
University of Nǐs

Faculty of Natural Sciences and Mathematics

Sladjana Lj. Miljković

ITERATIVE METHODS FOR

COMPUTING GENERALIZED

INVERSES OF MATRICES

Ph.D. Dissertation

Nǐs, January 2012

�

The complexity of nature and consequently

the complexity of everyday life processes often make

the mathematical models deterministically unsolvable.

Moreover if such solutions do exist, usually a lot of re-

sources are required to find them. Therefore, the idea

of approximation has developed as irreplaceable tool for

handling many problems.

In the Ph.D. dissertation a special attention is de-

voted to generalized inverses of matrices, which provide

approximate solutions of many problems. They arise in

various application in statistics, physics, economy etc.

We developed different representation of these inverses

and especially by using the idea of nonlinear optimiza-

tion, we presented many effective algorithms for their

computation. Most of the results are original and they

are obtained during my studies at the Faculty of Natural

Sciences and Mathematics, University of Nish. Some

of the results are already published in eminent journals,

and others are on their way.

First and foremost I would like to express my

sincere gratitude to my supervisor Ph.D. Predrag Sta-

nimirović for all the hope he has put on me, before I

thought I could do any research at all. He has been ac-

tively interested in my work and has always been avail-

able to advise me. I am very grateful for his patience,

motivation, enthusiasm, and immense knowledge that

helped me in all the time of research and writing of the

dissertation.

I also thank Ph.D. Dragan Djordjević and Ph.D.

Dragana Cvetković-Ilić for the support and knowledge

they gave me while passing the exams, and which provide

me tools that turned out to be essential in my Ph.D.

research.

Special appreciating is also extending to the other

members of the committee and all professors who were

supportive of me during the period of my education.

I sincerely thank you all and I’m looking forward to con-

tinuing interaction over the years ahead.

Last but not least, I sincerely thank all my friends

and colleagues for being here for me anytime I needed.

Finally, I dedicate this dissertation to my parents

who provide me with a great support, attention and trust,

without which nothing of this would have been realized.

�

Contents

1 Introduction 3

1.1 Organization of the Ph.D. dissertaion . 5

2 Unconstrained optimization 9

2.1 Line search iterative methods . 9

2.1.1 The steepest descent method . 11

2.1.2 Newton’s method . 11

2.1.3 Quasi-Newton’s method . 12

2.1.4 Non-monotone line search technique . 14

2.2 Scalar correction method (SC method) . 16

2.2.1 Basic ideas . 16

2.2.2 Convergence properties . 20

2.2.3 Numerical results . 23

2.3 Least-squares solutions on Hilbert spaces . 27

2.3.1 Fréchet derivative . 28

2.3.2 Secant equation on Hilbert spaces . 29

2.3.3 SC method for solving linear operator equation on Hilbert spaces 30

2.3.4 Convergence properties . 31

3 Generalized inverses 33

3.1 Basic definitions and properties . 33

3.1.1 Matrix equations and {i, j, . . . , k}-inverses 37

3.1.2 The Moore-Penrose inverse . 39

3.1.3 The Drazin inverse . 41

3.1.4 The A
(2)
T,S-inverse . 43

3.2 Further properties of the Drazin inverse . 44

3.2.1 Least-square properties of the Drazin-inverse solution 44

3.2.2 Least-squares properties of the Drazin inverse 48

3.3 Least-square properties of A
(2)
T,S-inverse solutions 54

3.4 Full-rank factorization of generalized inverses . 56

3.4.1 Full-rank factorization of {2, 4} and {2, 3}-inverses 57

4 Iterative methods for computing generalized inverses 61

4.1 Intoduction . 61

4.2 The Moore-Penrose inverse . 62

4.2.1 Steepest descent method for singular linear operator equation 62

1

2 CONTENTS

4.2.2 Application of the SC method for finding the Moore-Penrose inverse so-
lution of an operator equation . 63

4.2.3 Application of the SC method for finding the Moore-Penrose inverse of a
matrix . 67

4.2.4 Numerical Results . 70
4.3 The Drazin inverse . 73

4.3.1 Gradient methods for computing the Drazin-inverse solution 74
4.4 The A

(2)
T,S-inverse . 78

4.4.1 Gradient methods for computing the A
(2)
T,S-inverse solution 78

4.4.2 SMS method . 81
4.4.3 SMS method for computing {2, 3} and {2, 4}-inverses of matrices 84
4.4.4 Displacement rank and displacement operator of a Toeplitz matrix 89
4.4.5 Modified SMS method for computing M

(2)
T,S-inverses of a Toeplitz matrix

M . 92

5 Application in image restoration 105
5.1 Preliminaries . 105

5.1.1 Uniform linear blur . 106
5.1.2 Non-uniform linear blur . 108

5.2 Removal of uniform blur in X-ray images . 109
5.2.1 Experimental results . 115
5.2.2 Restoring uniform blur and noise . 117

5.3 Partitioning method for removing non–uniform blur in images 118
5.3.1 Experimental results . 121
5.3.2 Restoring non–uniform blur and noise . 122

6 Conclusion 125

Chapter 1

Introduction

Generalized inverses of matrices, as their name indicates, are generalization of the notion of the
ordinary matrix inverse. While the ordinary matrix inverse exists only for square nonsingular
matrices, the generalized inverses exist for a much bigger set of matrices, and at the same time,
each matrix has many generalized inverses. The broadest definition for a generalized inverse of
a matrix says that it is a matrix which:

• exists for a larger class of matrices than the ordinary inverse does;

• has some properties of the ordinary inverse;

• for a given square nonsingular matrix it reduces to the ordinary inverse.

The idea for the definition of generalized inverses of matrices origins from the necessity of
finding a solution of a given system of linear equations, which as a problem appears in many
scientific and practical disciplines, such as: statistics, operational research, physics, economy,
electrotechnics, and many others. Generalized inverses provide a simple way for obtaining a
solution of the so called ”ill-conditioned” linear problems.

The concept of generalized inverses is introduced for the first time by the scientist Fredhlom
in 1903 [50], although it is considered that Gauss in 1809 implicitly indicated the ideas and
the necessity of defining the notion of generalized inverse. Concretely, generalized inverses of
matrices has appeared bit later in 1920 in the paper of the scientist E.H.Moore [96]. However,
his work was not continued in the next 30 years, first of all because of the way the work
was presented and the ambiguous notation. The research on this topic was carried on by
the scientist Bjerhammar in 1950, while with the paper published by R. Penrose [106], the
real evolution in the development of this area, has started. Also, many monographs has been
written [20, 12, 137].

With the purpose of defining a generalized inverse which will have as many properties as
the ordinary matrix inverse, different types of generalized inverses are introduced. The first
such inverse, named by the scientists who worked on, is the Moore-Penrose inverse. Nowadays,
besides the Moore-Penrose inverse, the theory of generalized inverses, recognizes many different
types of generalized inverses, such as: the Drazin inverse, the group inverse, the weighted Moore-
Penrose inverse, {i, j, k}-inverses, the Bott-Duffin inverse etc. Except for {i, j, k}-inverses, the
main and one of the most important characteristic of all mentioned generalized inverses, is the
fact that, for a given matrix they are the unique matrices which posses the properties typical
for them. Additionally, these inverses posses one more good property, i.e., for a given matrix

3

4 CHAPTER 1. INTRODUCTION

A ∈ Cm×n, they can be represented on a unique way, by using the so called A
(2)
T,S-inverses,

for appropriate choices of matrices T and S. This inverse is especially interesting, because it
enables to foresee how its properties are reflected to a specific generalized inverse.

However, besides the all mentioned good properties of generalized inverses, they are not
easily obtainable, especially for large dimensions which usually arise in practical examples.
Similarly as the case with the ordinary inverse, it is almost impossible to obtain deterministically
a generalized inverse of a matrix.

”All exact science is dominated by the idea of approximation.” - Bertrand Russell

Penrose in his paper was the first who showed the close connection between the Moore-
Penrose inverse and the least-squares solution problem of a system of linear equations. The last,
represents a special case of the nonlinear optimization problems. Additionally, the discovered
minimal properties of the solution of a linear system of equations, obtained with the usage of
the Moore-Penrose inverse, brought to intensive usage of the optimization methods.

Usually, an optimization method is an iterative method for finding the minimum or maximum
of some optimization problem. Namely, given an initial point x0, an iterative sequence xk is
generated by a given iterative rule, such that the sequence xk converges to the optimal solution
of the problem. A typical behavior of an algorithm which is regarded as acceptable is that the
iterates xk move steadily towards the neighborhood of a local optimizer x, and then rapidly
converge to the point x. When a given convergence rule is satisfied, the iteration will be
terminated.

The theory of optimization represents a very important mathematical discipline and finds great
application, not only in the theory of applied mathematics, but also in many practical disciplines
such as: production, aviation, management, sociology, genetic etc. Moreover, the process of
evolution, reveals that follows optimization. Although the optimization theory is a part of
everyday life for a very long time, this science has faced an important development in the last
five decades. The subject is involved in the process of finding optimal solution of problems
which are defined mathematically, i.e., given a practical problem, the ”best” solution to the
problem can be found from lots of schemes by means of scientific methods and tools. It involves
the study of optimality conditions of the problems, the construction of model problems, the
determination of algorithmic method of solution, the establishment of convergence theory of
the algorithms, and numerical experiments with typical problems and real life problems.

It is considered that the very first idea of optimization is presented by Queen Dido in
1000 BC while investigating the so called isoperimetric problems. Though, the first systematic
presentation of the optimization theory has appeared in 1694, when John Bernoulli posed the
Brachistochrone (Greek for ”shortest time”) problem. Later, these investigations formed the
basis for the numerical optimization developed during and after the Second World War. In 1947
Dantzig proposed the simplex algorithm for solving linear optimization problems. Necessary
conditions were presented by Kuhn and Tucker in 1950, and they formed a focal point for the
development of the nonlinear optimization theory. Nonlinear optimization will be the most
exploited in this Ph.D. dissertation with the purpose of effective calculation of generalized
inverses. The most representative monographs in the optimization theory are [42, 85, 100, 130].

Since the optimization methods are iterative, it is our purpose to construct good algorithms
for finding their solution. Under ”good algorithm” it is assumed that it possesses the following
properties:

1.1. ORGANIZATION OF THE PH.D. DISSERTAION 5

• Robustness, since it should perform well on a wide variety of problems in their class, for
all reasonable choices of the initial variables.

• Efficiency, since it should not require too much computer time or storage.

• Accuracy, since it should be able to identify a solution with precision, without being overly
sensitive to errors in the data, or to the arithmetic rounding errors that occur when the
algorithm is implemented on a computer.

All these goals are usually conflict, so, tradeoffs between the different types of good properties
are central issues in numerical optimization.

The subject of investigation of the Ph.D. dissertation is the calculation of generalized in-
verses of matrices, as well as the connection between the generalized inverses of matrices with
the optimization theory concepts. There are defined new iterative methods for solving optimiza-
tion problems. A special attention is devoted on defining new iterative methods for generalized
inverses calculation. The defined methods enables efficient calculation of generalized inverses,
as well an analysis of their properties. The contribution of the Ph.D. dissertation is in the
field of generalized inverses, as well, in the field of unconstrained optimization theory. This is
claimed by the proposal of the new effective algorithms which can be compared to the most
favorable ones in their disciplines. The main papers which served as initial motivation for the
Ph.D. dissertation are [8, 43, 111].

1.1 Organization of the Ph.D. dissertaion

Generally, the Ph.D. dissertation is divided on three main parts (Chapter 2, Chapter 3 and
Chapter 4). The first one is devoted, only, to the theory and concepts of unconstrained optimiza-
tion. The second one deals, only, with the definition and properties of generalized inverses of
matrices. And finally, the third one presents a unification of the previous parts. Namely, gath-
ering the ideas from unconstrained optimization theory and the theory of generalized inverses
of matrices; the third part deals with the calculation of the generalized inverses of matrices.
Basically, the calculation is provided by using the optimization theory tools. In addition, in the
last chapter, it is presented an application of the generalized inverses in the process of removing
blur in images.

The detailed description of the consisting parts of the Ph.D. dissertation is as follows.

The next chapter consists of tree sections. In the first one, the common gradient methods
from the theory of nonlinear unconstrained optimization theory are restated, such as: the
steepest descent method, the rank-one update, BFGS method, Barzilai-Borwain method (BB)
etc. [8, 85, 100]. Also, it is given a short analysis of their performances, efficiency, the reasons
for their limiations, as well the possibility of their improvements.

From all previously mentioned methods, as the most important ones for the Ph.D. dissertation,
are designated, the rank-one update and the BB method. These two methods belong to the
class of the, so called, quasi-Newton methods, i.e., to the class of iterative methods which can
be represented with the following iterative scheme

xk+1 = xk −Bkgk, k = 1, 2, . . . ,

6 CHAPTER 1. INTRODUCTION

where Bk is an approximation of the Hessian inverse of the objective function, and gk is its
gradient. According to the rank-one update method, the matrix Bk at each iteration is updated
with a rank-one matrix with the following formula

Bk+1 = Bk + αkzkz
T
k .

According to the BB method, the Hessian inverse is approximated with a scalar matrix Bk =
γkI, and γk at each iteration is updated with the following formula

γk+1 =
sT

k yk

yT
k yk

,

where sk = xk+1 − xk and yk = gk+1 − gk. Although the efficiency for finding a solution with
these two methods is incomparable, in favor of the BB method, the ideas from the both meth-
ods served as a motivation for obtaining a new iterative method for nonlinear unconstrained
optimization [89].
The new method, named as Scalar Correction (SC method), is presented in the second section
of this chapter. Namely, in the new method the Hessian inverse is approximated with a scalar
matrix Bk = γkI, same as the BB method; but then in each iteration γk is rectified with
appropriately chosen scalar number γk+1 = γk +ak. With the purpose of complete presentation
of the method, in the first section of this chapter it is also presented the methodology of the, so
called, the method of nonmonotone line search, which enables a global convergence of the BB
method, as well as of the new method. The BB method accompanied with the nonmonotone
line search technique is also known as the globalized BB method (GBB method) [111], and
represents one of the most important methods in the theory of unconstrained optimization. As
a continuation, in the second section, besides the global convergence of the new method, under
some conditions it is proven its R-linear convergence. In the end, there are presented numerical
examples which reveal the significantly greater efficiency of the new method with respect to
the already recognized GBB method.

Motivated by the generalization of the steepest descent method on Hilbert spaces [97], as
well as the methods investigated in [43], firstly using the properties of the Fréchet derivative,
in the third section of the second chapter, there are presented new results which actually are
generalization of the secant equation on Hilbert spaces [91]. This equation is a basis for the two-
point stepsize gradient iterative methods (where belong the BB method and the SC method),
which present one of the most effective methods in nonlinear optimization. Further, by using
these ideas, as well as the ideas of the SC method quoted in the second section, it is constructed
an algorithm for finding the Moore-Penrose inverse solution of the operator equation (1.1),
where A is an operator between Hilbert spaces. In order to stick to the general organization of
the Ph.D. dissertation, in Chapter 2, it is only shown the convergence of the method, without
mentioning the Moore-Penrose inverse. The connection with the Moore-Penrose inverse is
clarified later in Chapter 4.

In the first section of the third chapter, there are presented definitions and basic notion
with respect to the most important types of generalized inverses of matrices, as well as their
properties. Taking into account that the generalized inverses of matrices are closely connected
to the solutions of a given system of matrix equations, first the results in which are determined
the general solutions of matrix equations, are given, with a special stress of the particular case

Ax = b, (1.1)

1.1. ORGANIZATION OF THE PH.D. DISSERTAION 7

i.e., the system of linear equations. If it is not otherwise stated we use A ∈ Cm×n. Further,
it is exposed the well known theory for the minimal properties of the Moore-Penrose inverse
solution A†b, as well as its characteristic to be the least-squares solution of the system (1.1).

In this section, also are mentioned the Drazin inverse and the Drazin inverse solution of the
system (1.1), which in the last years especially attract the attention of the scientists form this
area. Namely, in the papers [20, 140, 142], there are presented the properties of the Drazin
inverse solution for which, on some way, can be said that they represent an analogues results
to the properties of the Moore-Penrose inverse solution. For example, in [20] it is shown that if
b ∈ R(Ap), where p = ind(A), the Drazin inverse solution is the unique solution of the system
(1.1) which belongs to R(Ap). Wei in [140, 142], showed that the Drazin inverse solution of the
system (1.1) is a solution of minimum P -norm, where P is the Jordan matrix obtained with
the Jordan decomposition of the matrix A.

The second section, continues with new results for the properties of the Drazin inverse and
the Drazin inverse solution [92, 94]. We start from the very specific case, i.e., we determine
the solution ADb for a given system of linear equations Ax = b, where b ∈ R(Ap), p = ind(A),
and gradually we progress until we establish a general formula for calculating the matrix AD.
The obtained results are closely related to the minimal properties of the Drazin inverse and
represent analogous results to the already known results for the Moore-Penrose inverse.

In the third section of the third chapter, new results are presented which refer to the A
(2)
T,S

inverses and A
(2)
T,S-inverse solutions of the system (1.1). These results consolidate the previously

exposed properties of the Moore-Penrose inverse and the Drazin inverse, and on that way they
enable those properties to be transferred to the other types of generalized inverses of matrices
which can be represented via A

(2)
T,S inverses.

The representaion of {2}-inverses, with the general form F (GAF)−1G is frequently applied
tool in the numerical calculations. For example, this representation is investigated with the
purpose of defining a deterministic representation of A

(2)
T,S inverses [117], i.e., of the set A{2}s

[125]. At the same time this representation has been used for the construction of the successive
matrix squaring (SMS) method [126]. Based on these ideas in the last section of the third
chapter there are defined full-rank representations of {2, 3} and {2, 4}-inverses of a given matrix,

with a given range and null space, as a special case of the full-rank representation of the A
(2)
T,S-

inverse. Also, it is defined a full-rank representations of A{2, 3}s i A{2, 4}s, as a special case
of the full-rank representations of the sets A{2}s, where s ≤ r and r is the rank A [128].

The fourth chapter consists of four sections as follows: In the first section we only give a
brief introduction. In the second section, there are presented iterative methods for computing
{1, 3}-inverses, the Moore-Penrose inverse, {1, 3}-inverse solution of the system (1.1), as well
as its Moore-Penrose inverse solution [91]. In the third section of this chapter, it is presented
a method for finding the Drazin-inverse solution of the system (1.1) [92]. And in the fourth

section, there are presented iterative methods for finding A
(2)
T,S-inverse solution of the system

(1.1).

More precisely, based on the results obtained in Chapter 2 and Chapter 3, as a continuation,
it is presented a gradient method for computing {1, 3}-inverses and the Moore-Penrose inverse
of a given matrix. In this part, also it is presented the convergence of the introduced methods,
as well as numerical results which claim the effectiveness.

Usually, for a given iterative process which converges to {1, 3}-inverse solutions of an equation
of the type (1.1), the following question arises: for a given initial iteration, to which {1, 3}-

8 CHAPTER 1. INTRODUCTION

inverse solution the process would converge. As an addition, in the Ph.D. dissertation we give
an answer to the opposite case, i.e., for a given {1, 3}-inverse solution, which initial iteration
should be chosen in order the process to converge to that solution.

In this second section, also, it is made a small deviation from the theory of matrices, and
is given a short overview of the theory of the Moore-Penrose inverse of linear operators on
Hilbert spaces. The theory exposed in this part is necessary for the introduced results. Here,
it is presented the well known Steepest descent method for solving linear operator equation on
Hilbert spaces [97], which served as a basic motivation for our results.

The properties of the Drazin inverse and the Drazin inverse solution already mentioned,
lead to a new iterative process for finding the Drazin inverse solution of the system (1.1).
This method is a gradient method, and is first such method for computing the Drazin inverse
solution. In the literature, the most famous methods for computing the Drazin inverse solution
are: the projection methods, the Krylov subspace methods and the semi-iterative methods.

The fourth section includes new iterative methods, such as method for finding A
(2)
T,S-inverse

solution of the system (1.1) which is a generalization of the method for finding the Drazin
inverse solution presented in the previous section. Further a method, motivated by [14, 126],

so called, the displacement SMS method for finding A
(2)
T,S inverses of a Toeplitz matrix [90].

This method, actually presents a generalization of the results from [14], where by using the, so
called, orthogonal displacement operator, it is given a very useful algorithm for computing an
ordinary inverse of a given Toeplitz matrix. In the literature, there are different algorithms for
finding the Moore-Penrose inverse, the Drazin inverse etc. which use a complicated strategy of
choosing an appropriate initial iteration. The importance of the new method is that it enables
a unique way for computing different types of generalized inverses of a Toeplitz matrix.

This section, also, includes the obtained results with respect to the computation of {2, 3}
and {2, 4}-inverses [128]. These methods are based on the full-rank representation, introduced

in the previous chapters, and the SMS algorithm for computing A
(2)
T,S-inverses introduced in

[126]. For all previously mentioned iterative method, the convergence results and numerical
examples are presented.

In the fifth chapter we illustrate an application of the Moore-Penrose inverse in the field of
image processing. Images are produced to memorize useful information, but unfortunately the
presence of the blur is unavoidable. Motion blur is the effect of the relative motion between
the camera and the scene during image exposure time.

In this chapter it would be introduced a direct method for restoring images which are blurred by
a uniform motion [93], and a computational method for restoring images which are blurred by a
uniform or non–uniform motion [129]. It is based on appropriate adaptations of the partitioning
and block-partitioning method introduced in [58] and [135]. The performed adjustments of the
algorithms and the specific structure of the blurring matrix brought to a numerical results
which are competitive to the most favorable algorithms in this field.

In the last chapter it is given a conclusion with respect to the obtained results which are
exposed in the Ph.D. dissertation. It is given a short overview of their scientific importance.
This chapter is ended with a given outline regarding the ideas for further investigation and
directions for a possible results which will arise as an extension.

Chapter 2

Unconstrained optimization

The purpose of this chapter is to present new methods in the theory of unconstrained opti-
mization. Before their presentation in the last two sections, it is given a short overview of the
basics and history that lead towards the new methods. Some of the gradient iterative schemes
are presented, as well as the characteristics of the non-monotone line search technique. This
technique in many situation provides a global convergence of the gradient iterative methods.

2.1 Line search iterative methods

Throughout this chapter, we consider the unconstrained minimization problem

min f(x), x ∈ Rn, (2.1)

where Rn denotes the n-dimensional Euclidian space and f : Rn → R is a given objective
function that we want to minimize.

For convenience, the following notations are used:

g(x) := ∇f(x), gk = g(xk) := ∇f(xk), Gk = G(xk) := ∇2f(xk),

where ∇f(x) denotes the gradient of f and ∇2f(x) denotes the Hessian of f in x. For a given
vectors x, y ∈ Rn, by xT y we denote the Frobenious inner product, and ‖x‖ =

√
xT x. By N0,

we denote the set of all non-negative integers.

The most desirable solution of the problem is its global minimizer, i.e., a point x∗ for which
f(x∗) ≤ f(x) for all x ∈ Rn. However, the fastest optimization algorithms seek only a local
solution, i.e., a point at which the objective function is smaller than at all other feasible points
in its vicinity.

The mathematical tool used to study minimizers of smooth functions is the Taylor’s theorem.
This theorem would be central also in the process of defining the quasi-Newton methods. For
completness we restate the theorem [85].

Theorem 2.1.1. Suppose that f : Rn → R is continuously differentiable and that ∆x ∈ Rn.
Then we have that

f(x + ∆x) ≈ f(x) + g(x + t∆x)T ∆x

9

10 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

for some t ∈ (0, 1). Moreover, if f is twice continuously differentiable, we have that

g(x + ∆x) ≈ g(x) +

∫ 1

0

G(x + t∆x)∆xdt (2.2)

and that

f(x + ∆x) ≈ f(x) + g(x)T ∆x +
1

2
∆xT G(x + t∆x)∆x.

In the sequel, we give some basic theorems for the necessity and sufficiency, a point x∗ to
be a local minimizer of the function f [85].

Theorem 2.1.2. (First-order necessary conditions) If x∗ is a local minimizer of the function
f , which is continuously differentiable in an open neighborhood of x∗, then g(x∗) = 0.

Theorem 2.1.3. (Second-order necessary conditions) . If x∗ is a local minimizer of the function
f and G is continuous in an open neighborhood of x∗, then g(x∗) = 0 and G(x∗) is positive
semi-definite.

Theorem 2.1.4. (Second-order sufficient conditions) Suppose that G is continuous in an open
neighborhood of x∗ and that g(x∗) = 0 and G(x∗) is positive definite. Then x∗ is a strict local
minimizer of the function f , i.e., f(x∗) < f(x) for all x in some neighborhood of x∗.

The most frequently used general iterative scheme for solving the problem (2.1) is given by

xk+1 = xk + tkdk, k = 0, 1, . . . , (2.3)

where xk+1 is a new iterative point, xk is a current iterative point, tk > 0 is a steplength, and
dk is a search direction (see, for example, [22, 85, 130]).

The search direction dk is usually required to satisfy the descent condition

gT
k dk < 0, (2.4)

which guarantees that dk is a descent direction of f(x) at xk [3, 100]. In order to ensure the
global convergence, it is sometimes required that dk satisfies the sufficient descent condition

gT
k dk ≤ −c1‖gk‖2, (2.5)

as well as the inequality
‖dk‖ ≤ c2‖gk‖, (2.6)

where c1, c2 are some positive constants [59].
After the search direction dk is established, we need to determine a steplength tk which

will ensure sufficient decrease of f . For this purpose one possible approach is the line search
methodology, which searches along the direction dk from the current point xk and determines
the steplength tk. There are two main line search strategies: exact line search methods and
inexact line search methods.

In the exact line search the stepsize tk is chosen according to the one dimensional minimiza-
tion problem

f(xk + tkdk) = min
t>0

f(xk + tdk). (2.7)

2.1. LINE SEARCH ITERATIVE METHODS 11

In some special cases (for example quadratic problems) it is possible to compute the steplength
tk in (2.7) analytically, but it is usually computed to approximately minimize f along the ray
{xk + tdk : t > 0}. Since the exact minimization in (2.7) is expensive and of no practical
value, the inexact line search algorithms are preferable. This class of algorithms can be divided
regarding the changes of the objective function f . In fact, if we force monotone decreasing of
the function f in each iteration then we have the monotone line search methods; otherwise, we
consider the nonmonotone line search techniques. The first one generates a limited number of
trial steplengths until it finds one that provides a sufficient decrease of the objective function
f . Many inexact line search algorithms have been proposed: Armijo, Goldstein, Wolfe, Powell,
Fletcher and others (see [4, 33, 115, 148]). Among them, the most popular is the algorithm
known as backtracking line search (Armijo line search).

The original nonmonotone line search strategy is proposed in [59], and is given in more
details further in this chapter.

2.1.1 The steepest descent method

The most obvious direction which satisfies the descent conditions is, of course, the steepest
descent or negative gradient direction. It moves along the negative gradient of the function f ,
i.e.,

dk = −gk, (2.8)

for all k = 1, 2, . . . , and the iterative scheme (2.3) becomes the following iterative scheme

xk+1 = xk − tkgk, k = 0, 1, . . . , (2.9)

where tk is obtained by means of the one-dimensional optimization problem (2.7) [22].
In other words, from the point xk we search along the negative gradient direction −gk, in

order to find the minimum of the function, on this line. The method proved to be effective
for functions very well conditioned. On the other hand, despite the optimal property (2.7),
the steepest descent method converges slowly and it is badly affected by ill-conditioning, and
thus being of no practical value (see [1, 49]). Even for quadratic functions the steepest descent
method behaves increasingly badly when the conditioning number of the matrix deteriorates.
More precisely, by the proof given by Luenberg [85], it follows that for a given strongly convex
quadratic function, the steepest descent iterative scheme converges to the minimum of the
function at a linear rate, i.e., there exists a constant M ∈ (0, 1) such that

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ M,

for all k sufficiently large. This type of convergence is also called Q-linear convergence [130].

2.1.2 Newton’s method

The next step for improving the algorithm of steepest descent is the direction, which besides the
information given from the gradient of the function, also, uses the information from its Hessian.
The Newton’s direction is probably one of the most important directions. It is derived from
the second order Taylor’s series, from which is obtained the following

dk = −G−1
k gk, (2.10)

12 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

The Newton’s direction is the most applicable when the original function and its quadratic
model, determined from the second order Taylor’s series do not differ too much. In order to be
satisfied the condition (2.4), the Hessian inverse of the function, should be a positive definite
matrix, for in this case we have

gT
k dk = −gT

k G−1
k gk = −‖gk‖2

G−1
k
≤ 0.

The usual steplength associated with the Newton’s direction is the unit step tk = 1 for each
k. However, in the cases when G−1

k is not defined or if the Newton’s direction is not a descent
direction, to make this method applicable, it is chosen a steplength tk such that it modifies the
direction dk in order to make it a descent direction, but still pertaining the information from
the Hessian.

The Newton’s direction methods are very fast and they converge quadratically (or Q-
quadratically) to a local minimizer of the function, i.e., there exists a positive constant M
such that ‖xk+1 − x∗‖

‖xk − x∗‖2
≤ M,

for all k sufficiently large. The main drawback of the Newton’s direction is the need to compute
the Hessian inverse, which is very expensive operation and acquire a lot of memory space.

2.1.3 Quasi-Newton’s method

The weakness of the Newton’s direction, discussed previously, is overcome with the intoduction
of the quasi-Newton’s methods. As we already indicated, this direction is obtained from the
second order Taylor series of the function f , i.e., from the equation (2.2) we can obtain

g(x + ∆x) = g(x) + G(x)∆x +

∫ 1

0

(G(x + t∆x)−G(x))∆xdt.

Because the function g is continuous, the last term of the equation is o(‖∆x‖) [130]. By setting
x = xk and ∆x = xk+1 − xk, we obtain

gk+1 = gk + Gk(xk+1 − xk) + o(‖xk+1 − xk‖),
or equivalently

Gk(xk+1 − xk) ≈ gk+1 − gk. (2.11)

The technique used in quasi-Newton’s method for choosing a direction, is based on choosing
an approximation of the Hessian inverse that follows the property given in (2.11), and which is
also called a secant equation. Based on the previous consideration, if we denote

Bk := Gk, sk := xk+1 − xk, yk := gk+1 − gk

we can impose the following condition

sk = Bk+1yk. (2.12)

The general iterative scheme (2.3) becomes

xk+1 = xk −Bk gk. (2.13)

According to the research in [18], we can observe three alternatives for the matrix Bk in (2.13):
scalar matrix, corresponding to all cases Bk = γkI, where γk is a scalar; diagonal matrix,
satisfying Bk = diag (γ1, . . . , γn) and full matrix.

2.1. LINE SEARCH ITERATIVE METHODS 13

• Symmetric-rank-one update method

The symmetric-rank-one update method approximates the Hessian inverse by a full matrix
of rank one. Namely, the Hessian inverse is corrected by the following formula

Bk+1 = Bk +
(sk −Bkyk)(sk −Bkyk)

T

yT
k (sk −Bkyk)T

. (2.14)

The previous formula can be obtained by imposing the condition that the correction of the
Hessian inverse should be done by the following formula

Bk+1 = Bk + akzkz
T
k ,

where the constant ak and the vector zk are such that the matrix Bk+1 satisfies the secant
equation.

The main drawback of rank-one-update method, besides calculation of a full matrix, is that
the updating formula (2.14) preserves positive definiteness only if yT

k (sk − Bkyk) > 0. Also,
even if it is positive, it may be small, which can lead to numerical difficulties.

• BFGS method

Similarly, BFGS method, named after its inventors, Broyden, Fletcher, Goldfarb, and
Shanno, goes one step further and tries to correct the Hessian inverse by adding two sym-
metric matrices of rank one. The final update is given with the following formula which is
defined by

Bk+1 = Bk − Bkyky
T
k Bk

yT
k Bkyk

+
sks

T
k

sT
k yk

. (2.15)

Whenever the initial approximation B0 is positive definite, BFGS update generates positive
definite approximations and sT

k yk > 0.

On the contrary of rank-one-update method, the BFGS method, preserves positiveness at each
step.

• Barzilai-Borwein method (BB method)

It is well-known that the Newton-like methods, which need to store and compute a full ma-
trix Bk at each iteration (for example, symmetric-rank-one update method or BFGS method),
are unsuitable to solve large-scale optimization problems in many cases, because their approx-
imations to the Hessian or to its inverse are usually dense. The storage and computational
requirements grow in proportion to n2, and become excessive for large n. It is necessary to
modify and extend these methods to make them suitable for large problems [100].

By taking a scalar approximation to the Hessian inverse

Bk = γkI ≈ G−1
k , γk > 0, (2.16)

the quasi-Newton method (2.13) reduces to the gradient descent iterative scheme

xk+1 = xk − γkgk.

14 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

In 1988, Barzilai and Borwein [8] proposed a gradient method (called BB method), in which the
steplength along the negative gradient direction is computed from a two-point approximation
to the secant equation required in quasi-Newton methods.

This scheme is also analysed in [8], where the steplength γk is computed after the minimiza-
tion

γk = arg min
t
‖t−1sk−1 − yk−1‖2,

which yields

γk =
sT

k−1sk−1

sT
k−1yk−1

, (2.17)

where sk := xk+1 − xk, yk := gk+1 − gk. Observing the symmetric case, Barzilai and Borwein
also obtained the following choice for γk

γ̂k =
sT

k−1yk−1

yT
k−1yk−1

. (2.18)

2.1.4 Non-monotone line search technique

While computing the steplength γk it is desirable to accomplish a tradeoff between a choice
which would give a substantial reduction of the objective function and which would not require
a lot of computational time. A popular inexact line search condition is the Wolfe’s condition
which stipulates that γk satisfies the following inequality

f(xk + tdk) ≤ f(xk) + c1tg
T
k dk, (2.19)

for some constant c1 ∈ (0, 1). However, the Wolf’s condition is not enough by itself to ensure
that the algorithm makes reasonable progress. As a complement of this condition it is given
the second Wolfe’s condition, also called curvature condition

g(xk + tdk)
T dk ≥ c2g

T
k dk, (2.20)

for some constant c2 ∈ (c1, 1).

The authors in [59], for the choice of the steplength, imposed that the function value of each
new iteration satisfies the Armijo’s condition when it comes to the maximum function value
achieved in a predefined number of previous iterations. Therefore, this line search procedure
can be viewed as a generalization of the Armijo’s rule [4] since it allows an increase in the
function values without affecting the convergence properties. Due to its practical and theoretical
relevance in the global convergence analysis for unconstrained optimization, the nonmonotone
line search technique applied to the BB gradient method has attracted considerable attention
in recent years (see [38, 39, 48]).

The original nonmonotone line search strategy is based on the usage of a positive integer
M . In each iteration the stepsize t is obtained in such a way as to fulfil the inequality

f(xk + tdk) ≤ max
0≤j≤m(k)

f(xk−j) + σtgT
k dk, (2.21)

where m(0) = 0, 0 ≤ m(k) ≤ min{m(k−1)+1,M−1}, and σ is a parameter from the Armijo’s
rule [4].

Here, we restate the algorithm which will be used as a common line search procedure for
both the BB gradient method as well as for the gradient descent method introduced in [89].

2.1. LINE SEARCH ITERATIVE METHODS 15

Algorithm 2.1.1 The nonmonotone line search.

Input: Objective function f(x), the search direction dk, numbers 0 < σ < 0.5, β ∈]0, 1[, a ∈ R
and m ∈ N0.

1: t = a.
2: While f(xk + tdk) > max

0≤j≤m
f(xk−j) + σtgT

k dk, take t = tβ.

3: Return tk = t.

In the case m ≡ 0, the nonmonotone line search mentioned above reduces to the Armijo’s line
search. For our purposes, the real parameter a is an initial trial stepsize obtained by the means
of (2.17) for the BB method, or by means of (2.34) for the SC method (obtained later in Section
2).

The authors in [59] prove the global convergence of the nonmonotone line search method for
a twice continuously differentiable function where the search direction satisfies conditions (2.5)
and (2.6). In his work, Dai gives another proof for the global convergence of the nonmonotone
line search method under the conditions (2.5), (2.6) and the Lipschitz continuity of the gradient
of the objective function [39]. Moreover, the author shows that it is possible to weaken the
conditions (2.5) and/or (2.6) imposed on the search direction dk and still to preserve the global
convergence.

For the sake of completeness we restate the main results from [39].

Definition 2.1.1. A function f is Lipschitz continuous if there exists L > 0 such that

‖f(y)− f(z)‖ ≤ L‖y − z‖, (2.22)

for all y, z ∈ Rn.

Proposition 2.1.1. Suppose that the function f is bounded below on Rn and that its gradient
g is Lipschitz continuous. Consider any iterative method (2.3), where dk is a descent direction
and tk is obtained by Algorithm 2.1.1. Then, for any l ≥ 1,

max
1≤i≤M

f(xMl+i) ≤ max
1≤l≤M

f(xM(l−1)+i) + σ max
0≤i≤M−1

(tMl+ig
T
Ml+idMl+i).

Further, we have that

∑

l≥1

min
0≤i≤M−1

{|gT
Ml+idMl+i|,

(gT
Ml+idMl+i)

2

‖dMl+i‖2
} < ∞.

Proposition 2.1.2. Suppose that the function f is bounded below on Rn and that its gradient
g is Lipschitz continuous. Consider any iterative method (2.3), where dk satisfies (2.5) and
(2.6), and tk is obtained by Algorithm 2.1.1. Then there exists a constant c3 such that

‖gk+1‖ ≤ c3‖gk‖, for all k.

Further, we have that

lim
k→∞

‖gk‖ = 0.

16 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

Definition 2.1.2. Let xk ∈ Rn be any sequence that converges to x∗. If

0 < lim
k→∞

sup ‖xk − x∗‖ < 1

then xk is said to be R-linearly convergent to x∗.

The following proposition shows that any iterative method using the nonmonotone line
search is R-linear convergent for uniformly convex functions [39].

Proposition 2.1.3. Suppose that f is a smooth and uniformly convex function. Consider any
iterative method (2.3), where dk satisfies (2.5), (2.6) and tk is obtained by Algorithm 2.1.1.
Then, there exist constants c4 > 0 and c5 ∈ (0, 1) such that

f(xk)− f(x∗) ≤ c4c
k
5[f(x1)− f(x∗)].

Using a globalization strategy, based on the nonmonotone line search technique introduced in
[59], Raydan [111] proved the global convergence of the BB method for nonquadratic functions.
The numerical results reported in [111] show that the resulting algorithm is competitive to
several well known conjugate gradient algorithms for large scale unconstrained optimization.
Due to its simplicity and numerical efficiency, the two-point stepsize gradient method has
initiated many studies (see, for example, [37, 110, 111]).

2.2 Scalar correction method (SC method)

2.2.1 Basic ideas

This section aims at presenting a new gradient descent method [89] by the means of the general
iterative scheme of the quasi-Newton type, in which a scalar matrix approximates the inverse
Hessian. The initial trial stepsize is obtained as a consequence of the secant equation which
is based on two successive iterative points. With this in mind, it is proposed a new two-point
stepsize gradient descent method; the method is called the Scalar Correction method (the SC
method). It is shown that the new algorithm, to which the technique of the nonmonotone line
search is applied, is comparable with preferred GBB method, i.e., the BB method accompanied
by the nonmonotone line search (introduced by Raydan [111]). Moreover, the presented nu-
merical results demonstrate the fact that the SC algorithm – combined with the nonmonotone
line search – outperforms the GBB method.

First, it is introduced a new two-point stepsize gradient descent method, which is obtained
from approximation of the Hessian inverse by a scalar matrix and the quasi-Newton property.
The initial trial stepsize γk+1 in the new algorithm is determined after updating the inverse
Hessian Bk at each step by the following formula

Bk+1 = Bk + akI = (γk + ak)I = γk+1I.

Thus, the correction of the prior trial stepsize γk is defined by

γk+1 = γk + ak. (2.23)

2.2. SCALAR CORRECTION METHOD (SC METHOD) 17

The parameter ak = ak(sk, yk) ∈ R depends on two successive iterative points xk, xk+1 and the
corresponding gradients gk, gk+1. If we apply the secant equation to the chosen approximations
xk and xk+1, our task is to find a scalar γk+1 satisfying

sk = γk+1yk. (2.24)

This means that the ideal case would be for the vector sk to be a scalar multiple of yk. Using
(2.23), we can express the last equation in the following way

sk − γkyk − akyk = 0.

In order to obtain an approximate solution, we search for a vector that minimizes the norm
of the left hand side of the previous equation. Similarly as in the BB method, two symmetric
solutions can be obtained by minimizing the norms

min
a
‖a−1(sk − γkyk)− yk‖2 and min

â
‖(sk − γkyk)− âyk‖2. (2.25)

Consequently, we get dual solutions

ak =
(sk − γkyk)

T (sk − γkyk)

(sk − γkyk)T yk

and âk =
(sk − γkyk)

T yk

yT
k yk

, (2.26)

which correspond to the choices (2.17) and (2.18) in the BB method, respectively. Taking into
account the advantages of the choice (2.17) with respect to the symmetric case (approved in
numerical experiments) [37], we decide to use ak. In other words, we expect better performances
of the induced algorithm with respect to the algorithm based on the choice of âk. If (sk −
γkyk)

T yk = 0, we choose ak = 0.

After the substitution of ak in (2.23), in the case (sk − γkyk)
T yk 6= 0 we obtain

γk+1 = γk +
(sk − γkyk)

T (sk − γkyk)

(sk − γkyk)T yk

= γk +
‖sk − γkyk‖2

(sk − γkyk)T yk

. (2.27)

In the opposite case, (sk − γkyk)
T yk = 0, we get γk+1 = γk. Let us define an auxiliary vector rk

as follows

rk = sk − γkyk. (2.28)

After the substitution in (2.27), we obtain

γk+1 = γk +
‖rk‖2

yT
k rk

=
sT

k rk

yT
k rk

, (2.29)

for yT
k rk 6= 0, where the second equality follows after few algebraic transformations.

Remark 2.2.1. After the minimization (2.25) is performed, the scalar correction (2.23) is
used in the computation of the parameter γk+1 and the corresponding scalar matrix Bk+1 =
γk+1I. These facts serve as the motivating factor for using the name ”scalar correction” for
the introduced method.

18 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

Our main idea in choosing the initial trial steplength after each iteration is to ease its
selection and choose it to be as large as possible, but still with a steplength produced by the
secant property. Small initial trial steplength, in the cases where greater steplength would lead
the process closer to the solution, undoubtedly increases the number of iterations. On the other
hand, too big trial stepsize choice is prevented by the usage of the nonmonotone line search.
For this purpose, we observe additional two trial steplengths as follows

γBB
k+1 =

sT
k yk

yT
k yk

, (2.30)

γSS
k+1 =

‖sk‖
‖yk‖ . (2.31)

The initial trial stepsize γBB
k+1 is determined by (2.18), while γSS

k+1 follows directly from the
secant equation (2.24) after we equalize the norms on the left and the right hand side (see also
[116]). It is important to point out that each stepsize given by (2.29) – (2.31) is derived from
a two-point approximation to the secant equation, underlying quasi-Newton methods. The
following lemma gives a few useful relations among the three stepsizes in order to ensure the
most appropriate choice among them.

Lemma 2.2.1. For trial stepsizes given by (2.29)− (2.31), we have the following inequalities:

γBB
k+1 ≤ γSS

k+1 ≤ γk+1, yT
k rk > 0, (2.32)

γk+1 ≤ γBB
k+1 ≤ γSS

k+1, yT
k rk ≤ 0. (2.33)

Proof. If yT
k rk > 0, using the Cauchy-Schwarz inequality |yT

k rk| ≤ ‖yk‖ · ‖rk‖, after a few
transformations we get:

γk+1 = γk +
‖rk‖2

yT
k rk

≥ γk +
‖rk‖
‖yk‖

= γk +
‖sk − γkyk‖

‖yk‖
≥ γk +

‖sk‖ − γk‖yk‖
‖yk‖

= γSS
k+1.

Another application of the Cauchy-Schwarz inequality leads to

γk+1 ≥ γSS
k+1 ≥

sT
k yk

yT
k yk

= γBB
k+1.

In the case of yT
k rk < 0, since the following holds

|yT
k rk|2 ≤ ‖yk‖2 · ‖rk‖2,

taking into account the negative sign of yT
k rk, we have

yT
k rk

‖yk‖2
≥ ‖rk‖2

yT
k rk

.

2.2. SCALAR CORRECTION METHOD (SC METHOD) 19

Therefore,

γk+1 = γk +
yT

k rk

‖yk‖2
+
‖rk‖2

yT
k rk

− yT
k rk

‖yk‖2

=
γk‖yk‖2 + yT

k rk

‖yk‖2
+
‖rk‖2

yT
k rk

− yT
k rk

‖yk‖2

=
yT

k (γkyk + rk)

‖yk‖2
+
‖rk‖2

yT
k rk

− yT
k rk

‖yk‖2

≤ yT
k sk

yT
k yk

= γBB
k+1

≤ γSS
k+1.

In the last case, taking into account (2.28), the assumption yT
k rk = 0 is equivalent to

γk =
yT

k sk

‖yk‖2
= γBB

k+1.

Now, since ak = 0, we have
γk+1 = γk = γBB

k+1 ≤ γSS
k+1,

and the proof is completed. ¤

In accordance with results shown in Lemma 2.2.1, in our method we choose the initial trial
stepsize to be equal with the largest values in two different cases (2.32) and (2.33). Therefore,
we get

γSC
k+1 :=

{
sT
k rk

yT
k rk

, yT
k rk > 0,

‖sk‖
‖yk‖ , yT

k rk ≤ 0.
(2.34)

Next, we present the general algorithm for the two-point stepsize gradient method in con-
junction with the nonmonotone line search, which can be applied for the large scale uncon-
strained optimization. This algorithm belongs to a class of the quasi-Newton methods with
the nonmonotone line search where the approximation of the Hessian inverse is presented by
an appropriate scalar matrix.

Algorithm 2.2.1 General gradient algorithm with the nonmonotone line search

Input: Objective function f(x), chosen initial point x0 ∈ dom(f), positive integer M and real
constants 0 < ξ1 < ξ2.

1: Set k = 0, compute f(x0), g0 = ∇f(x0) and use γ0 = 1, m(0) = 0.
2: If test criteria is fulfilled, then stop the iteration; otherwise, go to the next step.
3: Find tk using Algorithm 2.1.1 with input values dk = −gk, m = m(k) and a = γk.
4: Compute xk+1 = xk − tkgk, f(xk+1), gk+1, sk := xk+1 − xk, yk := gk+1 − gk.
5: Compute the initial trial stepsize γk+1 according to the given method. If γk+1 > ξ2 or

γk+1 < ξ1, set γk+1 = 1.
6: Set k = k + 1, m(k) = min{m(k − 1) + 1,M − 1}, and go to the step 2.
7: Return xk+1 and f(xk+1).

In order to keep the sequence γk bounded, we use the test criteria as in Step 5.

20 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

If we want to embed the BB method in Algorithm 2.2.1, in Step 5 we have to determine
γk+1 according to (2.17) or (2.18). We choose (2.17) in accordance with the known fact that
the choice (2.18) often performs worse than (2.17) in practical computations [37], which leads
to the choice of the stepsize

γBB
k+1 =

sT
k sk

sT
k yk

. (2.35)

Therefore, we have the following algorithm.

Algorithm 2.2.2 The BB gradient algorithm with the nonmonotone line search

Step 5: Compute the initial trial stepsize γk+1 using (2.35). If γk+1 > ξ2 or γk+1 < ξ1, set
γk+1 = 1.
Other steps are the same as in Algorithm 2.2.1.

Now, we are in a position to present a new gradient descent algorithm with nonmonotone
line search, which is a particular case of the general Algorithm 2.2.1, and differs only in Step
5, where the initial trial stepsize is computed.

Algorithm 2.2.3 SC gradient descent algorithm with the nonmonotone line search

Require: Objective function f(x), chosen initial point x0 ∈ dom(f), positive integer M and
real constants 0 < ξ1 < ξ2.
Step 5: Compute the initial trial stepsize γk+1 using (2.34). If γk+1 > ξ2 or γk+1 < ξ1, set
γk+1 = 1.
Other steps are the same as in Algorithm 2.2.1.

Further in the text, the GSC method will stand for the SC method with the nonmonotone line
search.

Remark 2.2.2. Every iteration of the SC method requires only O(n) floating point operations
and a gradient evaluation, as in the BB method. In this manner, both the computational and
storage complexity of the SC method and the BB method are equivalent.

2.2.2 Convergence properties

Before proving the global convergence of the new algorithm, we state the following lemma which
gives the lower bound for the stepsize tk.

Lemma 2.2.2. Suppose that the gradient of f(x) is Lipschitz continuous. For any iterative
method (2.3), where dk = −gk and tk is obtained from the nonmonotone line search (2.21) after
the initial trial stepsize is determined by (2.34) – steps 3 and 5 in Algorithm 2.2.1 – we have
the following inequality

tk ≥ min

{
ξ1,

β(1− σ)

L

}
, k = 0, 1, 2, . . . (2.36)

Proof. If the initial trial stepsize tk = γk satisfies the nonmonotone condition (2.21), since
γk ≥ ξ1, (2.36) holds.

2.2. SCALAR CORRECTION METHOD (SC METHOD) 21

Otherwise, if the initial trial stepsize tk = γk does not satisfy the nonmonotone condition
(2.21), then we have the following inequalities

f

(
xk +

tk
β

dk

)
> max

0≤j≤m(k)
f(xk−j) + σ

tk
β

gT
k dk

≥ f(xk) + σ
tk
β

gT
k dk,

which imply

f

(
xk +

tk
β

dk

)
− f(xk) > σ

tk
β

gT
k dk.

After applying the Mean Value Theorem on the left hand side of the above inequality, we get
that there exists θ ∈]0, 1[such that

tk
β

g

(
xk + θ

tk
β

dk

)T

dk > σ
tk
β

gT
k dk.

Hence,

g

(
xk + θ

tk
β

dk

)T

dk > σgT
k dk.

If we subtract gT
k dk from both hand sides of the above inequality, and apply the Cauchy-

Schwartz inequality as well as the Lipschitz condition (2.22), we have

−(1− σ)gT
k dk <

(
g

(
xk + θ

tk
β

dk

)
− gk

)T

dk ≤ L

β
tk‖dk‖2,

which, after using dk = −gk, implies

tk > −β(1− σ)

L

gT
k dk

‖dk‖2
=

β(1− σ)

L
.

The last inequality completes the proof of the Lemma. ¤

The proof of the global convergence is quite easy to understand and read taking into con-
sideration the particular choice of the search direction dk = −gk and the initial trial steplength
obtained according to (2.34). Also, we use some results from the global convergence theorems
(see [39, 59]) as auxiliary results in the proof.

Theorem 2.2.1. Suppose that f(x) is bounded below on the level set L(x0) = {x ∈ Rn|f(x) ≤
f(x0)} and that its gradient be Lipschitz continuous on an open set C that contains L(x0). Then,
for the iterative method (2.3), where dk = −gk is a descent direction and tk is determined by
Algorithm 2.2.3, we have the following

a) The norm of the gradients vanishes at infinity, i.e.

lim
k→∞

‖gk‖ = 0. (2.37)

b) If the number of stationary points of f(x) in L(x0) is finite, the sequence {xk} converges.

22 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

Proof. The authors in [39] (Theorem 2.1 which follows the same conditions) using Lipschitz
continuity of g(x), prove that there exists a real constant

c3 = 1 + c2ξ2L > 1

such that the following holds

‖gk+1‖ ≤ c3‖gk‖, ∀k ∈ N. (2.38)

For the choice dk = −gk we have (2.6) which is satisfied for c2 = 1. Therefore, (2.38) holds for
c3 = 1 + ξ2L.

Let l(k) be a positive integer such that:

k −m(k) ≤ l(k) ≤ k,

f(xl(k)) = max
0≤j≤m(k)

f(xk−j).
(2.39)

The authors in [59] show that the sequence {f(xl(k))}k∈N is non-increasing. Also, they prove
the following statement

lim
k→∞

tl(k)−1g
T
l(k)−1dl(k)−1 = 0.

After the replacement dk = −gk and usage (2.36), we obtain lim
k→∞

‖gl(k)−1‖ = 0. As a straight

implication we have

lim
k→∞

‖gl(kM)−1‖ = 0. (2.40)

Now, according to (2.38) we obtain

‖gkM+i‖ ≤ c2M+1
3 ‖gl(kM)−1‖, i = 0, 1, . . . , M, (2.41)

which, finally, together with (2.40) implies (2.37), and the proof of a) is completed.

To prove the statement b) we start with the fact that every accumulation point of the
sequence {xk} is also a stationary point of {f(x)}, which follows straight from (2.37) and the
fact that L(x0) is bounded. Since the number of stationary points of f(x) is finite, the relation

‖xk+1 − xk‖ ≤ tk‖dk‖ ≤ ξ2‖gk‖ → 0

implies that the sequence {xk} converges. ¤

Theorem 2.2.2. For smooth and uniformly convex functions, the iterative method (2.3), in
which dk = −gk is a descent direction and tk is determined by Algorithm 2.2.3, is R-linearly
convergent.

Proof. Follows directly from Proposition 2.1.3. ¤

2.2. SCALAR CORRECTION METHOD (SC METHOD) 23

2.2.3 Numerical results

In this section, we report some numerical results obtained from testing the new gradient descent
method (the SC method) with respect to the BB method, both combined with the nonmonotone
line search technique. The codes, based on Algorithms 2.2.2 and 2.2.3, are written in the
visual C++ programming language and tested on a Workstation Intel Core duo 1.6 GHz. The
parameters used in nonmonotone line search algorithm are σ = 0.0001 and β = 0.8 which
means that we accept a small decrease in f predicted by linear approximation at the current
point. Additional parameters for both algorithms are ξ1 = 10−5, ξ2 = 105 and M = 10.

The following 40 test functions, given in extended or generalized form, are taken from [2]
and used as a large scale test problems. The number of variables considered for each test
problem is contained in the set D = {100, 500, 1000, 2000, 3000, 5000, 7000, 8000, 10000, 15000}.
Stopping criteria are:

‖gk‖ ≤ 10−6 and
|f(xk+1)− f(xk)|

1 + |f(xk)| ≤ 10−16.

In the table below, we present the total number of iterations, the total CPU time, and the
total number of function evaluations for each test problem, tried out for the above mentioned
10 different numbers of variables. Additionally, in the last two columns the optimal function
values, obtained by the both methods in the case when the dimension of the problems equals
100, are given.

Table 2.2.1. Summary numerical results for the GBB and GSC methods tested on 40 large

scale test functions.

No. of iterations CPU time No. of funct. eval. Func. min.
Test function

GBB GSC GBB GSC GBB GSC GBB GSC
Extended Freud. and Roth 417 590 2.98 3.653 1734 1970 0 2E-16
Extended Rosenbrock 858 440 8.995 3.621 4253 1430 0 0
Extended White and Holst 619 580 5.026 5.088 1998 1840 7.66E-13 0
Extended Beale 444 693 5.322 8.261 1028 1676 2E-13 2.45E-13
Extended Penalty 506 501 6.792 7.058 2066 2056 75 75
Perturbed Quadratic 18072 6893 155.231 45.182 62401 18899 4.6E-15 2.6E-15
Raydan 1 8197 3894 52.089 20.557 27040 10556 505 505
Raydan 2 75 75 0.387 0.307 160 160 100 100
Diagonal 1 7066 3313 43.479 21.855 15798 8874 -15706.7 -15706.7
Diagonal 2 10525 4871 111.168 37.292 41163 13778 15.74 15.74
Diagonal 3 8397 3457 83.809 29.903 28014 9501 -4605.8 -4605.8
Hager 950 887 6.808 6.228 2523 2059 -653.08 -653.08
Generalized Tridiagonal 1 280 276 2.169 2.387 640 632 97.21 97.21
Extended Tridiagonal 1 372 359 1.683 2.074 864 808 2.73E-9 2.73E-9
Extended Three Exponential Terms 100 90 0.996 0.715 300 280 127.96 127.96
Diagonal 4 70 65 0.543 0.48 330 320 0 2E-16
Diagonal 5 50 50 0.59 0.495 110 110 69.31 69.31
Extended Himmelblau function 135 120 1.481 1.324 410 380 2.4E-15 0
Generalized PSC1 7344 4688 193.87 105.322 26099 13002 98.72 98.72
Extended PSC1 150 160 2.293 2.447 460 480 38.66 38.66
Extended Powell 10 10 0.03 0.015 30 30 0 0
Extended Block Diagonal BD1 178 166 1.918 1.854 416 392 8.2E-15 8.2E-15

24 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

Extended Maratos 200 305 2.058 2.965 730 1000 -50.03 -50.03
Quadratic Diagonal Perturbed 5891 5494 51.934 39.652 23921 17054 3.1E-12 3.1E-12
Quadratic QF1 18175 7407 145.512 45.121 61728 20355 -0.005 -0.005
Extended Quadratic Penalty QP1 171 189 3.714 4.09 740 776 390.06 390.06
Quadratic QF2 13383 7504 140.136 74.198 45740 20972 -1.00 -1.00
Extended EP1 48 48 1.152 1.215 356 356 793.18 793.18
Extended Tridiagonal-2 401 485 1.51 1.808 892 1112 38.58 38.58
ARWHEAD 140 170 4.119 4.293 710 797 -2.1E-14 -2.1E-14
Almost Perturbed Quadratic 20336 7131 170.088 41.511 69489 19472 1.32E-13 1.32E-13
ENGVAL1 333 392 4.963 5.309 836 956 109.09 109.09
QUARTC 212 212 1.09 1.12 474 474 5.97E-9 5.97E-9
Diagonal 6 75 75 0.371 0.262 160 160 1.11E-14 1.11E-14
LIARWHD 579 677 12.104 11.465 2615 2425 0 0
Generalized Quartic GQ1 216 223 2.995 2.714 525 538 1.56E-14 0
Diagonal 7 70 70 0.497 0.465 160 160 -81.68 -81.68
Diagonal 8 70 70 0.729 0.589 190 190 -48.05 -48.05
Diagonal 9 6553 5329 32.528 29.37 22417 14986 -15346.2 -15346.2
HIMMELH 20 20 0.121 0.091 60 60 -62.5 -62.5

We can see in Table 2.2.1 that the GSC method overcomes the GBB method for 21 test
functions, both algorithms have the same number of iterations for 9 test functions, while the
GBB method requires fewer iterations in 10 cases. Similarly, observing the number of function
evaluations needed for the program execution, we have that the GSC method is a better choice
in 22 test functions, while the GBB method shows better performances in 9 cases. For 9 test
problems both algorithms achieve the same number of function evaluations.

Additionally, we present a table which shows the number of numerical experiments, out of
400, for which the GSC and GBB achieved the minimum number of iterations, the minimum
CPU time, and minimum number of function evaluations, respectively.

Table 2.2.3. Comparative performances of the GSC and GBB methods in 400 numerical

experiments.

Performance indicators GSC GBB both

Number of iterations 199 102 99
CPU time (sec) 186 84 130
Number of function evaluations 208 100 92

The last column, named both, represents the number of experiments for which the observed
indicators of both algorithms have the same values. The great improvement of our new method
in comparison to the GBB method in all three observed indicators is more than evident.

Not only is the number of problems in which the GSC overcomes the GBB method greater
than in the converse case, but the difference in observing indicators is also significant. Table
2.2.1 shows the functions ’Perturbed Quadratic’, ’Raydan 1’, ’Diagonal 1, 2, 3’, ’Quadratic
QF2’ and ’Almost Perturbed Quadratic’ which serve as an illustration of the above stated
fact. It is not difficult to see the substantial difference favoring the GSC method in each of
the observing indicators. The GSC method is almost two times better when it comes to the
number of iterations as well as about 2.2 times better than the GBB in observing the CPU time
and the number of function evaluations. As the confirmation of these facts, the following table

2.2. SCALAR CORRECTION METHOD (SC METHOD) 25

presents the average performances of observed characteristics of the two algorithms obtained
from testing 400 problems.

Table 2.2.4. Average numerical outcomes for 40 test functions tried out on 10 numerical

experiments in each iteration.

Average performances GSC GBB

Number of iterations 169.9 329.2
CPU time (sec) 1.43 3.16
Number of function evaluations 477.7 1123.9

• Benchmarking of optimization software

The better performances of the GSC method compared to the GBB method can also be
confirmed by using the so-called performance profile of a given metric, introduced in [40]. In
the sequel, first, we give the basic ideas of the benchmarking process introduced in [40].

Benchmark results are generated by running a solver on a set of problems and recording
information of interest such as the number of function evaluations, the computing time etc. The
benchmarking methodology, presented in [40], is based on the, so called, performance profile as
a means to evaluate and compare the performance of the set of solvers S on a test set P .

Suppose that ns solvers (algorithms) are compared, on a set of np problems. The parameter
that is of intrest is the CPU time (number of iterations) as a performance measure. For each
problem p and solver s, it is defined the variable

tp,s = CPU required to solve problem p by solver s.

ip,s = number of iterations to solve problem p by solver s.

Further, it is compared the performance on problem p by solver s with the best performance
by any solver on this problem by using the following ratio:

rp,s =
tp,s

min{tp,s : s ∈ S} .

This ratio is called the performance ratio (the respective quantity can be defined for the number
of iterations ip,s). The final assessment is done by measuring the performance of the solver by
using the following parameter,

ρs(τ) =
1

np

size{p ∈ P : rp,s ≤ τ},

which is the probability for solver s ∈ S that a performance ratio rp,s is within a factor τ ∈ R
of the best possible ratio. The function ρs is the (cumulative) distribution function for the
performance ratio.

26 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

Following the notations given in the paper [40] we have that the number of solvers is ns = 2
(the GBB and GSC) and the number of numerical experiments is np = 400. For the performance
metrics we use the CPU time and the number of iterative steps. The quantity rp,s becomes

rp,s =
tp,s

min{tp,s : s ∈ {GBB, GSC}}

Finally, the performance of the solver s is measured with the quantity ρs(τ).

Figure 2.2.1 shows the performance profiles of the methods regarding the CPU time and the
number of iterations. The performance profile regarding the number of function evaluations
is not illustrated, since it is very similar to the performance profile regarding the number of
iterations.

1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ

ρ

Performance profile regarding the CPU time

GBB

GSC

1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

τ

ρ

Performance profile regarding the number of iterations

GBB

GSC

Figure 2.2.1. (Left) Performance profile for the GBB and GSC methods regarding the CPU time.

(Right) Performance profile for the GBB and GSC methods regarding the number of iterations.

It is clear from Figure 2.2.1 that the GSC has better performances. The probability of being
the optimal solver regarding the CPU time (number of iterative steps) is in favour of the GSC
algorithm, which is confirmed by ρGSC(1) = 0.69 > ρGBB(1) = 0.56 (0.77 > 0.58). Also, for
both metrics and all values of τ , the probability ρGSC(τ) of our algorithm is always greater
than the probability ρGBB(τ) of the GBB method.

The differences between the two algorithms in the growth of the dimensions are shown in
Figure 2.2.2. Namely, we propose a quotient as a measurement of the difference between two
solvers regarding the dimension d. The quotient, named ratio, is defined as follows

ratio(d) =

∑
p tp,GSC,d∑
p tp,GBB,d

, d ∈ D,

where tp,s,d represents the CPU time (number of iterations) corresponding to the problem p of
dimension d and the solver s.

2.3. LEAST-SQUARES SOLUTIONS ON HILBERT SPACES 27

100 500 1000 2000 3000 5000 7000 8000 10000 15000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Number of variables

R
at

io

Ratio of CPU times for GSC and GBB methods

100 500 1000 2000 3000 5000 7000 8000 10000 15000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
Ratio of No. iterations for GSC and GBB methods

Number of variables

R
at

io

Figure 2.2.2. (Left) The ratio of CPU times for the GSC and GBB methods.

(Right) The ratio of number of iterations for the GSC and GBB methods.

It is obvious from Figure 2.2.2 that, regardless of the dimension of the problem, the GSC
algorithm is always better than the GBB algorithm (the ratio is always less than one). Moreover,
the ratio for larger dimensions is improved with respect to the ratio for lower dimensions of the
problem.

2.3 Least-squares solutions on Hilbert spaces

Solving the system of linear operator equations is an interesting problem. Many different
techniques are developed to solve this problem [12, 43, 65, 95, 97, 132]. Since it usually reduces
to an optimization problem, it is of our interest and will be considered in the present section.

Let A ∈ L(H,K), where L(H,K) denotes the space of linear bounded operators between
Hilbert spaces H and K. The equation

Ax = b, b ∈ K (2.42)

may or may not have a solution, depending on whether b is in the range R(A) of A or not.
Even if b ∈ R(A) the solution need not to be unique. In cases where b /∈ R(A) or the
solution is not unique, it is possible to compute vector which minimizes the quadratic functional
q(x) = 1

2
‖Ax− b‖2.

Definition 2.3.1. A vector x̂ ∈ H is called a least-squares solution of the operator equation
(2.42) if and only if ‖Ax̂− b‖ = inf{‖Ax− b‖ : x ∈ H}.

Nashed in [97] minimized the functional q(x) in order to find a solution of the operator
equation Ax = b, where A ∈ L(H,H) is such that R(A) is closed. The minimization of the
functional q(x) is accomplished by using the iterative scheme

xk+1 = xk − γkgk, (2.43)

where

gk = A∗Axk − A∗b and γk =
‖gk‖2

‖Agk‖2
.

28 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

Since this method is actually the steepest descent method, the stepsize αk is chosen according
to the strategy that guarantees the most rapid decrease of ‖Axk+1− b‖. The linear convergence
of the method to a least-squares solution of the equation Ax = b is established in [97], for an
arbitrary initial approximation x0 ∈ H.

As it is also stressed before, despite the optimal property, the steepest descent method
behaves poorly, except for very well conditioned functions and converges slowly (see [1, 49]). In
some particular cases, such as quadratic functions, it is possible to compute the steplength γk

analytically. Even for these functions the steepest descent method behaves increasingly badly
when the condition number of the matrix deteriorates. The authors in [112] stressed out that
the poor behavior of the steepest descent method is due to the optimal Cauchy choice of the
steplength γk and not to the choice of the search direction (direction of the negative gradient).

The two-point stepsize gradient method introduced in [8] is proved to be more effective and
thus, preferable over the classical steepest descent method both in theoretical investigations
and in real computations.

In this section, we develop a two-point stepsize gradient descent method for finding least-
squares solution of an operator equation. It is based on the idea of secant equation, introduced
by now for finite dimensional spaces [91]. In order to generalize this notion we use the idea of
Fréchet differentiable operator on Hilbert spaces.

For the sake of completeness, we restate main known facts about the Fréchet derivative from
[34, 78].

2.3.1 Fréchet derivative

Definition 2.3.2. Let H and K be Hilbert spaces and U ⊂ H is an open set. Let f : U → K
be an operator and x ∈ U . If there is a bounded linear operator g : H → K such that

lim
‖h‖→0

‖f(x + h)− f(x)− g(h)‖
‖h‖ = 0,

h ∈ H, we say that f is Fréchet differentiable at x, or simply differentiable at x; g is called the
(Fréchet) derivative of f at x and we will denote it by Df(x) ∈ L(H,K).

Definition 2.3.3. An operator f is (n+1)-times differentiable on U if it is n times differentiable
on U and for each x in U there exists a continuous multilinear map g of (n+1) arguments such
that the limit

lim
‖hn+1‖→0

‖Dnf(x + hn+1)(h1, . . . , hn)−Dnf(x)(h1, . . . , hn)− g(h1, . . . , hn+1)‖
‖hn+1‖ = 0 (2.44)

exists uniformly for h1, h2, . . . , hn in bounded sets in H. In this case, g is the (n+1)st derivative
of f at x.

Proposition 2.3.1. Let D be a convex subset of H and f is (n+1)-times Frechet differentiable
operator on D. Then if x and x + p are given elements in D we have

f(x + p) =
n∑

k=0

1

k!
D(k)f(x) (p, p, . . . , p)︸ ︷︷ ︸

k times

+w(x, p)

2.3. LEAST-SQUARES SOLUTIONS ON HILBERT SPACES 29

where

‖w(x, p)‖ ≤ 1

(n + 1)
sup

t∈[0,1]

‖D(n+1)f(x + tp)‖‖p‖n+1.

Definition 2.3.4. [86] Let H be Hilbert space, U ⊂ H is an open set and f : U → R is a given
differentiable functional. The gradient of the functional f is the linear map

∇f : U → H such that 〈∇f(x), h〉 = Df(x)(h),

where Df(x)(h) means the linear map Df(x) applied to the vector h ∈ H.

The existence and uniqueness of such linear map follows straight from the application of the
Riesz representation theorem of the linear bounded operator Df(x) : H → R.

Definition 2.3.5. Let H be Hilbert space, U ⊂ H is an open set and f : U → R is a given
twice differentiable functional. The Hessian of the functional f is the linear operator

∇2f ∈ L(U ×H,H) such that 〈∇2f(x, p), h〉 = D2f(x)(p, h),

where D2f(x)(p, h) means the linear map D2f(x)(p) applied to the vector h ∈ H.

The existence and uniqueness of such linear map follows straight from the Riesz representation
theorem for the linear bounded operator D2f(x)(p) : H → R.

Since the necessary results have been established. next we are going to obtain the analog
to the secant equation for an operator on a Hilbert space.

2.3.2 Secant equation on Hilbert spaces

Let H and K be given Hilbert spaces and A ∈ L(H,K) be given operator such that R(A) is
closed. Let the functional q : U → R be defined by

q(x) =
1

2
‖Ax− b‖2 =

1

2
〈Ax− b, Ax− b〉. (2.45)

Based on Proposition 2.3.1 we have that the first order Taylor series expansion for the operator
Dq is

Dq(x) = Dq(xk+1) + D2q(xk+1)(x− xk+1) + w(x, x− xk+1), (2.46)

which is equivalent to

Dq(x)(h) = Dq(xk+1)(h) + D2q(xk+1)(x− xk+1, h) + w(x, x− xk+1)(h) for all h ∈ H.

From Definition 2.3.4 and Definition 2.3.5 we have

〈∇q(x)−∇q(xk+1), h〉 − 〈∇2q(xk+1, x− xk+1), h〉 = w(x, x− xk+1)(h) for all h ∈ H.

Taking h = ∇q(x) −∇q(xk+1) −∇2q(xk+1, x − xk+1) and having in mind that w(x, x − xk+1)
stands for second order residual we get

∇q(x)−∇q(xk+1) ≈ ∇2q(xk+1)(x− xk+1).

Setting x = xk, gk = ∇q(xk), Hk = ∇2q(xk), sk = xk+1 − xk and yk = gk+1 − gk, we get

Hk+1(sk) ≈ yk, (2.47)

which is analogue to the secant equation on Rn.

30 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

2.3.3 SC method for solving linear operator equation on Hilbert
spaces

For the purpose of minimizing the functional q defined by (2.45), on an open set U ⊂ H,
we analyze the gradient iterative scheme (2.43) where γk > 0 is a stepsize, which will be
appropriately determined. Taking into account that gk = ∇q(xk) = A∗(Axk − b), which is not
difficult to show from (2.45), we consider an iterative process given in the following general
form

xk+1 = xk − γkA
∗(Axk − b), (2.48)

for the purpose of finding least-squares solutions of the equation Ax = b. The importance in
choosing appropriate stepsize in order to obtain convergence as well as good computational
performance is obvious.

In the rest of this section, we use the stepsize determined according to the idea of the
scalar correction method, introduced in [89]. For the sake of completeness, we extend the basic
ideas for SC method with respect to Hilbert spaces. In order to obtain an appropriate stepsize
we use the information of the stepsize obtained in the previous step and try to correct it by
adding some scalar. To determine that scalar properly, the idea of a two-point approximation
to the secant equation is used, similarly as in BB method. The final choice for the stepsize is
done by relaxing the stepsize as much as it is possible in view of two additional steplengths,
which are also obtained from the first order secant equation. Now, we want to approximate

Hk+1 with some identical operator I : H → H multiplied by the real parameter 1
γk+1

such that

Hk+1(h) = 1
γk+1

h holds for all h ∈ H.

After the steplength γk is computed, we observe the following correction

γk+1 = γk + ak. (2.49)

in order to find the stepsize γk+1 for the next iteration. According to the secant equation (2.47)
we get

sk − γkyk − akyk ≈ 0.

Hence, we have the problem of minimizing the function

min
a
‖a−1(sk − γkyk)− yk‖2, (2.50)

which yields the solution

ak =
〈sk − γkyk, sk − γkyk〉

〈sk − γkyk, yk〉 , (2.51)

in the case 〈sk − γkyk, yk〉 6= 0. Otherwise, we choose ak = 0. After the substitution of (2.51)
in (2.49), applying the notation rk = sk − γkyk and few algebraic transformations we obtain

γk+1 = γk +
‖rk‖2

〈yk, rk〉 =
〈sk, rk〉
〈yk, rk〉 , (2.52)

if 〈rk, yk〉 6= 0 and γk+1 = γk, otherwise. Finally, comparing this steplength with two additional
steplengths

γBB
k+1 =

〈yk, sk〉
‖yk‖2

, γSS
k+1 =

‖sk‖
‖yk‖ , k ≥ 0,

2.3. LEAST-SQUARES SOLUTIONS ON HILBERT SPACES 31

we do the following choice (see also [89])

γSC
k+1 =

{ 〈sk,rk〉
〈yk,rk〉 , 〈yk, rk〉 > 0
‖sk‖
‖yk‖ , 〈yk, rk〉 ≤ 0

, k ≥ 0. (2.53)

Corresponding algorithm is defined as follows.

Algorithm 2.3.1 SC method for computing least-squares solutions

Input: An operator A : H → K such that R(A) is closed, chosen initial point x0 ∈ H and real

positive constants 0 < ε ¿ 1, 0 < ξ1 ¿ 2(1−ε)
‖A‖2 .

1: Set k = 0, compute q(x0), g0 and use γ0 = 1.
2: If test criteria are fulfilled then go to Step 7; otherwise, go to the next step.
3: Compute xk+1 using (2.48), q(xk+1), gk+1, sk = xk+1 − xk, yk = gk+1 − gk.

4: Determine ξ
(k+1)
2 = 2(1− ε) ‖gk+1‖2

‖Agk+1‖2 .

5: Compute the stepsize γk+1 using (2.53). If γk+1 < ξ1 or γk+1 > ξ
(k+1)
2 , set γk+1 = ξ

(k+1)
2 .

6: Set k := k + 1 and go to Step 2.
7: Return xk+1 and q(xk+1).

Proposition 2.3.2. Algorithm 2.3.1 is well defined, i.e. the interval (ξ1, ξ
(k)
2), k ≥ 1 is non-

empty, for a chosen real constant ξ1. Additionally, the sequence of stepsizes (γk)k is positive
and it is bounded by real constants.

Proof. Since

ξ
(k)
2 = 2(1− ε)

‖gk‖2

‖Agk‖2
≥ 2(1− ε)

‖A‖2

one can always choose constant ξ1 such that

0 < ξ1 ¿ 2(1− ε)

‖A‖2
≤ ξ

(k)
2 .

Thus, the interval (ξ1, ξ
(k)
2) is non empty in each iteration.

Taking into account that ‖Ax‖ ≥ j(A) · ‖x‖, where j(A) = inf‖x‖=1 ‖Ax‖, it is not difficult

to show that ξ
(k)
2 ≤ 2 · j(A)−2, k ≥ 1. Thus, the following sequence of inequalities holds

0 < ξ1 ≤ γk ≤ ξ
(k)
2 ≤ 2 · j(A)−2, k ≥ 1,

which is a verification of the second statement. ¤

2.3.4 Convergence properties

The following theorem shows the convergence of the method given by Algorithm 2.3.1.

Theorem 2.3.1. Let H and K be given Hilbert spaces and A ∈ L(H,K) be an operator such
that R(A) is closed. The sequence (xk)k determined by Algorithm 2.3.1 converges.

32 CHAPTER 2. UNCONSTRAINED OPTIMIZATION

Proof. For xk+1 = xk − γkA
∗(Axk − b), we compute

q(xk+1) =
1

2
‖Axk+1 − b‖2

=
1

2
(〈Axk − b, Axk − b〉 − 2〈Axk − b, γkAgk〉+ 〈γkAgk, γkAgk〉)

= q(xk)− γk‖gk‖2 +
1

2
γ2

k‖Agk‖2

= q(xk)− γk‖gk‖2

(
1− 1

2
γk
‖Agk‖2

‖gk‖2

)
.

(2.54)

Based on the steps 4 and 5 from Algorithm 2.3.1 immediately follows

γk ≤ 2(1− ε)
‖gk‖2

‖Agk‖2
, k ≥ 1,

and one can simply verify

1− 1

2
γk
‖Agk‖2

‖gk‖2
≥ ε > 0, k ≥ 1. (2.55)

Therefore, it is clear that the functional q is strictly monotone decreasing and it is also bounded
below with zero. Thus, it follows that the sequence q(xk) converges to its minimum.

Taking into account that

0 = lim
k→∞

| q(xk+1)− q(xk) |

= lim
k→∞

γk‖gk‖2

(
1− 1

2
γk
‖Agk‖2

‖gk‖2

)
,

as well as the fact that the sequences (γk) and
(
1− 1

2
γk

‖Agk‖2
‖gk‖2

)
are bounded by real constants,

one can conclude that
lim
k→∞

‖gk‖2 = 0,

which finalizes the proof.
¤

Chapter 3

Generalized inverses

The third chapter is completely devoted to the theory of generalized inverses. In the beginning
after the initiation of the basic matrix theory, we introduce the main types of generalized
inverses of matrices, as well as their properties. After recalling the basics of the theory of
generalized inverses, presented in the first section of this chapter, we continue with presentation,
of other very important properties of the Drazin-inverse solution and A

(2)
T,S-inverse solution.

These properties are the initial point for developing iterative methods for computing the Drazin-
inverse solution and A

(2)
T,S-inverse solution, which are presented in the next chapter. Finally,

this chapter is finished with the theory of full-rank factorization of generalized inverses. Here,
we also included new full-rank presentations of {2, 3} and {2, 4}-inverses, which are further

explored in the next chapter in conjunction with the SMS method for computing A
(2)
T,S inverses.

3.1 Basic definitions and properties

Let Cm×n and Cm×n
r denote the set of all complex m × n matrices and all complex m × n

matrices of rank r, respectively. I denotes the unit matrix of appropriate order. For a given
matrix A, by A∗, R(A), rank(A) and N (A) we denote the conjugate transpose, the range, the
rank and the null space of A ∈ Cm×n.

As previously mentioned, the main idea of defining generalized inverses originates from the
need to solve the problem of finding a solution of the following system

Ax = b, (3.1)

where A ∈ Cm×n and b ∈ Cm.

Next we give definitions for the notions which are usually related to a given matrix and
which are frequently used further in the text [6, 12, 87].

First of all, it is well known that a matrix A ∈ Cm×n represents a matrix form of a linear map
from Cn to Cm with respect to the standard basis of Cn and Cm. So, the symbol A will be
used interchangeably, in order to denote a matrix or a linear map.

Definition 3.1.1. A square matrix A ∈ Cn×n (A ∈ Rn×n) is

1) Hermitian (self-adjoint) if A∗ = A (AT = A),

33

34 CHAPTER 3. GENERALIZED INVERSES

2) normal, A∗A = AA∗ (AT A = AAT),

3) lower-triangular, if aij = 0 for i > j,

4) upper-triangular, if aij = 0 for i < j,

5) positive semi-definite, if Re (x∗Ax) ≥ 0 for all x ∈ Cn×1. Additionally, if it holds
Re (x∗Ax) > 0 for all x ∈ Cn×1 \ {0}, then the matrix A is positive definite.

Definition 3.1.2. Let A ∈ Cn×n. A real or complex scalar λ which satisfies the following
equation

Ax = λx, i.e., (A− λI)x = 0,

is called an eigenvalue of A, and x is called an eigenvector of A corresponding to λ.

The eigenvalues and eigenvectors of a matrix, play a very important role in matrix theory.
They represent a tool which enables to understand the structure of a matrix. For example, if
a given square matrix of complex numbers is self-adjoint, then there exist basis of Cm and Cn,
consisting of distinct eigenvectors of A, with respect to which the matrix A can be represented
as a diagonal matrix. Since not every matrix has enough distinct eigenvectors to enable its
good decomposition, in order to resolve this problem, the following definition is given as a
generalization of the previous one.

Definition 3.1.3. Let A ∈ Cn×n and λ is an eigenvalue of A. A vector x is called generalized
eigenvector of A of grade p corresponding to λ, or λ-vector of A of grade p, if it satisfies the
following equation

(A− λI)px = 0.

Namely, for each matrix there exists a basis of generalized eigenvectors with respect to which,
a matrix can be represented in the Jordan form, as it is stated in the following proposition.

Proposition 3.1.1. (The Jordan decomposition). Let the matrix A ∈ Cn×n has p distinct
eigenvalues {λ1, λ2, . . . , λp}. Then A is similar to a block diagonal matrix J with Jordan blocks
on its diagonal, i.e., there exists a nonsingular matrix X such that

AX = XJ = X




Jk1(λ1) 0 . . . 0
0 Jk2(λ2) . . . 0
...

...
. . .

...
0 0 . . . Jk(λp)




where the Jordan block

Jki
(λi) =




λi 1 0 . . . 0
0 λi 1 . . . 0
...

...
. . .

...
0 0 . . . λi 1




and the matrix J is unique up to a rearrangement of its blocks.

As it can be seen from the previous proposition, on this way we obtain a decomposition of
the matrix A with respect to same basis of Cn. The following definition and proposition, give
us an alternative way to obtain even simpler decomposition of the matrix A, than the one given
with the Jordan decomposition, but with respect to different basis of Cn.

3.1. BASIC DEFINITIONS AND PROPERTIES 35

Definition 3.1.4. Let A ∈ Cm×n. Let {λ1, λ2, . . . , λp} be the nonzero eigenvalues of AA∗. The
singular values of A, denoted by σi(A), i = 1, . . . , p are defined on the following way:

σi(A) =
√

λi(AA∗), i = 1, . . . , p.

Proposition 3.1.2. (Singular value decomposition) Let A ∈ Cm×n be a matrix with singular
values {σ1, . . . , σr}. Then there exist orthonormal matrices U and V such that

A = UΣV ∗,

where

Σ =




σ1

... 0
. . .

... 0

σr

...
.

0
... 0




.

Further, we state facts related to the inverse of a given square matrix.

Definition 3.1.5. For a given matrix A ∈ Cn×n, the inverse of the matrix A is a square matrix
A−1 such that it satisfies the following equalities

AA−1 = I and A−1A = I.

Proposition 3.1.3. A square matrix A ∈ Cn×n has a unique inverse if and only if det(A) 6= 0,
in which case we say that the matrix A is nonsingular matrix.

Remark 3.1.1. In order to distinguish between generalized inverses, the inverse of a matrix
defined with Definition 3.1.5 will be called the ordinary inverse.

In the case when the matrix A from the system (3.1) is nonsingular, the vector

x = A−1b,

provides a solution of the system (3.1). However, many problems that usually arise in practice,
reduce to a problem of the type (3.1), where the matrix A is singular, and moreover, in many
cases it is not even a square matrix.

To overcome the previous problem scientists analyzed the ordinary inverse of a matrix, in order
to understand its good properties which enable a solution of many different problems. On that
way, it is possible to link different sets of properties to different problems, and maybe to define
a matrix which would not have all properties of the ordinary inverse, but it will have only the
set of properties which are crucial for finding a solution of a given specific problem.

The most important properties of the ordinary inverse are summarized in the following propo-
sition

Proposition 3.1.4. Let A ∈ Cn×n be a given nonsingular matrix, then it holds

1) (A−1)−1 = A;

36 CHAPTER 3. GENERALIZED INVERSES

2) (A∗)−1 = (A−1)
∗
;

3) (AB)−1 = B−1A−1;

4) A vector x is an eigenvector of A corresponding to the eigenvalue λ 6= 0 if and only if x is
an eigenvector of A−1 corresponding to the eigenvalue λ−1.

5) A vector x is a λ-vector of A of grade p if and only if x is a λ−1-vector of A−1 of grade p.

We finish the introduction part for matrices with the definition of Kronecker product of two
matrices, which we will be used in order to prove some new results obtained in [94].

Let A = [aij]i=1,m,j=1,n ∈ Cm×n be given matrix. By a = vec(A) ∈ Cmn we denote the vector
obtained by listing the elements of A, by rows.

Definition 3.1.6. The Kronecker product A⊗B of two matrices A = [aij] ∈ Cm×n, B ∈ Cp×q

is the mp× nq matrix expressible in partitioned form as

A⊗B =




a11B a12B . . . a1nB
a21B a22B . . . a2nB
.

am1B am2B . . . amnB


 .

The properties of the Kronecker product are summarized in the following proposition.

Proposition 3.1.5. [12] Let A,B, E, F be matrices of appropriate dimensions. Then the fol-
lowing hold:

1) (A⊗B)(E ⊗ F) = AE ⊗BF ,

2) For any q ∈ N it holds (A⊗ I)q = Aq ⊗ I,

3) If ind(A) = k, then ind(A⊗ I) = k.

4) If A is a square nonsingular matrix, then the matrix A⊗ I is nonsingular and (A⊗ I)−1 =
A−1 ⊗ I,

An important application of the Kronecker product is rewriting a matrix equation

AXB = D, (3.2)

as a vector equation of the form

(A⊗BT)vec(X) = vec(D).

For simplicity, further in text, we denote AB = A⊗B.

3.1. BASIC DEFINITIONS AND PROPERTIES 37

3.1.1 Matrix equations and {i, j, . . . , k}-inverses

It is well known the fact that the system (3.1), always has at least one solution if and only if
b ∈ R(A). This can be translated into: b ∈ R(A) if and only if there exists a matrix X such
that x = Xb is a solution of the system. In order to find such matrix, there were established
the four so called Penrose equations:

(1) AXA = A (general condition)

(2) XAX = X (reflexive condition)

(3) (AX)∗ = AX (normalized condition)

(4) (XA)∗ = XA (reversed normalized condition).

For a subset S of the set {1, 2, 3, 4}, the set of all matrices obeying the conditions contained
in S is denoted by A{S}.
Definition 3.1.7. Any matrix from A{S} is called S-inverse of A and is denoted by A(S).

On this way we come to the notion of {i, j, . . . , k}-inverses, where i, j, k ∈ S. For example, for
a given matrix A ∈ Cm×n, if there exists a matrix such that it satisfies only the first Penrose
equation, then this matrix is called {1}-inverse of the matrix A, it is denoted by A(1) and
we write A(1) ∈ A{1}. Similarly, if it satisfies the first and the third Penrose equations, it is
{1, 3}-inverse of A, denoted by A(1,3) and A(1,3) ∈ A{1, 3}.

It is obvious that if the matrix A is nonsingular square matrix, then its ordinary inverse
satisfies all Penrose equations.

For a given subspaces T and S from Cn by PT,S we denote a projector from Cn on T along
S. If S = T⊥, i.e., if S is orthogonal complement of T , then PT is orthogonal projector from
Cn on T . The matrix which corresponds to a linear map which is a projector, is idempotent
matrix. The matrix which corresponds to a linear map which is orthogonal projector, is a
Hermitian idempotent matrix. In the sequel, we restate the main properties of {i, j, . . . , k}-
inverses, without proof (see also [12, 137]).

Lemma 3.1.1. For a given matrix A ∈ Cm×n
r the following holds

1) (λA)(1) = λ†A(1), where λ ∈ C and λ† =

{
1
λ
, λ 6= 0

0, λ = 0
;

2) AA(1) is a projection from Cm on R(A), i.e., AA(1) = PR(A),S where S ∈ Cm is such that
R(A) + S = Cm;

3) I−A(1)A is a projection from Cn on N (A), i.e., I−A(1)A = PN (A),T where T ∈ Cn is such
that T +N (A) = Cn;.

4) rank(A(1)) ≥ rank(A);

5) A(1)A = In if and only if r = n;

6) AA(1) = Im if and only if r = m;

38 CHAPTER 3. GENERALIZED INVERSES

7) If X ∈ A{1}, then X ∈ A{1, 2} if and only if rank(A) = rank(X);

8) (A∗A)(1)A∗ ∈ A{1, 2, 3};
9) A∗(AA∗)(1) ∈ A{1, 2, 4};

The next results establish the relationship between {i, j, . . . , k}-inverses and the solutions
of a given matrix equation [12, 137].

Proposition 3.1.6. Let A ∈ Cm×n, B ∈ Cp×q, D ∈ Cm×q. Then the matrix equation

AXB = D

is consistent if and only if, for some A(1), B(1), it holds

AA(1)DB(1)B = D

in which case the general solution is

X = A(1)DB(1) + Y − A(1)AY BB(1)

for arbitrary Y ∈ Cn×p.

Corollary 3.1.1. Let A ∈ Cm×n, A(1) ∈ A{1}. Then

A{1} = {A(1) + Z − A(1)AZAA(1) : Z ∈ Cn×m}.
Corollary 3.1.2. Let A ∈ Cm×n, b ∈ Cm. Then the system (3.1) is consistent if and only if
for some A(1) it holds,

AA(1)b = b,

in which case the general solution of the system (3.1) is

x = A(1)b + (I − A(1)A)y,

for arbitrary y ∈ Cn.

Proposition 3.1.7. Let A ∈ Cm×n, X ∈ Cn×m. Then X ∈ A{1} if and only if, for all
b ∈ R(A), x = Xb is a solution of the system (3.1).

Proposition 3.1.8. The set A{1, 3} consists of all solutions X of the system

AX = AA(1,3),

where A(1,3) is an arbitrary element of A{1, 3}.
Proposition 3.1.9. Let A ∈ Cm×n, A(1,3) ∈ A{1, 3}. Then

A{1, 3} = {A(1,3) + (I − A(1,3)A)Z : Z ∈ Cn×m}.
Proposition 3.1.10. The set A{1, 4} consists of all solutions X of the system

XA = A(1,4)A,

where A(1,4) is an arbitrary element of A{1, 4}.
Corollary 3.1.3. Let A ∈ Cm×n, A(1,4) ∈ A{1, 4}. Then

A{1, 4} = {A(1,4) + Y (I − AA(1,4)) : Y ∈ Cn×m}.
These results give us a powerful tool for finding a solution of a given consistent system of

linear equation, and as it will be discussed later, for finding an approximate solution of an
inconsistent system of linear equations.

3.1. BASIC DEFINITIONS AND PROPERTIES 39

3.1.2 The Moore-Penrose inverse

The most important result related to the Penrose equations, which was shown by Penrose [106]
in 1955, is that for a given matrix A, there always exists a unique matrix which satisfies the
four Penrose equations. This matrix is called the Moore-Penrose inverse, denoted by A†.

Although {1}-inverses and {1, 3}-inverses provide a solution of a given matrix equation, it
is the Moore-Penrose inverse which most resemble to the ordinary inverse. This is justified by
its uniqueness and the properties listed in the following two lemmas. Also, we should bear on
mind that, since the Moore-Penrose inverse is {1}-inverse, the properties from Lemma 3.1.1 are
also valid.

Lemma 3.1.2. Let A ∈ Cm×n be an arbitrary matrix. Then the following properties are valid.

1) (A†)† = A, (A†)∗ = (A∗)†;

3) (AA∗)† = (A∗)†A†, (A∗A)† = A†(A∗)†;

4) A†AA∗ = A∗ = A∗AA†;

5) A† = (A∗A)†A∗ = A∗(AA∗)†;

6) N (AA†) = N (A†) = N (A∗)

7) R(AA∗) = R(AA(1)) = R(A), rank(AA(1)) = rank(A(1)A) = rank(A);

8) AA† = PR(A),N (A∗) and A†A = PR(A∗),N (A).

Lemma 3.1.3. Let A ∈ Cm×n be an arbitrary matrix. Then the matrix A can be written in the
following way:

A ∼
[
A1 0
0 0

]
:

[R(A∗)
N (A)

]
→

[R(A)
N (A∗)

]
, (3.3)

where A1 is invertible. Hence,

A† ∼
[
A−1

1 0
0 0

]
:

[R(A)
N (A∗)

]
→

[R(A∗)
N (A)

]
.

The form (3.3) of the matrix A, can be easily obtained by Singular value decomposition of A,
i.e., the matrix A1 represents a diagonal matrix, where the singular values of A are actually its
diagonal elements.

If the system (3.1) is such that b /∈ R(A), then we search for an approximate solution of the
system (3.1) by trying to find a vector x for which the norm of the vector Ax− b is minimal.

Definition 3.1.8. Let A ∈ Cm×n and b ∈ Cm. A vector x̂, which satisfies the equality

‖Ax̂− b‖2 = min
x∈Cn

‖Ax− b‖2. (3.4)

is called a least-squares solution of the system (3.1).

The next lemma gives a characterization of all least-squares solutions of the system (3.1).

40 CHAPTER 3. GENERALIZED INVERSES

Lemma 3.1.4. The vector x is a least-squares solution of the system (3.1) if and only if x is
a solution of the normal equation, defined by

A∗Ax = A∗b. (3.5)

The following proposition [12] shows that ‖Ax − b‖ is minimized by choosing x = A(1,3)b,
thus establishing a relation between the {1, 3}-inverses and the least-squares solutions of the
system (3.1).

Proposition 3.1.11. Let A ∈ Cm×n, b ∈ Cm. Then ‖Ax − b‖ is smallest when x = A(1,3)b,
where A(1,3) ∈ A{1, 3}. Conversely, if X ∈ Cn×m has the property that, for all b, ‖Ax − b‖ is
smallest when x = Xb, then X ∈ A{1, 3}.

Since A(1,3)-inverse of a matrix is not unique, consequently a system of linear equations can
have many least-squares solutions. However, it is shown that among all least-squares solutions
of a given system of linear equations, there exists only one such solution of minimum norm.

Definition 3.1.9. Let A ∈ Cm×n and b ∈ Cm. A vector x̂, which satisfies the equality

‖x̂‖2 = min
x∈Cn

‖x‖2. (3.6)

is called a minimum-norm solution of the system (3.1).

The next proposition establishes a relation between {1, 4}-inverses and the minimum-norm
solutions of the system (3.1).

Proposition 3.1.12. Let A ∈ Cm×n, b ∈ Cm. If Ax = b has a solution for x, the unique
solution for which ‖x‖ is smallest is given by x = A(1,4)b, where A(1,4) ∈ A{1, 4}. Conversely, if
X ∈ Cn×m is such that, whenever Ax = b has a solution, x = Xb is the solution of minimum-
norm, then X ∈ A{1, 4}.

Joining the results from Proposition 3.1.11 and Proposition 3.1.12 we are coming to the
most important result in the theory of the Moore-Penrose inverse.

Corollary 3.1.4. [106]. Let A ∈ Cm×n, b ∈ Cm. Then, among the least-squares solutions of
Ax = b, A†b is the one of minimum-norm. Conversely, if X ∈ Cn×m has the property that, for
all b, Xb is the minimum-norm least-squares solution of Ax = b, then X = A†.

The next proposition, characterizes the set of all least-squares solutions of a given system
of linear equations.

Proposition 3.1.13. [97, 98] The set S of all least-squares solutions of the system Ax = b is
given by

S = A†b⊕N (A) = {A†b + (I − A†A)y| y ∈ Cn},
where N (A) denotes the null space of A.

One generalization of the Moore-Penrose inverse is the, so called, weighted Moore-Penrose
inverse which is introduced with the following definition.

Definition 3.1.10. Let A ∈ Cm×n and b ∈ Cm, M and N be Hermitian positive definite
matrices of orders m and n respectively. The matrix X ∈ Cn×m which despite equations (1)
and (2), also satisfies the equations

(3M) (MAX)∗ = MAX

(4N) (NXA)∗ = NXA

is called weighted Moore-Penrose inverse of A and is denoted with A†
M,N .

3.1. BASIC DEFINITIONS AND PROPERTIES 41

3.1.3 The Drazin inverse

We saw that the Moore-Penrose inverse is a very good replacement for the ordinary inverse,
when a solution of a given matrix equation is needed. It exists for all matrices, and when the
matrix is nonsingular it reduces to the ordinary inverse. But, unfortunately we can not say
that it satisfies the properties of the ordinary inverse, characterized with the fourth and fifth
item from Lemma 3.1.4. To be defined such inverse, the set of Penrose equations is enlarged
with two more:

(1p) ApXA = Ap (general p condition)

(5) AX = XA (commutativity condition)

where p = ind(A).

Definition 3.1.11. Let A ∈ Cn×n and p = ind(A). The matrix X ∈ A{1p, 2, 5} is called the
Drazin inverse of A, denoted by AD. If p = 1 then the Drazin inverse is called group inverse,
denoted by A#.

Since the eigenvalues and eigenvectors are defined only for square matrices, the Drazin
inverse, also, is defined only for square matrices. In the next lemma we give the main properties
of the Drazin inverse.

Lemma 3.1.5. Let A ∈ Cn×n and p = ind(A)

1) AlXA = Al for all l ≥ p

2) R(Al) = R(Al+1), N (Al) = N (Al+1) and rank(Al) = rank(Al+1), for all l ≥ p. Moreover,
p is the smallest integer for which the equalities hold.

3) The matrix A can be written in following way:

A ∼
[
A1 0
0 N

]
:

[R(Ap)
N (Ap)

]
→

[R(Ap)
N (Ap)

]
, (3.7)

where A1 is invertible, and N is nilpotent matrix. Hence,

AD ∼
[
A−1

1 0
0 0

]
:

[R(Ap)
N (Ap)

]
→

[R(Ap)
N (Ap)

]
;

4) for all λ 6= 0, a vector x is a λ−1-vector of AD of grade s if and only if it is a λ-vector of A
of grade s, and x is a 0-vector of AD if and only if it is a 0-vector of A (without regard
to grade.

The form (3.7) of the matrix A, can be easily obtain by the Jordan decomposition of A.

Despite the spectral properties, the Drazin inverse, in some cases, it also provides a solution
of a given system of linear equations. Namely for A ∈ Cn×n and b ∈ Cn, as it was shown in
[20], ADb is a solution of the following system

Ax = b, where b ∈ R(Ap) , p = ind(A). (3.8)

42 CHAPTER 3. GENERALIZED INVERSES

and we call it the Drazin-inverse solution of the system (3.8). Also, since this is the only case,
when the Drazin-inverse provides a solution to the given system, we call the system (3.8), a
Drazin-consistent system.

The Drazin inverse has many applications in the theory of finite Markov chains as well as
in the study of differential equations and singular linear difference equations [20], cryptography
[83] etc.

Establishing a relation between the Drazin inverse and the solutions of a given system of
linear equations, naturally imposed the idea of exploring minimal properties of the Drazin
inverse. Next we present results from the paper [142], where are established respective results
for the Drazin-inverse solution, to the ones presented in the previous section for the Moore-
Penrose inverse solution.

Theorem 3.1.1. Let A ∈ Rn×n with p = ind(A). Then ADb is the unique solution in R(Ap)
of the system

Ap+1x = Apb. (3.9)

Theorem 3.1.2. Let A ∈ Cn×n, b ∈ Cn and p = ind(A). The set of all solutions of the equation
(3.9) is given by

x = ADb +N (Ap). (3.10)

Since (3.9) is analogous to (3.5), we shall call it the generalized normal equations of (3.8).

Let A = PJP−1 be the Jordan decomposition of the matrix A. We denote ‖x‖P = ‖P−1x‖.
Theorem 3.1.3. [142] Let A ∈ Rn×n with p = ind(A). Then x̂ satisfies

‖b− Ax̂‖P = min
u∈N (A)+R(Ap−1)

‖b− Ax‖P

if and only if x̂ is the solution of the equation

Ap+1x = Apb, x ∈ N (A) +R(Ap−1).

Moreover, the Drazin-inverse solution x = ADb is the unique minimal P -norm solution of the
generalized normal equations (3.9).

Corollary 3.1.5. [142] Let A ∈ Cn×n, p = ind(A) and b ∈ R(A). Then for all solutions x of
the system (3.9) the inequality ‖x‖P ≥ ‖ADb‖P holds, i.e., ADb is the unique solution of the
equation (3.9) of minimum P -norm.

Analogously to the weighted Moore-Penrose inverse we introduce the notion of weighted
Drazin inverse.

Definition 3.1.12. Let A ∈ Cm×n, W ∈ Cn×m. Then the matrix X ∈ Cm×n satisfying

1) (AW)p+1XW = (AW)p; (for some nonnegative integer p)

2) XWAWX = X

3) AWX = XWA

is called W -weighted Drazin inverse of A, and is denoted by X = AD,W .

3.1. BASIC DEFINITIONS AND PROPERTIES 43

3.1.4 The A
(2)
T,S-inverse

Recall that, for an arbitrary matrix A ∈ Cm×n, the set of all outer inverses (or also called
{2}-inverses) is defined by the following

A{2} = {X ∈ Cn×m|XAX = X}. (3.11)

With A{2}s we denote the set of all outer inverses of rank s and the symbol A(2) stands for an
arbitrary outer inverse of A.

Definition 3.1.13. Let A ∈ Cm×n
r , T is a subspace of Cn of dimension t ≤ r and S is a

subspace of Cm of dimension m − t, then A has a {2}-inverse X such that R(X) = T and

N (X) = S if and only if AT ⊕ S = Cm, in which case X is unique and it is denoted by A
(2)
T,S.

Lemma 3.1.6. Let A ∈ Cm×n be an arbitrary matrix, T is a subspace of Cn and S is a subspace
of Cm such that AT ⊕ S = Cm. Then the matrix A can be written in the following way:

A ∼
[
A1 0
0 A2

]
:

[
T

N (A
(2)
T,SA)

]
→

[
AT
S

]
, (3.12)

where A1 is invertible. Moreover,

A
(2)
T,S ∼

[
A−1

1 0
0 0

]
:

[
AT
S

]
→

[
T

N (A
(2)
T,SA)

]
.

The outer generalized inverse with prescribed range T and null-space S is a generalized
inverse of special interest in matrix theory. The reason of the importance of this inverse is the
fact that: the Moore-Penrose inverse A†, the weighted Moore-Penrose inverse A†

M,N , the Drazin

inverse AD, the group inverse A#, the Bott-Duffin inverse A
(−1)
(L) and the generalized Bott-Duffin

inverse A
(+)
(L) ; are all {2}-generalized inverses of A with prescribed range and null space.

Lemma 3.1.7. Let A ∈ Cm×n
r and p = ind(A). Then the following representations are valid

1) A† = A
(2)
R(A∗),N (A∗),

2) A†
M,N = A

(2)

R(N−1A∗M),N (N−1A∗M),

3) AD = A
(2)
R(Ap),N (Ap),

4) A# = A
(2)
R(A),N (A) if and only if p = 1,

5) AD,W = A
(2)
R(A(WA)p),N (A(WA)p).

44 CHAPTER 3. GENERALIZED INVERSES

3.2 Further properties of the Drazin inverse

3.2.1 Least-square properties of the Drazin-inverse solution

The results from this section [92] are complement to the results investigated in [142], and which
are presented in Section 3.1.3. Namely, they are motivated form the idea of defining a gradient
iterative method for computing the Drazin-inverse solution of the system (3.8). The goal is
achieved by establishing a relation between the Drazin-inverse solution of the system (3.8) and
its {1, 3}-inverse solutions. Later, in the subsequent chapters will be presented the usefulness
of the considered results, by the definition of gradient iterative methods as a tool for computing
the Drazin-inverse solution.

• Case 1: The system of linear equations is Drazin consistent, i.e., b ∈ R(Ap).

Theorem 3.2.1. Each solution of (3.8) is also a solution of (3.9) but the contrary does not
hold.

Proof. If Ax = b then obviously Ap(Ax− b) = 0.

On the other hand, Wei in [140] shows that the general solution of (3.8) is given by

x = ADb + Ap−1(I − ADA)z, (3.13)

where z is an arbitrary vector. Based on this, the opposite statement is not valid since not every
element from N (Ap) can be represented as Ap−1(I−ADA)z, z ∈ Cn is arbitrary. Consequently,
not every solution of (3.9) is a solution of the equation (3.8) nor a solution of the equation
(3.1). ¤

Lemma 3.2.1. Let A ∈ Cn×n and p = ind(A). Then for each l such that l ≥ p the following
holds

Al(Al+1)(1) = Ap(Ap+1)(1) = ADPR(Ap),S,

where S is a matrix satisfying R(Ap) + S = Cn. Moreover, the following statements are valid

a) if N ((Ap)∗) ⊆ N (Ap) then AD = Ap(Ap+1)†,

b) AD = Ap(Ap+1)#.

Proof. For each l ≥ p we have

Al(Al+1)(1) = ADAl+1(Al+1)(1) = ADPR(Al+1),S = ADPR(Ap),S.

From here, also, follows that

a) if N ((Ap)∗) ⊆ N (Ap) then Ap(Ap+1)† = ADPR(Ap),N ((Ap)∗) = AD.

b) Ap(Ap+1)# = ADPR(Ap),N (Ap) = AD.

¤

3.2. FURTHER PROPERTIES OF THE DRAZIN INVERSE 45

Corollary 3.2.1. Let A ∈ Cn×n and b ∈ Cn be such that b ∈ R(Ap) where p = ind(A). Then
the vector defined by

x = Ap(Ap+1)(1,3)b, (3.14)

is the Drazin-inverse solution of the given system (3.8).

Proof. According to (3.14), from the previous lemma we have

x = Ap(Ap+1)(1,3) b = ADPR(Ap),S b,

where R(Ap) + S = Cn. Since b ∈ R(Ap), immediately follows that

x = ADb = Ap(Ap+1)(1,3)b, (3.15)

which completes the proof. ¤

Remark 3.2.1. In the case when A is invertible, equality (3.14) reduces to x = A−1b.

Campbell in [20] shows that ADb is a solution of (3.8) if and only if b ∈ R(Ap), and points
out that ADb is the unique solution of (3.8) provided that x ∈ R(Ap).

Therefore, we assume that b ∈ R(Ap). Based on the previous considerations, we are going
to analyze the following problem:

min
x

f(x) = min
x

1

2
‖Ap+1x− b‖2. (3.16)

Theorem 3.2.2. Let A ∈ Cn×n and b ∈ Cn be such that b ∈ R(Ap) where p = ind(A). Let x̂
be the minimizer of the function (3.16) then

Apx̂ = ADb. (3.17)

Proof. From [97, 98], it follows that a least-squares solution of the system Ap+1x = b, which
is also its solution, is given by

x̂ = (Ap+1)(1,3)b +
(
I − (Ap+1)(1,3)Ap+1

)
y,

where y ∈ Cn is an arbitrary vector. Then

Apx̂ = Ap(Ap+1)(1,3)b + Ap(I − (Ap+1)(1,3)Ap+1)y

= ADb + Ap(I − (Ap+1)(1,3)Ap+1)y.
(3.18)

In the subsequent part of the proof we use the next statement from [12]: let A and B be
an arbitrary matrices, then B(AB)(1)AB = B if and only if rank(AB) = rank(B). Since
rank(Ap+1) = rank(Ap), we have

Ap(Ap+1)(1,3)Ap+1 = Ak(AAp)(1,3)AAp = Ap.

Finally, from the second part of equation (3.18) immediately follows Apx̂ = ADb. ¤

Therefore, the problem of finding the Drazin-inverse solution is reduced to the problem of
finding the minimum of the function (3.16).

46 CHAPTER 3. GENERALIZED INVERSES

• Case 2: The system of linear equations is an arbitrary system, i.e., b ∈ Cn.

As it is well known, the Drazin inverse always exists for a square matrix, although it provides
a solution of the system (3.1) only in the cases when b ∈ R(Ap). In this section, our purpose is
to explore properties of the vector of the form ADb, for arbitrary square matrix A and arbitrary
vector b of appropriate dimensions. For convenience we will also call this vector a Drazin-
inverse solution. In order to achieve this goal, we introduce the notion of modified Drazin
normal equation which is given by

A2px = Apb. (3.19)

Theorem 3.2.3. Let A ∈ Cn×n, b ∈ Cn and p = ind(A). The set of all solutions of the equation
(3.19) is given by

x = (Ap)Db +N (Ap). (3.20)

Proof. Since Apb ∈ R(Ap) = R(A2p) we have that the system (3.19) is consistent. Following
the result from [20] we have that (Ap)Db = (Ap)#b is the unique solution of the analyzed system
that belongs to R(Ap). Additionally, if x is a solution of (3.19) it follows that Apx−b ∈ N (Ap).
Based on the fact that the set of all solutions of the homogeneous system A2px = 0 is the same
as N (A2p) = N (Ap), which we show that is nonempty, we finally obtain (3.20). ¤

The following theorem gives the initial idea for finding the Drazin-inverse solution in general
case.

Theorem 3.2.4. Let A ∈ Cn×n, b ∈ Cn and p = ind(A). Then x̂ satisfies

‖b− Apx̂‖2
P = min

x
‖b− Apx‖2

P (3.21)

if and only if x̂ is a solution of the equation (3.19).

Proof.
b =

(
PR(Ap) + PN (Ap)

)
b

b− Apx = (PR(Ap)b− Apx) + PN (Ap)b

‖b− Apx‖2
P = ‖PR(Ap)b− Apx‖2

P + ‖PN (Ap)b‖2
P

(3.22)

Evidently ‖b− Apx‖2
P attains minimum for

Apx = PR(Ap)b = AADb. (3.23)

We will show that the equations (3.19) and (3.23) are equivalent. If x satisfies (3.21) and thus
(3.23), evidently, multiplying the equation (3.23) by Ap from the left on the both hand sides,
we obtain that it satisfies (3.19).

Conversely, let us suppose that x satisfies (3.19), i.e., A2px = Apb. By multiplying with
(Ap)D from the left on the both hand sizes, and using the facts that (Ap)DAp = ADA and
ADAp+1 = Ap we immediately obtain (3.23). ¤

Corollary 3.2.2. Let A ∈ Cn×n, b ∈ Cn and p = ind(A). If x̂ is a P-norm least-squares
solution of the system Apx = b, then

Ap−1x̂ = ADb + Ap−1N (Ap).

Moreover, if x̂ ∈ R(Ap), then Ap−1x̂ = ADb.

3.2. FURTHER PROPERTIES OF THE DRAZIN INVERSE 47

Proof. If x̂ satisfies (3.21), then it is a solution of the equation (3.19), i.e., it is of the form

x̂ = (Ap)Db +N (Ap).

Then

Ap−1x̂ = Ap−1(Ap)Db + Ap−1N (Ap) = Ap−1(Ap−1)DADb + Ap−1N (Ap)

= AADADb + Ap−1N (Ap) = ADb + Ap−1N (Ap).

Additionally, if x̂ ∈ R(Ap), then x̂ = (Ap)Db which implies

Ap−1x̂ = Ap−1(Ap)Db = ADb,

and thus, completes the proof. ¤

Considering these results, we are moving to the problem of computing the vector ADb. For
that purpose let us focus to the following problem

min
x

f(x) = min
x
‖A2px− b‖2

P , (3.24)

whose solution we want to find. The characterization of the Drazin-inverse solution in general
case, given in terms of the minimizer of the problem (3.24), is stated in the following theorem.

Theorem 3.2.5. Let A ∈ Cn×n, b ∈ Cn and let x̂ be the minimizer of the functional (3.24).
Then

A2p−1x̂ = ADb. (3.25)

Proof. Since x̂ is the minimizer of the functional (3.24), then it is a P -norm least-squares
solution of the system A2px = b. Then ŷ = Apx̂ is the minimizer of the functional

min
y
‖Apy − b‖2

P

which belongs to R(Ap). According to Corollary 3.2.2, it follows that

Ap−1ŷ = Ap−1Apx̂ = A2p−1x̂ = ADb,

which finishes the proof. ¤

Remark 3.2.2. With the previous result we established an analogy to the result given by The-
orem 3.2.2.

If for simplicity we put A1 = P−1A2p and b1 = P−1b then we obtain the equivalent form of
the problem (3.24) given in terms of the 2-norm

min
x

f(x) = min
x
‖A1x− b1‖2. (3.26)

Obviously, the method for finding the Drazin-inverse solution in general case is reduced to
the method for finding a minimum of the functional given by (3.24) or (3.26).

48 CHAPTER 3. GENERALIZED INVERSES

3.2.2 Least-squares properties of the Drazin inverse

Let A, B, G ∈ Cn×n be given matrices. The intent of the present section is to provide a
method for computing the Drazin-inverse solution of the matrix equation AXB = G, of the
form ADGBD. Namely, the problem of computing the Drazin-inverse solution is reduced to
the problem of finding a minimum of a matrix function. This reduction is obtained according
to the proposed relationship between the Drazin-inverse solution of the matrix equation and
appropriate {1, 3}-inverses. Finally, multiplying the obtained limit point by an appropriate
matrices, appears to be getting exactly the Drazin-inverse solution of the matrix equation.
Later using the obtained results, we derive several consequences related to the representation
of the Drazin inverse of a given square matrix. The sole process of determining a solution of
the matrix equation AXB = D will reveal the minimal properties of the Drazin inverse.

For the purpose of the present section we use the following notation:

N (A) = {x ∈ Cn|Ax = 0}, R(A) = {Ax|x ∈ Cn},

Ñ (A) = {X ∈ Cn×n|AX = 0}, R̃(A) = {AX|X ∈ Cn×n}.
Proposition 3.2.1. Let A, B ∈ Cn×n. Then the following two statements are equivalent:

1) R(B) ⊂ R(A)

2) B ∈ R̃(A).

Let us consider the following matrix equation

AXB = G, where R(G) ⊂ R(Ap1), N (Bp2) ⊂ N (G), p1 = ind(A), p2 = ind(B). (3.27)

As it was shown in [138], the matrix X = ADGBD is the unique solution of (3.27) such that
R(X) ⊂ R(Ap1) and N (Bp2) ⊂ N (X), and we call it the Drazin-inverse solution of the matrix
equation (3.27). As a consequence, it seems reasonable to call the matrix equation (3.27) by
Drazin consistent matrix equation.

In the present section, we consider the problem of finding the matrix ADGBD in general
case

AXB = G, G is an arbitrary matrix from Cn×n. (3.28)

Although, in the case when R(G) * R(Ap
1) or N (Bp2) * N (G), the vector ADGBD is not

a solution of (3.28), for convenience we also call it the Drazin-inverse solution of the matrix
equation (3.28).

Let A = PJP−1 and B = QJQ−1 be the Jordan decompositions of the matrices A and B
respectively, and let us denote

‖X‖P = ‖P−1X‖F ‖X‖PQ = ‖P−1XQ‖F and ‖x‖P = ‖P−1x‖2.

where X ∈ Cn×n and x ∈ Cn. And, let us recall the notation AB = A ⊗ BT from the first
section of this chapter.

Remark 3.2.3. The norm ‖ · ‖PQ is not multiplicative norm.

3.2. FURTHER PROPERTIES OF THE DRAZIN INVERSE 49

Proposition 3.2.2. Let A ∈ Cn×n, P be the Jordan basis of A and let J be a Jordan matrix
of A. Then PIJIP

−1
I = AI . Moreover, ‖X‖P = ‖vec(X)‖PI

.

Proof. From the presumption, it follows that A = PJP−1. Now from the first property of
Proposition 3.1.5, we obtain,

PIJIP
−1
I = (PJP−1)I = AI .

Finally,
‖X‖P = ‖P−1X‖F = ‖(P−1 ⊗ I)vec(X)‖2 = ‖(P ⊗ I)−1vec(X)‖2

= ‖P−1
I vec(X)‖2 = ‖vec(X)‖PI

,

which completes the proof. ¤

Proposition 3.2.3. Let A ∈ Cn×n, P be the Jordan basis of the matrix A and p = ind(A).
Then

R̃(Ap)⊕ Ñ (Ap) = Cn×n.

Moreover, the spaces are orthogonal with respect to the P -norm.

Proof. Let X ∈ Cn×n be arbitrary matrix. Then ApX ∈ R̃(Ap) = R̃(A2p). Then there exists

a matrix V ∈ Cn×n such that A2pV = ApX. Let U = ApV ∈ R̃(Ap). Then ApU = ApX,

i.e., X − U ∈ Ñ (Ap). From X = U + X − U , Ap(X − U) = 0, and U ∈ R̃(Ap), it follows

R̃(Ap) + Ñ (Ap) = Cn×n.

Now let us suppose that X ∈ R̃(Ap) ∩ Ñ (Ap). Then X = ApY for some Y ∈ Cn×n and

ApX = 0. From here, we obtain A2pY = ApX = 0. Consequently, Y ∈ Ñ (A2p) = Ñ (Ap), from

which follows X = ApY = 0. Therefore, we obtain R̃(Ap)⊕ Ñ (Ap) = Cn×n.

Let X ∈ R̃(Ap) and Y ∈ Ñ (Ap). Then

X = ApZ, for some Z ∈ Cn×n and ApY = 0.

Using the Kronecker product, the previous equalities can be converted to

x = Ap
Iz and Ap

Iy = 0,

where x = vec(X), y = vec(Y), z = vec(Z). Consequently x ∈ R(Ap
I) and y ∈ N (Ap

I). From
the second and third property of Proposition 3.1.5 follows the orthogonality of the spacesR(Ap

I)
and N (Ap

I). Thus, it follows that

‖x + y‖2
PI

= ‖x‖2
PI

+ ‖y‖2
PI

.

Using Proposition 3.2.2 we obtain

‖X + Y ‖2
P = ‖x + y‖2

PI
= ‖x‖2

PI
+ ‖y‖2

PI
= ‖X‖2

P + ‖Y ‖2
P .

which completes the proof. ¤

Now, we are going to develop a methodology for finding the matrix of the form ADGBD, for
arbitrary square matrices A, B and G of appropriate dimensions and, in the final instance, for
the choices B = I,G = I to determine the Drazin inverse of the matrix A. In order to achieve
this goal, we introduce the notion of modified Drazin normal matrix equation which is given by

A2p1XB2p2 = Ap1GBp2 . (3.29)

50 CHAPTER 3. GENERALIZED INVERSES

Theorem 3.2.6. Let A,B,G ∈ Cn×n be such that p1 = ind(A), p2 = ind(B). The set of all
solutions of the equation (3.29) is given by

X = (Ap1)DG(Bp2)D + Y − ADAY BBD, Y ∈ Cn×n. (3.30)

Proof. First we show that (3.30) is a solution of the system

A2p1XB2p2 = A2p1(Ap1)DG(Bp2)DB2p2 + A2p1Y B2p2 − A2p1ADAY BBDB2p2

= Ap1AADGBDBBp2 + A2p1Y B2p2 − A2p1Y B2p2

= Ap1GBp2 .

Moreover, let Y ∈ Cn×n be arbitrary solution of (3.29), i.e., let A2p1Y B2p2 = Ap1GBp2 . We can
write

Y = (Ap1)DG(Bp2)D + Y − (Ap1)DG(Bp2)D.

Since,
(Ap1)DG(Bp2)D = ((Ap1)D)2Ap1GBp2((Bp2)D)2

= (A2p1)DA2p1Y B2p2(B2p2)D = ADAY BBD,

we complete the proof. ¤

The following theorem gives the initial idea for finding the Drazin-inverse solution of the
matrix equation (3.2).

Theorem 3.2.7. Let A,B,G ∈ Cn×n be such that p1 = ind(A), p2 = ind(B) and let P be the
Jordan basis of the matrix A and Q be the Jordan basis of matrix B. If X̂ satisfies

‖G− Ap1X̂Bp2‖2
PQ = min

X
‖G− Ap1XBp2‖2

PQ (3.31)

then X̂ is a solution of the equation (3.29). Moreover, if R(G|N (Bp2)) ⊂ N (Ap1) the opposite
statement is also valid.

Proof. Let

P−1Ap1P =

[
JA 0
0 0

]
:

[R(Ap1)
N (Ap1)

]
→

[R(Ap1)
N (Ap1)

]
; Q−1Bp2Q =

[
JB 0
0 0

]
:

[R(Bp2)
N (Bp2)

]
→

[R(Bp2)
N (Bp2)

]
,

be the Jordan matrices of Ap1 and Bp2 , respectively. Let

P−1GQ =

[
G1 G2

G3 G4

]
:

[R(Bp2)
N (Bp2)

]
→

[R(Ap1)
N (Ap1)

]

and

P−1XQ =

[
X1 X2

X3 X4

]
:

[R(Bp2)
N (Bp2)

]
→

[R(Ap1)
N (Ap1)

]
.

Since

P−1PR(Ap1)GPR(Bp2)Q = P−1ADAGBBDQ = P−1ADAPP−1GQQ−1BBDQ

=

[
I 0
0 0

] [
G1 G2

G3 G4

] [
I 0
0 0

]

=

[
G1 0
0 0

]
:

[R(Bp2)
N (Bp2)

]
→

[R(Ap1)
N (Ap1)

]
,

3.2. FURTHER PROPERTIES OF THE DRAZIN INVERSE 51

we have that,

P−1(G− Ap1XBp2)Q =

[
G1 G2

0 0

]
− P−1Ap1XBp2Q +

[
0 0

G3 G4

]

= P−1ADAGBBDQ− P−1Ap1XBp2Q +

[
0 G2

0 0

]
+

[
0 0

G3 G4

]
.

(3.32)

Obviously, R
([

0 0
G3 G4

])
⊂ N (Ap1). Also,

R
(

P−1ADAGBBDQ− P−1Ap1XBp2Q +

[
0 G2

0 0

])
= R

([
G1 − JAX1JB G2

0 0

])
⊂ R(Ap1).

Following the results from Proposition 3.2.3 and by using (3.32) we get

‖G− Ap1XBp2‖2
PQ =

∥∥∥∥P−1ADAGBBDQ− P−1Ap1XBp2Q + P−1P

[
0 G2

0 0

]
+ P−1P

[
0 0

G3 G4

]∥∥∥∥
2

F

,

=

∥∥∥∥ADAGBBDQ− Ap1XBp2Q + P

[
0 G2

0 0

]
+ P

[
0 0

G3 G4

]∥∥∥∥
2

P

,

=

∥∥∥∥ADAGBBDQ− Ap1XBp2Q + P

[
0 G2

0 0

]∥∥∥∥
2

P

+

∥∥∥∥P

[
0 0

G3 G4

]∥∥∥∥
2

P

.

Or equivalently,

‖G− Ap1XBp2‖2
PQ =

∥∥∥∥ADAGBBD − Ap1XBp2 + P

[
0 G2

0 0

]
Q−1

∥∥∥∥
2

PQ

+

∥∥∥∥P

[
0 0

G3 G4

]
Q−1

∥∥∥∥
2

PQ

.

Evidently ‖G− Ap1XBp2‖2
PQ attains its minimum for

Ap1XBp2 = ADAGBBD + P

[
0 G2

0 0

]
Q−1. (3.33)

Therefore, we prove that the initial statement given by (3.31) is equivalent with the identity
(3.33).

In what follows we show that from equation (3.33) follows the equation (3.29). If X satisfies
(3.33), evidently, multiplying the equation (3.33) by Ap1 from the left and by Bp2 on the right,
on the both hand sides, we obtain

A2p1XB2p2 = Ap1ADAGBBDBp2 + P

[
JA 0
0 0

]
P−1P

[
0 G2

0 0

]
Q−1Q

[
JB 0
0 0

]
Q−1 = Ap1GBp2 .

which proves that it satisfies (3.29).

Let us suppose that R(G|N (Bp2)) ⊂ N (Ap1). Then since G2 : N (Bp2) → R(Ap1) it follows
that G2 = 0, i.e., the equality (3.33) becomes

Ap1XBp2 = ADAGBBD. (3.34)

Let X satisfies (3.29), i.e., A2p1XB2p2 = Ap1GBp2 . By multiplying with (Ap1)D from the left and
with (Bp2)D on the right, on the both hand sides, and using the facts that (Ap1)DAp1 = ADA,
(Bp2)DBp2 = BDB, ADAp1+1 = Ap1 and BDBp2+1 = Bp2 we obtain (3.34). ¤

52 CHAPTER 3. GENERALIZED INVERSES

Corollary 3.2.3. Let A,B, G ∈ Cn×n be such that p1 = ind(A), p2 = ind(B) and let P be
the Jordan basis of the matrix A and Q be the Jordan basis of matrix B. If X̂ is a PQ-norm
least-squares solution of the matrix equation Ap1XBp2 = G, then

Ap1−1X̂Bp2−1 = ADGBD + Ap1−1Y Bp2−1 − ADAp1Y Bp2BD, Y ∈ Cn×n.

Moreover, if R(X̂) ⊂ R(Ap1) and N (Bp2) ⊂ N (X̂) then Ap1−1X̂Bp2−1 = ADGBD.

Proof. If X̂ satisfies (3.31), then it is a solution of the equation (3.29), i.e., it is of the form

X̂ = (Ap1)DG(Bp2)D + Y − ADAY BBD, Y ∈ Cn×n.

Then

Ap1−1X̂Bp2−1 = Ap1−1(Ap1)DG(Bp2)DBp2−1 + Ap1−1Y Bp2−1 − Ap1−1ADAY BBDBp2−1

= ADGBD + Ap1−1Y Bp2−1 − ADAp1Y Bp2BD

Additionally, letR(X̂) ⊂ R(Ap1) andN (Bp2) ⊂ N (X̂), then it follows thatR(Ap1−1Y Bp2−1) ⊂
R(Ap1) and N (Bp2) ⊂ N (Ap1−1Y Bp2−1). Consequently,

PR(Ap1),N (Ap1)A
p1−1Y Bp2−1 = Ap1−1Y Bp2−1

and

Ap1−1Y Bp2−1PR(Bp2),N (Bp2) = Ap1−1Y Bp2−1.

Finally we obtain,

ADAp1Y Bp2BD = Ap1−1AADY BBDBp2−1 = PR(Ap1),N (Ap1)A
p1−1Y Bp2−1PR(Bp2),N (Bp2)

= Ap1−1Y Bp2−1

and thus, Ap1−1X̂Bp2−1 = ADGBD, which completes the proof. ¤

Considering these results, we are moving to the problem of computing the vector ADGBD.
For that purpose let us focus to the following problem

min
X

f(X) = min
X
‖A2p1XB2p2 −G‖2

PQ, (3.35)

whose solution we want to find. The characterization of the Drazin-inverse solution of the
matrix equation (3.2), given in terms of the minimizer of the problem (3.35), is stated in the
following theorem.

Theorem 3.2.8. Let A,B, G ∈ Cn×n be such that p1 = ind(A), p2 = ind(B). Let P be the
Jordan basis of the matrix A and Q be the Jordan basis of matrix B. If X̂ is a minimizer of
the functional (3.35), then the following holds

A2p1−1X̂B2p2−1 = ADGBD. (3.36)

3.2. FURTHER PROPERTIES OF THE DRAZIN INVERSE 53

Proof. Let the matrix X̂ be a minimizer of the functional (3.35), then it is a PQ-norm least-
squares solution of the system A2p1XB2p2 = G. Thus Ŷ = Ap1X̂Bp2 is the minimizer of the
functional

min
Y
‖Ap1Y Bp2 −G‖2

PQ

such that R(Ŷ) ⊂ R(Ap1) and N (Bp2) ⊂ N (Ŷ). According to Corollary 3.2.3, it follows that

ADGBD = Ap1−1Ŷ Bp2−1 = Ap1−1Ap1X̂Bp2Bp2−1 = A2p1−1X̂B2p2−1,

which completes the proof. ¤

Corollary 3.2.4. Let A,B ∈ Cn×n be such that p1 = ind(A), p2 = ind(B), let P be the Jordan
basis of the matrix A and Q be the Jordan basis of the matrix B.

a) If X̂ ∈ Cn×n is a minimizer of the functional

f(X) = ‖A2p1X − I‖2
P = ‖P−1A2p1X − P−1‖2

F .

Then

AD = A2p1−1X̂. (3.37)

b) If X̂ ∈ Cn×n is a minimizer of the functional

f(X) = ‖XB2p2 − I‖2
IQ,

Then

BD = X̂B2p2−1. (3.38)

c) If X̂ be the minimizer of the functional

f(X) = ‖A2p1XB2p2 − I‖2
PQ.

Then

ADBD = A2p1−1X̂B2p2−1. (3.39)

Proposition 3.2.4. [137] Let S ∈ Cm×n, T ∈ Ck×s and Q ∈ Cm×s. Then the matrix S†QT †

minimizes the function

g(X) = ‖SXT −Q‖2
F . (3.40)

Theorem 3.2.9. Let A,B ∈ Cn×n be such that p1 = ind(A), p2 = ind(B), P be the Jordan
basis of A and Q be the Jordan basis of A.

a) AD = A2p1−1(P−1A2p1)†P−1.

b) BD = Q(B2p2Q)†B2p2−1.

c) ADGBD = A2p1−1(P−1A2p1)†P−1GQ(B2p2Q)†B2p2−1.

Proof.

54 CHAPTER 3. GENERALIZED INVERSES

a) The minimum-norm least-squares solution of the function

f(X) = ‖A2p1X − I‖2
P = ‖P−1A2p1X − P−1‖2

F ,

is the vector (P−1A2p1)†P−1. The rest is obvious from Theorem 3.2.8.

b) The minimum-norm least-squares solution of the function

f(X) = ‖XB2p2 − I‖2
IQ = ‖XB2p2Q−Q‖2

F ,

is the vector Q(B2p2Q)†P−1. The rest is obvious from Theorem 3.2.8.

c) Similarly.

¤

3.3 Least-square properties of A
(2)
T,S-inverse solutions

The purpose of the present section, is to generalize the results which are joint for the Moore-
Penrose inverse solution and the Drazin-inverse solution. This, of course, can be done with the
A

(2)
T,S- inverse solution, since many generalized inverses can be represented via A

(2)
T,S- inverses. On

this way, the minimality results will naturally transfer to the weighted Moore-Penrose inverse,
the Bott-Duffin inverse etc.

For the purpose of this section, we use the following notation:

The matrices A ∈ Cm×n and R ∈ Cn×m are such that

rank(AR) = rank(RA) = rank(R) and AR(R)⊕N (R) = Cm.

The vector b ∈ Cn, and where appropriate for simplicity we use

T := R(R), S := N (R) = N (AR), X := A
(2)
T,S = A

(2)
R(R),N (R).

With this notation, clearly A(T) = R(AR) and N (XA) = N (RA).

For a given invertible matrix B ∈ Cn×n we denote ‖x‖B = ‖B−1x‖.
Lemma 3.3.1. The set of all solutions of the equation

RAx = Rb, (3.41)

is given by

x = A
(2)
T,Sb +N (RA). (3.42)

Proof. Since Rb ∈ R(R) = R(RA) we have that the system (3.41) is consistent (see also [97]).
The set of all solutions of the homogeneous system RAx = 0 is the same as N (RA). Moreover,
since

RAA
(2)
T,S = RPA(T),S = RPR(AR),N (R) = R,

it follows that A
(2)
T,Sb is a particular solution of the analyzed system, which finalizes the proof.

¤

3.3. LEAST-SQUARE PROPERTIES OF A
(2)
T,S-INVERSE SOLUTIONS 55

Corollary 3.3.1. The vector A
(2)
T,Sb is the unique solution of (3.41) that belongs to T .

Proof. Since A
(2)
T,Sb ∈ T , and also Cn = T ⊕ N (RA), the proof follows immediately from

Lemma 3.3.1, i.e., from equation (3.42). ¤

As we stated earlier the matrix A can be represented on the following way:

A ∼
[
A1 0
0 A2

]
:

[
T

N (XA)

]
→

[
A(T)

S

]
, (3.43)

where A1 is invertible, and

A
(2)
T,S ∼

[
A−1

1 0
0 0

]
:

[
A(T)

S

]
→

[
T

N (XA)

]
,

Let Q = {q1, . . . , qn} and W = {w1, . . . , wm} be the basis of Cn and Cm respectively, with

respect to which the matrix A has the representation given with (3.43).

Corollary 3.3.2. For all solutions x̂ of the system of linear equations (3.1) the inequality

‖x̂‖Q ≥ ‖A(2)
T,Sb‖Q holds.

Proof. Let x̂ be a solution of the system Ax = b. Then x̂ is a solution of the system (3.41).
From Lemma 3.3.1, x̂ can be represented as

x̂ = A
(2)
T,Sb + y ∈ A

(2)
T,Sb +N (XA) ⊆ T ⊕N (XA).

So, clearly from the orthogonality of the spaces T and N (XA), we have that

‖x̂‖2
Q = ‖A(2)

T,Sb‖2
Q + ‖y‖2

Q.

From which follows that ‖x̂‖Q > ‖A(2)
T,Sb‖Q unless x̂ = A

(2)
T,Sb. ¤

Corollary 3.3.3. The vector A
(2)
T,Sb is the unique solution of the equation (3.41) of minimum

Q-norm.

Corollary 3.3.4. If b ∈ R(AR) then A
(2)
T,Sb is the unique solution of the system (3.1) that

belongs to the subspace T .

Lemma 3.3.2. If b ∈ R(AR) then the vector

x = R(AR)(1,3)b

is A
(2)
T,S-inverse solution of the given system (3.1).

Proof. Since b ∈ R(AR) ⊆ R(A) the given system has a solution and:

Ax = AR(AR)(1,3)b = PR(AR),Sb = b,

where R(AR)⊕ S = Cn. So, x = R(AR)(1,3)b is a solution of the system (3.1) and also x ∈ T .

According to the previous lemma A
(2)
T,S-inverse solution is the unique solution of the system

(3.1) that belongs in T . Consequently,

x = A
(2)
T,Sb = R(AR)(1,3)b (3.44)

56 CHAPTER 3. GENERALIZED INVERSES

which completes the proof ¤

Therefore, we assume that b ∈ R(AR). Based on the previous considerations, we are going
to analyze the following problem:

min
x

f(x) = min
x

1

2
‖ARx− b‖2. (3.45)

Theorem 3.3.1. Let A ∈ Cm×n and b ∈ Cn be such that b ∈ R(AR). Let x̂ be the minimizer
of the function (3.45) then

Rx̂ = A
(2)
T,Sb = A

(2)
R(R),N (R)b. (3.46)

Proof. From [97, 98], it follows that a least-squares solution of the system ARx = b, which is
also its solution, is given by

x̂ = (AR)(1,3)b +
(
I − (AR)(1,3)AR

)
y,

where y ∈ Cn is an arbitrary vector. Then

Rx̂ = R(AR)(1,3)b + R(I − (AR)(1,3)AR)y

= A
(2)
T,Sb + R(I − (AR)(1,3)AR)y.

(3.47)

Since rank(AR) = rank(R), we have that

R(AR)(1,3)AR = R.

Finally, from the second part of equation (3.47) immediately follows Rx̂ = A
(2)
T,Sb = A

(2)
R(R),N (R)b.

¤

So similarly as previous, we showed that the problem of finding the A
(2)
T,S-inverse solution

can be reduced to the problem of finding a minimum of the function (3.45).

3.4 Full-rank factorization of generalized inverses

The representaion of (2)-inverses, with the general form F (GAF)−1G is frequently applied tool
in the numerical calculations. For example, this representation is investigated with the purpose
of defining a deterministic representation of A

(2)
T,S inverses [117], i.e., of the set A{2}s [125]. At

the same time this representation has been used for the construction of the successive matrix
squaring (SMS) method [126]. Based on these ideas in this section we define the full-rank
representation of {2, 3} and {2, 4}-inverse of a given matrix, with a given range and null space,

as a special case of the full-rank representation of the A
(2)
T,S-inverse. Also, it is defined a full-rank

representation of A{2, 3}s i A{2, 4}s, as a special case of the full-rank representation of the sets
A{2}s, where s ≤ r and r is the rank A.

There exist many full-rank representations for different generalized inverses of prescribed
rank. For convenience some of them are comprised in the following proposition [45, 108, 117,
122, 123, 124].

3.4. FULL-RANK FACTORIZATION OF GENERALIZED INVERSES 57

Proposition 3.4.1. Let A ∈ Cm×n
r be an arbitrary matrix, 0 < s ≤ r and A = MN is a full-

rank factorization of A. The following general representations for some classes of generalized
inverses are valid:

A{2}s = {F (GAF)−1G | F ∈Cn×s, G∈Cs×m, rank(GAF)=s};
A{2} = ∪r

s=0A{2}s;

A{2, 4}s =
{
(V A)†V | V ∈ Cs×m, V A ∈ Cs×n

s

}
;

A{2, 3}s =
{
U(AU)† | U ∈ Cn×s, AU ∈ Cm×s

s

}
;

A{1, 2}={F (GAF)−1G | F ∈Cn×r, G∈Cr×m, rank(GAF)=r} = A{2}r;

A{1, 2, 4}={N∗(V AN∗)−1V | V ∈Cr×m, rank(V AN∗)=r} =
{
(V A)†V | V A∈Cr×n

r

}
;

A{1, 2, 3}={U(M∗AU)−1M∗ | U ∈Cn×r, rank(M∗AU)=r} =
{
U(AU)† | AU ∈ Cm×r

r

}
;

A†=N∗(M∗AN∗)−1M∗;

if m = n, AD =FAl(GAl A FAl)−1GAl , Al = FAlGAl , l ≥ ind(A), Al = FAlGAl .

It is known that the sets A{2}0, A{2, 3}0, A{2, 4}0 and A{2, 3, 4}0 are identical and contain a
single element, the n×m zero matrix. For this purpose, it suffices to consider only positive s.

Full-rank representation of {2}-inverses with prescribed range and null space is determined
in the next proposition, which originated in [117].

Proposition 3.4.2. [117] Let A ∈ Cm×n
r , T be a subspace of Cn of dimension s ≤ r and let

S be a subspace of Cm of dimensions m − s. In addition, suppose that R ∈ Cn×m satisfies
R(R) = T,N (R) = S. Let R has an arbitrary full-rank decomposition, that is R = FG. If A

has a {2}-inverse A
(2)
T,S, then:

(1) GAF is an invertible matrix;

(2) A
(2)
T,S = F (GAF)−1G.

Representation of outer inverses, in the general form F (GAF)−1G, is applicable in numerical
calculations. For example, such a representation has been exploited to define the determinantal
representation of A

(2)
T,S inverse in [117] or the set A{2}s in [125]. Also, this representation has

been used in the construction of the general successive matrix squaring algorithm for computing
A

(2)
T,S [126] or in the block representation of the set A{2}s [122].

3.4.1 Full-rank factorization of {2, 4} and {2, 3}-inverses

The general representations of {2, 4} and {2, 3}-inverses of the form (V A)†V and U(AU)†,
respectively, are not widely exploited in the literature. Several modifications of the hyper-power
method are used in computation of {2, 3} and {2, 4}-inverses in [123]. Various representations
of {2, 3} and {2, 4}-inverses with prescribed range and null space has been investigated [21,
117, 149, 150]. The expressions for {2, 3} and {2, 4}-inverses of a normal matrix by its Schur
decomposition are discussed in [151]. But, these representations are not exploited in developing
of some effective computational procedures.

For this reason, our main goal is to determine full-rank representations of {2, 4} and {2, 3}-
inverses with prescribed range and null space as particular cases of the full-rank representation
for generalized inverses A

(2)
T,S [128]. We also define full-rank representations of the sets A{2, 4}s

and A{2, 3}s as particular cases of the full-rank representation of the set A{2}s.
In Lemma 3.4.1 we exactly distinguish sets A{2, 4}s and A{2, 3}s as subsets of the set A{2}s.

58 CHAPTER 3. GENERALIZED INVERSES

Lemma 3.4.1. Let A∈Cm×n
r be the given matrix and 0<s≤r a chosen integer. Assume that

V and U are two arbitrary matrices satisfying rank(V A) = rank(V) and rank(AU) = rank(U).
Then the following statements are valid:

(a) A{2, 4}s =
{
(V A)∗ (V A(V A)∗)−1 V | V ∈ Cs×m

s

}
;

(b) A{2, 3}s =
{
U ((AU)∗AU)−1 (AU)∗ | U ∈ Cn×s

s

}
;

(c) A{1, 2, 4} =
{
(V A)∗ (V A(V A)∗)−1 V | V ∈ Cr×m

r

}
= A{2, 4}r;

(d) A{1, 2, 3} =
{
U ((AU)∗AU)−1 (AU)∗ | U ∈ Cn×r

r

}
= A{2, 3}r.

Proof. The proof for the parts (a), (b) follows immediately from

(V A)∗(V A(V A)∗)−1V = (V A)∗ ((V A)∗)† (V A)†V = (V A)†V

and
U((AU)∗AU)−1(AU)∗ = U(AU)†((AU)∗)†(AU)∗ = U(AU)†

together with the general representations of the sets A{2, 4}s and A{2, 3}s from Proposition
3.4.1.

Representations (c) and (d) follows from well-known fact that X = F (GAF)(1)G ∈ A{1} if
and only if rank(GAF) = r (see, for example [136], Theorem 1.3.7). ¤

Therefore, we conclude that {2, 4}-inverses can be derived from the set of outer inverses in
the particular case F = (V A)∗ and G = V . Similarly, {2, 3}-inverses can be derived in the
particular case F = U and G = (AU)∗. Practically, the following general representations hold:

A{2, 4}s = {A(2) ∈ Cn×m
s | A(2) = F (GAF)−1G, F = (V A)∗, G = V, V ∈ Cs×m, V A ∈ Cs×n

s };
A{2, 3}s = {A(2) ∈ Cn×m

s | A(2) = F (GAF)−1G, G = (AU)∗, F = U, U ∈ Cn×s, AU ∈ Cm×s
s }.

In the rest of this section we give an answer to the problem of finding appropriate values
for the matrix R which lead to {2, 4} and {2, 3}-inverses with prescribed range and null space.
It follows from the following two statements.

Motivated by Proposition 3.4.2, we find alternative representations of {2, 4} and {2, 3}-
inverses with prescribed range and null space in the general form which characterizes the set
of outer inverses: F (GAF)−1G, where F ∈Cn×s, and G∈Cs×m, s ≤ rank(A).

Theorem 3.4.1. For arbitrary matrix A ∈ Cm×n
r and arbitrary integer s satisfying 0 < s ≤ r

we have

(a) A{2, 4}s =
{

A
(2,4)

N (V A)⊥,N (V)
| V ∈ Cs×m

s , rank(V A) = rank(V)
}

(3.48)

(b) A{2, 3}s =
{

A
(2,3)

R(U),R(AU)⊥| U ∈ Cn×s
s , rank(AU) = rank(U)

}
. (3.49)

Proof. Let us choose an arbitrary element X ∈ A{2, 4}s. According to Proposition 3.4.1, X
is of the form

X = (V A)†V, V ∈ Cs×m
s , rank(V A) = rank(V).

Since
rank(X) = rank((V A)†) = rank(V A) = rank(V)

3.4. FULL-RANK FACTORIZATION OF GENERALIZED INVERSES 59

we conclude
R(X) = R((V A)∗) = N (V A)⊥,

N (X) = N (V)

and verify

X ∈
{

A
(2,4)

N (V A)⊥,N (V)
| V ∈ Cs×m

s , rank(V A) = rank(V)
}

.

To verify the opposite inclusion, assume that

X = A
(2,4)

N (V A)⊥,N (V)

for the selected matrix V ∈ Cs×m
s satisfying rank(V A) = rank(V). According to Proposition

3.4.2, X is of the form

X = F (GAF)−1G, R(F) = N (V A)⊥ = R ((V A)∗) , N (G) = N (V).

For example, it is possible to choose F = (V A)∗, G = V . According to Lemma 3.4.1, we get
X∈A{2, 4}s.

The part (a) of the proof is completed. The dual statement for {2, 3}-inverses can be verified
in a similar way. ¤

A correlation between outer inverses with prescribed range and null space with {2, 4} and
{2, 3}-inverses with prescribed range and null space is determined in the next statement.

Corollary 3.4.1. Let A ∈ Cm×n
r be a given matrix and R ∈ Cn×m

s , s ≤ r be arbitrary, but
fixed matrix. Assume that F ∈Cn×s

s and G ∈Cs×m
s form the full-rank factorization R = FG.

Let R(R) = T be a subspace of Cn of dimension s ≤ r and N (R) = S be a subspace of Cm of
dimensions m− s. Then the following statements are satisfied:

(1) In the case R = (V A)∗V , (or F = (V A)∗, G = V, V ∈ Cs×m is an arbitrary matrix),

the outer inverse A
(2)
T,S = F (GAF)−1G reduces to the {2, 4}-inverse

A
(2,4)
R((V A)∗),S = A

(2,4)

N (V A)⊥,N (V)
= (V A)∗(V A(V A)∗)−1V.

(2) In the case R = U(AU)∗, (or F = U, G = (AU)∗, U ∈ Cn×s is an arbitrary matrix),

the outer inverse A
(2)
T,S = F (GAF)−1G reduces to the {2, 3}-inverse

A
(2,3)
T,N ((AU)∗) = A

(2,3)

R(U),R(AU)⊥ = U((AU)∗AU)−1(AU)∗.

60 CHAPTER 3. GENERALIZED INVERSES

Chapter 4

Iterative methods for computing
generalized inverses

4.1 Intoduction

It is well known, that there is not an easy way to obtain, deterministically, the ordinary in-
verse of a given nonsingular square matrix. As a result, scientists stepped into a different
approach, i.e., approximate determination of the inverse. The same logic is also followed for
the generalized inverses. Namely, it is almost impossible to obtain generalized inverse of a
matrix, deterministically, especially when we talk about solutions of practical problems, where
the arisen matrices are usually of very large dimensions.

Penrose in his paper was the first who showed the close connection between the Moore-
Penrose inverse and the least-squares solution problem of a system of linear equations. The last
represents a special case of the nonlinear optimization problems. Additionally, the discovered
minimal properties of the solution of a system of linear equations, obtained with the usage of
the Moore-Penrose inverse, brought to intensive utilization of the optimization methods.

At the same time, the classical iterative methods for computing the ordinary inverse of a
given matrix, were extensively modified, for the purpose to serve as a tool for computing the
generalized inverses of matrices.

Also, what is worth mentioning is that scientists do not, only, strive to determine one
universal algorithm for generalized inverses calculation. Rather, when it is possible, they explore
the structure of matrices, via defining groups of matrices with characteristics properties, and
define methods which are appropriate only for one group. On that way, the theory of structured
matrices, such as: Toeplitz matrices, Hankel matrices, Vandermonde matrices, Cauchy matrices
etc., recognizes special algorithms for computing the generalized inverses of matrices. These
algorithms beside the good properties of the iterative schemes, they also benefit from the specific
structure of the matrices. As a result, the obtained algorithms are more competitive to the
classical ones, for this type of matrices.

Nowadays, the theory of generalized inverses is consisted of vast spectra of different methods
for approximate determination of generalized inverses of matrices. Some of them served as a
motivation for the results presented in the Ph.D. dissertation. For the sake of completeness,
we restate some of the well-known methods which are related to the new results.

61

62CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

4.2 The Moore-Penrose inverse

The purpose of this section is to present gradient iterative methods, for computing {1, 3}-inverse
solutions, {1, 3}-inverses, the Moore-Penrose inverse solution and the Moore-Penrose inverse.
The main idea for these methods comes from the steepest descent method for singular linear
operator equation introduced in [97], together with the idea of SC method introduced in the
second chapter. In the beginning we restate the method from [97], as well as necessary notions
related to the Moore-Penrose inverse on Hilbert spaces.

4.2.1 Steepest descent method for singular linear operator equation

Let H and K be Hilbert spaces over the same scalars (real or complex). For any subspace S,
we denote by S⊥ the orthogonal complement of S and S̄ the closure of S. Let A be a bounded
linear operator on H into K, and let A∗ denote the adjoint of A, i.e., for all x ∈ H, y ∈ K,

< Ax, y >=< x, A∗y > .

Let R(A) and N (A) denote the range and null space of A respectively.
The steepest descent method for singular linear operator equation, presents an iterative

scheme which converges to the solution of the normal equation

A∗Ax = A∗b, (4.1)

of the system

Ax = b, (4.2)

where A is bounded linear operator from a Hilbert spaceH to a Hilbert space K, and b ∈ K. The
presented results which are related to the steepest descent method for singular linear operator
equation, are taken form [97], only the notation is appropriately modified.

It is well known [131] that the results from the following proposition hold

Proposition 4.2.1. Let H and K be Hilbert spaces, and A : H → K a linear bounded operator

(1) H = N (A)⊕N (A)⊥,

(2) K = N (A∗)⊕N (A∗)⊥,

(3) R(A)
⊥

= N (A∗), R(A∗)
⊥

= N (A)⊥,

(4) R(A) is closed if and only if R(A∗) is closed,

(5) N (A∗A) = N(A), R(A) = R(AA∗).

Let us recall Definition 2.3.1: A vector x̂ ∈ H is called a least-squares solution of the
operator equation (4.2) if and only if ‖Ax̂− b‖ = inf{‖Ax− b‖ : x ∈ H}.

Proposition 4.2.2. [88] The vector x̂ is a least-squares solution of the (4.2) if and only if x̂
is a solution of the normal equation (4.1).

4.2. THE MOORE-PENROSE INVERSE 63

Proposition 4.2.3. Let R(A) be closed. Then the set S of all least-squares solutions of the
system (4.2) is nonempty closed convex set, and there is a unique element y of minimal norm
[131],i.e.,

‖Ay − b‖ ≤ ‖Ax− b‖ for all x ∈ H,

and
‖y‖ ≤ ‖x̂‖ for all x̂ ∈ S, x̂ 6= y.

Definition 4.2.1. The operator which assigns, to each b ∈ K, the unique least-squares solution
of minimal norm of (4.2) is called the Moore-Penrose inverse of A and is denoted by A†. A†

is linear and bounded operator.

Lemma 4.2.1. If R(A) is closed, then R(A∗) = R(A∗A).

Lemma 4.2.2. If R(A) is closed, then the set S of all least-squares solutions of (4.2) is given
by

S = A†b⊕N (A).

Theorem 4.2.1. Let A be a bounded linear operator on a Hilbert space H into H such that
R(A) is closed. Let x0 ∈ H be an initial approximation to a least-squares solution of the
equation (4.2). Then the steepest descent iterative scheme given with

xk+1 = xk − αkA
∗(Axk − b),

where

αk =
‖A∗(Axk − b)‖
‖AA∗(Axk − b)‖ ,

i.e., αk is such that it minimizes the functional

f(xk+1) =
1

2
‖Axk+1 − b‖2

at each step; converges to a least-squares solution of the system (4.2). Moreover, if x0 ∈ R(A∗)
then the steepest descent iterative scheme converges to A†b.

Inspired by the Nashed steepest descent method, the authors in [43] considered the iterative
scheme of the same form in more general spaces, C∗ algebras. The established proof for the
linear convergence of the method differs from the one from [97], not only with respect to the
observed spaces but also with respect to the used norms. Namely, the presented convergence
theorem in [43] is given in terms of an operator norm while the convergence of the Nashed
steepest descent scheme is given in terms of the Frobenius norm.

4.2.2 Application of the SC method for finding the Moore-Penrose
inverse solution of an operator equation

In order to achieve the final goal, i.e., computation of the Moore-Penrose inverse of a given
matrix, the analysis of the Moore-Penrose inverse of an operator on Hilbert space is inevitable.
Namely, via generalization of a method for finding the Moore-Penrose inverse on Hilbert spaces,
by treating a matrix as a linear map, enables efficient calculation of its Moore-Penrose inverse.

With the next theorem, we show that the Algorithm 2.3.1 presented in Chapter 2, not only
converges, as it is already shown in Theorem 2.3.1, but it also converges to a least-squares
solution of the analyzed system.

64CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

Theorem 4.2.2. Let H and K be given Hilbert spaces and A ∈ L(H,K) be an operator such that
R(A) is closed. The sequence (xk)k determined by Algorithm 2.2.1 converges to a least-squares
solution of the equation Ax = b.

For an arbitrary initial approximation x0 ∈ H the limit limk→∞ xk satisfies

lim
k→∞

xk = A†b + (I − A†A)x0.

Additionally, x0 ∈ R(A∗) if and only if limk→∞ xk = A†b.

Proof. In Chapter 2 we showed that for the given sequence it holds that

lim
k→∞

‖gk‖2 = 0.

Now, from limk→∞ ‖gk‖ = 0 we have

lim
k→∞

A∗Axk = A∗b.

Using known fact that u is a least-squares solution of Ax = b if and only if u is a solution of
the ”normal” equation A∗Axk = A∗b (see [88]), we conclude that the sequence xk converges to
a least-squares solution of the operator equation Ax = b.

For the second part of the proof see the convergence theorem for steepest descent from [97].
¤

The following proposition gives a characterization of least-squares solutions of the operator
equation Ax = b obtained by an arbitrary gradient method given by (2.48) which converges to
the minimum of the functional defined by (2.45).

Proposition 4.2.4. [97] Let H and K be given Hilbert spaces and A ∈ L(H,K) is chosen
operator such that R(A) is closed. Let the iterative process defined by (2.48) converges to a
least-squares solution of the operator equation Ax = b. Then the obtained least-squares solution
is completely determined by an arbitrary chosen initial approximation x0 ∈ H and has the
following representation

lim
k→∞

xk = A†b + (I − A†A)x0, (4.3)

where I ∈ L(H) is the identity operator. Consequently, x0 ∈ R(A∗) if and only if

lim
k→∞

xk = A†b. (4.4)

Similar representation of least-squares solutions in C∗ algebras obtained by the process
(2.48) is established in [43].

Problem 4.2.1. It seems interesting to find explicit solution of the following problem: for an
arbitrary chosen least-squares solution of the equation Ax = b, find corresponding vector x0 ∈ H
such that the limit L(x0) of the iterative process (2.48) is just equal to this lss. The solution of
the problem is given in the rest of this section.

Let us denote the limiting value of the iterative process (2.48) which starts with the initial
vector x0 by

L(x0) ≡ lim
k→∞

xk = A†b + (I − A†A)x0.

The following auxiliary results will be used to get the answer to the stated problem.

4.2. THE MOORE-PENROSE INVERSE 65

Lemma 4.2.3. Let A ∈ L(H,K) have a closed range, where H,K are Hilbert spaces. Then

a) A†AA(1,3) = A†.

b) Let b ∈ K. Then ‖Ax − b‖ is smallest when x = A(1,3)b. Conversely, if X ∈ L(K,H) has
the property that for all b the norm ‖Ax− b‖ is smallest for x = Xb, then X ∈ A{1, 3}.

Proof. A has the following matrix form:

A =

[
A1 0
0 0

]
:

[R(A∗)
N (A)

]
→

[R(A)
N (A∗)

]
,

where A1 is invertible. Hence,

A† =

[
A−1

1 0
0 0

]
, A(1,3) =

[
A−1

1 0
U V

]
,

where U, V are arbitrary linear and bounded.

a) An easy computation shows that A†AA(1,3) = A† holds.

b) Let

x =

[
x1

x2

]
∈

[R(A∗)
N (A)

]
and b =

[
b1

b2

]
∈

[R(A)
N (A∗)

]

be arbitrary elements from H and K respectively. We see that

min ‖Ax− b‖2 = min ‖A1x1 − b1‖2 + ‖b2‖2 = ‖b2‖2

is attained for x1 = A−1
1 b1. Hence, all least-squares solutions of the equation Ax = b have

the form

[
A−1

1 b1

x2

]
, which is the result proved in [44]. Let

x = A(1,3)b =

[
A−1

1 b1

Ub1 + V b2

]
,

whence x is a least-squares solution. Conversely, for all b,

x = Xb =

[
X1 X2

X3 X4

] [
b1

b2

]
=

[
X1b1 + X2b2

X3b1 + X4b2

]
=

[
A−1

1 b1

x2

]

since x is a least-squares solution, from which follows that X1 = A−1
1 and X2 = 0, we get

X ∈ A{1, 3}.

¤

Lemma 4.2.4. Let H,K,M be Hilbert spaces. If A ∈ L(H,K) has a closed range and F ∈
L(M,H) satisfies R(F) = N (A), then there exists some G ∈ L(H,M) such that FG =
I − A†A.

66CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

Proof. We keep the notations from Lemma 4.2.3. Since R(F) = N (A), we conclude that F
has the following form:

F =

[
0
F1

]
: M→

[R(A∗)
N (A)

]
,

where F1 : M→N (A) is onto, hence it is right invertible. There exists some G1 : N (A) →M,
such that F1G1 = I. Now, let us consider the operator

G =
[
0 G1

]
:

[R(A∗)
N (A)

]
→M.

Then

FG =

[
0 0
0 I

]
= I − A†A,

which was our original attention. ¤

We firstly derive a particular solution to Problem 4.2.1.

Theorem 4.2.3. For an arbitrary given operator A ∈ L(H,K) with closed range and an arbi-
trary chosen least-squares solution s of the operator equation Ax = b the following holds

s = L(s− A†b). (4.5)

Proof. According to Lemma 4.2.3, part b), we can characterize the set of all least-squares
solutions of the operator equation Ax = b by {A(1,3)b + (I − A(1,3)A)y| y ∈ H}, where A(1,3) is
arbitrary but fixed element. For example, it is possible to choose A(1,3) = A†. Let F ∈ L(H,H)
be such that R(F) = N (A) (for example we can take F = IH|N (A)). Since R(I−A†A) = N (A)
from Lemma 4.2.4 we have that there exists an operator G ∈ L(H,H) such that FG = I−A†A.
Now it is clear that we can reduce the characterization set to the following one

{A†b + Fy| y = Gz, z ∈ H},

Now we obtain
s = A†b + FGz = A†b + (I − A†A)z.

One can verify the following

s = A†b + (I − A†A)(s− A†b),

taking into account that s = Sb where S is some {1, 3} inverse of A. Therefore, it is possible
to choose z = s− A†b, which implies

x0 = s− A†b,

and completes the proof. ¤

In the next theorem we get a general solution to the stated problem.

Theorem 4.2.4. For an arbitrary given linear operator A ∈ L(H,K) and an arbitrary least-
squares solution s of the equation Ax = b the following holds

s = L(s− A†b + A†Ay), y ∈ H. (4.6)

4.2. THE MOORE-PENROSE INVERSE 67

Proof. Let us start with the least-squares solution s of the equation Ax = b, obtained by
(2.48)

s = A†b + (I − A†A)x0.

In order to find the vector x0 in terms of the vector s we consider the following operator equation

Cx0 = d, (4.7)

where C = I − A†A, d = s− A†b. Since C is idempotent and Hermitian (thus the orthogonal
projector), it follows C = C†C. According to Theorem 4.2.3 we conclude that the equation
Cx0 = d has a solution. Following the general form of the least-squares solution (which is a
solution) of the equation Cx0 = d (see [98]), we obtain

x0 = C†d + (I − C†C)y, y ∈ H. (4.8)

After applying the equality A†As = A†b which is not difficult to check and I −C†C = A†A we
obtain

x0 = (I − A†A)(s− A†b) + A†Ay

= s− A†b− A†As + A†b + A†Ay

= s− A†b + A†Ay,

(4.9)

which completes the proof. ¤

4.2.3 Application of the SC method for finding the Moore-Penrose
inverse of a matrix

The results from this section are inspired from Proposition 3.1.11 as well as from the next result
(see, for example [12]): X ∈ A{1, 3} if and only if X is a least-squares solution of AX = Im,
i.e., X minimizes the norm ‖AX − I‖F .

Let H = Cn×m and K = Cm×m be regarded as Hilbert spaces. Here, on the space of complex
matrices we consider the Frobenius scalar product, 〈A,B〉 = Tr(A∗B), and the Frobenious norm
‖A‖F =

√
〈A,A〉, where Tr(A) denotes the trace of the matrix A.

Any matrix A ∈ Cm×n defines a mapping from H to K by

A(X) = AX.

In this way, we can establish an analogy to the results of the previous sections with respect to
the functional Q(X) = 1

2
‖AX − I‖2

F . Consequently, we obtain the iterations

Xk+1 = Xk − γkGk = Xk − γkA
∗(AXk − I), k ≥ 0, (4.10)

which are of the form (2.48) and the corresponding stepsizes for SC method is given by

γSC
k+1 =

{ 〈Sk,Rk〉
〈Yk,Rk〉 , 〈Yk, Rk〉 > 0
‖Sk‖
‖Yk‖ , 〈Yk, Rk〉 ≤ 0

, k ≥ 0, (4.11)

where Sk = Xk+1 −Xk, Yk = Gk+1 −Gk and Rk = Sk − γkYk.

Finally, we define the following algorithm for computing {1, 3}-inverses (and particularly
the Moore-Penrose inverse) of complex matrices.

68CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

Algorithm 4.2.1 SC method for computing {1, 3}-inverses of a matrix

Input: Complex matrix A ∈ Cm×n, initial approximation matrix X0 ∈ Cn×m and real positive
constants 0 < ε ¿ 1, 0 < ξ1 ¿ 2(1−ε)

‖A‖2 .

1: Set k = 0, compute Q(X0), G0 and use γ0 = 1.
2: If test criteria are fulfilled then go to Step 7; otherwise, go to the next step.
3: Compute Xk+1 using (4.10), Q(Xk+1), Gk+1, Sk = Xk+1 −Xk, Yk = Gk+1 −Gk.

4: Determine ξ
(k+1)
2 = 2(1− ε) ‖Gk+1‖2

‖AGk+1‖2 .

5: Compute the stepsize γk+1 using (4.11). If γk+1 < ξ1 or γk+1 > ξ
(k+1)
2 , set γk+1 = ξ

(k+1)
2 .

6: Set k := k + 1 and go to Step 2.
7: Return Xk+1 and Q(Xk+1).

It is clear that the iterations (4.10) can be considered as a general gradient method for
computing {1, 3}-inverses of a given matrix. Taking into account the equation (2.47), we can
also consider BB method as a kind of a two-point stepsize gradient method and additionally
we observe the steepest descent method which is a gradient descent method. The stepsizes for
these methods are computed according to the following formulae respectively

γBB
k+1 =

〈Yk, Sk〉
〈Yk, Yk〉 and γSD

k =
‖Gk‖2

‖AGk‖2
k ≥ 0. (4.12)

It is known that BB method for any dimensional quadratic function is R-linearly convergent
[37] as well as that the steepest descent method converges to a least-squares solution of the
matrix equation AX = I [97].

The algorithms (BB and steepest descent) for computing {1, 3}-inverses and the Moore-
Penrose inverse of a matrix would be almost the same as Algorithm 4.2.1. The only difference
is that SC method is implemented using the restrictions imposed in Step 5 of the algorithm
on the parameter γk, while BB and the steepest descent methods do not make use of these
restrictions. Let us indicate to a significant difference between the Algorithm 4.2.1 and the
corresponding BB method for the pseudoinverse computation. The BB method considered here
is actually nonmonotone gradient method (the positiveness of the stepsize is not mandatory).
On the other hand, the SC method is a strictly monotone gradient descent method (similarly
as the steepest descent method).

• Convergence properties

Remark 4.2.1. Let us consider SC method, BB method and the steepest descent methods as
gradient methods for computing a least-squares solution of the matrix equation AX = I and the
iterative methods introduced in [43]. For any initial approximation X0 these methods converge
to the A(1,3) inverse, given by A†+(I −A†A)X0. Particularly, in the case X0 ∈ R(A∗) we have
that these methods converge to A†.

For this purpose, it is realistic to expect that the general iterative scheme (4.10) possesses
the same convergence properties.

Corollary 4.2.1. Let the matrix X0 ∈ Cn×m be any initial approximation, A ∈ Cm×n be a
given matrix and I ∈ Cm×m be the identity matrix. If the sequence (Xk)k given by the gradient

4.2. THE MOORE-PENROSE INVERSE 69

method (4.10) converges to a least-squares solution of the matrix equation AX = I, then this
solution is given by

lim
k→∞

Xk = A† + (I − A†A)X0. (4.13)

Particularly, X0 ∈ R(A∗) if and only if

lim
k→∞

Xk = A†. (4.14)

Proof. Follows straight from Proposition 4.2.4. ¤

Remark 4.2.2. According to Corollary 4.2.1, we conclude that the {1, 3}-inverse which is
achieved by the iterative process (4.10) (as a least-squares solution) is completely determined
by the initial approximation X0, and it is given by A† + (I −A†A)X0. At this point, we denote
the limit of the iterative process (4.10) determined by X0 as L(X0). Now we consider algebraic
properties of the set {L(X0) | X0 ∈ Cn×m}.
Corollary 4.2.2. Let A ∈ Cm×n be given complex matrix. The following statement holds

L =
{
L(X0) | X0 ∈ Cn×m

}
= A{1, 3}. (4.15)

Proof. We use the following characterization of the set A{1, 3} from [12]:

A{1, 3} =
{
A(1,3) + (I − A(1,3)A)Z : Z ∈ Cn×m

}
,

for arbitrary but fixed A(1,3) ∈ A{1, 3}. For example, it is possible to use A(1,3) = A†. In this
case, the inclusion L ⊆ A{1, 3} is evident. To verify the opposite inclusion let us choose an
arbitrary A(1,3) ∈ A{1, 3}. It is of the form A(1,3) = A† + (I −A†A)Z, Z ∈ Cn×m. If the initial
iteration in (4.10) is chosen as X0 = Z we obtain A(1,3) = L(X0), which implies A{1, 3} ⊆ L.
¤

Let us consider the analogous problem with respect to Problem 4.2.1 considering the matrix
equation AX = I; for an arbitrary chosen {1, 3}-inverse A(1,3) find corresponding matrix X0

such that the limit L(X0) of the iterative process (4.13) is just equal to A(1,3).

In the following corollary we present the general solution of the stated problem.

Corollary 4.2.3. For an arbitrary given matrix A ∈ Cm×n and an arbitrary chosen S ∈ A{1, 3}
the following holds

S = L(S − A† + A†AY), Y ∈ Cn×m. (4.16)

It is possible to derive an alternative characterization for the convergence of (4.10) using
main principle from [107]. If L is the desired limit matrix and Xk is the k-th estimate of L,
then the convergence properties of the examined algorithm can be studied with the aid of the
error matrix Ek = Xk − L. If an iterative algorithm is expressible as a simple matrix formula,
Ek+1 is a sum of several terms:

- zero-order term consisting of a matrix which does not depend upon Ek,
- one or more first-order matrix terms in which Ek or its conjugate transpose E∗

k appears
only once,

- higher-order terms in which Ek or E∗
k appears at least twice.

70CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

All suitable algorithms have a zero-order term equal to 0. Hence the first-order terms
determine the terminal convergence properties [107]. The calculation of the first-order terms
error1 begins by substituting Xk = A† + E and expanding the resulting formula.

Using this approach, in the following statement we verify the linear convergence of our
method (4.10).

Theorem 4.2.5. Iterative method (4.10) converges to the Moore-Penrose inverse X = A†

linearly, where the first-order and the second-order terms, corresponding to the error estimation
of (4.10) are equal to:

error1 = (I − γkA
∗A)Ek, error2 = 0, (4.17)

respectively.

Proof. Putting Xk = A† + Ek in (4.10) it is not difficult to verify that the error matrix Ek+1 is
equal to

Ek+1 = Ek − γkA
∗AA† − γkA

∗AEk + γkA
∗,

which confirms the statements in (4.17).

4.2.4 Numerical Results

According to the convergence properties of gradient methods (which include the steepest de-
scent method, SC and BB method), investigated in previous subsection, it seems reasonable
to compare these methods in computation of the ordinary inverse, the Moore-Penrose inverse
and various {1, 3}-inverses. The code for the three methods (the steepest descent, BB and SC
method) is written in the MATLAB programming package and tested on a Workstation Intel Core
duo 1.6 GHz. We selected 5 different types of matrices as test problems. For each test matrix
we have considered five different dimensions which are chosen according to the nature of the
test problem. For each test problem we compared two indicators: number of iterations and
the accuracy of the obtained result, i.e., the difference between the exact pseudoinverse and
its approximation (obtained by the algorithm) given in terms of the matrix norm. Stopping
conditions are:

‖Xk+1 −Xk‖F ≤ ε = 10−8 and |fk+1 − fk| ≤ ε = 10−8.

Example 4.2.1. In this example the inverse of the nonsingular symmetric matrix Zn of order
n = 2, 4, 6, . . ., taken from [158], which is given by

zi,j =





a− 1, i = j, i even
a + 1, i = j, i odd
a, otherwise

(4.1)

is computed. For computing the ordinary inverse of the parametric matrix Zn we use a = 2.

Table 4.2.1. Numerical results for computing the inverse of the matrix Zn where a = 2

4.2. THE MOORE-PENROSE INVERSE 71

Number of iterations ‖Z−1 −X‖F

Dim SC BB Steepest SC BB Steepest

10 5 8 5 1.4e-11 6.9e-07 2.9e-09
20 5 13 5 4.6e-10 1.9e-09 3.4e-06
30 5 13 5 3.2e-09 6.6e-09 3.4e-05
40 5 13 5 6.6e-09 9.2e-08 2.7e-04
50 7 8 5 3.9e-08 3.5e-05 7.9e-04

Following the results from Table 4.2.1 it is evident that SC method as well as the steepest
descent method outperform BB method approximately twice, in the number of iterations. Also,
according to the accuracy, the SC method proves oneself as the best. It is important to say
that the matrix Zn is well conditioned matrix and therefore the steepest descent method is
competitive with the two-point stepsize methods.

Example 4.2.2. The structured (Toeplitz) test matrix

An = toeplitz[(1, 1/2, . . . , 1/(n− 1), 1/n)]

is taken from [14] and the numerical results for computing its inverse are presented.

Table 4.2.2. Numerical results for computing the inverse of the Toeplitz matrix An

Number of iterations ‖A−1 −X‖F

Dim SC BB Steepest SC BB Steepest

10 83 72 618 4.6e-07 2.2e-08 2.8e-07
20 117 108 903 2.4e-07 1.9e-08 5.1e-07
30 124 127 1237 4.1e-07 1.4e-07 7.1e-07
40 150 137 1533 5.6e-07 1.4e-06 8.5e-07
50 168 162 1789 6.9e-07 6.5e-07 9.8e-07

From the results for the computation of the inverse of the well conditioned matrix An

we conclude that the steepest descent method is not competitive with the two-point stepsize
methods regarding the number of iterations. Additionally, the BB method performs slightly
better then SC method. Also, there is no big difference between the accuracy for all three
observed methods.

Example 4.2.3. In this example we consider the symmetric test matrix Sn of order n =
3, 5, 7, . . . and of rank n− 1, taken from [158], which is given by

si,j =





a− 1, i = j, i even
a + 1, i = j, i odd
a + 1, |i− j| = n− 1
a, otherwise.

(4.2)

For this ill-conditioned matrix whose condition number is large condF (Sn) ≈ |a|2(n2 − 3n/2),
|a| À 2, the Moore-Penrose inverse is determined. The presented numerical results are obtained
after we made the choice a = 2.

72CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

Table 4.2.3. Numerical results for computing the Moore-Penrose inverse of the matrix Sn

Number of iterations ‖S† −X‖F

Dim SC BB Steepest SC BB Steepest

9 12 17 216941 1.6e-04 1.8e-06 2.6e-04
11 12 17 315545 4.6e-05 2.9e-06 4.9e-04
13 9 17 449687 1.9e-05 3.0e-05 8.7e-04
15 9 17 629469 1.0e-05 1.2e-04 0.0014
17 9 17 863949 6.3e-06 4.1e-04 0.0022

According to the results from Table 4.2.3 it is clear that two-point stepsize methods behave
significantly better with respect to the steepest descent method not only in the number of
iterations but also in the accuracy The enormous number of iterations corresponding to the
steepest descent method confirms the fact that the steepest descent is very badly affected by
ill conditioning. Additionally, SC method outperform BB method observing the number of
iterations almost as twice.

Example 4.2.4. The tridiagonal square test matrix Bn of the order n and rank(Bn) = n − 1
taken from [158]

Bn =




1 −1

−1 2 −1 0
−1 2 −1

. . .
. . .

. . .

0 −1 2 −1
−1 1




is considered. The numerical results for computing the Moore-Penrose inverse B†
n as well as the

B
(1,3)
n inverse are presented. The matrix Bn is ill-conditioned matrix with the spectral condition

number equal to cond2(Bn) = 4n2/π2.

Table 4.2.4. Numerical results for computing the Moore-Penrose inverse of the matrix Bn

Number of iterations ‖B† −X‖F

Dim SC BB Steepest SC BB Steepest

5 71 42 585 7.7e-07 4.6e-07 3.3e-07
10 340 170 11369 5.8e-06 1.8e-07 5.8e-06
15 924 671 55215 1.7e-05 1.5e-05 2.9e-05
20 2130 2058 168083 2.3e-04 8.6e-07 9.5e-05
30 3125 4669 801031 7.4e-04 2.1e-07 4.8e-04

To compute the B
(1,3)
n inverse we made the choice X0 = I for the initial approximation. Each

of the observed methods converges to B†+ I −B†B, which is completely determined by X0 = I.

Table 4.2.5. Numerical results for computing B(1,3) inverse of the matrix Bn

4.3. THE DRAZIN INVERSE 73

Number of iterations ‖B(1,3) −X‖F

Dim SC BB Steepest SC BB Steepest

5 63 44 629 6.3e-08 3.5e-10 3.3e-07
10 365 413 11253 2.2e-06 1.1e-05 5.8e-06
15 847 517 54843 6.7e-05 3.4e-06 3.0e-05
20 2254 1813 167147 2.5e-04 2.3e-04 9.6e-05
30 4096 3716 797241 1.0e-03 1.3e-03 4.9e-04

SC and BB method show significantly better results with respect to the steepest descent
method for computing the Moore-Penrose inverse as well as the {1, 3} inverse of the matrix
Bn, as it is excepted. Although BB method outperform SC method observing the number of
iterations, in some cases such as the case n = 30 from Table 4.2.4 we see a big difference in the
number of iterations in favor of SC method.

Example 4.2.5. The test matrix An is constructed by the Matrix Market generator. The matrix
An is nonsymmetric square sparse (40% zero elements) random matrix which is filled out by
uniformly distributed elements from the interval [0, 5].

Table 4.2.6. Numerical results for computing the Moore-Penrose inverse of the matrix An

Number of iterations ‖A† −X‖F

Dim SC BB Steepest SC BB Steepest

5 57 42 253 4.5e-07 1.5e-07 2.6e-07
10 478 485 23763 3.7e-05 1.5e-06 2.4e-05
15 445 419 13567 8.9e-06 3.0e-05 1.2e-05
20 384 300 8955 1.7e-05 1.4e-05 9.0e-06
30 1532 1305 137873 2.0e-04 1.4e-04 1.7e-04

For the random sparse matrix An, according to presented numerical results, again we see
the ascendancy of the two point stepsize methods over the steepest descent method. Also, we
distinguish the slightly better performance of BB method with respect to SC method.

4.3 The Drazin inverse

The problem of finding the solution of the form ADb for the Drazin-consistent system given by

Ax = b, where b ∈ R(Ap) , p = ind(A), (4.3)

is very common in the literature and many different techniques were developed in order to solve
it.

The method of conjugate gradients (CG) [70] is applicable in the case when A is a Hermitian
positive semidefinite matrix and the linear system is consistent. The authors in [30] developed
a semi-iterative method for finding the Drazin-inverse solution of the given system, but only in
the case when the matrix A has a real spectrum. They extended the idea from [61] where the
authors proposed a semi-iterative method for finding a solution of an inconsistent system of
linear equations in the case when the spectrum of A is real and nonnegative and ind(A) = 1. One

74CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

of the Krylov subspace methods (denoted by DGCR), modeled after the generalized conjugate
residual method (GCR), is considered in [120]. It is shown that all of the approximations
produced by DGCR exist, and as its implementation a GMRES-like algorithm, denoted by
DGMRES, is derived. This algorithm is also analyzed in [154, 155].

The authors in [121] developed a BI-CG type Krylov subspace method that gave a Lanczos
type method and a bi-conjugate gradient (Bi-CG)-type algorithm suitable for the general case.
Zhang and Wei [153], Zhou and Wei in [157] presented a preconditioned Krylov subspace method
for the Drazin-inverse solution of (3.1) with unit index. Other projection methods, including
Krylov methods, for solving the given problem which consider also the case when the system is
inconsistent are treated in [5, 46, 47, 70, 82, 156] etc. A unified framework for Krylov subspace
methods of arbitrary system of linear equations is given in [51, 119, 144].

Index splitting methods for computing the Drazin-inverse solution are presented in [140,
142]. The Cramer rule for computing the Drazin-inverse solution is given in [139].

The intent of this section is to give a different approach for computing the Drazin-inverse
solution, despite previously mentioned. Using the properties of the Drazin-inverse solution,
including its least-squares properties, we propose iterative methods for computing the Drazin-
inverse solution. Namely, the problem of computing the Drazin-inverse solution is reduced to the
problem of finding a minimum of a quadratic function. This reduction is obtained according to
the proposed relationship between the Drazin-inverse solution and appropriate {1, 3}-inverses,
presented in Section 3.2.1. In order to find the minimum of a quadratic function, we use BB
method, introduced in the first chapter.

4.3.1 Gradient methods for computing the Drazin-inverse solution

• Case 1: The system of linear equations is Drazin-consistent, i.e., b ∈ R(Ap).

Let us recall from Chapter 3 that the objective problem we analyze in this case, is given by

min
x

f(x) = min
x

1

2
‖Ap+1x− b‖2. (4.4)

where p = ind(A).

It can be easily checked that the gradient of the function given by (4.4) is

g(x) =
(
Ap+1

)∗
(Ap+1x− b). (4.5)

We analyze the general iterative scheme (2.3) in which the search direction is chosen to be the
negative gradient dk = −gk, i.e.,

xk+1 = xk − γkgk. (4.6)

For the purposes of presenting the functionality of the algorithm we use the stepsize γk

determined according to the BB method [8]. Therefore, we get

γi =
sT

k−1sk−1

sT
k−1yk−1

=
‖sk−1‖2

‖Ap+1sk−1‖2
, (4.7)

since yk−1 = gk − gk−1 = (Ap+1)∗Ap+1sk−1.

Now we present an algorithm, for computing the Drazin-inverse solution of the problem
(3.8).

4.3. THE DRAZIN INVERSE 75

Algorithm 4.3.1 The BB method for computing the Drazin-inverse solution

Input: A matrix A ∈ Cn×n, a vector b ∈ Cn such that b ∈ R(Ap), chosen initial point x0 and
real positive constant 0 < ε ¿ 1.

1: Set k := 0, compute g0 and use γ0 = 1.
2: If stopping conditions are satisfied then go to Step 6.
3: Compute xk+1 using xk+1 = xk − γkgk and gk+1 according to (4.5).
4: Compute the stepsize γk+1 using (4.7)
5: Set k := k + 1 and go to Step 2.
6: Return ŷ = Apxk+1.

Corollary 4.3.1. Let A ∈ Cn×n and b ∈ Cn such that b ∈ R(Ap) where p = ind(A). The
iterative scheme, defined with Algorithm 4.3.1 converges, and the output is the vector ADb.

Proof. From the convergence of the BB method, it follows that the sequence (xk)k defined with
Algorithm 4.3.1 converges to the minimum of the function (4.4). Finally, the last statement is
a direct consequence of Theorem 3.2.2. ¤

• Case 2: The system of linear equations is an arbitrary system, i.e., b ∈ Cn.

In this case our objective is the following problem:

min
x

f(x) = min
x
‖A2px− b‖2

P , (4.8)

i.e.,
min

x
f(x) = min

x
‖A1x− b1‖2, (4.9)

where A1 = P−1A2p and b1 = P−1b.
Similarly as in the previous part, in order to find the minimizer of the given functional we

use the two-point stepsize gradient iterative scheme

xk+1 = xk − γkgk. (4.10)

The gradient of the functional (4.8) and (4.9) is

g(x) = (A1)
∗(A1x− b1) = (P−1A2p)∗P−1(A2px− b). (4.11)

Thus, the stepsize which is determined according to the BB method becomes

γi =
sT

k−1sk−1

sT
k−1yk−1

=
‖sk−1‖2

‖A2psk−1‖2
P

. (4.12)

According to Theorem 3.2.5 and the iterative method for computing the minimum of the
functional given by (4.8) (or (4.9)) we are in a position to present an algorithm for computing
the vector ADb, in the case where A is an arbitrary square matrix and b is an arbitrary vector,
both of appropriate dimensions.

76CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

Algorithm 4.3.2 The BB method for computing the Drazin-inverse solution in general case

Input: A matrix A ∈ Cn×n, a vector b ∈ Cn, chosen initial point x0 and real positive constant
0 < ε ¿ 1.

1: Set k := 0, compute g0 and use γ0 = 1.
2: If stopping conditions are satisfied then go to Step 6.
3: Compute xk+1 using xk+1 = xk − γkgk and gk+1 according to (4.11).
4: Compute the stepsize γk+1 using (4.12)
5: Set k := k + 1 and go to Step 2.
6: Return ŷ = A2p−1xk+1.

Corollary 4.3.2. Let A ∈ Cn×n and b ∈ Cn such that b ∈ R(Ap) where p = ind(A). The
iterative scheme, defined with Algorithm 4.3.2 converges, and the output is the vector ADb.

Proof. Similarly as in Corollary 4.3.1, the proof follows from the convergence of the BB
method and Theorem 3.2.5. ¤

• Numerical examples

In this section we report some numerical results obtained by executing Algorithm 4.3.1 for
computing the Drazin-inverse solution of the consistent system (3.8) and Algorithm 4.3.2 for
computing the Drazin-inverse solution in general case. The test examples are given to illustrate
that the method works and to demonstrate some good numerical properties. The code is
written in the programming package MATLAB and tested on a Workstation Intel Core duo 1.6
GHz. Stopping conditions are:

‖xk+1 − xk‖ ≤ 10−8 and
|f(xk+1)− f(xk)|

1 + |f(xk)| ≤ 10−16.

The test matrices which are presented in the following examples are taken from the papers
[30, 55, 143]. During the execution of algorithms we observed and later reported two important
indicators: the number of iterations and the estimation error given in terms of the norm
‖ADb− ŷ‖ where the vector ŷ presents an approximation to the Drazin-inverse solution. This
approximation is obtained according to ŷ = Apx̂ and ŷ = A2p−1x̂, in the case of a Drazin
consistent system and in general case, respectively. The Drazin inverse of the matrix A is
computed based on the known formula AD = Ap (A2p+1)

†
Ap. Additionally, in the case of a

Drazin consistent system the estimation error given in terms of the norm ‖Aŷ−b‖ is presented,
since it is expected that this norm tends to zero. The vector b is chosen to be a random vector of
appropriate dimensions and is constructed using the MATLAB function randint(). In the case of a
consistent system given by (3.1) the random vector b is chosen such that it satisfies b ∈ R(Ap).

Example 4.3.1. We consider two examples of system Ax = b whose matrices (Ai, i ∈ {1, 2})
and random selected column vectors (bCon, bGen) are given as follows

A1 =




1 −1 0 0 0 0
−1 1 0 0 0 0
−1 −1 1 −1 0 0
−1 −1 −1 1 0 0
−1 −1 −1 0 2 −1
−1 −1 0 −1 −1 2




, bCon =




−14
14

−22
22
81

−28




, bGen =




−30
−19

5
−27
−8

8




.

4.3. THE DRAZIN INVERSE 77

A2 =




1 −1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
−1 −1 1 −1 0 0 0 0
−1 −1 −1 1 0 0 0 0

0 0 0 0 1 −1 −1 −1
0 0 0 0 −1 1 −1 −1
0 0 0 −1 0 0 1 −1
0 0 0 0 0 0 −1 1




, bCon =




−32
32
−8

8
−102

106
80

−84




, bGen =




−6
−5

9
21
−8
−5

6
4




.

The vectors bCon are chosen for the purpose of computing the Drazin-inverse solution in the
case of a consistent system, i.e., a system in which the condition b ∈ R(Ap) is satisfied. On
the other side, in the general case (when the condition b ∈ R(Ap) is not imposed) the random
vectors bGen are chosen arbitrary. In what follows we present the results obtained by computing
the Drazin-inverse solution of the system Ax = b in both cases: the consistent system and the
general case.

Table 4.3.7. Numerical results for computing the Drazin-inverse solution

BB Con BB Gen

Matrix index cond No of iter ‖ADb− ŷ‖ ‖Aŷ − b‖ No of iter ‖ADb− ŷ‖
A1 2 Inf 59 1 · 10−9 2 · 10−9 65 1 · 10−8

A2 4 Inf 27 2 · 10−10 4 · 10−10 45 7 · 10−9

For each of the considered test examples the index and the condition number of the matrix
are presented in the first part of the table, denoted by index and cond, respectively. The
condition number is computed by the MATLAB function cond(). The next part of the table
includes the results related to the consistent system, while the last part includes the results
related to the general case.

Example 4.3.2. In this test example two additional systems Ax = b are considered for com-
puting the Drazin-inverse solutions. Systems are determined by the following matrices and
arbitrary vectors columns:

A1 =




5 −1 −1 −1 −1 0 −1
1 3 −1 −1 −1 0 −1
0 0 3 −1 −1 0 −1
0 0 1 1 −1 0 −1
0 0 0 0 1 0 −1
0 0 0 0 1 0 −1
0 0 0 0 0 1 −10




, bCon =




−348
420

−156
12
0
0
0




, bGen =




−9
19

−30
−22
−18
−18

6




.

A2 =




1 0 0 1
0 1 0 0
1 0 0 1
0 0 0 0


 , bCon =




12
−30

12
0


 , bGen =




−20
30
−4
10


 .

Through this example the same notations are used as in the previous example.

78CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

Table 4.3.8. Numerical results for computing the Drazin-inverse solution

BB Con BB Gen

Matrix index cond No of iter ‖ADb− ŷ‖ ‖Aŷ − b‖ No of iter ‖ADb− ŷ‖
A1 3 1 · 1017 32 8 · 10−9 1 · 10−8 54 1 · 10−8

A2 1 Inf 4 5 · 10−15 0 8 5 · 10−15

The presented results clearly show that the methods converge to the Drazin-inverse solution
with a sufficient accuracy.

4.4 The A
(2)
T,S-inverse

4.4.1 Gradient methods for computing the A
(2)
T,S-inverse solution

Let A ∈ Cm×n and R ∈ Cn×m be such that

rank(AR) = rank(RA) = rank(R) and AR(R)⊕N (R) = Cm,

and let b ∈ R(AR).

As one can suppose, by using similar techniques as in the previous section, we can use the
gradient methods for finding A

(2)
T,S-inverse solution of a given system of linear equation. Hence,

recalling Lemma 3.1.7, we obtain gradient methods as a tool for computing generalized-inverse
solutions for any type of generalized inverses mentioned in Chapter 3.

We analyze the objective problem introduced in Chapter 3 by

min
x

f(x) = min
x

1

2
‖ARx− b‖2, (4.13)

where b ∈ R(AR), and its gradient given by

g(x) = (AR)∗ (ARx− b). (4.14)

Again, we consider the general iterative scheme (2.3) in which the search direction is chosen to
be the negative gradient dk = −gk, i.e.,

xk+1 = xk − γkgk. (4.15)

In this case, the stepsize γk determined according to the BB method [8] is given by

γk =
sT

k−1sk−1

sT
k−1yk−1

=
‖sk−1‖2

‖ARsk−1‖2
, (4.16)

since yk−1 = gk − gk−1 = (AR)∗ARsk−1.

Now we present an algorithm, for computing A
(2)
T,S-inverse solution of the following problem.

Ax = b, b ∈ R(AR) (4.17)

4.4. THE A
(2)
T,S-INVERSE 79

Algorithm 4.4.1 The BB method for computing A
(2)
T,S-inverse solution

Input: A matrix A ∈ Cn×n, a vector b ∈ Cn such that b ∈ R(AR), chosen initial point x0 and
real positive constant 0 < ε ¿ 1.

1: Set k := 0, compute g0 and use γ0 = 1.
2: If stopping conditions are satisfied then go to Step 6.
3: Compute xk+1 using xk+1 = xk − γkgk and gk+1 according to (4.14).
4: Compute the stepsize γk using (4.16)
5: Set k := k + 1 and go to Step 2.
6: Return ŷ = Rxk+1.

Corollary 4.4.1. Let A ∈ Cn×n and b ∈ Cn such that b ∈ R(AR). The iterative scheme,

defined with Algorithm 4.4.1 converges, and the output is the vector A
(2)
R(R),N (R)b.

• Numerical examples

For convenience we present several illustrative examples in order to show the effectiveness of
Algorithm 4.4.1. For that purpose we also use the results from Lemma 3.1.7. The code is
written in the programming package MATLAB and tested on a Workstation Intel Core 2 Duo, 2
GHz. Stopping conditions are:

‖xk+1 − xk‖ ≤ 10−8 and
|f(xk+1)− f(xk)|

1 + |f(xk)| ≤ 10−16.

As a sample matrix we use a matrix from the previous section, but now we are determining its
Moore-Penrose inverse, Drazin inverse and weighted Moore-Penrose inverse by using Algorithm
4.4.1.

Example 4.4.1. We consider the system Ax = b where the matrix A is given as follows

A =




1 −1 0 0 0 0
−1 1 0 0 0 0
−1 −1 1 −1 0 0
−1 −1 −1 1 0 0
−1 −1 −1 0 2 −1
−1 −1 0 −1 −1 2




,

a) Moore-Penrose invers: Since A† = A
(2)
R(A∗),N (A∗), we choose R = A∗. We choose b ∈

R(AA∗). Let

b =




−2
2
5
3
9
1




,

80CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

By using Algorithm 4.4.1 in 37 iteration we obtain the following solution

A†b = A
(2)
R(R),N (R)b =




−3
−1

0
−1

2
−1




.

b) Drazin inverse: Since AD = A
(2)
R(Ap),N (Ap), where p = ind(A) = 2, we choose R = A2. We

choose b ∈ R(AR). Let

b =




−14
14

−22
22
81

−28




,

By using Algorithm 4.4.1 in 59 iteration we obtain the following solution

ADb = A
(2)
R(R),N (R)b =




−7
7

−11
11
41

−12




.

c) Weighted Moore-Penrose inverse: Let M and N be positive definite matrices defined by

M =




3 0 0 0 0 0
0 2 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 2 0
0 0 0 0 0 3




, N =




1 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 2 0
0 0 0 0 0 1




,

Since A†
M,N = A

(2)

R(N−1A∗M),N (N−1A∗M) we choose R = N−1A∗M . Let

b =




−3.5
3.5

3.16667
1.83333
2.16667
2.83333




,

4.4. THE A
(2)
T,S-INVERSE 81

By using Algorithm 4.4.1 in 123 iteration we obtain the following solution

A†
M,Nb = A

(2)
R(R),N (R)b =




−3
0.5

0.333333
−0.333333

0
0




.

4.4.2 SMS method

Here we present the key points in the development of the so called Shultz method for generalized
inverse computation. It is the basis for the rest of results presented in this chapter.

The classical Newton’s iteration (B-IG algorithm or Shultz method)

Xk+1 = Φ(Xk) = Xk(2I − AXk) k = 0, 1, 2, . . . (4.18)

was proposed by Schultz in 1933 [114]. There it is shown that for a nonsingular matrix A, if
the magnitudes of the eigenvalues of the matrix I − AX0 are less than one, then the process
converges to A−1.

The method was further extended and adopted for different generalized inverses computa-
tion. The author in [9], was the first who generalized the Newton’s iterative scheme in order
to compute the Moore-Penrose inverse.

Proposition 4.4.1. [9] The sequence of matrices defined by

Xk+1 = Φ(Xk) = Xk(2PR(A) − AXk) k = 0, 1, 2, . . . (4.19)

where X0 ∈ Cn×m satisfies

(1) X0 = A∗B0 for some nonsingular matrix B0 ∈ Cm×m,

(2) X0 = C0A
∗ for some nonsingular matrix C0 ∈ Cn×n,

(3) ‖AX0 − PR(A)‖ < 1,

(4) ‖X0A− PR(A∗)‖ < 1,

converges to the generalized inverse A† of A.

One disadvantage of the previous method was the need to know PR(A) and PR(A∗) in order
to check Condition (3) and Condition (4) from the previous proposition. This difficulty was
evaded with the following proposition, given in [10].

Proposition 4.4.2. [10] Let A be an arbitrary (nonzero) complex m×n matrix of rank(r) and
let λ1(AA∗) ≥ λ2(AA∗) ≥ . . . ≥ λr(AA∗) denote the nonzero eigenvalues of AA∗. If the real
scalar α satisfies

0 < α <
2

λ1(AA∗)
then the sequence defined by:

X0 = αA∗

Xk+1 = Xk(2I − AXk), k = 0, 1, . . .

converges to A† as k →∞.

82CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

Newton’s method was later investigated in [103].

At the same time an analysis was conducted on the iterative scheme given by

Yk = α

k∑
i=0

A∗(I − αAA∗), k = 0, 1, . . .

The authors in [11] showed that the iterative scheme converges to A† if the condition

0 < α <
2

λ1(AA∗)

is satisfied. Later the authors in [25], presented a method for the Moore-Penrose inverse com-
putation, by showing that it is a solution of a matrix equation of the form

X = PXX + QX .

Based on these consideration, they showed that the solution of the matrix equation X =
PXX + QX can be approximated with the following iterative scheme

Xk+1 = PXXk + QX , X1 = QX , (4.20)

where PX = I − βA∗A, QX = βA∗ and β is a relaxation parameter. Later, this method
is powered by the successive matrix squaring method (SMS) method, which is based on the
following ideas: Let the matrix T be defined with

T =

[
PX QX

0 I

]
. (4.21)

and notice that the matrix T
k

is given by

T
k

=

[
P k

X

∑k−1
i=0 P i

XQX

0 I

]
.

It is not difficult to see that the iterative scheme (4.20) produces Xk =
∑k−1

i=0 P i
XQX . Hence,

the matrix Xk is equal to the right upper block in T
k
. In turn, T

2k

can be computed by the
matrix squaring repeated k times, that is

T 0 = T

T i+1 = T
2

i , i = 0, 1, . . . , k − 1.
(4.22)

It is clear that

T k = T
2k

=

[
P 2k

X

∑2k−1
i=0 P i

XQX

0 I

]
. (4.23)

In the same paper [25], the authors, also, showed the equivalence between Newton’s method
and SMS method.

Wei in [141] considered two variants of SMS algorithm which approximate the Drazin inverse
and the weighted Moore-Penrose inverse of the matrix A. Finally, the authors in [126] presented

4.4. THE A
(2)
T,S-INVERSE 83

a unified algorithm for computing all types of generalized inverses which can be expressed by the
A

(2)
T,S inverse, for appropriately chosen subspaces T ∈ Cn and S ∈ Cm such that AT ⊕ S = Cm.

The most important results related to SMS method for computing A
(2)
T,S inverses [126] are given

in the following.

Lemma 4.4.1. [67] Let H ∈ Cn×n and ε > 0 be given. There is at least one matrix norm ‖ · ‖
such that

ρ(H) ≤ ‖H‖ ≤ ρ(H) + ε, (4.24)

where ρ(H) denotes the spectral radius of H.

Proposition 4.4.3. [126] Let A ∈ Cm×n
r and R ∈ Cn×m

s , 0 < s ≤ r be given such that

AR(R)⊕N (R) = Cm. (4.25)

Then sequence of approximations

X2k =
2k−1∑
i=0

(I − βRA)iβR

determined by the SMS algorithm (4.22) converges in the matrix norm ‖ · ‖ to the outer inverse

X = A
(2)
R(R),N (R) of A if β is a fixed real number such that

max
1≤i≤t

|1− βλi| < 1, (4.26)

where rank(RA) = t, λi, i = 1, . . . t are eigenvalues of RA and ‖ · ‖ satisfies condition (4.24)
from Lemma 4.4.1, for the matrix I − βAR. In the case of convergence we have the following
estimate

‖X −X2k‖
‖X‖ ≤ max

1≤i≤t
|1− βλi|2k

+ O(ε), k ≥ 0. (4.27)

Corollary 4.4.2. Under the assumptions of Proposition 4.4.3 the following is valid:

(i) In the case m = n, R = Al, l ≥ ind(A), we have AD = limk→∞ X2k ;
(ii) In the case R = A∗, A† = limk→∞ X2k ;
(iii) In the case R = A# = N−1A∗M ,A†

M,N = limk→∞ X2k ;

(iv) In the case R = A(WA)k, AD,W = limk→∞ X2k .

Corollary 4.4.3. Assume that A ∈ Cm×n
r . Consider an arbitrary matrix R ∈ Cn×m

s , 0 ≤ s ≤ r,
and its full rank factorization R = FG, F ∈ Cn×s

s , G ∈ Cs×m
s , such that GAF is invertible.

The sequence of approximations

X2k =
2k−1∑
i=0

(I − βRA)iβR

determined by the SMS algorithm (4.22) converges in matrix norm to the outer inverse X =
F (GAF)−1G of A, if β is a fixed real number satisfying the equality (4.26), where λi are
eigenvalues of FGA.

84CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

4.4.3 SMS method for computing {2, 3} and {2, 4}-inverses of matri-
ces

The full-rank representations, introduced in Chapter 3, enable adaptation of well-known algo-
rithms for computing outer inverses with prescribed range and null space into corresponding
algorithms for computing {2, 4} and {2, 3}-inverses [128]. In this section we derive an adap-
tation of the successive matrix squaring algorithm from [126]. In view of the previous general
representations of {2, 4} and {2, 3}-inverses, in what follows, we analyze two particular cases of
the SMS algorithm in order to obtain {2, 4} and {2, 3}-inverses of the matrix A. Let A ∈ Cm×n

r

is given and R ∈ Cn×m
s , 0 < s ≤ r be an arbitrary but fixed matrix.

We consider the general iterative scheme used in [25, 126, 141, 145]

X1 = QX ,

Xk+1 = PXXk + QX , k ∈ N,
(4.28)

where PX = I − βRA, QX = βR and β is a relaxation parameter, i.e., the classical SMS
iterative scheme which is appropriate for computing {2, 4}-inverses. We, also, find that the
dual iterative scheme of the form

Y1 = QY ,

Yk+1 = YkPY + QY , k ∈ N,
(4.29)

where PY = I − βAR, QY = βR is more appropriate in computation of {2, 3}-inverses.

Analogously, as it is done with the equations (4.21), (4.22) and (4.23), one can easily verify
that the iterative scheme (4.29) can be accelerated by means of the (n+m)×(n+m) composite
matrix S, partitioned in the following block form

S =

[
PY 0
QY I

]
. (4.30)

The improvement of (4.29) can be done by computing the matrix powers

S
k

=

[
P k

Y 0∑k−1
i=0 QY P i

Y I

]
.

It is not difficult to see that the iterative scheme (4.29) gives Yk =
∑k−1

i=0 QY P i
Y . Hence, the

matrix Yk is equal to the left lower block in S
k
. In turn, S

2k

can be computed by k repeated
squaring, that is

S0 = S

Si+1 = S
2

i , i = 0, 1, . . . , k − 1.
(4.31)

Obviously,

Sk = S
2k

=

[
P 2k

Y 0∑2k−1
i=0 QY P i

Y I

]
. (4.32)

It is not difficult to verify that Xk ≡ Yk, k ∈ N. This implies that the upper right block in
(4.23) is equal to the lower left block in (4.32).

As it is expected all known results that hold for the iterative scheme (4.20), analogously
can be proven for the iterative scheme (4.29). The following result is analogous to Proposition
4.4.3.

4.4. THE A
(2)
T,S-INVERSE 85

Theorem 4.4.1. Let A ∈ Cm×n
r and R ∈ Cn×m

s , 0 < s ≤ r be given such that

AR(R)⊕N (R) = Cm. (4.33)

Let β be a fixed real number satisfying (4.26) where rank(AR) = t and λi, i = 1, . . . t are
eigenvalues of AR. Then, the sequence of approximations

Y2k =
2k−1∑
i=0

QPY
i, k ≥ 0

determined by (4.29) converges to the outer inverse Y = A
(2)
R(R),N (R) of A. In the case of

convergence we have the following estimate

‖Y − Y2k‖
‖Y ‖ ≤ max

1≤i≤t
|1− βλi|2k

+ O(ε), k ≥ 0, (4.34)

where ‖ · ‖ satisfies condition (4.24) from Lemma 4.4.1 for the matrix M = I − βRA.

We now define two particular cases of the SMS algorithm which generate the classes of
{2, 4} and {2, 3}-inverses of the matrix A.

1. Let V ∈ Cs×m
s is an arbitrary matrix such that rank(V A) = rank(V) = s, where 0 <

s ≤ r. For the iterative scheme given by (4.20), we take F = (V A)∗, G = V and
R = FG = (V A)∗V , which implies

PX = I − β(V A)∗V A, QX = β(V A)∗V, (4.35)

where β is a relaxation parameter.

2. Let U ∈ Cn×s
s , is an arbitrary matrix satisfying rank(AU) = rank(U) = s, where 0 < s ≤

r. For the iterative scheme given by (4.29), we use the particular case F = U,G = (AU)∗

and R = FG = U(AU)∗, which gives

PY = I − βAU(AU)∗, QY = βU(AU)∗, (4.36)

where β is a relaxation parameter.

The next theorem presents the main result of this section and is analogous result to Propo-
sition 4.4.3.

Theorem 4.4.2. Let A ∈ Cm×n
r , 0 < s ≤ r be chosen integer.

1. If V ∈ Cs×m
s is chosen matrix such that rank(V A) = rank(V) = s, then the sequence of

approximations

X2k =
2k−1∑
i=0

(I − β(V A)∗V A)iβ(V A)∗V, k ≥ 0 (4.37)

determined by the SMS iterative scheme (4.23), where PX and QX are defined in (4.35), con-

verges in the matrix norm ‖ · ‖ to {2, 4}-inverse of A, which is equal to A
(2,4)

N (V A)⊥,N (V)
if β is a

fixed real number such that
max
1≤i≤s

|1− βλi| < 1, (4.38)

86CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

where λi, i = 1, . . . , s are nonzero eigenvalues of (V A)∗V A. In the case of convergence, the

sequence Xk satisfies the error estimation

‖X −X2k‖
‖X‖ ≤ max

1≤i≤t
|1− βλi|2k

+ O(ε), k ≥ 0, (4.39)

where ‖ · ‖ satisfies condition (4.24) for M = I − βA(V A)∗V .

2. If U ∈ Cn×s
s is chosen matrix such that rank(AU) = rank(U) = s, then the sequence of

approximations

Y2k =
2k−1∑
i=0

(I − βAU(AU)∗)iβU(AU)∗, k ≥ 0 (4.40)

determined by the SMS iterative process (4.32), where PY and QY are defined in (4.36), con-

verges in the matrix norm ‖ ·‖ to {2, 3}-inverse of A, which is equal to A
(2,3)

R(U),R(AU)⊥ in the case

when β is a fixed real number satisfying

max
1≤i≤s

|1− βλi| < 1, (4.41)

where λi, i = 1, . . . , s are nonzero eigenvalues of AU(AU)∗.
In the case of convergence, the next error estimation holds for the sequence Yk

‖Y − Y2k‖
‖Y ‖ ≤ max

1≤i≤t
|1− βλi|2k

+ O(ε), k ≥ 0, (4.42)

where ‖ · ‖ satisfies condition (4.24) for M = I − βU(AU)∗A.

Proof. 1. According to main result from [25], we have

lim
k→∞

X2k = X = lim
k→∞




2k−1∑
i=0

(I − β(V A)∗V A)i (V A)∗


 · V

= (V A)†V

From the general representation of {2, 4}-inverses from Proposition 3.4.1, we obtain X ∈
A{2, 4}s.

Moreover, the conditions imposed in this case are equivalent with Proposition 4.4.3 by taking
R = (V A)∗V . Since rank(V A) = rank(V) it follows that the matrix (V A)∗ is a full-column
rank matrix, from which we obtain that rank(R) = s. Now, using R = FG, F = (V A)∗, G = V
as a full-rank factorization of R, according to Corollary 4.4.3 we conclude that

X2k → X = F (GAF)−1G = (V A)∗(V A(V A)∗)−1V.

Now, the proof follows from Theorem 3.4.1, part (a) and Lemma 3.4.1, part (a).

2. Conditions imposed in this case are equivalent with Theorem 4.4.1 by taking R =
U(AU)∗. Since rank(AU) = rank(U) follows that the matrix (AU)∗ is a full-row rank matrix,
from which we obtain that rank(R) = s. Now, using R = FG, F = U,G = (AU)∗ as a full-rank
factorization of R, according to Theorem 2.3 from [126] we conclude that

Y 2k → Y = F (GAF)−1G = U((AU)∗AU)−1(AU)∗.

Now, the proof follows from Theorem 3.4.1, part (b) and Lemma 3.4.1, part (b) ¤

4.4. THE A
(2)
T,S-INVERSE 87

Corollary 4.4.4. a) In the case V ∈ Cr×m
r , rank(V A) = r, under the conditions of Theorem

4.4.2, part 1, we have
X = A

(2,4)
R(A∗),N (V) ∈ A{1, 2, 4}.

b) In the case U ∈ Cn×r
r , rank(AU) = r, under the conditions of Theorem 4.4.2, part 2, we

have
Y = A

(2,3)
R(U),N (A∗) ∈ A{1, 2, 3}.

c) If both of the conditions V = A∗ and U = A∗ are satisfied, under the conditions of
Theorem 4.4.2, the identities

X = Y = A†

are satisfied

Proof. a) Since X is {2}-inverse of A such that

rank(X) = rank((V A)†) = rank((V A)∗) = rank(V) = rank(A),

it follows that X is also {1}-inverse of A. Moreover, from rank((V A)∗) = rank(A∗) we have
that R((V A)∗) = R(A∗) and the proof is complete.

b) Analogously.

c) In both cases, immediately follows that X = Y = A
(2)
R(A∗),N (A∗) = A†. ¤

• Numerical examples

The relaxation parameter β = βC
opt defined as in [126] is used in the next examples.

More precisely, if we put mRe = min {Re λ1, . . . , Re λt}, MRe = max {Re λ1, . . . , Re λt} and
(MIm)2 = max {(Im λ1)

2, . . . , (Im λt)
2}, then if Re λi > 0, for every i ∈ {1, . . . , t},

βC
opt =

mRe

(MRe)2 + (MIm)2
.

Otherwise if Re λi < 0, for every i ∈ {1, . . . , t}, then

βC
opt =

MRe

(MRe)2 + (MIm)2
.

Example 4.4.2. In this example we get an {2, 4}-inverse X and {2, 3}-inverse Y of A1 in the
first iteration, as it is expected. Let us consider 6× 5 matrix A1 given by

A1 =




−1 0 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 2
1 −1 0 1 1
1 0 0 −2 0




.

a) Now, let us choose

V =
[

0 0 1 0 0 0
0 1 0 0 0 0

]
.

88CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

One can check that the nonzero eigenvalues of the matrix R = (V A)∗V A are equal to 1, thus
mRe = 1,MRe = 1 and also Im (λ) = 0 for each eigenvalue λ. Thus, in only 1 iteration we
obtain the {2, 4}-inverse of A1 given by

X21 =




0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0




.

It is not difficult to verify X21 = (V A)†V .
b) If we take

U =




0 1
1 0
0 0
0 0
1 0




,

Since all eigenvalues are real and mRe = MRe = 4 again only in one iteration we obtain an
exact {2, 3}-inverse of A1 given by

Y =




−0.25 0 0.25 0 0.25 0.25
0 0 0 0.5 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0.5 0 0




.

Example 4.4.3. Consider the following 6× 5 matrix of rank 4,

A2 =




−1 0 1 2 2
−1 1 0 −1 −1
1 −1 1 3 4
0 1 −1 −3 2
1 −1 0 1 1
1 0 −1 −2 −2




,

a) First, let us choose V of rank 2, given by

V =
[

3 1 3 1 2 −1
0 −1 0 0 −2 1

]
.

Iterative scheme (4.20) with PX and Q = QX defined as in (4.35) gives the following {2, 4}-
inverse of A2:

X225 =




0 0 0 0 0 0
0.222092 −0.431257 0.222092 0.0740306 −0.862515 0.431257
−0.0105758 0.0681551 −0.0105758 −0.00352526 0.13631 −0.0681551
−0.243243 0.567568 −0.243243 −0.0810811 1.13514 −0.567568
0.320799 −0.400705 0.320799 0.106933 −0.80141 0.400705




.

Additionally, for the same matrix A2 if we take, for example, the matrix

V =




3 1 0 1 0 −1
0 0 0 0 −2 1
1 0 3 0 0 1
0 −1 1 0 −2 4


 ,

4.4. THE A
(2)
T,S-INVERSE 89

which has rank 4, we obtain the following {1, 2, 4}-inverse of A after 25 iterations

X225 =




−0.238095 −0.114286 1 −0.2 −1.31429 0.961905
−0.119048 0.0761905 1.16667 −0.2 −2.12381 0.914286
−0.285714 0.0761905 0.666667 −0.2 −1.12381 0.247619
−0.452381 0.0761905 0.166667 −0.2 −0.12381 −0.419048
0.52381 −0.0285714 0 0.2 0.171429 0.32381




.

b) For the same matrix A2 we apply the iterative scheme (4.29) for the choice of matrices
PY and Q = QY which are defined by (4.36), where

U =




3 5
1 7
−3 2
1 −2
2 −2




.

After 10 iterations, we get the {2, 3}-inverse

Y210 =




−0.213456 −0.0607649 0.0827195 0.313031 0.0607649 0.213456
−0.216572 −0.00325779 −0.0328612 0.259207 0.00325779 0.216572
0.0225921 0.0830737 −0.16204 −0.109773 −0.0830737 −0.0225921
0.0288244 −0.0319405 0.0691218 −0.00212465 0.0319405 −0.0288244
0.00311615 −0.0575071 0.115581 0.0538244 0.0575071 −0.00311615




.

After the usage

U =




1 3 0 0
2 0 1 0
0 1 0 2
2 1 0 0
0 1 0 1




,

the generated {1, 2, 3}-inverse of A is equal to

Y210 =




−0.6 0.6 1 −0.2 −0.6 0.6
−0.836364 1.56364 1.63636 −0.490909 −1.56364 0.836364
0.372727 −0.327273 −0.272727 0.381818 0.327273 −0.372727
−0.336364 0.563636 0.636364 −0.490909 −0.563636 0.336364

0.1 −0.1 0 0.2 0.1 −0.1




.

4.4.4 Displacement rank and displacement operator of a Toeplitz
matrix

Kailath et al. in [71] introduce the concept of displacement rank as well as displacement operator
for close-to-Toeplitz matrices, which is systematically studied in the general case in [63]. It
is shown that the displacement theory approach is very powerful in designing fast inversion
algorithms for structured matrices, especially Toeplitz and Hankel matrices. A number of
different displacement operators have been introduced and analyzed in the literature [14, 64,
71, 72, 73, 102, 146]. The authors in [14] introduce the concept of the orthogonal displacement
representation and ε-displacement rank of a matrix.

In the sequel, before presentation of the new method which is based on the idea of the
orthogonal displacement representation, we restate the basic concepts related to these notions.

90CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

Definition 4.4.1. A matrix M ∈ Cn×n is a Toeplitz matrix if for its elements hold mi,j = mi−j,
i, j = 1 . . . , n, where mk, k ∈ {−n + 1, . . . , n− 1} is an arbitrary sequence of complex numbers.

The explicit form of a Toeplitz matrix is given with the following presentation

M =




m0 m−1 . . . m1−n

m1 m0 . . . m2−n

...
...

. . .
...

mn−1 mn−2 . . . m0


 .

A Toeplitz n×n matrix is completely determined with a vector of length 2n− 1, i.e., with two
vectors of length n. The first vector c = (m0, m1, . . . ,mn−1) is the first column, and the other
vector represents the first row r = (m0,m−1 . . . , m1−n) of the matrix M . In the remainder of
the section the notation toeplitz[c, r] stands for the Toeplitz matrix which is determined by its
first column c and its first row r.

The concept of displacement operator, introduced in [71], is studied in many papers [32,
60, 64, 74, 72, 104] and many different forms of it are presented. Displacement structure of the

Drazin inverse, the group inverse and the M
(2)
T,S inverse is considered in [19, 41, 84, 147]. Here,

we pay attention on the displacement operator of Sylvester type, given by

4A,B(M) = AM −MB, (4.43)

where A, B and M are matrices of appropriate sizes.
The next proposition gives some arithmetics regarding the defined displacement operator

∆A,B.

Proposition 4.4.4. The following holds

∆A,B(MN) = ∆A,B(M)N + M∆A,B(N) + M(B − A)N.

Proof. Follows immediately from the definition of the displacement operator ∆A,B. ¤

The rank of the displacement matrix ∆A,B(M) is called the displacement rank of M and
is denoted by drk(M). For a Toeplitz matrix M and appropriate choices of matrices A and B
the following holds drk(M) ≤ 2 [63]. Here we recall the definition of ε-displacement rank as a
rank of perturbed displacement.

Definition 4.4.2. [14] For a given ε > 0 the relative ε-displacement rank of a matrix M is
defined as

drkε(M) = min
‖E‖≤ε‖M‖

rank(∆A,B(M) + E),

where ‖ · ‖ denotes the Euclidian norm.

The main purpose of the displacement operator is to enable representation of the original
matrix through a matrix that has low rank and from which one can also easily recover the
original matrix. Besides the fact that the displacement matrix ∆A,B(M) has low rank it is
well-known that its singular value decomposition can be easily computed.

4.4. THE A
(2)
T,S-INVERSE 91

Remark 4.4.1. The computation of the singular value decomposition of a matrix, in general,
is a very expensive tool. In our case, what makes it cheaper, as it is also explained in [14], is
the fact that it can be calculated using the QR factorization of appropriate matrices.

Let σ1 ≥ · · · ≥ σl be the nonzero singular values of ∆A,B(M) and let

∆A,B(M) = UΣV T =
l∑

i=1

σiuiv
T
i , (4.44)

be the singular value decomposition of ∆A,B(M). Suppose that the original matrix M can be
recovered by the formula

M = c

l∑
i=1

σif(ui)g(vi), (4.45)

where f and g, generally speaking, represent a product of matrices which can be generated by
the vectors ui and vi respectively and c is a constant. The representation (4.45) of the matrix
M is called orthogonal displacement representation (odr) (with respect to ∆A,B) and the corre-
sponding 3-tuple (U, σ, V) orthogonal displacement generator (odg) where σ = (σ1, σ2, . . . , σl)
[14]. For example, the odr of an arbitrary Toeplitz matrix is given in [14].

Proposition 4.4.5. [14] Suppose that M is a Toeplitz matrix. Let ∆A,B(M) = UΣV T =∑l
i=1 σiuiv

T
i (σ1 ≥ σ2 ≥ . . . ≥ σl > 0) be the singular value decomposition of ∆A,B(M) and let

ε be such that 0 < ε < σ1. Then drkε(M) = r if and only if σr > ε‖M‖ ≥ σr+1.

Proof. We prove σr+1 ≤ ε‖M‖ if and only if drkε(M) ≤ r. We can write

∆A,B(M) =
r∑

i=1

σiuiv
T
i +

l∑
i=r+1

σiuiv
T
i .

If we define E =
∑l

i=r+1 σiuiv
T
i , then it follows ‖E‖ = σr+1. Thus, if σr+1 ≤ ε‖M‖ we have

drkε(M) ≤ rank(∆(M)− E) = r. Obviously drkε(M) ≥ r holds without any restriction.
Conversely, if drkε(M) = r then there exists a matrix E with ‖E‖ ≤ ε‖M‖, such that

rank(∆(M) + E) = r. Let us define θr = min{X:rank(X)=r} ‖∆(M) − X‖. Since θr = σr+1 and
σr+1 = ‖∆(M)−∑r

i=1 σiuiv
T
i ‖, it follows that σr+1 = θr ≤ ‖E‖ ≤ ε‖M‖. ¤

For a given ε > 0, if drkε(M) = r one can get an approximate Mε of M

Mε = c

r∑
i=1

σif(ui)g(vi), r < l,

which is called an approximate orthogonal displacement representation (aodr) of the matrix
M and the associated generator (Û , σ̂, V̂) an approximate orthogonal displacement generator
(aodg), where

σ̂ = (σ1, σ2, . . . , σr), Û = [u1, u2, . . . , ur], V̂ = [v1, v2, . . . , vr].

We also use the definition of the operator truncε(·) defined on the set of matrices as follows
Mε = truncε(M) [14].

92CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

4.4.5 Modified SMS method for computing M
(2)
T,S-inverses of a Toe-

plitz matrix M

If we look at Schultz’s paper, we immediately find that he does not suggest this method for
arbitrary matrices (this would be a bit too expensive), and it is interesting that he considers
an example of a Toeplitz matrix, since their structure admits very cheap matrix operations.
Thus, the Schultz iteration is advocated only in case of an agreeable structure in the matrices.

The initial guess X0 is chosen such that it has low displacement rank. The limit X∞,
which represents the inverse or the generalized inverse of M , has also low displacement rank,
see [63, 64]. However, the iteration matrices Xk in the Newton’s method may not have low
displacement rank. In the worst case, the displacement rank of Xk increases exponentially until
it reaches the dimension of the matrix n. Parallel with the increase of the displacement rank, the
computational cost of the Newton’s process grows significantly while k increments. It follows
that the growth of the displacement rank of Xk must be controlled for the purpose of developing
an efficient algorithm. With the introduction of orthogonal displacement operator the authors
in [14] control the growth of the displacement rank of Xk. At each step, via the truncation, the
iteration matrix is approximated by an appropriate matrix with a low displacement rank. This
strategy belongs to the class of compression techniques, for inversion of structured matrices
which are described in [31, 32, 102, 105]. Because of the displacement structure of the iteration
matrix, the matrix-vector multiplication involved in Newton’s iteration can be done efficiently.

Numerical properties of the Shultz method powered by the concept of orthogonal displace-
ment representation as well as ε-displacement rank show the effectiveness of the method applied
on structured matrices. The entire computation uses much less memory and CPU time with re-
spect to the classical method, especially for large scale matrices. The Newton’s iterative scheme

(4.18) has been frequently modified for the purpose of computing various generalized inverses
of the structured matrices. Main results are comprised in [14, 15, 19, 133, 146]. The authors in
the previously mentioned papers use various strategies in choosing the starting approximation
X0, in defining the iterations as well as in the usage of displacement operators.

In this section we present a uniform algorithm applicable in computation of outer inverses
with prescribed range and null space of an arbitrary Toeplitz matrix [90]. The algorithm is
based on the Successive Matrix Squaring (SMS) algorithm, which is an equivalent to the Shultz
method. Besides the classical modifications of the Shultz method available in the literature,
corresponding to the orthogonal displacement representation and the ε-displacement rank, we
use several adaptations of the SMS algorithm which enable the uniform approach for various
generalized inverses. The algorithm is an adaptation of the SMS algorithm proposed in [126]
and uses the concept of the approximate orthogonal displacement representation introduced in
[14, 19].

• Algorithm construction

As we already mentioned, we derive an algorithm for finding the outer inverse with pre-
scribed range and null space of an arbitrary Toeplitz matrix M ∈ Cn×n [90]. The entries of the
matrix M are constant complex numbers along the main diagonal parallels and are defined by
the general rule mi,j = mi−j. As usual, by C+ and C− we denote the Toeplitz matrices defined
by C+ = Z + e1e

T
n , C− = Z − e1e

T
n , where Z = toeplitz[(0, 1, 0, . . . , 0), (0, . . . , 0)] and ei is the

ith column of the identity matrix. The expanded form of these matrices looks as follows:

4.4. THE A
(2)
T,S-INVERSE 93

C+ =




0 1 0 . . . 1
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0




, C− =




0 1 0 . . . −1
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0




.

Let C+(x) and C−(x) be circulant and anti-circulant matrices which are defined by

C+(x) = toeplitz [(x1, x2, . . . , xn), (x1, xn, . . . , x2)],

C−(x) = toeplitz [(x1, x2, . . . , xn), (x1,−xn, . . . ,−x2)],

or in tabular form:

C+(x) =




x1 xn xn−1 . . . x2

x2 x1 xn . . . x3

...
...

...
. . .

...
xn−1 xn−2 xn−3 . . . xn

xn xn−1 xn−2 . . . x1




, C−(x) =




x1 −xn −xn−1 . . . −x2

x2 x1 −xn . . . −x3

...
...

...
. . .

...
xn−1 xn−2 xn−3 . . . −xn

xn xn−1 xn−2 . . . x1




.

For an arbitrary Toeplitz matrix M we make the choice A = C− and B = C+ in the definition
of the displacement operator (4.43). The parameters from (4.45) become [14]:

c = −1

2
, f(ui) = C−(ui), g(vi) = C+(Jvi),

where J is the permutation matrix having 1 on the anti-diagonal. For the sake of simplicity in
the rest of the paper we use the notation ∆ instead of ∆C−,C+ .

Proposition 4.4.6. For the operator ∆ the following holds

∆(M) =
l∑

i=1

uiv
T
i ⇐⇒ Mε = −1

2

l∑
i=1

C−(ui)C
+(Jvi),

∆(MN) = ∆(M)N + M∆(N) + 2Me1e
T
nN.

Remark 4.4.2. [14] For the approximation of the matrix M ∈ Cn×n given by its aodg Mε, the
matrix–vector product can be efficiently done by O(rn log n) FFT’s, where r = drkε(M).

The following result provides an error bound of the aodr of M .

Proposition 4.4.7. [14] Suppose that M is a Toeplitz matrix. Let r = drkε(M) ≤ drk(M) = l,
Mε be an aodr of M , and let σ1, σ2, . . . , σl, be the nonzero singular values of ∆A,B(M). Then
it holds

‖M −Mε‖ ≤ 1

2
n

l∑
i=r+1

σi ≤ 1

2
n(l − r)ε. (4.46)

Many authors built iterative methods for finding generalized inverses of an arbitrary Toeplitz
matrix modifying the Newton’s method, using operators of the form ∆A,B(M), as well as the
concept of displacement representation and ε-displacement rank of matrices [14, 15, 19, 133,

94CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

146]. It is shown that these methods are very effective and significantly decrease computational
cost.

In the following we construct an algorithm for finding outer inverses with prescribed range
an null space of an arbitrary square Toeplitz matrix. The based point is SMS algorithm from
[126]. Although this method is already presented, for convenience we give detailed building
steps of the new algorithm.

Let M ∈ Cn×n
ρ and R ∈ Cn×n

s , 0 ≤ s ≤ ρ be arbitrary matrices. We start with the following
iterative scheme (see [126])

X1 = Q,

Xk+1 = PXk + Q, k ∈ N,
(4.47)

where P = I−βRM , Q = βR and β is relaxation parameter. The original idea of the iterative
scheme (4.47), named the successive matrix squaring method, was previously proposed by Chen
et al. [25] in the case R = M∗. The method proposed by Chen is used for computing the Moore-
Penrose inverse of the matrix M . Instead of the iterative scheme (4.47) it is possible to use the
2n× 2n matrix

T =

[
P Q
0 I

]
.

The kth matrix power of the matrix T is given by

T
k

=

[
P k

∑k−1
i=0 P iQ

0 I

]
, k > 1,

where the n × n matrix block
∑k−1

i=0 P iQ is actually the kth approximation Xk of the pseu-

doinverse of the matrix M from (4.47), whence Xk =
∑k−1

i=0 P iQ. The matrix power T
k

can be
computed by means of the repeated squaring of the matrix T , therefore instead of using the
iterative scheme (4.47) we can observe the following iterative process

T 0 = T ,

T k+1 = T
2

k, k ∈ N0.
(4.48)

Afterwards, the block
∑

i P
iQ generated after k steps of the successive squaring (4.48) is equiv-

alent with the approximation produced by 2k steps of the iterative process (4.47). Namely, we
consider the sequence {Yk} given by Yk = X2k =

∑
i P

iQ.
As it is stated in Proposition 4.4.3, the iterative scheme given in terms of the block matrix

(4.48) converges to the outer inverse of the matrix M with prescribed range and null space,
determined by an appropriately chosen matrix R.

Since the usage of the partitioned 2n×2n matrix in the SMS acceleration scheme is not ap-
propriate for application of a displacement operator, our intention is to avoid such an approach.
For that purpose, we observe that the sequence of approximations given by

Yk =
2k−1∑
i=0

(I − βRM)iβR,

can be rewritten by the following steps

Yk+1 = (Sk + I)Yk,

Sk+1 = I − Yk+1M,
k ∈ N0, (4.49)

4.4. THE A
(2)
T,S-INVERSE 95

where the initial choices are Y0 = Q, S0 = P . With the rules given by (4.49) one can easily
verify that Yk = X2k and Sk = P 2k

.

Because of ineffective manipulation with high displacement rank matrix sequence {Yk},
whose displacement rank, in the worst case, can increases exponentially, we introduce the
following modification of the method (4.49). Namely, using the concept of the displacement
representation, we modify the successive matrix squaring method from [126] by approximating
the matrix Yk+1 with a matrix with low displacement rank. We define the sequence {Zk} by

Zk+1 = ((Pk + I)Zk)εk

Pk+1 = I − Zk+1M,
k ∈ N0, (4.50)

with the starting values Z0 = Q, P0 = P . For notational simplicity let us denote

Zk
′
= (Pk + I)Zk, (4.51)

which satisfies the inequality drk(Zk
′
) ≤ drk(Pk)+drk(Zk). After we use the aodr of Zk

′
we have

that the displacement rank of the sequence {Zk} is low during the iteration process. The low
displacement rank of the sequence of matrices Pk is also retained, since drk(Pk) ≤ drk(Zk) + l,
where l = drk(M).

In the rest of this section we present an algorithm for computing the outer inverse with
prescribed range and null space of an arbitrary Toeplitz matrix.

In our modified SMS method we compute and store the SVD of ∆(Zk) instead of Zk and
later determine Zk using (4.45). From (4.51) and Proposition 4.4.4 we obtain

∆(Zk
′
) = ∆(Pk)Zk + Pk∆(Zk) + ∆(Zk) + 2Pke1e

T
nZk. (4.52)

If we denote the SVD of ∆(Zk) by UZΣZV T
Z and the SVD of ∆(Pk) by UP ΣP V T

P then the
extended form of ∆(Zk

′
) can be rewritten by the following matrix form

∆(Zk
′
) = UZ′ΣZ′V

T
Z
′ = [UP (Pk + I)UZ Pke1]




ΣP 0 0
0 ΣZ 0
0 0 2






V T
P Zk

V T
Z

eT
nZk


 . (4.53)

On the other hand, in order to compute the SVD of ∆(Pk+1), which we need for the next
iteration, we have the following

∆(Pk+1) = ∆(I)−∆(Zk+1)M − Zk+1∆(M)− 2Zk+1e1e
T
nM.

Let us denote the SVD of ∆(Zk+1) by UZΣZV T
Z and the SVD of ∆(M) by UMΣMV T

M . The
extended form of the previous identity can be written by

∆(Pk+1) = UP ΣP V T
P = [−UZ − Zk+1UM − Zk+1e1 − e1]




ΣZ 0 0 0
0 ΣM 0 0
0 0 2 0
0 0 0 2







V T
Z M
V T

M

eT
nM
eT

n


 . (4.54)

Therefore the SVD of ∆(Zk+1) can be computed by Algorithm 4.4.2.

96CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

Algorithm 4.4.2 The odg of Zk+1 and the odg of Pk+1

Input: The odg of Zk, the odg of Pk, the odg of M and the truncation value ε.
1: Determine the matrices UZ′ , ΣZ′ , V T

Z′ according to (4.53).
2: Compute the QR factorizations UZ′ = Q1R1 and VZ′ = Q2R2.
3: Compute the SVD of R1ΣZ′R

T
2 = UΣV .

4: Set Σ̂ = Diag(σ1, σ2, . . . , σr), such that r is defined in relation to the truncation value ε:
σr+1 ≤ εσ1 < σr.

5: Set UZk+1
= Q1Û , ΣZk+1

= Σ̂ and VZk+1
= Q2V̂ , where Û and V̂ present the first r

columns of U , V respectively.
6: Determine the matrices UP , ΣP , V T

P according to (4.54).
7: Compute the QR factorizations UP = Q3R3 and VP = Q4R4.
8: Compute the SVD of R3ΣP RT

4 = UΣV .
9: Set UPk+1

= Q3U , ΣPk+1
= Σ and VPk+1

= Q4V .

The computational cost of Algorithm 4.4.2 is about O(mh) FFT’s, where h = maxk drk(Zk).
If h is small enough, or even is independent of n, the algorithm requires O(n log n) operations
per step.

To complete our modified SMS method we present Algorithm 4.4.3 for finding the outer
inverse of a general structured matrix given in terms of odr for the approximate matrices with
respect to the operator ∆.

Algorithm 4.4.3 Modified SMS algorithm

Input: A Toeplitz matrix M and its displacement operator ∆, a matrix R, a relaxation pa-
rameter β and a residual error bound ξ.

1: Set k = 0, Zk = βR and Pk = I − βRM
2: Compute the SVD of ∆(Pk) = UPk

ΣPk
V T

Pk
, ∆(Zk) = UZk

ΣZk
V T

Zk
and ∆(M) = UMΣMV T

M .
3: Determine the truncation value εk.
4: Compute the odg (UZk+1

, ΣZk+1
, VZk+1

) of Zk+1 and (UPk+1
, ΣPk+1

, VPk+1
) of Pk+1 according

to Algorithm 4.4.2 with input (UZk
, ΣZk

, VZk
), (UPk

, ΣPk
, VPk

), (UMΣMV T
M) and ε = εk.

5: Determine the norm ‖res(Zk+1)‖. If ‖res(Zk+1)‖ < ξ goto step 7, otherwise continue
6: Set k = k + 1, goto step 3
7: Return the matrix Zk+1.

The value of ‖res(Zk)‖ in Step 5 presents the norm of the residual ‖res(Zk)‖ = ‖ZkMZk−Zk‖.
Since, in general, computing ‖res(Zk)‖ is an expensive operation, a cheaper way is to compute
the norm of the vector ‖res(Zk)e1‖.

• Convergence properties

It is well known that matrices with a AB-displacement structure possess generalized inverses
with a BA-displacement structure. Investigations in this field started in the paper [64] for the

Moore-Penrose inverse. In the recent paper [84] these investigations are extended to M
(2)
V,U

inverse.

Proposition 4.4.8. [84] Let M ∈ Cn×n be an arbitrary matrix and M
(2)
T,S be its {2}-inverse.

Then
rank(∆B,A(M

(2)
T,S)) ≤ rank(∆A,B(M)) + rank(∆B,A(R)).

4.4. THE A
(2)
T,S-INVERSE 97

In the case when the input matrix M has a low displacement rank with respect to ∆A,B and R

has a low displacement rank with respect to ∆B,A, the generalized inverse M
(2)
T,S also possesses

a low displacement rank with respect to ∆B,A. As a consequence, it is evident that choosing
the matrix R to be a matrix with low displacement rank (with respect to ∆B,A) is of crucial
importance to keep the low displacement rank of the outer inverse with prescribed range and
null space. Then, it is possible to use the following result from [60] in order to show the
convergence of the algorithm.

Theorem 4.4.3. [60] Let V be a normed space and consider a function f : V → V and M ∈ V .
Assume that B = f(M) can be obtained by the iteration of the form

Xk = Φ(Xk−1), k = 1, 2, . . . , (4.55)

where Φ is a one-step operator. Further, assume that for any initial guess X0 sufficiently close
to B, the process converges:

lim
x→∞

Xk = B.

Assume that there are constants cΦ, εΦ > 0 and α > 1 such that

‖Φ(X)−B‖ ≤ cΦ‖X −B‖α for all X ∈ V with ‖X −B‖ ≤ εΦ. (4.56)

Let S ⊂ V be a set of structured elements and truncε : V → S be a truncation operator such
that

‖X −Xε‖ ≤ cR‖X −B‖ for all X ∈ V with ‖X −B‖ ≤ εΦ. (4.57)

Then there exists δ > 0 such that the truncated iterative process Yk = (Φ(Yk−1))ε converges to
B so that

‖Yk −B‖ ≤ cRΦ‖Yk−1 −B‖α with cRΦ = (cR + 1)cΦ, k = 1, 2, (4.58)

for any starting value Y0 = (Y0)ε satisfying ‖Y0 −B‖ < δ.

For our iterative process, the condition (4.56) in Theorem 4.4.3 is undoubtly satisfied for the
choices cΦ = ‖M‖ and α = 2. The choice of the truncation value εk at each step of the iterative
process (4.50) is very important, since it indicates what will be the value of the displacement
rank r, which is actually the balance point between the convergence of the process and the low
computational requirements of the algorithm. Instead of analyzing the conditions under which
(4.57) is satisfied we give some specifics in the following alternative proof for the convergence,
which characterizes the described process. In addition, the presented result also determines the
distances between the values of the real process and the truncated process at each iteration.

The notion of the q-Pochhammer symbol (or q-rising factorial), defined by

(a, q)k =
k−1∏
i=0

(1− aqi)

is used to derive the next results.

Theorem 4.4.4. Let M ∈ Cn×n
ρ and R ∈ Cn×n

s , 0 ≤ s ≤ ρ be given such that the condition
(4.33) is satisfied for the matrix M . The sequence of approximations {Zk} given by (4.50)

converges to the outer inverse Z = M
(2)
R(R),N (R) of the matrix M if the following conditions are

satisfied:

98CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

1. β is a real number such that

max
1≤i≤t

|1− βλi| < 1,

where rank(RM) = t, λi, i = 1, . . . t are eigenvalues of RM .

2. The truncation values εk, k ∈ N0 are chosen such that

εk =
2

n(h
′
k − hk+1)

θk, (4.59)

where

h
′
k = drk(Z

′
k), hk = drk(Zk), k ≥ 0, θ0 = min

{
ε,

δ2 − ‖P‖2

‖M‖
}

,

and

θk = min

{
εk+1,

δk+2(1− δk)

‖M‖
}

, k ≥ 1, (4.60)

for 0 < ε ¿ 1 and δ = 1− ε.

3. We chose a matrix norm ‖ ·‖ such that the condition (4.24) from Lemma 4.4.1 is satisfied
for H = I − βMR and also that the property ‖P‖ ≤ 1− ε is obeyed.

Under these assumptions we have the quadratic convergence of the algorithm, defined by the
rule

‖Z − Zk‖
‖Z‖ ≤

(
max
1≤i≤t

|1− βλi|
)2k

+O(ε) (4.61)

and the norm estimation

‖Rk‖ ≤ (−1, δ)k+1

2(1 + δ)
· ε

(
1− εk

)

1− ε
= O(ε), k ≥ 0, (4.62)

where {Yk} is the sequence generated by the SMS algorithm and Rk = Zk − Yk.

Proof. Without loss of generality let us assume that ‖I‖ = 1. Otherwise, in the case if
‖I‖ > 1, instead of the norm ‖ · ‖ which satisfies Condition 3 we can use the induced matrix
norm N(M) = sup‖E‖=1 ‖ME‖. According to Theorem 5.6.26 from [67] the new norm satisfies
N(M) ≤ ‖M‖ for all M ∈ Cn×n and N(I) = 1.

Further, since the matrix Zk+1 is the aodr of Z ′
k, it is possible to use Zk+1 = Z ′

k + Ek.
According to (4.59) as well as (4.46) it is evident that ‖Ek‖ ≤ θk, k ≥ 0. Let us prove the
auxiliary result

‖Pk‖ ≤ δk+1, k ≥ 0.

In the case k = 0 we have ‖P0‖ = ‖P‖ ≤ δ. The case k = 1 follows from

P1 = I − Z1M = I − (P0 + I)Z0M − E0M = I − Z0M − P0Z0M − E0M = P 2
0 − E0M,

which produces

‖P1‖ ≤ ‖P0‖2 + θ0‖M‖ ≤ ‖P‖2 +
δ2 − ‖P‖2

‖M‖ ‖M‖ = δ2.

4.4. THE A
(2)
T,S-INVERSE 99

Assuming that ‖Pk‖ ≤ δk+1 and taking into account Pk+1 = P 2
k − EkM as well as ‖Ek‖ ≤ θk

we verify the inductive step

‖Pk+1‖ ≤ ‖Pk‖2 + θk‖M‖ ≤ δ2k+2 +
δk+2(1− δk)

‖M‖ ‖M‖ = δk+2.

Now we estimate the norm ‖Rk‖ as in (4.62). In the case k = 0 we have ‖R0‖ = 0. To
prove the statement in the case k ≥ 1 we again use the mathematical induction. The base of
the induction (case k = 1) can be verified from

Z1 = (Z0
′
)−ε0

= (Y1)
−
ε0

= Y1 + E0,

which implies

‖R1‖ = ‖E0‖ ≤ θ0 ≤ ε =
(−1, δ)2

2(1 + δ)
ε.

Let us suppose the approximation of the matrix norm ‖Rk‖ as in (4.62). Then the inductive
step follows from

Zk+1 = ((Pk + I)Zk)
−
εk

= (Pk + I)(Yk + Rk) + Ek

= Yk+1 + (Pk + I)Rk + Ek,

which together with (4.60) gives

‖Rk+1‖ ≤ (δk+1 + 1)‖Rk‖+ θk ≤ (δk+1 + 1)
(−1, δ)k+1

2(1 + δ)
· ε

(
1− εk

)

1− ε
+ θk

≤ (δk+1 + 1)
k∑

s=1

k∏
i=2

(δi + 1)εs + εk+1 ≤
k∑

s=1

k+1∏
i=2

(δi + 1)εs +
k+1∏
i=2

(δi + 1)εk+1

=
k+1∑
s=1

k+1∏
i=2

(δi + 1)εs.

So continuing the previous inequalities we obtain

‖Rk+1‖ ≤ (−1, δ)k+2

2(1 + δ)

k+1∑
s=1

εs =
(−1, δ)k+2

2(1 + δ)
· ε

(
1− εk+1

)

1− ε
= O(ε).

In this way, we verify the induction and prove ‖Rk‖ = O(ε).

Denote by Y = lim Yk, Z = lim Zk. Since
∑∞

i=0 δi < ∞, it follows that (−1, δ)k converges
to (−1, δ)∞, and

‖Z − Y ‖ ≤ (−1, δ)∞
2(2− ε)

· ε

1− ε
= O(ε).

Therefore, the estimation (4.62) is verified and it is possible to use Z = Y . Now, following the
assumptions 1 and 3 we have

‖Y − Yk‖
‖Y ‖ ≤

(
max
1≤i≤t

|1− βλi|
)2k

+O(ε),

(see also [126], Theorem 2.1). On the other hand we got the estimate for ‖Rk‖, which produces

‖Z − Zk‖ = ‖Z − Yk −Rk‖ = ‖Y − Yk −Rk‖ ≤ ‖Y − Yk‖+ ‖Rk‖.

100CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

Finally, we get

‖Z − Zk‖
‖Z‖ ≤

(
max
1≤i≤t

|1− βλi|
)2k

+O(ε) +
(−1, δ)k+1

2(1 + δ)‖Z‖ ·
ε
(
1− εk

)

1− ε
,

which immediately confirms (4.61) and the quadratic convergence of the sequence (4.50).

It is known that all norms on a finite dimensional vector space are equivalent and we found
a norm for which the process converges. Therefore, the general convergence with respect to
any norm follows. ¤

However, based on some strategies, one can choose εk to be constant during the process or
to be dynamic (to depend on some changeable parameters). A realistic strategy in choosing
the value for ε is according to some specific heuristics. Some heuristics for the choice of the
parameter εk are presented in the next section.

Remark 4.4.3. For the purpose of choosing appropriate truncation value we remark that the
restrictive condition ‖P‖ ≤ 1−ε in Theorem 4.4.4 is always satisfied in the case of the ordinary
inverse, the Moore-Penrose inverse, the group and the Drazin inverse. In the first two cases
we have R = M∗, which yields P = P ∗ i.e. ρ(P) = ‖P‖ and in the case of the Drazin inverse
R = M l, l ≥ ind(M) from which follows P = H.

• Application and numerical examples

The {2}-inverses have application in the iterative methods for solving nonlinear equations
[12, 99] as well as in statistics [52, 69]. In particular, outer inverses play an important role
in stable approximations of ill-posed problems and in linear and nonlinear problems involving
rank-deficient generalized inverses [97, 152].

On the other hand, the theory of Toeplitz matrices arises in scientific computing and engi-
neering, for example, image processing, numerical differential equations and integral equations,
time series analysis and control theory (see, for example [23, 72]). Toeplitz matrices play
an important role in the study of discrete time random processes. Covariance matrices of
weakly stationary processes are Toeplitz matrices and triangular Toeplitz matrices provide a
matrix representation of causal linear time invariant filters [57]. The Moore-Penrose inverse of
a Toeplitz matrix is used in the image restoration process [15].

In the sequel we state some results which are relevant for computing outer inverses of an
arbitrary Toeplitz matrix M ∈ Cn×n. In order to get an explicit representation of the outer
inverse of M , which is a limit value of the sequence of approximations (4.50) for given M and
R, we observe the full rank factorization of the matrix R. In that sense we have the following
result.

Corollary 4.4.5. For given M ∈ Cn×n
ρ let us choose an arbitrary matrix R ∈ Cn×n

s , 0 ≤ s ≤ ρ,
and its full rank factorization R = FG, F ∈ Cn×s

s , G ∈ Cs×n
s , such that GMF is invertible.

Suppose that β is a selected real number satisfying max
1≤i≤s

|1−βλi|< 1, where λi are eigenvalues

of FGM . Under the assumption 2 from Theorem 4.4.4 the sequence of approximations given
by (4.50) converges to the outer inverse of M ,

Z =F (GMF)−1G = M
(2)
R(F),N (G) ∈ M{2}s.

4.4. THE A
(2)
T,S-INVERSE 101

Proof. Follows immediately from Z = Y , Corollary 4.4.3 and Theorem 4.4.4. ¤

Corollary 4.4.6. Under the assumptions of Theorem 4.4.4 the following is valid:

(i) Z = MD in the case R = M l, l ≥ ind(M);
(ii) Z = M † in the case R = M∗;
(iii) Z = M# in the case R = M ;
(iv) Z ∈ M{1, 2} for s = ρ.

Proof. It suffices to use the following representations:

MD = M
(2)

R(M l),N (M l)
, l ≥ ind(M), M † = M

(2)
R(M∗),N (M∗), M# = M

(2)
R(M),N (M),

M{1, 2} = M{2}ρ

in conjunction with Corollary 4.4.5. ¤

Next, we report some numerical results obtained by testing our method, named modified
SMS method, for computing outer inverses of a Toeplitz matrix. We have selected 5 different
types of Toeplitz matrices. During the execution of the algorithm we have observed and later
reported three different indicators: number of iterations (No of iter), maximum displacement
rank (Mdrk), as well as the sum of the displacement ranks (Sdrk). The code is written in the
programming package MATLAB on a Workstation Intel Celeron 2.0 GHz. The stopping condition
for Algorithm 4.4.3 is ‖res(Zk)‖ ≤ ξ = 10−6. Also, the value of the starting parameter is
β = 1/‖RM‖, where the matrix R is chosen according to Theorem 4.4.4 and Corollary 4.4.6.

In order to find the unified approach in choosing the parameter ε for all test matrices we
have used the static choice ε = 10−8, which is actually the square root of the double precision of
the floating point arithmetic. In the case of computing the inverse as well as the group inverse
of the matrix we present the strategy of choosing the ε according to some specific heuristic.
This heuristic gives improvements of the algorithm such as lower Mdrk as well as lower Sdrk
which decrease the computational cost of the algorithm and the number of operations per step.

Remark 4.4.4. Based on Theorem 4.4.4, similarly as in [126] we can also determine a priori
the number of steps required for achieving predefined accuracy. It is obvious that the number of
steps for SMS and modified SMS is equivalent.

By M [p|q] we denote the submatrix of M obtained by extracting the rows indexed by p and
the columns indexed by q. When q = {1, 2, . . . , n}, we denote M [p|q] by M [p| :], and in case of
p = {1, 2, . . . , n}, we denote M [p|q] by M [: |q]. The sequence {1, . . . , s} is simply denoted by
1 : s.

Example 4.4.4. In this example we consider the Toeplitz matrices M ∈ Rn×n
ρ and R ∈ Rn×n

s

(n is an odd number) given by

M = toeplitz[(1, 0, . . . , 0, 1)], R = toeplitz[(1, 0, . . . , 0, 1, 0, . . . , 0, 1)],

where s = (n− 1)/2 < ρ = n− 1. The vector which represents R has 1 in the middle.

One of the possible full rank factorizations of the matrix R = FG is F = R[: |1 : s], G =
R[1 : s| :]. In the case n = 7 we have

102CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

R =




1 0 0 1 0 0 1
0 1 0 0 1 0 0
0 0 1 0 0 1 0
1 0 0 1 0 0 1
0 1 0 0 1 0 0
0 0 1 0 0 1 0
1 0 0 1 0 0 1




=




1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 0 0



·
[

1 0 0 1 0 0 1
0 1 0 0 1 0 0
0 0 1 0 0 1 0

]
.

Based on Corollary 4.4.5, the explicit representation of the outer inverse is

M
(2)
R(F),N (G) = F (GMF)−1G =




0.2 0 0 0.2 0 0 0.2
0 0.5 0 0 0.5 0 0
0 0 0.5 0 0 0.5 0
0.2 0 0 0.2 0 0 0.2
0 0.5 0 0 0.5 0 0
0 0 0.5 0 0 0.5 0
0.2 0 0 0.2 0 0 0.2




The sequence of approximations {Zk} given by Algorithm 4.4.3 also converges to the outer
inverse given by this explicit representation. In Table 4.4.9 we present numerical results obtained
by computing the outer inverse of M by Algorithm 4.4.3 considering several different dimensions
of M . Also, the number of iterations of the original SMS method is presented as comparison.

Table 4.4.9. Numerical results generated by computing the outer inverse of M

Modified SMS SMS

Dim No of iter Mdrk Sdrk No of iter
17 5 3 15 5
33 5 3 15 5
65 5 3 15 5
129 5 3 15 5
257 5 3 15 5
513 5 3 15 5
1025 5 3 15 5
2049 5 3 15 5

As one can see from Table 4.4.9 the number of iterations of the original SMS method is the
same as the number of iterative steps obtained by our method. Also, the Mdrk is very low for
all dimensions of the matrix M , i.e. Mdrk =3.

In the remaining of the section, for each test matrix, we have considered 8 different numerical
experiments with the dimensions as follows: 16, 32, 64, 128, 256, 512, 1024, 2048.

Example 4.4.5. The inverse of two matrices

M1 = toeplitz [(1, 1/2, . . . , 1/n)], M2 = toeplitz [(4, 1, 0, . . . , 0)],

chosen from [14], is computed in the case R = M∗. Numerical results obtained during the
computation of the inverses of matrices M1 and M2 are given in Tables 4.4.10 and 4.4.11.
Besides the static choice of the truncation value ε = 10−8, we observe the heuristic ε =
max(res/‖M‖, 10−8).

4.4. THE A
(2)
T,S-INVERSE 103

Table 4.4.10. Numerical results generated by computing the inverse of M1

Modified SMS

ε = max(res/‖M‖, 10−8) ε = 10−8
SMS

Dim No of iter Mdrk Sdrk No of iter Mdrk Sdrk No of iter
16 11 2 15 11 13 105 11
32 11 2 17 12 16 129 12
64 12 2 20 13 16 148 13
128 13 2 25 13 16 158 13
256 13 3 27 14 16 171 14
512 14 4 35 14 16 176 14
1024 14 4 38 14 16 180 14
2048 14 4 42 15 16 189 15

Table 4.4.11. Numerical result generated by computing the inverse of matrix M2

Modified SMS

ε = max(res/‖M‖, 10−8) ε = 10−8
SMS

Dim No of iter Mdrk Sdrk No of iter Mdrk Sdrk No of iter
16 7 2 11 7 13 65 7
32 7 2 11 7 13 69 7
64 7 3 16 7 13 69 7
128 7 3 18 7 13 69 7
256 7 3 18 7 13 69 7
512 7 4 20 7 13 69 7
1024 7 4 21 7 13 69 7
2048 7 4 21 7 13 69 7

We see that the number of iterations is almost identical for the two different heuristics. On
the other hand, it is evident that the great improvement with respect to all other indicators is
attained by putting ε = max(res/‖M‖, 10−8) instead of ε = 10−8, observing the results for both
matrices M1 and M2.

Example 4.4.6. The test matrix

M = toeplitz[(1, 1/2, . . . , 1/(n− 1), 1), (1, 1/(n− 1), . . . , 1/2, 1)]

is taken from [19]. Tables 4.4.12 and 4.4.13 report the numerical results obtained during the
computation of the group inverse (generated in the case R = M), as well as the Moore-Penrose
inverse (R = M∗) of a Toeplitz matrix M ∈ Rn×n.

Table 4.4.12. Numerical results for computing the group inverse

Modified SMS

ε = min((1 + 10−6 − ‖Pk‖2)/‖M‖, 10−6) ε = 10−8
SMS

Dim No of iter Mdrk Sdrk No of iter Mdrk Sdrk No of iter
16 9 9 60 9 9 66 9
32 10 10 66 10 10 76 10
64 10 10 68 10 11 81 10
128 10 9 72 10 12 87 10
256 11 9 77 11 11 92 11
512 11 9 80 11 11 91 11
1024 11 9 82 11 11 93 11
2048 11 9 82 11 11 95 11

104CHAPTER 4. ITERATIVE METHODS FOR COMPUTING GENERALIZED INVERSES

Let us mention that another dynamic heuristic is chosen for computing the group inverse
with respect to the heuristic used in Example 4.4.5. It is obvious that the presented heuristic,
which makes ε at least as small as 10−6, provides significant improvements of the observed
indicators with respect to the static choice ε = 10−8.

Table 4.4.13. Numerical results generated by computing the Moore-Penrose inverse

Modified SMS SMS

Dim No of iter Mdrk Sdrk No of iter
16 9 13 84 9
32 10 14 98 10
64 10 15 107 10
128 10 15 112 10
256 11 15 119 11
512 11 15 122 11
1024 11 15 124 11
2048 11 16 128 11

It is interesting to point out that in the tables 4.4.12 and 4.4.13 the results are obtained
for the same starting matrix M as well as that the group and the Moore-Penrose inverse, are
identical. As one can see from the tables, although the number of iterations is the same, the
Mdrk as well as Sdrk required during the computation of the group inverse is essentially smaller
than in the case of computing the MP inverse, for the same choice of the parameter ε = 10−8.

Example 4.4.7. Let us consider the matrix M ∈ Rn×n represented by

M = toeplitz[(0, . . . , 0, 1, 1, 0, . . . , 0), (0, 0, . . . , 0, 1, 1)].

Since the index of the matrix M is ind(M) = 2, the Drazin inverse of M is computed in the case
R = M l, l ≥ 2. For the chosen matrix R we have that rank(R) = 6. According to Corollary
4.4.6, the iterative process of the modified SMS method converges to the Drazin inverse. After
the use of the static choice ε = 10−8 we get the following results.

Table 4.4.14. Numerical results generated by computing the Drazin inverse of M

Modified SMS SMS

Dim No of iter Mdrk Sdrk No of iter
16 8 6 48 8
32 8 6 48 8
64 8 6 48 8
128 8 6 48 8
256 8 6 48 8
512 8 6 48 8
1024 8 6 48 8
2048 8 6 48 8

It is evident from Table 4.4.14 that Mdrk = 6, which is a good result having in mind that
drk(Z0) = drk(βR) = 4.

Chapter 5

Application in image restoration

5.1 Preliminaries

Images are produced to memorize useful information, but unfortunately the presence of blur is
unavoidable. Motion blur is the effect of the relative motion between the camera and the scene
during image exposure time. Restoration of motion-blurred images has been a fundamental
problem in digital imaging for a long time. The recovery of an original image from degraded
observations is of crucial importance and finds application in several scientific areas including
medical imaging and diagnosis, military surveillance, satellite and astronomical imaging, remote
sensing etc. Expectably, the field of image restoration has been of great interest in the scientific
literature [7, 24, 27, 28, 66, 113].

We consider the problem of removing uniform and non–uniform blur in images, which
corresponds to an integral number of pixels. The recorded image, degraded with linear motion
(denoted by an image array G), is usually modeled as a linear convolution of the original image
(denoted by an image array F) with a point spread function (PSF), also known as the blurring
kernel (represented by a matrix H).

As we already discussed, the Moore-Penrose inverse is a useful tool for solving linear systems
and matrix equations. It appears that the properties of the Moore-Penrose inverse imply its
extensive usage in the image restoration process [17, 27, 28, 29]. The approach based on
the usage of the matrix pseudo-inverse in the image reconstruction, presents one of the most
common approaches [17]. The appearance of blur, caused by a linear motion, is modeled by
the matrix equations FHT = G and HF = G with respect to the unknown matrix F , where
H, F and G are given matrices of appropriate dimensions. The Moore-Penrose inverse H† of
the matrix H which causes blurring to the original image F , resulting with degraded image G,
has been used to solve these equations [27, 28].

Given in other words, the main problem we are faced to, is choosing an efficient algorithm
for computing the Moore-Penrose inverse H†. The algorithm used in [27, 28] for computing H†

is based on the fast computational method for finding the Moore-Penrose inverse of full rank
matrix, introduced in [79, 80]. Approximations obtained in [27] are reliable and very accurate.
A lot of direct methods were proposed to compute the Moore-Penrose generalized inverse of
a matrix (see for instance [12, 118]). According to [118], they can be classified as: methods
based on matrix decomposition; methods based on the formula A† = (A∗A)(1,3)A∗ and Pyle’s
gradient projection methods. The method based on Singular-Value Decomposition possesses
very high computation load (approximately O(n3) operations). P. Courrieu in [36] proposed an

105

106 CHAPTER 5. APPLICATION IN IMAGE RESTORATION

algorithm for fast computation of the Moore-Penrose inverse based on a known reverse order law
and on a full-rank Cholesky factorization of possibly singular symmetric positive matrices. A
fast method for computing the Moore-Penrose inverse of full rank m×n matrices and of square
matrices with at least one zero row or column is introduced in [79, 80]. This method exploits
a special type of tensor product of two vectors, that is usually used in infinite dimensional
Hilbert spaces. Greville in [58] proposed a recurrent rule for determining the Moore-Penrose
inverse. Udwadia and Kalaba gave an alternative and a simple constructive proof of Grevilles
formula [134]. Due to its ability to undertake sequential computing, the Grevile’s partitioning
method has been extensively applied in statistical inference, filtering theory, linear estimation
theory, system identification, optimization as well as in analytical dynamics [56, 75, 76, 108,
159]. Recursive computation of the Moore-Penrose inverse of a matrix, when a block is added
to it, was presented by Bhimsankaram [13]. However, Bhimsankaram used a proof which
simply verified that the output of his algorithm satisfies the four conditions for the Moore-
Penrose inverse. Udwadia and Kalaba in [135] provided a constructive proof for the recursive
determination of the Moore-Penrose inverse of a matrix to which a block of columns is added.
In [135] these results are also extended for other types of generalized inverses.

Our intention in this chapter is, to present one direct method for recovering blurred images
by a uniform blur, and to present an application of the recursive block partitioning method
from [135] as well as the partitioning method from [58] in the process of removing non–uniform
blur from the images. More precisely, both the block partitioning method and the Grevile’s
single-column partitioning method are appropriately modified and applied in computing the
Moore-Penrose inverse solution of the matrix equations HcFHT

r = G with respect to unknown
matrix F . The motivation for the usage of these methods is the specific structure of the
convolution matrix H. The characteristic structure of the matrix H reduces the computational
complexity of the partitioning method in the pseudoinverse H† calculation.

5.1.1 Uniform linear blur

In this paragraph we are going to shortly explain how the phenomenon of uniform linear blurring
is modeled mathematically.

Let R be the set of real numbers, Rm×n be the set of m×n real matrices. Suppose that the
matrix F ∈ Rr×m corresponds to the original image with picture elements fi,j, i = 1, . . . , r, j =
1, . . . , m and G ∈ Rr×m with pixels gi,j, i = 1, . . . , r, j = 1, . . . , m, is the matrix corresponding
to the degraded image. Let l be an integer indicating the length of the linear motion blur in
pixels and n = m+l−1. In practice the degradation (index l) is rarely known exactly, so that it
must be identified from the blurred image itself. To estimate the index l, two different cepstral
methods can be used: one dimensional or two dimensional cepstral method [81]. To avoid
the problem when the information from the exact image spills over the edges of the recorded
image, we supplement the original image with boundary pixels that best reflect the original
scene. Without any confusion we are using the same symbol F for the enlarged original image
(matrix) with remark that F now becomes a matrix of dimensions r×n. First, we suppose that
the blurring is a horizontal phenomenon. Let us denote the degradation matrix by H ∈ Rm×n.
For each row fi of the matrix F and the respective row gi of the matrix G we consider an
equation of the form

gT
i = HfT

i , gT
i ∈ Rm, fT

i ∈ Rn, H ∈ Rm×n. (5.1)

5.1. PRELIMINARIES 107

The objective is to estimate the original image F , row per row, using the corresponding
rows of the known blurred image G and a priori knowledge of the degradation phenomenon H.
Equation (5.1) can be written in the matrix form as

G =
(
HF T

)T
= FHT , G ∈ Rr×m, H ∈ Rm×n, F ∈ Rr×n. (5.2)

There is an infinite number of exact solutions for f that satisfy the equation (5.1). But,
only the Moore-Penrose solution solves the next minimization problem (see, for example [12]):

min ‖f‖2, subject to min ‖Hf − g‖2. (5.3)

The unique vector f̃ satisfying (5.3) can be taken as the row of the restored image [17, 27, 28, 29],
defined by

f̃ = H†g. (5.4)

The matrix form of the equation (5.4), i.e., the restored image F̃ is given by

F̃ = G(H†)T . (5.5)

The matrix F̃ defined in (5.5) is the minimum-norm least-squares solution of the matrix equa-
tion (5.2).

The matrix equation which characterizes the vertical motion blurring process is given by

G = HF, G ∈ Rr×m, H ∈ Rr×n, F ∈ Rn×m, n = r + l − 1. (5.6)

The corresponding restored image can be computed using the Moore-Penrose inverse by the
following formula

F̃ = H†G. (5.7)

If additionally, we suppose that the blurring is a local phenomenon, it is spatially invariant,
the imaging process captures all light and no additional noise is included; then the point spread
function initiated by all these conditions is the vector (1/l, . . . , 1/l)∈Rl. Consequently, when
the blur is caused by a horizontal motion, the matrix H = toeplitz(h1, h1) is a non-symmetric
Toeplitz matrix consisting of m rows and n = m+ l−1 columns, determined by its first column
h1 = (hi,1)

m
i=1 and its first row h1 = (h1,j)

n
j=1 as follows:

hi,1 =

{
1/l, i = 1,
0, i = 2, . . . , m,

and h1,j =

{
1/l, j = 1, . . . , l,
0, j = l + 1, . . . , n.

(5.8)

An arbitrary ith row of the blurred image can be expressed using the ith row of the original
image extended with the boundary pixels as




gi,1

gi,2

gi,3

...
gi,m




=




1
l

1
l
· · · 1

l
0 0 0 . . . 0

0 1
l

1
l

· · · 1
l

0 0 . . . 0

0 0 1
l

1
l

· · · 1
l

0 . . . 0

...
...

...
. . .

. . .
...

. . .
...

0 0 0 · · · 1
l

1
l

· · · 1
l







fi,1

fi,2

fi,3

...
fi,n




, (5.9)

where l− 1 elements of the vector fi, are not actually the pixels from the original scene; rather
they are boundary pixels. How many boundary pixels will be added above the vector f depends
of the nature and direction of the movement. However, the rest of them, i.e., l − 1 minus the
number of pixels added above the vector f , would present the boundary pixels right of the
horizontal line, and are added below the vector f [62].

108 CHAPTER 5. APPLICATION IN IMAGE RESTORATION

5.1.2 Non-uniform linear blur

The presented model, of uniform linear motion, is further generalized to a model, where the
blur of an image is caused by a non-uniform linear motion. By using the notation introduced
previously, in the sequel it is exposed the mathematical model for this phenomenon.

The process of non–uniform blurring assumes that the blurring of the columns in the image
is independent with respect to the blurring of the rows. Again, to avoid the problem when the
information from the exact image spills over the edges of the recorded image, we supplement the
original image with boundary pixels that best reflect the original scene. Without any confusion,
for the enlarged image we are using the same symbol F , with remark that, now, F becomes a
matrix of dimensions n × s, where n = r + lc − 1, s = m + lr − 1, lc is length of the vertical
blurring and lr is length of the horizontal blurring given in pixels. The relation between the
original and blurred image can be displayed with the relation

G = HcFHT
r , G ∈ Rr×m, Hc ∈ Rr×n, F ∈ Rn×s, Hr ∈ Rm×s. (5.10)

In order to restore the blurred image given by the model (5.10) we use the Moore–Penrose
inverse approach which leads to the solution

F̃ = H†
cG(H†

r)
T .

An arbitrary non-uniform linear blurring process can be represented by (5.10) where the
matrices Hc and Hr are characteristic Toeplitz matrices of the following general form

H =




h1 h2 h3 . . . hl 0 0 0 0 0 0 0
0 h1 h2 h3 . . . hl 0 0 0 0 0 0

0 0
. . .

. . .
. . . · · · . . . 0 0 0 0 0

0 0 0 h1 h2 h3 . . . hl 0 0 0 0
0 0 0 0 h1 h2 h3 . . . hl 0 0 0
0 0 0 0 0 h1 h2 h3 . . . hl 0 0

0 0 0 0 0 0
. . .

. . .
. . . · · · . . . 0

0 0 0 0 0 0 0 h1 h2 h3 . . . hl




, (5.11)

where the sum of the elements of each row is equal to 1.

In order to see how boundary conditions can be incorporated in the model, for the sake of
simplicity, let us retain on the horizontal blurring model (Hc = I). Similarly, as in (5.9), an
arbitrary ith row of the blurred image can be expressed using the ith row of the original image
extended with the pixels from the boundary conditions as follows




gi,1

...
gi,m


 = H




fi,1

...
fi,n


 , i = 1, 2, . . . , r, (5.12)

where l− 1 elements of the vector fi, are not actually the pixels from the original scene; rather
they are boundary pixels.

5.2. REMOVAL OF UNIFORM BLUR IN X-RAY IMAGES 109

5.2 Removal of uniform blur in X-ray images

The most simple case, of uniform linear blur, usually appears in the process of recording X-ray
images. The methods based on the usage of the Moore-Penrose solution, in order to solve
the matrix equations presented in Section 5.1.1, has been exploited in the image restoration
process in recent papers [27, 28, 29]. Several methods for computing the Moore-Penrose inverse
have been introduced (see, for example [12]). One of the most commonly used methods is the
Singular Value Decomposition (SVD) method. This method is very accurate but also time-
intensive since it requires a large amount of computational resources, especially in the case of
large matrices. An algorithm for fast computation of the Moore-Penrose inverse is presented
in the recent work of P. Courrieu [36]. Courrieu’s algorithm is based on a known reverse order
law for the matrix pseudoinverse (eq. 3.2 from [109]), and on a full-rank Cholesky factorization
of possibly singular symmetric positive matrices. Another very fast and reliable method to
estimate the Moore-Penrose inverse matrix of a rank-n tensor-product matrix is given by V.
Katsikis and D. Pappas [80].

All known methods for computing the Moore-Penrose inverse are either iterative or use
some matrix factorization. Our method explore the structure of the degradation matrix in a
specific case and generates the Moore-Penrose inverse analytically, by means of a set of rules.
Our motivation to introduce a new algorithm is the very proper structure of the matrix which
participates as a degradation system in the image formation process. The introduced method
is very fast, which is its main advantage. The main disadvantage of the method is its limitation
to uniform linear motion blur degradations. Since our method is straightforward and does not
use any iterations or factorizations, the presented numerical results only claim the expected
saving of the CPU time. We firstly define the method in the case when the the number of the
columns of the image enlarged for boundary pixels, can be divided by the number of blurring
pixels. Later we extend the method in the general case.

As we can see from (5.9) the matrix H is a Toeplitz matrix with very suitable structure.
We will show later in this section that its Moore-Penrose inverse in the case when n = l · p can
be generated immediately, without any computation. Later we will benefit from this specific
case to restore an image in general case, when the dimension n is arbitrary.

As we said, firstly we pay especial attention on the Moore-Penrose inverse of the matrix H
in the case

n = m + l − 1 = l · p,
where the number of blurring pixels p is a positive integer and divisor of the number of pixel
of the enlarged image F . Our aim in the present paper is to show that in this case the blurring
matrix is enough structured so its Moore-Penrose inverse can be calculated analytically. In
the rest we will construct a matrix H̃ = [h̃ij], i = 1, . . . , n, j = 1, . . . ,m, and show that it is
actually the Moore-Penrose inverse of the degradation matrix H. We move systematically from
the general layout of the matrix H̃ in order to get its exact form.

All elements of the matrix H̃, excluding zero elements, can be represented by the following
two sequences:

xk = − l

n
(m− l(k − 1)− 1) = −m− l(k − 1)− 1

p
, k = 1, 2 . . . , p− 1,

yk =
l

n
(m− l(k − 1)) =

m− l(k − 1)

p
, k = 1, 2 . . . , p.

110 CHAPTER 5. APPLICATION IN IMAGE RESTORATION

Additionally, we put z = yp = 1
p
.

The following representation gives the general layout of the matrix H̃ ∈ Cn×n.

y1

B1

B2

B3

Bp-1

. ..

. ..
Cp-1

C3

C2

C1

0

y1

z

z

z

z

...

0

0

0

0

z

z

z

z

...

z

z

z

z

...

z

z

z

z

...

z

z

z

z

...

z

z

z

z

...

m

l-1

m

upper line

lower line

l-1

Figure 5.2.1. General layout of the matrix H†.

The parallelogram between the blocks Bk and Ck is called the zero layer. With upper line
we refer to the elements above the zero layer of the matrix H̃ which actually constitute the
diagonal of the square m×m matrix formed from the first m rows of the matrix H̃. Similarly,
lower line refers to the elements below the zero layer of the matrix H̃ which constitute the
diagonal of the square m×m matrix formed from the last m rows of the matrix H̃. The upper
line, the lower line, the first l elements of the first row of H̃ and the last l elements of the last
column of H̃ will be denominated as sides of the zero layer.

Further we preview into the structure of the blocks Bk, k = 1, . . . , p− 1. Each block Bk can
be represented via appropriate block Pk of the following form:

5.2. REMOVAL OF UNIFORM BLUR IN X-RAY IMAGES 111

Pk =

0

0 0

0 0 0
...

. . .
. . .

. . .

0 0 0

xk 0 0 0

−xk xk 0 0 . . . 0 z

−xk xk 0 0
... z

. . .
. . .

. . .
...

. . .
. . . 0

...

−xk xk z

−xk z + xk

yk+1

Zero parallelogram blocks are of dimensions (l − 2) × (l − 1). The block Bk is obtained by
pasting up k times the block Pk, from the bottom upwards, and then from the resulting block
we cut by horizontal line the most upper triangle which has a vertical side containing the upper
l − 2 elements of the block Pk. The missing element of the resulting block Bk is filled by the
value yk+1. The three steps in formation process of the blocks Bk are presented on Figure 5.2.2.

P
k

()1st

P
k

(k)th

.

.

.

1st step

.

.

.

2nd step

.

.

.

3rd step

Cutting line

y
k+1

= B
k

P
k

(2nd)

P
k

(k)thP
k

(k)th

P
k

(2nd)P
k

(2nd)

P
k

()1stP
k

()1st

Figure 5.2.2. Formation of the block Bi from the block Pi.

In order to write the analytical form of the matrix H̃ we will use the following notation.
Let qi, qj, ri and rj be integers such that for a given ith row and jth column holds

i = qil + ri and j = qjl + rj.

From the previous considerations it is clear that:

i ≤ j if and only if h̃ij ∈ Bk, k = 1, 2, . . . , p− 1.

112 CHAPTER 5. APPLICATION IN IMAGE RESTORATION

Similarly
i ≥ l and i > j if and only if h̃ij ∈ Ck, k = 1, 2, . . . , p− 1.

Taking this into account we present the analytical form of the matrix H̃.

h̃ij =





yqj+1, i ≤ j, rj = 1, ri = 1,
z + xqj

, i ≤ j, rj = 1, ri = 0,
(−1)d+1xqj−1+1, i ≤ j, rj 6= 1, qj ≥ qi, (ri−j = 0 or ri−j = l − 1)

z + xp−qj−1, i ≥ l, i > j, rj = 1, ri = 1,
yp−qj

, i ≥ l, i > j, rj = 1, ri = 0,
(−1)dxp−qj−1−1, i ≥ l, i > j, rj 6= 1, qj ≤ qi, (ri−j = 0 or ri−j = l − 1)

z, rj = 1, ri 6= 0, ri 6= 1
0, otherwise

(5.13)

where d is 0 if ri−j = 0 and d = 1 otherwise. The first case in (5.13) gives the elements that are
not equal to zero or z of the blocks Bk, k = 0, . . . , p−1 plus y1 from the first column. The second
case produces the elements that are not equal to zero or z of the blocks Ck, k = 0, . . . , p − 1
plus y1 from the last column. In order to store the whole matrix we need only to store 2p− 1
elements which is lower than n in the case l > 2.

To illustrate our description we give the full form of the matrix H̃ observing the case p = 4.




y1 x1 y2 x2 y3 x3 y4

z −x1 x1 0 z −x2 x2 0 z −x3 x3 0 z
z −x1 x1 z −x2 x2 z −x3 x3 z
...

. . .
. . .

...
. . .

. . .
...

. . .
. . .

...
z −x1 x1 z −x2 x2 z −x3 x3 z
y4 −x1 z + x1 −x2 z + x2 −x3 z + x3

z + x3 −x3 0 y2 x2 0 y3 x3 0 y4
z x3 −x3 z −x2 x2 z −x3 x3 z
...

. . .
. . .

... −x2 x2 z −x3 x3 z

z x3 −x3 z
. . .

. . .
...

. . .
. . .

...
z x3 −x3 z −x2 x2 z −x3 x3 z

y4 0 x3 y3 −x2 z + x2 −x3 z + x3

z + x3 −x3 z + x2 −x2 0 y3 x3 0 y4
z x3 −x3 z x2 −x2 z −x3 x3 z
...

. . .
. . .

...
. . .

. . .
... −x3 x3 z

z x3 −x3 z x2 −x2 z
. . .

. . .
...

z x3 −x3 z x2 −x2 z −x3 x3 z

y4 0 x3 y3 0 x2 y2 −x3 z + x3

z + x3 −x3 z + x2 −x2 z + x1 −x1 0 y4
z x3 −x3 z x2 −x2 z x1 −x1 z
...

. . .
. . .

...
. . .

. . .
...

. . .
. . .

...
z x3 −x3 z x2 −x2 z x1 −x1 z

z 0 x3 −x3 z 0 x2 −x2 z 0 x1 −x1 z
y4 x3 y3 x2 y2 x1 y1




.

5.2. REMOVAL OF UNIFORM BLUR IN X-RAY IMAGES 113

In order to verify that the matrix H̃ is actually the Moore-Penrose inverse of the matrix H,
i.e. that H̃ = H† we will use the following two lemmas:

Lemma 5.2.1. The equality HH̃ = I holds for the matrix H̃ given by (5.13).

Proof. Each row of the matrix H contains l non zero constant elements equal to 1/l, so that

it is obvious that the elements of the matrix HH̃ are

(HH̃)ij =
1

l

i+l−1∑
s=i

h̃sj, i = 1, . . . , m and j = 1, . . . , m.

Therefore, we need to explore the properties of jth column of the matrix H̃, j = 1, . . . , m,
i.e. the sums of its l consecutive elements. For this reason and from the representation of the
matrix H̃ given by (5.13) we distinguish two different cases:

1 case : rj = 1.
Each set of l consecutive elements contains only two elements different from z. If both of

them are above the zero layer their sum is yqj+1 + (l− 1)z + xqj
= 0. If both of them are below

the zero layer their sum is xp−qj−1 + (l − 1)z + yp−qj
= 0. Otherwise, if one of them is above

the zero layer and the other one is below the zero layer, then their sum is yqj+1 + yp−qj
= l.

Unfortunately the last, as we mentioned before, is the case only when i = j.
2 case : rj 6= 1.
Each set of l consecutive elements contains only two non zero elements. If those two elements

are above the zero layer or both of them are below the zero layer then it is obvious that their
sum is 0. If one of them is above the zero layer and the other one is below the zero layer, thus
i = j, their sum is −xqj−1+1−xp−qj−1−1, which by easy calculations can be shown that equals l.

So finally for the both cases we have

(HH̃)ij =
1

l

i+l−1∑
s=i

h̃sj =

{
1, i = j
0, i 6= j

, i = 1, . . .m, j = 1, . . .m.

i.e. HH̃ = I. ¤

Lemma 5.2.2. The equality (H̃H)T = H̃H holds for the matrix H̃ given by (5.13).

Proof. For a given i = 1, . . . , n and j = 1, . . . , n, we should show that (H̃H)ij = (H̃H)ji. The

elements of the matrix H̃H can be presented as

(H̃H)ij =
1

l

min {j,m}∑

s=max {1,j−l+1}
h̃is, i = 1, . . . , n and j = 1, . . . , n. (5.14)

Let us denote by s = min {j, m} −max {1, j − l + 1}.
Consequently, we should show that the sum of s consecutive elements in the ith row of the

matrix H̃H where the last element is in the jth column; equals the sum s consecutive elements
in the jth row of the matrix H̃H, where the last element is in the ith column. So the case
when i = j is clear, actually, for a given i these elements actually present the sum of the s

114 CHAPTER 5. APPLICATION IN IMAGE RESTORATION

consecutive elements that belong to the zero layer as well as his sides. We continue with the
opposite case when i 6= j.

Let us explore the properties of each row i of the matrix H̃, i = 1, . . . , n. First we recall
that if i ≤ j that means that h̃ij is either y1 or belongs in a block Bk, k = 1, . . . , p− 1. And, if

i > l and i > j that means that h̃ij is either y1 or belongs in a block Ck.
1 case : i < j, ri = 1 and rj 6= 1 (i = 1, . . . , n− 1 and j = 1, . . . , n)

From (5.14) and definition of the matrix H̃ we have

(H̃H)ij =
1

l
(yqj+1 + xqj+1) =

z

l
.

That means that the sum of each s consecutive elements equals z, if the elements are in
the (kl + 1)st row, k = 0, . . . , p − 1, and the last element is not in the (kl + 1)st column,
k = 0, . . . , p − 1. Also since i < j the last element is above the diagonal of the square matrix
constituted of the first m rows of H̃.

We need to compare these values with the values of (H̃H)ji. For this situation we analyze
the opposite case i.e. we interchange the conditions for i and j. Suppose,

i > j, ri 6= 1 and rj = 1 (i = 1, . . . , n and j = 1, . . . , n− 1).

From here we continue with two different possibilities:
a1: ri = 0 then

(H̃H)ij =
1

l
(−xqj

+ z + xqj
) =

z

l
.

a2: ri 6= 0 then

(H̃H)ij =
1

l

{
z, j = 1
z + xp−qj

− xp−qj
= z, j > 1

Thus the first case is completed i.e. if i < j, ri = 1 and rj 6= 1 (i = 1, . . . , n− 1 and j =

1, . . . , n) then (H̃H)ij = (H̃H)ji.
2 case : i < j, ri = 1 and rj = 1 (i = 1, . . . ,m− 1 and j = 1, . . . , m) then

(H̃H)ij = yqj+1 + xqj
= z(1− l)

Note: Since m = l(p− 1) + 1 and n = m + l − 1, if j > m follows that rj 6= 1.
And for the opposite case: i.e. i > j, ri = 1 and rj = 1 (i = 1, . . . , m and j = 1, . . . ,m− 1)

(H̃H)ij =

{
z + xp−1 = z(1− l), j = 1
z + xp−qj−1 − xp−qj

= z(1− l), j 6= 1
,

which completes the case.
3 case : i < j, ri 6= 1 and rj = 1 (i = 1, . . . ,m− 1 and j = 1, . . . , m) then

(H̃H)ij =
1

l
(−xqj

+ z + xqj
) =

z

l
.

And for the opposite case: i.e. i > j, ri = 1 and rj 6= 1 (i = 1, . . . , m and j = 1, . . . ,m− 1)

(H̃H)ij =
1

l
(z + xp−qj−1 − xp−qj−1) =

z

l
.

5.2. REMOVAL OF UNIFORM BLUR IN X-RAY IMAGES 115

and the case is completed.
4 case : i < j, ri 6= 1 and rj 6= 1 (i = 1, . . . , n − 1 and j = 1, . . . , n) then similar as

previous after considering several cases one can compute the following

(H̃H)ij =
1

l

{
z(l − 1), ri = rj, i ≤ m
z, otherwise

,

And for the opposite case: i.e. i > j, ri 6= 1 and rj 6= 1 (i = 1, . . . , n and j = 1, . . . , n− 1)

(H̃H)ij =
1

l

{
z(l − 1), ri = rj, j ≤ m
z, otherwise

,

and the case is completed. ¤

Theorem 5.2.1. The matrix H̃ given by (5.13) is the Moore-Penrose inverse of the matrix H.

Proof. Since the matrix H is full row rank matrix its Moore-Penrose inverse is its right inverse.
From this fact and from the previous two lemmas follows the proof of the theorem. ¤

Algorithm 5.2.1 Direct method for image deblurring.

Input: The blurred image G of dimensions r ×m defined in the blurring process (5.9).
1: If m + l − 1 mod l 6= 0 then add l ∗ quotient(m + l − 1, l) + l −m boundary pixels, else

add l − 1 boundary pixels.
2: Compute the matrix H† according to the formula (5.13)
3: Apply formula (5.5)

4: Return F̃ .

5.2.1 Experimental results

In this section we have tested the proposed method on X-ray images and present numerical
results. In order to confirm the efficiency, we compared it with three recently announced
methods for computing the Moore-Penrose inverse of the matrix H. Therefore, the following
methods are compared:

1. The method proposed in Algorithm 5.3.1,
2. Pappas1 method, defined by the MATLAB function ginv.m from [80],
3. Pappas2 method, defined by the MATLAB function qrginv.m from [29],
4. Courrieu method from [36].

The experiments are done using Matlab programming language [159] on an Intel(R) CPU
T2130 @ 1.86 GHz 1.87 GHz 32-bit system with 2 GB of RAM memory. Tests are made for
several images of dimensions r ×m. The index l that takes values between 10 and 100 is the
varying parameter for a given image.

Also we compare the efficiency of four different methods for the image restoration: the
Moore-Penrose inverse, Wiener filter, Constrained least-squares (LS) filter, and Lucy-Richardson
algorithm, respectively. For the implementation of the Wiener filter, Constrained least-squares
(LS) filter, and Lucy-Richardson algorithm we used incorporated built-in functions from the
Matlab package [54].

116 CHAPTER 5. APPLICATION IN IMAGE RESTORATION

In image restoration the quality enhancement of the restored image over the recorded blurred
one is evaluated by the signal-to-noise ratio improvement (ISNR). The ISNR of the recorded
(blurred) image is defined as follows in decibels:

ISNR = 10 log10

(∑
n1,n2(G(n1, n2)− F (n1, n2))

2

∑
n1,n2(F̃ (n1, n2)− F (n1, n2))2

)
. (5.15)

The decrease of disagreement with the ideal image in the case of comparison between the
distorted and restored image is measured by the improvement in SNR. It is only possible to
compute all of the above signal-to-noise measures when the ideal image is available, i.e., in an
experimental system or in a design phase of the restoration algorithm.

The problem of restoring an X-ray images that has been blurred by a uniform linear motion,
usually results of camera panning or fast object motion. The X-ray image making provides a
crucial method of diagnostic by using the image analysis. Figure 5.2.3 presents one practical
example for restoring blurred X-ray image. The image is taken from the results obtained from
Google Image search with the keyword ”X-ray image”.

Original image from Figure 5.2.3 shows the original X-ray image. The image is divided into
r = 948 rows and m = 1450 columns. To prevent loosing information from the boundaries
of the image, we assumed zero boundary conditions, which implies that values of the pixels
of the original image F outside the domain of consideration are zero. This choice is natural
for X-ray images since the background of these images is black. Degraded image presents the
degraded X-ray image for l = 90. Finally, from Figure 5.2.3 (Moore-Penrose Inverse, Wiener
Restored Image, Constrained LS Restored Image and Lucy-Richardson Restored Image), it is
clearly seen that the details of the original image are recovered in all cases.

Figure 5.2.3. Removal of blur, caused by a uniform horizontal motion, in a simulated degraded X-ray

image, with dimensions r = 948, n = 1450 and l = 90.

The difference in quality of restored images between the three methods is insignificant, and
can hardly be seen by human eye. For this reason, the ISNR has been chosen in order to
compare the restored images obtained by the Moore-Penrose inverse method, the Wiener filter
methods, the Constrained least-squares filter method and the Lucy-Richardson algorithm.

Figure 5.2.4 (left) shows the corresponding ISNR value for restored images as a function
of l for the Moore-Penrose inverse method and the mentioned classical methods. The figures
illustrate that the quality of the restoration is as satisfactory as the classical methods or better
from them. This means that the Moore-Penrose inverse method for image restoration have the
better quality of the restored image from the other methods.

5.2. REMOVAL OF UNIFORM BLUR IN X-RAY IMAGES 117

10 20 30 40 50 60 70 80 90 100
−2

0

5

10

15

20

25

l (pixels)

IS
N

R
 (

dB
)

Moore−Penrose inverse
Wiener filters
Constrained least−squares filter
Lucy−Richardson Algorithm

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

l (pixels)

t(
se

c)

Proposed Method
Pappas1 Method
Pappas2 Method
Courrieu Method

Figure 5.2.4. (left) Improvement in signal-to-noise-ratio vs. length of the blurring process

(right) Computational time vs. length of the blurring process.

The main advantage of the proposed method for computing the Moore-Penrose inverse is
the time required to obtain the restored image compared to other methods for computing the
Moore-Penrose inverse. Figure 5.2.4 (right) shows the corresponding computational time t(sec)
value for restored images as a function of l < 100 pixels for the proposed method and the
mentioned other methods. Realistically speaking, large motions do not occur frequently in
radiography.

5.2.2 Restoring uniform blur and noise

The next example refers to case where the image noise is firstly included into the image degrada-
tion and later the noise is followed by the uniform linear blur. The corresponding mathematical
model which generalizes the horizontal blurring process presented by (5.2) becomes

GN = (F + N)HT = FNHT , (5.16)

where GN is blurred noisy image and N is an additive noise. To obtain approximation of the
original image, we apply two steps:

1. Calculate the restored matrix of FN with (5.5), which gives F̃N = GN(H†)T ;

2. Obtain the restored image F̃ by applying filtering process on the image F̃N obtained in Step
1.

Similarly, we can formulate a process when we have the two ways degradation with noise
and vertical blur of the original image. When we use original image from Figure 5.2.3, the
results presented on the Figure 5.2.5 and Figure 5.2.6 are refereed to the noise added to the
image from type ”salt and pepper” (white and black) noise with noise density of 0.04. For
filtering we use a 2-D median filtering.

118 CHAPTER 5. APPLICATION IN IMAGE RESTORATION

Figure 5.2.5. Removal of blur, caused by noise and uniform horizontal motion, in a simulated

degraded X-ray image, with dimension r = 948, n = 1450 and l = 90.

10 20 30 40 50 60 70 80 90
−5

0

5

10

15

20

l (pixels)

IS
N

R
 (

dB
)

Moore−Penrose inverse
Wiener filters
Constrained least−squares filter
Lucy−Richardson Algorithm

10 20 30 40 50 60 70 80 90
20

25

30

35

40

45

l (pixels)

P
S

N
R

 (
dB

)

Moore−Penrose inverse
Wiener filters
Constrained least−squares filter
Lucy−Richardson Algorithm

Figure 5.2.6. (left) Improvement in signal-to-noise-ratio vs. length of the blurring process

(right) Peak signal-to-noise ratio vs. length of the blurring process.

From the results for image restoration of blurred and noisy images, we can conclude that
in this case, as well, the proposed method is better compared to other methods.

5.3 Partitioning method for removing non–uniform blur

in images

Courrieu in the paper [36] compared the introduced method geninv for computing the Moore-
Penrose inverse of a given matrix, with four usual algorithms (the Greville’s partitioning
method, the SVD method, full rank QR and an iterative method of optimized order [9]).
The best results are achieved by the geninv method, while the worst results are generated by
the partitioning method. In the present section we propose an adaptation of the partitioning
method for Toeplitz matrices of the form (5.11).

Our goal in this section is to present appropriate modification of the well-known partitioning
method, in order to adjust it, for restoring images, blurred by a non–uniform linear motion.
In the sequel the basic explanation of the partitioning method is presented. The notation
Ai, i ∈ {1, . . . , n} stands for the submatrix of A which consists of the first i columns of a given
arbitrary matrix A ∈ Rm×n. Particularly, the ith row of A is denoted by ai and ai means the
ith column of A. By iAk, i ∈ {1, . . . , n− 1}, k ∈ {1, . . . , n− i} we denote the submatrix of A
which consists of the columns ai+1, . . . , ai+k. The m×m identity matrix is denoted by Im and

5.3. PARTITIONING METHOD FOR REMOVING NON–UNIFORM BLUR IN IMAGES119

Om is the quadratic m ×m zero matrix. The notation 0 stands for the zero column vector of
an appropriate dimension. For the purpose of introducing our algorithm, we restate the block
recursive algorithm for computing Moore-Penrose inverse of matrix B = [A|C], which denotes
a matrix A augmented by an appropriate matrix C, in terms of the matrix A†.

Lemma 5.3.1. [135] Let B = [A| C] be an m × (r + p) complex matrix whose last p columns
are denoted by C. Let

R = I − AA†, Q = (RC)T RC, F = I −Q†Q, Z = A†CF. (5.17)

Then

B† =

[
A†(I − CV)

V

]
(5.18)

where
V = Q†CT R + (I + ZT Z)−1ZT A†(I − CQ†CT R). (5.19)

We also restate the Grevile’s single-column finite recursive algorithm from [58].

Lemma 5.3.2. [58] Let A be an m× n complex matrix and a be an m× 1 constant vector. By
[A|a] we denote the matrix A augmented by an appropriate vector a. Then

[A|a]† =

[
A† − db∗

b∗

]

where

d = A†a,

b =

{
1

c∗cc, c 6= 0
1

1+d∗d(A†)∗d, c = 0,

and
c = (I − AA†)a.

In order to invert the left quadratic block Hm of the matrix H given with (5.11), first we
consider the matrix equation HmH−1

m = I. Since the matrix Hm is upper triangular Toeplitz
matrix it is well-known that its inverse is also upper triangular Toeplitz matrix. Therefore, the
whole matrix H−1

m is determined by its last column which will be denoted by x. To generate
the vector x we consider the following equation

Hm · x = em, (5.20)

where em denotes the m-th column of the identity matrix Im.

The following particular case of the Lemma 5.3.1 is useful in calculating the Moore-Penrose
inverse of the degradation matrix H.

Lemma 5.3.3. Assume that the matrix H ∈ Rm×n, n = m + l − 1 causes the blurring process
in (5.9). The Moore-Penrose inverse of its first p + k columns, partitioned in the block form
Hp+k = [Hp| pHk], p ∈ {1, . . . , n− 1}, k ∈ {1, . . . , n− p}, is defined by

H†
p+k =

[
H†

p

(
I − pHk ·BT

)
BT

]
=

[
H†

p −DBT

BT

]
(5.21)

where
D = H†

p · pHk and B = (H†
p)

T D(I + DT D)−1. (5.22)

120 CHAPTER 5. APPLICATION IN IMAGE RESTORATION

Proof. Follows from Lemma 5.3.1, taking into account that the degradation matrix is of full
row rank and the fact that equalities in (5.17) reduce to

R = Q = Om, F = Im, V = BT , Z = D = H†
p · pHk

observing this particular case. ¤

Also, the Grevile’s Partitioning method reduces to the following computational procedure.

Lemma 5.3.4. The Moore-Penrose inverse of the matrix Hi is equal to

H†
i =

[
H†

i−1 − dib
T
i

bT
i

]
(5.23)

where
di = H†

i−1 · hi and bi =
(
1 + dT

i di

)−1
(H†

i−1)
T di. (5.24)

Since we know the inverse H−1
m which is completely determined by vector x from (5.20),

any pragmatical implementation of the new method uses only partitions of the form Hp+k =
[Hp| pHk], p ≥ m, k ∈ {1, . . . , n−m}.

According to Lemma 5.3.3 we propose the following algorithm for computing the Moore-
Penrose inverse of the matrix H.

Algorithm 5.3.1 Computing the Moore-Penrose inverse of the matrix H.

Input: The matrix H of dimensions m× (m + l − 1) given by (5.11).
1: Separate the block Hm of the matrix H.
2: Generate H†

m = H−1
m using the vector x from (5.20).

3: Take p = m and choose k such that 1 ≤ k ≤ l − 1 as well as l−1
k
∈ N.

4: Compute H†
p+k = [Hp| pHk]

† according to Lemma 5.3.3.
5: Set p = p + k.
6: If p 6= n then go to Step 4; otherwise, go to the next step.
7: Return H†

n

It is not difficult to verify that the choice k = 1 in all recursive steps of Algorithm 5.3.1
produces the particular case of Grevile’s recursive method corresponding to Lemma 5.3.4. Also,
in the case p = m, k = l − 1 Algorithm 5.3.1 reduces to the following algorithm.

Algorithm 5.3.2 Computing the Moore-Penrose inverse of the matrix H.

Input: The matrix H of dimensions m× (m + l − 1) defined in the blurring process (5.9).
1: Separate matrix H into two blocks Hm and mHl−1, that is H = [Hm| mHl−1].
2: Generate H†

m = H−1
m using the vector x from (5.20).

3: Compute H† = [Hm| mHl−1]
† according to Lemma 5.3.3.

Choosing the most efficient case with respect to the computational time, we derive an
efficient method for computing the Moore-Penrose inverse of the degradation matrix H, and
respectively an efficient method for image restoring processes based on the equation (5.9). For
this purpose, let us denote by I(n) the complexity of the algorithm for inverting a given n× n
matrix (as in [35]). Also by A(n) we denote the complexity of the addition/subtraction of two

5.3. PARTITIONING METHOD FOR REMOVING NON–UNIFORM BLUR IN IMAGES121

n × n matrices and by M(m,n, k) the complexity of multiplying m × n matrix with n × k
matrix. The simpler notation M(n) (taken from [35]) is used instead of M(n, n, n).

In the remaining of this section we consider the computational complexity of the two op-
posite cases: p = m, k = 1 (used in Algorithm 5.3.1) and p = m, k = l − 1 (used in Algorithm
5.3.2). The complexity of Algorithm 5.3.2 is of the order

E3,2 = 3M(m,m, l − 1) + 3M(m, l − 1, l − 1) + I(l − 1) + A(l − 1). (5.25)

Scanning Algorithm 5.3.1 in a similar way, it is not difficult to verify that in ith recursive step
it requires complexity of the order

M(m + i− 1,m, 1) +M(1,m + i− 1, 1) +M(m, m + i− 1, 1),

for each i = 1, . . . , l − 1. Therefore, the complexity of complete algorithm is

E3,1 =
l−1∑
i=1

(M(m + i− 1,m, 1) +M(1,m + i− 1, 1) +M(m,m + i− 1, 1)) . (5.26)

It is well-known that matrix inversion is equivalent to matrix multiplication. More precisely, the
ordinary inverse of any real nonsingular n×n matrix can be computed in time I(n) = O(M(n))
[35]. The notation O(f(n)) is described, for example, in [35]. We conclude that the compu-
tational complexity of computing (I + DT D)−1 is substantially smaller than the complexity
of calculating H†. Also, the measure of complexity E3,1 does not include the computational
effort of the matrix inversion. The upper bounds for the complexity of Algorithm 5.3.2 and
Algorithm 5.3.1 are given by

E3,2 ≤ O(M(m,m, l − 1)), E3,1 ≤ l · O(M(m,m + l, 1)).

These upper bounds are incomparable in the general case. Therefore, the choice of the best
version of the partitioning algorithm is determined only on the basis of performed numerical
experiments. CPU times obtained in these experiments depend upon two parameters: compu-
tational complexity and implementation details incorporated into the programming language
MATLAB.

5.3.1 Experimental results

In order to confirm the efficiency of our algorithm, we compared it with two recently announced
methods for computing the Moore-Penrose inverse in [27] and [36]. These methods are called
Ginv method, Qrginv method and Courrieu method respectively. The following algorithms for
computing the Moore-Penrose inverse of the matrix H are compared:

1. Block partitioning method presented in Algorithm 5.3.2,
2. Ginv method, defined by the MATLAB function ginv.m from [80],
3. Qrginv method, defined by the MATLAB function qrginv.m from [29],
4. Courrieu method from [36].

The experiments are done using MATLAB programming package [159] on an Intel(R) Core(TM)
i5 CPU M430 @ 2.27 GHz 64/32-bit system with 4 GB RAM memory.

In Figure 5.3.7 we present the results which refer to the computational time t(sec) needed
to compute the Moore-Penrose inverse, as a function of the length of the blurring process

122 CHAPTER 5. APPLICATION IN IMAGE RESTORATION

l ≤ 90 (pixels). Tests are made for randomly generated matrix of dimensions 1000 × 1200,
which corresponds to a randomly generated image of the same dimensions, which is blurred
by Gaussian function. The confirmation that the proposed method for computing the Moore-
Penrose inverse (restoring blurred image) is faster than the other methods is illustrated on the
next figure.

10 20 30 40 50 60 70 80 90

2

3

4

5

6

7

lr (pixels)

t(
se

c)

Block Partitioning Method
Pappas1 Method
Pappas2 Method
Courrieu Method

10 20 30 40 50 60 70 80 90
1

2

3

4

5

6

lc (pixels)
t(

se
c)

Block Partitioning Method
Pappas1 Method
Pappas2 Method
Courrieu Method

Figure 5.3.7. (left) CPU time versus lr of the random matrix deblurring process (lc = 30)

(right) CPU time versus lc of random matrix deblurring process (lr = 25).

It is easy to observe that the block partitioning method overcomes Ginv and QrGinv meth-
ods. On the other hand, the authors in [80] concluded that the method Ginv possesses is
faster with respect to Courrieu method. Therefore, after the modifications described before,
partitioning method becomes the fastest with respect to all methods described in [80] and [36].

5.3.2 Restoring non–uniform blur and noise

In this section we devote attention to the serial degraded images. First, the noise is imposed
to the image and after that the noisy image is blurred by the non-uniform Gaussian function.
In this case the mathematical model of the non-uniform blurring process presented by (5.10)
becomes

GN = Hc(F + N)HT
r = HcFNHT

r , (5.27)

where GN is blurred noisy image and N is an additive noise. Two steps are used to restore the
original image:

1. Calculate the restored matrix F̃N = H†
cGN(H†

r)
T of FN ;

2. Restore image F̃ by applying the filtering process on the image F̃N .

In Figure 5.3.8 we present the X-ray image, introduced in the previous section, in the case
when it is blurred by a Gaussian model with lc = 25 and lr = 45. The four methods for the
image restoration: the Moore-Penrose inverse, Wiener filter, Constrained least-squares (LS)
filter, and Lucy-Richardson algorithm, are as well used, respectively.

5.3. PARTITIONING METHOD FOR REMOVING NON–UNIFORM BLUR IN IMAGES123

Figure 5.3.8. Removal of blur, caused by Gaussian model with lc = 25 and lr = 45, on a X-ray image.

On the figure we illustrate the original, the blurred noisy and the restored images obtained
by different methods. Original image from Figure 5.3.8 shows the original X-ray image. The
image is divided into r = 750 rows and m = 1050 columns. To prevent loosing information
from the boundaries of the image, we assumed zero boundary conditions, which implies that
values of the pixels of the original image F outside the domain of consideration are zero. This
choice is natural for X-ray images since the background of these images is black. The pixels of
the original image are degraded by the Gaussian white noise of mean 0 and variance 0, 01 and
later blurred by non-uniform Gaussian function according to model (5.27). For filtering we use
a rotationally symmetric Gaussian low pass filter of size 3 with standard deviation 45.

The results for the parameters ISNR [16], presented on Figure 5.3.9, show that the restora-
tion of the serial degraded images with the Moore-Penrose inverse is more reliable and accurate
than restoration with other mentioned methods.

10 20 30 40 50 60 70 80 90
−12

−8

−4

0

4

8

lc (pixels)

IS
N

R
 (

dB
)

Moore−Penrose inverse
Wiener filters
Constrained least−squares filter
Lucy−Richardson Algorithm

Figure 5.3.9. ISNR versus lc for the removal of blur given by model (5.27) (lr = 35).

In the sequel we compare the CPU time for the restoration process of our method with the
CPU time of three other, previously mentioned, methods. The computational time needed to
restore the degraded X-ray image by means of these methods which use the Moore-Penrose
inverse approach, is shown in the Figure 5.3.10. For a given image the varying parameter is
the parameter lr (lc) that takes values between 5 and 90.

124 CHAPTER 5. APPLICATION IN IMAGE RESTORATION

10 20 30 40 50 60 70 80 90

1

1.5

2

2.5

3

3.5

4

4.5

5

lr (pixels)

t(
se

c)

Block Partitioning Method
Pappas1 Method
Pappas2 Method
Courrieu Method

10 20 30 40 50 60 70 80 90
0.5

1

1.5

2

2.5

3

3.5

4

lc (pixels)

t(
se

c)

Block Partitioning Method
Pappas1 Method
Pappas2 Method
Courrieu Method

Figure 5.3.10.

(left) CPU time versus lr in the removing of blur caused by Gaussian function and noise (lc = 25)
(right) CPU time versus lc in the removing of blur caused by Gaussian function and noise (lr = 35).

As it is expected the proposed method, again, shows better performances with respect to
the other tested methods.

Obviously, the proposed method is not only restricted to restoration of blurred X-ray images,
but also can be used for other practical implementations such as deblurring images arising
in Automatic Number Plate Recognition (ANPR) systems. We assume that the blur that
appears in images from ANPR systems is caused by ”salt and paper” noise and non-uniform
Gaussian model, given by (5.27). To prevent loosing information from the boundaries of the
image, we assumed periodic boundary conditions for ANPR images. Figure 5.3.11 presents the
results obtained by restoring an image from the ANPR system with dimensions 1023 × 1250.
ANPR image is taken from implemented system of automatic recognition of license plates of
the Customs Administration in Serbia.

Figure 5.3.11. Removal of blur, caused by ”salt and paper” noise and Gaussian function (lc = 25,

lr = 40).

Figure 5.3.12 decidedly approves that the time required to obtain a restored ANPR image
using the proposed method is again the smallest with respect to other considered methods.

10 20 30 40 50 60 70 80 90

2

3

4

5

6

7

lr (pixels)

t(
se

c)

Block Partitioning Method
Pappas1 Method
Pappas2 Method
Courrieu Method

10 20 30 40 50 60 70 80 90
1

2

3

4

5

6

7

8

lc (pixels)

t(
se

c)

Block Partitioning Method
Pappas1 Method
Pappas2 Method
Courrieu Method

Figure 5.3.12.

(left) time versus lr in removal of blur given by model (5.27) and ”salt and paper” noise (lc = 35).
(right) time versus lc in removal of blur given by model (5.27) and ”salt and paper” noise (lr = 40).

Chapter 6

Conclusion

In the Ph.D. dissertation, we analyzed and presented new results related to two main disciplines:
unconstrained optimization and generalized inverses. Usually the textbooks we encounter in
the literature are either devoted to optimization theory, or to generalized inverses theory. In
the Ph.D. dissertation we stressed the interaction between these two disciplines. Namely, we
observed the theory and methods of unconstrained optimization, as a useful tool for finding
generalized inverses of matrices, and in some instances, for finding generalized inverses of linear
bounded operators on Hilbert spaces. In the beginning, we presented analysis and new results
related to unconstrained optimization and generalized inverses, separately. After, we used
the presented results for constructing new efficient algorithms for solving specific optimization
problems, in order to determine different types of generalized inverses.

In the following we present a short summary of all obtained results and propose possible
directions for further investigations.

The second chapter, which is devoted to optimization theory, contains new results related
to the minimization of a given objective function on finite dimensional real space, as well as
finding a least-squares solution of an operator on Hilbert space. After presenting the summary
of nonlinear unconstrained optimization in Section 2.1., the main results are presented in Section
2.2 and Section 2.3.

As a motivation for the results presented in Section 2.1. we used the idea of nonmonotone
line search strategy proposed by Grippo et al. [59], If we combine the nonmonotone line search
strategy with the Barzilai and Borwein method in [111], we get a global convergence of the
algorithm. The resulting algorithm, known as global Barzilai and Borwein method (or shortly
the GBB method), allows significant reduction in the number of line searches and also in the
number of gradient evaluations, so that it has been used as a benchmark in the construction of
unconstrained optimization algorithms.

Based on these ideas, we proposed a new two-point stepsize gradient descent method, which
is given by Algorithm 2.2.3. The underlying ideas are the usage of a two-point approximation
to the secant equation required in quasi-Newton methods as well as the approximation of the
inverse Hessian matrix by a scalar matrix and its updating by means of an appropriately selected
scalar. Our idea was to ease the choice of the initial trial steplength and maximize its values as
much as possible. After analyzing few choices of possible initial stepsizes, as it is presented in
(2.32) and (2.33), we choose those with largest values observing different cases. The technique
of the nonmonotone line search proposed in [59] is accompanied by our algorithm to make it
comparable with the BB method. The resulting algorithm is named the GSC algorithm.

125

126 CHAPTER 6. CONCLUSION

Due to the characteristics of the GSC algorithm, such as the simplicity, efficiency and very low
memory requirements (similar to the GBB method), it tends to be very attractive and applicable
to large-scale test problems. The numerical results presented in the Ph.D. dissertation favor
the GSC method in comparison to the GBB method.

The results in Section 2.3. are related to the usage of quasi-Newton methods for finding an
optimal solution of a given function. The presented results represent a natural continuation of
the idea that can be described as an application of the nonlinear optimization in computing
least-squares solutions of the operator equation Ax = b. This strategy adapted for functionals
on Hilbert spaces can be also successfully used for computing {1, 3}-inverses, including the
Moore-Penrose inverse, of a given complex matrix.

In Section 2.3. we presented the previously mentioned adaptation, i.e., we did an extension
of the secant equation to Hilbert spaces. Furthermore, using the idea of the scalar correction
method (SC method), we established a new gradient method for computing least-squares solu-
tions of the equation Ax = b on Hilbert spaces, which in addition to the good properties of the
secant equation, also preserves monotonicity. Despite the independency of the results related to
Hilbert spaces, their greatest advantage is the illustration how generalization of some practical
problems can then be used to solve other practical problems.

Further investigation related to the results in Chapter 2 will be, first of all, targeted to the
improvements of the GSC method. The possibility of existing other trial stepsizes which can
contribute to enhance the performances of the algorithm is not excluded. Also, the constrained
optimization, although it is not captured in the Ph.D. dissertation will be subject of our in-
vestigation, and we will research the interpretation of the results in the field of constrained
optimization.

The main results from Chapter 3 are presented in Section 3.2, 3.3 and 3.4. Here, we paid a
special attention to the minimal properties of the Drazin inverse and A

(2)
T,S-inverses. The new

presented results related to the minimal properties of the Drazin inverse and A
(2)
T,S-inverse, are

very useful in order to utilize the optimization methods for the purpose of determining the
Drazin inverse solution and A

(2)
T,S-inverse solution of a given matrix equation or its special case,

a system of linear equations.

In the papers [20, 140, 142], the authors present some minimal properties of the Drazin-
inverse solution. It can be argued that, in some way, these properties correspond to the prop-
erties of the Moore-Penrose inverse solution. Namely, in [20] it is shown that if b ∈ R(Ap),
where p = ind(A), then the Drazin-inverse solution is the unique solution of the system Ax = b
which belongs to R(Ap). Also, Wei et al. in [140, 142] show that the Drazin-inverse solution of
the system Ax = b is a solution of minimum P -norm, where P is the Jordan matrix obtained
with the Jordan decomposition of the matrix A.

In Section 3.2, we explore further minimal properties of the Drazin-inverse solution of the system
Ax = b, where b ∈ R(Ap). The presented results, actually, reveal the connection between the
Drazin-inverse solution and {1, 3}-inverses of the matrix Ap+1.

As it is well known, the Drazin inverse always exists for a square matrix, although it provides
a solution of the system Ax = b only in the case when b ∈ R(Ap). In addition to the previous
results, in Section 3.3, we develop a methodology for finding the vector of the form ADb, in
case of arbitrary square matrix A and an arbitrary vector b of appropriate dimensions. The

127

goal is achieved by presenting relationships between the vector ADb and P -norm least-squares
solutions of the system Apx = b.

The obtained results related to the Drazin-inverse solution of a given system of linear equations,
inspired us to research whether they can be used in order to calculate the Drazin inverse of
a given matrix, i.e., to find the Drazin-inverse solution of the matrix equation AXB = D, in
general. With appropriate modification we found the matrix of the form ADGBD, which is
not always a solution of the matrix equation, but however it can be always used in order to
calculate the Drazin inverse of arbitrary matrix. Two formulas for the Drazin inverse calculation
are presented in Theorem 3.2.9.

Finally, we round off these ideas with their generalization to A
(2)
T,S inverses, in Section 3.3.

However, what is presented in the Ph.D. dissertation is only finding A
(2)
T,S-inverse solution of the

system Ax = b in the special case when b ∈ R(AR), where R is appropriately chosen matrix.

Additionally, related to A
(2)
T,S inverses, in Section 3.4, we interpreted full rank representation

of {2, 4} and {2, 3}-inverses through the full rank representation of outer inverses. In this way,
the methods developed for computing outer inverses with prescribed range and null space can
be applied in computation of {2, 4} and {2, 3}-inverses with prescribed range and null space.

Finding A
(2)
T,S-inverse solutions of the system Ax = b in general case and A

(2)
T,S-solution of the

matrix equation AXB = G given with A
(2)
T1,S1

GB
(2)
T2,S2

will be subject of our further investigation.
The practical implementation, i.e., investigating the fields where the minimal properties of the
Drazin inverse can be used, also will be subject of our future research.

In Chapter 4, we presented the obtained algorithms for generalized inverses computation,
we showed their convergence properties, and we presented numerical results which are noting
else, but an illustrative confirmation of the efficiency of the algorithms.

In the beginning, in Section 4.2 we showed how, the generalization of the idea of scalar correction
method in order to find least-squares solutions on Hilbert space, which is presented in Section
2.3, can be used for computing the Moore-Penrose inverse of a given matrix.

The set of least-squares solutions of the operator equation Ax = b is identified with the set of
limits of the iterative process (2.48). Any limit value of the iterative process given by (2.48) is
completely described by the initial approximation, and it is a least-squares solution. Conversely,
for a given least-squares solution we found the set of all initial approximations for the iterative
process which lead to that least-squares solution. As should be expected, respective results are
presented regarding the computation of {1, 3}-inverses as well as the Moore-Penrose inverse of
a given complex matrix A ∈ Cm×n.

The presented numerical results confirm the expectation relative to the bad convergence prop-
erties of the steepest descent method for ill-conditioned problems. And thus make favorable
two point stepsize methods with respect to the steepest descent method. Additionally, regard-
ing the numerical results we conclude that the scalar correction method is competitive with
the favorable Barzilai Borwein method, not only in the number of iterations but also in the
accuracy. Also, the complexity of the SC algorithm is very similar to the complexity of the BB
method, which is known as a method easy for the implementation.

The revealed connection between the Drazin-inverse solution and {1, 3}-inverses of the ma-
trix Ap+1, which are presented in Chapter 2, impose all methods for minimizing the norms

128 CHAPTER 6. CONCLUSION

‖A2px − b‖P , i.e., ‖A2p1XB2p2 − G‖2
PQ to be a useful tool for computing the Drazin-inverse

solution of the system Ax = b, i.e., AXB = G. In Section 4.3 we presented algorithms for
iterative computing of the Drazin-inverse solution and the Drazin inverse of a matrix. As an
illustration, by using the two-point stepsize gradient method, we showed how gradient iterative
schemes can be used for computing the Drazin-inverse solution. With the presented results, the
idea of using the optimization theory in order to efficiently calculate the Moore-Perose inverse
solution, is naturally continued for the Drazin-inverses solution.

Section 4.4 is completely devoted to the iterative methods for computing A
(2)
T,S-inverses. The

first such algorithm is a gradient algorithm for computing A
(2)
T,S-inverses of the system Ax = b,

where b ∈ R(AR), R is appropriately chosen matrix. It is very similar to the previously
mentioned algorithm for finding the Drazin-inverse solution, and is based on the results obtained
in Section 3.4.

Next, by modifying and applying the SMS algorithm from [25, 126], we presented two
algorithms for computing generalized inverses. The first one is intended for computing {2, 4}-
inverses and the second one for computing {2, 3}-inverses. These algorithms actually show

the utility of the successive matrix squaring algorithm (SMS algorithm) for computing A
(2)
T,S-

inverses. The first application is straight whereas for the second one, we did some modifications
and showed the respective convergence results.

Additionally, we indicate some necessary conditions for obtaining {1, 2, 3}, {1, 2, 4}-inverses and
finally the Moore-Penrose inverse. In this way we filled the gap of finding S-inverses, where
S ⊂ {1, 2, 3, 4} using SMS method for computing {2}-inverses with prescribed range and null
space from [126].

However this is not the only part where we have used the idea of the SMS method for
computing A

(2)
T,S-inverses. In the next algorithm which is presented, we used the idea intro-

duced in [126], accompanied by the concept of displacement operator and displacement rank of
iteration matrices. Namely, we present the modification of the SMS algorithm for computing
the outer inverse with prescribed range and null space of an arbitrary Toeplitz matrix. Our
method is actually a generalization of the ideas from [14, 19] and represent a universal algo-
rithm for computing generalized inverses containing these results as partial cases. Furthermore,
by using the circulant and anti-circulant matrices for obtaining the odr of the sequence of ap-
proximations Zk, we propose a different approach for computing the Moore-Penrose inverse
of a square Toeplitz matrix, with respect to the method from [15, 146]. Also, by giving the
unified approach we resolve the previously mentioned diversities in strategies for choosing the
starting approximations as well as the diversities in defining the iterative rules and in the usage
of various displacement operators.

The presented quadratic convergence and numerical results show that our algorithm is as good
as the SMS algorithm for computing outer generalized inverses, when it comes to the number
of iterations. Furthermore, the achieved low values of Mdrk and Sdrk evidently decrease the
computational cost per step having in mind that the strategy of FFT’s and convolutions is used
in matrix-vector multiplications. Additionally, three different heuristics are used for the choice
of the truncation value εk. For given test matrices the numerical results presented in the paper
favor dynamic strategy in comparison to the static strategy.

In our future investigations we will try to extend the algorithm for calculation A
(2)
T,S-inverse

solutions to more general cases, where system AXB = G is considered. On this way we will

129

circle the theory of minimal properties of the generalized inverses representable via A
(2)
T,S inverses.

Also we will try to improve the displacement SMS method for calculating A
(2)
T,S inverses of a

given Toeplitz matrix, by using some iterative scheme for which Algorithm 4.4.5 will search for
the orthogonal displacement generators of only one matrix, instead of two matricess. This will
surely reduce the CPU time of the algorithm. The idea of orthogonal displacement operator
can be used as well for determination of A

(2)
T,S inverses of other structured matrices.

In Chapter 5, motivated by the problem of restoring blurred images via well developed
mathematical methods, based on the Moore-Penrose inverse computation, we introduced a
computational method to restore images that has been blurred by uniform and non–uniform
motion.

The first method which is presented is based on the provided formula for calculating the Moore-
Penrose inverse of the blurring matrix. The other presented method is based on appropriate
adaptations of well-known computational methods introduced in [135] and [58]. Using the
specific structure of the matrix H as well as the fact that we know H†

m explicitly, we use the
partitioning methods in order to obtained efficient method and make advantage with regard to
existing methods.

Presented numerical results firstly show the superiority of the Moore-Penrose inverse tech-
niques over the other methods such as Wiener filter, Constrained least-squares filter and Lucy-
Richardson algorithm. Later, we compare our method with respect to the method for fast
computing the Moore-Penrose matrix inverse introduced in [79] and used in [28, 27] as well as
with the Courrieu method [36].

The main advantage of the proposed method is substantially decreased time required to obtain
the restored image compared to other methods based on the usage of the Moore-Penrose inverse.

Introduced method can be used to restore a noisy X-ray image that has been blurred by the
uniform or non–uniform motion. Our method also, except in radiography, can be used in
different practical realizations, like restoration of images from ANPR systems.

We believe that the results presented in the Ph.D. dissertation besides their contribution in
the filed of unconstrained optimization theory and generalized inverses theory will serve as a
motivation for future investigations in these fields, and implementation of the results in some
practical disciplines.

130 CHAPTER 6. CONCLUSION

References

[1] H. Akaike, On a successive transformation of probability distribution and its application to
the analysis of the optimum gradient method, Ann. Inst. Statist. Math. Tokyo 11 (1959),
1–17.

[2] N. Andrei, An Unconstrained Optimization Test Functions Collection,
http://camo.ici.ro/neculai/t1.pdf (2005)

[3] I.K. Argyros, Weak sufficient covergence conditions and applications for Newton methods,
J. Appl. Math. Comput. 16, 1–17 (2004)

[4] L. Armijo, Minimization of functions having Lipschitz first partial derivatives, Pac. J.
Math. 16, 1–3 (1966)

[5] W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigen-
value problem, Quart. Appl. Math. 9 (1951), 17–29.

[6] S. Axler, Linear Algebra Done Right, Second Ed., Springer, 1997.

[7] M.R. Banham, A.K. Katsaggelos, Digital image restoration, IEEE Signal Processing Mag-
azine 14 (1997), 24–41.

[8] J. Barzilai, J.M. Borwein, Two point step size gradient method, IMA J. Numer. Anal. 8
(1988) 141–148.

[9] A. Ben-Israel, An iterative method for computing the generalized inverse of an arbitrary
matrix, Math, Comp. 19 (1965), 452–455.

[10] A. Ben-Israel, A note on an iterative method for generalized inversion of matrices, Math.
Comp. 20 (1966), 439440.

[11] A. Ben-Israel, A. Chanes, Contributions to the theory of generalized inverses, SIAM J.
11 (1963), 667669.

[12] A. Ben-Israel, T.N.E. Greville, Generalized inverses: theory and applications, Second Ed.,
Springer, 2003.

[13] P. Bhimasankaram, On Generalized Inverses of Partitioned Matrices, Sankhya 33 (1971),
331–314.

[14] D. Bini, B. Meini, Approximate displacement rank and applications, in Structured Ma-
trices in Mathematics, Computer Science and Engineering II, V. Olshevsky Editor, Con-
temporary Mathematics, 281 (2001), 215–232, American Mathematical Society, Rhode
Island.

131

132 REFERENCES

[15] D. Bini, G. Codevico, M.V. Barel, Solving Toeplitz least squares problems by means of
Newton’s iteration, Numer. Algorithms 33 (2003), 93–103.

[16] A. Bovik, The essential guide to the image processing, Academic Press, 2009.

[17] A. Bovik, Handbook of image and video processing, Academic Press, San Diego, San
Francisko, New York, Boston, London, Sydney, Tokyo, 2000.

[18] C. Brezinski, A classification of quasi-Newton methods, Numer. Algorithms 33, 123-135
(2003)

[19] J.F. Cai, M.K. Ng, Y. Wei, Modified Newton’s Algorithm for Computing the Group In-
verses of Singular Toeplitz Matrices, J. Comput. Math. 24 (2006), 647–656.

[20] S.L. Campbell, C.D. Meyer, Generalized Inverse of Linear Transformation, Pitman, Lon-
don (1979).

[21] C.G. Cao, X. Zhang, The generalized inverse A
(2)
T,∗ and its applications, J. Appl. Math.

Comput. 11 (2003), 155 –164.

[22] A. Cauchy, Metode generale pour la resolution des systems d’equations simultanees, Comp.
Rend. Sci. 25, 46–89 (1847)

[23] R. Chan, M.K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38
(1996), 427-482.

[24] G.K. Chantas, N.P. Galatsanos, N.A. Woods, Super-resolution based on fast registration
and maximum a posteriori reconstruction, IEEE Trans. Image Process. 16 (2007), 1821–
1830.

[25] L. Chen, E.V. Krishnamurthy, I. Macleod, Generalized matrix inversion and rank com-
puation by successive matrix powering, Parallel Comput. 20 (1994), 297–311.

[26] Y. Chen, The generalized Bott–Duffin inverse and its application, Linear Algebra Appl.
134 (1990), 71–91.

[27] S. Chountasis, V.N. Katsikis, D. Pappas, Applications of the Moore-Penrose inverse in
digital image restoration, Math. Probl. Eng., Volume 2009, Article ID 170724, 12 pages
doi:10.1155/2009/170724.

[28] S. Chountasis, V.N. Katsikis, D. Pappas, Digital Image Reconstruction in the Spectral
Domain Utilizing the Moore-Penrose Inverse, Math. Probl. Eng., Volume 2010, Article
ID 750352, 14 pages doi:10.1155/2010/750352.

[29] S. Chountasis, V.N. Katsikis, D. Pappas, Image restoration via fast computing of the
Moore-Penrose inverse matrix, Systems, Signals and Image Processing, 2009, IWSSIP
2009.

[30] J.J. Climent, M. Neumann, A. Sidi, A semi-iterative method for real spectrum singular
linear systems with an arbitrary index, J. Comput. Appl. Math. 87 (1997), 21–38.

REFERENCES 133

[31] G. Codevico, V.Y. Pan, M.V. Barel, X. Wang, A. Zheng, The least squares compression
policy for Newton-like iteration of structured matrices (P. Mitic, J. Carne, Eds), IMS2004
Proceedings, 2004, 1–22.

[32] G. Codevico, V.Y. Pan, M.V. Barel, Newton-like iteration based on a cubic polynomial
for structured matrices, Numer. Algorithms, 36(4) (2004), 365–380.

[33] A.I. Cohen, Stepsize analysis for descent methods, J. Optim. Theory Appl., 33 (1981),
187–205.

[34] L. Collatz, Functional analysis and numerical mathematics, Academic Press, New York,
1966.

[35] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, Second
Edition, The MIT Press, Cambridge, Massachusetts London, McGraw-Hill Book Com-
pany, Boston, New York, San Francisco, St. Louis, Montreal, Toronto, 2001.

[36] P. Courrieu, Fast Computation of Moore-Penrose Inverse Matrices, Neural Information
Processing - Letters and Reviews 8 (2005), 25–29.

[37] Y.H. Dai, L.Z. Liao, R-linear convergence of the Barzilai and Borwein gradient method,
IMA J. Numer. Anal. 22, 1–10 (2002)

[38] Y.H. Dai, H. Zhang, Adaptive two-point stepsize gradient algorithm, Numer. Algorithms
27 (2001), 377–385.

[39] Y.H. Dai, On the Nonmonotone Line Search, J. Optim. Theory Appl. 112 (2002), 315–
330.

[40] E.D. Dolan, J.J. Moré, Benchmarking optimization software with performance profiles,
Math. Program. 91 (2002), 201–213.

[41] H. Diao, Y. Wei, S. Qiao, Displacement rank of the Drazin inverse, J. Comput. Appl.
Math. 167 (2004), 147–161.

[42] U. Diwekar, Introduction to applied optimization, Springer- Verlag New York, 2008.

[43] D.S. Djordjevic, P.S. Stanimirović, Iterative methods for computing generalized inverses
related with optimization methods, J. Aust. Math. Soc. 78 (2005), 257–272.

[44] D.S. Djordjevic, V. Rakocevic, Lectures on generalized inverses, Faculty of Sciences and
Mathematics, University of Nǐs, 2008.

[45] D.S. Djordjević, P.S. Stanimirović, General representations of pseudoinverses, Mat. Ves-
nik 51 (1999), 69-76.

[46] S.C. Eisenstat, H.C. Elman, M.H. Schultz, Variational iterative methods for nonsymmet-
ric systems of linear equations, SIAM J. Numer. Anal. 20 (1983), 345–357.

[47] B. Fischer, M. Hanke, M. Hochbruck, A note on conjugate gradient type methods for
indefinite and/or inconsistent linear systems, Numer. Algorithms 11 (1996), 181–187.

134 REFERENCES

[48] R. Fletcher, On the Barzilai-Borwein method, Dundee Numerical Analysis Report
NA/207 (2001)

[49] G.E. Forsythe, On the asimptotic directions of the s-dimensional optimum gradient
method, Numer. Math. 11 (1968), 57–76.

[50] I. Fredholm, Sur une classe d’équations fonctionnelles, Acta Math. 27 (1903), 365–390.

[51] R. Freund, M. Hochbruck, On the use of two QMR algorithms for solving singular systems
and applications in Markov chain modeling, Numer. Linear Algebra Appl. 1 (1994), 403–
420.

[52] A.J. Getson, F.C. Hsuan, {2}-Inverses and their Statistical Applications, Lecture Notes
in Statistics 47, Springer, Berlin, 1988.

[53] R.C. Gonzalez, R.E. Woods, Digital Image Processing, 2nd Edition, Prentice-Hall, 2002.

[54] R.C. Gonzalez, R.E. Woods, S.L. Eddins, Digital Image Processing Using MATLAB,
Prentice-Hall, 2003.

[55] L. Guo, X. Du, Representations for the Drazin inverses of 2 × 2 block matrices, Appl.
Math. Comput. 217 (2010), 2833–2842.

[56] F. Graybill, Matrices and Applications to Statistics, second ed., Wadsworth, Belmont,
California, 1983.

[57] U. Grenander, M. Rosenblatt, Statistical Analysis of Stationary Time Series, Wiley and
Sons, NY, 1966, Chapter 1.

[58] T.N.E. Grevile, Some applications of the pseudo-inverse of matrix, SIAM Rev. 3 (1960),
15–22.

[59] L. Grippo, F. Lampariello, S. Lucidi, A nonmonotone line search technique for Newton’s
method, SIAM J. Numer. Anal. 23, 707–716 (1986)

[60] W. Hackbush, B.N. Khoromskij, E.E. Tyrtyshnikov, Approximate iterations for structured
matrices, Numer. Math. 109 (2008), 365-383.

[61] M. Hanke, M. Hochbruck, A Chebyshev-like semiiteration for inconsistent linear systems,
Electro. Trans. Numer. Anal. 1 (1993), 89–103.

[62] P.C. Hansen, J.G. Nagy, D.P. O’Leary, Deblurring images: matrices, spectra, and filtering,
SIAM, Philadelphia, 2006.

[63] G. Heinig, K. Rost, Algebraic method for Toeplitz-like matrices and operators, Akademie-
Verlag, Berlin and Birkhauser, 1984.

[64] G. Heinig, F. Hellinger, Displacement structure of pseudoinverses, Linear Algebra Appl.
197/198 (1994), 623–649.

[65] M.R.Hestenes, Pseudoinverses and conjugate gradients, Commun. ACM 18 (1975), 40–43.

REFERENCES 135

[66] M. Hillebrand, C. H. Müller, Outlier robust corner-preserving methods for reconstructing
noisy images, Ann. Statist. 35 (2007), 132–165.

[67] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, New
York, New Rochelle, Melbourne, Sydney, 1986.

[68] R.E. Hufnagel, N.R. Stanley, Modulation Transfer Function Associated with Image Trans-
mission through Turbulence Media, J. Opt. Soc. Am. 54 (1964), 52–60.

[69] F. Husen, P. Langenberg, A. Getson, The {2}-inverse with applications to satistics, Linear
Algebra Appl. 70 (1985), 241-248.

[70] E.F. Kaaschieter, Preconditioned conjugate gradients for solving singular systems, Com-
put. Appl. Math. 24 (1988), 265–275.

[71] T. Kailath, S.Y. Kung, M. Morf, Displacement rank of matrices and linear equations, J.
Math. Anal. Appl. 68 (1979), 395–407.

[72] T. Kailath, A.H. Sayed, Displacement structure: theory and applications, SIAM Rev. 37
(1995), 297–386.

[73] T. Kailath, S.Y. Kung, M. Morf, Displacement rank of a matrix, Bull. Amer. Math. Soc.
1 (1979), 769–773.

[74] T. Kailath, A.H. Sayed, Fast algorithms for generalized displacement structures, in Recent
advances in mathematical theory of systems, control, networks and signal processing II,
Proc. of the MTNS-91 (H.Kimura, S.Kodama, Eds) Mita Press, Japan, 1992, 27–32.

[75] R.E. Kalaba, F.E. Udwadia, Analytical Dynamics: A New Approach, Cambridge Univer-
sity Press, Cambridge 1996.

[76] R.E. Kalaba, F.E. Udwadia, Associative memory approach to the identification of struc-
tural and mechanical systems, J. Optim. Theory Appl. 76 (1993), 207–223.

[77] W.J. Kammerer, M.Z. Nashed, On the convergence of the conjugate gradient method for
singular linear operators equations, SIAM J. Numer. Anal. 97 (1972), 165–181.

[78] L.V. Kantorovich, G. P. Akilov, Functional analysis (in Russian), Moscow, 1977.

[79] S. Karanasios, D. Pappas, Generalized inverses and special type operator algebras, Facta
Universitatis, Series: Mathematics and Informatics 21 (2006), 41–48.

[80] V. Katsikis, D. Pappas, Fast computing of the Moore- Penrose Inverse matrix, Electron.
J. Linear Algebra 17 (2008), 637-650.

[81] F. Krahmer, Y. Lin, B. Mcadoo, K. Ott, J. Wang, D. Widemann, B.Wohlberg, Blind
image deconvolution: Motion blur estimation, In IMA Preprints Series, 2133-5, 2006.

[82] C. Lanczos, Solution of systems of linear equations by minimized iterations, J.Res. N.B.S.
49, 1952, 33–53.

[83] J. Levine, R.E. Hartwig, Applications of Drazin inverse to the Hill cryptographic systems,
Cryptologia, 4 (1980), 71–85.

136 REFERENCES

[84] S. Li, Displacement structure of the generalized inverse A
(2)
T,S, Appl. Math. Comput. 156

(2004), 33-40.

[85] D.G. Luenberg, Y. Ye, Linear and nonlinear programming, Springer Science+Business
Media, LLC, New York, 2008.

[86] J. E. Marsden, T. Radiu, Manifolds, Tensor Analysis, and Application, Springer-Verlag
New York, Inc, 2001.

[87] C.D.Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.

[88] S.G. Mikhlin, The Problem of the Minimum of a Quadratic Functional, Holden-Day, San
Francisco, 1965.

[89] M. Miladinović, P.S. Stanimirović, S. Miljković, Scalar correction method for computing
large scale unconstrained minimization problems, J. Optim. Theory Appl. 151 (2011),
304–320.

[90] M. Miladinović, S. Miljković, P.S. Stanimirović, Modified SMS method for computing
outer inverses of Toeplitz matrices, Appl. Math. Comput. 218 (2011), 3131-3143.

[91] S. Miljković, M. Miladinović, P.S. Stanimirović, D. Djordjević, Scalar correction method
for finding least-squares solutions on Hilbert spaces and its application, Comput. Appl.
Math., submitted.

[92] S.Miljković, M.Miladinović, P.S. Stanimirović, Y. Wei, Iterative methods for computing
the Drazin-inverse solution, J. Comput. Appl. Math., submitted.

[93] S.Miljković, M.Miladinović, P.Stanimirović, I. Stojanović, Removal of blur in X-ray im-
ages based on direct pseudoinverse computation, Filomat, accepted.

[94] S. Miljković, M. Miladinović, P.S. Stanimirović, Drazin-inverse solution of a matrix equa-
tion, in preparation.

[95] A. Mohsen, J. Stoer, A Variable Metric Method for Approximating Generalized Inverses
of Matrices, ZAMM - Z. Angew. Math. Mech. 81 (2001), 435–446.

[96] E.H. Moore, On the reciprocal of the general algebraic matrix, Bull. Amer. Math. Soc. 26
(1920) 394–395.

[97] M.Z. Nashed, Steepest descent for singular linear operators equations, SIAM J. Numer.
Anal. 7 (1970), 358–362.

[98] M.Z. Nashed, Generalized Inverses and Applications, Edited by M. Zuhair Nashed, Pro-
ceedings of an Advanced Seminar, Academic Press, New York, San Francisko, London,
1976.

[99] M.Z. Nashed, X. Chen, Convergence of Newton-like methods for singular operator equa-
tions using outer inverses, Numer. Math. 66 (1993), 235-257.

[100] J. Nocedal, S. J. Wright, Numerical Optimization, Springer-Verlag New York, Inc, 1999.

REFERENCES 137

[101] V. Olshevsky, Structured Matrices in Mathematics, Computer Science, and Engineering
I, Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference, University of
Colorado, Boulder, June 27July 1, 1999, in: Contemporary Mathematics, vol. 280, AMS,
Providence, RI, 2001.

[102] V.Y. Pan, Structured matrices and polynomials. Unifed superfast algorithms, Birkhauser
Springer, 2001.

[103] V.Y. Pan, R. Schreiber, An improved Newton iteration for generalized inverse of a matrix
with applications, SIAM J. Sci. Stat. Comput. 12 (1991), 1109–1131.

[104] V.Y. Pan, Y. Rami, X. Wang, Structured matrices and Newton’s iteration: unified ap-
proach, Linear Algebra Appl. 343-344 (2002), 233-265.

[105] V.Y. Pan, M.V. Barel, X.M. Wang, G. Codevico, Iterative inversion of structured matri-
ces, Theoret. Comput. Sci., 315 (2004), 581–592.

[106] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955),
406–413

[107] W.H. Pierce, A Self-Correcting Matrix Iteration for the Moore-Penrose Generalized In-
verse, Linear Algebra Appl. 244 (1996), 357–363.

[108] C.R. Rao, S.K. Mitra, Generalized Inverse of Matrices and its Applications, John Wiley
and Sons, Inc, New York, London, Sydney, Toronto, 1971.

[109] M. A. Rakha. On the Moore-Penrose generalized inverse matrix, Appl. Math. Comput.
158 (2004), 185–200.

[110] M. Raydan, On the Barzilai and Borwein choice of steplength for the gradient method,
IMA J. Numer. Anal. 13, 321–326 (1993)

[111] M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained
minimization problem, SIAM J. Optim., 7 (1997) 26–33.

[112] M. Raydan, B.F. Svaiter, Relaxed Steepest Descent and Cauchy-Barzilai-Borwein Method,
Comput. Optim. Appl. 21 (2001), 155–167.

[113] R.W. Schafer, R.M. Mersereau, M.A. Richards, Constrained iterative restoration algo-
rithms, Proceedings of the IEEE 69 (1981), 432–450.

[114] G. Schulz, Iterative Berechnung der reziproken Matrix, ZAMM Z. Angew. Math. Mech.
13 (1933), 57–59.

[115] Z.J. Shi, Convergence of line search methods for unconstrained optimization, Appl. Math.
Comput. 157 (2004), 393–405.

[116] Z.J. Shi, J. Shen, Convergence of descent method without line search, Appl. Math. Com-
put. 167 (2005), 94–107.

[117] X. Sheng, G. Chen, Full-rank representation of generalized inverse A
(2)
T,S and its applica-

tions, Comput. Math. Appl. 54 (2007), 1422–1430.

138 REFERENCES

[118] N. Shinozaki, M. Sibuya, K. Tanabe, Numerical algorithms for the Moore-Penrose inverse
of a matrix: Direct methods, Annals of the Institute od Statistical Mathematics 24 (1972),
193–203.

[119] A. Sidi, A unified approach to Krylov subspace methods for the Drazin-inverse solution of
singular nonsymmetric linear systems, Linear Algebra Appl. 6 (2000), 72–94.

[120] A. Sidi, DGMRES: A GMRES-type algorithm for Drazin-inverse solution of singular
nonsymmetric linear systems, Linear Algebra Appl. 335 (2001), 189–204.

[121] A. Sidi, A BI-CG type iterative method for Drazin-inverse solution of singular inconsistent
nonsymetric linear systems of arbitrary index, Electron. J. Linear Algebra 335 (2000),
72–94.

[122] P.S. Stanimirović, Block representations of {2}, {1,2} inverses and the Drazin inverse,
Indian J. Pure Appl. Math. 29 (1998), 1159–1176.

[123] P.S. Stanimirović, Applications of hyper-power method for computing matrix products,
Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 15 (2004), 13–25.

[124] P.S. Stanimirović, D.S. Djordjević, Full-rank and determinantal representation of the
Drazin inverse, Linear Algebra Appl. 311 (2000), 31–51.

[125] P.S. Stanimirović, S. Bogdanović, M. Ćirić, Adjoint mappings and inverses of matrices,
Algebra Colloq. 13(3) (2006), 421–432.

[126] P.S. Stanimirović, D. Cvetkovic-Ilić, Successive matrix squaring algorithm for computing
outer inverses, Appl. Math. Comput. 203 (2008), 19-29.

[127] P.S. Stanimirović, M. Miladinović, Accelerated gradient descent methods with line search,
Numer. Algor. 54 (2010), 503-520.

[128] P.S. Stanimirović, D.S. Cvetković-Ilić, S. Miljković, M. Miladinović, Full-rank represen-
tations of {2, 4}, {2, 3}-inverses and successive matrix squaring algorithm, Appl. Math.
Comput., 217 (2011), 9358–9367.

[129] P.S. Stanimirović, M. Miladinović, I. Stojanović, S. Miljković, Application of partitioning
method in removal of blur in images, in preparation.

[130] W. Sun, Y.X. Yuan, Optimization theory and methods: nonlinear programming, Springer,
2006.

[131] A.E. Taylor, Introduction to Functional Analysis, John Wiley, New York, 1958.

[132] K. Tanabe, Conjugate-gradient method for computing the Moore-Penrose inverse and rank
of a matrix, JOTA 22 (1977), 1–23.

[133] W.R. Trench, An algorithm for the inversion of finite Toeplitz matrices, SIAM J. Appl.
Math. 12 (1964), 515–522.

[134] F.E. Udwadia and R.E. Kalaba, An Alternative Proof for Greville’s Formula, J. Optim.
Theory Appl. 94 (1997), 23–28.

REFERENCES 139

[135] F.E. Udwadia, R.E. Kalaba, General Forms for the Recursive determination of generalized
inverses: Unified approach, J. Optim. Theory Appl. 101 (1999), 509–521.

[136] G. Wang, Y. Wei, S. Qiao, Generalized inverses: theory and computations, Science Press,
2003.

[137] G. Wang, Y. Wei, S. Qiao, Generalized Inverses: Theory and Computations, Science Press
(2003).

[138] G. Wang, Z. Xu, Solving a kind of restricted matrix equations and Cramer rule, Appl.
Math. Comput. 162 (2005), 329–338.

[139] G. Wang, A Cramer rule for finding the solution of a class of singular equations, Linear
Algebra Appl. 116 (1989), 27–34.

[140] Y. Wei, Index splitting for the Drazin inverse and the singular linear system, Appl. Math.
Comput. 95 (1998), 115–124.

[141] Y. Wei, Successive matrix squaring algorithm for computing Drazin inverse, Appl. Math.
Comput. 108 (2000), 67–75.

[142] Y. Wei, H. Wu, Additional results on index splitting for Drazin inverse of singular linear
system, Electron. J. Linear Algebra 95 (1998), 115–124.

[143] Y. Wei, H. Wu, The representation and approximation for Drazin inverse, J. Comput.
Appl. Math. 126 (2000), 417–432.

[144] Y. Wei, H. Wu, Convergence properties of Krylov subspace methods for singular linear
systems with arbitrary index, J. Comput. Appl. Math. 114 (2000), 305–318.

[145] Y. Wei, H. Wu, J. Wei, Successive matrix squaring algorithm for parallel computing the
weighted generalized inverse A†

MN , Appl. Math. Comput. 116 (2000), 289–296.

[146] Y. Wei, J. Cai, M.K. Ng, Computing Moore-Penrose inverses of Toeplitz matrices by
Newton’s iteration, Math. Comput. Modelling 40 (2004), 181–191.

[147] Y. Wei, M.K. Ng, Displacement structure of group inverses, Numer. Linear Algebra Appl.
12 (2005), 103–110.

[148] P. Wolfe, Convergence Conditions for Ascent Methods, SIAM Review 11 (1969), 226–235.

[149] H. Yang, D. Liu, The representations of the generalized inverses A
(2,3)
T,S and its applications,

J. Comput. Appl. Math. 224 (2009), 204–209.

[150] H. Yang, D. Liu, J. Xu, Matrix left symmetry factor and its applications in generalized

inverses A
(2,4)
T,S , Appl. Math. Comput. 197 (2008), 836–843.

[151] B. Zheng, L. Ye, D.S. Cvetković-Ilić, Generalized inverses of a normal matrix, Appl.
Math. Comput. 206 (2008), 788–795.

[152] B. Zheng, R.B. Bapat, Generalized inverse A
(2)
T,S and a rank equation, Appl. Math. Com-

put. 155 (2004), 407-415.

140 REFERENCES

[153] N. Zhang, Y. Wei, On the convergence of general stationary iterative methods for range-
Hermitian singular linear systems, Numer. Linear Algebra Appl. 17 (2010), 139–154.

[154] J. Zhou, Y. Wei, Stagnation analysis of DGMRES, Appl. Math. Comput. 151 (2004),
27–39.

[155] J. Zhou, Y. Wei, The analysis of restart DGMRES for solving singular linear systems,
Appl. Math. Comput. 176 (2006), 293–301.

[156] J. Zhou, Y. Wei, DFOM algorithm and error analysis for projection methods for solving
singular linear system, Appl. Math. Comput. 157 (2004), 313–329.

[157] J. Zhou, Y. Wei, A two-step algorithm for solving singular linear systems with index one,
Appl. Math. Comput. 8 (2001), 83–93.

[158] G. Zielke, Report on test matrices for generalized inverses, Computing 36 (1986), 105–
162.

[159] Image Processing Toolbox User’s Guide, The Math Works, Inc., Natick, MA, 2009.

[160] MATLAB 7 Mathematics, The Math Works, Inc., Natick, MA, 2010.

������ 4/2

����	
�	 - �
���
����� �
������
���

KEY WORDS DOCUMENTATION

Accession number, ANO:

Identification number, INO:

Document type, DT: monograph

Type of record, TR: textual / graphic

Contents code, CC: doctoral dissertation

Author, AU: Sladjana Lj. Miljkovi�

Mentor, MN: Predrag S. Stanimirovi�

Title, TI:
ITERATIVE METHODS FOR COMPUTING GENERALIZED
INVERSES OF MATRICES

Language of text, LT: English

Language of abstract, LA: English

Country of publication, CP: Serbia

Locality of publication, LP: Serbia

Publication year, PY: 2012

Publisher, PB: author’s reprint

Publication place, PP: Niš, Višegradska 33.

Physical description, PD:
(chapters/pages/ref./tables/pictures/graphs/appendixes)

140 p. ; graphic representations

Scientific field, SF: mathematics

Scientific discipline, SD: nonlinear optimization, generalized inverses

Subject/Key words, S/KW: nonlinear optimization, generalized inverses

UC 512.643 : 519.613

512.643 : 519.654 + 519.863

Holding data, HD: library

Note, N:

Abstract, AB: The subject of investigation of the doctoral dissertation is the calculation of
generalized inverses of matrices, as well as the connection between the
generalized inverses of matrices with the optimization theory concepts. There
are defined new iterative methods for solving optimization problems. A
special attention is devoted on defining new iterative methods for generalized
inverses calculation. The defined methods enables efficient calculation of
generalized inverses, as well an analysis of their properties. The contribution
of the doctoral dissertation is in the field of generalized inverses, as well, in
the field of unconstrained optimization theory. This is claimed by the proposal
of the new effective algorithms which can be compared to the most favorable
ones in their disciplines.

Accepted by the Scientific Board on, ASB: 26.12.2011

Defended on, DE:

Defended Board, DB: President:

 Member:

 Member, Mentor:

������� Q4.09.13 - ����	
 1

������ 4/1

����	
�	 - �
���
����� �
������
���

�����

	������
�����
 ���	��
���

����� ���	, ���:

�������
������ ���	, ���:

��� ��
��������	�, �
: ���������
�

��� ������, ��: ��
������� / ������
�

����� ����, ��: ��
����
� ���������	�

�����,
�: ������� �. ���
� �!

������, ��: "������ �. ��������� �!

#���� ����, ��:

�$���
�#
 �$�%&
 '�
'��()#���*$
)%"+�$#
,
#�$�'� ����
-�

.���
 �����
���	�, ��: ������
�

.���
 �� ���, ��: ������
�

'���� �����
� �/�, ��: ����	�

)0� ��������
� ������	�, ���: ����	�

1�����, �	: 2012.

��� ��, ��: ������
� �������

����� � ������, �
: #�2, ��2������
� 33.

3����
� ���� ����, �	:
(����� ��/������/ ������/������/���
�/�����
�/�������)

140 ���., ����. ���
���

#����� ������, �	: ��������
�

#����� ����������, �
: ���������� ����������	�, ���2���� �� ����

"�������� ���������/4����� ����, �	: ���������� ����������	�, ���2���� �� ����

�
� 512.643 : 519.613
512.643 : 519.654 + 519.863

(� � ��, ��: ��������
�

��0�� ��������, ��:

� ��, ��: "������ �����0� �/� ��
����
� ���������	� ������� ���������

���������� ����������	� � ���2����5 �� ���� ������� �� �������
�� �� �� /�5� � �� ��������. -�� �����0� �/� 	� �������� /�
���2����5 �� ���� �������
�� � ����� �/� �� �������� ���2����5
�� ���� ��
��������� �����	� ����������	�. &��������� ��
������� �� ������ �� ��2� �/� �������������5 ������ ��
�������� �/� ���2����5 �� ����. #�
� �� ������� ��5 ������
������� ��	� �������	� ��������
�	� �� ���������� � ��2� �/�
�������������5 ������, ��
 �� ��
� ������ ������� ������������	��
�������5 ������. &���	���5 ��������� �� ���������,
�
� � �����	�
��
��
� � � ���
������ �������, �� ��������/� �����	���5 ������ ��
����2�� � ���
���� �������� �/� �� ������������� �� ������ �
/�5� �	 ����	 �������.

&���� ���5 ���/� ����,
�: 26.12.2011

&���� �������,
	:

�
 (���� �
�����	�, �	: "��������
:

 (���:

 (���, ������:

%������ Q4.09.13 -
���/� 1

