

Univerzitet u Nišu Prirodno-matematički fakultet Departman za hemiju

Miloš G. Đorđević

Geohemijska analiza tragova metala Riblje gline sa lokaliteta Kirkevig (Stevns Klint, Danska)

Doktorska disertacija

Niš, 2012.

Univerzitet u Nišu Prirodno-matematički fakultet Departman za hemiju

Miloš G. Đorđević

Geohemijska analiza tragova metala Riblje gline sa lokaliteta Kirkevig (Stevns Klint, Danska)

Doktorska disertacija

Niš, 2012.

ПРИРОДНО - МАТЕМАТИЧКИ ФАКУЛТЕТ НИШ

КЉУЧНА ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА

Редни број, РБР:	
Идентификациони број, ИБР:	
Тип документације, ТД:	монографска
Тип записа, ТЗ:	текстуални
Врста рада, ВР:	докторска дисертација
Аутор, АУ:	Милош Г. Ђорђевић
Ментор, МН:	Драган М. Ђорђевић
Наслов рада, НР :	Geohemijska analiza tragova metala Riblje gline sa lokaliteta Kirkevig (Stevns Klint, Danska)
Језик публикације, ЈП :	српски
Језик извода, ЈИ:	српски и енглески
Земља публиковања, ЗП:	Србија
Уже географско подручје, УГП:	Србија
Година, ГО :	2012.
Издавач, ИЗ:	ауторски репринт
Место и адреса, МА:	Ниш, Вишеградска 33
Физички опис рада, ФО: (поглавља/страна/цитата/табела/слика/графика/прилюга)	9 поглавља, 133 страна, 18 табела, 46 слика
Научна област, НО:	хемија
Научна дисциплина, НД:	неорганска хемија
Предметна одредница/Кључне речи, ПО:	геохемија, КП гранични седимент, Рибља глина, трагови метала
УДК	550.4:669-1(489)
Чува се, ЧУ :	библиотека

Важна напомена, ВН :		Експериментални део ове дисертације урађен је у Лабораторији за геохемију, космохемију и астрохемију Природно-математичког факултета Универзитета у Нишу, Лабораторији за физичку хемију Института за нуклеарне науке Винча, Лабораторији за материјале Института за нуклеарне науке Винча, Лабораторији за спектроскопију Технолошког факултета у Лесковцу и Универзитетском центру за електронску микроскопију Медицинског факултета у Нишу.				
Извод, ИЗ:		Извршена је минералошка и геохемијска анализа IIIA и IIIB подслојева граничног седимента Рибље глине са локалитета Kirkevig. Коришћен је поступак селективог растварања како би се утврдиле основне геохемијске асоцијације и места налажења V, Cr, Co, Ni, Cu и Zn у присутним минералима. Ови метали се углавном јављају у смектиту или везани за Fe(III)- оксиде. Садржај V и Cr у смектитима ових узорака указује да су ова два метала преталожени са околних приобалних и/или морских површина. Cr, Co и Ni су делимично хондритског порекла, док су V, Cu и Zn копненог порекла. Седиментација Рибље глине са локалитета Kirkevig одиграла се, вероватно, у уобичајеној морској средини са pH 7-9. Црвена боја подслоја IIIA, висока концентрација Fe(III) уз одсуство FeS ₂ и органске материје указује да се овај подслој, вероватно, формирао у изразито кисеоничној средини. Депозиција подслоја IIIB, такође, се вероватно одиграла у сличним физичкохемијским условима. Однос V/Cr подслоја IIIA и IIIB за испитиване узорке је ≤1.5, што указује на изразито кисеоничне услове који су владали током њиховог формирања. Испитивани метали у некарбонатној фракцији подслоја IIIA и IIIB са локалитета Киркевиг, такође су присутни и у IIIA подслоју Рибље глине са блиског налазишта Нøјегир, што може указати на исти извор ових метала широм Данског басена.				
Датум прихватања теме,	дП:	26. 12. 2011.				
Датум одбране, ДО:		·				
Чланови комисије, КО:	Председник:	(
-	Члан:					
	Члан, ментор:					

ПРИРОДНО - МАТЕМАТИЧКИ ФАКУЛТЕТ НИШ

KEY WORDS DOCUMENTATION

Accession number, ANO:	
Identification number, INO :	
Document type, DT :	Monography
Type of record, TR :	Textual
Contents code, CC:	Doctoral dissertation
Author, AU:	Miloš G. Đorđević
Mentor, MN :	Dragan M. Đorđević
Title, TI :	Geochemical analysis of trace metals of Fish Clay from locality Kirkevig (Stevns Klint, Denmark)
Language of text, LT:	Serbian
Language of abstract, LA:	Serbian and English
Country of publication, CP :	Serbia
Locality of publication, LP:	Serbia
Publication year, PY :	2012
Publisher, PB :	Author's reprint
Publication place, PP :	Niš, Višegradska 33
Physical description, PD: (chapters/pages/ref./tables/pictures/graphs/appendixes)	9 Chapters, 133 Pages, 18 Tables, 48 Pictures
Scientific field, SF:	Chemistry
Scientific discipline, SD :	Inorganic Chemistry
Subject/Key words, S/KW :	Geochemistry, KP boundary sediments, Fish clay, trace metals
UC	550.4:669-1(489)
Holding data, HD :	library

Note, N:		Experimental analysis were done in Laboratory for geochemistry, cosmochemistry and astrochemistry (Faculty of Science, University of Niš), Laboratory of Physical Chemistry (Institute for Nuclear Science, Vinča), Laboratory for Materials (Institute for Nuclear Science, Vinča), Spectroscopy Laboratory (Faculty of Technology, Leskovac), Center for Electron Microscopy (Medical Faculty, University of Niš).
Adstract, AB:		Mineralogical and geochemical analysis of sublayers IIIA and IIIB within KP boundary sediment Fish Clay from locality Kirkevig were performed. The selective leaching (dissolving) procedure was used in order to determine major geochemical associations and incorporation places of V, Cr, Co, Ni, Cu and Zn in presented minerals. These metals occur usually incorporated in smectite structure or bound to Fe(III)- oxides. Contents of V and Cr in smectites of investigated samples indicate that these metals are redeposited from surrounding coastal and/or marine areas. Cr, Co and Ni are partially of chondritic origin, while V, Cu and Zn are of terrestrial origin. The sedimentation of Fish Clay from Kirkevig happened probably in ordinary marine environment with pH 7-9. Red colour of sublayer IIIA, high concentration of Fe(III) ions followed by absence of pyrite and organic matter indicate that this sublayer was, probably, formed in strongly oxygenated environment. Also, the deposition of sublayer IIIB was, most likely, happened in similar physico-chemical conditions. The value of V/Cr ratio of sublayers IIIA and IIIB for investigated samples is up to 1.5 indicating strongly oxygenated conditions that prevailed during their formation. The investigated metals in non-carbonated fractions of sublayers IIIA and IIIB from Kirkevig, are also presented in sublayer IIIA of Fish Clay from closely deposit Højerup, which may indicate on the same resource of these metals throughout Danian basin.
Accepted by the Scientific I	Board on, ASB:	
Defended on, DE :		
Defended Board, DB :	President:	
	Member:	
	Member, Mentor:	

Образац Q4.09.13 - Издање 1

Ova disertacija urađena je u Laboratoriji za geohemiju, kosmohemiju i astrohemiju Prirodno-matematičkog fakulteta, Univerziteta u Nišu, Laboratoriji za fizičku hemiju Instituta za nuklearne nauke Vinča, Laboratoriji za materijale Instituta za nuklearne nauke Vinča, Laboratoriji za spektroskopiju Tehnološkog fakulteta u Leskovcu i Univerzitetskom centru za elektronsku mikroskopiju Medicinskog fakulteta u Nišu. Zahvaljujem se kolegama u ovim institucijama na pomoći.

Zahvaljujem se mentoru dr Draganu M. Đorđeviću, docentu, koji je vodio eksperimentalni deo, frakcionu i mineralošku analizu uzoraka kao i interpretaciju njihovih rezultata a time značajno doprineo konačnom izgledu rada.

Zahvalnost dugujem dr Pavlu I. Premoviću, redovnom profesoru, koji je predložio temu, obezbedio uzorke Riblje gline i umnogome doprineo u geohemijskoj interpretaciji rezultata tragova metala.

Takođe, zahvaljujem se članovima komisije koji su svojim komentarima doprineli poboljšanju kvaliteta ove disertacije.

Neizmerno se zahvaljujem svojoj porodici.

SADRŽAJ

LISTA SLIKA U TEKSTU	4
LISTA TABELA U TEKSTU	6
1. UVOD	7
2. TEORIJSKI DEO	10
2.1. STENE I MINERALI	11
2.1.1. MAGMATSKE STENE	11
2.1.2. METAMORFNE STENE	12
2.1.3. SEDIMENTNE STENE	12
2.2. GLINE I GLINENI MINERALI	16
2.2.1. SMEKTITI	20
2.2.2. FELDSPATI	21
2.3. GEOHEMIJA ISPITIVANIH METALA	23
2.3.1. VANADIJUM	23
2.3.2. HROM	23
2.3.3. BAKAR	24
2.3.4. CINK	25
2.3.5. NIKL	25
2.3.6. KOBALT	26
2.4. TEHNIKE ZA ANALIZU I KARAKTERIZACIJU ISPITIVANIH UZORAKA	28
2.4.1. INFRACRVENA (IC) SPEKTROSKOPIJA	28
2.4.2. SKENIRAJUĆA ELEKTRONSKA MIKROSKOPIJA (SEM)	35
2.4.3. RENDGENSKA DIFRAKCIJA	38
2.4.4. OPTIČKA-EMISIONA SPEKTROMETRIJA SA INDUKOVANO	42
SFREGINUTOM PLAZMOM (ICP-OES)	42
2.4.5. STEKEU-MIKKUSKUPIJA	46
2.5. GEULUSKA GRANICA KKEDA-PALEUGEN	47

2.5.1. LOKACIJA, GEOLOGIJA I STRATIGRAFIJA ISPITIVANIH	
UZORAKA	50
2.5.2 PREGLED RANIJIH ISPITIVANJA RIBLJE GLINE	52
3. EKSPERIMENTALNI DEO	56
3.1. HEMIJSKA OBRADA UZORAKA	57
3.1.1. FRAKCIONA ANALIZA	57
3.2. ANALITIČKE TEHNIKE	62
3.2.1. STEREOMIKROSKOPIJA	62
3.2.2. SKENIRAJUĆA ELEKTRONSKA MIKROSKOPIJA	62
SA MIKROANALIZOM X-ZRAKA (SEM/EDS)	62
3.2.3. FOURIER-OVA TRANSFORMACIONA INFRACRVENA (FTIC)
	62
3.2.4. RENDGENSKA DIFRAKCIJA	64
3.2.5. OPTICKA-EMISIONA SPEKTROMETRIJA SA INDUKOVANO SPREGNUTOM PLAZMOM (ICP-OES)	64
4. REZULTATI I DISKUSIJA	66
4.1. IIIA UZORAK RIBLJE GLINE	67
4.1.1. FRAKCIONA ANALIZA	67
4.1.2. STEREOMIKROSKOPSKA ANALIZA	67
4.1.3. SKENIRAJUĆA ELEKTRONSKA MIKROSKOPIJA (SEM)	69
SA MIKROANALIZOM X-ZRAKA (EDS)	69
4.1.4. FOURIER-OVA TRANSFORMACIONA INFRACRVENA (FTIC	2)
SPEKTROSKOPIJA	70
4.1.5. RENTGENSKA DIFRAKCIONA ANALIZA	76
4.1.6. ICP-OES ANALIZA	78
4.2. IIIB UZORAK RIBLJE GLINE	81
4.2.1. FRAKCIONA ANALIZA	81
4.2.2. STEREOMIKROSKOPSKA ANALIZA	81
4.2.3. SKENIRAJUĆA ELEKTRONSKA MIKROSKOPIJA (SEM)	83
SA MIKROANALIZOM X-ZRAKA (EDS)	83

4.2.4. FOURIER-OVA TRANSFORMACIONA INFRACRVENA (FTIC)
SPEKTROSKOPIJA84
4.2.5 RENTGENSKA DIFRAKCIONA ANALIZA90
4.2.6. ICP-OES ANALIZA92
4.3. MINERALOŠKE KARAKTERISTIKE PODSLOJEVA IIIA I IIIB95
4.4. OKSIDOREDUKCIONI USLOVI FORMIRANJA PODSLOJEVA IIIA I IIIB
4.5. DISKUSIJA TRAGOVA METALA96
4.5.1. VANADIJUM96
4.5.2. HROM
4.5.3. BAKAR I CINK
4.5.4. KOBALT I NIKL
5. ZAKLJUČAK
6. SUMMARY
7. LITERATURA
8. BIOGRAFIJA SA BIBLIOGRAFIJOM
9. PRILOG

LISTA SLIKA U TEKSTU

Slika 2.2. Struktura minerala glina
Slike 2.2 Dicktoodersko i tricktoodersko strukture
Slika 2.4. Struktura montmorionita
Slika 2.5. Kristalna rešetka mikroklina
Slika 2.6. Elektromagnetni spektar
Slika 2.7. Valencione (a,b) i deformacione (c,d,e,f) vibracije 30
Slika 2.8. Šematski prikaz infracrvenog spektroskopa sa Fourierovom
transformacijom
Slika 2.9. Šematski prikaz Michelson-ovog interferometra
Slika 2.10. Interferogram za monohromatski (a) i polihromatski (b) snop
zračenja
Slika 2.11. Uprošćen izgled elektronskog mikroskopa
Slika 2.12. Interakcija elektrona sa materijom kod elektronskog
mikroskopa 37
Slika 2.13. Interakcija X-zraka i supstance
Slika 2.14. Šematski prikaz difraktometra 40
Slika 2.15. Šematski prikaz rada ICP-OES uređaja 43
Slika 2.16. Prikaz gorionika sa temperaturama kod ICP-OES 44
Slika 2.17. Geološka vremenska skala 47
Slika 2.18. Ilustracija udara asteroida na kraju krede (period izumiranja
dinosaurusa) 48
Slika 2.19. Karta Danske
Slika 2.20. Skica dela Stevn Klint litice sa lokalitetom Kirkevig 51
Slika 2.21. Satelitski snimak Kirkeviga 51
Slika 2.22. Stratigrafija Riblje gline
Slika 2.23. Geološka karta ostrva Sjælland 54
Slika 2.24. Fotografija Stevns Klint litice
Slika 3.1. Šematski prikaz celokupnog toka analize 57
Slika 4.1. Stereomikroskopske fotografije uzorka IIIA
Slika 4.2. SEM fotografije nekarbonatne frakcije uzorka IIIA
Slika 4.3. EDS spektar nekarbonatne frakcije uzorka IIIA 70
Slika 4.4. FTIC spektar netretiranog uzorka IIIA
Slika 4.5. FTIC spektri uzorka IIIA u NUJOL-u, pre i posle sušenja 73
Slika 4.6. FTIC spektar uzorka IIIA posle 1M CH ₃ COONa (pH 5)
Slika 4.7. FTIC spektar uzorka IIIA posle 0.25 M NH ₂ OH·HCl u 0.25
M HCL
Slika 4.8. FTIC spektar uzorka IIIA posle 1M NH ₂ OH·HCl u 25%
CH ₃ COOH

77
78
82
83
84
85
87
88
89
90
91
91
97

LISTA TABELA U TEKSTU

Tabela 2.1. Koncentracije ispitivanih metala [ppm] u različitim	
geološkim materijalima	2
Tabela 4.1. Frakciona analiza (± 2 %) uzorka IIIA	6
Tabela 4.2. Identifikovane trake u FTIC spektru uzorka IIIA	, ,
Tabela 4.3. Geohemijska koncentracija V, Cr, Co, Ni, Cu i Zn [±5	
ppm]dobijena frakcionom analizom uzorka IIIA	7
Tabela 4.4. Geohemijska raspodela V, Cr, Co, Ni, Cu i Zn u	
frakcijama uzorka IIIA	,
Tabela 4.5. Geohemijska koncentracija Fe i Mn [±5 ppm]dobijena	
selektivnim rastvaranjem uzorka IIIA	,
Tabela 4.6. Geohemijska raspodela Fe i Mn u frakcijama uzorka IIIA	,
Tabela 4.7. Proračunate koncentracije [ppm] oksida ispitivanih metala	
za uzorak IIIA	,
Tabela 4.8. Sadržaj [%] proračunatih oksida u odnosu na ukupne	
okside	
Tabela 4.9. Frakciona analiza (± 2 %) uzorka IIIB	
Tabela 4.10. Identifikovane trake u FTIC spektru uzorka IIIB	
Tabela 4.11. Geohemijska koncentracija V, Cr, Co, Ni, Cu, Zn [±5	
ppm]dobijena frakcionom analizom uzorka IIIB	
Tabela 4.12. Geohemijska raspodela V, Cr, Co, Ni, Cu, Zn u	
frakcijama uzorka IIIB	(
Tabela 4.13. Geohemijska koncentracija Fe i Mn [±5 ppm]dobijena	
selektivnim rastvaranjem uzorka IIIB	
Tabela 4.14. Geohemijska raspodela Fe i Mn u frakcijama uzorka IIIB.	
Tabela 4.15. Proračunate koncentracije [ppm] oksida ispitivanih	
metala za uzorak IIIB	
Tabela 4.16. Koncentracije ispitivanih metala [ppm] u nekarbonatnoj	
frakciji uzoraka IIIA i IIIB sa nalazišta Kirkevig i uzorka	
IIIA iz Højerup-a	1
Tabela 4.17. Koncentracije ispitivanih metala [ppm] u smektitnoj	
frakciji uzoraka IIIA i IIIB sa nalazišta Kirkevig i	
uzorka IIIA iz Højerup-a	1

Termin Riblja glina (Fish Clay) za glineni sloj nastao između geoloških perioda krede i paleogena (KP) na lokalitetu Stevns Klint prvi je upotrebio danski geolog Georg Forchammer (1847), koji je u njemu pronašao fosilne ostatke riba. Riblja glina sa lokaliteta Kirkevig je karakteristični granični KP sloj koji je deo Stevns Klint morskog basena. Za razliku od ostalih KP slojeva pronađenih u svetu razlikuje se po načinu sedimentacije što ga čini interesantnim za geohemijska istraživanja. Međutim, do sada za uzorke Riblje gline sa ovog lokaliteta nije bila urađena detaljna geohemijska analiza tragova metala.

Predmet istraživanja ove doktorske disertacije bila je geohemijska analiza tragova metala u "udarnim" IIIA i IIIB podslojevima ovog graničnog sedimenta, koji sadrže geološke zapise KP udara čije su posledice još uvek dobro sačuvane.

Metali u tragovima ugrađeni u strukturu glinenih minerala (smektita), mogu biti uspešno upotrebljeni za karakterizaciju i razlikovanje sedimentacionih sredina, tj. za određivanje fizičkohemijskih uslova sedimentacije u drevnim basenima. U tom cilju korišćen je postupak selektivnog razdvajanja kako bi se utvrdile osnovne geohemijske asocijacije i mesta nalaženja V, Cr, Co, Ni Cu i Zn u prisutnim mineralima. Ovi metali se uglavnom javljaju u smektitu ili vezani za Fe(III)-okside. Dobiveni rezultati su upoređivani sa rezultatima za odgovarajuće podslojeve sa bliskog lokaliteta u Højerup-u.

Netretirani uzorci i njihove frakcije analizirani su na metale u tragovima induktivno spregnutom argonskom plazmom-optičkom emisionom spektrometrijom. Izvršena je mineraloška analiza primenom Fourier-ove transformacione infracrvene spektroskopije, skenirajuće elektronske mikroskopije i difrakcijom pomoću X-zraka netretiranih uzoraka i njihovih frakcija.

Geohemijskom analizom metala u tragovima Riblje gline sa navedenog lokaliteta došlo se do saznanja o njenoj prirodi i poreklu, kao i fizičko-hemijskim uslovima njenog nastajanja. Na ovaj način mogu se, takođe, bolje razumeti geološki, geohemijski procesi i paleoklimatski uslovi koji su vladali tokom njenog nastanka.

Rezultati do kojih se došlo izradom ove disertacije su od izuzetnog značaja za osnovna i primenjena istraživanja sedimentnih sredina, prirodnih voda i zemljišta. Proučavanje tragova metala značajno je za paleoekologiju drevnih sedimenata a saznanja proistekla iz ovih ispitivanja mogla bi se primeniti na moderne sedimentacione sisteme. Dobiveni rezultati, stoga, mogu pomoći da se bolje razumeju geološki, geohemijski procesi i paleoklimatski uslovi koji su vladali tokom prelaznog geološkog perioda krede i paleogena.

2. Teorijski deo

2.1. STENE I MINERALI

Litosfera, čvrsti omotač Zemlje, izgrađena je od stena i minerala. *Minerali* su prirodna, čvrsta homogena tela karakterističnog i tačno određenog hemijskog sastava sa pravilnom unutrašnjom građom. U hemijskom pogledu minerali mogu biti dosta složena, neorganska jedinjenja ili, ređe, elementi. Ukoliko poseduju definisanu kristalnu rešetku u kojoj postoji tačno određen raspored jona tada će im spoljašnji oblik biti pravilan, pa se takvi minerali nazivaju *kristali*. U slučajevima kada ne postoji pravilna unutrašnja građa, minerali se pojavljuju u nepravilnim - *amorfnim* oblicima. *Stene* predstavljaju agregate jednog (monomineralne) ili više minerala (polimineralne). Pored neorganskih jedinjenja, stene mogu sadržavati i organske ostatke.

Broj minerala koji su do danas u prirodi pronađeni i određeni prelazi 3000, ali to verovatno nije konačan broj jer savremene metode koje se koriste prilikom njihovog određivanja omogućavaju detaljnija raščlanjivanja unutar pojedinih mineralnih vrsta i definisanje novih minerala. Od oko 150 minerala koji učestvuju u izgradnji stena (*petrogeni minerali*), svega nekoliko desetina predstavljaju bitne sastojke koji svojim prisustvom određuju vrstu stene. Prema načinu postanka, stene koje izgrađuju litosferu, mogu se podeliti na: magmatske, metamorfne i sedimentne.

2.1.1. MAGMATSKE STENE

Magmatske (eruptivne) stene nastaju očvršćavanjem materijala/magme iz Zemljine unutrašnjosti na ili blizu površine litosfere. Prema mestu nastanka dele se na dubinske i površinske (izlivne). *Dubinske* magmatske stene su zrnaste strukture i kod njih su svi mineralni sastojci iskristalisani i približno su iste veličine. *Površinske* magmatske stene se sastoje od sitno iskristalisane mase, u kojoj se nalaze pojedini krupniji kristali. Karakteristika ovih stena je da su one izvorni materijal od koga nastaju drugi tipovi stena (slika 2.1).

2.1.2. METAMORFNE STENE

Metamorfne stene nastaju procesom metamorfoze od neke magmatske stene ili starije sedimentne stene. Pod metamorfozom se podrazumeva delovanje visoke temperature, pritiska, vodene pare i gasova u unutrašnjosti Zemlje. Kod ovih stena je usled promene fizičko-hemijskih uslova, došlo do stukturne promene izvornog materijala iz koga su nastale. Za minerale koji izgrađuju metamorfne stene je karakteristično da uglavnom nastaju transformacijom izvornih minerala, odnosno prilagođavanjem njihove kristalne rešetke novonastalim uslovima sredine. Karakteristika metamorfnih minerala je njihova stabilnost na određenim temperaturama i pritiscima, tako da pri promenama ovih faktora prelaze u nove mineralne vrste.

2.1.3. SEDIMENTNE STENE

Sedimentne stene (lat. "*sedimentare*" - taložiti) predstavljaju geološke sisteme koji su nastali akumulacijom čvrstog materijala na ili blizu površine Zemlje u uslovima temperature okoline i niskim pritiscima. Sedimentne stene nastaju od proizvoda hemijske i mehaničke transformacije ranije nastalih magmatskih, sedimentnih i metamorfnih stena, istaloženih u vidu slojevitih naslaga u tzv. zoni sedimentacije koja obuhvata površinu litosfere, hidrosferu i donje delove atmosfere. Procenjuje se (Klark, 1924) da u prvih 16 km Zemljine kore, stene sedimentnog porekla čine svega oko 5 zapreminskih procenata gornjih delova litosfere. Posmatrajući, međutim, površinske odnose konstatovano je da sedimentne stene pokrivaju oko 75 % površine Zemlje (Goldschmidt, 1937). Sam proces sedimentacije, odnosno stvaranja sedimentnih stena, odigrava se u tri faze. **Površinsko raspadanje.** Ova faza obuhvata skup egzogenih procesa, koji dovode do usitnjavanja stenske mase u površinskim delovima, ili njenog delimičnog do potpunog rastvaranja pod dejstvom površinskih ili podzemnih voda. Najjednostavnija podela površinskog raspadanja se može izvršiti na mehaničko, hemijsko i biogeno. Osim same prirode stena, presudan uticaj na intenzitet i brzinu površinskog raspadanja imaju i klimatski uslovi.

Proizvodi nastali pod uticajem erozije ili hemijskog spiranja mogu ostati na istom mestu gde se nalazi i izvorna stena iz koje su nastali (autigeni minerali) ili mogu biti odnešeni (transportovani) posredstvom vode ili vetra u sedimentacioni basen (detritalni minerali). Sedimentne stene mogu nastati fizičkim ili hemijskim procesima.

- *Fizički procesi*. U ove procese spadaju procesi erozije, deponovanja, taloženja i očvršćivanja izvornih stena. Stene nastale ovim procesima nazivaju se egzogenetske sedimentne stene.
- Hemijski procesi. Za razliku od fizičkih, kod hemijskih procesa usitnjeni materijal najpre prelazi u vodeni rastvor (pravi ili koloidni), a zatim se u povoljnim uslovima taloži gradeći endogenetske sedimentne stene.

Transport i sedimentacija. Transport materijala se može odigrati pod uticajem različitih faktora kao što su: sila gravitacije, površinske ili podzemne vode, vetar ili glečeri (slika 2.1). Od snage prenosnog sredstva kao i veličine i oblika fragmenata zavisiće i dužina transporta, odnosno put koji materijal može da prevali pre taloženja. Fragmenti stena nastali na višim nadmorskim visinama pod uticajem gravitacione sile transportovaće se na niže, relativno brzo u sedimentacioni basen.

Površinskim ili podzemnim vodama prenosi se čvrsti i rastvorni materijal. Dužina transporta sedimentnog materijala zavisiće od njegove veličine, oblika i snage toka. Površinski tokovi uglavnom talože materijal na mestima gde snaga vodenog toka slabi (meandri, ade i ušća).

Slika 2.1. Ciklus stena

Eolskim transportom, odnosno vetrom biće zahvaćene sitnije čestice koje energija vetra može da pokrene. Dužina ove vrste transporta zavisi od brzine vetra i veličine čestica. Sedimentni materijal se transportuje sve dok vetar ne oslabi, odnosno ne naiđe na neku prirodnu prepreku.

U predelima sa temperaturama ispod 0 °C, dolazi do nagomilavanja velikih naslaga snega i leda. Pod težinom gornjih slojeva snega dolazi do prekristalizacije i stvaranja zrnastih agregata leda. Ledena masa usled težine klizi niz padinu, otkidajući usput komade stena iz podloge. Ovaj materijal glečeri transportuju što dovodi do daljeg trošenja stena.

Geneza. Naslage raspadnutih stena su rastresita stenska masa koja genezom stvara čvrstu stenu. Ovaj proces geneze može da traje dosta dugo i konstantan je, tako da i danas postoje sedimentne stene u nastanku (Morse, 2005).

Sedimentacione sredine. Od uslova koji vladaju u pojedinim sredinama zavisi i mineraloški sastav sedimentnih stena. Analiziranjem proizvoda sedimentacije može se doći do saznanja u kakvoj sredini i pri kakvim fizičkohemijskim uslovima dolazi do njihovog nastanka (Krumbein i Garrels, 1952). Razlikujemo tri osnovne vrste sedimentacionih sredina:

- 1. sedimentacione sredine kontinentalnog područja:
 - a) kopnene (eolske i glacijalne),
 - b) vodene (potočne i rečne, jezerske i močvarne).
- 2. sedimentacione sredine morskog područja:
 - a) litoralne (od 50-200 m dubine),
 - b) neritske (od 200-1000 m),
 - c) batijalne (od 1000-2000 m),
 - d) abisalne (ispod 2000 m).
- 3. mešovite (kontinentalno-morske) sredine:
 - a) delte,
 - b) lagune.

Klasifikacija sedimentnih stena. Zbog velike raznovrsnosti u sastavu, velikog broja prelaznih tipova kao i izvanredne proizvoljnosti u odnosima komponenata u pojedinim tipovima stena, postoji veliki broj klasifikacija sedimentnih stena. Klasifikacija se, ipak, može izvršiti uglavnom sa sledećih aspekata:

- 1. Na osnovu načina postanka geneze sedimentnih stena:
 - a) mehaničke (klastične) nastaju od ostataka raspadanja ili mehaničkog detritusa;

- b) hemijske (hemogene) nastaju taloženjem iz rastvora, a vode poreklo uglavnom iz rastvora raspadanja;
- c) biogene (organogene) u čijem su stvaranju presudnu ulogu imali organizmi (biljni ili životinjski).
- 2. Na osnovu dijagenetskih karakteristika:
 - a) nevezane sedimentne stene,
 - b) poluvezane sedimentne stene,
 - c) vezane sedimentne stene.

2.2. GLINE I GLINENI MINERALI

Gline su veoma važan sastojak sedimentnih stena i u njima mogu biti ugrađene nakon prenošenja u sedimentni basen ili mogu nastati *in situ*, dajući im time veoma specifične osobine. Nastaju u prirodi složenim procesima sedimentacije i predstavljaju geološki materijal sačinjen prvenstveno od minerala gline. Sem glinenih mineralnih komponenti, mogu biti prisutne i različite primese kao što su ne-glineni minerali, organska materija, izmenjivi joni i rastvorljive soli. U njima može preovladavati samo jedan mineral gline (monomineralne) ili više minerala (polimineralne). Zajedno sa krečnjacima, gline su najprisutnija komponenta u sedimentnim stenama.

Raspadanjem silikata nastaju glineni minerali. U glinenim mineralima elementi O, Si, Al, Fe, Mg, Na i K (u jonskom stanju) su sfere uređene u trodimenzionalnu kristalnu rešetku (slika 2.2). Slaganjem tetraedara nastaje tetraedarski list a oktaedara oktaedarski list. Postoji sedam mineralnih grupa od kojih su šest sastavljene od listastih slojeva, filosilikata (*phylon*, list); dok sedma grupa minerala ima štapičastu formu.

Slika 2.2. Struktura minerala glina

Glineni minerali su hidratisani silikati ili alumosilikati listaste strukture, najčešće dvoslojnog ili troslojnog tipa. Kod listastih silikata svaki SiO₄ tetraedar deli tri jona kiseonika sa susednim tetraedrima. Naelektrisanje pojedinih kiseonikovih atoma je neutralisano, a nepodeljeni kiseonik u četvrtom roglju tetraedra nosi višak od jednog naelektrisanja. U šestougaone šupljine između tetraedara ugrađeni su hidroksilni joni. Neutralnost celog lista se postiže vezivanjem metalnog jona (najčešće Al³⁺ ili Mg²⁺), koji dodatkom OH- jona formiraju oktaedarski sloj. Ovi dodatni OH- joni omogućavaju vezu između pojedinih listova, jer sa atomima kiseonika iz tetraedarskog sloja susednog lista grade vodoničnu vezu. Troslojni listasti silikati se sastoje iz dva tetraedarska sloja koji su rogljevima okrenuti jedan prema drugom i sa OH- jonima u šestougaonim šupljinama. Naelektrisanja slojeva su neutralisana katjonima (Mg²⁺, Al³⁺ ili Fe²⁺), koji sa OH- jonima čine oktaedarsku strukturu. Listovi se međusobno drže Van der Waals-ovim silama čime se objašnjava veoma mala tvrdoća ovih minerala i njihova laka cepljivost. U nekim slučajevima Si⁴⁺ joni u tetraedarskom listu mogu biti izomorfno supstituisani Al³⁺ jonima, zbog čega se javlja manjak pozitivnog naelektrisanja, koji može biti zamenjen jonima većeg jonskog radijusa (Na⁺, K⁺, Ca²⁺) smeštenim između listova. U tom slučaju, listove povezuju elektrostatičke sile (npr. smektiti). Na osnovu svega može se zaključiti da su mogućnosti za ugrađivanje metalnih jona u strukturu glinenih minerala veoma velike. Pre svega, može doći do izomorfne supstitucije u samoj rešetki tetraedarskog sloja jonima koji imaju sličan jonski radijus: Mg²⁺, Al³⁺ ili Fe²⁺; OH⁻ joni mogu biti zamenjeni drugim jonima (Cl⁻ i F⁻), i najzad, može doći do ugrađivanja metalnih jona između pojedinih listova. Kod glinenih minerala postoje dvoslojne (1:1) i troslojne (2:1) listaste strukture. Kod troslojnih struktura Al oktaedarski sloj je smešten između dva tetraedarska sloja. U ovoj grupi minerala su posebno značajni smektitni i ilitni minerali.

Slika 2.3. Dioktaedarska i trioktaedarska struktura

Raspadanjem izvornih stena ili vulkanskog pepela počinje ciklus nastanka minerala gline. Sedimentni baseni su važna faza u ciklusu glina (Bergaya et al., 2006). Ali bez obzira na vrstu sredine u kojoj nastaju, postoje tri moguća načina formiranja minerala gline (Eberl, 1984). Prvi način je nasleđivanje, tj. minerali glina mogu biti nasleđeni (detritalni), odnosno nisu formirani u sredini u kojoj se nalaze, već su transportovani sa nekog drugog, izvornog područja, ali su stabilni na trenutnoj lokaciji (Millot, 1979). Drugi način je neoformiranje, što podrazumeva formiranje minerala gline direktnim taloženjem iz rastvora ili starenjem amorfnog materijala, kao što je Trećim vulkansko staklo. načinom, glineni minerali mogu biti transformisani, odnosno, imaju osobine i nasleđenog i neoformiranog porekla (Velde, 1995). Ova tri različita porekla daju geohemijske zapise o fizičkohemijskim uslovima nastanka. Novoformirani minerali odražavaju geohemijske uslove (kao što je hemija rastvora) u vreme njihovog nastanka. Nasleđeni minerali, s druge strane, moraju biti dovoljno stabilni, kako bi ostali inertni u uslovima nove sredine. Stoga, ovi minerali nose informacije o sredini iz koje potiču. Transformisani minerali mogu dati informacije o sredini porekla, kao i o novoj sredini. Pošto su glinene komponente većine stena detritalnog karaktera, nasleđivanje predstavlja, u opštem smialu, najvažniji oblik porekla minerala glina. Pod određenim sedimentacionim uslovima, ipak i transformacija i neoformacija su od bitnog značaja. Uopšteno govoreći, nasleđivanje preovladava tamo gde je izraženo mehaničko raspadanje, neoformiranje dominira pod uslovima hemijskog raspadanja, a transformacija u umerenim uslovima.

Metali u tragovima (naročito njihove katjonske hemijske vrste) ugrađeni u strukture glinenih minerala (smektiti, kaoliniti i iliti), mogu veoma uspešno biti upotrebljeni za karakterizaciju i razlikovanje sedimentacionih sredina, tj. za određivanje fizičkohemijskih uslova sedimentacije u drevnim basenima (Kerr, 1952).

Prilikom klasifikacije minerala glina važno je znati strukturno uređenje slojeva, hemijski sastav oktaedarskog lista i tip hemijske veze između slojeva (Meunier, 2005). Postoji šest osnovnih strukturalnih grupa sililatnih minerala: 1) kaolinit-serpentin, 2) pirofilit-talk, 3) liskun, 4) smektit-vermikulit, 5) paligorskit-sepiolit i 6) hlorit.

2.2.1. SMEKTITI

U grupu smektitnih minerala spadaju dioktaedarski smektiti montmorionit, beidelit i nontronit, kao i trioktaedarski smektiti saponit, hektorit i sauhonit. Dioktaedarski smektiti bogati su Al, a trioktaedarski su bogati sa Mg i Fe (slika 2.3). Svi smektitni minerali spadaju u grupu 2:1 filosilikatnih minerala.

Smektiti najčešće nastaju kao posledica raspadanja baznih stena i njihovim ispiranjem. To su detritalni smektiti. Sam proces raspadanja zavisi od terena. Loša drenaža i matični materijal bogat Ca i K omogućavaju povoljne hemijske uslove. Za formiranje smektitnih minerala potrebna je i blago alkalna pH sredina (morska sredina), visoka koncentracija Si i Mg kao i prisustvo zemnoalkalnih katjona u višku (Cole i Shaw, 1983). Smektiti nastali ispiranjem su po pravilu dioktaedarski.

Slika 2.4. Struktura montmorionita

Smektiti mogu nastati i kao proizvod raspadanja nekih vulkanskih stena. To su smektiti vulkanskog porekla, koji nastaju izmenom vulkanskog materijala u morskoj sredini (Christidis and Dunham, 1993). Najrasprostranjenija glina bogata smektitom (montmorionitom), nastala od vulkanskog pepela naziva se bentonit. Za stvaranje montmorionita (slika 2.4) pH vrednost sredine mora biti iznad 7.5.

Struktura smektita sastoji se iz serije uzastopnih slojeva formule: $[(Al,Mg)_2 (OH)_2 Si_4O_{10}] \times nH_2O$. U osnovi strukture smektita leže tri sloja (slika 2.4). Gornji i donji sloj čine silicijum-kiseonični tetraedri, a središnji grade metalo (Al i Mg)-kiseonični-hidroksilni oktaedri, koji izgrađuju jedan dvoslojni paket. Gornji i donji slojevi u paketu nastaju međusobnim povezivanjem metala (Al i Mg) preko tri jona kiseonika ili hidroksida stvarajući heksagonalnu mrežu, dok četvrti atom kiseonika ulazi u sastav drugog paketa vezujući se za jon silicijuma koji višak naelektrisanja kompenzuje kiseonikovim atomima. Kiseonikovi atomi povezuju drugi i treći sloj, koji je sastavljen od SiO₄ tetraedra.

2.2.2. FELDSPATI

Feldspati predstavljaju grupu aluminosilikatnih minerala koji sadrže natrijum, kalijum ili kalcijum. Spadaju u klasu tektosilikata, gde SiO₄ tetraedri grade prostornu rešetku, u kojoj je svaki tetraedar povezan sa četiri susedna (slika 2.5). Slobodne valence za koje se vezuju uglavnom alkalni ili zemnoalkalni elementi, mogu da se pojave usled zamene silicijuma aluminijumom. Neki vrlo značajni petrogeni minerali imaju ovakvu strukturu.

Retko se pojavljuju u čistom obliku, već grade izomorfne smeše. Natrijumovi i kalijumovi feldspati se mešaju u ograničenim količinama i grade alkalne feldspate, a natrijumovi i kalcijumovi, mešajući se u neograničenim količinama grade plagioklase.

Kalijumovi feldspati su sanidin, ortoklas i mikroklin. Njihova hemijska formula, predstavljena u obliku oksida, kako bi se lakše videli odnosi pojedinih komponenti glasi: K₂O×Al₂O₃×6SiO₂. Međutim, uvek sadrže deo natrijumove ili kalcijumove komponente.

Slika 2.5. Kristalna rešetka mikroklina

Mikroklin ima potpuno uređenu kristalnu rešetku. Stabilan je na niskim temperaturama (ispod 500° C) i visokim pritiscima. Sreće se uglavnom u metamorfnim a ređe u sedimentnim stenama. Kao i ostali feldspati, mikroklin prilikom procesa površinskog raspadanja najčešće prelazi u minerale glina.

2.3. GEOHEMIJA ISPITIVANIH METALA

2.3.1. VANADIJUM

Vanadijum, sa elektronskom konfiguracijom V: [] $4s^2 3d^3$, atomskim brojem 23 i atomskom masom 51, čine 2 prirodna izotopa: ⁵⁰V (0.25 %) i ⁵¹V (99.75 %). Gradi jedinjenja sa stepenom oksidacije +2, +3, +4 i +5. U Zemljinoj kori sadržaj ovog metala je oko 0.009 %.

U toku magmatskih procesa V(III) zamenjuje jone Al³⁺ i Fe³⁺ čime se geohemijski koncentriše u alumosilikatima. U površinskim slojevima se oksiduje do V(V), i na taj način se koncentriše u oksidacionoj zoni rudnih nalazišta. Jedinjenja V(II) i V(III) su termodinamički nestabilna. Veći značaj imaju njegova jedinjenja sa višim stepenom oksidacije +4 i +5. Oksid V(IV) je amfoterman, lako se rastvara u kiselinama i bazama. U jako baznim rastvorima se obrazuje jon vanadita VO_4^{4-} . Pri rastvaranju u kiselinama nastaje vanadil jon, VO^{2+} . Jedinjenja V(IV) se lako oksiduju do V(V) jona. V_2O_5 je kiseli oksid, lako se rastvara u bazama uz nastajanje vanadata, ali se može rastvarati i u kiselinama. Karakterističan je prelaz V(V) u V(IV). Redoks potencijal sistema V(V)/V(IV) je 1.01 V.

2.3.2. HROM

Hrom, sa elektronskom konfiguracijom Cr: [] $4s^1 3d^5$, atomskim brojem 24 i atomskom masom 51,996 čine 4 stabilna izotopa: 50 Cr (4.31 %), 52 Cr (83.76 %), 53 Cr (9.55 %) i 54 Cr (2.38 %). Poznata su jedinjenja Cr sa stepenom oksidacije od +1 do +6 a najčešća su oksidaciona stanja Cr⁺³ i Cr⁺⁶. Cr⁺⁶ je stabilan u aerobnim uslovima i može se naći u obliku CrO₄²⁻, pod anaerobnim uslovima se redukuje do Cr⁺³. U vodenoj sredini Cr je zastupljen kao Cr⁺³. U uslovima pH > 5 nalazi se u hidratisanom obliku kao Cr(OH)₃ koji je slabo rastvoran u vodi. Hrom je u Zemljinoj kori zastupljen u količini od oko 100 ppm uglavnom u obliku minerala hromita (FeCr₂O₄). Takođe, ovaj metal je prisutan u silikatima gde zamenjuje Fe^{3+} , ugrađivanjem Cr^{3+} u oktaedarski list dioktaedarskih smektita.

U zavisnosti od Eh i pH vrednosti, Cr može postojati pri oksidacionim uslovima, kao $Cr_2O_7^{2-}$ (pH<6) ili kao CrO_4^{2-} (pH>6). U redukcionim uslovima pojavljuje se kao Cr^{3+} (pH<7) ili kao CrO_2^{-} (pH>7). U prisustvu Mn³⁺ iz Mnoksida (oksihidroksida), Cr^{3+} se oksiduje do Cr^{6+} (Charlet i Manceau, 1992). Prema tome, za očekivati je da Mn-oksidi(oksihidroksidi) ne mogu biti nosioci Cr^{3+} u zoni raspadanja. Ispitivanja Eh/pH odnosa za Cr pokazuje da je ovaj metal relativno nepokretan (imobilan) u slabo oksidacionim uslovima, ali da je mobilan pri višem oksidacionom potencijalu kada je CrO_4^{2-} dominantna vrsta.

2.3.3. BAKAR

Bakar, sa elektronskom konfiguracijom Cr: [] $4s^1 3d^{10}$, atomskim brojem 29 i atomskom masom 63,54, čine 18 izotopa sa atomskim masama od 52 do 73. Najčešća oksidaciona stanja su Cu(I) i Cu(II).

U Zemljinoj kori se javlja u tragovima u metalnom obliku, kao i u rudama: halkopirit (CuFeS₂) i malahit (CuCO₃ × Cu(OH)₂). Zbog izrazitog halkofilnog karaktera, u prisustvu S prvenstveno će formirati sulfide (halkopirit), pre nego silikate. Prilikom raspadanja sulfidnih minerala, Cu reaguje sa kiseonikom gradeći, najpre Cu₂O (kuprit), a pri većem oksidacionom potencijalu i CuO (tenorit).

U kiseloj sredini, u oksidacionim uslovima, halkopirit se oksiduje oslobađajući Cu²⁺ u rastvor i Fe-oksid kao precipitat. U alkalnoj sredini, pak,

koprecipitovaće kuprit ili tenorit zajedno sa Fe-oksidima (Garrels i Christ, 1965).

Pri pH > 5, Cu se prvenstveno adsorbuje na Fe-oksidima (do 6%), pre nego na piritnim mineralima. Cu može biti značajno asosovan i sa Mnoksidima, kroz koprecipitaciju ili adsorpciju (Mosser i Zeegers, 1988). U kiseloj sredini, pri oksidacionim uslovima, Cu^{2+} će se adsorbovati na površini Mn-oksida, dok će u alkalnoj sredini pri dovoljno visokim vrednostima pe ova dva metala koprecipitovati.

2.3.4. CINK

Cink, sa elektronskom konfiguracijom Zn: [] $3d^{10}4s^2$, atomskim brojem 30, atomskom masom 65,409, čine 23 izotopa čije se atomske mase nalaze između 57-78. Zastupljen je u Zemljinoj kori u količini od oko 75 ppm u obliku minerala - uglavnom ZnS, ZnO i smitsonita (Kabata-Pendias i Mukherjee, 2007). Zn se u prirodi nalazi isključivo u obliku Zn²⁺ jona.

2.3.5. NIKL

Nikl, sa elektronskom konfiguracijom Ni: [] $4s^2 3d^8$, atomskim brojem 28 i atomskom masom 58,693 čine 5 stabilna izotopa: ⁵⁸Ni (68.27 %), ⁶⁰Ni (26.10 %), ⁶¹Ni (1.13 %), ⁶²Ni (3.59 %) i ⁶⁴Ni (0.91 %). Najčešća oksidaciona stanja Ni su Ni(0) i Ni(II). Zastupljen je u Zemljinoj kori u količini od oko 80 ppm u obliku minerala garnierita i pantlandita. Najveći deo Ni na Zemlji je nedostupan jer se nalazi u Fe-Ni otopljenom jezgru, koje sadrži 10% Ni. Sadržaj

U zemljišnim rastvorima snažno je sorbovan od strane Fe i Mn oksida i hidroksida (Hooda 2010). U rastvorima gde je pH < 7, stabilni oblik predstavlja Ni^{2+} , koji je dobro rastvoran u vodi. Pri pH > 9 taložiće se $Ni(OH)_2$, mada se retko nalazi u prirodi (Garrels i Christ, 1965). U ranim

stupnjevima raspadanja ultramafičnih stena primarni silikati se izmenjuju do FeMg-smektita, koji su obično bogati Ni-om. Paquet et al., (1987) opisali su trioktaedarske smektite sa do 30% NiO, formirane od matičnih piroksena raspadanjem ultramafičnih stena. Daljim raspadanjem, sadržaj NiO se smanjio, uz nastajanje dioktaedarskih smektita sa oko 10% NiO. Poslednji stupanj raspadanja vodi formiranju getita (FeOOH) bogatih Ni-om.

2.3.6. KOBALT

Kobalt, sa elektronskom konfiguracijom Co: [] $4s^2 3d^7$, atomskim brojem 27 i atomskom masom 58,933 čine 2 stabilna izotopa: ⁵⁹Co (99.83 %), i ⁵⁷Co (0.17 %). Spada u grupu siderofilnih elemenata. U prirodnim sredinama se najčešće nalazi u oksidacionim stanjima +2 i +3. U vodenim rastvorima, na pH 9 javlja se u obliku Co²⁺. Iznad pH 9 kao stabilna vrsta javlja se Co(OH)₂, sem u oksidacionoj sredini gde preovladava Co(OH)₃. U zemljištu je snažno sorbovan od strane Fe i Mn oksida i hidroksida (Hooda, 2010). Međutim, stabilnost Co se smanjuje u prisustvu Fe₂O₃ i Fe(OH)₃ na pH 7 (Thornber and Wildman 1984). Co se javlja i u mnogim vrstama silikata gde najčešće zamenjuje Fe (Kabata-Pendias i Mukherjee, 2007).

Fe i Mn-oksihidroksidi predstavljaju najznačajnije nosioce Co, vezujući preko 60% ukupno prisutnog Co. Mobilnost Co tokom raspadanja zavisi uglavnom od adsorpcije na Fe/Mn mineralima, pre nego od drugih hemijskih faktora.

U tabeli 2.1 prikazane su prosečne koncentracije V, Cr, Cu, Zn, Ni i Co u raznim geološkim materijalima (Kabata-Pendias i Mukherjee, 2007; Hooda, 2010). Ovi podaci mogu biti od pomoći za razumevanje porekla.

Geološki materijal	V	Cr	Cu	Zn	Ni	Со
Zemljina kora	55	55	25	65	20	10
Ultramafične stene	70	1800	10	300	1600	150
Bazaltne stene	250	200	90	70	140	50
Krečnjaci	30	10	10	15	15	2
Gline i škriljci	100	100	50	100	70	20
Vulkanski pepeo	200	140	170	130	70	40
Morska voda	2.5	0.3	5	5×10 ⁻³	0.7	2×10 ⁻³

Tabela 2.1. Koncentracije ispitivanih metala [ppm] u različitim geološkimmaterijalima

2.4. TEHNIKE ZA ANALIZU I KARAKTERIZACIJU ISPITIVANIH UZORAKA

2.4.1. INFRACRVENA (IC) SPEKTROSKOPIJA

Spektroskopija u infracrvenom području temelji se na interakciji infracrvenog (IC) zračenja sa supstancom. Molekuli apsorbuju infracrvenu svetlost specifičnih talasnih dužina i tu energiju pretvaraju u vibracionu energiju hemijskih veza. Kada se kroz prostor ispunjen nekom supstancom (u bilo kom agregatnom stanju) propusti snop infracrvenog zračenja, koji se zatim optičkom prizmom (ili rešetkom) razloži na monohromatske komponente, primećuje se (pomoću odgovarajućeg detektora) da na pojedinim frekvencijama dolazi do većeg ili manjeg slabljenja jačine svetlosti zbog selektivne apsorpcije IC zračenja od strane molekula koji sa tim zračenjem dolaze u dodir.

Izgled IC spektra (položaj, intezitet, broj i oblik apsorpcionih maksimuma) je u direktnoj vezi sa strukturom molekula i karakterističan je za svako jedinjenje. IC spektroskopija je našla vrlo široku primenu u identifikaciji organskih i neorganskih jedinjenja, gde se njena uloga uglavnom svodi na identifikaciju funkcionalnih grupa. Pošto većina funkcionalnih grupa bez obzira na ostatak molekula, apsorbuje u relativno uzanim, dobro definisanim IC-spektralnim oblastima, primena ove vrste spektroskopije omogućava njihovu nedvosmislenu identifikaciju.

Infracrveni spektar može se podeliti na područje grupnih frekvencija, gde se nalaze karakteristične trake funkcionalnih grupa na koje ne utiče ostatak molekule, i područje "otiska prsta", koje je karakteristično za pojedina organska jedinjenja i služi za njihovu identifikaciju.

Slika 2.6. Elektromagnetni spektar

Talasne dužine koje zahvata kompletna IC oblast nalaze se između vidljivog (~800 nm) i mikrotalasnog (~1mm) dela elektromagnetnog spektra (slika 2.6).

IC spektroskopija se zasniva na činjenici da atomi u molekulu nisu statični, odnosno, da se nalaze u stanju neprekidnog vibriranja. U zavisnosti od njegove složenosti i geometrije, svaki molekul je okarakterisan određenim brojem vibracija. Svaka vibracija ima svoju vibracionu frekvenciju koja zavisi od mase atoma i jačine veza između njih. Neke od molekulskih vibracija su karakteristične za molekul kao celinu, dok su druge odraz prisustva određenih funkcionalnih grupa u njima. Vibracione frekvencije se obično izražavaju kao talasni broj, čija je jedinica cm⁻¹. Izražena na ovaj način, frekvencija predstavlja recipročnu vrednost talasne dužine λ . Talasne dužine molekulskih vibracija nalaze se u infracrvenoj oblasti spektra elektromagnetnog zračenja. Molekuli koji apsorbuju u ovoj oblasti, mogu apsorbovanu energiju da pretvore u vibracionu energiju. Ova apsorpcija je kvantovana, odnosno molekul može da apsorbuje samo one frekvencije zračenja koje se poklapaju sa vibracionim frekvencijama unutar
samog molekula. Poređenjem intenziteta ulaznog i izlaznog zračenja dobija se infracrveni apsorpcioni spektar. Apsorpcija određene frekvencije zračenja dovodi do pobuđivanja odgovarajućih vibracija molekula, odnosno karakterističnih grupa u molekulu, što je pokazatelj strukture ispitivanog uzorka.

Postoje dva tipa molekulskih vibracija: valencione vibracije i deformacione vibracije (slika 2.7).

Slika 2.7. Valencione (a,b) i deformacione (c,d,e,f) vibracije

Kod deformacionih vibracija dolazi do promene ugla između veza, i postoje četiri tipa deformacionih vibracija:

1. *seckanje*, koje predstavlja približavanje i udaljavanje u ravni dva međusobno nevezana atoma (slika 2.7c)

2. *savijanje*, koje označava pomeranje u ravni dva međusobno nepovezana atoma, u jednom ili drugom smeru (slika 2.7d)

3. *klanjanje*, označava pomeranje strukturne jedinice napred i nazad u odnosu na ravnotežnu ravan (slika 2.7e)

4. *uvrtanje*, koje je okarakterisano vibracijom dvaju atoma van ravnotežne ravni, pri čemu, dok jedan ide napred, drugi ide nazad (slika 2.7f)

Valencione vibracije obično zahtevaju veću energiju nego deformacione, pa je zbog toga za njih karakteristična apsorpcija elektromagnetnog zračenja kraćih talasnih dužina.

Slika 2.8. Šematski prikaz infracrvenog spektroskopa sa Fourierovom transformacijom

Instrumenti za spektroskopiju u infracrvenom području s Fourierovim transformacijama (FTIR, iz engl. Fourier Transform Infra-Red spectroscopy) omogućuju snimanje spektara celokupnog infracrvenog područja u kratkom vremenskom intervalu. Izvor svetlosti je polihromatski, i menjanjem optičkog puta svetlosti dolazi do interferencije za određene frekvencije. Tako dobiveni interferogram kao funkcija pomeranja može se Fourier-ovom transformacijom preračunati u klasični infracrveni spektar koji je funkcija frekvencije, tj. talasnog broja. Kako su Fourier-ove transformacije računski zahtevne, FTIR instrumenti moraju biti povezani za računar sa odgovarajućim softverom (slika 2.8). Zbog brzine snimanja, FTIR može služiti kao detektor, za praćenje kinetike reakcija, a pogodniji je za kvantitativne analize od klasičnih IC spektroskopa jer ima manji šum.

U svim spektroskopskim tehnikama na polihromatski zrak se deluje tako da svaka frekvencija, radi merenja njenog intenziteta, bude izdvojena od ostalih. Ovo razdvajanje se kod disperzionih instrumenata izvodi propuštanjem zraka kroz monohromator (prizmu ili optičku rešetku), čime se prostorno izdvajaju pojedinačne frekvencije. U realnim uslovima je moguće izdvojiti samo određeni frekventni opseg tzv. rezolucioni element. Međutim, umesto monohromatora mogu se koristiti i interferometri, koji daju određene prednosti pri snimanju spektara.

Slika 2.9. Šematski prikaz Michelson-ovog interferometra

Michelson-ov interferometar se sastoji od dva ogledala, koja su postavljena u međusobno normalnim pravcima, od kojih je jedno nepokretno, a drugo se kreće konstantnom brzinom V (cm s⁻¹) u tačno određenom pravcu. Između ovih ogledala nalazi se polupropustljivo ogledalo koje deli upadni zrak, tako da se jedan deo reflektuje ka pokretnom, a drugi ka nepokretnom ogledalu (slika 2.9). Oba zraka se po reflektovanju od ogledala sjedinjavaju u istoj tački na polupropustljivom ogledalu gde dolazi do njihove interferencije. Dužina putanje zraka reflektovanog od nepokretnog ogledala (L) je konstantna, dok se, zbog neprekidnog oscilovanja između dva granična položaja, dužina puta zraka reflektovanog od pokretnog ogledala menja se između L+ Δ X i L- Δ X.

Prema tome, putna razlika ova dva zraka je:

$\Delta X = Vt$

gde je t vreme koje pokretno ogledalo provodi van početnog položaja. Ako je upadno zračenje monohromatsko (frekvencije v), interferogram I(t) se sastoji od niza maksimuma (kada su dva zraka u fazi) i minimuma (kada nisu u fazi).

$$I(t) = 0.5 \cdot H(v) \cdot I(v) \cdot (1 + \cos(2\pi v V t + \Theta_v))$$

gde je I(v) intenzitet upadnog zračenja na interferogramu, H(v) odstupanje I(v) od idealnog slučaja zbog unošenja greške od strane optike (< 1) i Θ fazno pomeranje prouzrokovano polupropustljivim ogledalom.

Za polihromatski izvor, interferogram I(t) se sastoji od ukupnog signala za svaku frekvenciju koju sadrži spektar. U idealnom slučaju, kada je $\Theta_v=0$ za sve frekvencije, I(t) pokazuje maksimalnu vrednost za t=0 tj. u ovoj tački se sve frekvencije nalaze u fazi. Karakterističan oblik realnog interferograma polihromatskog izvora oko nulte razlike puta (ogledala), uz uvođenje fazne razlike za svaku frekvenciju, prikazan je na slici 2.10.

Konačan IC spektar dobijamo nakon primene matematičke operacije poznate kao Fourier-ova transformacija, na interferogram. Fourier-ova transformacija interferograma daje intenzitet zračenja propuštenog kroz uzorak u zavisnosti od frekvencije I(v), što odgovara IC spektru snimljenom na jednozračnom instrumentu.

Slika 2.10. Interferogram za monohromatski (a) i polihromatski (b) snop zračenja

U novije vreme javlja se nova generacija instrumenata pod nazivom FT (Fourier-ova transformacija) IC spektrofotometri. U njima su sjedinjene, uz pomoć elektronskog računara dve veoma stare i poznate metode:

- <u>interferometrija</u> (Michelson-ov interferometar, koji se ovde najviše koristi, potiče još iz 1880.god.).

 <u>Fourier-ova transformacija</u> (matematička operacija koju je Fourier uveo 1810. godine).

Fourier-ova transformacija interferograma (pomoću računara) direktno daje intezitet zračenja (propuštenog kroz uzorak) u zavisnosti od frekvencije I(v), što odgovara IC spektru snimljenom na jednozračnom instrumentu.

Prednost FT instrumenta nad klasičnim su:

- a) znatno brže snimanje spektara: danas snimanje jednog interferograma traje od 0,25 do 10 s. FT analizu obavljaju današnji računari za deo sekunde. Sa klasičnim dvozračnim aparatom snimanje spektra traje najmanje nekoliko minuta.
- b) veća osetljivost: mogu se snimati spektri tragova (osetljivost je do 10⁻⁹ g), kao i uzoraka izuzetno malih dimenzija.
- c) mogućnost ponavljanja interferograma: moguće je višestruko ponavljanje snimanja i sabiranja svih interferograma, čime se znatno povećava osetljivost.

- d) veća preciznost frekvencija i znatno bolje razlaganje: razlaganje se kreće i do 0,01 cm⁻¹.
- e) naknadna popravka spektara: elektronski računar omogućava mnoge računske manipulacije sa spektrom. Na ovaj način spektar može da se "očisti" od maksimuma koji potiču od " nečistoća".
- f) FTIC spektrometri zahvataju znatno širi spektralni opseg.

2.4.2. SKENIRAJUĆA ELEKTRONSKA MIKROSKOPIJA (SEM)

Skenirajuća elektronska mikroskopija koristi interakciju elektrona sa materijom za stvaranje slike ispitivanog uzorka. Upotrebljava se za izuzetno precizno određivanje površinske i prostorne strukture čvrstih uzoraka. Kod elektronskih mikroskopa rezolucija je najčešće 10 nm, uvećanje 100000 puta, a dobijena slika je trodimenzionalna što omogućava uočavanje manjih čestica i detalja.

Osnovni princip rada je da se umesto vidljive svetlosti i optičkih sočiva, za dobijanje uveličane slike objekta kod elektronskog mikroskopa koristi snop elektrona koji se usmerava i fokusira uz pomoć elektromagnetnog polja. Prema De Broglie-vom zakonu čestice koje se brzo kreću (brzinom svetlosti) imaju osim korpuskularne i talasnu prirodu. Talasna dužina ovih čestica:

 $\lambda = h \ / \ m \ v; \qquad me = 9.11 \times 10^{-31} \ kg; \qquad h = 6.63 \times 10^{-34} \ J \ s$

Da bi se mogao raspoznati objekat veličine 10^{-9} m (1 nm), potrebno je na njega usmeriti elektrone koji će imati brzinu približno 100 000 m s⁻¹. Ubrzavanje elektrona do potrebnih brzina za ovu svrhu zahteva veliki napon (50 - 100 000 V). Elektron pri ovom naponu ima talasnu dužinu od 0.55 nm.

Skeniranje površine se ostvaruje prelaženjem uskog snopa (primarnih) elektrona preko površine uzorka. U svakoj tačci uzorka u interakciji elektrona primarnog snopa i molekula (atoma) uzorka dolazi do stvaranja "signala" koji se detektuje. Primarni elektronski snop se fokusira na uzorak (prečnik ispod 10 nm) i prelazi tačku po tačku (slika 2.11).

Slika 2.11. Uprošćen izgled elektronskog mikroskopa

Pri interakciji upadnih elektrona sa atomima ispitivanog uzorka dolazi do njihovog rasejanja ili do jonizacije atoma uzorka. Produkt jonizacije su sekundarni elektroni, koji su uvek praćeni karakterističnim X-zracima koji nastaju u rekombinacionim procesima u samom atomu. Pored njih kao proizvod nastaju i Auger elektroni i "Backscttered" elektroni (slika 2.12). Sliku daju sekundarni elektroni koji su dislocirani – izbačeni sa površine skeniranog uzorka nakon bombardovanja od strane primarnog el. snopa. Sekundarni elektroni dolaze do detektora (pozitvnog naelektrisanja) gde se indukuje električni signal koji se pojačava i digitalizuje. Kao rezultat na ekranu se pojavljuje topografska slika površine ispitivanog objekta-površina metalnog omotača objekta.

Energija sekundarnih elektrona je mala, reda veličine 50 eV, što ograničava njihovo detektovanje samo sa dubine do 10 nm. Broj sekundarnih elektrona zavisi od ugla između upadnog snopa i površine uzorka, tako da njihovim detektovanjem dobijamo informaciju o obliku površine uzorka. Rasejani elektroni imaju veću energiju, što nam omogućava dobijanje informacija sa dubine od 300 nm. Na osnovu činjenice da atomi različitih hemijskih elemenata različito rasejavaju elektrone dobijamo kontrastnu sliku na kojoj su dobro raspoznatljivi segmenti sačinjeni od različitih atoma. Detekcijom karakterističnih X-zraka koji mogu da se emituju i sa dubine do 1000 nm dobijamo podatke o kvantitativnom sastavu uzorka.

Slika 2.12. Interakcija elektrona sa materijom kod elektronskog mikroskopa

SEM-om se obično snimaju provodni materijali dok je za neprovodne materijale potrebna posebna priprema. Uobičajena tehnika pripreme neprovodnih materijala je nanošenje nanometarskog sloja provodnog materijala kao što su Au i Pt na uzorak, ili njihovim rasprskivanjem po uzorku. Ova druga metoda može da ošteti osetljivije uzorake, pa se u zavisnosti od samog uzorka koriste različiti načini pripreme. Uzorak se stavlja u komoru, na provodnik od ugljenika u atmosferu od inertnog gasa argona (Ar). Katoda- omotač komore je od zlata i služi za oblaganja uzorka ovim metalom. Kada se elektrode prikluče na jak napon, argon će se jonizovati. Joni Ar⁺ će udarati u katodu i izbijati atome Au koji će oblagati uzorak.

Elektronski mikroskopi su zahtevni u pogledu tehničke podrške jer zahtevaju ekstremno stabilan napon i struju, ultra-vakuumski sistem (uzorci moraju biti u vakuumu kako molekuli koji se nalaze u vazduhu ne bi ometali elektronski snop) i stalno hladenje detektorskog sistema vodom. Zbog velike osetljivosti na vibracije i spoljna magnetna polja moraju se držati u posebnim prostorijama.

2.4.3. RENTGENSKA DIFRAKCIJA

Rendgenska difrakcija (eng. *X-Ray Diffraction*, XRD) je nedestruktivna eksperimentalna metoda koja se zasniva na korišćenju difrakcije X-zraka talasne dužine reda veličine perioda kristalne rešetke. Identifikacija kristalne supstance na osnovu karakteristične difrakcione slike jeste prvi korak u analizi bilo kog materijala. Koristi se za identifikaciju minerala i mineraloškog sastava materijala. Poznavanje mineraloškog sastava materijala je značajno jer vrsta minerala direktno određuje osobine konačnog proizvoda i mogućnost njegove primene. Zasniva se na dva svojstva rendgenskih zraka: moći prodiranja kroz kristalnu rešetku i sposobnosti difrakcije od strukturnih jedinica kristala (atomi, joni, molekuli). Kada X-zraci padnu na kristalnu supstancu, jedan deo tih zraka se difuzno raspe, tj. dolazi do skretanja u svim pravcima (slika 2.13). U datom uzorku, svaki atom postaje izvor difuznog zračenja koje je koherentno te samim tim i može doći do interferencije takvih zraka. Usled interferencije dolazi do poništavanja ili do pojačavanja intenziteta zračenja istih talasnih dužina koja dolaze sa različitih atoma usled difrakcije. Difrakcija X zračenja je rezultanta svih ovih rasipanja pojedinačnih zračenja sa atoma u kristalnoj rešetki.

Slika 2.13. Interakcija X-zraka i supstance

Ova metoda prvenstveno služi za kvalitativnu analizu tako što omogućava identifikaciju prisutnih kristalnih komponenata, vrstu kristalne rešetke, prisustvo pojedinih faza u sistemu, deformaciju kristalne rešetke, veličinu kristala, ali se može koristiti i za kvantitativnu analizu, odnosno za procenu učešća različitih komponenata u sadržaju uzorka. Kod difraktometrijske metode koristi se snop X-zraka, monohromatizovan posebnim apsorpcionim filtrima ili monokristalnim monohromatorima, koji pada na uzorak i difraktuje se na kristalnoj rešetki prema Bragg-ovom zakonu:

$$\lambda = 2d \sin\theta$$

gde je d međuravansko rastojanje, λ talasna dužina X-zraka, a θ upadni ugao X-zraka. Kao detektor efekta difrakcije koristi se osetljivi scintilacioni brojač. Preko jonizacije koju izazivaju fotoni rasejanih X-zraka, moguće je direktno precizno merenje svih intenziteta.

Slika 2.14. Šematski prikaz difraktometra

Sistemom pukotina snop se usmerava ka uzorku, presovanog u tabletu na specijalnom nosaču, koji se može obrtati različitim brzinama oko ose normalne na pravac upadnog snopa. Scintilacioni brojač se sinhrono kreće sa obrtanjem uzorka dvostruko većom ugaonom brzinom. Ovo je neophodno jer je iz osnovnih postavki Bragg-ovog modela difrakcije očigledno da je u slučaju ugla između kristalografske ravni i pravca upadnog zraka čija je vrednost θ , aktuelno merenje pod dvostruko većim uglom, odnosno pod uglom čija je vrednost 2 θ . Dobijeni difraktogram, zavisnost intenziteta difrakcije od difrakcionog ugla 2 θ , se koristi za indentifikaciju kristalne faze uzorka i druga izračunavanja.

Slika 2.14 daje šematski prikaz difraktometra sa obeleženim najbitnijim delovima. Na osnovu činjenice da širina difrakcionog maksimuma zavisi od veličine čestice ili kristalita na kome se vrši difrakcija, moguće je odrediti veličinu kristalita, D, iz Šererove formule:

$$D = \frac{K \, \lambda}{\beta \, cos \theta}$$

gde je λ talasna dužina X-zraka, β je širina difrakcionog maksimuma na polovini njegove visine, θ je upadni ugao X-zraka, a K konstanta koja zavisi od stepena simetrije kristala.

Rendgenski zraci su dali mogućnost ne samo da se izmere međupljosna rastojanja već i položaj različitih atoma, ili jona u kristalu i na taj način otkrili put za određivanje kristalne strukture. Korišćenjem difrakcije, pre svega X-zraka, ali i snopova elektrona, protona, ili neutrona čija je odgovarajuća talasna dužina reda veličine perioda kristalne rešetke, može se realizovati širok spektar nedestruktivnih i veoma značajnih eksperimentalnih metoda.

U zavisnosti od tipa uzorka koji se koristi, metode se mogu podeliti u dve grupe:

- metode difrakcije na uzorcima monokristala
- metode difrakcije na polikristalnim uzorcima (kristalnom prahu)

Metode difrakcije na uzorcima monokristala. Ova grupa metoda koristi se pre svega za određivanje parametara elementarne ćelije, utvrđivanje simetrije koja karakteriše prostornu grupu kristala i za rešavanje strukture. U zavisnosti da li je detektovanje efekata difrakcije preko osetljivih emulzija na filmu (tzv. filmske metode), ili preko sistema osetljivih brojača, postižu se različiti rezultati u nivou tačnosti i susreću različita tehnička rešenja [3].

Metode difrakcije na polikristalnim uzorcima. Treba naglasiti da je rendgenskom difrakcijom lako razlikovati kristalne faze čak i kada je njihov hemijski sastav potpuno isti. Ovo su dobro poznati slučajevi polimorfizma (na primer, kalcit i aragonit CaCO₃; rutil, anatas i brukit TiO₂).

Ukoliko je uzorak višefazni polikristalni materijal, može se pristupiti kvantitativnoj analizi, odnosno ispitivanju zastupljenosti pojedinih faza u ispitivanom uzorku. Nesumnjivo, pre toga treba utvrditi da li su prisutne faze kristalne ili amorfne. U mnogim slučajevima rendgenska difrakcija direktno ili indirektno daje i hemijsku analizu. Metoda praha dajući precizne podatke o parametrima ćelije može posrednim putem da ukaže na promene u hemijskom sastavu kristalnih faza.

Glavni nedostatak ove veoma značajne metode karakterizacije materijala jeste da zahteva relativno veliku količinu materijala za pripremu uzorka, jer treba omogućiti potpunu difrakciju upadnog zraka pod svim uglovima. Poteškoće mogu da predstavljaju i defekti kristalne rešetke, kao i mogućnost usmerene orijentacije kristala pri presovanju uzorka, što vodi promeni intenziteta difrakcionih maksimuma.

2.4.4. OPTIČKA-EMISIONA SPEKTROMETRIJA SA INDUKOVANO SPREGNUTOM PLAZMOM (ICP-OES)

Ovu tehniku su iz optičke emisione spektrometrije razvili Fassel i Greenfield 1960. godine. Međutim, prva upotreba u komercijalne svrhe bila je tek 1974. godine.

ICP-OES je emisiona spektrofotometrijska tehnika koja se temelji na činjenici da pobuđeni elektroni pri povratku u osnovno stanje emituju tačno određenu energiju. Osnovna karakteristika ovog procesa je da svaki element emituje zračenje određene talasne dužine. Iako svaki element emituje "smešu" talasnih dužina u ICP-OES tehnici se izdvaja jedan ili pak manji broj specifičnih talasnih dužina za dati element. Intenzitet energije emitovane na odabranoj talasnoj dužini proporcionalan je koncentraciji elementa u analiziranom uzorku. Dakle, određivanjem talasne dužine koje emituje analizirani uzorak i njihovog intenziteta dobijamo kvalitativni i kvantitativni sastav uzorka.

ICP-OES analiza zahteva uzorak u obliku rastvora. Uzorci stena ili minerala moraju biti rastvoreni a u tu svrhu se najčešće koriste kiseline (HF, HNO₃ i HCl).

Slika 2.15. Šematski prikaz rada ICP-OES uređaja

Glavni delovi svakog ICP-OES su: sistem za uvođene uzorka, sistem za sagorevanje i spektrometar (slika 2.15). Uzorak u obliku rastvora se uvlači u raspršivač uz pomoć perilstatičke pumpe. Raspršivač stvara aerosol i ubrizgava gasoviti Ar u komoru. Aerosol s uzorkom i Ar injektira se u plazmu u sistemu za sagorevanje. Plazma s temperaturom reda veličine 10⁴ K pobuđuje elektrone. Kada se elektroni vraćaju u osnovno stanje emituju specifične talasne dužine karakteristične za sastav analiziranog uzorka (Hill, 2007).

ICP-OES predstavlja bezelektrodnu argonsku plazmu koja se održava induktivnim sprezanjem sa radiofrekventnim elektromagnetnim poljem, a radi na atmosferskom pritisku.

Slika 2.16. Prikaz gorionika sa temperaturama kod ICP-OES

Gorionik se satoji od tri koncentrične cevi (unutrašnju, srednju i spoljašnju). Kroz unutrašnju cev se uvodi uzorak, najčešće u obliku rastvora koji se prevodi u fini aerosol pomoću struje argona. Argon za formiranje plazme uvodi se kroz srednju cev dok se termička izolacija (neophodna da bi se izbeglo topljenje kvarcne cevi) postiže tangencionalnim uvođenjem struje argona kroz spoljašnju cev gorionika. Ova struja hladi zidove kvarcne cevi, ali takođe i stabilizuje i centrira plazmu.

Oko spoljašnje kvarcne cevi obmotana su 3-4 navoja indukcionog kalema vezanog za radiofrekventni generator frekvencije oko 27,12 MHz i snage 1-3 kW. Visokofrekventna struja koja protiče kroz indukcioni kalem stvara oscilatorno magnetno polje H koje indukuje elektrone u gasu koji protiče unutar kvarcne cevi. Elektroni se ubrzavaju vremenski promenjivim električnim poljem, što dovodi do zagrevanja i dodatne jonizacije. Kako u početku u argonu nema naelektrisanih čestica plazma se aktivira kratkim uključivanjem Teslinog pražnjenja.

Temperatura plazme varira od 6000 do 10000 K i opada sa visinom iznad indukcionog kalema tako da se za svako merenje može odabrati pogodna visina na kojoj će se vršiti određivanje (slika 2.16).

Zbog visokih temperatura u ICP izvorima dobijaju se dosta složeni spektri. Razlikujemo nekoliko zona plazme: zona prethodnog zagrevanja, početna zona pražnjenja koja je u obliku metka sa intenzivnom atomskom emisijom, normalna analitička zona koja se nalazi 15-20 mm iznad indukcionog kalema a eksitaciona temperatura u njoj je oko 6800 K. U ovoj zoni je jako smanjen intenzitet kontinualnog zračenja tako da plazma nije više transparentna i u njoj nastaje glavna jonska emisija. Iznad ove zone temperatura u plazmenoj baklji opada i javlja se atomska i molekulska emisija. Plazma izvori imaju nekoliko prednosti:

- Atomizacija nastaje u hemijski inertnoj sredini što produžava vreme života uzorka,
- Visoka gustina elektrona $(10^{14} 10^{16} \text{ cm}^{-3})$,
- Mogućnost istovremenog merenja više od 70 elemenata,
- Visoka granica detekcije za većinu elemenata (0.1–100 ng mL⁻¹),
- Velika stabilnost dovodi do tačnosti i preciznosti,
- Nasuprot plamenim izvorima, temperaturni presek plazme je relativno jednoličan,
- Kalibracione krive su uglavnom linearne za nekoliko redova opsega koncentracija.

2.4.5. STEREO-MIKROSKOPIJA

Stereomikroskop se od običnog, optičkog mikroskopa razlikuje po postojanju dva različita optička puta, (uz dva objektiva i dva okulara), koji stvaraju različite uglove posmatranja (razlika od 3-10°) čime se stvara trodimenzionalna slika uzorka koji se posmatra. Koristi se za posmatranje površina čvrstih uzoraka ili za fine poslove za koje je potrebna određena preciznost, kao i za ispitivanje neprovidnih uzoraka korišćenjem reflektovane svetlosti. Za razliku od klasičnih mikroskopa, kod stereomikroskopa češće se koristi reflektovano osvetljenje od transmitovanog, što omogućava posmatranje neprovidnih uzoraka. Karakteristike koje izdvajaju ovaj tip mikroskopa su velika radna razdaljina i dubina polja, koji stoje u inverznom odnosu sa rezolucijom. Uvećanje ovog tipa mikroskopa je do 180×, pri čemu postoje dva sistema uvećanja. Jedan sistem je fiksirano uvećanje gde se primarno uvećanje postiže pomoću uparenih sočiva objektiva sa podešenim stepenom uvećanja. Drugi sistem predstavlja zoom uvećanje koje se može menjati.

2.5. GEOLOŠKA GRANICA KREDA-PALEOGEN

Zadnjih 540 miliona godina geološke istorije Zemlje podeljeno je na tri geološke ere: paleozoik, mezozoik i kenozoik (slika 2.17). Mezozoik obuhvata tri perioda: trijas, juru i kredu, a kenozoik dva perioda: tercijar (paleogen i neogen) i kvartar.

Slika 2.17. Geološka vremenska skala

Kreda je kao poseban period prvi put definisana od strane belgijskog geologa Jean d'Omalius d'Halloy 1822. godine prilikom ispitivanja kalcijumkarbonata iz pariskog basena. Reč kreda potiče od latinske reči *Creta* što može da znači kreda. Geološki posmatrano, period krede je počeo nakon perioda jure pre 146 miliona godina (Ma) i trajao do početka tercijarske periode (65,5 Ma) i predstavlja granicu između era mezozika i kenozoika (slika 2.17). Ovaj period karakterišu velike klimatske promene, ali se i pored toga odlikuje relativno toplom klimom i visokim nivoom mora i okeana, tako da led na polovima verovatno nije postojao. Takođe, u ovom periodu superkontinent Pangea je završio svoj tektonski raspad na današnje kontinente, čije su tadašnje pozicije u odnosu na današnje drugačije, a količina kopna bila je za trećinu manja (Dixon et al., 2001). U kreda periodu pojavili su se prvi placentni sisari. Ovaj period se završio jednim od najvećih izumiranja kada su mnoge kopnene vrste nestale, uključujući i ptičje i neptičje dinosauruse, kao i nestanak velikih morskih reptila (slika 2.18). Ovaj period se može podeliti na ranu i kasnu kredu.

Slika 2.18. Ilustracija udara asteroida na kraju krede (period izumiranja dinosaurusa)

Paleogen je jedinica geološkog vremena koje je počelo pre 65 i završilo se pre 23 miliona godina. Predstavlja deo tercijara. Sastoji se od epoha paleocena, eocena i oligocena. Paleogenu prethodi period krede, a sledi ga epoha miocena u periodu neogena.Period je trajao oko 42 miliona godina i postao poznat kao vreme u kome su sisari evoluirali od malih, jednostavnih oblika u različite životinje nakon masovnog izumiranja koje je završilo prethodni period krede. Neke od tih životinja će evoluirati u krupne oblike koji će dominirati kopnom, dok će druge biti sposobne živeti u okeanima i specifičnim kopnenim staništima. Ptice su prilično evoluirale tokom ovog perioda menjajući se u oblik nalik sadašnjim vrstama. Klima je bila nešto hladnija, a došlo je i do povlačenja mora iz Severne Amerike tokom perioda.

Poslednja velika biološka kriza odigrala se upravo pre oko 65.5 Ma na prelazu geoloških perioda krede i paleogena. Američki nobelovac Luis W. Alvarez (Alvarez et al., 1980), je kao povod naveo udar asteroida prečnika oko 10 km o površinu Zemlje (najverovatnije u Chicxulub, Yucatan, Mexico). Kao glavni dokaz da se pomenuti događaj odigrao autori su naveli povećanu koncentraciju Ir (u Zemljinoj kori veoma redak, a u nebeskim telima veoma prisutan metal), u tankom sloju debljine nekoliko centimetara na lokacijama u Italiji, Danskoj i Novom Zelandu (30, 160 i 20 puta), u odnosu na prosečan sadržaj ovog metala u vremenu KP događaja. Energetski posmatrano, smatra se da je ovaj udar bio milion puta jači od bombe bačene na Nagasaki i Hirošimu (Schulte et al., 2010).

Osim ove hipoteze postoje i alternativne koje se uglavnom odnose na na jaku vulkansku aktivnost u ovom periodu (Officer i Page, 1996), kao i teorije o udaru većeg broja asteroida u geološki bliskom vremenskom intervalu (Keller et al., 2003). U prilog ovoj teoriji govori postojanje kratera u Ukrajini, Severnom moru, Silverpit-u i kontraverzni Shiva krater u Indiji. Nedavno su odbačene teorije o vulkanskoj aktivnosti i ostale teorije kao mogući uzrok KP događaja, a prihvaćen udar asteroida u Chicxulub-u kao uzrok masovnog izumiranja vrsta.

2.5.1. LOKACIJA, GEOLOGIJA I STRATIGRAFIJA ISPITIVANIH UZORAKA

Stevns Klint predstavlja primorsku liticu dužine oko 14.5 km, koja se nalazi na ostrvu Sjælland, na jugoistočnoj obali Danske, oko 45 km južno od Kopenhagena (slika 2.19). Ova litica se proteže od Præsteskov-a na severu do Rødvig-a na jugu.

Slika 2.19. Karta Danske

Lokalitet Kirkevig sa koga je vršeno uzorkovanje analiziranih uzoraka od strane osoblja Østsjællands Museum-a, nalazi se severno od stare crkve Højerup (slike 2.19, 2.20), ispod građevinskog elementa koji je postavljen na samoj litici. Za uzorke Riblje gline sa ovog lokaliteta još uvek nije urađena detaljna geohemijska analiza tragova metala. Detaljnu stratigrafiju ovog sedimenta dao je Surlyk et al. (2006) a formaciju su nazvali Højerup Mb.

Slika 2.20. Skica dela Stevn Klint litice sa lokalitetom Kirkevig

Termin Riblja glina (Fish Clay) za glineni sloj nastao između geoloških perioda krede i paleogena na lokalitetu Stevns Klint prvi je upotrebio danski pionir geologije Georg Forchammer (1847), koji je pronašao fosilne ostatke riba. Riblja glina sa lokaliteta Kirkevig je karakteristični granični KP sloj (u starijim radovima kreda-tercijar; K-T) koji je deo Stevns Klint basena. Za razliku od ostalih pronađenih u svetu razlikuje se po načinu sedimentacije što ga čini interesantnim za geohemijska istraživanja. U ovoj disertaciji akcenat je stavljen na ispitivanje podslojeva IIIA i IIIB Riblje gline.

Slika 2.21. Satelitski snimak Kirkeviga

Riblja glina u malom morskom basenu Stevns Klint nalazi se između sloja biogenog kalcita nastalog u geološkom periodu kreda i biogenog kalcita iz geološkog perioda paleogen.

2.5.2 PREGLED RANIJIH ISPITIVANJA RIBLJE GLINE

Litologiju Riblje gline prvi je opisao Christensen et al., 1973. Ova K-P granica podeljena je na četiri različita sloja: donji sloj II (Mastriški sivi laporac), srednji III (sivi do crni laporac), srednji IV (sivi laporac) i gornji sloj V (svetlo-sivi laporac) (slika 2.22). Donji sloj II je sloj krede formiran u toku mastrihta dok je gornji sloj V prekriven danijanskim cerithium krečnjakom (VI), koji je nastao od morskih kalcitnih mikroorganizama.

Slika 2.22. Stratigrafija Riblje gline

U toku daljih istraživanja (Elliott, 1993) sloj III je podeljen na dva podsloja: crveni sloj IIIA (bogat Fe-oksidima) i crni laporac IIIB (slika 2.22). Sloj IIIA predstavlja veoma tanku naslagu (maksimum 0.3-0.5 cm), sa karakteristično visokim sadržajem mikrosfera (Schmitz, 1985) i dela nepromenjenog/promenjenog udarom nastalog stakla, granula kvarca i meteoritskih fragmenata (Bauluz et al., 2000; Bohor et al., 1985). Crni laporac, IIIB podsloj Riblje gline (maksimalne debljine 5-10 cm) ima visok sadržaj Ir (Schmitz, 1988; Graup et al., 1992), čađi (Wolbach et al., 1988) i kerogena obogaćenog Cu²⁺-porfirinima (Premović et al., 2000). Slojevi IIIA, IIIB i IV uzeti su za sastavni, većinski deo K-P granice Højerup sekcije. Međutim, u ovom KP graničnom sloju ne postoji oštra granica između sloja IIIB i sloja IV, tako da se teško primećuje razlika između vrha sloja IIIB i osnove sloja IV.

Zasnovano na paleološkim i geohemijskim dokazima o Ribljoj glini, (Hulteberg 1986, 1987; Premović et al., 2001, 2006a, 2006b, 2007, 2008a) predloženo je da su se mastriške lokalne površinske vode ulile u Stevns Klint more i postale izvor detritalnog materijala u slojevima III i IV. Kasnije opadanje priliva površinskih voda uslovilo je nastanak sloja V. Cerithium krečnjak (sloj VI, završni sloj Riblje gline) definitivno ukazuje na povratak normalnih morskih sedimentacionih uslova sličnih onim u slojevima i i II. Biostratigrafske studije (Schmitz et al., 1992; Håkannson i Thomsen, 1999) danskog basena ukazuju da su se glavne padavine odigrale u toku kasnog mastrihta i ranog danskog kata. Nakon padavina, morski nivo je porastao i normalni morski uslovi su se ponovo vratili. Značajno je da se dotok sveže vode na lokalitetu Højerup podudara sa niskim nivoom mora (Hulteberg 1987).

Slika 2.23. Geološka karta ostrva Sjælland

Minerologija Riblje gline je relativno jednostavna. Uzorak je sastavljen od autigenog (biogenog) kalcita i smektita (ovo su glavne komponente) i sadrži male količine kvarca, kerogena, Fe³⁺-oksida, liskuna (ilit) i kerogena. Minerološka istraživanja Riblje gline pokazala su da je "cheto" Mg-smektit preovlađujući glineni mineral (Elliot 1993). Istraživanja bazirana na geohemiji glavnih tragova metala i minerologiji gline su pokazala da centralni delovi Riblje gline (III/IV) sadrže smektit, nastao diagenetskom promenom vulkanskog pepela (Rampino & Reynolds, 1983; Hansen et al., 1986; Premović et al., 1993, 2000, 2006a, 2008; Elliott, 1993; Elliott et al., 1989). Ispitivanja IIIB glinene frakcije (Premović et al., 2001, 2006a, 2008a; Drits et al., 2004) potvrđuju prethodne teorije o nastanku smektita i ukazuju na mogućnost da je manji deo ovog minerala mogao nastati pod uticajem padavina uzrokovanih udarom asteroida ili materijala nastalog kao posledica udara. Nedavna istraživanja (Drits et al., 2004) pokazuju da se smektitna frakcija sastoji iz dve faze: visoko smektitne (70 %), koja ima 95 % smektita i 5 % ilita i nisko smektitne (30 %), koja ima 50 % ilita.

Slika 2.24. Fotografija Stevns Klint litice

3. Eksperimentalni deo

3.1. HEMIJSKA OBRADA UZORAKA

3.1.1. FRAKCIONA ANALIZA

Da bi se dobili podaci o ukupnom sadržaju, kao i sadržaju metala u tragovima u svakoj fazi rastvaranja, a time i o mobilnosti, biološkoj i fizičkohemijskoj dostupnosti, ali i o mogućem poreklu metala u sedimentu, koristi se metoda frakcione analize.

Frakciona analiza (selektivna ekstrakcija) je metoda kojom se sukcesivnom primenom ekstrakcionih sredstava rastuće ekstrakcione moći, selektivno rastvaraju sasvim određene, specifično vezane frakcije metala iz istog uzorka geološkog materijala (sedimenta).

Slika 3.1. Šematski prikaz celokupnog toka analize

Analizom mineralnih asocijacija mogu se odrediti fizičko-hemijski uslovi u kojima su nastale pojedine mineralne vrste u uzorku. Prilikom geohemijskih ispitivanja od posebne je važnosti utvrditi mineralni sastav ispitivanog materijala, mineralne oblike u kojima se značajni elementi javljaju i odrediti minerale vrste sa kojima čine geohemijsku asocijaciju.

Na slici 3.1. dat je šematski prikaz celokupnog toka hemijske i fizičkohemijske analize uzoraka. Korišćen je postupak modifikovale selektivne ekstrakcije po Tessier-u (Tessier et al., 1979; Zakir i Shikazono, 2011). Pre rastvaranja uzoraka vršeno je fino usitnjavanje celokupne sedimentne stene u vibracionom mlinu do veličine zrna od 100 µm i snimljeni su FTIC i XRD spektri ispitivanih uzoraka, kako bi se odredile prisutne funkcionalne grupe i minerali i potvrdilo njihovo kvantitativno uklanjanje nakon različitih rastvaranja.

3.1.1.1. Rastvaranje Na-acetatom

Odmerena masa uzorka se u malim količinama dodaje u 25 cm³ CH₃COONa (1M) na pH 5 (jer se smatra da ova pH sredina ne utiče na minerale glina) na sobnoj temperaturi u cilju otklanjanja najvećeg dela karbonata. Rastvor se meša na magnetnoj mešalici u trajanju od 6h. Nakon mešanja, rastvor se centrifugira i ispira do kvantitativnog uklanjanja acetata iz taloga. Nakon ispiranja i sušenja, čvrst ostatak je izmeren, i na osnovu razlike početne mase i mase ostatka, određena je frakcija rastvorna u Naacetatu (Chester i Hughes, 1967). Kvantitativnost otklanjanja karbonata je proveravana FTIC spektroskopijom, nestajanjem CO_3^{2-} IC trake na 712 cm⁻¹ i 875 cm⁻¹.

Tretiranje uzoraka 1M CH₃COONa (pH 5) na sobnoj temperaturi primenjuje se u cilju razdvajanja lako rastvornih karbonata i adsorbovanih

vrsta od ostalih minerala i prevođenje metalnih katjona prisutnih u ovoj frakciji u tečnu fazu.

3.1.1.2. Rastvaranje hidroksilamonijum-hloridom

Geohemija metala u tragovima u sedimentima vodenih sistema je uglavnom vezana za ciklus Fe, pri čemu kapacitet vezivanja u velikoj meri zavisi od oblika u kome je Fe vezan (Li et al., 1995). Sedimenti sadrže Fe(III)-oksid u različitim oblicima koji obično predstavljaju kompleksne smeše, čije osobine variraju u širokom opsegu u pogledu stepena kristalne strukture, veličine čestica, specifične površine i reaktivnosti (Smith i Jenne, 1991; Zachara et al., 1992; Uygur i Rimmer, 2000). Razlikujemo rastvaranje hidroksilamonijum hloridom u HCl (za otklanjanje amorfnih Feoksihidroksida) i rastvaranje hidroksilamonijum hloridom u CH₃COOH (za otklanjanje kristalnih Fe-oksida i preostalih nerastvornih Fe-oksihidroksida).

3.1.1.3. Rastvaranje hidroksilamonijum-hloridom u HCl

Primenjuje se za rastvaranje amorfnih Fe-oksihidroksida (Fe(OH)₃). Zbog velike specifične površine, amorfni Fe oksihidroksidi predstavljaju jednu od najvažnijih geohemijskih faza jer utiču na mobilnost i ponašanje metala u sedimentu. Metali vezani za amorfnu Fe-oksihidroksidnu frakciju su nestabilni u redukcionim uslovima. Ovi uslovi dovođe do oslobađanja jona metala i njihovog prelaska u rastvornu frakciju (Chao i Zhou, 1983; Hall et al., 1996; Wang et al., 2010; Turner, 2000; Bilinski et al., 1991).

Nakon tretmana Na-acetatom, odmereni nerastvorni ostatak dodavan je u malim količinama u 25 cm³ rastvora NH₂OH·HCl (0.25 M) u 0.25 M HCl uz zagrevanje na 60 °C. Rastvor se meša na magnetnoj mešalici u trajanju od 2 h. Nakon mešanja rastvori su centrifugirani i isprani do negativne reakcije na hloride. Talog je sušen u električnoj sušnici na 100 °C i meren. Iz razlika masa pre i nakon tretmana izračunat je procenat frakcije rastvorne u hidroksilamonijum hloridu u HCl.

3.1.1.4. Rastvaranje hidroksilamonijum-hloridom u CH₃COOH

Primenjuje se za rastvaranje kristalnih Fe-oksida (hematit - Fe_2O_3 i getit - FeOOH). Metali vezani za kristalnu Fe-oksidnu frakciju, takođe su nestabilni u redukcionim uslovima gde dolazi do oslobađanja jona metala i prevođenja u rastvornu frakciju (Tack et al., 2006; Jenne, 1968).

Nakon tretmana sa hidroksilamonijum hloridom u HCl, odmereni nerastvorni ostatak dodavan je u malim količinama u 25 cm³ rastvora NH₂OH·HCl (1 M) u 25% CH₃COOH uz zagrevanje na 90°C. Rastvor se meša na magnetnoj mešalici u trajanju od 3 h. Nakon mešanja rastvori su centrifugirani i isprani do negativne reakcije na hloride. Talog je sušen u električnoj sušnici na 100 °C i meren. Iz razlika masa pre i nakon tretmana izračunat je procenat frakcije rastvorne u hidroksilamonijum hloridu u CH₃COOH.

3.1.1.5. Rastvaranje HF-om

Tačno odmerenom nerastvornom ostatku, dodavano je u malim porcijama, da bi se sprečilo pregrevanje rastvora, 30 cm³ smese HF (22 M) i HCl (12 M) u odnosu 3:1 (v/v). HCl se koristi kako bi se sprečilo stvaranje teško rastvornih fluorida (CaF₂, MgAlF₅). Smesa se zagreva u teflonskoj čaši na 80 °C, uz neprekidno mešanje i dodavanje, po potrebi, novih količina smese kiselina do potpunog rastvaranja smektitnih i silikatnih minerala. Nakon rastvaranja, filtrat je uparen na 10 cm³, dodato je 10 cm³ HCl (12M), da bi se uklonio višak HF, a zatim je ponovo uparen do zapremine od oko 10 cm³. Nerastvorni ostatak je ispran destilovanom vodom, do negativne reakcije na hloride. Isprani ostatak je sušen na 100 °C i izmeren. Dobijena razlika mase predstavlja frakciju rastvornu u HF. Kvantitativnost uklanjanja smektitnih i silikatnih minerala proverava se FTIC spektroskopijom. Nerastvorni ostatak mogu činiti i teško rastvorni minerali kao cirkon, topaz, korundi, rutil, halkopirit, sfalerit i novonastali nerastvorni fluoridi, kao i neki teško rastvorni fosfati.

3.1.1.6. Rastvaranje natrijum-karbonatom

Rastvaranje sa anhidrovanim Na₂CO₃ (suvo topljenje) obično se izvodi u platinskom lončiću ali samo u slučaju ako u uzorku nisu prisutni metali koji se mogu sjediniti ili graditi legure sa platinom (Ag, Hg, Pb, itd.). Pošto ispitivani uzorci sadrže srebro i olovo, topljenje je izvršeno u porculanskom lončiću.

Fino usitnjeni uzorak se pomeša sa šestostrukom količinom anhidrovanog natrijum Na₂CO₃ i unese u porculanski lončić čije je dno prethodno prekriveno tankim slojem anhidrovanog karbonata. Smeša koja obično ne prelazi polovinu lončića, takođe se prekriva slojem karbonata. Ovaj postupak se izvodi u peći za žarenje. Polazi se sa nižom temperaturom i kontinuirano se povećava do 900 °C, na kojoj se žari još pola sata. Smeša se polako i veoma teško topi, a rastvaranje je završeno kada pređe u rastvoran oblik. Po završetku žarenja, posle hlađenja u eksikatoru, lončić se stavlja u porculansku šolju i kuva sa vodom, sve dok se stopljena masa ne raskuva a nakon toga centrifugira.

3.2. ANALITIČKE TEHNIKE

3.2.1. STEREOMIKROSKOPIJA

Stereo-mikroskopski snimci urađeni su u Laboratoriji za geohemiju, kosmohemiju i astrohemiju, Univerziteta u Nišu, na Krüss KSW5400/5600 (Nemačka) stereo-mikroskopu sa maksimalnim optičkim uvećanjem od 180×. Za snimanje je korišćen digitalni fotoaparat NIKON Coolpix 4500 koji je specijalnim nastavkom povezan sa mikroskopom.

3.2.2. SKENIRAJUĆA ELEKTRONSKA MIKROSKOPIJA

SA MIKROANALIZOM X-ZRAKA (SEM/EDS)

SEM/EDS snimci i elementarna analiza urađeni su u Univerzitetskom centru za elektronsku mikroskopiju, Medicinskog fakulteta u Nišu, na JEOL JSM-5300 elektronskom mikroskopu sa Tracor TN-2000 energetskodisperzivnim spektrometrom X-zraka.

Pre analize, uzorci su oblikovani na mesinganoj podlozi i naparavani u vakuumu pomoću argona tankim slojem zlata. Za snimanje je korišćen napon ubrzanja od 30 keV sa strujnim mlazom od 0.1 µm.

Važnost stereomikroskopske analize je da daje informacije o teksturi i veličini pojedinih čestica u uzorku. Veoma je značajna njena uloga u predpripremi i identifikaciji čestica uzorka za analizu elektronskim mikroskopom.

3.2.3. FOURIER-OVA TRANSFORMACIONA INFRACRVENA (FTIC) SPEKTROSKOPIJA

Snimanje FTIC spektara izvršeno je u Laboratoriji za spektroskopiju, Tehnološkog fakulteta u Leskovcu. FTIC analiza uzoraka urađena je korišćenjem BOMEM Michelson Hartman & Braun Series MB spektroskopa, u oblasti od 4000-400 cm⁻¹, pri rezoluciji od 2 cm⁻¹.

Za snimanje FTIC spektara korišćen je tzv. "kalijum-bromidni" postupak pripreme čvrstih uzoraka. Ispitivani uzorci se najpre fino usitnjavaju u vibracionom mlinu do veličine čestica od oko 100 µm i ravnomerno disperguju u KBr spektroskopske čistoće, koji je prethodno pretopljen na 700 °C, usitnjen i čuvan u električnom eksikatoru zagrejanom na 30 °C a sve u cilju eliminacije vlage. Na analitičkoj vagi se odmeri 1.5 mg fino samlevenog uzorka i pomeša sa 150 mg spektroskopski čistog KBr (Merck). Kako bi se izbegla difrakcija IC zraka prilikom snimanja, uzorak se mora prethodno, zajedno sa KBr, dobro usitniti i sjediniti u vibracionom mlinu (Perkin-Elmer). Smesa se zatim podvrgava vakuumiranju tako što se presuje na hidrauličnoj presi (Perkin-Elmer) pod pritiskom od 200 MPa, pri čemu se dobija odgovarajuća homogena pastila. Kako je KBr izrazito higroskopan i osetljiv čak i na atmosfersku vlagu, prilikom snimanja spektara mogu se pojaviti trake koje potiču od vode. Iz ovog razloga, potrebno je pripremiti pastilu od čistog KBr koja služi kao referentna.

Ovom tehnikom urađena je analiza netretiranih uzoraka i dobivenih frakcija, čime je proveravana kvantitativnost uklanjanja pojedinih mineralnih faza. Da bi se izbegla pojava signala karakterističnih za vodu koja potiče od apsorbovane vlage, a koji mogu zakloniti trake koje potiču od strukturalno vezane vode upotrebljava se drugi postupak pripreme uzoraka za FTIC. Samleveni uzorak (veličine čestica do 2 µm) se disperguje u mineralnom ulju NUJOL P/N 3620 (Graseby Specac, USA) pri čemu se dobija pasta. Pasta se priprema mešanjem 10 mg usitnjenog uzorka i 1-2 kapi NUJOL ulja, a zatim se nanosi između dve KBr pločice, kako bi se formirao tanak film. Najpre su snimaju spektri uzoraka pripremljeni na sobnoj temperaturi, a zatim spektri uzoraka nakon dvočasovnog sušenja na 100 °C.

3.2.4. RENTGENSKA DIFRAKCIJA

Ispitivanje mineralnog sastava uzoraka urađeno je u Laboratoriji za materijale, Instituta za nuklearne nauke (Vinča), na difraktometru za prah koji je deo automatizovanog sistema SIEMENS D500. Difraktogrami (dijagrami) su dobijeni sa CuK α zračenjem ($\lambda = 1,54184$ Å), nastalim u rendgenskoj cevi pri struji od 20 mA i naponu od 35 kV, propuštenom kroz Ni-filter postavljen ispred detektora zračenja. Difraktovano zračenje je registrovano scintilacionim brojačem, a posredstvom merne elektronike dobijen je broj kao mera intenziteta. Grafički prikaz difraktograma i njihova analiza vršeni su softverom Diffrac^{plus}. Pomoću programa Eva iz ovog softvera vršena je eliminacija doprinosa CuK α_2 komponente rendgenskog zračenja refleksijama, odnosno korekcija za CuK $\alpha_{1/2}$ dublet.

Dobijene su vrednosti intenziteta i uglova 2θ za refleksije, potom vrednosti rastojanja *d* između kristalnih ravni definisanih Miller-ovim indeksima *hkl* i najzad širina difrakcionih profila refleksija. Program Search/Match je omogućio poređenje difraktograma snimljenog uzorka sa bazom podataka koju čine difrakcioni podaci brojnih kristalnih supstanci na osnovu čega je vršena identifikacija kristalnih faza u uzorcima. Snimanje uzoraka je izvršeno u opsegu 2θ od 4 do 75° sa korakom 0.02° i vremenom zadržavanja od 0.5 s na svakom koraku.

3.2.5. OPTIČKA-EMISIONA SPEKTROMETRIJA SA INDUKOVANO SPREGNUTOM PLAZMOM (ICP-OES)

Određivanje koncentracije metala u tragovima vršeno je na ICP spektrometru, Spektroflame (snage 2.5 KW i frekvencije 27.12 MHz), firme Spektro (Nemačka), u Laboratoriji za fizičku hemiju, Instituta za nuklearne nauke (Vinča).

Dobiveni rastvori nakon selektivne ekstrakcije, obrađeni su raspršivanjem strujom Ar (1 dm³m⁻¹) kroz raspršivač, a dobiveni aerosol je uveden u strujni luk plazme U oblika. Luk je stabilizovan strujom Ar (Marinković and Vickers, 1971). Rastvori ispitivanih uzoraka razblaženi su 2.5 puta i raspršeni strujom Ar u stabilizovanom luku. Standardna devijacija određivanja je prosečno $\pm 0.08 \ \mu$ g/ml. Koncentracije su određivane iz kalibracione krive dobivene sa referentnim rastvorima.
4. Rezultati i diskusija

4.1. IIIA UZORAK RIBLJE GLINE

4.1.1. FRAKCIONA ANALIZA

U tabeli 4.1 prikazani su rezultati (izraženi u procentima) za svaku fazu frakcione analize uzorka IIIA Riblje gline.

Tabela 4.1. Frakciona analiza (± 2 %) uzorka IIIA

Uzorak	Karbonatna	Amorfna	Kristalna	Smektitna	Nerastvorna
IIIA	10	25	10	50	5

Kao što se iz tabele 4.1 može videti, ovaj uzorak se sastoji od karbonatne frakcije (~10 %), zatim amorfne Fe-oksihidroksidne frakcije sa oko 25 %, kristalne Fe-oksidne (~10 %) i smektitne frakcije oko 50 %, dok je oko 5 % mineraloški nedefinisan ostatak.

4.1.2. STEREOMIKROSKOPSKA ANALIZA

Na slici 4.1 prikazane su stereomikroskopske fotografije uzorka IIIA i to netretiranog uzorka (a) kao i svake frakcije selektivnog rastvaranja [b) nekarbonatna frakcija; c) frakcija posle uklanjanja amorfnih Fe-oksihidroksida; d) frakcija nakon uklanjanja kristalnih Fe-oksida; e) frakcija posle uklanjanja smektita]. Fotografije su uradjene na minimalnom (14×) i maksimalnom uvećanju (180×) stereomikroskopa. Na osnovu slike 4.1 (a, b, c) jasno se mogu uočiti (crveno obojeni) oksidi i oksihidroksidi Fe(III), koji se sledećim korakom rastvaranja uklanjaju, kao i čestice smektita (d).

Slika 4.1. Stereomikroskopske fotografije uzorka IIIA

4.1.3. SKENIRAJUĆA ELEKTRONSKA MIKROSKOPIJA (SEM)

SA MIKROANALIZOM X-ZRAKA (EDS)

SEM fotografije nekarbonatne frakcije uzorka IIIA, date su na slici 4.2 a EDS spektar na slici 4.3. Uklanjanje karbonatne frakcije iz uzorka omogućava bolje i lakše detektovanje prisutnih nekarbonatnih minerala. Na fotografijama se može videti da je smektit (prisustvo karakteristične lisnate strukture i smektitnih sfera) dominantan mineral u uzorku IIIA kome su uklonjeni karbonati.

Slika 4.2. SEM fotografije nekarbonatne frakcije uzorka IIIA

EDS spektar (slika 4.3) potvrđuje kvantitativno uklanjanje karbonata i daje geohemijske asocijacije prikazane na slici 4.2. Može se primetiti prisustvo jakih traka koji potiču od Si, Al, O i Fe.

Slika 4.3. EDS spektar nekarbonatne frakcije uzorka IIIA

4.1.4. FOURIER-OVA TRANSFORMACIONA INFRACRVENA (FTIC) SPEKTROSKOPIJA

Snimljeni su FTIC spektri uzorka IIIA i njegovih frakcija, kako bi se odredile trake karakteristične za pojedine hemijske grupe minerala netretiranog i hemijski tretiranog uzorka. To je takođe omogućilo praćenje kvantitativnog uklanjanja tih minerala hemijskim postupkom. Prisutne trake ovih uzoraka, njihov intenzitet kao i frekvencija na kojoj apsorbuju dati su u tabeli 4.2. Apsorpciona traka na 3613 cm⁻¹ potiče od valentnih vibracija O-H grupe koje su povezane sa Al iz oktaedarskog sloja smektita (slika 4.4). Prisustvo apsorpcione trake na ovoj frekvenciji je karakteristično za smektite koji poseduju visok udeo Al u oktaedarskom sloju. Trake na 3408 cm⁻¹ i 1636 cm⁻¹ potiču od vode, koja pak u smektitima može biti različito vezana (adsorbovana, kristalna i koordinirana). Adsorbovana voda se slabo vezuje između tetraedarskih slojeva i u FTIC spektru poseduje OH valentnu vibraciju na 3408 cm⁻¹. Pored valentne, adsorbovana voda poseduje i deformacione vibracije H-O-H grupe, što potvrđuje traka u regionu od 1628-1680 cm⁻¹. Kristalna voda je čvrsto vezana za površinu minerala u obliku jednog sloja, što u FTIC spektima predstavlja pregib na oko 3220 cm⁻¹.

Slika 4.4. FTIC spektar netretiranog uzorka IIIA

Traka na 1032 cm⁻¹ je povezana sa Si-O-Si valentnim vibracijama. Ona se u spektru smektita javlja kao široka traka sa pregibom na 1109 cm⁻¹ koji potiče od Si-O valentnih vibracija i njen oblik je karakterističan za ovaj mineral. Pošto je veoma jaka ona preklapa traku mikroklina na 1012 cm⁻¹. Deformacione OH trake dioktaedarskih smektita daju informacije o strukturi oktaedarskih slojeva. Tako je, traka na 916 cm⁻¹ povezana sa Al-OH, a traka na 794 cm⁻¹ sa (Al, Mg)-OH deformacionim vibracijama. Prethodni podaci mogu ukazati na mogućem izmenjivanju atoma Al sa atomima Mg u oktaedarskom sloju IIIA montmorionita. Trake na 520 cm⁻¹ i 470 cm⁻¹ predstavljaju deformacione vibracije, δ (Si-O-Al) odnosno δ (Si-O-Mg) i moguće su kod feldspata. Ostale trake (2515 cm⁻¹, 1794 cm⁻¹, 1428 cm⁻¹, 875 cm⁻¹,712 cm⁻¹) su karakteristične za karbonatne minerale, tj. kalcite.

Talasni broj [cm⁻¹]	Asignacija trake	Intenzitet
3613	v(Al-OH)	srednja
3408	ν(H-O-H)	srednja
3226	ν(H-O-H)	srednja
2515	ν(OH)	slaba
1794	v(C=O)	slaba
1636	δ(H-O-H)	srednja
1428	$v_3(CO_3^{2-})$	jaka
1109	v(Si-O)	jaka
1032	v(Si-O-Si)	jaka
916	δ(Al-OH)	slaba
875	$v_2(CO_3^{2-})$	srednja
794	δ(Al,Mg-OH)	slaba
712	$v_4(CO_3^{2-})$	slaba
520	δ(Si-O-Al)	srednja
470	δ(Si-O-Mg)	srednja

Tabela 4.2. Identifikovane trake u FTIC spektru uzorka IIIA

Da bi se utvrdila priroda prisutne vode u uzorcima (adsorbovana, kristalna, koordinirana) urađeni su FTIC spektri netretiranih uzoraka u NUJOL-u kao osnovi (slika 4.5). Mogu se uočiti vibracione i deformacione trake karakteristične za OH-grupu vode na 3408 cm⁻¹ i 1636 cm⁻¹ kako u uzorcima pre, tako i nakon sušenja na 110 °C. Ovakvi rezultati ukazuju na kristalnu prirodu prisutne vode.

Slika 4.5. FTIC spektri uzorka IIIA u NUJOL-u, pre i posle sušenja

Slika 4.6. FTIC spektar uzorka IIIA posle 1M CH₃COONa (pH 5)

Nakon ove prve faze rastvaranja, kod uzorka IIIA kvantitativno uklanjanje karbonata potvrđuje nestanak CO_3^{2-} traka na 2515, 1794, 1428, 875 i 712 cm⁻¹ (slika 4.6), što je i dokaz o kvantitativnom otklanjanju ove frakcije. Dobiveni ostatak nakon uklanjanja karbonatne frakcije je nekarbonatna frakcija, koja se dalje demineralizuje kiselinama.

Kvantitativnost uklanjanja oksida metala pomoću 0.25 M NH₂OH·HCl u 0.25 M HCL u ovim uzorcima ne može se dokazati FTIC-om jer trake glina pokrivaju trake oksida (slika 4.7). FTIC analiza glinenih uzoraka se koristi za identifikaciju minerala koji se ne mogu ili teško mogu otkriti XRD analizom. Takođe moguća je i identifikacija adsorbovanih vrsta na površini minerala, proučavanje vode u glinama, praćenje i kontrolisanje katjonske supstitucije na FTIC spektre različitih glinenih minerala.

Slika 4.7. FTIC spektar uzorka IIIA posle 0.25 M NH₂OH·HCl u 0.25 M HCL

Ne postoji značajna razlika između spektara uzoraka tretiranih 0.25 M NH₂OH·HCl u 0.25 M HCL na 60° C (slika 4.7) i uzoraka tretiranih 1M NH₂OH·HCl u 25% CH₃COOH na 80° C (slika 4.8).

Slika 4.8. FTIC spektar uzorka IIIA posle 1M NH₂OH·HCl u 25% CH₃COOH

4.1.5. RENTGENSKA DIFRAKCIONA ANALIZA

Mineralni sastav uzorka određen je primenom rentgenske difrakcione analize na uzorak IIIA u prahu. Urađena je kvalitativna i semikvantitativna analiza i dobiveni su odgovarajući spektri.

Na spektru (Slika 4.9) može se videti da je smektit (montmorionit) glavna mineralna komponenta, zatim karbonat (kalcit) i feldspat (mikroklin), saglasno rezultatima selektivnog rastvaranja kao i FTIC analize.

Slika 4.9. Difraktogram uzorka IIIA

Pored kvalitativne rentgenske difrakcione analize, urađena je i semikvantitativna analiza uzorka IIIA (slika 4.10). Ova analiza pokazuje da uzorak sadrži 70 % smektita i 30 % kalcita.

Slika 4.10. Semikvantitativni difraktogram uzorka IIIA

4.1.6. ICP-OES ANALIZA

U tabeli 4.3. date su geohemijske koncentracije ispitivanih metala dobijene frakcionom analizom uzorka IIIA.

Tabela 4.3. Geohemijska koncentracija V, Cr, Co, Ni, Cu i Zn [±5 ppm]dobijena frakcionom analizom uzorka IIIA

Frakcija	Glina (%)	V	Cr	Co	Ni	Cu	Zn
Karbonatna	10	<10	<10	20	100	20	350
Amorfna	25	28	12	72	572	92	1440
Kristalna	10	40	50	540	4050	210	4950
Smektitna	50	192	202	22	84	12	90
Nerastvorna	5	60	20	<20	<20	60	100

Tabela 4.4. Geohemijska raspodela V, Cr, Co, Ni, Cu i Zn u frakcijama uzorka IIIA

М	etal	Ukupno	Karbonatna	Amorfna	Kristalna	Smektitna	Nerastvorna
V	ppm	110	<1	7	4	96	3
•	%	100	<1	6	4	87	3
Cn	ppm	110	<1	3	5	101	1
Cr	%	100	<1	3	5	92	<1
Ca	ppm	85	2	18	54	11	<1
CO	%	100	2	21	64	13	<1
NI:	ppm	600	10	143	405	42	<1
INI	%	100	2	24	67	7	<1
C	ppm	55	2	23	21	6	3
Cu	%	100	4	42	38	11	5
7	ppm	940	35	360	495	45	5
Ln	%	100	4	38	53	5	<1

Geohemijska raspodela ispitivanih metala u pet frakcija uzorka IIIA prikazana je u tabeli 4.4. Rezultati pokazuju da se najveći deo ispitivanih metala u uzorku podsloja IIIA nalazi u oksidnoj frakciji (Co, Ni, Cu i Zn), dok u smektitnoj frakciji najviše ima V i Cr.

Frakcija	Glina (%)	Fe	Mn
Karbonatna	10	<10	10
Oksidna	35	7.7×10^4	74
Smektitna	50	5.9×10^{3}	14
Nerastvorna	5	<20	20

Tabela 4.5. Geohemijska koncentracija Fe i Mn [±5 ppm]dobijenaselektivnim rastvaranjem uzorka IIIA

Tabela 4.6. Geohemijska raspodela Fe i Mn u frakcijama uzorka IIIA

M	etal	Ukupno	Karbonatna	Oksidna	Smektitna	Nerastvorna
Fo	ppm	3.0×10^4	<1	2.7×10^4	3.0×10^{3}	<1
ГU	%	100	<1	90	83	8
Mn	ppm	35	1	26	7	1
17111	%	100	3	74	20	3

Tabela 4.7. Proračunate koncentracije [ppm] oksida ispitivanih metala zauzorak IIIA

IIIA	V_2O_5	CrO ₃	CoO	NiO	CuO	ZnO	Fe ₂ O ₃	Mn ₂ O ₇
Amorfni	12	6	23	182	35	446	9.2×10 ³	42
Kristalni	7	9	69	514	26	614	3×10 ⁴	10
Ukupni	19	15	92	696	61	1060	3.9×10 ⁴	52

U tabeli 4.7, date su koncentracije karakterističnih oksida ispitivanih metala u izrazito kiseoničnoj sredini za uzorak IIIA. Ukupna koncentracija vanadijum (V) oksida iznosi 19 ppm (12 ppm u amorfnoj i 7 ppm u kristalnoj fazi), a Cr (VI) oksida 15 ppm (6 ppm u amorfnoj i 9 ppm u kristalnoj fazi). U odnosu na ukupne okside u uzorku, sadržaj V-oksida i Cr-oksida je veoma nizak i iznosi oko 0.04 % (tabela 4.8). Ukupna koncentracija Mn (VII) oksida iznosi 52 ppm, Cu (II) oksida 61 ppm a Co (II) oksida 92 ppm. Sadržaj ovih oksida u odnosu na ukupne okside iznosi 0.13 %, 0.15 % i 0.22 % (tabela 4.15). Nikl (II) oksid je prisutan u koncentraciji od 696 ppm (182 ppm u amorfnoj i 514 ppm u kristalnoj fazi) što čini 1.71 % ukupnih oksida, dok je Zn (II) oksid prisutan u koncentraciji od 1060 ppm (446 ppm u amorfnoj i 614 ppm u kristalnoj fazi) što predstavlja 2.61 % svih oksida. Fe (III) oksid čini 95.1 % od ukupnih oksida i pretežno se nalazi u kristalnoj frakciji.

	V ₂ O ₅	CrO ₃	CoO	NiO	CuO	ZnO	Fe ₂ O ₃	Mn ₂ O ₇
IIIA	0.04	0.04	0.22	1.71	0.15	2.61	95.10	0.13
IIIB	0.26	0.22	0.16	0.81	0.48	2.23	94.88	0.96

Tabela 4.8. Sadržaj [%] proračunatih oksida u odnosu na ukupne okside

4.2. IIIB UZORAK RIBLJE GLINE

4.2.1. FRAKCIONA ANALIZA

U tabeli 4.9. prikazani su rezultati (izraženi u procentima) za svaku fazu frakcione analize uzorka IIIB Riblje gline.

Tabela 4.9. Frakciona analiza (± 2 %) uzorka IIIB

Uzorak	Karbonatna	Amorfna	Kristalna	Smektitna	Nerastvorna
IIIB	40	20	10	25	5

Kao što se iz tabele 4.9 može videti, ovaj uzorak sadrži karbonatnu frakciju (~40 %), zatim amorfnu Fe-oksihidroksidnu frakciju (~20 %), kristalnu Fe-oksidnu (~10 %) i smektitnu frakciju oko 25 %, dok je oko 5 % mineraloški nedefinisan ostatak.

4.2.2. STEREOMIKROSKOPSKA ANALIZA

Na slici 4.11 prikazane su stereomikroskopske fotografije uzorka IIIB i to netretiranog uzorka (a) kao i svake frakcije selektivnog rastvaranja [b) nekarbonatna frakcija; c) frakcija posle uklanjanja amorfnih Feoksihidroksida; d) frakcija nakon uklanjanja kristalnih Fe-oksida; e) frakcija posle uklanjanja smektita]. Fotografije su uradjene na minimalnom (14×) i maksimalnom uvećanju (180×) stereomikroskopa. Na osnovu slike 4.11 (a, b, c) jasno se mogu uočiti karbonati, oksidi i oksihidroksidi Fe(III), koji se sledećim korakom rastvaranja uklanjaju, kao i čestice smektita (d).

Slika 4.11. Stereomikroskopske fotografije uzorka IIIB

4.2.3. SKENIRAJUĆA ELEKTRONSKA MIKROSKOPIJA (SEM)

SA MIKROANALIZOM X-ZRAKA (EDS)

SEM fotografije uzorka IIIB nakon uklanjanja karbonata, date su na slici 4.12 a EDS spektar na slici 4.13. Uklanjanje karbonatne frakcije iz uzorka omogućuje bolje i lakše detektovanje prisutnih minerala. Na fotografijama se može primetiti da je smektit dominantan mineral u nekarbonatnoj frakciji uzorka (postojanje karakteristične lisnate strukture).

Slika 4.12. SEM fotografije nekarbonatne frakcije uzorka IIIB

EDS spektar (slika 4.13) potvrđuje kvantitativno uklanjanje karbonata i na njemu se može videti dominantna Si-traka koja potiče od minerala glina. Takođe su intenzivne trake O, Al i Mg.

Slika 4.13. EDS spektar nekarbonatne frakcije uzorka IIIB

4.2.4. FOURIER-OVA TRANSFORMACIONA INFRACRVENA (FTIC) SPEKTROSKOPIJA

Snimljeni su FTIC spektri uzorka IIIB i njegovih frakcija, kako bi se odredile trake karakteristične za pojedine hemijske grupe minerala netretiranog uzorka i nakon selektivnog hemijskog tretiranja potvrdilo kvantitativno uklanjanje tih minerala. Prisutne trake ovih uzoraka, njihov intenzitet kao i frekvencija na kojoj apsorbuju dati su u tabeli 4.10.

Apsorpciona traka na 3623 cm⁻¹ potiče od valentnih vibracija O-H grupe koje su povezane sa Al iz oktaedarskog sloja. Prisustvo apsorpcione trake na ovoj frekvenciji je karakteristično za smektite koji poseduju visok udeo Al u oktaedarskom sloju. Trake na 3426 cm⁻¹ i 1637 cm⁻¹ potiču od vode, koja pak u smektitima može biti različito vezana (adsorbovana, kristalna i koordinirana). Adsorbovana voda se slabo vezuje između

tetraedarskih slojeva i u FTIC spektru poseduje OH valentnu vibraciju na 3426 cm⁻¹. Pored valentne, adsorbovana voda poseduje i deformacione vibracije H-O-H grupe, što potvrđuje traka u regionu od 1628-1680 cm⁻¹. Kristalna voda je čvrsto vezana za površinu minerala u obliku jednog sloja, što u FTIC spektima predstavlja pregib na oko 3233 cm⁻¹.

Slika 4.14. FTIC spektar netretiranog uzorka IIIB

Traka na 1036 cm⁻¹ je povezana sa Si-O-Si valentnim vibracijama. Ona se u spektru montmorionita javlja kao široka traka sa pregibom na 1089 cm⁻¹ koji potiče od Si-O valentnih vibracija. Pošto je veoma jaka ona preklapa traku mikroklina na 1012 cm⁻¹. Deformacione OH trake dioktaedarskih

smektita daju informacije o strukturi oktaedarskih slojeva. Tako je, traka na 914 cm⁻¹ povezana sa Al-OH, a traka na 796 cm⁻¹ sa (Al, Mg)-OH deformacionim vibracijama. Prethodni podaci mogu ukazati na mogućem izmenjivanju atoma Al sa atomima Mg u oktaedarskom podsloju IIIB montmorionita.

Trake na 524 cm⁻¹ i 470 cm⁻¹ predstavljaju deformacione vibracije, δ (Si-O-Al) odnosno δ (Si-O-Mg) i moguće su kod feldspata. Ostale trake (2514 cm⁻¹, 1794 cm⁻¹, 1429 cm⁻¹, 876 cm⁻¹,714 cm⁻¹) su karakteristične za karbonatne minerale, tj. kalcite.

Talasni broj [cm ⁻¹]	Asignacija trake	Intenzitet
3613	v(Al-OH)	srednja
3426	ν(H-O-H)	srednja
3233	ν(H-O-H)	srednja
2514	ν(OH)	slaba
1794	v(C=O)	slaba
1637	δ(H-O-H)	srednja
1429	$v_3(CO_3^{2-})$	jaka
1089	v(Si-O)	jaka
1036	v(Si-O-Si)	jaka
914	δ(Al-OH)	slaba
876	$v_2(CO_3^{2-})$	srednja
796	δ(Al,Mg-OH)	slaba
714	$v_4(CO_3^{2-})$	slaba
524	δ(Si-O-Al)	srednja
470	δ(Si-O-Mg)	srednja

Tabela 4.10. Identifikovane trake u FTIC spektru uzorka IIIB

Da bi se utvrdila priroda prisutne vode u uzorcima (adsorbovana, kristalna, koordinirana) urađeni su FTIC spektri netretiranih uzoraka u NUJOL-u kao osnovi (Slika 4.15). Mogu se uočiti vibracione i deformacione trake karakteristične za OH-grupu vode na 3426 cm⁻¹ i 1637 cm⁻¹ kako u uzorcima pre, tako i nakon sušenja na 110 °C. Ovakvi rezultati ukazuju na kristalnu prirodu prisutne vode.

Slika 4.15. FTIC spektri uzorka IIIB u NUJOL-u, pre i posle sušenja

Kod uzorka IIIB nakon prve faze rastvaranja, kvantitativno uklanjanje karbonata potvrđuje se nestankom CO_3^{2-} traka na 2514, 1794, 1429, 876 i 714 cm⁻¹ (slika 4.16), što je i dokaz o kvantitativnom otklanjanju ove frakcije. Dobiveni ostatak je nekarbonatna frakcija, koja se dalje demineralizuje kiselinama.

Slika 4.16. FTIC spektar uzorka IIIB posle 1M CH₃COONa (pH=5)

Kvantitativnost uklanjanja oksida metala pomoću 0.25 M NH₂OH·HCl u 0.25 M HCL u ovim uzorcima ne može se dokazati FTIC-om jer trake glina pokrivaju trake oksida (slika 4.17). FTIC analiza glinenih uzoraka se koristi za identifikaciju minerala koji se ne mogu ili teško mogu otkriti XRD analizom. Takođe moguća je i identifikacija adsorbovanih vrsta na površini minerala, proučavanje vode u glinama, praćenje i kontrolisanje katjonske supstitucije na FTIC spektre različitih glinenih minerala.

Slika 4.17. FTIC spektar uzorka IIIB posle 0.25 M NH₂OH·HCl u 0.25 M HCL

Ne postoji značajna razlika između spektara uzoraka tretiranih 0.25 M NH₂OH·HCl u 0.25 M HCL na 60°C i uzoraka tretiranih 1M NH₂OH·HCl u 25% CH₃COOH na 80°C (slika 4.18). Ove dve faze selektivne ekstrakcije, koriste se za rastvaranje amorfnih Fe-oksihidroksida (Fe-O-OH) odnosno kristalnih Fe oksida.

Slika 4.18. FTIC spektar uzorka IIIB posle 1M NH₂OH·HCl u 25% CH₃COOH

4.2.5 RENTGENSKA DIFRAKCIONA ANALIZA

Mineralni sastav uzorka određen je primenom rentgenske difrakcione analize na uzorak IIIB u prahu. Urađena je kvalitativna i semikvantitativna analiza i dobijeni su odgovarajući spektri.

Na spektru (Slika 4.19) može se videti da je karbonat (kalcit) glavna mineralna komponenta, zatim smektit (montmorionit) i feldspat (mikroklin), što je saglasno rezultatima selektivnog rastvaranja kao i FTIC analiza.

Slika 4.19. Difraktogram uzorka IIIB

Pored kvalitativne rentgenske difrakcione analize, urađena je i semikvantitativna analiza (slika 4.10) koja prikazuje odnos kalcita i smektita. Uzorak IIIB sadrži 75% kalcita i 25 % smektita.

Slika 4.20. Semikvantitativni difraktogram uzorka IIIB

4.2.6. ICP-OES ANALIZA

U tabeli 4.11. date su geohemijske koncentracije ispitivanih metala dobijene frakcionom analizom uzorka IIIB.

Tabela 4.11. Geohemijska koncentracija V, Cr, Co, Ni, Cu, Zn [±5 ppm]dobijena frakcionom analizom uzorka IIIB

Frakcija	Glina (%)	V	Cr	Со	Ni	Cu	Zn
Karbonatna	40	<5	<5	<5	10	5	30
Amorfna	20	15	<5	10	35	35	100
Kristalna	10	90	200	80	430	230	1200
Smektitna	25	432	40	20	64	52	92
Nerastvorna	5	200	300	<20	100	100	300

Tabela 4.12. Geohemijska raspodela V, Cr, Co, Ni, Cu, Zn u frakcijama uzorka IIIB

М	etal	Ukupno	Karbonatna	Amorfna	Kristalna	Smektitna	Nerastvorna
V	ppm	130	<1	3	9	108	10
•	%	100	<1	2	7	83	8
Cr	ppm	90	<1	<1	8	77	5
Cr	%	100	<1	<1	9	86	5
Ca	ppm	15	<1	2	8	5	<1
CO	%	100	<1	13	54	33	<1
NT:	ppm	75	4	7	43	16	5
INI	%	100	5	9	57	21	8
C	ppm	50	2	7	23	13	5
Cu	%	100	5	13	47	26	9
7	ppm	190	12	20	120	23	15
Zn	%	100	6	11	63	12	8

Geohemijska raspodela ispitivanih metala u pet frakcija uzorka IIIB prikazana je u tabeli 4.12. Rezultati pokazuju da se najveći deo ispitivanih metala u uzorku podsloja IIIB nalazi u oksidnoj frakciji (Co, Ni, Cu i Zn), dok u smektitnoj frakciji najviše ima V i Cr.

Glina (%)	Fe	Mn	
40	10	55	
30	1.7×10^{4}	123	
25	1.3×10^{4}	20	
5	120	20	
	Glina (%) 40 30 25 5	Glina (%) Fe 40 10 30 1.7×10 ⁴ 25 1.3×10 ⁴ 5 120	Glina (%)FeMn40105530 1.7×10^4 12325 1.3×10^4 20512020

Tabela 4.13. *Geohemijska koncentracija Fe i Mn* [±5 ppm]*dobijena selektivnim rastvaranjem uzorka IIIB*

Tabela 4.14. Geohemijska raspodela Fe i Mn u frakcijama uzorka IIIB

Metal U		Ukupno	Karbonatna	Oksidna	Smektitna	Nerastvorna
Fo	ppm	8.5×10^{3}	4	5.2×10^{3}	3.3×10^{3}	6
ге	%	100	<1	61	39	<1
Мъ	ppm	65	22	37	5	1
IVIN	%	100	34	57	8	1

Tabela 4.15. Proračunate koncentracije [ppm] oksida ispitivanih metala zauzorak IIIB

IIIB	V ₂ O ₅	CrO ₃	CoO	NiO	CuO	ZnO	Fe ₂ O ₃	Mn ₂ O ₇
Amorfni	5	2	3	9	9	25	172	46
Kristalni	15	15	10	55	29	149	7.2×10 ³	28
Ukupni	20	17	13	64	38	174	7.4×10^{3}	74

U tabeli 4.15, prikazane su koncentracije karakterističnih oksida ispitivanih metala u izrazito kiseoničnoj sredini za uzorak IIIB. Ukupna koncentracija vanadijum (V) oksida iznosi 20 ppm (5 ppm u amorfnoj i 15 ppm u kristalnoj fazi), a Cr (VI) oksida 17 ppm (2 ppm u amorfnoj i 15 ppm u kristalnoj fazi). U odnosu na ukupne okside u uzorku, sadržaj V-oksida i Cr-oksida je veoma nizak i iznosi oko 0.2 % (tabela 4.8). Ukupna koncentracija Co (II) oksida 13 ppm, Cu (II) oksida 38 ppm a Mn (VII) oksida iznosi 74 ppm. Sadržaj ovih oksida u odnosu na ukupne okside iznosi 0.16 %, 0.48 % i 0.96 % (tabela 4.8). Nikl (II) oksid je prisutan u koncentraciji od 64 ppm (9 ppm u amorfnoj i 55 ppm u kristalnoj fazi) što čini 0.81 % ukupnih oksida, dok je Zn (II) oksid prisutan u koncentraciji od 174 ppm (25 ppm u amorfnoj i 149 ppm u kristalnoj fazi) što predstavlja 2.23 % svih oksida. Fe (III) oksid čini oko 95 % od ukupnih oksida i pretežno se nalazi u kristalnoj frakciji.

4.3. MINERALOŠKE KARAKTERISTIKE PODSLOJEVA IIIA I IIIB

Na osnovu rezultata frakcione (tabela 4.1) i FTIC analize (slike 4.4 - 4.8) može se zaključiti da se uzorak IIIA sastoji od smektita (~50 %), amorfne Fe-oksihidroksidne frakcije sa oko 25%, kristalne Fe-oksidne (~10 %) i karbonatne frakcije (~10%), kao i mineraloški nedefinisanog ostatka (~5%). Kvalitativna XRD-analiza, takođe je pokazala prisustvo kalcita, montmorionita i feldspata (slika 4.9), a njeni semikvantitativni rezultati za kalcit i monmorionit potvrdili su rezultate dobivene frakcionom analizom (slika 4.10).

Što se tiče uzorka IIIB, na osnovu frakcione (tabela 4.9) i FTIC analize (slike 4.14 - 4.18) može se zaključiti da ovaj uzorak sadrži karbonatnu frakciju (~40 %), smektitnu (~25 %), amorfnu Fe-oksihidroksidnu (~20%) i kristalnu Fe-oksidnu frakciju (~10 %) kao i mineraloški nedefinisan ostatak (~5%). Kvalitativnom XRD-analizom je dokazano prisustvo kalcita, montmorionita i feldspata (slika 4.19), a njeni semikvantitativni rezultati za kalcit i montmorionit potvrdili su rezultate dobivene frakcionim rastvaranjem (slika 4.20).

Prema tome, može se zaključiti da podslojevi IIIA i IIIB imaju sličan mineraloški sastav.

4.4. OKSIDOREDUKCIONI USLOVI FORMIRANJA PODSLOJEVA IIIA I IIIB

Sedimentacija Riblje gline sa nalazišta Kirkevig odigrala se, verovatno, u normalnoj morskoj sredini sa pH 7-9, kao što je to već ustanovljeno za istu glinu u obližnjem nalazištu Højerup (Premović et al., 2001, 2006, 2008a). Izrazito crvena boja podsloja IIIA, visoka koncentracija Fe uz odsustvo FeS_2 i organske materije ukazuje da se ovaj podsloj najverovatnije formirao u izrazito kiseoničnoj sredini (Premović, 2009). Depozicija podsloja IIIB, takođe, se verovatno odigrala u sličnim fizičkohemijskim uslovima. Važno je napomenuti da, recimo, odgovarajući podsloj iz Højerup-a a koji je nastao u jakoj redukcionoj sredini ima relativno visok sadržaj FeS₂ i organske materije (Premović et al., 2001, 2006, 2007, 2008a).

Odnos V/Cr se često koristi kao indikator kiseoničnih ili akiseoničnih uslova sedimentacije (Jones & Manning 1994). Vrednost V/Cr \leq 4 ukazuje na kiseoničnu, a >4 na redukcionu sredinu. Na osnovu podataka datih u tabelama 4.4 i 4.12, može se lako izračunati da je vrednost V/Cr za uzorak IIIA oko 1, odnosno za uzorak IIIB oko 1.5, što je u saglasnosti sa izrazito kiseoničnim sedimentacionim sredinama njihovog formiranja.

4.5. DISKUSIJA TRAGOVA METALA

4.5.1. VANADIJUM

U izrazito kiseoničnim morskim sredinama sedimentacije graničnih KP sedimenata, V se nalazi u obliku jako rastvornih i pokretljivih vanadatnih jona: $H_nVO_4^{n-3}$ (n=0-4) i NaHVO_4^- (Premović et al., 1993, 1997, 2012a). Podaci u tabeli 4.4 ukazuju da je V u uzorku IIIA relativno malo prisutan u obliku oksida (6 % u amorfnoj i 4 % u kristalnoj Fe-oksidnoj frakciji) dok se najvećim delom (87 %) nalazi u smektitnoj frakciji. Ukupna koncentracija V-oksida (uglavnom kao V₂O₅) u uzorku IIIA iznosi 19 ppm, što predstavlja oko 0.04 % od ukupnih metalnih oksida (tabele 4.7 i 4.8). U uzorku IIIB, V je takođe malim delom prisutan u obliku oksida (3 % u amorfnoj i 8 % u kristalnoj Fe-oksidnoj frakciji) dok se najviše (83 %) nalazi u smektitnoj frakciji (tabela 4.12). Koncentracija V-oksida (uglavnom kao V₂O₅) u ovom uzorku iznosi 20 ppm, što čini 0.26 % ukupnih metalnih oksida (tabele 4.8 i 4.15). U uobičajenim morskim sredinama V je prisutan samo u obliku vanadatnih jona, koji imaju vrlo nizak afinitet prema negativnim koloidnim česticama gline (Premović et al., 1993, 1997, 2012). To znači, da pri navedenim uslovima sedimentacije, V nije mogao da se ugradi u strukturu smektita podslojeva IIIA i IIIB.

Slika 4.21. Redepozicija smektita Riblje gline (a-sa kopna, b-iz morske vode)

Imajući u vidu da je srednja koncentracija V u hondritima C1 tipa oko 57 ppb (Anders i Grevesse, 1989), Premović i saradnici (1993) procenili su da je malo verovatno, da povećan sadržaj V u Ribljoj glini potiče od navedenog udarnog hondrita, već potiče od nekog izvora koji je sa kopna. Sa druge strane, malo je verovatno da je morska voda izvor V u navedenoj glini s obzirom da se koncentracioni faktor u morskim vodama kreće od $3-8 \times 10^4$ (Premović et al., 1993).

4.5.2. HROM

Kod graničnih morskih KP sedimenata pri kiseoničnim uslovima sredine Cr se nalazi u obliku hromatnih jona: $HCrO_4^-$ i/ili $Cr_2O_4^{2-}$ (Premović et al., 2001, 2007, 2012a). Podaci u tabeli 4.4 pokazuju da je Cr u uzorku IIIA veoma malo zastupljen u obliku oksida (3 % u amorfnoj i 5 % u kristalnoj Fe-oksidnoj frakciji), dok se najveći udeo ovog metala (92 %) nalazi u smektitnoj frakciji. Ukupna koncentracija Cr-oksida (uglavnom kao CrO₃) je 15 ppm i u odnosu na ukupne okside u uzorku IIIA čini oko 0.04 % (tabele 4.7 i 4.8). U uzorku IIIB oksidna frakcija takođe sadrži niske koncentracije Cr (<1 % u amorfnoj i 9 % u kristalnoj Fe-oksidnoj frakciji), što potvrđuje i koncentracija CrO₃ od 17 ppm i 0.22 % u odnosu na ukupne metalne okside (tabele 4.8 i 4.15). Najveći udeo Cr (86 %) sadrži smektitna frakcija (tabela 4.12). Cr se u izrazito kiseoničnim sredinama javlja u obliku hromatnih jona, koji imaju veoma nizak afinitet prema negativnim koloidnim česticama gline (Premović et al., 2012a). Prema tome, pri navedenim uslovima sedimentacije, Cr nije mogao da se ugradi u strukturu smektita podslojeva IIIA i IIIB. Cr koji je dospeo na mesto sedimentacije delom je hondritskog, a delom kopnenog porekla (Premović et al., 2007).

Na osnovu rezultata za V i Cr u podslojevima IIIA i IIIB može se zaključiti da su njihovi smektiti, verovatno, najvećim delom detritalni i pretaloženi sa okolnih priobalnih (slika 4.21a) i/ili morskih površina (slika 4.21b).

4.5.3. BAKAR I CINK

U izrazito kiseoničnim morskim sredinama taloženja graničnih KP sedimenata, Cu se nalazi rastvoran u obliku Cu²⁺ jona (Premović 1999, 2000,

2001). Cu je u uzorku IIIA najviše prisutan u obliku oksida: 42 % u kristalnoj i 38 % u amorfnoj Fe-oksidnoj frakciji, dok je u smektitu zastupljen u relativno niskim koncentracijama (11 %) (tabela 4.4). Koncentracija Cu-oksida (uglavnom kao CuO) iznosi 61 ppm, što predstavlja 0.15 % od ukupnih metalnih oksida prisutnih u uzorku (tabele 4.7 i 4.8). Podaci u tabeli 4.12 ukazuju da je u uzorku IIIB, Cu prisutan u obliku oksida: 47 % u kristalnoj i 13 % u amorfnoj Fe-oksidnoj frakciji, dok 26 % sadrži smektitna frakcija. Cu-oksid (uglavnom kao CuO) čini oko 0.48 % ukupnih oksida (38 ppm). U kiseoničnim uslovima uobičajene morske sredine Cu²⁺ veoma lako gradi okside (Zakir i Shikazono, 2011), čime se može objasniti povećana koncentracija ovog metala u oksidnim frakcijama ispitivanog uzorka (tabele 4.3 i 4.11).

Zn se u izrazito kiseoničnim morskim sredinama sedimentacije graničnih KP sedimenata nalazi u obliku Zn^{2+} jona (Premović 2007, 2008). Podaci u tabeli 4.4 ukazuju na visoke koncentracije Zn u oksidnoj frakciji uzorka IIIA (38 % u amorfnoj i 53 % u kristalnoj Fe-oksidnoj frakciji) dok je mali sadržaj (5 %) prisutan u smektitnoj frakciji. Ukupna koncentracija Znoksida (uglavnom kao ZnO) je 1060 ppm i u odnosu na ukupne okside u IIIA čini oko 2.61 % (tabele 4.7 i 4.8). Kod uzorka IIIB kristalna Fe-oksidna frakcija sadrži 63 % a amorfna 11 % Zn, dok se 12 % ovog metala nalazi u smektitu (tabela 4.12). Koncentracija Zn-oksida u ovom uzorku iznosi 174 ppm, što čini 2.23 % ukupnih metalnih oksida (tabele 4.8 i 4.15). Pri oksidacionim uslovima morske sredine Zn^{2+} se može adsorbovati na Feoksidima (Zakir i Shikazono, 2011), što je slučaj i kod uzoraka IIIA i IIIB o čemu govore veoma visoke koncentracije Zn u oksidnim frakcijama (tabele 4.3 i 4.11).

U navedenoj kiseoničnoj sredini sedimentacije Riblje gline Cu^{2+} i Zn^{2+} joni mogu da se ugrade u strukturu smektita. S obzirom da su ovi smektiti

najvećim delom detritalni i erozijom i površinskim vodama pretaloženi sa okolnih priobalnih (slika 47a) i/ili morskih površina (slika 47b) (Premović et al., 1999, 2000, 2008b), postoji mogućnost da su Zn i Cu već bili ugrađeni u navedeni smektit.

4.5.4. KOBALT I NIKL

U izrazito kiseoničnim sredinama graničnih morskih KP sedimenata Co i Ni se nalaze rastvorni u obliku Co^{2+} odnosno Ni²⁺ jona (Premović et al., 2001, 2006b, 2007). Iz tabele 4.4 može se videti da uzorak IIIA najviše Co sadrži u obliku oksida: 64 % u kristalnoj i 21 % u amorfnoj Fe-oksidnoj frakciji, dok je relativno niska koncentracija (13 %) prisutna u smektitu. Ukupna koncentracija Co-oksida (uglavnom kao CoO) je 92 ppm i u odnosu na ukupne okside u IIIA čini oko 0.22 % (tabele 4.7 i 4.8). Kod uzorka IIIB kristalna Fe-oksidna frakcija sadrži 54 % a amorfna 13 % Co, dok se 33 % nalazi u smektitu (tabela 4.12). Koncentracija Co-oksida (pretežno CoO) u ovom uzorku iznosi 13 ppm, što čini 0.16 % ukupnih metalnih oksida (tabele 4.8 i 4.15).

U uzorku IIIA najveći sadržaj Ni prisutan je u oksidnim frakcijama (24 % u amorfnoj i 67 % u kristalnoj Fe-oksidnoj frakciji) dok se 7 % nalazi u smektitnoj frakciji (tabela 4.4). Ukupna koncentracija Ni-oksida (uglavnom NiO) je 696 ppm i u odnosu na ukupne okside u IIIA predstavlja oko 1.71 % (tabele 4.7 i 4.8). Prema podacima iz tabele 4.12, kod uzorka IIIB kristalna Fe-oksidna frakcija sadrži 57 % a amorfna 9 % Ni, dok se 21 % nalazi u smektitu. Koncentracija Ni-oksida (pretežno NiO) u ovom uzorku iznosi 64 ppm, što čini 0.81 % ukupnih metalnih oksida (tabele 4.8 i 4.15).

U kiseoničnim uslovima morske sredine Co²⁺ i Ni²⁺ mogu se adsorbovati na Fe-oksidima (Zakir i Shikazono, 2011), što je slučaj i kod ispitivanih uzoraka o čemu govore visoke koncentracije ovih metala u 100 oksidnim frakcijama (tabele 4.3 i 4.11). Moguće je i da se Ni²⁺ i Co²⁺ ugrade u strukturu smektita. Osnovni izvor Ni i Co je, verovatno, materijal nastao udarom C1-hondrita na KP prelazu, staložen na okolnom zemljištu pa zatim ispran (kiselim) površinskim vodama (Premović et al., 2012b). Geohemija ovih metala ukazuje da je smektit Riblje gline većinom lokalnog (morskog ili kopnenog) porekla i da je verovatno pretaložen posle njegovog formiranja, sa izvornog mesta na njegovu sadašnju lokaciju KP graničnog sloja (Premović et al., 2008).

Tabela 4.16. Koncentracije ispitivanih metala [ppm] u nekarbonatnojfrakciji uzoraka IIIA i IIIB sa nalazišta Kirkevig i uzorka IIIA iz Højerup-a

						£411
IIIA Kirkevig	110	110	83	590	53	905
IIIB Kirkevig	130	90	15	71	48	178
IIIA Højerup ^a	161	220	195	1440	101	1270

^aSchmitz, 1988

U tabeli 4.16. prikazane su koncentracije ispitivanih metala u nekarbonatnoj frakciji uzoraka IIIA i IIIB sa nalazišta Kirkevig i uzorka IIIA iz Højerup-a. Na osnovu ovih podataka može se zaključiti da su koncentracije V, Cr, Co, Ni, Cu i Zn u nekarbonatnoj frakciji podsloja IIIA i IIIB sa nalazišta Kirkevig, približne koncentracijama ovih metala u podsloju IIIA sa bliskog nalazišta Højerup (Schmitz, 1988). Ovo ukazuje na isti izvor ispitivanih metala širom Danskog basena (Premović et al., 1993).
	V	Cr	Co	Ni	Cu	Zn
IIIA Kirkevig	96	101	11	42	6	45
IIIB Kirkevig	108	77	5	16	13	23
IIIA Højerup ^a	190	220	180	1500	110	1500

Tabela 4.17. Koncentracije ispitivanih metala [ppm] u smektitnoj frakcijiuzoraka IIIA i IIIB sa nalazišta Kirkevig i uzorka IIIA iz Højerup-a

^aSchmitz 1988

U tabeli 4.17 date su koncentracije ispitivanih metala u smektitnoj frakciji uzoraka IIIA i IIIB iz Kirkevig-a i uzorka IIIA iz Højerupa-a (Schmitz, 1988). Upoređivanjem ovih podataka primećuju se slične koncentracije V i Cr u smektitnoj frakciji ovih uzoraka, dok su koncentracije Co, Ni, Cu i Zn u smektitu IIIA i IIIB iz Kirkevig-a prilično niže u odnosu na smektit u IIIA podsloju iz Højerup-a. Ove razlike pokazuju da su izvorni smektiti deponovani u Kirkevig-u i Højerup-u sa različitih lokalnih ležišta.

Na osnovu eksperimentalnih rezultata i teoretske obrade može se zaključiti:

- Podslojevi IIIA i IIIB Riblje gline sa lokaliteta Kirkevig imaju sličan mineraloški sastav i izgrađeni su od smektita, metalnih, uglavnom Fe(III)- oksida i kalcita.
- V i Cr se u ovim podslojevima uglavnom nalaze u smektitnoj frakciji, dok su Co, Ni, Cu i Zn najvećim delom vezani za Fe(III)-okside.
- Sadržaj V i Cr u smektitima ovih uzoraka ukazuje da su ova dva metala pretaloženi sa okolnih priobalnih i/ili morskih površina.
- Cr, Co i Ni su delimično hondritskog porekla, dok su V, Cu i Zn kopnenog porekla.
- Sedimentacija Riblje gline sa lokaliteta Kirkevig odigrala se, verovatno, u uobičajenoj morskoj sredini sa pH 7-9.
- Crvena boja podsloja IIIA, visoka koncentracija Fe(III) uz odsustvo FeS₂ i organske materije ukazuje da se ovaj podsloj, verovatno, formirao u izrazito kiseoničnoj sredini. Depozicija podsloja IIIB, takođe, se verovatno odigrala u sličnim fizičkohemijskim uslovima. Odnos V/Cr podsloja IIIA i IIIB za ispitivane uzorke je ≤1.5, što ukazuje na izrazito kiseonične uslove koji su vladali tokom njihovog formiranja.
- Identifikovani metali (V, Cr, Co, Ni, Cu i Zn) u nekarbonatnoj frakciji podsloja IIIA i IIIB sa lokaliteta Kirkevig, takođe su prisutni i u IIIA podsloju Riblje gline sa bliskog nalazišta Højerup, što može ukazati na isti izvor ispitivanih metala širom Danskog basena.

According experimental results and theoretical review, following could be concluded:

- Sublayers IIIA and IIIB from Kirkevig have similar mineralogical content and are composed of smectites, metallic, mainly Fe(III)-oxides, and calcite.
- V and Cr, within these sublayers, are mainly incorporated in smectites, while Co, Ni, Cu and Zn are mainly bound to Fe(III)-oxides.
- Contents of V and Cr in smectites of investigated samples indicate that these metals are redeposited from adjacent coastal and/or marine areas.
- Cr, Co and Ni are partially of chondritic origin, while V, Cu and Zn are of terrestrial origin.
- The sedimentation of Fish Clay from Kirkevig was occurred, probably, in ordinary marine environment with pH 7-9.
- Red colour of sublayer IIIA, high concentration of Fe(III) ions followed by absence of pyrite and organic matter indicate that this sublayer was, probably, formed in strongly oxygenated environment. Also, the deposition of sublayer IIIB was, most likely, happened in similar physico-chemical conditions. The value of V/Cr ratio of sublayers IIIA and IIIB for investigated samples is up to 1.5 indicating strongly oxygenated conditions that prevailed during their formation.
- The investigated metals (V, Cr, Co, Ni, Cu and Zn) in non-carbonated fractions of sublayers IIIA and IIIB from Kirkevig, are also presented in sublayer IIIA of Fish Clay from closely deposit Højerup, which may indicate on the same resource of these metals throughout Danian basin.

- Alvarez L. W., Alvarez W., Asaro F. & Michel H. V. (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. *Science*, **208**, 1095-1108.
- Anders E., Grevesse N., (1989) Abundances of the elements Meteoritic and solar. *Geochimica et Cosmochimica Acta*, 53, 197-214.
- Bauluz B., Peacor D. R., Elliott W. C., (2000) Coexisting altered glass and Fe-Ni oxides at the Cretaceous-Tertiary boundary, Stevns Klint (Denmark): Direct evidence of meteorite impact. *Earth and Planetary Science Letters*, **182**, 127-136.
- Bergaya F., Theng B.K.G., Lagaly G., Handbook of clay science. Elsevier (2006).
- Bilinski H, Kozar M, Plavsic, Kwokal Z, Branica M (1991). Trace metal adsorption on inorganic solid phases under estuarine conditions. *Marine Chemistry*, **32**, 225-233.
- Bohor B. F., Moderski P. J., Foord E. E., (1985) A search for shockmetamorphosed quartz at the K-T boundary (abs). *Lunar and Planetary Science Conference*, **16**, 79-80.
- Brookins D. G., (1988) *Eh-pH Diagrams for Geochemistry*, Springer-Verlag, Berlin.
- Chao T. T., Zhou L., (1983) Extraction techniques for selective dissolution of amorphous iron oxides from soils and sediments. *Soil Science Society of America Journal*, 47, 225–232.
- Charlet L., Manceau A., (1992) X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide/water interface. II Adsorption, coprecipitation and surface precipitation on ferric hydrous oxides. *Journal of Colloid and Interface Science*, **148**, 425-442.
- Chester R., Hughes M. J., (1967) A chemical technique for the separation of ferromanganese minerals, carbonate minerals and adsorbed trace elements for pelagic sediments. *Chemical Geology*, 2, 249–262.

- Christensen L., Fregerslev S., Simonsen A., Thiede J., (1973) Sedimentology and depositional environment of Lower Danian Fish Clay from Stevns Klint, Denmark. *Bulletin of the Geological Society of Denmark*, 22, 193-212.
- Christidis G., Dunham, A. C. (1993) Compositional variations in smectites: Part I. Alteration of intermediate volcanic rocks. A case study from Milts Island, Greece. *Clay Minerals*, 28, 255-273.
- Clark F. W., (1924) The Data of Geochemistry. U.S. Geological Survey Bulletine, 770, 841.
- Cole T. G & Shaw H. F. (1983) The nature and origin of authigenic smectites in some recent marine sediments. *Clay Minerals*, 18, 239-252.
- Dixon D., Benton M. J., Kingsley A., Baker J., Atlas of Life on Earth, New York, Barnes & Noble Books, (2001), 215.
- Drits, V. A., Lindgreen H., Sakharov B. A., Jakobsen, H. J., Zviagina B. B., (2004) The detailed structure and origin of clay minerals at the Cretaceous/Tertiary boundary, Stevns Klint (Denmark). *Clay Minerals*, 39, 367-390.
- Eberl D. D., (1984) Clay mineral formation and transformation in rocks and soils. *Philosophical Transactions of The Royal Society of London A*, **311**, 241-257.
- Elliott W. C., (1993) Origin of the Mg-smectite at the Cretaceous/Tertiary (K/T) boundary at Stevns Klint, Denmark. *Clays and Clay Minerals*, 41, 442-452.
- Elliott W. C., Aronson Jr. J. L., Millard H. T. & Gierlowski-Kordesch E. (1989) The origin of the clay minerals at the Cretaceous/Tertiary boundary in Denmark. *Geological Society of America Bulletin*, **101**, 702-710.

- Garrels R. M, Christ C. L., (1965) Solution, minerals and equilibria. Freeman Copper, San Francisco, 450.
- Goldschmidt V. M., (1937) The principles of distribution of chemical elements in minerals and rocks. *Journal of Chemical Society*, 655-637.
- Graup G., Palme H. & Spettle B. (1992) Trace element stratification in the Stevns Klint Cretaceous/Tertiary boundary Layers. *Lunar and Planetary Science*, 23, 445-446.
- Håkansson E. & Thomsen, E. (1999) Benthic extinction and recovery patterns at the K/T boundary in shallow water carbonates, Denmark. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **154** (1-2), 67-85.
- Hall G. E. M., Vaive J. E., Beer R., Hoashi M., (1996) Selective leaches revisited, with emphasis on the amorphous Fe oxyhydroxide phase extraction. *Journal of Geochemical Exploration*, 56, 59–78.
- Hansen H. J., Gwozdz R., Bromley R. G., Rasmunssen K. L., Vogensen E.
 W., Pedersen K. R., (1986) Cretaceous-Tertiary boundary spherules from Denmark, New Zealand and Spain. Bulletin, *Geological Society* of Denmark, 35, 75-82.
- Hill S. J., Inductively Coupled Plasma Spectrometry and its Applications. Blackwell Publishing Ltd, (2007).
- Hooda P. S., Trace Elements in Soils. A John Wiley and Sons, Ltd., Publication, (2010).
- Hulteberg S. U., (1986) Danian dinoflagellate zonation, the Cretaceous-Tertiary boundary, and the stratigraphic position of the Fish Clay in southern Scandinavia. *Journal of Micropalaeontology*, 5, 37-47.
- Hulteberg S. U., (1987) Danian palynological evidence for a diachronous low-salinity event in the Cretaceous-Tertiary boundary clay at Stevns Klint, Denmark. *Journal of Micropalaeontology*, 6(2), 35-40.

- Jenne E.A., (1968) Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe oxides. *Advances in Chemistry*, **73**, 337–387.
- Jones B., Manning D. A. C., (1994) Comparison of geochemical indices used for the interpretation of paleoredox conditions in ancient mudstone. *Chemical Geology*, **111**, 111–129.
- Kabata-Pendias A., Mukherjee A. B., Trace Elements from Soil to Human. Springer-Verlag Berlin Heidelberg, (2007).
- Keller G., Stinnesbeck W., Adatte T., Stuben D., (2003) Multiple impacts across the Cretaceous–Tertiary boundary. *Earth-Science Reviews*, 62, 327–363.
- Kerr P. F., (1952) Geology and Mineralogy of Clays Formation and Occurrence of Clay Minerals. *Clays and Clay Minerals*, 1, 19-32.
- Krumbein W. C. & Garrels R. M. (1952) Origin and classification of chemical sediments in terms of pH and oxidation-reduction potential. *Journal of Geology*, **60**, 1-33.
- Li X., Coles B. J., Ramsey M. H., Thornton I., (1995) Sequential extraction of soils for multielement analysis by ICP-AES. *Chemical Geology*, 124, 109-123.
- Meunier A., (2005) Clays. Springer Berlin Heidelberg New York
- Millot G., *Clays*. Scientific American (1979), **240**, 109-118.
- Morse J. W., Formation and Diagenesis of Carbonate Sediments, In: Mackenzie F. T., (Ed.), Sediments, diagenesis and sedimentary rocks, Elsevier, 2005, 67.
- Mosser C., Zeegers H., (1988) The mineralogy and geochemistry of two copper-rich weathering profiles in Burkina Faso, West Africa. *Journal of Geochemical Exploration*, **30**, 145-166.

- Officer C., Page J., The Great Dinosaur Extinction Controversy. Addison-Wesley Publishing Company, Inc., (1996), 209.
- Paquet H., Colin F., Duplay J., Nahon D., Millot G., (1987) Ni, Mn, Zn, Cr smectites, early and effective traps for transition elements in supergene ore deposits. In : Rodriguez-Clemente R. (Ed.), Tardy Y. (ed.) Geochemistry and mineral formation in the earth surface. Madrid, CSIC, 221-229.
- Premović P. I., (2009) The conspicuous red "impact" layer of the Fish Clay at Højerup. *Geohimija*, **5**, 1-8.
- Premović P. I., Pavlović N. Z., Pavlović M. S., Nikolić N. D., (1993) Physicochemical conditions of sedimentation of the Fish Clay from Stevns Klint, Denmark and its nature: Vanadium and other supportive evidence. *Geochimica et Cosmochimica* Acta, 57, 1433-1446.
- Premović P. I., Nikolić N. D., Pavlović M. S., Jovanović Lj. S., Premović M.
 P., (1997) Origin of vanadium in coals: parts of the Western Kentucky (USA) No. 9 coal rich in vanadium. European Coal Geology and Technology. *Geological Society Special Publication*, 125, 273-286.
- Premović P. I., Nikolić N. D., Tonsa I. R., Dulanović D. T., Pavlović M. S., (1999) Cretaceous-Tertiary layer at Stevns Klint (Denmark): copper and copper (II) porphyrins. *Journal of the Serbian Chemical Society*, 64(5-6), 349-358.
- Premović P. I., Nikolić N. D., Tonsa I. R., Pavlović M. S., Premović M. P., Dulanović D.T., (2000) Copper and copper(II) porphyrins of the Cretaceous-Tertiary boundary at Stevns Klint (Denmark). *Earth and Planetary Science Letters*, **177**, 105-118.
- Premović P. I., Nikolić N. D., Pavlović M. S., Todorović B. Ž., Djordjević
 D. M., Nikolić R. S., lopez L., Lomonaco S., (2001) The Cretaceous-Tertiary boundary Fiskeler at Stevns Klint, Denmark: the Gochemistry

of the major trace metals. *Journal of the Serbian Chemical Society*, **66(10)**, 647-670.

- Premović P. I., Todorović B. Ž., Nikolić N. D., Pavlović M. S., Djordjević D. M., Dulanović D. T., (2006a) Geochemistry of Ni in the Cretaceous-Tertiary successsion Fiskeler (Fish clay) at Stevns Klint (Denmark): cheto smectite of the black marl. Journal of the Serbian Chemical Society, 71(6), 639-659.
- Premović P. I., Krsmanović M. M., Todorović B. Ž., Pavlović M. S., Nikolić N. D., Djordjević D.M., (2006b) Geochemistry of the Cretaceous-Tertiary boundary (Fish Clay) at Stevns Klint (Denmark): Ir, Ni, Co and Zn in kerogen. *Journal of the Serbian Chemical Society*, **71**(7), 793-807.
- Premović P. I., Todorović B. Ž., Pavlović M. S., (2007) Cretaceous-Paleogene boundary Fish Clay at Højerup (Stevns Klint, Denmark): trace metals in kerogen. *Bull. Soc. geol. Fr.*, 178(5), 411-421.
- Premović P. I., Todorović B. Ž., Stanković M. N., (2008a) Cretaceous-Paleogene boundary (KBP) Fish Clay at Højerup (Stevns Klint, Denmark): Ni, Co and Zn of the black marl. *Geologica Acta*, 6(4), 369-382.
- Premović P. I., Stanković M. N., Pavlović M. S., Đorđević M. G., (2008b) Cretaceous – Paleogene boundary Fish Clay at Hojerup (Stevns Klint, Denmark): Zn, Pb and REE in kerogen. *Journal of Serbian Chemical Society*, **73** (4), 453-461.
- Premović P. I., Ciesielczuk J., Bzowska G., Đorđević M. G., (2012a) Geochemistry and electron spin resonance of hydrothermal dickite (Nowa Ruda, Lower Silesia, Poland): vanadium and chromium. *Geologica Carpathica*, 63 (3), 241-252.

- Premović P. I., Ilić B. S., Đorđević M. G., (2012b) Iridium anomaly in the Cretaceous-Paleogene boundary at Højerup (Stevns Klint, Denmark) and Woodside Creek (New Zealand): the question of an enormous proportion of extraterrestrial component. *Journal of Serbian Chemical Society*, **77** (2), 247-255.
- Rampino M. R., Reynolds R. C., (1983) Clay mineralogy of the Cretaceous-Tertiary boundary clay. *Science*, **219**, 495-498.
- Schmitz B., (1985) Metal precipitation in the Cretaceous-Tertiary boundary clay at Stevns Klint, Denmark. *Geochimica et Cosmochimica Acta*, 49, 2361-2370.
- Schmitz B., (1988a) Origin of microlayering in worldwide distributed Ir-rich marine Cretaceous/Tertiary boundary clays. *Geology*, **16**, 1068-1072.
- Schmitz B., Andersson P. & Dahl J. (1988b) Iridium, sulfur isotopes and rare earth elements in the Cretaceous-tertiary boundary layer at Stevns Klint, Denmark. *Geochimica et Cosmochimica Acta*, **52**, 229-236.
- Schmitz B., Keller G., Stenvall O., (1992) Stable isotope changes across the Cretaceous-Tertiary Boundary at Stevns Klint, Denmark: arguments for long-term oceanic instability before and after bolide impact event. *Palaeogeogr. Palaeoclimatol. Palaeoecol.* **96**, 233-260.
- Schulte, P. and 40 others, (2010), The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. *Science*, **327**, 1214-1218.
- Smith R. W., Jenne E.A., (1991) Recalculation, evaluation, and prediction of surface complexation constants for metal adsorption on iron and manganese oxides. *Environmental Science and Technology*, 25, 525– 531.
- Surlyk F., Damholt T., Bjerager M., (2006) Stevns Klint, Denmark: Uppermost Maastrichtian chalk, Cretaceous-Tertiary boundary, and

lower Danian bryozoan mound complex. *Bulletin of the Geological Society of Denmark*, **54**, 1-48.

- Tack F. M. G., Van Ranst E., Lievens C., Vandenberghe R. E., (2006) Soil solution Cd, Cu and Zn concentrations as affected by short-time drying or wetting: The role of hydrous oxides of Fe and Mn. *Geoderma*, 137, 83-89.
- Tessier A., Campbell P. G. C., Bisson M., (1979) Sequential extraction procedure for the speciation of particulate trace metals. *Analytical Chemistry*, 51, 844–851.
- Thornber M. R., Wildman J. E., (1984) Supergene alteration of sulphides. VI The binding of Cu, Ni, Zn, Co, and Pb with gossan (iron-bearing) minerals. *Chemical Geology*, 44, 399-434.
- Turner A., (2000) Trace metal contamination in sediments from U.K. estuaries: an empirical evaluation of the role of hydrous iron and manganese oxides. *Estuarine, Coastal and Shelf Science*, **5**0, 355-371.
- Uygur V., Rimmer D. L., (2000) Reactions of zinc with iron-oxide coated calcite surfaces at alkaline pH. *European Journal of Soil Science*, **51**, 511–516.
- Velde, B., (1995) Composition and mineralogy of clay minerals, In: Velde B., (Ed.), Origin and mineralogy of clays, New York, Springer-Verlag, 8–42.
- Wang S, Jia Y, Wang S, Wang X, Wang H, Zhao Z, Liu B (2010). Fractionation of heavy metals in shallow marine sediments from Jinzhou Bay, China. *Journal of Environmental Sciences*, 22, 23-31.
- Wolbach W. S., Gilmour I., Anders E., Orth C. J. & Brooks R. R. (1988)Global fire at the Cretaceous-Tertiary boundary. *Nature*, 334, 665-669.
- Zachara J. M., Smith S. C., Resch C. T., Cowan C. E., (1992) Cadmium sorption to soil separates containing layer silicates and iron and

aluminium oxides. *Soil Science Society of America Journal*, **56**, 1074–1084.

Zakir H. M., Shikazono N., (2011) Environmental mobility and geochemical partitioning of Fe, Mn, Co, Ni and Mo in sediments of an urban river, Journal of *Environmental Chemistry and Ecotoxicology*, 3, 116-126.

8. Biografija i bibliografija

BIOGRAFIJA

Miloš G. Đorđević rođen je 03.08.1982. godine u Leskovcu, gde je završio osnovnu i srednju Medicinsku školu. Studije hemije na Prirodnomatematičkom fakultetu u Nišu upisao je školske 2001/02. godine. Diplomirao je juna 2006. godine sa ocenom 10.00 odbranivši diplomski rad pod nazivom: "Uticaj mikrolegiranog peska i koagulanata na efekte prečišćavanja fekalnih voda visoke HPK-vrednosti" i sa prosečnom ocenom u toku studija 7.72. i stekao zvanje diplomirani hemičar. Školske 2006/07. specijalističke akademske studije godine upisao je na Prirodnomatematičkom fakultetu u Nišu, na Odseku za hemiju, i položio sve planom i programom predviđene ispite sa prosečnom ocenom 10.00. Januara 2008. godine odbranio je specijalistički rad na temu : "Određivanje V, Cr, Co, Ni i Vranjske Cu mineralnoj vodi Banje optičkom-emisionom u spektrometrijom" i stekao zvanje diplomirani hemičar-specijalista. Školske 2007/08. godine prešo je na doktorske akademske studije na Prirodnomatematičkom fakultetu u Nišu, na Odsek za hemiju, smer neorganska hemija i položio sve planom i programom predviđene ispite sa prosečnom ocenom 9.50.

Od maja 2008. do maja 2009. godine radio je kao stručni saradnik u laboratoriji (pripravnik), na katedri za Opštu i neorgansku hemiju, Prirodnomatematičkog fakulteta u Nišu.

Odlukom Nastavno-naučnog veća Prirodno-matematičkog fakulteta od 25.05.2011. godine, stekao je zvanje naučno zvanje istraživač-saradnik. Kao student doktorskih studija u školskoj 2011/12, angažovan je za izvođenje vežbi na osnovnim i master akademskim studijama na predmetima: Osnovne metode i tehnike karakterizacije neorganskih jedinjenja i Viši kurs metoda i tehnika karakterizacije neorganskih jedinjenja.

BIBLIOGRAFIJA

Radovi u časopisu međunarodnog značaja (M23):

- P. I. Premović, M. N. Stanković, M. S. Pavlović, M. G. Đorđević, *Cretaceous – Paleogene boundary Fish Clay at Hojerup (Stevns Klint, Denmark): Zn, Pb and REE in kerogen.* Journal of Serbian Chemical Society, 73 (4), 453-461 (2008).
- P. I. Premović, B. S. Ilić, M. G. Đorđević, Iridium anomaly in the Cretaceous-Paleogene boundary at Højerup (Stevns Klint, Denmark) and Woodside Creek (New Zealand): the question of an enormous proportion of extraterrestrial component. Journal of Serbian Chemical Society, 77 (2), 247-255 (2012).
- 3) P. I. Premović, J. Ciesielczuk, G. Bzowska, M. G. Đorđević, Geochemistry and electron spin resonance of hydrothermal dickite (Nowa Ruda, Lower Silesia, Poland): vanadium and chromium. Geologica Carpathica, 63 (3), 241-252 (2012).
- 4) A. R. Radivojević, M. A. Pavlović, I. M. Filipović, M. M. Bratić, M. G. Dorđević, M. N. Stanković, D. M. Đorđević, *Characteristics of mineral, thermal and thermomineral waters of Carpatho-Balkanides Region* (*Eastern Serbia*): *The potentials and possibilities of their exploitation*. Technics Technologies Education Management, (Prihvaćen za štampu).
- Z. Grdić, G. Topličić Ćurčić, N. Ristić, I. Despotović, D. Đorđević, M. Đorđević, Aggregate type impaction water permeability of concrete. Revista Romana de Materiale/ Romanian Journal of Materials, (Prihvaćen za štampu).

Radovi u domaćem naučnom časopisu (M₅₃):

- R. Nikolić, M. Đorđević, *Biološki značaj natrijuma i kalijuma*, Hemijski pregled, 50 (6), 150-155 (2009).
- R. Nikolić, D. Đorđević, M. Stanković, M. Đorđević, *Biomedicinski značaj vanadijuma*, Hemijski pregled, 52 (6), 147-152 (2011).
- B. Ž. Todorović, D. S. Stojiljković, N. D. Nikolić, D. M. Đorđević, M. N. Stanković, M. G. Đorđević, Izumiranja vrsta u prošlosti i sadašnjosti kao posledica naglih promena geohemijskih uslova na Zemlji, Savremene tehnologije, (2012).

Rad saopšten na međunarodnom skupu štampan u celini (M₃₃):

 N. S. Krstić, M. S. Pavlović, N. D. Nikolić, M. G. Dorđević and P. I. Premović, *Geochemistry of the hydrotermal dickite (Nowa Ruda, Lower Silesia, Poland): Chromium*, 10th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Belgrade– Serbia, September 21–24, 2010, 661-663.

Radovi saopšteni na međunarodnom skupu štampani u izvodu

- B. Ž. Todorović, M. S. Pavlović, P. I. Premović, N. S. Krstić, M. G. **Đorđević**, *Geochemistry of the Cretaceous-Paleogene boundary clay* (*Fish Clay*) at Hojerup (Stevns Klint, Denmark): Cu in the smectite concentrate. 14 ICC-International Clay Conference, June 14-20, Castellaneta Marina-Italy, 2009, 185.
- Stanković, M.N., Đorđević, M.G., Nikolić, N.D., Todorović, B.Ž. & Premović, P.I., Cretaceous-Paleogene boundary clay (Fish Clay) at Højerup (Stevns Klint, Denmark): Cu and Cr in the smectite concentrate,

Book of abstract MECC 2010, 21–27 August, Budapest-Hungary, 2010, 636.

- Nenad S. Krstić, Pavle I. Premović, Miloš G. Đorđević, Maja N. Stanković, Vanadium in the hydrothermal dickite (Nowa Ruda, Lower Silesia, Poland), Book of abstracts, European Clay Conference Euroclay 2011, 26 June 1 July, Antalya-Turkey, 2011, 245-246.
- 4) M. G. Djordjević, D. M. Djordjević, M. N. Stanković, N. S. Krstić, FTIR spectroscopic characterization of bituminous limestone: Maganik mountain, Montenegro, Book of abstracts, EUROanalysis2011, 16th European Conference on Analytical Chemisry "Chalanges in Modern Analytical Chemistry", 11-15 September, Belgrade-Serbia, 2011, AS11.
- 5) M. N. Stanković, R. S. Nikolić, D. M. Djordjević, M. G. Djordjević, N. S. Krstić, J. M. Jovanović, Using Micro-FTIR spectroscopy for investigation of biological mineral tissues and histopathological materials, EUROanalysis, 16th European Conference on Analytical Chemisry "Chalanges in Modern Analytical Chemistry", 11-15 September, Belgrade-Serbia, 2011, AS12.
- P. I. Premović, M. G. Đorđević, D. M. Đorđević, *Ir Anomaly in the Fish Clay and the Proportion of Extraterrestrial Component*, Proceedings of the 17th MAEGS 2011, 14-18 September, Belgrade-Serbia, 2011, 210-211.
- 7) P. I. Premović, M. Đorđević, B. Todorović, M. Stanković, Astronomical radiation sources and the origin of atmospheric oxygen of the early Earth, 3th Comets Asteroids Meteors Meteorites Astroblemes Craters– CAMMAC, 18-23 September, Vinnytsia-Ukraine, 2011, 31-32.

Rad saopšten na nacionalnom skupu štampan u izvodu (M₆₄):

 B. Ilić, M. Đorđević, P. Premović, Microscopic Fourier Transform Infrared (ATR-FTIR) characterization of the "flying" ashes from the power plant "Kostolac A and B", Book of abstracts, 9th Symposium "Novel technologies and economic development", 21-22 October, Leskovac-Serbia, 2011, 179.

Radovi saopšteni na domaćem skupu:

- M. G. Đorđević, J. R. Ćalović, P. I. Premović, *Geohemijska karakterizacija "letećeg" pepela termoeletrana "Kostolac A i B" i vulkanskog pepela iz okoline Vranja*, Savetovanje: Korišćenje pepela iz termoelektrana "Kostolac A i B", Zbornik radova, Kostolac, mart 2008.
 - B. Ilić, M. Đorđević, B. Todorović, P. I. Premović, *Efekat staklene bašte*, Savetovanje: Održivi razvoj grada Požarevca i energetskog kompleksa Kostolac, Zbornik radova, Kostolac, maj 2009.
 - N. Krstić, M. Đorđević, D. Đorđević, P. I. Premović, *Hidrogeohemijska karakterizacija vode "gejzira" sela Kolare*, Savetovanje: Održivi razvoj grada Požarevca i energetskog kompleksa Kostolac, Zbornik radova, Kostolac, maj 2009.
 - 4) P. I. Premović, M. G. Đorđević, M. M. Cakić, *Teški metali u Kostolačkom "letećem" pepelu i pijaća voda*, Savetovanje: Održivi razvoj grada Požarevca i energetskog kompleksa Kostolac, Zbornik radova, Kostolac, mart 2011.
 - 5) P. I. Premović, D. M. Đorđević, M. G. Đorđević, *Rastvorljivost demineralizovanih frakcija ugljeva*, Savetovanje: Održivi razvoj grada Požarevca i energetskog kompleksa Kostolac, Zbornik radova, Kostolac, april 2012.

Prilog 1. Eh-pH dijagram za sistem V-O-H (Brookins 1986)

 $\begin{bmatrix} 1.2 & Cr - O - H \\ 2.5^{\circ}C & 1 \text{ bar} \\ 0.8 & \\ 0.6 & \\ 0.4 & Cr^{3+} & \\ 0.2 & \\ 0.0 &$

 $P_{ij} = 1 bar$

6

8

pН

10

Prilog 2. Eh-pH dijagram za sistem Cr-O-H (Brookins 1986)

-0.2

-0.4

-0.6

-0.8<mark>L</mark>

2

4

CrO₂-

12

14

Prilog 3. Eh-pH dijagram za sistem Cu-O-H (Brookins 1986)

Prilog 4. Eh-pH dijagram za sistem Co-O-H (Brookins 1986)

Prilog 5. Eh-pH dijagram za sistem Ni-O-H (Brookins 1986)

Prilog 6. Eh-pH dijagram za sistem Zn-O-H (Brookins 1986)

Prilog 7. SEM fotografije uzorka IIIA

Prilog 8. SEM fotografije uzorka IIIA i IIIB

Prilog 9. SEM fotografije uzorka IIIB

Prilog 10. Uzorak IIIA (Fe sfera)

