-1}) = b_{i+1}$, ili $f^{-1}(a_i) = c_{i-1}, f^{-1}(a_{i-1}) = c_i$. U prethodnom slučaju, funkcija f je jedinstveno odredjena i dobijamo grafi izomorfan sa grafom E_7 . U drugom slučaju mora da važi $f^{-1}(a_{i+1}) = b_{i-1}$, iz

čega dobijamo kontradikciju, jer je čvor a_{i-1} susedan sa čvorom $f^{-1}(a_{i+1})$, dok čvor a_{i+1} nije susedan sa čvorom $f^{-1}(a_{i-1})$.

Pretpostavimo da u grafu D_{11} važi $f(a) = d_i$ $(1 \le i \le 4)$. Tada važi $n_{a_{i-1},d_i} = n_{a_i,d_i} = 2$, i pošto je čvor *a* susedan sa čvorovima a_{i-1} i a_i imamo da je čvor d_i susedan sa čvorovima $f^{-1}(a_{i-1})$ i $f^{-1}(a_i)$ i

$$n_{f^{-1}(a_{i-1}),a_i} = n_{f^{-1}(a_i),a_i} = 2.$$

Zaključujemo da je $\{f^{-1}(a_{i-1}), f^{-1}(a_i)\} = \{b_{i-2}, b_i\}$. No, čvor b_i je susedan sa čvorovima a_{i-1} i a_i , što je kontradikcija.

Ako je $f(a) = d_2$ ili $f(a) = d_3$ u grafu D_{12} , tada dobijamo kontradikciju koristeći isti argument kao u prethodnom pasusu. Ako je $f(a) = d_1$, tada je $f^{-1}(a_3), f^{-1}(a_4) \neq b_4$, pa je $b_4 = f^{-1}(a_i)$ za neko $i \in \{1, 2\}$. Ali tada, pošto je $n_{a,b_4} = 2$, mora da bude $n_{f(a),f(b_4)} = n_{d_1,a_i} = 2$, što ne važi za $i \in \{1, 2\}$. Slično zaključivanje važi i za $f(a) = d_4$.

Posmatrajmo sada grafove D_{13} , D_{14} i D_{15} (sl. 5.8). Jasno je da je

$$f(z) \in \{a'_1, a'_2, b'_1, b'_2, c'_1, c'_2\}.$$

Na osnovu vrednosti f(z) lako dobijamo skup $f^{-1}(\{d, a, b, c\})$. Čvor d ima dva zajednička suseda sa svakim od čvorova a, b i c, pa čvor $f^{-1}(d)$ mora da ima dva zajednička suseda sa svakim od čvorova $f^{-1}(a)$, $f^{-1}(b)$ i $f^{-1}(c)$, na osnovu čega lako odredjujemo $f^{-1}(d)$. No, u svim mogućim slučajevima dobijamo kontradikciju, što vidimo iz sledećih razmatranja.

U grafu D_{13} za svaku vrednost f(z) postoji tačno jedna vrednost za $f^{-1}(d)$. Znajući vrednost $f^{-1}(d)$, možemo da odredimo skup $f(\{a_1, b_1, c_1\})$. Medjutim, u svakom od ovih slučajeva dobijamo kontradikciju. Na primer, ako je $f(z) = a'_1$, tada je $f^{-1}(\{d, a, b, c\}) = \{a_1, a_2, b_2, c_2\}$, pa zaključujemo da je $f^{-1}(d) = a_2$. Odavde je $f(\{a_1, b_1, c_1\}) = \{a, b'_1, c'_1\}$, a kako je još $f^{-1}(\{a, b, c\}) = \{a_1, b_2, c_2\}$, sledi da je $f(a_1) = a$, što je kontradikcija jer su čvorovi a_1 i a susedni.

U grafu D_{14} vrednost za $f^{-1}(d)$ postoji samo ako je $f(z) \in \{c'_1, c'_2\}$. Ako je $f(z) = c'_1$, tada je $f^{-1}(\{d, a, b, c\}) = \{a_3, b_2, c_1, c_2\}$. Tada je $f^{-1}(d) = c_2$, pa je $f(\{a_1, b_1, c_1\}) = \{a'_1, b'_2, c\}$, što zajedno sa $f^{-1}(\{a, b, c\}) = \{c_1, a_3, b_2\}$ daje $f(c_1) = c$, što je kontradikcija. Dokaz je analogan ako je $f(z) = c'_2$.

U grafu D_{15} vrednost za $f^{-1}(d)$ postoji samo ako je $f(z) \in \{a'_2, b'_2, c'_2\}$. Ako je $f(z) = a'_2$, tada se dobija $f^{-1}(d) = a_3$, odakle sledi da je $f(\{a_1, b_1, c_1\}) = \{a, b'_1, c'_1\}$. Odavde i iz $f^{-1}(\{a, b, c\}) = \{b_1, a_2, c_2\}$ sledi da je $f(b_1) = a$. Čvor c_1 je susedan sa čvorom c'_1 , pa zaključujemo da je $f(c_1) = b'_1$ i $f(a_1) = c'_1$. Medjutim, čvorovi a i a_1 su susedni, dok čvorovi $b_1 = f^{-1}(a)$ i $c'_1 = f(a_1)$ nisu susedni, što je kontradikcija. Dokaz je analogan i u ostalim slučajevima.

Slika 5.15: Graf sa spektrom $4, 2^4, 1, 0^2, -1^2, -2^4, -3$.

U grafu D_{16} (sl. 5.13) neparan broj puteva dužine 3 spaja čvor a_1 sa svakim od čvorova u_5, \ldots, u_{12} . Zato je $f(a_1) \in \{b_1, b_2, b_3\}$. Isto važi i za čvorove a_2 i a_3 , pa sledi da je $f(\{a_1, a_2, a_3\}) = \{b_1, b_2, b_3\}$. Na sličan način zaključujemo da važi:

 $\begin{array}{rcl} f(\{v_1,v_8,v_{10}\}) &=& \{u_3,u_8,u_{10}\},\\ f(\{v_2,v_7,v_9\}) &=& \{u_4,u_7,u_9\},\\ f(\{v_3,v_6,v_{12}\}) &=& \{u_1,u_6,u_{12}\},\\ f(\{v_4,v_5,v_{11}\}) &=& \{u_2,u_5,u_{11}\}. \end{array}$

Za svaki izbor vrednosti $f(a_i)$ (i = 1, 2, 3), koristeći lemu 5.5.1, možemo u potpunosti da rekonstruišemo funkciju f. Na taj način dobijamo dva nebipartitna, 4-regularna, integralna grafa: graf E_8 sa spektrom $4, 2^5, -1^4, -2^5$, prikazan na sl. 5.14, i graf X sa spektrom $4, 2^4, 1, 0^2, -1^2, -2^4, -3$, prikazan na sl. 5.15.

Ovim smo dokazali

Propozicija 5.5.2 Postoji tačno osam nebipartitnih, 4-regularnih, integralnih grafova koji ne sadrže ± 3 u spektru i to su grafovi E_1, \ldots, E_8 sa sl. 5.14.

5.6 Za kraj ove glave

Propozicije 5.1.1-5.5.2 daju glavnu teoremu ove glave.

Teorema 5.6.1 Postoji tačno 24 integralnih, 4-regularnih grafova koji ne sadrže ± 3 u spektru. Medju njima, bipartitni su grafovi D_1, \ldots, D_{16} (sl. 5.1-5.8 i sl. 5.13), dok su nebipartitni grafovi E_1, \ldots, E_8 (sl. 5.14).

Najmanji ovakav bipartitni graf je $D_1 = K_{4,4}$, dok su najveći D_{11} i D_{16} koji, redom, imaju 32, odnosno 30, čvorova. U ovom skupu postoje dve trojke kospektralnih, neizomorfnih grafova: (D_{13}, D_{14}, D_{15}) sa 20 čvorova i (D_{10}, D_{11}, D_{12}) sa 18 čvorova. Pored toga, postoje i dva para kospektralnih, neizomorfnih grafova: (D_7, D_8) sa 24 čvora i (D_5, D_6) sa 16 čvorova.

Medju nebipartitnim grafovima, najmanji je graf $E_1 = K_5$, a najveći je E_8 sa 15 čvorova. Medju ovim grafovima postoji par kospektralnih, neizomorfnih grafova (E_4, E_5) sa 12 čvorova. Grafovi E_2 i E_7 su jako regularni, dok je graf E_7 takodje samokomplementaran. Grafovi E_1, \ldots, E_8 imaju najmanju sopstvenu vrednost veću ili jednaku -2 i oni su izomorfni ili grafovima grana ili koktel-parti grafovima, osim grafa E_4 koji je jedan od grafova nadjenih u [6].

Glava 6

Regularni, integralni NEPS grafova

Pored ispitivanja postojanja grafova sa svakim od mogućih spektara, kao što smo učinili u prethodnoj glavi za jedan broj spektara, u potrazi za 4-regularnim, integralnim grafovima možemo da tražimo i one koji se mogu dobiti kompozicijom manjih grafova. Na osnovu činjenice da je NEPS grafova regularan i integralan ako i samo ako su svi faktori regularni i integralni, što dokazujemo u sekciji 6.1, u mogućnosti smo da, u sekcijama 6.2-6.4, nadjemo sve povezane, 4-regularne, integralne grafove koji mogu biti prikazani kao NEPS grafova.

6.1 Polazni rezultati

Neka je ubuduće $G = \text{NEPS}(G_1, \ldots, G_n; \mathcal{B})$, gde su G_1, \ldots, G_n povezani grafovi. Za čvorove u i v grafa G kažemo da su susedni pomoću $\beta, \beta \in \mathcal{B}$, ako je u_i susedno sa v_i u G_i kadgod je $\beta_i = 1$, a $u_i = v_i$ kadgod je $\beta_i = 0$. Ako su u i v susedni čvorovi u G, tada postoji jedinstveno $\beta \in \mathcal{B}$ dato sa

$$\beta_i = \begin{cases} 1, & \text{ako je } u_i \text{ susedno sa } v_i \\ 0, & \text{ako je } u_i = v_i \end{cases}$$

tako da su u i v susedni pomoću β . Neka je u proizvoljan čvor grafa G i $\beta \in \mathcal{B}$. Označimo stepen čvora u sa degu. Broj čvorova v susednih sa u pomoću β

69

jednak je $\prod_{i=1}^n (\deg u_i)^{\beta_i}$, jer se v_i može izabrati na deg u_i načina ako je $\beta_i=1$, a na samo jedan način ako je $\beta_i=0$. Prema tome, važi

(6.1)
$$\deg u = \sum_{\beta \in \mathcal{B}} \prod_{i=1}^{n} (\deg u_i)^{\beta_i}.$$

U [21, p. 69] dokazano je da ako G_i ima n_i čvorova i sopstvene vrednosti $\lambda_{i1}, \ldots, \lambda_{in_i}$ tada se spektar grafa NEPS $(G_1, \ldots, G_n; \mathcal{B})$ sastoji od svih mogućih vrednosti Λ_{j_1,\ldots,j_n} , gde je

(6.2)
$$\Lambda_{j_1,\dots,j_n} = \sum_{\beta \in \mathcal{B}} \prod_{i=1}^n \lambda_{ij_i}^{\beta_i} \quad (j_k = 1, 2, \dots, n_k; k = 1, 2, \dots, n).$$

U slučaju da je $\lambda_{ij_i} = 0$ i $\beta_i = 0$ definišemo $0^0 = 1$. Prema tome, ako su grafovi G_1, \ldots, G_n integralni, tada je integralan i njihov NEPS sa proizvoljnom bazom. Ako se ograničimo na regularne grafove, tada važi i obrnuto.

Teorema 6.1.1 Neka je $G = \text{NEPS}(G_1, \ldots, G_n; \mathcal{B})$, gde su G_1, \ldots, G_n povezani grafovi. Tada je G regularan, integralan graf ako i samo ako je G_i regularan, integralan graf za svako $i = 1, \ldots, n$.

Dokaz Iz (6.1) sledi da je G regularan graf ako i samo ako je G_i regularan graf za svako $i = 1, \ldots, n$. Pretpostavimo sada da je G regularan, integralan graf i, bez gubitka opštosti, da graf G_1 ima necelobrojnu sopstvenu vrednost λ . Sopstvena vrednost λ je iracionalan broj, pošto su sopstvene vrednosti celobrojnih matrica ili celobrojne ili iracionalne. Grafovi G_1, \ldots, G_n su regularni i neka je r_i stepen grafa G_i , $i = 1, \ldots, n$. Tada svaki graf G_i ima celobrojnu sopstvenu vrednost vrednost, naime r_i . Prema tome, graf G ima sopstvenu vrednost

$$\Lambda = \sum_{\beta \in \mathcal{B}} \lambda^{\beta_1} \prod_{i=2}^n r_i^{\beta_i} = A\lambda + B,$$

gde su A i B nenegativni celi brojevi, i A > 0 pošto iz definicije NEPSa sledi da je $\beta_1 = 1$ za bar jedno $\beta \in \mathcal{B}$. Pošto je λ iracionalno, $A\lambda + B$ nije ceo broj i imamo kontradikciju.

U teoremi 6.1.1 koristili smo regularnost samo da bi obezbedili da svaki od grafova G_1, \ldots, G_n ima celobrojnu sopstvenu vrednost. Iz dokaza ove teoreme

vidimo da ako je G integralan graf i svaki od grafova G_1, \ldots, G_n ima celobrojnu sopstvenu vrednost, tada je svaki od grafova G_i integralan, $i = 1, \ldots, n$. Sledeće pitanje zato izgleda interesantno.

Pitanje Postoji li integralan graf $G = \text{NEPS}(G_1, \ldots, G_n; \mathcal{B})$ tako da bar jedan od grafova G_1, \ldots, G_n ima sve sopstvene vrednosti iracionalne?

Sledeća teorema pokazuje da je dovoljno da za faktore NEPSa uzimamo samo one grafove koji sami ne mogu biti predstavljeni kao NEPS drugih grafova.

Teorema 6.1.2 Neka je $G = \text{NEPS}(G_1, \ldots, G_n; \mathcal{B})$ i neka je

$$G_i = \operatorname{NEPS}(G_{i,1}, \dots, G_{i,m_i}; \mathcal{B}_i), \quad i = 1, \dots, n.$$

Tada je

$$G \cong \operatorname{NEPS} \left(G_{1,1}, \dots, G_{1,m_1}, \dots, G_{n,1}, \dots, G_{n,m_n}; \mathcal{G} \right),$$

gde se \mathcal{G} sastoji od svih različitih uredjenih $(\sum_{i=1}^{n} m_i)$ -torki γ , sačinjenih od 0 i 1, za koje postoji $\beta \in \mathcal{B}$, i $\beta^i \in \mathcal{B}_i$, i = 1, ..., n, tako da za j koje zadovoljava

$$n_1 + \ldots + n_{i-1} + 1 \le j \le n_1 + \ldots + n_{i-1} + n_i$$

 $va\check{z}i$

$$\gamma_j = \beta_i \beta_{j-(n_1 + \dots n_{i-1})}^i$$

Dokaz Neka je $H = \text{NEPS}(G_{1,1}, \ldots, G_{1,m_1}, \ldots, G_{n,1}, \ldots, G_{n,m_n}; \mathcal{G})$. Dokazaćemo da preslikavanje $f: V(G) \mapsto V(H)$ definisano pomoću

$$f((u_{1,1},\ldots,u_{1,m_1}),\ldots,(u_{n,1},\ldots,u_{n,m_n})) = (u_{1,1},\ldots,u_{1,m_1},\ldots,u_{n,1},\ldots,u_{n,m_n})$$

predstavlja izomorfizam grafova.

Naime, čvorovi u i v grafa G susedni su pomoću β

 \Leftrightarrow za $i = 1, \ldots, n$ ($\beta_i = 1$ i u_i je susedno sa v_i pomoću β^i) ili ($\beta_i = 0$ i $u_i = v_i$) \Leftrightarrow za $i = 1, \ldots, n$ i $j = 1, \ldots, m_i$

 $(\beta_i = 1 \text{ i } ((\beta_j^i = 1 \text{ i } u_{i,j} \text{ je susedno sa } v_{i,j}) \text{ ili } (\beta_j^i = 0 \text{ i } u_{i,j} = v_{i,j})))$ ili $(\beta_i = 0 \text{ i } u_{i,j} = v_{i,j})$

 $\Leftrightarrow \operatorname{za} i = 1, \dots, n \text{ i } j = 1, \dots, m_i$

 $(\beta_i \beta_j^i = 1 \text{ i } u_{i,j} \text{ je susedno sa } v_{i,j})$ ili $(\beta_i \beta_j^i = 0 \text{ i } u_{i,j} = v_{i,j})$

 $\Leftrightarrow f(u)$ i f(v) su susedni u H.

Prema tome, možemo pretpostaviti da se grafovi G_i ne mogu predstaviti kao NEPS drugih grafova. Neka je stepen grafa G_i jednak r_i , i = 1, ..., n i pretpostavimo da je $r_1 \geq \ldots \geq r_n$. Iz (6.1) sledi da je $4 = \sum_{\beta \in \mathcal{B}} \prod_{i=1}^n r_i^{\beta_i}$ i vidimo da je $r_1 \leq 4$. Ako je $r_1 = 4$, tada je $4 = \sum_{\beta \in \mathcal{B}} 4^{\beta_1} \prod_{i=2}^n r_i^{\beta_i}$ odakle je $|\mathcal{B}| = 1$. Jedini element baze \mathcal{B} je $(1, 1, \ldots, 1)$, pa je zato $r_2 = \ldots = r_n = 1$, iz čega sledi da je $G_2 = \ldots = G_n = K_2$. Dalje iz teoreme 6.1.2 sledi

$$G = \text{NEPS}(G_1, K_2, \dots, K_2; \{(1, 1, \dots, 1)\})$$

= $(\dots ((G_1 \times K_2) \times K_2) \dots) \times K_2 = 2^{n-2} (G_1 \times K_2),$

pa je G povezan graf samo ako je n = 2. Prema tome, iz svakog povezanog, nebipartitnog, 4-regularnog, integralnog grafa množenjem sa K_2 dobijamo povezan, bipartitan, 4-regularan, integralan graf.

Pretpostavimo sada da je $r_1 < 4$. Potragu za povezanim, 4-regularnim, integralnim NEPSom podelićemo u tri slučaja u zavisnosti od vrednosti r_1 .

6.2 NEPS grafova izomorfnih sa K_2

Sledeća jednostavna lema dokazana je u radu [52] i, nezavisno, u radu [57].

Lema 6.2.1 Ako je G_i čvorno-tranzitivan graf za i = 1, ..., n, tada je graf $G = \text{NEPS}(G_1, ..., G_n; \mathcal{B})$ čvorno-tranzitivan.

Teorema 6.2.2 Neka je

$$G = \operatorname{NEPS}\left(\underbrace{K_2, \dots, K_2}_{n}; \mathcal{B}\right).$$

Sve komponente grafa G medjusobno su izomorfne i svaka je izomorfna sa

NEPS
$$(\underbrace{K_2, \ldots, K_2}_{r(\mathcal{B})}; \mathcal{B}'),$$

za neku bazu \mathcal{B}' .

Dokaz Pošto je K_2 čvorno-tranzitivan graf, iz leme 6.2.1 sledi da su komponente grafa G medjusobno izomorfne. Da bi dokazali drugi deo teoreme, posmatraćemo čvorove grafa G kao vektore u GF_2^n . Baza \mathcal{B} je skup vektora u ovom prostoru, i vidimo da su dva čvora (vektora) u i v grafa G susedna ako i samo ako je $u - v \in \mathcal{B}$. Odavde zaključujemo da su u i v povezani putem ako i samo ako je $u - v \in \mathcal{L}(\mathcal{B})$, gd
e $\mathcal{L}(\mathcal{B})$ označava linearni podprostor generisan bazom
 \mathcal{B} . Prema tome, skupovi čvorova komponenti graf
aGodgovaraju kosetima podprostora $\mathcal{L}(\mathcal{B})$
u GF_2^n . Neka je Pizomorfizam vektorskih prostor
a $\mathcal{L}(\mathcal{B})$ i $GF_2^{r(\mathcal{B})}$. Neka je

$$C = \operatorname{NEPS}\left(\underbrace{K_2, \dots, K_2}_{r(\mathcal{B})}; \mathcal{B}'\right),$$

gde je $\mathcal{B}' = P(\mathcal{B})$. Tada su komponenta grafa G, koju čine čvorovi u $\mathcal{L}(\mathcal{B})$, i graf C izomorfni:

u je susedno sa $v \ u \ \mathcal{L}(\mathcal{B}) \Leftrightarrow u - v \in \mathcal{B} \Leftrightarrow Pu - Pv \in P(\mathcal{B})$ $\Leftrightarrow Pu$ je susedno sa Pv in C.

Pošto je $|\mathcal{B}| \ge r(\mathcal{B})$, jasno je da ako je $n > |\mathcal{B}|$, tada NEPS $(\underbrace{K_2, \ldots, K_2}; \mathcal{B})$

nije povezan graf. Iz (6.1) sledi da je $4 = \sum_{\beta \in \mathcal{B}} \prod_{i=1}^{n} 1^{\beta_i} = |\mathcal{B}|$, a onda iz prethodnog opažanja sledi da je $n \leq 4$. Pošto 4-regularan graf ima bar 5 čvorova zaključujemo da je n = 3 ili n = 4. Primetimo da se sopstvene vrednosti grafa G u ovom slučaju nalaze u skupu $\{4, 2, 0, -2, -4\}$ i da su svi 4-regularni grafovi sa sopstvenim vrednostima u ovom skupu već nadjeni u glavi 5. Za n = 3 imamo grafove D_1 i E_3 , dok za n = 4 imamo 4-dimenzionalnu kocku D_5 , koji su označeni redom sa N_1, N_2, N_3 u tabeli 6.1. Time smo dokazali sledeću

Propozicija 6.2.3 Ako je graf $G = \text{NEPS}(K_2, \ldots, K_2; \mathcal{B})$ 4-regularan i integralan, tada je G jedan od grafova N_1, N_2 i N_3 .

Napomena Iako nam to u potrazi za 4-regularnim, integralnim NEPSom nije neophodno, teorema 6.2.2 može se uopštiti tako da važi za NEPS grafova kod koga su svi bipartitni faktori izomorfni sa K_2 .

Teorema 6.2.4 Neka su C_1, \ldots, C_m povezani, nebipartitni grafovi i

$$G = \operatorname{NEPS}\left(\underbrace{K_2, \dots, K_2}_{n}, C_1, \dots, C_m; \mathcal{B}\right)$$

Sve komponente grafa G medjusobno su izomorfne i svaka je izomorfna sa

NEPS
$$(\underbrace{K_2, \ldots, K_2}_{r(\mathcal{B}')}, C_1, \ldots, C_m; \mathcal{C}),$$

za neku bazu C, gde se \mathcal{B}' sastoji od kolona matrice \mathcal{B} koje odgovaraju grafu K_2 .

Dokaz Neka su

$$G' = \operatorname{NEPS}\left(\underbrace{K_2, \dots, K_2}_{n}; \mathcal{B}'\right)$$

i

$$H' = \operatorname{NEPS}\left(\underbrace{K_2, \dots, K_2}_{r(\mathcal{B}')}; \mathcal{C}'\right)$$

takvi da je svaka komponenta grafa G' izomorfna s
aH'. Neka je P izomorfizam izmedju $\mathcal{L}(\mathcal{B}')$
i $GF_2^{r(\mathcal{B}')}$ tako da je $\mathcal{C}' = P(\mathcal{B}')$. Neka je

$$\mathcal{C} = \{ (P\beta^1, \beta^2) \colon (\beta^1, \beta^2) \in \mathcal{B}, \, \beta^1 \in GF_2^n, \, \beta^2 \in GF_2^m \},$$

i

$$H = \operatorname{NEPS}\left(\underbrace{K_2, \dots, K_2}_{r(\mathcal{B}')}, C_1, \dots, C_m; \mathcal{C}\right)$$

Neka je A' proizvoljna komponenta grafa G' sa $V(A') = w + \mathcal{L}(\mathcal{B}'), w \in GF_2^n$, i A komponenta grafa G tako da je $V(A) = V(A') \times \prod_{i=1}^m V(C_i)$, koja postoji na osnovu leme 1.1.3. Dokazujemo da je komponenta A izomorfna sa H. Neka je $\alpha : V(A) \mapsto V(H)$ preslikavanje dato sa $\alpha(w + u, v) = (Pu, v), u \in \mathcal{L}(\mathcal{B}'), v \in \prod_{i=1}^m V(C_i)$. Očigledno, α je bijekcija. Dalje, čvorovi $(w + u^1, u^2)$ i $(w + v^1, v^2)$ su susedni u $A \iff \text{postoji } \beta = (\beta^1, \beta^2) \in \mathcal{B}$ ($\beta^1 \in GF_2^n, \beta^2 \in GF_2^m$) tako da je $(w + u^1) - (w + v^1) = \beta^1, u_i^2$ je susedno sa v_i^2 u C_i kadgod je $\beta_i^2 = 1$ i $u_i^2 = v_i^2$ kadgod je $\beta_i^2 = 0 \iff Pu^1 - Pv^1 = P\beta^1, u_i^2$ je susedno sa v_i^2 u C_i kadgod je $\beta_i^2 = 1$ i $u_i^2 = v_i^2$ kadgod je $\beta_i^2 = 0 \iff (Pu^1, u^2)$ i (Pv^1, v^2) su susedni u H.

6.3 NEPS grafova izomorfnih sa C_3 i K_2

U ovom slučaju najveći stepen grafova G_1, \ldots, G_n je 2. Postoje samo 3 povezana, 2-regularna, integralna grafa: C_3, C_4 i C_6 . Pošto je $C_4 = K_2 + K_2$ i $C_6 = C_3 \times K_2$, iz teoreme 6.1.2 vidimo da je suvišno posmatrati grafove C_4 i C_6 . Prema tome, možemo pretpostaviti da je $G_1 = \cdots = G_j = C_3, G_{j+1} = \cdots = G_n = K_2$.

Pretpostavimo da postoje j_1,j_2 tako da j
e $j\!<\!j_1\!<\!j_2\!\le\!n$ (tj. $G_{j_1}\!=\!G_{j_2}\!=\!K_2)$ i (
 $\forall\beta\in\mathcal{B}$) $\beta_{j_1}=\beta_{j_2}$. Tada je lako pokazati da je

$$\operatorname{NEPS}\left(G_{1},\ldots,G_{n};\mathcal{B}\right)=2 \operatorname{NEPS}\left(G_{1},\ldots,G_{j_{2}-1},G_{j_{2}+1},\ldots,G_{n};\mathcal{B}^{*}\right),$$

gde je $\mathcal{B}^* = \{(\beta_1, \dots, \beta_{j_2-1}, \beta_{j_2+1}, \dots, \beta_n) \mid \beta \in \mathcal{B}\}$. Zato je jedini interesantan slučaj kada za sve j_1, j_2 takve da je $j < j_1 < j_2 \leq n$ važi $(\exists \beta \in \mathcal{B}) \beta_{j_1} \neq \beta_{j_2}$. Zaključujemo da je $n - j \leq 2^{|\mathcal{B}|} - 1$, pošto za svako j_1 važi $(\exists \beta \in \mathcal{B}) \beta_{j_1} \neq 0$. Iz $4 = \sum_{\beta \in \mathcal{B}} \prod_{i=1}^n r_i^{\beta_i}$ zaključujemo da su mogući sledeći slučajevi:

a) $\mathcal{B} = \{(1, 1, \dots, 1)\}$ i tada je j = 2. Ovde dobijamo grafove $N_4 = C_3 \times C_3$ i $N_5 = C_3 \times C_3 \times K_2$. Za n > 3 iz teoreme 6.1.2 sledi

NEPS
$$(C_3, C_3, K_2, \dots, K_2; \{(1, 1, \dots, 1)\})$$

= $(\dots ((C_3 \times C_3) \times K_2) \dots) \times K_2 = 2^{n-3} (C_3 \times C_3 \times K_2).$

- b) $\mathcal{B} = \{\beta^1, \beta^2\}$. Sada imamo sledeće podslučajeve:
 - b
1) $j=1,\,\beta_1^1=1,\,\beta_1^2=1.$ Kako je iz gornjeg opažanja
 $n\leq j+2^{|\mathcal{B}|}-1=4,$ proverom svih mogućnosti na računaru dobijamo grafove

$$N_6 = K_2 \oplus C_3$$

$$N_7 = \text{NEPS}(C_3, K_2, K_2; \{(1, 0, 1), (1, 1, 0)\}).$$

Druge mogućnosti daju grafove sa komponentama izomorfnim grafovima N_6 i $N_7.$

b2) $j=2,\,\beta_1^1=1,\,\beta_2^1=0,\,\beta_1^2=0,\,\beta_2^2=1.$ Kao i u prethodnom slučaju, proverom svih mogućnosti na računaru dobijamo grafove

$$N_8 = \text{NEPS} (C_3, C_3, K_2; \{(1, 0, 0), (0, 1, 1)\}),$$

$$N_9 = \text{NEPS} (C_3, C_3, K_2; \{(1, 0, 1), (0, 1, 1)\}) i$$

$$N_{10} = \text{NEPS} (C_3, C_3, K_2, K_2; \{(1, 0, 0, 1), (0, 1, 1, 0)\}).$$

Druge mogućnosti daju grafove sa komponentama izomorfnim grafovima N_8, N_9 i N_{10} .

c) $\mathcal{B} = \{\beta^1, \beta^2, \beta^3\}$. Tada je j = 1 i $\beta_1^1 = 1$, $\beta_1^2 = 0$, $\beta_1^3 = 0$. Prema tome, postoji najviše 2^{2^3-1} mogućnosti za \mathcal{B} i njihovom proverom na računaru dobijamo sledeće grafove:

$$\begin{split} N_{11} &= C_3 + K_2 + K_2 \\ N_{12} &= \operatorname{NEPS}\left(C_3, K_2, K_2; \{(1,0,1), (0,1,0), (0,0,1)\}\right) \\ N_{13} &= \operatorname{NEPS}\left(C_3, K_2, K_2; \{(1,0,1), (0,1,0), (0,1,1)\}\right) \\ N_{14} &= \operatorname{NEPS}\left(C_3, K_2, K_2, K_2; \{(1,0,0,1), (0,1,0,0), (0,0,1,0)\}\right) \end{split}$$

Druge mogućnosti daju grafove sa komponentama izomorfnim grafovima N_{11}, N_{12}, N_{13} ili N_{14} .

Time smo dokazali

Propozicija 6.3.1 Ako je $G = \text{NEPS}(C_3, \ldots, C_3, K_2, \ldots, K_2; \mathcal{B})$ 4-regularan, integralan graf, tada je G jedan od grafova N_4 - N_{14} .

6.4 NEPS kubnih, integralnih grafova i K_2

Kubni, integralni grafovi nadjeni su u [5, 13, 51]. Ovde koristimo numeraciju iz [51]. Grafovi G_1, \ldots, G_8 su bipartitni, dok su G_9, \ldots, G_{13} nebipartitni.

Iz 4 = $\sum_{\beta \in \mathcal{B}} \prod_{i=1}^{n} r_i^{\beta_i}$ zaključujemo da je j = 1 i $|\mathcal{B}| = 2$. Moguće su sledeće baze:

- 1. $\mathcal{B} = \{(1,0), (0,1)\}$. Ovo je suma kubnog, integralnog grafa i K_2 .
- 2. $\mathcal{B} = \{(1,1), (0,1)\}$. Ovo je jaka suma kubnog, integralnog grafa i K_2 .
- 3. $\mathcal{B} = \{(1,0,1), (0,1,0)\}.$ Iz teoreme 6.1.2 sledi da je

NEPS $(G, K_2, K_2; \{(1, 0, 1), (0, 1, 0)\}) = (G \times K_2) + K_2.$

4. $\mathcal{B} = \{(1, 0, 1), (0, 1, 1)\}$. Iz teoreme 6.1.2 sledi da je

NEPS $(G, K_2, K_2; \{(1, 0, 1), (0, 1, 1)\}) = (G + K_2) \times K_2.$

5. $\mathcal{B} = \{(1, 1, 1), (0, 0, 1)\}$. Iz teoreme 6.1.2 sledi da je

NEPS
$$(G, K_2, K_2; \{(1, 1, 1), (0, 0, 1)\}) = (G \times K_2) \oplus K_2.$$

6. $\mathcal{B} = \{(1, 0, 1, 1), (0, 1, 0, 1)\}$. Iz teoreme 6.1.2 sledi da je

NEPS $(G, K_2, K_2; \{(1, 0, 1, 1), (0, 1, 0, 1)\}) = ((G \times K_2) + K_2) \times K_2$ = $((G + K_2) \times K_2) \times K_2 = 2((G + K_2) \times K_2).$

Medjutim, neke od ovih baza daju medjusobno izomorfne grafove, dok druge ne daju povezane grafove. Tačnije, ako je G bipartitan graf, dobija se samo jedan povezan, 4-regularan, integralan graf, dok se u slučaju da je G nebipartitan, dobijaju dva takva grafa. Da bi smo dokazali ovo tvrdjenje, pokažimo najpre sledeću

Propozicija 6.4.1 Za svaki graf G, grafovi $(G + K_2) \times K_2$ i $(G \times K_2) + K_2$ su izomorfni.

Dokaz – Za čvorove grafova $(G+K_2)\times K_2$ i $(G\times K_2)+K_2$ pisaćemo kratkouabumesto (u,a,b).Tada je

 $\begin{aligned} (u_0a_0b_0, u_1a_1b_1) \in E((G+K_2) \times K_2) & \Longleftrightarrow (u_0a_0, u_1a_1) \in E(G+K_2) \text{ i } b_0 \neq b_1 \\ & \Longleftrightarrow (u_0, u_1) \in E(G), a_0 = a_1, b_0 \neq b_1 \text{ ili } u_0 = u_1, a_0 \neq a_1, b_0 \neq b_1; \end{aligned}$

i

 $\begin{array}{l} (u_0a_0b_0, u_1a_1b_1) \in E((G \times K_2) + K_2) \\ \Longleftrightarrow (u_0a_0, u_1a_1) \in E(G \times K_2), b_0 = b_1 \text{ ili } u_0a_0 = u_1a_1, b_0 \neq b_1 \\ \Leftrightarrow (u_0, u_1) \in E(G), a_0 \neq a_1, b_0 = b_1 \text{ ili } u_0 = u_1, a_0 = a_1, b_0 \neq b_1. \end{array}$

Nije teško videti da je preslikavanje $f: V((G + K_2) \times K_2) \mapsto V((G \times K_2) + K_2)$ dato sa f(u, a, b) = (u, a + b, a), gde je $+_2$ sabiranje po modulu 2, u stvari izomorfizam ovih grafova.

Neka je G_i bipartitan graf, tj. $1 \leq i \leq 8.$ Lako je videti da je tada $G_i + K_2 = G_i \oplus K_2.$ Pritom je

$$(G_i + K_2) \times K_2 = (G_i \times K_2) + K_2 = (2G_i) + K_2 = 2(G_i + K_2)$$

i još

NEPS
$$(G_i, K_2, K_2; \{(1, 0, 1, 1), (0, 1, 0, 1)\}) = 4(G_i + K_2).$$

Znači, jedini povezan, 4-regularan, integralan graf koji dobijamo od bipartitnog, kubnog, integralnog grafa G_i je $G_i + K_2$.

Ako je G_i nebipartitan graf, tj. $9 \le i \le 13$, tada postoji $j, 1 \le j \le 8$, tako da je $G_i \times K_2 = G_j$. Sada je

$$(G_i + K_2) \times K_2 = (G_i \times K_2) + K_2 = G_j + K_2 = G_j \oplus K_2 = (G_i \times K_2) \oplus K_2$$

i još

NEPS
$$(G_i, K_2, K_2; \{(1, 0, 1, 1), (0, 1, 0, 1)\}) = 2(G_i + K_2).$$

Znači, od nebipartitnog, kubnog integralnog grafa G_i dobijamo dva nova povezana, 4-regularna, integralna grafa: $G_i + K_2$ i $G_i \oplus K_2$.

$$\begin{split} N_1 &= NEPS(K_2, K_2, K_2; \{(1,0,0), (0,1,0), (0,0,1), (1,1,1)\} = D_1 \\ N_2 &= NEPS(K_2, K_2, K_2; \{(1,0,0), (0,1,0), (0,0,1), (1,1,0)\} = E_3 \\ N_3 &= K_2 + K_2 + K_2 + K_2 = D_5 \\ N_4 &= C_3 \times C_3 \\ N_5 &= C_3 \times C_3 \times K_2. \\ N_6 &= K_2 \oplus C_3 \\ N_7 &= \text{NEPS}\left(C_3, K_2, K_2; \{(1,0,1), (1,1,0)\}\right) \\ N_8 &= \text{NEPS}\left(C_3, C_3, K_2; \{(1,0,0), (0,1,1)\}\right) \\ N_9 &= \text{NEPS}\left(C_3, C_3, K_2; \{(1,0,0), (0,1,1)\}\right) \\ N_{10} &= \text{NEPS}\left(C_3, C_3, K_2, K_2; \{(1,0,0,1), (0,1,0)\}\right) \\ N_{11} &= C_3 + K_2 + K_2 \\ N_{12} &= \text{NEPS}\left(C_3, K_2, K_2; \{(1,0,1), (0,1,0), (0,0,1)\}\right) \\ N_{13} &= \text{NEPS}\left(C_3, K_2, K_2; \{(1,0,1), (0,1,0), (0,1,0)\}\right) \\ N_{14} &= \text{NEPS}\left(C_3, K_2, K_2; \{(1,0,0,1), (0,1,0), (0,0,1,0)\}\right) \end{split}$$

Tabela 6.1: Povezan, 4-regularan, integralan NEPS grafova čiji su faktori u skupu $\{K_2, C_3\}$.

6.5 Za kraj ove glave

Rezultate iz sekcija 6.2-6.4 možemo sumirati u sledećoj teoremi.

Teorema 6.5.1 Neka je G 4-regularan, integralan NEPS grafova. Tada važi jedno od sledećih tvrdjenja:

- a) G je izomorfan jednom od grafova N_1 - N_{14} iz tabele 6.1;
- b) $G = H + K_2$, gde je H 3-regularan, integralan graf;
- c) $G = H \oplus K_2$, gde je H nebipartitan, 3-regularan, integralan graf;
- d) $G = H \times K_2$, gde je H nebipartitan, 4-regularan, integralan graf.

Glava 7

Poznati 4-regularni, integralni grafovi

U ovoj glavi dajemo spisak 65 povezanih, 4-regularnih, integralnih grafova iz rada [30]. Deo ovih grafova poznat je u literaturi, dok se drugi prvi put pojavljuju u gornjem radu i dobijeni su od poznatih grafova pomoću nekih konstrukcija koje će biti opisane kasnije. Svakom od ovih grafova dajemo oznaku u obliku $I_{p,a}$, gde je p broj čvorova, a a je redni broj grafa u grupi grafova sa istim brojem čvorova. Za svaki graf dajemo njegov spektar i kratak opis, ponekad sa referencom na literaturu. Grafovi u spisku sortirani su najpre po broju čvorova, a zatim po spektru.

Grafovi G_1, \ldots, G_{13} su povezani, kubni, integralni grafovi iz [51]. Grafovi G_1, \ldots, G_8 su bipartitni, dok G_9, \ldots, G_{13} nisu. Ovi grafovi takodje se nalaze i u [13, 5], ali u drugačijem poretku. U sledećem spisku dajemo njihove spektre:

$$\begin{split} &G_1 = K_{3,3}: \ [3,0^4,-3].\\ &G_2 = K_2 + K_2 + K_2 = G_9 \times K_2 \ (3\text{-dimenzionalna kocka}): \ [3,1^3,-1^3,-3].\\ &G_3 \ (\text{Tutte-ov 8-kavez}): \ [3,2^9,0^{10},-2^9,-3].\\ &G_4 = G_{10} \times K_2 = G_{11} \times K_2 \ (\text{Desargues-ov graf}): \ [3,2^4,1^5,-1^5,-2^4,-3].\\ &G_5: \ [3,2^4,1^5,-1^5,-2^4,-3].\\ &G_6: \ [3,2,1^2,0^2,-1^2,-2,-3]. \end{split}$$

79

$$\begin{split} &G_7 = K_2 + C_6 = G_{12} \times K_2 \ (\text{6-strana prizma}): \ [3, 2^2, 1, 0^4, -1, -2^2, -3]. \\ &G_8 = G_{13} \times K_2: \ [3, 2^6, 1^3, 0^4, -1^3, -2^6, -3]. \\ &G_9 = K_4: \ [3, -1^3]. \\ &G_{10} \ (\text{Petersen-ov graf}): \ [3, 1^5, -2^4]. \\ &G_{11}: \ [3, 2, 1^3, -1^2, -2^3]. \\ &G_{12} = K_2 + K_3 \ (\text{3-strana prizma}): \ [3, 1, 0^2, -2^2]. \\ &G_{13} = L_2(K_4): \ [3, 2^3, 0^2, -1^3, -2^3]. \end{split}$$

Neka je L(G) graf grana grafa G, S(G) graf potpodele i $L_2(G) = L(S(G))$. Za svaki graf G_i (i = 1, ..., 13) grafovi $L(G_i)$, $L(G_i) \times K_2$, $G_i + K_2$ i $G_i \oplus K_2$ su povezani, 4-regularni, integralni grafovi. U tabeli 7.1 dajemo njihova mesta u spisku 4-regularnih, integralnih grafova. Ako je G_i bipartitan graf, tada je $G_i + K_2 = G_i \oplus K_2$, pa zato ne ponavljamo kolonu za ove grafove.

i	$L(G_i)$	$L(G_i) \times K_2$	$G_i + K_2$	i	$L(G_i)$	$L(G_i) \times K_2$	$G_i + K_2$	$G_i \oplus K_2$
1	$I_{9,2}$	$I_{18,1}$	$I_{12,2}$	9	$I_{6,1}$	$I_{12,4}$	$I_{8,2}$	$I_{8,1}$
2	$I_{12,7}$	$I_{24,2}$	$I_{16,1}$	10	$I_{15,2}$	$I_{30,1}$	$I_{20,4}$	$I_{20,1}$
3	$I_{45,1}$	$I_{90,1}$	$I_{60,3}$	11	$I_{15,4}$	$I_{30,3}$	$I_{20,7}$	$I_{20,6}$
4	$I_{30,4}$	$I_{60,1}$	$I_{40,1}$	12	$I_{9,4}$	$I_{18,1}$	$I_{12,5}$	$I_{12,2}$
5	$I_{30,5}$	$I_{60,2}$	$I_{40,2}$	13	$I_{18,6}$	$I_{36,2}$	$I_{24,5}$	$I_{24,4}$
6	$I_{15,3}$	$I_{30,2}$	$I_{20,5}$					
7	$I_{18,5}$	$I_{36,1}$	$I_{24,3}$					
8	$I_{36,4}$	$I_{72,1}$	$I_{48,1}$					

Tabela 7.1: Mesta grafova $L(G_i), L(G_i) \times K_2, G_i + K_2$ i $G_i \oplus K_2$ u spisku.

Neka je G_i nebipartitan graf, tj. $i = 9, 10, \ldots, 13$. Po propoziciji 6.4.1 grafovi $(G_i + K_2) \times K_2$ i $(G_i \times K_2) + K_2$ su izomorfni. Pošto za svako $i, 9 \le i \le 13$ važi $G_i \times K_2 = G_j$ za neko $j, 1 \le j \le 8$, zaključujemo da se grafovi $(G_i + K_2) \times K_2$ i $(G_i \times K_2) + K_2$ za $i = 9, 10, \ldots, 13$ sadrže u koloni označenoj sa $G_i + K_2$ u tabeli 7.1.

Grafovi D_1, \ldots, D_{16} i E_1, \ldots, E_8 su 4-regularni, integralni grafovi dati u glavi 5. Grafovi D_1, \ldots, D_{16} pojavljuju se u spisku pod oznakama $I_{8,1}, I_{10,1}$,

 $I_{12,4}, I_{12,2}, I_{16,1}, I_{16,2}, I_{24,1}, I_{24,2}, I_{32,1}, I_{18,1}, I_{18,2}, I_{18,3}, I_{20,1}, I_{20,2}, I_{20,3}, I_{30,1},$ dok su grafovi E_1, \ldots, E_8 označeni sa $I_{5,1}, I_{6,1}, I_{8,2}, I_{12,6}, I_{12,7}, I_{9,4}, I_{9,2}, I_{15,2}.$

Svi grafovi u spisku sa najviše 12 čvorova pronadjeni su i u [1] pomoću računarske pretrage, i prikazani u figuri 21 u tom radu. Napomenimo da su u grafu broj 17 u toj figuri, koji je izomorfan sa E_5 , dve grane pogrešno nacrtane i da se ispravan crtež može naći u glavi 5.

U radu[2]dat je spisak svih 150 povezanih, integralnih grafova sa najviše 10 čvorova.

Poznati 4-regularni, integralni grafovi

$$\begin{split} I_{9,4}\!=\!E_6 = L(G_{12}): \\ [4,2,1^2,-1^2,-2^3], \, \text{graf } 9404 \ \text{u} \ [25]. \end{split}$$
 $I_{5,1} = E_1 = K_5 : [4, -1^4].$ $I_{6,1} = E_2 = L(K_4) = L(G_9) =$ $I_{10,1} = I_{5,1} \times K_2 = D_2 = \overline{5K_2} : [4, 1^4, -1^4, -4].$ NEPS $(C_3, K_2; \{(1, 1), (1, 0)\})$: $[4, 0^3, -2^2].$ $I_{12,1} = \text{NEPS}(C_3, K_2, K_2; \{(1, 1, 1),$ $I_{7,1} = \overline{C_4 \cup C_3} : [4, 1, 0^2, -1^2, -3],$ (0, 0, 1), (0, 1, 0)}: [4, 1⁶, 0, -2², -3²]. graf 7402 u [25]. $I_{12,2} = D_4 = G_1 + K_2 = G_{12} \oplus K_2 =$ $I_{8,1} = D_1 = G_9 \oplus K_2 = K_{4,4}$: NEPS $(C_3, K_2, K_2; \{(1, 1, 1), (0, 1, 1)$ $[4, 0^6, -4]$, graf 8406 u [25]. (0,0,1): $[4,2,1^4,-1^4,-2,-4].$ $I_{8,2} = E_3 = G_9 + K_2 = L(K_{2,4}):$ $I_{12,3}: [4, 2, 1^4, 0, -1^2, -2, -3^2],$ $[4, 2, 0^3, -2^3]$, graf 8401 u [25]. graf broj 12 u figuri 21 iz [1]. $I_{9,1}: [4, 1^3, 0^2, -2^2, -3],$
$$\begin{split} I_{12,4} &= I_{6,1} \times K_2 = D_3 = L(G_9) \times \\ K_2 &= C_3 \times C_4 : [4,2^2,0^6,-2^2,-4]. \end{split}$$
graf 9414 u [25].
$$\begin{split} I_{12,5} \!=\! G_{12} + K_2 &= C_3 + C_4: \\ [4,2^2,1^2,0,-1^4,-3^2]. \end{split}$$
$$\begin{split} I_{9,2} &= E_7 = L(G_1) = C_3 + C_3 = \\ C_3 \times C_3 : [4, 1^4, -2^4], \, \mathrm{graf} \, 9410 \ \mathrm{u} \, [25]. \end{split}$$
 $I_{9,3}: [4, 2, 1, 0^2, -1^2, -2, -3],$ $I_{12.6} = E_4 : [4, 2^3, 0^3, -2^5],$ graf broj 9 u tabeli 9.1 iz [6]. graf 9407 u [25].

$I_{12,7} = E_5 = L(G_2) : [4, 2^3, 0^3, -2^5].$	$I_{20,1} = D_{13} = G_{10} \oplus K_2 :$ [4, 2 ⁵ , 1 ⁴ , -1 ⁴ , -2 ⁵ , -4].
$I_{12,8}: [4,3,1^3,0,-1^3,-2^2,-3],$ graf broj 18 u figuri 21 iz [1].	$I_{20,2} = D_{14} : [4, 2^5, 1^4, -1^4, -2^5, -4].$
$I_{14,1} = I_{7,1} \times K_2$: [4, 3, 1 ³ , 0 ⁴ , -1 ³ , -3, -4]	$I_{20,3} = D_{15} : [4, 2^5, 1^4, -1^4, -2^5, -4].$
	$I_{20,4} = G_{10} + K_2 : [4, 2^6, 0^5, -1^4, -3^4].$
$I_{15,1} : [4, 2^*, 1, 0^2, -1^2, -2^*, -3],$ graf X iz glave 5.	$\begin{split} I_{20,5} \! = \! G_6 + K_2 : \\ [4,3,2^3,1^3,0^4,-\!1^3,-\!2^3,-\!3,-\!4]. \end{split}$
$I_{15,2} = E_8 = L(G_{10}) : [4, 2^5, -1^4, -2^5].$	$I_{20.6} = G_{11} \oplus K_2$:
$I_{15,3} \!=\! L(G_6) \!: [4,3,2^2,1^2,0^2,-1,-2^6].$	$[4,3,2^3,1^3,0^4,-1^3,-2^3,-3,-4].$
$I_{15,4} = L(G_{11}) : [4, 3, 2^3, 0^2, -1^3, -2^5].$	$I_{20,7} = G_{11} + K_2 : $ [4, 3, 2 ⁴ , 1, 0 ⁵ , -1 ³ , -2 ² , -3 ³].
$I_{16,1} = I_{8,2} \times K_2 = D_5 = G_2 + K_2 = C_4 + C_4 : [4, 2^4, 0^6, -2^4, -4].$	$I_{20,8} = L_2(K_5) : [4, 3^4, 0^5, -1^4, -2^6].$ ¹
$I_{16,2} = D_6 : [4, 2^4, 0^6, -2^4, -4].$	$I_{24,1} = D_7 : [4, 2^8, 0^6, -2^8, -4].$
$I_{18,1} = I_{9,2} \times K_2 = D_{10} = L(G_1) \times K_2$ = $L(G_{12}) \times K_2 = (C_3 + C_3) \times K_2$:	$I_{24,2} = D_8 = L(G_2) \times K_2 :$ [4, 2 ⁸ , 0 ⁶ , -2 ⁸ , -4].
$[4, 2^4, 1^4, -1^4, -2^4, -4].$	$I_{24,3} = G_7 + K_2 = C_4 + C_6$:
$I_{18,2} = D_{11} : [4, 2^4, 1^4, -1^4, -2^4, -4].$	$[4, 3^{2}, 2^{2}, 1^{5}, 0^{2}, -1^{5}, -2^{2}, -3^{2}, -4].$
$I_{18,3} = D_{12} : [4, 2^4, 1^4, -1^4, -2^4, -4].$	$I_{24,4} = G_{13} \oplus K_2 :$ [4,3 ³ ,1 ⁵ ,0 ⁶ ,-1 ⁵ ,-3 ³ ,-4].
$I_{18,4} = C_3 + C_6 : [4, 3^2, 1^4, 0^5, -2^4, -3^2].$	$I_{24,5} = G_{13} + K_2:$ [4, 2 ³ , 2, 1 ⁵ , 0 ³ , 1 ⁵ , 2 ³ , 2 ³]
$I_{18,5} \!=\! L(G_7) \!: [4,3^2,2,1^4,0,-1^2,-2^7].$	[4, 5, 2, 1, 0, -1, -2, -5].
$\underline{I_{18,6} = L(G_{13}) : [4, 3^3, 1^2, 0^3, -1^3, -2^6]}.$	$I_{30,1} = D_{16} = L(G_{10}) \times K_2 :$ [4, 2 ¹⁰ , 1 ⁴ , -1 ⁴ , -2 ¹⁰ , -4].

 $^{^1{\}rm U}$ [14] dokazano je da je $L_2(G)$ (g
de je G povezan graf sa bar dva čvora) integralan ako
i samo ako je G kompletan graf.

$I_{30,2} = L(G_6) \times K_2 = I_{15,1} \times K_2 :$ [4,3,2 ⁸ ,1 ³ ,0 ⁴ ,-1 ³ ,-2 ⁸ ,-3,-4].	$I_{40,2} = G_5 + K_2 = (G_{10} + K_2) \times K_2 = (G_{11} + K_2) \times K_2 = L_2(K_5) \times K_2 : [4, 3^4, 2^6, 1^4, 0^{10}, -1^4, -2^6, -3^4, -4].$
$I_{30,3} = L(G_{11}) \times K_2 :$ [4,3,2 ⁸ ,1 ³ ,0 ⁴ ,-1 ³ ,-2 ⁸ ,-3,-4].	$I_{45,1} = L(G_3) : [4, 3^9, 1^{10}, -1^9, -2^{16}].$
$I_{30,4} = L(G_4) : [4, 3^4, 2^5, 0^5, -1^4, -2^{11}].$	$I_{48,1} = G_8 + K_2$:
$I_{30,5} = L(G_5) : [4, 3^4, 2^5, 0^5, -1^4, -2^{11}].$	$[4, 3^{\circ}, 2^{4}, 1^{10}, 0^{\circ}, -1^{10}, -2^{4}, -3^{\circ}, -4].$
$I_{32,1} = D_9 : [4, 2^{12}, 0^6, -2^{12}, -4].$	$ \begin{split} I_{60,1} \!=\! L(G_4) \times K_2 : \\ [4,3^4,2^{16},1^4,0^{10},-1^4,-2^{16},-3^4,-4]. \end{split} $
$I_{35,1}:[4, 2^{14}, -1^{14}, -3^6],$ čudan graf O_4 (videti [38]).	$I_{60.2} = L(G_5) \times K_2$:
$I_{36,1} = L(G_7) \times K_2$: $[4, 3^2, 2^8, 1^6, 0^2, -1^6, -2^8, -3^2, -4].$	$[4, 3^4, 2^{16}, 1^4, 0^{10}, -1^4, -2^{16}, -3^4, -4].$
$I_{36,2} = L(G_{13}) \times K_2 :$ [4,3 ³ ,2 ⁶ ,1 ⁵ ,0 ⁶ ,-1 ⁵ ,-2 ⁶ ,-3 ³ ,-4].	$I_{60,3} = G_3 + K_2 :$ [4, 3 ⁹ , 2, 1 ¹⁹ , -1 ¹⁹ , -2, -3 ⁹ , -4].
$I_{36,3} = C_6 + C_6 = (C_3 + C_6) \times K_2 : [4, 3^4, 2^4, 1^4, 0^{10}, -1^4, -2^4, -3^4, -4].$	$I_{70,1} = I_{35,1} \times K_2 :$ [4, 3 ⁶ , 2 ¹⁴ , 1 ¹⁴ , -1 ¹⁴ , -2 ¹⁴ , -3 ⁶ , -4].
$\begin{split} &I_{36,4} \!=\! L(G_8): \\ &[4,3^6,2^3,1^4,0^3,-1^6,-2^{13}]. \end{split}$	$I_{72,1} = L(G_8) \times K_2 :$ [4,3 ⁶ ,2 ¹⁶ ,1 ¹⁰ ,0 ⁶ ,-1 ¹⁰ ,-2 ¹⁶ ,-3 ⁶ ,-4].
$I_{40,1} = G_4 + K_2 :$ [4,3 ⁴ ,2 ⁶ ,1 ⁴ ,0 ¹⁰ ,-1 ⁴ ,-2 ⁶ ,-3 ⁴ ,-4].	$I_{90,1} = L(G_3) \times K_2 :$ [4, 3 ⁹ , 2 ¹⁶ , 1 ¹⁹ , -1 ¹⁹ , -2 ¹⁶ , -3 ⁹ , -4].

 $^{^2}$ Interesant
no je napomenuti da medju grafovima $G_{10}+K_2,\ G_{11}+K_2$ i
 $L_2(K_5)$ nema kospektralnih.

Dodatak A

Spisak mogućih spektara bipartitnih, 4-regularnih integralnih grafova sa

x, y, z, w > 0

U ovom dodatku dato je svih 1803 mogućih spektara iz sekcije 3.6. Svaki red sadrži po jedan spektar, prikazan u obliku: $n \ x \ y \ z \ w \ q \ h$. Pritom, znak - stoji ispred svih spektara za koje je u glavi 4 dokazano nepostojanje grafova sa tim spektrom.

Poznato je svega 14 grafova čiji se spektri nalaze u ovom skupu: $I_{20,5}$, $I_{20,6}$, $I_{24,3}$, $I_{30,2}$, $I_{30,3}$, $I_{36,1}$, $I_{36,2}$, $I_{36,3}$, $I_{40,1}$, $I_{40,2}$, $I_{48,1}$, $I_{60,1}$, $I_{60,2}$ i $I_{72,1}$.

8 1 1 3 2 33 110 9 1 2 3 2 30 118	$14\ 2\ 5\ 2\ 4\ 27\ 114\\14\ 3\ 2\ 5\ 3\ 36\ 96$	$\begin{array}{c} 16\ 2\ 6\ 6\ 1\ 18\ 156\\ 16\ 2\ 7\ 2\ 4\ 21\ 130 \end{array}$	$\begin{array}{c} 18\ 3\ 7\ 1\ 6\ 27\ 102\\ 18\ 4\ 3\ 8\ 2\ 33\ 110 \end{array}$
10 1 3 3 2 27 126 10 2 1 2 4 39 82 12 1 5 2 2 1 142	14 3 3 1 6 39 70 15 1 8 3 2 12 166 15 2 5 6 1 21 148	16 3 4 5 3 30 112 16 3 5 1 6 33 86 16 4 1 8 2 20 04	$18\ 4\ 4\ 4\ 5\ 36\ 84\\18\ 5\ 1\ 7\ 4\ 45\ 66\\18\ 5\ 2\ 7\ 48\ 40$
$12 1 3 3 2 21 142 \\12 2 2 6 1 30 124 \\12 2 3 2 4 33 98$	15 2 5 6 1 21 148 $15 2 6 2 4 24 122$ $15 3 3 5 3 33 104$	$16 4 1 8 2 39 94 \\16 4 2 4 5 42 68 \\18 1 11 3 2 3 190$	18 5 2 5 7 48 40 20 2 10 6 1 6 188 20 2 11 2 4 9 162
$\begin{array}{c} 12\ 3\ 1\ 1\ 6\ 45\ 54\\ 14\ 1\ 7\ 3\ 2\ 15\ 158\\ 14\ 2\ 4\ 6\ 1\ 24\ 140 \end{array}$	$\begin{array}{c} 15\ 3\ 4\ 1\ 6\ 36\ 78\\ 15\ 4\ 1\ 4\ 5\ 45\ 60\\ 16\ 1\ 9\ 3\ 2\ 9\ 174 \end{array}$	$\begin{array}{c} 18\ 2\ 8\ 6\ 1\ 12\ 172\\ 18\ 2\ 9\ 2\ 4\ 15\ 146\\ 18\ 3\ 6\ 5\ 3\ 24\ 128\end{array}$	$\begin{array}{c} 20\ 3\ 8\ 5\ 3\ 18\ 144\\ 20\ 3\ 9\ 1\ 6\ 21\ 118\\ 20\ 4\ 5\ 8\ 2\ 27\ 126 \end{array}$

85

$20\ 4\ 6\ 4\ 5\ 30\ 100$	28854105114	367155815122	42818876152
20 5 2 11 1 36 108	28911165722	367161111896	428194109126
20 5 3 7 4 39 82	30 4 16 4 5 0 180	36 8 10 16 1 18 156	42 9 14 15 3 12 160
20 5 4 3 7 42 56	30 5 12 11 1 6 188	36 8 11 12 4 21 130	42 9 15 11 6 15 134
20 6 1 6 6 51 38	30 5 13 7 4 9 162	36 8 12 8 7 24 104	42 0 16 7 0 18 108
2001003138	30515745102 205142719126	300120724104	42 9 10 7 9 10 100
20 0 2 2 9 34 12	30 3 14 3 7 12 130	30 8 13 4 10 27 78	42 9 17 5 12 21 62
21 2 11 0 1 3 190	30 6 10 10 3 18 144	30 9 8 15 3 30 112	42 10 11 18 2 21 142
21 2 12 2 4 6 170	306116621118	36 9 9 11 6 33 86	42 10 12 14 5 24 116
$21\ 3\ 9\ 5\ 3\ 15\ 152$	$30\ 6\ 12\ 2\ 9\ 24\ 92$	$36\ 9\ 10\ 7\ 9\ 36\ 60$	42 10 13 10 8 27 90
$21\ 3\ 10\ 1\ 6\ 18\ 126$	$30\ 7\ 7\ 13\ 2\ 27\ 126$	$36\ 9\ 11\ 3\ 12\ 39\ 34$	$42\ 10\ 14\ 6\ 11\ 30\ 64$
$21\ 4\ 6\ 8\ 2\ 24\ 134$	$30\ 7\ 8\ 9\ 5\ 30\ 100$	$36\ 10\ 5\ 18\ 2\ 39\ 94$	$42\ 10\ 15\ 2\ 14\ 33\ 38$
$21\ 4\ 7\ 4\ 5\ 27\ 108$	$30\ 7\ 9\ 5\ 8\ 33\ 74$	$36\ 10\ 6\ 14\ 5\ 42\ 68$	$42\ 11\ 8\ 21\ 1\ 30\ 124$
$21\ 5\ 3\ 11\ 1\ 33\ 116$	$30\ 7\ 10\ 1\ 11\ 36\ 48$	$36\ 10\ 7\ 10\ 8\ 45\ 42$	$42\ 11\ 9\ 17\ 4\ 33\ 98$
$21\ 5\ 4\ 7\ 4\ 36\ 90$	$30\ 8\ 4\ 16\ 1\ 36\ 108$	$36\ 10\ 8\ 6\ 11\ 48\ 16$	$42\ 11\ 10\ 13\ 7\ 36\ 72$
$21\ 5\ 5\ 3\ 7\ 39\ 64$	$30\ 8\ 5\ 12\ 4\ 39\ 82$	$36\ 11\ 2\ 21\ 1\ 48\ 76$	$42\ 11\ 11\ 9\ 10\ 39\ 46$
$21\ 6\ 1\ 10\ 3\ 45\ 72$	3086874256	$36\ 11\ 3\ 17\ 4\ 51\ 50$	$42\ 11\ 12\ 5\ 13\ 42\ 20$
$21\ 6\ 2\ 6\ 6\ 48\ 46$	$30\ 8\ 7\ 4\ 10\ 45\ 30$	361141375424	$42\ 12\ 6\ 20\ 3\ 42\ 80$
$21\ 6\ 3\ 2\ 9\ 51\ 20$	30921534864	$36\ 12\ 1\ 16\ 6\ 63\ 6$	$42\ 12\ 7\ 16\ 6\ 45\ 54$
$24\ 3\ 12\ 5\ 3\ 6\ 176$	30931165138	40718950180	42 12 8 12 9 48 28
24313169150	30 9 4 7 9 54 12	40719583154	42 12 9 8 12 51 2
24 4 9 8 2 15 158	35 6 15 10 3 3 184	407201116128	42 13 3 23 2 51 62
24 4 10 4 5 18 132	35616666158	- 40 8 14 16 1 6 188	42 13 4 19 5 54 36
24 5 6 11 1 24 140	35617299132	40 8 15 12 4 9 162	42 13 5 15 8 57 10
2450011124140 24577427114	35 7 12 13 2 12 166	40 8 16 8 7 12 136	42 14 1 22 4 63 18
245772088	35 7 13 0 5 15 140	40 8 17 4 10 15 110	45 8 22 4 10 0 150
24 5 6 5 7 50 66	357145818114	40 0 17 4 10 15 110	45 0 17 15 3 3 184
24 0 4 10 3 30 50	25 7 15 1 11 21 22	40 9 12 10 9 10 144	45 0 10 11 6 6 150
2405005970	357151112100 259016191149	40 9 13 11 0 21 110	45 9 10 11 0 0 130
24 0 0 2 9 42 44	35 8 9 10 1 21 148	40 9 14 7 9 24 92	45 9 19 7 9 9 152
24 / 1 13 2 45 /8	35 8 10 12 4 24 122	40 9 15 3 12 27 66	45 9 20 3 12 12 106
2472954852	35811872796	40 10 9 18 2 27 126	45 10 14 18 2 12 166
2473585126	35 8 12 4 10 30 70	40 10 10 14 5 30 100	45 10 15 14 5 15 140
2474111540	359715333104	40 10 11 10 8 33 74	45 10 16 10 8 18 114
$28\ 4\ 13\ 8\ 2\ 3\ 190$	35981163678	40 10 12 6 11 36 48	45 10 17 6 11 21 88
$28\ 4\ 14\ 4\ 5\ 6\ 164$	$35\ 9\ 9\ 7\ 9\ 39\ 52$	40 10 13 2 14 39 22	$45\ 10\ 18\ 2\ 14\ 24\ 62$
$28\ 5\ 10\ 11\ 1\ 12\ 172$	359103124226	- 40 11 6 21 1 36 108	$45\ 11\ 11\ 21\ 1\ 21\ 148$
$28\ 5\ 11\ 7\ 4\ 15\ 146$	$35\ 10\ 4\ 18\ 2\ 42\ 86$	401171743982	$45\ 11\ 12\ 17\ 4\ 24\ 122$
$28\ 5\ 12\ 3\ 7\ 18\ 120$	$35\ 10\ 5\ 14\ 5\ 45\ 60$	$40\ 11\ 8\ 13\ 7\ 42\ 56$	$45\ 11\ 13\ 13\ 7\ 27\ 96$
$28\ 6\ 8\ 10\ 3\ 24\ 128$	$35\ 10\ 6\ 10\ 8\ 48\ 34$	$40\ 11\ 9\ 9\ 10\ 45\ 30$	$45\ 11\ 14\ 9\ 10\ 30\ 70$
$28\ 6\ 9\ 6\ 6\ 27\ 102$	$35\ 10\ 7\ 6\ 11\ 51\ 8$	$40\ 11\ 10\ 5\ 13\ 48\ 4$	$45\ 11\ 15\ 5\ 13\ 33\ 44$
$28\ 6\ 10\ 2\ 9\ 30\ 76$	351112115168	$40\ 12\ 4\ 20\ 3\ 48\ 64$	$45\ 11\ 16\ 1\ 16\ 36\ 18$
$28\ 7\ 5\ 13\ 2\ 33\ 110$	351121745442	401251665138	$45\ 12\ 9\ 20\ 3\ 33\ 104$
$28\ 7\ 6\ 9\ 5\ 36\ 84$	351131375716	401261295412	$45\ 12\ 10\ 16\ 6\ 36\ 78$
2877583958	$36\ 6\ 16\ 10\ 3\ 0\ 192$	$40\ 13\ 1\ 23\ 2\ 57\ 46$	$45\ 12\ 11\ 12\ 9\ 39\ 52$
28781114232	36617663166	40 13 2 19 5 60 20	45 12 12 8 12 42 26
28821614292	36 6 18 2 9 6 140	427221110144	45 12 13 4 15 45 0
28 8 3 12 4 45 66	367131329174	42 8 16 16 1 0 204	45 13 6 23 2 42 86
28 8 4 8 7 48 40	367149512148	428171243178	45 13 7 19 5 45 60
20010100	551115012140	12 0 11 12 10 110	10 10 1 10 0 10 00

45 13 8 15 8 48 34	56 13 20 11 11 18 96	60 16 16 16 11 36 48	$63\ 19\ 10\ 25\ 8\ 54\ 18$
45 12 0 11 11 51 8	56 13 21 7 14 21 70	60 16 17 12 14 30 22	63 20 5 36 1 57 52
45 14 2 00 1 51 00	50 15 21 7 14 21 70	00101712143922	052055015752
45 14 3 26 1 51 68	30 13 22 3 17 24 44	- 00 17 10 31 1 30 108	63 20 6 32 4 60 26
$45\ 14\ 4\ 22\ 4\ 54\ 42$	56 14 14 26 1 18 156	60 17 11 27 4 39 82	63 20 7 28 7 63 0
451451875716	$56\ 14\ 15\ 22\ 4\ 21\ 130$	$60\ 17\ 12\ 23\ 7\ 42\ 56$	$63\ 21\ 3\ 35\ 3\ 69\ 8$
451512536324	$56\ 14\ 16\ 18\ 7\ 24\ 104$	$60\ 17\ 13\ 19\ 10\ 45\ 30$	$70\ 15\ 30\ 9\ 15\ 0\ 120$
48922790156	$56\ 14\ 17\ 14\ 10\ 27\ 78$	6017141513484	$70\ 15\ 31\ 5\ 18\ 3\ 94$
48 9 23 3 12 3 130	$56\ 14\ 18\ 10\ 13\ 30\ 52$	60 18 8 30 3 48 64	70 15 32 1 21 6 68
48 10 17 18 2 3 100	56 14 19 6 16 33 26	60 18 9 26 6 51 38	70 16 24 24 5 0 180
40 10 17 10 2 5 150	56 14 20 2 10 26 0	60 18 10 22 0 54 12	70 16 25 20 8 2 154
40 10 10 10 10 0 104	50 14 20 2 19 50 0	00 18 10 22 9 34 12	70 10 20 20 8 3 104
48 10 19 10 8 9 138	50 15 12 25 3 30 112	60 19 5 33 2 57 46	70 10 20 10 11 0 128
48 10 20 6 11 12 112	56 15 13 21 6 33 86	60 19 6 29 5 60 20	70 16 27 12 14 9 102
$48\ 10\ 21\ 2\ 14\ 15\ 86$	$56\ 15\ 14\ 17\ 9\ 36\ 60$	- 60 20 2 36 1 66 28	7016288171276
48111421112172	$56\ 15\ 15\ 13\ 12\ 39\ 34$	$60\ 20\ 3\ 32\ 4\ 69\ 2$	$70\ 16\ 29\ 4\ 20\ 15\ 50$
48111517415146	$56\ 15\ 16\ 9\ 15\ 42\ 8$	6313287140126	$70\ 17\ 20\ 31\ 1\ 6\ 188$
48111613718120	$56\ 16\ 9\ 28\ 2\ 39\ 94$	6313293173100	$70\ 17\ 21\ 27\ 4\ 9\ 162$
48 11 17 9 10 21 94	$56\ 16\ 10\ 24\ 5\ 42\ 68$	6314222240186	$70\ 17\ 22\ 23\ 7\ 12\ 136$
48 11 18 5 13 24 68	56 16 11 20 8 45 42	63 14 23 18 7 3 160	70 17 23 19 10 15 110
48 11 10 1 16 27 42	56 16 12 16 11 48 16	63 14 24 14 10 6 134	70 17 24 15 13 18 84
40 11 10 11 10 21 42	56 17 6 21 1 49 76	62 14 25 10 12 0 109	70 17 24 10 10 10 04
40 12 12 20 3 24 120	50 17 0 51 1 40 70	03 14 23 10 13 9 108	70 17 25 11 10 21 56
48 12 13 10 0 27 102	50 17 7 27 4 51 50	63 14 20 6 16 12 82	70 17 26 7 19 24 32
48 12 14 12 9 30 76	56 17 8 23 7 54 24	63 14 27 2 19 15 56	70 17 27 3 22 27 6
4812158123350	$56\ 18\ 4\ 30\ 3\ 60\ 32$	6315192539168	$70\ 18\ 18\ 30\ 3\ 18\ 144$
4812164153624	$56\ 18\ 5\ 26\ 6\ 63\ 6$	$63\ 15\ 20\ 21\ 6\ 12\ 142$	$70\ 18\ 19\ 26\ 6\ 21\ 118$
4813923233110	$56\ 19\ 1\ 33\ 2\ 69\ 14$	63152117915116	$70\ 18\ 20\ 22\ 9\ 24\ 92$
4813101953684	$60\ 12\ 28\ 4\ 15\ 0\ 120$	63152213121890	$70\ 18\ 21\ 18\ 12\ 27\ 66$
48 13 11 15 8 39 58	6013221950180	6315239152164	$70\ 18\ 22\ 14\ 15\ 30\ 40$
48 13 12 11 11 42 32	60 13 23 15 8 3 154	63 15 24 5 18 24 38	70 18 23 10 18 33 14
48 13 13 7 14 45 6	60 13 24 11 11 6 128	63 15 25 1 21 27 12	70 19 15 33 2 27 126
48 14 6 26 1 42 02	60 12 25 7 14 0 102	62 16 16 28 2 18 150	70 10 16 20 5 20 100
48 14 7 22 1 42 92	00 13 23 7 14 9 102	03 10 10 28 2 18 150	70 19 10 29 5 50 100
48 14 7 22 4 45 66	00 13 20 3 17 12 70	63 16 17 24 5 21 124	70 19 17 25 8 33 74
48 14 8 18 7 48 40	- 60 14 18 26 1 6 188	63 16 18 20 8 24 98	70 19 18 21 11 36 48
4814914105114	$60\ 14\ 19\ 22\ 4\ 9\ 162$	63161916112772	$70\ 19\ 19\ 17\ 14\ 39\ 22$
481542535448	$60\ 14\ 20\ 18\ 7\ 12\ 136$	$63\ 16\ 20\ 12\ 14\ 30\ 46$	$70\ 20\ 12\ 36\ 1\ 36\ 108$
481552165722	$60\ 14\ 21\ 14\ 10\ 15\ 110$	6316218173320	$70\ 20\ 13\ 32\ 4\ 39\ 82$
481612826330	60142210131884	$63\ 17\ 13\ 31\ 1\ 27\ 132$	$70\ 20\ 14\ 28\ 7\ 42\ 56$
48162245664	$60\ 14\ 23\ 6\ 16\ 21\ 58$	63171427430106	$70\ 20\ 15\ 24\ 10\ 45\ 30$
5611265130132	60 14 24 2 19 24 32	63 17 15 23 7 33 80	70 20 16 20 13 48 4
56 11 27 1 16 3 106	60 15 16 25 3 18 144	63 17 16 19 10 36 54	70 21 10 35 3 48 64
56 12 20 20 3 0 102	60 15 17 21 6 21 118	63 17 17 15 13 30 28	70 21 11 31 6 51 38
50 12 20 20 5 0 152	CO 15 17 21 0 21 110	63 17 17 13 13 33 20	70 21 11 31 0 31 38
00 12 21 10 0 3 100 FC 10 00 10 0 C 140	00 10 10 17 9 24 92	00 17 10 11 10 42 2	10 21 12 21 9 34 12
50 12 22 12 9 6 140	00 15 19 13 12 27 66	03 18 11 30 3 39 88	10 22 7 38 2 57 46
5612238129114	60 15 20 9 15 30 40	$63\ 18\ 12\ 26\ 6\ 42\ 62$	702283456020
$56\ 12\ 24\ 4\ 15\ 12\ 88$	$60\ 15\ 21\ 5\ 18\ 33\ 14$	$63\ 18\ 13\ 22\ 9\ 45\ 36$	$70\ 23\ 4\ 41\ 1\ 66\ 28$
5613172329174	$60\ 16\ 13\ 28\ 2\ 27\ 126$	$63\ 18\ 14\ 18\ 12\ 48\ 10$	$70\ 23\ 5\ 37\ 4\ 69\ 2$
56131819512148	$60\ 16\ 14\ 24\ 5\ 30\ 100$	631983324870	- 721534121084
56131915815122	$60\ 16\ 15\ 20\ 8\ 33\ 74$	631992955144	$72\ 16\ 28\ 16\ 11\ 0\ 144$

$72\ 16\ 29\ 12\ 14\ 3\ 118$	$80\ 19\ 30\ 13\ 17\ 12\ 76$	$84\ 21\ 26\ 27\ 9\ 12\ 124$	$90\ 23\ 28\ 25\ 13\ 18\ 84$
$72\ 16\ 30\ 8\ 17\ 6\ 92$	$80\ 19\ 31\ 9\ 20\ 15\ 50$	84212723121598	90232921162158
72 16 31 4 20 9 66	80 19 32 5 23 18 24	84 21 28 19 15 18 72	90 23 30 17 19 24 32
72 17 22 31 1 0 204	80 20 22 36 1 6 188	84 21 20 15 18 21 46	00 23 31 13 22 27 6
- 12 11 22 31 10 204	- 80 20 22 50 1 0 188	04 21 29 10 10 21 40	90 23 31 13 22 27 0
72 17 23 27 4 3 178	80 20 23 32 4 9 162	84 21 30 11 21 24 20	90 24 22 40 3 18 144
$72\ 17\ 24\ 23\ 7\ 6\ 152$	$80\ 20\ 24\ 28\ 7\ 12\ 136$	- 84 22 21 38 2 15 158	$90\ 24\ 23\ 36\ 6\ 21\ 118$
$72\ 17\ 25\ 19\ 10\ 9\ 126$	$80\ 20\ 25\ 24\ 10\ 15\ 110$	$84\ 22\ 22\ 34\ 5\ 18\ 132$	$90\ 24\ 24\ 32\ 9\ 24\ 92$
$72\ 17\ 26\ 15\ 13\ 12\ 100$	80 20 26 20 13 18 84	84 22 23 30 8 21 106	$90\ 24\ 25\ 28\ 12\ 27\ 66$
72 17 27 11 16 15 74	80 20 27 16 16 21 58	84 22 24 26 11 24 80	90 24 26 24 15 30 40
72 17 28 7 19 18 48	80 20 28 12 19 24 32	84 22 25 22 14 27 54	90 24 27 20 18 33 14
72 17 20 7 10 10 10	80 20 20 12 10 24 02	84 22 26 22 14 21 04 84 22 26 18 17 20 28	00 25 10 42 2 27 126
72 17 29 3 22 21 22	80 20 29 8 22 27 0	84 22 20 18 17 30 28	90 25 19 45 2 27 120
72 18 20 30 3 12 160	- 80 21 20 35 3 18 144	84 22 27 14 20 33 2	90 25 20 39 5 30 100
$72\ 18\ 21\ 26\ 6\ 15\ 134$	80 21 21 31 6 21 118	- 84 23 18 41 1 24 140	$90\ 25\ 21\ 35\ 8\ 33\ 74$
$72\ 18\ 22\ 22\ 9\ 18\ 108$	$80\ 21\ 22\ 27\ 9\ 24\ 92$	84231937427114	$90\ 25\ 22\ 31\ 11\ 36\ 48$
$72\ 18\ 23\ 18\ 12\ 21\ 82$	$80\ 21\ 23\ 23\ 12\ 27\ 66$	84 23 20 33 7 30 88	$90\ 25\ 23\ 27\ 14\ 39\ 22$
$72\ 18\ 24\ 14\ 15\ 24\ 56$	$80\ 21\ 24\ 19\ 15\ 30\ 40$	$84\ 23\ 21\ 29\ 10\ 33\ 62$	$90\ 26\ 16\ 46\ 1\ 36\ 108$
72 18 25 10 18 27 30	80 21 25 15 18 33 14	84 23 22 25 13 36 36	90 26 17 42 4 39 82
72 18 26 6 21 20 4	20 20 17 28 2 27 126	84 92 92 91 16 90 10	00 26 18 28 7 42 56
72 10 20 0 21 30 4	- 00 22 17 30 2 27 120	84 23 23 21 10 39 10	90 20 10 30 7 42 50
- 72 19 17 33 2 21 142	80 22 18 34 5 30 100	84 24 10 40 3 30 90	90 20 19 34 10 45 30
72 19 18 29 5 24 116	80 22 19 30 8 33 74	84 24 17 36 6 39 70	90 26 20 30 13 48 4
$72\ 19\ 19\ 25\ 8\ 27\ 90$	$80\ 22\ 20\ 26\ 11\ 36\ 48$	$84\ 24\ 18\ 32\ 9\ 42\ 44$	$90\ 27\ 14\ 45\ 3\ 48\ 64$
$72\ 19\ 20\ 21\ 11\ 30\ 64$	$80\ 22\ 21\ 22\ 14\ 39\ 22$	$84\ 24\ 19\ 28\ 12\ 45\ 18$	$90\ 27\ 15\ 41\ 6\ 51\ 38$
$72\ 19\ 21\ 17\ 14\ 33\ 38$	- 80 23 14 41 1 36 108	-8425134324578	$90\ 27\ 16\ 37\ 9\ 54\ 12$
$72\ 19\ 22\ 13\ 17\ 36\ 12$	8023153743982	$84\ 25\ 14\ 39\ 5\ 48\ 52$	$90\ 28\ 11\ 48\ 2\ 57\ 46$
- 72 20 14 36 1 30 124	80 23 16 33 7 42 56	84 25 15 35 8 51 26	90 28 12 44 5 60 20
72 20 15 32 / 33 08	80 23 17 29 10 45 30	84 25 16 31 11 54 0	00 20 8 51 1 66 28
72 20 16 22 4 33 36	20 22 17 23 10 45 50 20 22 19 25 12 49 4	84 26 10 46 1 54 60	00 20 0 47 4 60 2
72 20 10 28 7 30 72	00 23 10 23 13 40 4	- 84 20 10 40 1 54 00	105 04 46 4 20 0 20
72 20 17 24 10 39 46	- 80 24 12 40 3 48 64	84 26 11 42 4 57 34	- 105 24 46 4 30 0 30
72 20 18 20 13 42 20	80 24 13 36 6 51 38	84 26 12 38 7 60 8	105 25 40 19 20 0 90
$72\ 21\ 12\ 35\ 3\ 42\ 80$	$80\ 24\ 14\ 32\ 9\ 54\ 12$	$84\ 27\ 8\ 45\ 3\ 66\ 16$	$105\ 25\ 41\ 15\ 23\ 3\ 64$
$72\ 21\ 13\ 31\ 6\ 45\ 54$	-802594325746	$90\ 20\ 40\ 4\ 25\ 0\ 60$	$105\ 25\ 42\ 11\ 26\ 6\ 38$
$72\ 21\ 14\ 27\ 9\ 48\ 28$	$80\ 25\ 10\ 39\ 5\ 60\ 20$	$90\ 21\ 34\ 19\ 15\ 0\ 120$	$-105\ 25\ 43\ 7\ 29\ 9\ 12$
$72\ 21\ 15\ 23\ 12\ 51\ 2$	-802664616628	$90\ 21\ 35\ 15\ 18\ 3\ 94$	$105\ 26\ 34\ 34\ 10\ 0\ 150$
- 72 22 9 38 2 51 62	80 26 7 42 4 69 2	90 21 36 11 21 6 68	$105\ 26\ 35\ 30\ 13\ 3\ 124$
72 22 10 34 5 54 36	84 19 34 13 17 0 108	90 21 37 7 24 9 42	105 26 36 26 16 6 98
72 22 10 04 0 04 00	84 10 25 0 20 2 82	00 21 37 7 24 3 42	105 26 27 22 10 0 72
72 22 11 50 8 57 10	04 19 33 9 20 3 02 04 10 20 5 02 0 5 02	90 21 38 3 27 12 10	105 20 57 22 19 9 12
- 72 23 6 41 1 60 44	84 19 30 5 23 6 56	90 22 28 34 5 0 180	105 26 38 18 22 12 46
72 23 7 37 4 63 18	84 19 37 1 26 9 30	90 22 29 30 8 3 154	105 26 39 14 25 15 20
$72\ 24\ 4\ 40\ 3\ 72\ 0$	$84\ 20\ 28\ 28\ 7\ 0\ 168$	$90\ 22\ 30\ 26\ 11\ 6\ 128$	$105\ 27\ 29\ 45\ 3\ 3\ 184$
$80\ 18\ 32\ 14\ 15\ 0\ 120$	$84\ 20\ 29\ 24\ 10\ 3\ 142$	$90\ 22\ 31\ 22\ 14\ 9\ 102$	$105\ 27\ 30\ 41\ 6\ 6\ 158$
80 18 33 10 18 3 94	$84\ 20\ 30\ 20\ 13\ 6\ 116$	$90\ 22\ 32\ 18\ 17\ 12\ 76$	$105\ 27\ 31\ 37\ 9\ 9\ 132$
$80\ 18\ 34\ 6\ 21\ 6\ 68$	$84\ 20\ 31\ 16\ 16\ 9\ 90$	$90\ 22\ 33\ 14\ 20\ 15\ 50$	$105\ 27\ 32\ 33\ 12\ 12\ 106$
80 18 35 2 24 9 42	84 20 32 12 19 12 64	90 22 34 10 23 18 24	105 27 33 29 15 15 80
80 19 26 29 5 0 180	84 20 33 8 22 15 38	90 23 24 41 1 6 188	105 27 34 25 18 18 54
80 10 27 25 9 2 154	84 20 37 4 25 10 10	00 22 24 41 10 100	105 27 25 21 21 20 10 10 04
00 19 27 20 0 0 104	04 20 04 4 20 10 12	<i>5</i> 0 25 25 57 4 9 102	103 27 33 21 21 21 28
80 19 28 21 11 6 128	84 21 24 35 3 6 176	90 23 26 33 7 12 136	105 27 36 17 24 24 2
80 19 29 17 14 9 102	$84\ 21\ 25\ 31\ 6\ 9\ 150$	$90\ 23\ 27\ 29\ 10\ 15\ 110$	$105\ 28\ 26\ 48\ 2\ 12\ 166$

$105\ 28\ 27\ 44\ 5\ 15\ 140$	$112\ 30\ 30\ 42\ 9\ 18\ 108$	$120\ 32\ 35\ 36\ 16\ 21\ 58$	$126\ 34\ 34\ 46\ 11\ 18\ 96$
105 28 28 40 8 18 114	112 30 31 38 12 21 82	120 32 36 32 19 24 32	126 34 35 42 14 21 70
105 20 20 40 0 10 114	112 00 01 00 12 21 02	120 02 00 02 10 24 02	100 24 20 22 17 21 10
105 28 29 50 11 21 88	112 30 32 34 13 24 30	120 32 37 28 22 27 0	120 34 30 38 17 24 44
$105\ 28\ 30\ 32\ 14\ 24\ 62$	$112\ 30\ 33\ 30\ 18\ 27\ 30$	$120\ 33\ 28\ 55\ 3\ 18\ 144$	$126\ 34\ 37\ 34\ 20\ 27\ 18$
$105\ 28\ 31\ 28\ 17\ 27\ 36$	$112\ 30\ 34\ 26\ 21\ 30\ 4$	$120\ 33\ 29\ 51\ 6\ 21\ 118$	$126\ 35\ 28\ 61\ 1\ 18\ 156$
105 28 32 24 20 30 10	- 112 31 25 53 2 21 142	120 33 30 47 9 24 92	126 35 29 57 4 21 130
105 20 02 21 20 00 10	112 01 20 00 2 21 112	120 22 21 42 12 27 66	126 25 20 52 7 24 104
105 29 25 51 1 21 148	112 31 20 49 3 24 110	120 33 31 43 12 27 00	
$105\ 29\ 24\ 47\ 4\ 24\ 122$	112 31 27 45 8 27 90	$120\ 33\ 32\ 39\ 15\ 30\ 40$	126 35 31 49 10 27 78
$105\ 29\ 25\ 43\ 7\ 27\ 96$	$112\ 31\ 28\ 41\ 11\ 30\ 64$	$120\ 33\ 33\ 35\ 18\ 33\ 14$	$126\ 35\ 32\ 45\ 13\ 30\ 52$
$105\ 29\ 26\ 39\ 10\ 30\ 70$	$112\ 31\ 29\ 37\ 14\ 33\ 38$	$120\ 34\ 25\ 58\ 2\ 27\ 126$	$126\ 35\ 33\ 41\ 16\ 33\ 26$
105 29 27 35 13 33 44	112 31 30 33 17 36 12	120 34 26 54 5 30 100	126 35 34 37 19 36 0
105 20 21 00 10 00 44	112 01 00 00 11 00 12	120 24 27 50 22 74	12000040110000
105 29 28 51 10 50 18	- 112 32 22 30 1 30 124	120 34 27 30 8 33 74	120 30 20 00 3 30 112
$105\ 30\ 21\ 50\ 3\ 33\ 104$	$112\ 32\ 23\ 52\ 4\ 33\ 98$	$120\ 34\ 28\ 46\ 11\ 36\ 48$	$126\ 36\ 27\ 56\ 6\ 33\ 86$
$105\ 30\ 22\ 46\ 6\ 36\ 78$	$112\ 32\ 24\ 48\ 7\ 36\ 72$	$120\ 34\ 29\ 42\ 14\ 39\ 22$	$126\ 36\ 28\ 52\ 9\ 36\ 60$
$105\ 30\ 23\ 42\ 9\ 39\ 52$	112 32 25 44 10 39 46	- 120 35 22 61 1 36 108	$126\ 36\ 29\ 48\ 12\ 39\ 34$
105 30 24 38 12 42 26	112 32 26 40 13 42 20	120 35 23 57 4 39 82	126 36 30 44 15 42 8
105 30 24 30 12 42 20	112 02 20 40 10 42 20	120 35 25 57 4 55 62	120 30 30 44 13 42 8
105 30 25 34 15 45 0	- 112 33 20 55 3 42 80	120 35 24 53 7 42 56	126 37 23 63 2 39 94
$105\ 31\ 18\ 53\ 2\ 42\ 86$	$112\ 33\ 21\ 51\ 6\ 45\ 54$	$120\ 35\ 25\ 49\ 10\ 45\ 30$	$126\ 37\ 24\ 59\ 5\ 42\ 68$
$105\ 31\ 19\ 49\ 5\ 45\ 60$	$112\ 33\ 22\ 47\ 9\ 48\ 28$	$120\ 35\ 26\ 45\ 13\ 48\ 4$	$126\ 37\ 25\ 55\ 8\ 45\ 42$
105 31 20 45 8 48 34	112 33 23 43 12 51 2	120 36 20 60 3 48 64	126 37 26 51 11 48 16
105 31 21 41 11 51 8	112 34 17 58 2 51 62	120 36 21 56 6 51 38	126 38 20 66 1 48 76
	- 112 54 17 58 2 51 62	120 30 21 30 0 31 38	
105 32 15 56 1 51 68	112 34 18 54 5 54 36	120 36 22 52 9 54 12	$126\ 38\ 21\ 62\ 4\ 51\ 50$
$105\ 32\ 16\ 52\ 4\ 54\ 42$	$112\ 34\ 19\ 50\ 8\ 57\ 10$	$120\ 37\ 17\ 63\ 2\ 57\ 46$	$126\ 38\ 22\ 58\ 7\ 54\ 24$
$105\ 32\ 17\ 48\ 7\ 57\ 16$	$-112\ 35\ 14\ 61\ 1\ 60\ 44$	$120\ 37\ 18\ 59\ 5\ 60\ 20$	$126\ 39\ 18\ 65\ 3\ 60\ 32$
105 33 13 55 3 63 24	112 35 15 57 4 63 18	- 120 38 14 66 1 66 28	126 39 19 61 6 63 6
105 24 10 58 2 72 6	112 26 12 60 2 72 0	120 28 15 62 4 60 2	126 40 15 68 2 60 14
105 54 10 58 272 0		120 38 13 02 4 09 2	120 40 13 08 2 09 14
112 26 48 6 31 0 24	$120\ 28\ 52\ 4\ 35\ 0\ 0$	126 30 52 10 33 0 12	$140\ 34\ 56\ 14\ 35\ 0\ 0$
$112\ 27\ 42\ 21\ 21\ 0\ 84$	$120\ 29\ 46\ 19\ 25\ 0\ 60$	$126\ 31\ 46\ 25\ 23\ 0\ 72$	$140\ 35\ 50\ 29\ 25\ 0\ 60$
$112\ 27\ 43\ 17\ 24\ 3\ 58$	$120\ 29\ 47\ 15\ 28\ 3\ 34$	$126\ 31\ 47\ 21\ 26\ 3\ 46$	14035512528334
112 27 44 13 27 6 32	120 29 48 11 31 6 8	126 31 48 17 29 6 20	140 35 52 21 31 6 8
112 27 45 0 30 0 6	120 20 40 34 15 0 120	126 32 40 40 13 0 132	140 36 44 44 15 0 120
112 27 45 9 50 9 0	120 30 40 34 13 0 120	120 32 40 40 13 0 132	
112 28 36 36 11 0 144	120 30 41 30 18 3 94	126 32 41 36 16 3 106	140 36 45 40 18 3 94
$112\ 28\ 37\ 32\ 14\ 3\ 118$	$120\ 30\ 42\ 26\ 21\ 6\ 68$	$126\ 32\ 42\ 32\ 19\ 6\ 80$	$140\ 36\ 46\ 36\ 21\ 6\ 68$
$112\ 28\ 38\ 28\ 17\ 6\ 92$	$120\ 30\ 43\ 22\ 24\ 9\ 42$	$126\ 32\ 43\ 28\ 22\ 9\ 54$	$140\ 36\ 47\ 32\ 24\ 9\ 42$
112 28 39 24 20 9 66	120 30 44 18 27 12 16	126 32 44 24 25 12 28	140 36 48 28 27 12 16
112 28 40 20 23 12 40	120 31 34 49 5 0 180	126 32 45 20 28 15 2	14037385950180
112 20 40 20 20 12 40	120 21 25 45 2 2 154	120 32 40 20 20 10 2	140 27 20 55 2 0 100
112 28 41 10 20 15 14	120 31 35 45 8 3 154	120 33 34 55 3 0 192	140 37 39 55 8 3 154
- 112 29 30 51 1 0 204	$120\ 31\ 36\ 41\ 11\ 6\ 128$	$126\ 33\ 35\ 51\ 6\ 3\ 166$	140374051116128
$112\ 29\ 31\ 47\ 4\ 3\ 178$	120313737149102	$126\ 33\ 36\ 47\ 9\ 6\ 140$	140374147149102
$112\ 29\ 32\ 43\ 7\ 6\ 152$	$120\ 31\ 38\ 33\ 17\ 12\ 76$	$126\ 33\ 37\ 43\ 12\ 9\ 114$	140374243171276
112 29 33 39 10 9 126	120 31 39 29 20 15 50	126 33 38 39 15 12 88	140 37 43 39 20 15 50
110 20 24 25 19 10 120	120 21 40 25 20 10 00	196 22 20 25 10 12 00	140 27 44 25 22 19 24
	120 31 40 23 23 18 24	120 33 39 33 18 13 02	140 37 44 33 23 18 24
$112\ 29\ 35\ 31\ 16\ 15\ 74$	- 120 32 30 56 1 6 188	$126\ 33\ 40\ 31\ 21\ 18\ 36$	- 140 38 34 66 1 6 188
$112\ 29\ 36\ 27\ 19\ 18\ 48$	$120\ 32\ 31\ 52\ 4\ 9\ 162$	$126\ 33\ 41\ 27\ 24\ 21\ 10$	14038356249162
$112\ 29\ 37\ 23\ 22\ 21\ 22$	$120\ 32\ 32\ 48\ 7\ 12\ 136$	$126\ 34\ 31\ 58\ 2\ 9\ 174$	140383658712136
- 112 30 28 50 3 12 160	120 32 33 44 10 15 110	126 34 32 54 5 12 148	140 38 37 54 10 15 110
112 20 20 46 6 15 124	120 22 20 44 10 10 110	196 94 99 50 9 15 199	140 20 20 50 12 10 04
112 30 29 40 0 13 134	120 32 34 40 13 18 84	120 34 33 30 8 13 122	140 30 30 30 13 10 84

140383946162158	- 144 40 33 68 2 15 158	$-\ 168\ 47\ 39\ 77\ 4\ 15\ 146$	$180\ 50\ 48\ 62\ 19\ 24\ 32$
140384042192432	$144\ 40\ 34\ 64\ 5\ 18\ 132$	$168\ 47\ 40\ 73\ 7\ 18\ 120$	$180\ 50\ 49\ 58\ 22\ 27\ 6$
14038413822276	$144\ 40\ 35\ 60\ 8\ 21\ 106$	$168\ 47\ 41\ 69\ 10\ 21\ 94$	- 180 51 40 85 3 18 144
$-\ 140\ 39\ 32\ 65\ 3\ 18\ 144$	$144\ 40\ 36\ 56\ 11\ 24\ 80$	$168\ 47\ 42\ 65\ 13\ 24\ 68$	$180\ 51\ 41\ 81\ 6\ 21\ 118$
140393361621118	$144\ 40\ 37\ 52\ 14\ 27\ 54$	$168\ 47\ 43\ 61\ 16\ 27\ 42$	$180\ 51\ 42\ 77\ 9\ 24\ 92$
$140\ 39\ 34\ 57\ 9\ 24\ 92$	$144\ 40\ 38\ 48\ 17\ 30\ 28$	$168\ 47\ 44\ 57\ 19\ 30\ 16$	$180\ 51\ 43\ 73\ 12\ 27\ 66$
$140\ 39\ 35\ 53\ 12\ 27\ 66$	$144\ 40\ 39\ 44\ 20\ 33\ 2$	$-\ 168\ 48\ 36\ 80\ 3\ 24\ 128$	$180\ 51\ 44\ 69\ 15\ 30\ 40$
$140\ 39\ 36\ 49\ 15\ 30\ 40$	- 144 41 30 71 1 24 140	$-\ 168\ 48\ 37\ 76\ 6\ 27\ 102$	$180\ 51\ 45\ 65\ 18\ 33\ 14$
$140\ 39\ 37\ 45\ 18\ 33\ 14$	$144\ 41\ 31\ 67\ 4\ 27\ 114$	$168\ 48\ 38\ 72\ 9\ 30\ 76$	- 180 52 37 88 2 27 126
- 140 40 29 68 2 27 126	$144\ 41\ 32\ 63\ 7\ 30\ 88$	$168\ 48\ 39\ 68\ 12\ 33\ 50$	$180\ 52\ 38\ 84\ 5\ 30\ 100$
$140\ 40\ 30\ 64\ 5\ 30\ 100$	$144\ 41\ 33\ 59\ 10\ 33\ 62$	$168\ 48\ 40\ 64\ 15\ 36\ 24$	$180\ 52\ 39\ 80\ 8\ 33\ 74$
$140\ 40\ 31\ 60\ 8\ 33\ 74$	$144\ 41\ 34\ 55\ 13\ 36\ 36$	$-\ 168\ 49\ 33\ 83\ 2\ 33\ 110$	$180\ 52\ 40\ 76\ 11\ 36\ 48$
$140\ 40\ 32\ 56\ 11\ 36\ 48$	$144\ 41\ 35\ 51\ 16\ 39\ 10$	- $168\ 49\ 34\ 79\ 5\ 36\ 84$	$180\ 52\ 41\ 72\ 14\ 39\ 22$
$140\ 40\ 33\ 52\ 14\ 39\ 22$	$144\ 42\ 28\ 70\ 3\ 36\ 96$	$168\ 49\ 35\ 75\ 8\ 39\ 58$	- 180 53 34 91 1 36 108
- 140 41 26 71 1 36 108	$144\ 42\ 29\ 66\ 6\ 39\ 70$	$168\ 49\ 36\ 71\ 11\ 42\ 32$	$-\ 180\ 53\ 35\ 87\ 4\ 39\ 82$
$140\ 41\ 27\ 67\ 4\ 39\ 82$	$144\ 42\ 30\ 62\ 9\ 42\ 44$	$168\ 49\ 37\ 67\ 14\ 45\ 6$	$180\ 53\ 36\ 83\ 7\ 42\ 56$
$140\ 41\ 28\ 63\ 7\ 42\ 56$	$144\ 42\ 31\ 58\ 12\ 45\ 18$	- 168 50 30 86 1 42 92	$180\ 53\ 37\ 79\ 10\ 45\ 30$
$140\ 41\ 29\ 59\ 10\ 45\ 30$	- 144 43 25 73 2 45 78	- 168 50 31 82 4 45 66	$180\ 53\ 38\ 75\ 13\ 48\ 4$
$140\ 41\ 30\ 55\ 13\ 48\ 4$	$144\ 43\ 26\ 69\ 5\ 48\ 52$	$168\ 50\ 32\ 78\ 7\ 48\ 40$	$-\ 180\ 54\ 32\ 90\ 3\ 48\ 64$
- 140 42 24 70 3 48 64	$144\ 43\ 27\ 65\ 8\ 51\ 26$	$168\ 50\ 33\ 74\ 10\ 51\ 14$	$180\ 54\ 33\ 86\ 6\ 51\ 38$
$140\ 42\ 25\ 66\ 6\ 51\ 38$	$144\ 43\ 28\ 61\ 11\ 54\ 0$	- 168 51 28 85 3 54 48	$180\ 54\ 34\ 82\ 9\ 54\ 12$
$140\ 42\ 26\ 62\ 9\ 54\ 12$	- $144\ 44\ 22\ 76\ 1\ 54\ 60$	- $168\ 51\ 29\ 81\ 6\ 57\ 22$	-18055299325746
- 140 43 21 73 2 57 46	$144\ 44\ 23\ 72\ 4\ 57\ 34$	-16852258826330	$180\ 55\ 30\ 89\ 5\ 60\ 20$
$140\ 43\ 22\ 69\ 5\ 60\ 20$	$144\ 44\ 24\ 68\ 7\ 60\ 8$	- $168\ 52\ 26\ 84\ 5\ 66\ 4$	- 180 56 26 96 1 66 28
- 140 44 18 76 1 66 28	$144\ 45\ 20\ 75\ 3\ 66\ 16$	- $168\ 53\ 22\ 91\ 1\ 72\ 12$	$-\ 180\ 56\ 27\ 92\ 4\ 69\ 2$
$140\ 44\ 19\ 72\ 4\ 69\ 2$	$168\ 43\ 58\ 37\ 29\ 0\ 36$	$180\ 46\ 64\ 34\ 35\ 0\ 0$	$210\ 55\ 70\ 49\ 35\ 0\ 0$
$144\ 36\ 52\ 28\ 27\ 0\ 48$	$168\ 43\ 59\ 33\ 32\ 3\ 10$	$180\ 47\ 58\ 49\ 25\ 0\ 60$	$210\ 56\ 64\ 64\ 25\ 0\ 60$
$144\ 36\ 53\ 24\ 30\ 3\ 22$	$168\ 44\ 52\ 52\ 19\ 0\ 96$	$180\ 47\ 59\ 45\ 28\ 3\ 34$	$210\ 56\ 65\ 60\ 28\ 3\ 34$
$144\ 37\ 46\ 43\ 17\ 0\ 108$	$168\ 44\ 53\ 48\ 22\ 3\ 70$	$180\ 47\ 60\ 41\ 31\ 6\ 8$	$210\ 56\ 66\ 56\ 31\ 6\ 8$
$144\ 37\ 47\ 39\ 20\ 3\ 82$	$168\ 44\ 54\ 44\ 25\ 6\ 44$	$180\ 48\ 52\ 64\ 15\ 0\ 120$	$210\ 57\ 58\ 79\ 15\ 0\ 120$
$144\ 37\ 48\ 35\ 23\ 6\ 56$	$168\ 44\ 55\ 40\ 28\ 9\ 18$	$180\ 48\ 53\ 60\ 18\ 3\ 94$	$210\ 57\ 59\ 75\ 18\ 3\ 94$
$144\ 37\ 49\ 31\ 26\ 9\ 30$	$168\ 45\ 46\ 67\ 9\ 0\ 156$	$180\ 48\ 54\ 56\ 21\ 6\ 68$	$210\ 57\ 60\ 71\ 21\ 6\ 68$
$144\ 37\ 50\ 27\ 29\ 12\ 4$	$168\ 45\ 47\ 63\ 12\ 3\ 130$	$180\ 48\ 55\ 52\ 24\ 9\ 42$	$210\ 57\ 61\ 67\ 24\ 9\ 42$
$144\ 38\ 40\ 58\ 7\ 0\ 168$	$168\ 45\ 48\ 59\ 15\ 6\ 104$	$180\ 48\ 56\ 48\ 27\ 12\ 16$	$210\ 57\ 62\ 63\ 27\ 12\ 16$
$144\ 38\ 41\ 54\ 10\ 3\ 142$	$168\ 45\ 49\ 55\ 18\ 9\ 78$	$180\ 49\ 46\ 79\ 5\ 0\ 180$	$210\ 58\ 52\ 94\ 5\ 0\ 180$
$144\ 38\ 42\ 50\ 13\ 6\ 116$	$168\ 45\ 50\ 51\ 21\ 12\ 52$	$180\ 49\ 47\ 75\ 8\ 3\ 154$	$210\ 58\ 53\ 90\ 8\ 3\ 154$
$144\ 38\ 43\ 46\ 16\ 9\ 90$	$168\ 45\ 51\ 47\ 24\ 15\ 26$	180 49 48 71 11 6 128	$210\ 58\ 54\ 86\ 11\ 6\ 128$
$144\ 38\ 44\ 42\ 19\ 12\ 64$	$168\ 45\ 52\ 43\ 27\ 18\ 0$	$180\ 49\ 49\ 67\ 14\ 9\ 102$	$210\ 58\ 55\ 82\ 14\ 9\ 102$
144 38 45 38 22 15 38	- 168 46 41 78 2 3 190	180 49 50 63 17 12 76	210 58 56 78 17 12 76
144 38 46 34 25 18 12	- 168 46 42 74 5 6 164	180 49 51 59 20 15 50	210 58 57 74 20 15 50
144 39 36 65 3 6 176	168 46 43 70 8 9 138	180 49 52 55 23 18 24	210 58 58 70 23 18 24
144 39 37 61 6 9 150	168 46 44 66 11 12 112	- 180 50 42 86 1 6 188	210 59 48 101 1 6 188
144 39 38 57 9 12 124	168 46 45 62 14 15 86	- 180 50 43 82 4 9 162	210 59 49 97 4 9 162
144 39 39 53 12 15 98	168 46 46 58 17 18 60	180 50 44 78 7 12 136	210 59 50 93 7 12 136
144 39 40 49 15 18 72	168 46 47 54 20 21 34	180 50 45 74 10 15 110	210 59 51 89 10 15 110
144 39 41 45 18 21 46	168 46 48 50 23 24 8	180 50 46 70 13 18 84	210 59 52 85 13 18 84
144 39 42 41 21 24 20	- 168 47 38 81 1 12 172	180 50 47 66 16 21 58	210 59 53 81 16 21 58

$210\ 59\ 54\ 77\ 19\ 24\ 32$	210 63 39 101 6 51 38	$240\ 67\ 62\ 93\ 17\ 12$	76 - 240 70 51 110 8 33 7	74
$210\ 59\ 55\ 73\ 22\ 27\ 6$	$210\ 63\ 40\ 97\ 9\ 54\ 12$	240 67 63 89 20 15	50 240 70 52 106 11 36 4	8
210 60 46 100 3 18 144	$210\ 64\ 35\ 108\ 2\ 57\ 46$	240 67 64 85 23 18	24 240 70 53 102 14 39 2	2
$210\ 60\ 47\ 96\ 6\ 21\ 118$	$210\ 64\ 36\ 104\ 5\ 60\ 20$	- 240 68 54 116 1 6	5188 - 240714612113610	08
$210\ 60\ 48\ 92\ 9\ 24\ 92$	$210\ 65\ 32\ 111\ 1\ 66\ 28$	- 240 68 55 112 4 9	0.162 - 240.71.47.117.4.39.8	32
210 60 49 88 12 27 66	210 65 33 107 4 69 2	- 240 68 56 108 7 1	2136 - 240 71 48 113 7 42 5	56
$210\ 60\ 50\ 84\ 15\ 30\ 40$	$240\ 64\ 76\ 64\ 35\ 0\ 0$	240 68 57 104 10 1	$5\ 110\ 240\ 71\ 49\ 109\ 10\ 45\ 3$	0
$210\ 60\ 51\ 80\ 18\ 33\ 14$	$240\ 65\ 70\ 79\ 25\ 0\ 60$	240 68 58 100 13 1	$8\ 84\ \ 240\ 71\ 50\ 105\ 13\ 48\ 4$	
$210\ 61\ 43\ 103\ 2\ 27\ 126$	$240\ 65\ 71\ 75\ 28\ 3\ 34$	$240\ 68\ 59\ 96\ 16\ 21$	58 - 240 72 44 120 3 48 6	34
$210\ 61\ 44\ 99\ 5\ 30\ 100$	2406572713168	240 68 60 92 19 24	32 - 240 72 45 116 6 51 3	38
$210\ 61\ 45\ 95\ 8\ 33\ 74$	$240\ 66\ 64\ 94\ 15\ 0\ 120$	240 68 61 88 22 27	6 240 72 46 112 9 54 12	
$210\ 61\ 46\ 91\ 11\ 36\ 48$	24066659018394	- 240 69 52 115 3 1	$8\ 144\ -\ 240\ 73\ 41\ 123\ 2\ 57\ 4$	16
210614787143922	$240\ 66\ 66\ 86\ 21\ 6\ 68$	- 240 69 53 111 6 2	$1\ 118\ -\ 240\ 73\ 42\ 119\ 5\ 60\ 2$	20
$210\ 62\ 40\ 106\ 1\ 36\ 108$	$240\ 66\ 67\ 82\ 24\ 9\ 42$	240 69 54 107 9 24	92 - 240 74 38 126 1 66 2	28
$210\ 62\ 41\ 102\ 4\ 39\ 82$	$240\ 66\ 68\ 78\ 27\ 12\ 16$	$240\ 69\ 55\ 103\ 12\ 2$	$7\ 66$ - 240 74 39 122 4 69 2	2
$210\ 62\ 42\ 98\ 7\ 42\ 56$	- 240 67 58 109 5 0 180	240 69 56 99 15 30	40	
$210\ 62\ 43\ 94\ 10\ 45\ 30$	$-240\ 67\ 59\ 105\ 8\ 3\ 154$	240 69 57 95 18 33	14	
$210\ 62\ 44\ 90\ 13\ 48\ 4$	$240\ 67\ 60\ 101\ 11\ 6\ 128$	- 240 70 49 118 2 2	7 126	
210633810534864	$240\ 67\ 61\ 97\ 14\ 9\ 102$	- 240 70 50 114 5 3	0 100	
252 68 76 76 31 0 24	- 252 73 54 119	5 24 116 29	80 78 75 102 24 9 42	
252 69 70 91 21 0 84	252 73 55 115 8	27.90 22	80 78 76 98 27 12 16	
252 69 71 87 24 3 58	$252\ 73\ 56\ 111\ 1$	1 30 64 28	80 79 66 129 5 0 180	
252 69 72 83 27 6 32	$252\ 73\ 57\ 107\ 1$	4 33 38 28	80 79 67 125 8 3 154	
252 69 73 79 30 9 6	252 73 58 103 1	7 36 12 28	80 79 68 121 11 6 128	
252 70 64 106 11 0 144	- 252 74 50 126	1 30 124 28	80 79 69 117 14 9 102	
252 70 65 102 14 3 118	- 252 74 51 122	4 33 98 28	80 79 70 113 17 12 76	
252 70 66 98 17 6 92	252 74 52 118 7	36 72 28	80 79 71 109 20 15 50	
252 70 67 94 20 9 66	$252\ 74\ 53\ 114\ 1$	0 39 46 28	80 79 72 105 23 18 24	
252 70 68 90 23 12 40	$252\ 74\ 54\ 110\ 1$	3 42 20 -	280 80 62 136 1 6 188	
252 70 69 86 26 15 14	- 252 75 48 125	3 42 80 28	80 80 63 132 4 9 162	
- 252 71 58 121 1 0 204	-2527549121	6 45 54 28	$80\ 80\ 64\ 128\ 7\ 12\ 136$	
$-252\ 71\ 59\ 117\ 4\ 3\ 178$	$252\ 75\ 50\ 117\ 9$	48 28 28	$80\ 80\ 65\ 124\ 10\ 15\ 110$	
$252\ 71\ 60\ 113\ 7\ 6\ 152$	$252\ 75\ 51\ 113\ 1$	2 51 2 28	$30\ 80\ 66\ 120\ 13\ 18\ 84$	
$252\ 71\ 61\ 109\ 10\ 9\ 126$	- 252 76 45 128	2 51 62 28	$30\ 80\ 67\ 116\ 16\ 21\ 58$	
$252\ 71\ 62\ 105\ 13\ 12\ 100$	- 252 76 46 124	5 54 36 28	$80\ 80\ 68\ 112\ 19\ 24\ 32$	
$252\ 71\ 63\ 101\ 16\ 15\ 74$	$252\ 76\ 47\ 120\ 8$	57 10 28	$80\ 80\ 69\ 108\ 22\ 27\ 6$	
$252\ 71\ 64\ 97\ 19\ 18\ 48$	- 252 77 42 131	1 60 44 -	2808160135318144	
$252\ 71\ 65\ 93\ 22\ 21\ 22$	-2527743127	4 63 18 28	308161131621118	
-2527256120312160	- 252 78 40 130	3 72 0 28	30816212792492	
- $252\ 72\ 57\ 116\ 6\ 15\ 134$	$280\ 76\ 84\ 84\ 35$	0 0 28	80 81 63 123 12 27 66	
$252\ 72\ 58\ 112\ 9\ 18\ 108$	$280\ 77\ 78\ 99\ 25$	0 60 28	80 81 64 119 15 30 40	
$252\ 72\ 59\ 108\ 12\ 21\ 82$	$280\ 77\ 79\ 95\ 28$	3 34 28	80 81 65 115 18 33 14	
$252\ 72\ 60\ 104\ 15\ 24\ 56$	$280\ 77\ 80\ 91\ 31$	68 -	2808257138227126	
$252\ 72\ 61\ 100\ 18\ 27\ 30$	$280\ 78\ 72\ 114\ 1$	5 0 120 28	80 82 58 134 5 30 100	
$252\ 72\ 62\ 96\ 21\ 30\ 4$	$280\ 78\ 73\ 110\ 1$	8 3 94 28	80 82 59 130 8 33 74	
- 252 73 53 123 2 21 142	$280\ 78\ 74\ 106\ 2$	1668 28	$30\ 82\ 60\ 126\ 11\ 36\ 48$	

$315\ 93\ 64\ 151\ 6\ 36\ 78$	- 336 99 70 157 9 36 60
$315\ 93\ 65\ 147\ 9\ 39\ 52$	-3369971153123934
$315\ 93\ 66\ 143\ 12\ 42\ 26$	-336997214915428
$315\ 93\ 67\ 139\ 15\ 45\ 0$	$-336\ 100\ 65\ 168\ 2\ 39\ 94$
$315\ 94\ 60\ 158\ 2\ 42\ 86$	-3361006616454268
$315\ 94\ 61\ 154\ 5\ 45\ 60$	-3361006716084542
$315\ 94\ 62\ 150\ 8\ 48\ 34$	- 336 100 68 156 11 48 16
$315\ 94\ 63\ 146\ 11\ 51\ 8$	- 336 101 62 171 1 48 76
$315\ 95\ 57\ 161\ 1\ 51\ 68$	$-336\ 101\ 63\ 167\ 4\ 51\ 50$
$315\ 95\ 58\ 157\ 4\ 54\ 42$	-3361016416375424
$315\ 95\ 59\ 153\ 7\ 57\ 16$	$-336\ 102\ 60\ 170\ 3\ 60\ 32$
$315\ 96\ 55\ 160\ 3\ 63\ 24$	- 336 102 61 166 6 63 6
$315\ 97\ 52\ 163\ 2\ 72\ 6$	$-336\ 103\ 57\ 173\ 2\ 69\ 14$
$336\ 93\ 94\ 115\ 33\ 0\ 12$	$360\ 100\ 100\ 124\ 35\ 0\ 0$
$336\ 94\ 88\ 130\ 23\ 0\ 72$	$360\ 101\ 94\ 139\ 25\ 0\ 60$
$336\ 94\ 89\ 126\ 26\ 3\ 46$	$360\ 101\ 95\ 135\ 28\ 3\ 34$
336 94 90 122 29 6 20	$360\ 101\ 96\ 131\ 31\ 6\ 8$
-3369582145130132	$360\ 102\ 88\ 154\ 15\ 0\ 120$
-3369583141163106	$360\ 102\ 89\ 150\ 18\ 3\ 94$
$336\ 95\ 84\ 137\ 19\ 6\ 80$	$360\ 102\ 90\ 146\ 21\ 6\ 68$
$336\ 95\ 85\ 133\ 22\ 9\ 54$	$360\ 102\ 91\ 142\ 24\ 9\ 42$
$336\ 95\ 86\ 129\ 25\ 12\ 28$	$360\ 102\ 92\ 138\ 27\ 12\ 16$
$336\ 95\ 87\ 125\ 28\ 15\ 2$	$-\ 360\ 103\ 82\ 169\ 5\ 0\ 180$
- 336 96 76 160 3 0 192	- 360 103 83 165 8 3 154
- 336 96 77 156 6 3 166	- $360\ 103\ 84\ 161\ 11\ 6\ 128$
$-\ 336\ 96\ 78\ 152\ 9\ 6\ 140$	- 360 103 85 157 14 9 102
$-\ 336\ 96\ 79\ 148\ 12\ 9\ 114$	$360\ 103\ 86\ 153\ 17\ 12\ 76$
$-\ 336\ 96\ 80\ 144\ 15\ 12\ 88$	$360\ 103\ 87\ 149\ 20\ 15\ 50$
$336\ 96\ 81\ 140\ 18\ 15\ 62$	$360\ 103\ 88\ 145\ 23\ 18\ 24$
$336\ 96\ 82\ 136\ 21\ 18\ 36$	$-\ 360\ 104\ 78\ 176\ 1\ 6\ 188$
$336\ 96\ 83\ 132\ 24\ 21\ 10$	$-\ 360\ 104\ 79\ 172\ 4\ 9\ 162$
$-336\ 97\ 73\ 163\ 2\ 9\ 174$	- 360 104 80 168 7 12 136
$-\ 336\ 97\ 74\ 159\ 5\ 12\ 148$	- 360 104 81 164 10 15 110
- 336 97 75 155 8 15 122	- 360 104 82 160 13 18 84
- 336 97 76 151 11 18 96	$360\ 104\ 83\ 156\ 16\ 21\ 58$
- 336 97 77 147 14 21 70	$360\ 104\ 84\ 152\ 19\ 24\ 32$
$336\ 97\ 78\ 143\ 17\ 24\ 44$	$360\ 104\ 85\ 148\ 22\ 27\ 6$
$336\ 97\ 79\ 139\ 20\ 27\ 18$	$-\ 360\ 105\ 76\ 175\ 3\ 18\ 144$
- 336 98 70 166 1 18 156	- 360 105 77 171 6 21 118
- 336 98 71 162 4 21 130	- 360 105 78 167 9 24 92
- 336 98 72 158 7 24 104	- 360 105 79 163 12 27 66
- 336 98 73 154 10 27 78	360 105 80 159 15 30 40
- 336 98 74 150 13 30 52	360 105 81 155 18 33 14
- 336 98 75 146 16 33 26	- 360 106 73 178 2 27 126
336 98 76 142 19 36 0	- 360 106 74 174 5 30 100
- 336 99 68 165 3 30 112	- 360 106 75 170 8 33 74
- 336 99 69 161 6 33 86	- 360 106 76 166 11 36 48

 $280\ 82\ 61\ 122\ 14\ 39\ 22$ - 280 83 54 141 1 36 108 $280\ 83\ 55\ 137\ 4\ 39\ 82$ $280\ 83\ 56\ 133\ 7\ 42\ 56$ 280 83 57 129 10 45 30 $280\ 83\ 58\ 125\ 13\ 48\ 4$ - 280 84 52 140 3 48 64 $280\ 84\ 53\ 136\ 6\ 51\ 38$ $280\ 84\ 54\ 132\ 9\ 54\ 12$ - 280 85 49 143 2 57 46 280 85 50 139 5 60 20 - 280 86 46 146 1 66 28 280 86 47 142 4 69 2 $315\ 87\ 88\ 109\ 30\ 0\ 30$ $315\ 87\ 89\ 105\ 33\ 3\ 4$ $315\,88\,82\,124\,20\,0\,90$ $315\ 88\ 83\ 120\ 23\ 3\ 64$ $315\ 88\ 84\ 116\ 26\ 6\ 38$ $315\ 88\ 85\ 112\ 29\ 9\ 12$ 315 89 76 139 10 0 150 $315\ 89\ 77\ 135\ 13\ 3\ 124$ $315\ 89\ 78\ 131\ 16\ 6\ 98$ 315 89 79 127 19 9 72 $315\ 89\ 80\ 123\ 22\ 12\ 46$ $315\ 89\ 81\ 119\ 25\ 15\ 20$ $315\ 90\ 71\ 150\ 3\ 3\ 184$ 315 90 72 146 6 6 158 $315\ 90\ 73\ 142\ 9\ 9\ 132$ $315\ 90\ 74\ 138\ 12\ 12\ 106$ 315 90 75 134 15 15 80 $315\ 90\ 76\ 130\ 18\ 18\ 54$ 315 90 77 126 21 21 28 315 90 78 122 24 24 2 315 91 68 153 2 12 166 $315\,91\,69\,149\,5\,15\,140$ $315\ 91\ 70\ 145\ 8\ 18\ 114$ 315 91 71 141 11 21 88 $315\ 91\ 72\ 137\ 14\ 24\ 62$ $315\ 91\ 73\ 133\ 17\ 27\ 36$ 315 91 74 129 20 30 10 $315\ 92\ 65\ 156\ 1\ 21\ 148$ $315\ 92\ 66\ 152\ 4\ 24\ 122$ $315\ 92\ 67\ 148\ 7\ 27\ 96$ 315 92 68 144 10 30 70 $315\ 92\ 69\ 140\ 13\ 33\ 44$ $315\ 92\ 70\ 136\ 16\ 36\ 18$ 315 93 63 155 3 33 104

960 106 77 169 14 90 99	490 194 90 109 14 90 99	
- 300 100 77 102 14 39 22	420 124 89 192 14 39 22	- 504 150 100 250 3 36 96 504 150 101 246 6 20 70
- 300 107 70 181 1 30 108	- 420 125 82 211 1 30 108	- 504 150 101 240 6 39 70
- 300 107 71 177 4 39 82	- 420 125 85 207 4 59 82	504 150 102 242 9 42 44
- 300 107 72 173 7 42 30		504 150 103 238 12 45 18
- 360 107 73 169 10 45 30	- 420 125 85 199 10 45 30	- 504 151 97 253 2 45 78
- 360 107 74 165 13 48 4	420 125 86 195 13 48 4	- 504 151 98 249 5 48 52
- 360 108 68 180 3 48 64	- 420 126 80 210 3 48 64	504 151 99 245 8 51 26
- 360 108 69 176 6 51 38	- 420 126 81 206 6 51 38	504 151 100 241 11 54 0
- 360 108 70 172 9 54 12	- 420 126 82 202 9 54 12	- 504 152 94 256 1 54 60
- 360 109 65 183 2 57 46	-4201277721325746	- 504 152 95 252 4 57 34
- 360 109 66 179 5 60 20	- 420 127 78 209 5 60 20	504 152 96 248 7 60 8
- 360 110 62 186 1 66 28	- 420 128 74 216 1 66 28	- 504 153 92 255 3 66 16
- 360 110 63 182 4 69 2	-420128752124692	$560\ 160\ 140\ 224\ 35\ 0\ 0$
$420\ 118\ 112\ 154\ 35\ 0\ 0$	$504\ 144\ 124\ 208\ 27\ 0\ 48$	$560\ 161\ 134\ 239\ 25\ 0\ 60$
$420\ 119\ 106\ 169\ 25\ 0\ 60$	$504\ 144\ 125\ 204\ 30\ 3\ 22$	$560\ 161\ 135\ 235\ 28\ 3\ 34$
$420\ 119\ 107\ 165\ 28\ 3\ 34$	$504\ 145\ 118\ 223\ 17\ 0\ 108$	$560\ 161\ 136\ 231\ 31\ 6\ 8$
$420\ 119\ 108\ 161\ 31\ 6\ 8$	$504\ 145\ 119\ 219\ 20\ 3\ 82$	$560\ 162\ 128\ 254\ 15\ 0\ 120$
$420\ 120\ 100\ 184\ 15\ 0\ 120$	$504\ 145\ 120\ 215\ 23\ 6\ 56$	$560\ 162\ 129\ 250\ 18\ 3\ 94$
$420\ 120\ 101\ 180\ 18\ 3\ 94$	$504\ 145\ 121\ 211\ 26\ 9\ 30$	$560\ 162\ 130\ 246\ 21\ 6\ 68$
$420\ 120\ 102\ 176\ 21\ 6\ 68$	$504\ 145\ 122\ 207\ 29\ 12\ 4$	$560\ 162\ 131\ 242\ 24\ 9\ 42$
$420\ 120\ 103\ 172\ 24\ 9\ 42$	$504\ 146\ 112\ 238\ 7\ 0\ 168$	$560\ 162\ 132\ 238\ 27\ 12\ 16$
$420\ 120\ 104\ 168\ 27\ 12\ 16$	$504\ 146\ 113\ 234\ 10\ 3\ 142$	$560\ 163\ 122\ 269\ 5\ 0\ 180$
$-\ 420\ 121\ 94\ 199\ 5\ 0\ 180$	$504\ 146\ 114\ 230\ 13\ 6\ 116$	$560\ 163\ 123\ 265\ 8\ 3\ 154$
$-\ 420\ 121\ 95\ 195\ 8\ 3\ 154$	$504\ 146\ 115\ 226\ 16\ 9\ 90$	$560\ 163\ 124\ 261\ 11\ 6\ 128$
- 420 121 96 191 11 6 128	$504\ 146\ 116\ 222\ 19\ 12\ 64$	$560\ 163\ 125\ 257\ 14\ 9\ 102$
$420\ 121\ 97\ 187\ 14\ 9\ 102$	$504\ 146\ 117\ 218\ 22\ 15\ 38$	$560\ 163\ 126\ 253\ 17\ 12\ 76$
420 121 98 183 17 12 76	$504\ 146\ 118\ 214\ 25\ 18\ 12$	$560\ 163\ 127\ 249\ 20\ 15\ 50$
$420\ 121\ 99\ 179\ 20\ 15\ 50$	- $504\ 147\ 108\ 245\ 3\ 6\ 176$	$560\ 163\ 128\ 245\ 23\ 18\ 24$
$420\ 121\ 100\ 175\ 23\ 18\ 24$	- $504\ 147\ 109\ 241\ 6\ 9\ 150$	$-\ 560\ 164\ 118\ 276\ 1\ 6\ 188$
- 420 122 90 206 1 6 188	$504\ 147\ 110\ 237\ 9\ 12\ 124$	56016411927249162
- 420 122 91 202 4 9 162	$504\ 147\ 111\ 233\ 12\ 15\ 98$	$560\ 164\ 120\ 268\ 7\ 12\ 136$
- 420 122 92 198 7 12 136	$504\ 147\ 112\ 229\ 15\ 18\ 72$	$560\ 164\ 121\ 264\ 10\ 15\ 110$
-420122931941015110	$504\ 147\ 113\ 225\ 18\ 21\ 46$	$560\ 164\ 122\ 260\ 13\ 18\ 84$
420 122 94 190 13 18 84	$504\ 147\ 114\ 221\ 21\ 24\ 20$	$560\ 164\ 123\ 256\ 16\ 21\ 58$
420 122 95 186 16 21 58	-504148105248215158	$560\ 164\ 124\ 252\ 19\ 24\ 32$
420 122 96 182 19 24 32	-504148106244518132	$560\ 164\ 125\ 248\ 22\ 27\ 6$
420 122 97 178 22 27 6	$504\ 148\ 107\ 240\ 8\ 21\ 106$	-560165116275318144
-42012388205318144	$504\ 148\ 108\ 236\ 11\ 24\ 80$	$560\ 165\ 117\ 271\ 6\ 21\ 118$
- 420 123 89 201 6 21 118	504 148 109 232 14 27 54	560 165 118 267 9 24 92
- 420 123 90 197 9 24 92	504 148 110 228 17 30 28	560 165 119 263 12 27 66
420 123 91 193 12 27 66	504 148 111 224 20 33 2	560 165 120 259 15 30 40
420 123 92 189 15 30 40	- 504 149 102 251 1 24 140	560 165 121 255 18 33 14
420 123 93 185 18 33 14	- 504 149 103 247 4 27 114	- 560 166 113 278 2 27 126
- 420 124 85 208 2 27 126	504 149 104 243 7 30 88	560 166 114 274 5 30 100
- 420 124 86 204 5 30 100	504 149 105 239 10 33 62	560 166 115 270 8 33 74
- 420 124 87 200 8 33 74	504 149 106 235 13 36 36	560 166 116 266 11 36 48
- 420 124 01 200 0 33 14	504 140 107 231 16 30 10	560 166 117 269 14 30 29
- 420 124 00 190 11 30 40	004 149 107 201 10 09 10	000 100 117 202 14 39 22

FCO 107 110 001 1 90 100	COO 100 104 91C 1 9C 100	700 015 140 001 1 00 100
- 500 107 110 281 1 30 108	030 188 124 310 1 30 108	- 720 215 142 301 1 30 108
560 167 111 277 4 39 82	630 188 125 312 4 39 82	- 720 215 143 357 4 39 82
560 167 112 273 7 42 56	630 188 126 308 7 42 56	- 720 215 144 353 7 42 56
$560\ 167\ 113\ 269\ 10\ 45\ 30$	$630\ 188\ 127\ 304\ 10\ 45\ 30$	- 720 215 145 349 10 45 30
$560\ 167\ 114\ 265\ 13\ 48\ 4$	$630\ 188\ 128\ 300\ 13\ 48\ 4$	$-\ 720\ 215\ 146\ 345\ 13\ 48\ 4$
$-560\ 168\ 108\ 280\ 3\ 48\ 64$	$630\ 189\ 122\ 315\ 3\ 48\ 64$	$-\ 720\ 216\ 140\ 360\ 3\ 48\ 64$
$560\ 168\ 109\ 276\ 6\ 51\ 38$	$630\ 189\ 123\ 311\ 6\ 51\ 38$	$-\ 720\ 216\ 141\ 356\ 6\ 51\ 38$
$560\ 168\ 110\ 272\ 9\ 54\ 12$	$630\ 189\ 124\ 307\ 9\ 54\ 12$	$-720\ 216\ 142\ 352\ 9\ 54\ 12$
$-560\ 169\ 105\ 283\ 2\ 57\ 46$	$630\ 190\ 119\ 318\ 2\ 57\ 46$	- 720 217 137 363 2 57 46
$560\ 169\ 106\ 279\ 5\ 60\ 20$	$630\ 190\ 120\ 314\ 5\ 60\ 20$	$-720\ 217\ 138\ 359\ 5\ 60\ 20$
$-560\ 170\ 102\ 286\ 1\ 66\ 28$	$630\ 191\ 116\ 321\ 1\ 66\ 28$	$-720\ 218\ 134\ 366\ 1\ 66\ 28$
$560\ 170\ 103\ 282\ 4\ 69\ 2$	$630\ 191\ 117\ 317\ 4\ 69\ 2$	$-720\ 218\ 135\ 362\ 4\ 69\ 2$
$630\ 181\ 154\ 259\ 35\ 0\ 0$	$720\ 208\ 172\ 304\ 35\ 0\ 0$	$840\ 244\ 196\ 364\ 35\ 0\ 0$
630 182 148 274 25 0 60	- 720 209 166 319 25 0 60	-84024519037925060
630 182 149 270 28 3 34	- 720 209 167 315 28 3 34	- 840 245 191 375 28 3 34
630 182 150 266 31 6 8	- 720 209 168 311 31 6 8	- 840 245 192 371 31 6 8
630 183 142 289 15 0 120	- 720 210 160 334 15 0 120	- 840 246 184 394 15 0 120
630 183 143 285 18 3 94	- 720 210 161 330 18 3 94	- 840 246 185 390 18 3 94
630 183 144 281 21 6 68	- 720 210 162 326 21 6 68	- 840 246 186 386 21 6 68
630 183 145 277 24 9 42	- 720 210 163 322 24 9 42	- 840 246 187 382 24 9 42
630 183 146 273 27 12 16	- 720 210 163 322 24 3 42	- 840 246 188 378 27 12 16
630 184 136 304 5 0 180	720 211 154 340 5 0 180	840 247 178 400 5 0 180
630 184 137 300 8 3 154	720 211 154 545 5 0 180	- 040 247 170 405 8 2 154 840 247 170 405 8 2 154
620 184 128 206 11 6 128	720 211 155 345 8 5 154	- 040 247 179 403 0 3 134 840 947 180 401 11 6 198
030 184 138 290 11 0 128	- 720 211 150 541 11 0 120	- 840 247 180 401 11 0 128
030 184 139 292 14 9 102	- 720 211 157 557 14 9 102	- 840 247 181 397 14 9 102
030 184 140 288 17 12 70	- 720 211 158 333 17 12 70	- 840 247 182 393 17 12 70
030 184 141 284 20 15 50	- 720 211 109 329 20 10 00	- 840 247 183 389 20 15 50
030 184 142 280 23 18 24	- 720 211 100 325 23 18 24	- 840 247 184 385 23 18 24
030 185 132 311 1 0 188	- 720 212 150 350 1 0 188	- 840 248 174 416 1 6 188
630 185 133 307 4 9 162	- 720 212 151 352 4 9 162	- 840 248 175 412 4 9 162
630 185 134 303 7 12 136	- 720 212 152 348 7 12 136	- 840 248 176 408 7 12 136
630 185 135 299 10 15 110	- 720 212 153 344 10 15 110	- 840 248 177 404 10 15 110
630 185 136 295 13 18 84	- 720 212 154 340 13 18 84	- 840 248 178 400 13 18 84
630 185 137 291 16 21 58	- 720 212 155 336 16 21 58	- 840 248 179 396 16 21 58
630 185 138 287 19 24 32	- 720 212 156 332 19 24 32	- 840 248 180 392 19 24 32
$630\ 185\ 139\ 283\ 22\ 27\ 6$	- 720 212 157 328 22 27 6	$-840\ 248\ 181\ 388\ 22\ 27\ 6$
$630\ 186\ 130\ 310\ 3\ 18\ 144$	-720213148355318144	$-\ 840\ 249\ 172\ 415\ 3\ 18\ 144$
$630\ 186\ 131\ 306\ 6\ 21\ 118$	$-\ 720\ 213\ 149\ 351\ 6\ 21\ 118$	$-\ 840\ 249\ 173\ 411\ 6\ 21\ 118$
$630\ 186\ 132\ 302\ 9\ 24\ 92$	$-720\ 213\ 150\ 347\ 9\ 24\ 92$	$-\ 840\ 249\ 174\ 407\ 9\ 24\ 92$
$630\ 186\ 133\ 298\ 12\ 27\ 66$	- 720 213 151 343 12 27 66	$-\ 840\ 249\ 175\ 403\ 12\ 27\ 66$
$630\ 186\ 134\ 294\ 15\ 30\ 40$	- 720 213 152 339 15 30 40	$-\ 840\ 249\ 176\ 399\ 15\ 30\ 40$
$630\ 186\ 135\ 290\ 18\ 33\ 14$	- 720 213 153 335 18 33 14	$-\ 840\ 249\ 177\ 395\ 18\ 33\ 14$
$630\ 187\ 127\ 313\ 2\ 27\ 126$	- 720 214 145 358 2 27 126	- 840 250 169 418 2 27 126
$630\ 187\ 128\ 309\ 5\ 30\ 100$	- 720 214 146 354 5 30 100	$-\ 840\ 250\ 170\ 414\ 5\ 30\ 100$
$630\ 187\ 129\ 305\ 8\ 33\ 74$	- 720 214 147 350 8 33 74	- $840\ 250\ 171\ 410\ 8\ 33\ 74$
630187130301113648	- $720\ 214\ 148\ 346\ 11\ 36\ 48$	$-\ 840\ 250\ 172\ 406\ 11\ 36\ 48$
$630\ 187\ 131\ 297\ 14\ 39\ 22$	$-\ 720\ 214\ 149\ 342\ 14\ 39\ 22$	$-\ 840\ 250\ 173\ 402\ 14\ 39\ 22$

- 840 251 166 421 1 36 108	- 1008 301 203 495 8 39 58	- 1260 377 250 631 1 36 108
- 840 251 167 417 4 39 82	- 1008 301 204 491 11 42 32	- 1260 377 251 627 4 39 82
- 840 251 168 413 7 42 56	- 1008 301 205 487 14 45 6	-126037725262374256
- 840 251 169 409 10 45 30	- 1008 302 198 506 1 42 92	-1260377253619104530
- 840 251 170 405 13 48 4	- 1008 302 199 502 4 45 66	- 1260 377 254 615 13 48 4
- 840 252 164 420 3 48 64	- 1008 302 200 498 7 48 40	- 1260 378 248 630 3 48 64
- 840 252 165 416 6 51 38	- 1008 302 201 494 10 51 14	- 1260 378 249 626 6 51 38
- 840 252 166 412 9 54 12	- 1008 303 196 505 3 54 48	-126037825062295412
- 840 253 161 423 2 57 46	- 1008 303 197 501 6 57 22	- 1260 379 245 633 2 57 46
- 840 253 162 419 5 60 20	- 1008 304 193 508 2 63 30	- 1260 379 246 629 5 60 20
- 840 254 158 426 1 66 28	- 1008 304 195 508 2 65 50	- 1260 380 242 636 1 66 28
- 840 254 159 422 4 69 2	- 1008 305 190 511 1 72 12	- 1260 380 243 632 4 69 2
- 1008 205 226 457 20 0 36	1260 370 280 574 35 0 0	1680 496 364 784 35 0 0
-100829522045729030 -100829522745332310	-126037023037453000	- 1680 497 358 709 25 0 60
1008 206 220 472 10 0 06	1260 371 274 385 28 3 34	- 1000 497 350 799 20 0 00 1680 407 350 705 28 3 34
1008 206 221 468 22 3 70	1260 371 275 581 31 6 8	- 1000 497 309 795 20 3 34 1680 407 360 701 31 6 8
1008 206 222 464 25 6 44	1260 272 268 604 15 0 120	- 1000 497 300 791 31 0 8
	- 1200 372 208 004 13 0 120	
- 1008 290 223 400 28 9 18	- 1200 372 209 000 18 5 94	- 1000 498 353 810 18 3 94
- 1008 297 214 487 9 0 130	-120037227039021008 126027227150224042	- 1080 498 354 800 21 0 08
- 1008 297 213 463 12 5 150	- 1200 372 271 392 24 9 42 1960 279 979 588 97 19 16	- 1000 498 353 802 24 9 42 1680 408 256 708 27 12 16
- 1008 297 210 479 13 0 104	- 1200 372 272 368 27 12 10 1960 272 969 610 5 0 180	- 1080 498 350 798 27 12 10
	-120037320201930180	- 1080 499 340 829 3 0 180
- 1008 297 218 471 21 12 32	-120037320301383104	- 1080 499 347 823 8 3 134
- 1008 297 219 407 24 15 20	- 1200 373 204 011 11 0 128	- 1080 499 348 821 11 0 128
- 1008 297 220 403 27 18 0	- 1200 373 205 007 14 9 102	- 1080 499 349 817 14 9 102
- 1008 298 209 498 2 3 190 1008 208 210 404 5 6 164	- 1200 373 200 003 17 12 70 1260 272 267 500 20 15 50	- 1080 499 350 813 17 12 70 1680 400 251 800 20 15 50
- 1008 298 210 494 5 6 164		
- 1008 298 211 490 8 9 138		- 1080 499 352 805 23 18 24
	- 1260 374 259 622 4 9 162	- 1680 500 343 832 4 9 162
	- 1260 374 260 618 7 12 136	- 1680 500 344 828 7 12 136
- 1008 298 215 474 20 21 34	- 1260 374 261 614 10 15 110	- 1680 500 345 824 10 15 110
- 1008 298 216 470 23 24 8		- 1680 500 346 820 13 18 84
	- 1260 374 264 602 19 24 32	- 1680 500 348 812 19 24 32
- 1008 299 208 493 7 18 120	- 1260 374 265 598 22 27 6	- 1680 500 349 808 22 27 6
- 1008 299 209 489 10 21 94		- 1680 501 340 835 3 18 144
- 1008 299 210 485 13 24 68	- 1260 375 257 621 6 21 118	- 1680 501 341 831 6 21 118
- 1008 299 211 481 16 27 42	- 1260 375 258 617 9 24 92	- 1680 501 342 827 9 24 92
- 1008 299 212 477 19 30 16	- 1260 375 259 613 12 27 66	- 1680 501 343 823 12 27 66
- 1008 300 204 500 3 24 128	- 1260 375 260 609 15 30 40	- 1680 501 344 819 15 30 40
- 1008 300 205 496 6 27 102		- 1680 501 345 815 18 33 14
- 1008 300 206 492 9 30 76	- 1260 376 253 628 2 27 126	- 1680 502 337 838 2 27 126
- 1008 300 207 488 12 33 50	- 1260 376 254 624 5 30 100	- 1680 502 338 834 5 30 100
- 1008 300 208 484 15 36 24	- 1260 376 255 620 8 33 74	- 1680 502 339 830 8 33 74
- 1008 301 201 503 2 33 110	- 1260 376 256 616 11 36 48	- 1680 502 340 826 11 36 48
$-1008\ 301\ 202\ 499\ 5\ 36\ 84$	$-1260\ 376\ 257\ 612\ 14\ 39\ 22$	$-1680\ 502\ 341\ 822\ 14\ 39\ 22$

- $1680\ 503\ 334\ 841\ 1\ 36\ 108$	- 25207535081255318144	$-\ 5040\ 1507\ 1022\ 2493\ 17\ 12\ 76$
- $1680\ 503\ 335\ 837\ 4\ 39\ 82$	- $2520\ 753\ 509\ 1251\ 6\ 21\ 118$	$-\ 5040\ 1507\ 1023\ 2489\ 20\ 15\ 50$
- $1680\ 503\ 336\ 833\ 7\ 42\ 56$	- $2520\ 753\ 510\ 1247\ 9\ 24\ 92$	$-\ 5040\ 1507\ 1024\ 2485\ 23\ 18\ 24$
- $1680\ 503\ 337\ 829\ 10\ 45\ 30$	- $2520\ 753\ 511\ 1243\ 12\ 27\ 66$	$-\ 5040\ 1508\ 1014\ 2516\ 1\ 6\ 188$
- $1680\ 503\ 338\ 825\ 13\ 48\ 4$	- $2520\ 753\ 512\ 1239\ 15\ 30\ 40$	$-\ 5040\ 1508\ 1015\ 2512\ 4\ 9\ 162$
- $1680\ 504\ 332\ 840\ 3\ 48\ 64$	- $2520\ 753\ 513\ 1235\ 18\ 33\ 14$	$-\ 5040\ 1508\ 1016\ 2508\ 7\ 12\ 136$
- $1680\ 504\ 333\ 836\ 6\ 51\ 38$	- 25207545051258227126	$-\ 5040\ 1508\ 1017\ 2504\ 10\ 15\ 110$
- $1680\ 504\ 334\ 832\ 9\ 54\ 12$	- 25207545061254530100	$-\ 5040\ 1508\ 1018\ 2500\ 13\ 18\ 84$
- $1680\ 505\ 329\ 843\ 2\ 57\ 46$	- 2520754507125083374	$-\ 5040\ 1508\ 1019\ 2496\ 16\ 21\ 58$
$-1680\ 505\ 330\ 839\ 5\ 60\ 20$	- $2520\ 754\ 508\ 1246\ 11\ 36\ 48$	$-\ 5040\ 1508\ 1020\ 2492\ 19\ 24\ 32$
- $1680\ 506\ 326\ 846\ 1\ 66\ 28$	- 25207545091242143922	$-\ 5040\ 1508\ 1021\ 2488\ 22\ 27\ 6$
- $1680\ 506\ 327\ 842\ 4\ 69\ 2$	- $2520\ 755\ 502\ 1261\ 1\ 36\ 108$	- $5040\ 1509\ 1012\ 2515\ 3\ 18\ 144$
$2520\ 748\ 532\ 1204\ 35\ 0\ 0$	-2520755503125743982	$-\ 5040\ 1509\ 1013\ 2511\ 6\ 21\ 118$
$-\ 2520\ 749\ 526\ 1219\ 25\ 0\ 60$	- 2520755504125374256	$-\ 5040\ 1509\ 1014\ 2507\ 9\ 24\ 92$
- 2520749527121528334	$-\ 2520\ 755\ 505\ 1249\ 10\ 45\ 30$	$-\ 5040\ 1509\ 1015\ 2503\ 12\ 27\ 66$
- 252074952812113168	- 2520 755 506 1245 13 48 4	$-\ 5040\ 1509\ 1016\ 2499\ 15\ 30\ 40$
- 25207505201234150120	- 2520756500126034864	- $5040\ 1509\ 1017\ 2495\ 18\ 33\ 14$
- $2520\ 750\ 521\ 1230\ 18\ 3\ 94$	- 2520756501125665138	$-\ 5040\ 1510\ 1009\ 2518\ 2\ 27\ 126$
- $2520\ 750\ 522\ 1226\ 21\ 6\ 68$	- 2520 756 502 1252 9 54 12	- $5040\ 1510\ 1010\ 2514\ 5\ 30\ 100$
- 2520750523122224942	- 2520757497126325746	- $5040\ 1510\ 1011\ 2510\ 8\ 33\ 74$
- $2520\ 750\ 524\ 1218\ 27\ 12\ 16$	- 2520757498125956020	- $5040\ 1510\ 1012\ 2506\ 11\ 36\ 48$
- 2520751514124950180	- 2520758494126616628	- 5040 1510 1013 2502 14 39 22
- 2520751515124583154	- 2520 758 495 1262 4 69 2	- $5040\ 1511\ 1006\ 2521\ 1\ 36\ 108$
- 2520 751 516 1241 11 6 128	- 5040 1504 1036 2464 35 00	- 5040 1511 1007 2517 4 39 82
- 2520 751 517 1237 14 9 102	- $5040\ 1505\ 1030\ 2479\ 25\ 0\ 60$	- 5040 1511 1008 2513 7 42 56
- 25207515181233171276	- $5040\ 1505\ 1031\ 2475\ 28\ 3\ 34$	$-\ 5040\ 1511\ 1009\ 2509\ 10\ 45\ 30$
- 25207515191229201550	- $5040\ 1505\ 1032\ 2471\ 31\ 6\ 8$	- 5040 1511 1010 2505 13 48 4
- $2520\ 751\ 520\ 1225\ 23\ 18\ 24$	- $5040\ 1506\ 1024\ 2494\ 15\ 0\ 120$	- $5040\ 1512\ 1004\ 2520\ 3\ 48\ 64$
- 2520752510125616188	- $5040\ 1506\ 1025\ 2490\ 18\ 3\ 94$	- $5040\ 1512\ 1005\ 2516\ 6\ 51\ 38$
- 2520752511125249162	- 5040 1506 1026 2486 21 6 68	- $5040\ 1512\ 1006\ 2512\ 9\ 54\ 12$
- 2520 752 512 1248 7 12 136	- 5040 1506 1027 2482 24 9 42	- 5040 1513 1001 2523 2 57 46
- 2520 752 513 1244 10 15 110	- 5040 1506 1028 2478 27 12 16	- $5040\ 1513\ 1002\ 2519\ 5\ 60\ 20$
- $2520\ 752\ 514\ 1240\ 13\ 18\ 84$	$-\ 5040\ 1507\ 1018\ 2509\ 5\ 0\ 180$	- $5040\ 1514\ 998\ 2526\ 1\ 66\ 28$
- 2520 752 515 1236 16 21 58	- 5040 1507 1019 2505 8 3 154	- 5040 1514 999 2522 4 69 2
- 2520 752 516 1232 19 24 32	- 5040 1507 1020 2501 11 6 128	
-2520752517122822276	- 5040 1507 1021 2497 14 9 102	

Literatura

- Balińska K. T., Kupczyk M., Zwierzyński K., Methods of generating integral graphs, Computer Science Center Report No. 457, Technical University of Poznań, 1997
- Balińska K., Cvetković D., Lepović M., Simić S., There are exactly 150 connected integral graphs up to 10 vertices, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 10 (1999), 95–105
- [3] Balińska K. T., Simić S., The nonregular, bipartite, integral graphs with maximum degree four, predato za objavljivanje
- [4] Brouwer A. E., Koolen J. H., A new infinite series of regular uniformly geodetic code graphs, Discrete Math. 120 (1993), no. 1-3, 241–247
- [5] Bussemaker F. C., Cvetković D., There are exactly 13 connected, cubic, integral graphs, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz., Nos. 544-576 (1976), 43-48
- [6] Bussemaker F. C., Cvetković D., Seidel J. J., Graphs related to exceptional root systems, T. H.-Report 76 -WSK- 05, Technological University Eindhoven, Eindhoven, 1976
- [7] Cvetković D., Spectrum of the graph of n-tuples, Univ. Beograd Publ. Elektrotehn. Fak., Ser. Mat. Fiz., Nos. 274–301 (1969), 91–95
- [8] Cvetković D., Connectedness of the p-sum of graphs, Univ. Beograd Publ. Elektrotehn. Fak., Ser. Mat. Fiz., Nos. 274–301 (1969), 96–99
- [9] Cvetković D., A note on paths in the p-sum of graphs, Univ. Beograd Publ. Elektrotehn. Fak., Ser. Mat. Fiz., Nos. 302–319 (1970), 49–51

97

- [10] Cvetković D., Graphs and their spectra (Grafovi i njihovi spektri) (disertacija), Univ. Beograd Publ. Elektrotehn. Fak., Ser. Mat. Fiz., Nos. 354– 356 (1971), 1–50
- [11] Cvetković D., The spectral method for determining the number of trees, Publ. Inst. Math. (Beograd) 11 (25) (1971), 135–141
- [12] Cvetković D., The Boolean operations on graphs spectrum and connectedness, V Kongres na Mat. Fiz. i Astr. na Jugoslavija, Ohrid, Sept. 14-19, 1970, Zbornik na Trudovite, Tom I, ed. Dimitrovski D., Sojuz na Drustvata na Mat. Fiz. i Astr. na Jugoslavija, Skopje (1973), 115–119
- [13] Cvetković D., Cubic integral graphs, Univ. Beograd, Publ. Elektrotehn. Fak. Ser. Mat. Fiz., Nos. 498–541 (1975), 107-113
- [14] Cvetković D., Spectra of graphs formed by some unary operations, Publ. Inst. Math. (Beograd) 19 (33) (1975), 37–41
- [15] Cvetković D., A note on constructions of graphs by means of their spectra, Publ. Inst. Math. (Beograd) 27 (41) (1980), 27–30
- [16] Cvetković D., Discussing graph theory with a computer II, Theorems suggested by the computer, Publ. Inst. Math. (Beograd) 33 (47) (1983), 29–33
- [17] Cvetković D., Some graph invariants based on the eigenvectors of the adjacency matrix, Proc. 8th Yugoslav Sem. on Graph Theory, Novi Sad, 1987, eds. Tošić R., Acketa D., Petrović V., Doroslovački R., University of Novi Sad, Institute of Mathematics, Novi Sad (1989), 31–42.
- [18] Cvetković D., Variations on the 2-sum of three graphs, Bull. Acad. Serbe Sci. Arts Cl. Sci. Math. Natur.
- [19] Cvetković D., Doob M., Some developments in the theory of graph spectra, Linear and Multilinear Algebra 18 (1985), 153–181
- [20] Cvetković D., Doob M., Gutman I., Torgašev A., Recent results in the theory of graph spectra, North Holland, Amsterdam, 1988
- [21] Cvetković D., Doob M., Sachs H., Spectra of graphs Theory and Application, Deutscher Verlag der Wissenschaften - Academic Press, Berlin-New York, 1980; drugo izdanje 1982; treće izdanje, Johann Ambrosius Barth Verlag, Heidelberg-Leipzig, 1995
- [22] Cvetković D., Gutman I., Trinajstić N., Conjugated molecules having integral graph spectra, Chem. Phys. Letters 29 (1974), 65–68
- [23] Cvetković D., Lučić R., A new generalization of the concept of the p-sum of graphs, Univ. Beograd Publ. Elektrotehn. Fak., Ser. Mat. Fiz., Nos. 302–319 (1970), 67–71
- [24] Cvetković D., Petrić M., Connectedness of the noncomplete extended p-sum of graphs, Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. 13 (1983), 345– 352
- [25] Cvetković D., Radosavljević Z., A table of regular graphs on at most ten vertices, Proceedings of the Sixth Yugoslav Seminar on Graph Theory, Dubrovnik 1985, 71–105
- [26] Cvetković D., Rowlinson P., Further properties of graph angles, Scientia (Valparaiso) 1 (1988), 41–51
- [27] Cvetković D., Rowlinson P., Simić S., *Eigenspaces of graphs*, Encyclopedia of Mathematics and Its Appl., Vol. 66, Cambridge University Press, Cambridge, 1997.
- [28] Cvetković D., Simić S., Non-complete extended p-sum of graphs, graph angles and star partitions, Publ. Inst. Math. (Beograd) 53 (67) (1993), 4–16.
- [29] Cvetković D., Simić S., Graph-theoretical results obtained by the support of the expert system "graph", Bull. Acad. Serbe Sci. Arts Cl. Sci. Math. Natur. (1994), No. 19, 19–41
- [30] Cvetković D., Simić S., Stevanović D., 4-regular integral graphs, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat., 9 (1998), 89–102
- [31] Dörfler W., Music H., A bibliographic survey of products of graphs, manuscript
- [32] Esser F., Harary F., On the spectrum of a complete multipartite graph, European J. Combin. 1 (1980), no. 3, 211–218
- [33] Friedman H. D., On the impossibility of certain Moore graphs, J. Comb. Theory 10 (1971), No. 3, 245–252

- [34] Harary F., Schwenk A. J., Which graphs have integral spectra?, Graphs and Combinatorics (R. Bari and F. Harary, eds.) Springer-Verlag, Berlin, 1974, 45–51
- [35] Hic P., Nedela R., Note on zeros of the characteristic polynomial of balanced trees, Acta Univ. Mathaei Belii Nat. Sci. Ser., Ser. Math. (1995), No. 3, 31–35.
- [36] Hic P., Nedela R., Balanced integral trees, Math. Slovaka (1998)
- [37] Hoffman A. J., On the polynomial of a graph, Amer. Math. Monthly 70 (1963), 30–36
- [38] Huang T. Y., Spectral characterization of odd graphs O_k , $k \leq 6$, Graphs and Combinatorics 10 (1994), no. 3, 235–240.
- [39] Huang T. Y., Spectral characterization of some generalized odd graphs, predato za objavljivanje
- [40] Li X. L., Lin G. N., On trees with integer eigenvalues, Kexue Tongbao 32 (1987), no. 11, 813–816
- [41] Li X. L., Lin G. N., On integral trees problems, Kexue Tongbao 33 (1988), no. 10, 802–806
- [42] McAndrew M. H., On the product of directed graphs, Proc. Amer. Mat. Soc. 14 (1963), 600-606
- [43] Petrić M. V., Spektralni metod i problem odredjivanja broja puteva u grafu (teza), Univ. Beograd, Fac. Sci. 1980
- [44] Petrić M., Spektralne osobine generalisanog direktnog proizvoda grafova (disertacija), Univ. Novi Sad, Fac. Sci., Inst. Math. 1993
- [45] Petrić M. V., A note on the number of walks in a graph, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. Fiz., Nos. 716–734 (1981), 83–86
- [46] Petrić M. V., On generalized direct product of graphs, in: Graph Theory, Proc. Eighth Yugoslav Seminar on Graph Theory, Novi Sad, April 17-18, 1987, ed. Tošić R., Acketa D., Petrović V., Doroslovački R., Univ. Novi Sad, Inst. Math., Novi Sad 1989, 99–105

- [47] Petrić M. V., Connectedness of the generalized direct product of regular digraphs, Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 21 (1991), 57–64
- [48] Petrić M. V., Bipartiteness of certain graph products, predato za objavljivanje u Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat.
- [49] Razborov A. A., The gap between the chromatic number of a graph and the rank of its adjacency matrix is superlinear, Discrete Math. 108 (1992), 393–396
- [50] Schwenk A. J., Computing the characteristic polynomial of a graph, Graphs and Combinatorics, Lecture Notes in Math. 406, Springer Berlin, 1974, 153–172
- [51] Schwenk A. J., Exactly thirteen connected cubic graphs have integral spectra, Theory and Applications of Graphs (Proc. Internat. Conf., Kalamazoo, May 1976, Y. Alavi and D. Lick, eds.), Lecture Notes in Math. 642, Springer-Verlag, Berlin, 1978, 516–533
- [52] Shee S. C., A note on the C-product of graphs, Nanta Math. 7 (1974), 105–108
- [53] Simić S., Radosavljević Z., Some computer-aided investigations in graph theory, Collection: Optimization, design of experiments and graph theory (Bombay, 1986), Indian Inst. Tech., Bombay, 1988, 307–313
- [54] Simić S., Radosavljević Z., The nonregular, nonbipartite, integral graphs with maximum degree four, J. Comb., Inf. Syst. Sci. 20 (1995), No. 1–4, 9–26
- [55] Šokarovski R., A generalized direct product of graphs, Publ. Inst. Math. (Beograd) 22 (36) (1977), 267–269
- [56] Stevanović D., Construction of graphs with given eigenvalues and angles (Master's thesis), Univ. Niš, Fac. Phil. 1998 (na srpskom)
- [57] Stevanović D., When is NEPS of graphs connected?, prihvaćeno za objavljivanje u Linear Algebra Appl.
- [58] Stevanović D., When can the components of NEPS be almost cospectral?, predato za objavljivanje u Linear Algebra Appl.

- [59] Stevanović D., 4-regular integral graphs avoiding ± 3 in the spectrum, predato za objavljivanje u Graphs and Combinatorics
- [60] Stevanović D., Nonexistence of some 4-regular integral graphs, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 10 (1999), 81–86
- [61] Визинг В. Г., Декартово произведение графов, Вычисл. Системы 9 (1963), 30–43; Comp. El. Syst. 2 (1966), 352–365 (na engleskom)
- [62] Watanabe M., Note on integral trees, Math. Rep. Toyama Univ. 2 (1979), 95–100
- [63] Watanabe M., Schwenk A. J., Integral starlike trees, J. Austral. Math. Soc. Ser. A 28 (1979), no. 1, 120–128
- [64] Weichsel P. M., The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962), 47–52