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redovni član SANU
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Research in the field of image restoration belong
to computer science and applied mathematics. Each im-
age can be presented as the matrix. Thus creating the
possibility that the processes of the image processing are
presented with the appropriate mathematical models.

The goal of Ph.D. dissertation is to develop an
efficient and reliable methods for digital image restora-
tion using mathematical models to analyze the process
of blurring. In this way, we will focus on methods to
remove blur caused by uniform and nonuniform motion.
They are especially important in applications related to
the removal of blur from X-ray images, in ANPR (Au-
tomatic Number Plate Recognition) system, with images
of barcodes, LCD TVs and monitors, and other areas.
This topic is extensively treated in recent years, as evi-
denced by the large number of books, monographs, papers
and computer implementation in the field.

I want to express my gratitude to my supervisor
Prof. Dr. Predrag Stanimirović for his comprehensive
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Chapter 1

Introduction

1.1 The notion of Image Restoration

Recording images is a very frequent event in everyday human life. Due to imperfections in the
imaging and capturing process, the recorded image inevitably represents a degraded version
of the original scene. The question of removing these imperfections is crucial to many of
image analysis and image processing tasks. There exists a wide range of different degradations
that need to be taken into account, covering for instance noise, geometrical degradations,
illumination and color imperfections, and blur. Image restoration methods are aimed for the
reconstruction of the original image from a degraded model.

The field of image restoration has seen a tremendous growth in interest over the last two
decades. There are many excellent overview articles, journal papers, and textbooks on the
subject of image restoration and identification [2, 5, 6, 26, 32, 43, 44]. A number of vari-
ous algorithms have been proposed and intensively studied for achieving a fast-recovered and
high-resolution reconstructed images see, e.g. [49, 50]. The recovery of an original image from
degraded observations is of crucial importance and finds application in several scientific ar-
eas including medical imaging and diagnosis, military surveillance, satellite and astronomical
imaging, reconstruction of poor-quality family portraits, and remote sensing.

Blurring is a form of bandwidth reduction of an ideal image owing to the imperfect image
formation process. It can be caused by a relative motion between the camera and the original
scene, or by an optical system that is out of focus. When aerial photographs are produced for
remote sensing purposes, blurs are conditioned by atmospheric turbulence, aberrations in the
optical system, and relative motion between the camera and the background. Such blurring is
not confined to optical images; for example, electron micrographs are corrupted by spherical
aberrations of the electron lenses, and computed tomography scans suffer from X-ray scatter.

The field of image restoration (also called as image deblurring or image deconvolution) is
concerned with the reconstruction or estimation of the uncorrupted image from a blurred one
[6]. Fundamentally, it tries to perform an operation on the image that is the inverse of the
imperfections in the image formation system. In the use of image restoration methods, the
attributes of the degrading system are assumed to be known a priori.

In practical situations, sometimes may not be able to obtain this information directly from
the image formation process. The objective of blur identification is to estimate the attributes
of the real imaging system from the observed degraded image itself prior to the restoration
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4 CHAPTER 1. INTRODUCTION

process. The combination of image restoration and blur identification is often referred to as
blind image deconvolution [49].

Blind deconvolution algorithm based on the total variational (TV) minimization method is
extremely effective for recovering edges of images as well as some blurring functions, e.g., motion
blur and out-of-focus blur [11]. In the paper [99] the authors present anisotropic regularization
techniques to exploit the piecewise smoothness of the image and the point spread function
(PSF) in order to mitigate the severe lack of information encountered in blind restoration
of shift-invariantly and shift-variantly blurred images. These techniques are demonstrated on
linear motion blur and out-of-focus blur. Edge preserving regularization methods, in the context
of image restoration and denoising, are presented in [73].

Images are aimed to memorize useful information, but unfortunately the presence of the
blur is unavoidable. Motion blur is the effect caused by relative motion between the camera
and the scene during image exposure time. Restoration of motion-blurred images has been a
fundamental problem in digital imaging for a long time. We assume that the blurring function
acts as a convolution kernel or point-spread function h(n1, n2) and the image restoration meth-
ods that are described here fall under the class of linear spatially invariant restoration filters.
It is also assumed that the statistical properties defined by the mean and correlation functions
of the image do not change spatially.

Under these conditions the restoration process can be carried out by means of a linear filter
of which the point-spread function is spatially invariant, i.e., it is constant throughout the
image. These modeling assumptions can be mathematically formulated as follows. If we denote
by f(n1, n2) the desired ideal spatially discrete image that does not contain any blur or noise,
then the recorded image g(n1, n2) is modeled by the convolution which is determined using the
two-dimensional point spread function h(n1, n2) [6]:

g(n1, n2)=h(n1, n2) ∗ f(n1, n2)

=
N−1∑
k1=0

M−1∑
k2=0

h(k1, k2)f(n1 − k1, n2 − k2).
(1.1.1)

The symbol ∗ denotes the convolution operation.
The objective of the image restoration is to make an estimate f(n1, n2) of the ideal image, under
the assumption that only the degraded image g(n1, n2) and the blurring function h(n1, n2) are
given.

The goal of the Ph.D. dissertation is to develop an efficient and reliable methods for digital
image restoration or image deblurring using mathematical models to analyze the process of
blurring. In this way, we will focus on methods to remove blur caused by uniform and nonuni-
form motion. They are particularly important in applications related to the removal of blur
from X-ray images, in automated number plate recognition systems, with bar code images,
LCD televisors and monitors and other areas. This topic is intensively research in recent years,
as evidenced by a large number of books, monographs, papers and computer implementation
from this field.

One of our main motivations for developing the methods for digital image restoration is
applicability in everyday life. Blurring images can be appropriate for generating background
effects and image shadows. In our days, creating motion blur in images is something that many
image artists, mainly photographers use in order to capture feigned movement. Moreover, two
dimensional filtering based on the separable motion blur is also useful for smoothing the effects
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of the staircase like effect, known as ’aliasing’. The separable anti-alias filtering procedure is
efficient on smoothing edges of images and can also round out features to produce highlighting
effects.

Also, the process of the de-identification is an interesting application of the motion blur.
Advances in imaging devices and web technologies have made it easy to capture and share
large amounts of video data over the internet. The effluence of privacy information becomes
an important issue in both academia and industry. Examples include the Google Street View,
EveryScape, public and private surveillance video, the collection and distribution of medical face
databases [30]. De-identification is intended for the elimination of identification information
from images and videos, prior to sharing of the data, while keeping as much information on
the action and its context. Recognition and de-identification are opposites, the recognition
making use of all possible features to identify an object while the de-identification trying to
obfuscate the features to thwart recognition. De-identification should be resistant to recognition
by humans and algorithms [1]. Three types of videos need de-identification to not compromise
the privacy of individuals [1]:

• Casual videos that are captured for other purposes and get shared. For example the
images used by Google StreetView, EveryScape, the cameras setup in public spaces that
can be viewed over the internet, videos or photos on sharing sites, etc. There is no need
to know the identity of individuals who appear in these videos. All individuals should be
de-identified irrevocably and early, perhaps at the camera itself.

• Public surveillance videos come from cameras watching spaces such as airports, streets,
stores, etc. These type of videos usually are displayed on public monitors and a recorded
version may be accessible to many people. The types of actions performed by individuals
in these videos is important, but not their identities. Consequently de-identification is
necessary.

• Private surveillance videos come from cameras placed at the entrances of semi-private
spaces like offices. These type of videos usually are with higher quality and are likely to
have a more detailed view of the individuals. De-identification may not be essential, but
could be suggested to take care of possible viewing by non-authorized people.

Also automatic license plate de-identification is an important application [21]. According the
above it is important to develop the automated methods for de-identifying individuals or items
without affecting the context of the action in the image or in the video. Motion blur can be used
for de-identification in the images or in the videos. Because we know the PSF and if necessary
we can use the image deblurring methods in the process of identification of the people or actions
in the recorded video.

Another practical example where we can use the image deblurring methods are barcode
character recognition. Barcodes can be found on numerous items, such as packaged food,
books, newspapers and more. There are different ways of reading these bar codes. One way
is to use dedicated barcode readers. The second option is to acquire an image of the barcode
using the camera that is anyway built into the device and process the image in order to decode
the barcode [98]. Reading barcodes by image processing is slower and less reliable than using
dedicated barcode scanners, but in some cases they are better. For example, dedicated systems
based on reflected laser light do not work for reading barcodes on a monitor screen.
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Figure 1.1.1: Barcode character recognition.

Barcode images acquired with cameras sometimes will not have the required quality to be
recognized and decoded [98]. Reason for that could be motion blur. Our methods can be use
for deblurring of the degraded images, and after that the deblurred image can be use in the
image recognition process. The process of the recognition of the barcodes based on the image
processing techniques is presented in the Figure 1.1.1. Some of the images may be too blurred
and for successful deciphering must be implemented effective deblurred method.

The increasing consumption of liquid crystal displays (LCD) for computer monitors and
home use has led to great interest in improvement of image quality especially when we have
movements. If we compared with other types of displays as traditional cathode ray tube (CRT),
plasma and projection displays, LCDs offer a lower cost, lower power consumption and higher
resolution. Despite the great interest in solving the problem, LCDs still suffer from motion-blur
the image. LCD motion blur is caused by two factors: the slow liquid crystal response time
and the inherent sample-and-hold characteristic of LCD image formation.

With continuous improving of the physical properties of the liquid crystals and with using
of method of overdrive is significantly mitigate response time [58]. By this way the problem of
motion blur is reduced, but it’s not eliminated. In [68, 69] are presented that when response
time is 16ms, 70% of the visible motion blur is part of the sample-and-hold property of the LCD
display. Sample-and-hold motion blur will be present even with a zero response time. This
blur is inherent to LCD image formation causes each pixel to emit approximately constant light
through the frame period.

On Figure 1.1.2 is present the case when the object is moving horizontally with a constant
velocity and a response time is zero [33]. Since the output at each pixel is held constant light
through the frame period the displayed image does not match to the target trajectory predicted
by Human Visual System (HVS). The dissimilarity between the eye tracking trajectory and the
displayed data corresponds to the motion blur perceived by the human observer.

The methods for reduction of sample-and-hold LCD motion blur can be divided into several
groups: back light flashing [24], frame rate doubling (black frame insertion [36], full frame
insertion [51, 61]) and data pre-processing (motion-compensated inverse filters (MCIF) [47, 34]).
The first method is used from Philips, it’s consist of back light flashing at a faster rate than
the frame period. With increasing the frame rate reduces the hold time and thus motion blur.
MCIF engages estimating the motion and then apply a high pass filter.

Also we assume that the PSF(point spread function) is horizontal (if not, we can approxi-
mate the PSF with separable PSF and take its x component). The reason for this is because
human eyes give much more consideration to horizontal motions from vertical motions [8].
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Figure 1.1.2: Position versus frame time.

In order to develop efficient algorithms and methods for reducing LCD motion blur is crucial
to developing an accurate model of the occurrence of LCD blur. The model of LCD blurring is
introduced in [9] and [68].

The process of degradation of the image is illustrated in Figure 1.1.3, where dynamic discrete
content Id(x, y, t) is shown on the LCD display as Is(x, y, t). Firstly the image is degraded from
the LCD display device, more accurate by sample-hold feature of the LCD device. After that
the human visual system (HVS) will be degraded the displayed image and the perceived image
is Io(x, y, t). The eye tracking and low pass filter (LPF) formed HVS.

Figure 1.1.3: Process of the perception chain.

Our methods for image restoration can be used as pre-processing technique for reducing
of the LCD motion blur. In this approach the signal is pre-processing before it is sent to the
display. This means that the frame sampled at time t is Ic(x, y, t) have to process with the
method for image deblurring and we get the signal Id(x, y, t), that is input signal on Figure
1.1.3.

1.2 Organization of the Ph.D. dissertation

Generally, the Ph.D. dissertation is divided on three main parts: Chapter 2, Chapter 3 and
Chapter 4. The first one is devoted to the modeling of the process of image formation and
presentation of the standard methods of image restoration. The second one deals with the
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definition and description of the new non-iterative methods for image restoration. And finally,
the third one presents experimental results and comparative analysis when we use the new
non-iterative methods and standard methods for image restoration.

In the next chapter two commonly used filters for reconstructions of blurred image, namely
Wiener filter and the constrained least-squares filter [6] are presented. After them, iterative
nonlinear method for image restoration based on the Lucy-Richardson algorithm [26, 27] is
shown. Also for image reconstruction we can use as well as the symmetric minimal rank (SMRS)
solution of the inverse matrix problem [96]. The restoration methods based on moments (the
Fourier and the Haar basis) [42] which are also used are described in this chapter. End of
this chapter is devoted to the Truncated Singular Value Decomposition (TSVD) and Tikhonov
(TIK) restoration methods [32].

The Chapter 3 consists of the five new non-iterative methods:

• The first method is a direct method for removing uniform linear motion blur from images.
The method is based on a straightforward construction of the Moore-Penrose inverse of
the blurring matrix for a given mathematical model. The computational load of the
method is decreased significantly with respect to other competitive methods, while the
resolution of the restored images remains at a very high level.

• The second method is based on an application of the partitioning method for determi-
nation of the Moore-Penrose inverse of a matrix augmented by a block-column matrix
of arbitrary size. The adaptation of the partitioning method is applicable in the image
restoration. The main contribution of the introduced method is a significant reduction in
computational time required to calculate the Moore–Penrose inverse of a blurring matrix
compared to other known methods for the pseudoinverse computation. The resolution of
the restored image remains at a very high level.

• The next method generalizes image restoration algorithms which are based on the Moore–
Penrose solution of certain matrix equations that define the linear motion blur. Our
approach is based on the usage of least squares solutions of these matrix equations,
wherein an arbitrary matrix of appropriate dimensions is included besides the Moore-
Penrose inverse. In addition, the method is a useful tool for improving results obtained
by other image restoration methods. Towards that direction, we investigate the case where
the arbitrary matrix is replaced by the matrix obtained by the Haar basis reconstructed
image. The method has been tested by reconstructing an image after the removal of blur
caused by the uniform linear motion and filtering the noise that is corrupted with the
image pixels. Quality of the restoration is observable by a human eye.

• The following method for reconstruction of blurred images damaged by a separable motion
blur can be used after the application of currently developed image restoration algorithms.
Our approach is based on the usage of least squares solutions of certain matrix equations
which define the separable motion blur. The method uses appropriately selected matrices
besides the Moore-Penrose inverse. The method is tested by reconstructing a set of images
after the removal of blur caused by uniform and separable motion.

• Previously performed analyzes have confirmed that the method proposed in [83], can be
used as a useful tool for improving restorations obtained by other image restoration meth-
ods. Continuing investigations in that direction, we investigate the case where arbitrary
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matrix is replaced by the matrix obtained by the Tikhonov regularization method or by
the Truncated Singular Value decomposition method.

The Chapter 4 is devoted to experimental results and application of methods in some
real cases. For comparison of the image restoration methods we use the following criteria:
Improvement in Signal to Noise Ratio (ISNR) and Peak Signal to Noise Ratio (PSNR) [6, 26].
The methods are tested on standard images from MATLAB such as Lena, Balrbara, Cameraman
etc., and real cases images: X-ray images and images from automated number plate recognition
systems. The new non-iterative methods for digital image restoration improve the performance
in terms of the quality of the restored images than the standard built-in image restoration
methods in the software package MATLAB. Also, the new methods reduces the time required to
complete the restoration process compared to conventional methods.

In the final chapter the conclusions with regard to the results obtained in the Ph.D. disser-
tation are presented. The following are comments on the results, their scientific and practical
significance. At the end of this chapter a brief overview of the ideas for future work and possible
further research in this and related areas is presented.
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Chapter 2

Standard methods for image
restoration

This chapter presents the modeling of the process of image formation and commonly used
standard methods for image restoration. These methods are implemented as standard functions
embedded in the software package MATLAB. Two commonly used filters for reconstructions of
blurred image are from the collection of least-squares filters, namely Wiener filter and the
constrained least-squares filter [6]. One iterative nonlinear method for image restoration is
based on the Lucy-Richardson algorithm [26, 27].

Also for image reconstruction we can use the method based on the usage of symmetric
minimal rank solution (SMRS) of the matrix equation AX = B from [96]. Our motivation to
use the symmetric minimal rank solution comes from the fact that in [96] is given a solution
to the matrix A of the matrix equation AX = B, which is of the same form with the matrix
equation of the image formation process. The problem of solution of the matrix equation
AX = B is one of the topics of especially active study in the computational mathematics, and
has been broadly useful in various areas.

Short overview of three methods for the image restoration, SMRS solution of the matrix
equation which models the image blurring process, the restoration methods based on moments,
TSVD method and the TIK method are described in the next subsections. These methods will
be used for comparison with the new restoration methods presented in the next chapter.

2.1 Modeling of the process of image formation

When we use the camera, we want the recorded image to be a good interpretation of the
scene, but each image is more or less blurred. We assume that the blurring function acts as a
convolution kernel or point-spread function h(n1, n2) and the image restoration methods that
are described here fall under the class of linear spatially invariant restoration filters. It is also
assumed that the statistical properties (mean and correlation function) of the image do not
change spatially. Under these conditions the restoration process can be carried out by means
of a linear filter of which the point-spread function (PSF) is spatially invariant.

These modeling assumptions can be mathematically formulated as follows. If we denote by
f(n1, n2) the desired ideal spatially discrete image that does not contain any blur or noise, then

11
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Figure 2.1.1: Model of the image formation in the spatial domain.

the recorded image is modeled as [6] (see also Figure 2.1.1):

g(n1, n2)=h(n1, n2) ∗ f(n1, n2)

=
N−1∑
k1=0

M−1∑
k2=0

h(k1, k2)f(n1 − k1, n2 − k2).
(2.1.1)

The objective of the image restoration is to make an estimate of the ideal image f(n1, n2),
under the assumption that only the degraded image g(n1, n2) and the blurring function h(n1, n2)
are given.

An alternative way of describing (2.1.1) is through its spectral equivalence. By applying
discrete Fourier transforms to (2.1.1), we obtain the following representation (see also Figure
2.1.2):

G(u, v) = H(u, v)F (u, v), (2.1.2)

where (u, v) are the spatial frequency coordinates and capitals represent Fourier transforms.
Either Figure 2.1.1 or Figure 2.1.2 can be used for developing restoration algorithms.

Figure 2.1.2: Model of the image formation in the Fourier domain.

Since we are examining the process of blurring as a process that is spatially independent,
it means that the image is blurred in the same way at each spatial location. PSFs that do not
follow these assumptions are rotating blurring as spinning wheel or local blur as the person is
unfocused, while the background is focused. Modeling, identification and restoration of images
degraded by spatially variable blurring is still unsolved problem [5, 6].

As a result of imperfections in the process of image formation, they are modeled as passive
operations data, i.e. not absorb or generate energy. Consequently the impulse response of
spatially continuous blur satisfies the relation:∫ +∞

−∞

∫ +∞

−∞
h(x, y)dxdy = 1. (2.1.3)

The discrete representation of the relation (2.1.3) becomes:

N−1∑
n1=0

M−1∑
n2=0

h(n1, n2) = 1. (2.1.4)
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In the next section we present impulse responses encountered in real situations. We can
distinguish different types of the motion blurring and all as a result of the relative movement
of the device for recording and scene. It can be in the form of translation, rotation, sudden
change in size of objects or a combination of them. For us it is important and we will consider
the case of a global translation.

When the scene which you are shooting moves relative to the camera with constant speed v
in horizontal direction during the interval of exposure [0, t], degradation is one-dimensional. If
L is indicated the length of the blur, then L and impulse response or PSF h for linear motion
blur are linked by the relation:

L = v × t, (2.1.5)

h(n1, n2, L) =

⎧⎪⎨⎪⎩
1

L
for n1 = 0, 0 ≤ n2 ≤ L− 1,

0 elsewhere.

(2.1.6)

Knowing the physical process that causes blurring allows an explicit formulation of the
impulse response. In this case, the elements of the array of impulse responses are presented
with precise mathematical terms [32]. For example impulse response in case the blur is due of
unfocused (out of focus) is given by:

h(n1, n2, R) =

⎧⎪⎨⎪⎩
1

πR2
for (n1 − k)2 + (n2 − l)2 ≤ R2,

0 elsewhere,

(2.1.7)

where (k, l) is the center of the impulse response, and R is the radius of the blurring.

Impulse response of the blurring caused by atmospheric turbulence can be described by
two-dimensional Gaussian function [32]:

h(n1, n2) = exp

(
−1

2

[
i− k

j − l

]T [
s21 ρ2

ρ2 s22

]−1 [
i− k

j − l

])
, (2.1.8)

where the parameters s1, s2, and ρ determine the width and orientation of the impulse response,
which is centered at element (k, l).

If the PSF of the linear restoration filter is designed and marked with hr(n1, n2), then the
restored image is given by:

f̃(n1, n2)=hr(n1, n2) ∗ g(n1, n2)

=

N−1∑
k1=0

M−1∑
k2=0

hr(k1, k2)g(n1 − k1, n2 − k2).
(2.1.9)

Relation (2.1.9) in the spectral domain transforms into:

F̃ (u, v) = Hr(u, v)G(u, v). (2.1.10)
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The goal is to design an appropriate restoration filter with hr(n1, n2) or Hr(u, v) for their
application in relations (2.1.9) or (2.1.10). Filters designed with the criterion of least squares,
which are called Least Squares Filters, are commonly used for the restoration of images. From
this collection the interesting cases for us are: Wiener filter and constrained least-squares filter.

2.2 The Wiener Filter

Wiener filter (WF shortly) is a linear and space invariant filter in which PSF hr is selected to
minimize the Mean Squared Error (MSE) between the ideal and the restored image. MSE is
given by the following relation [6]:

MSE ≈ 1

NM

N−1∑
n1=0

M−1∑
n2=0

(f(n1, n2)− f̃(n1, n2))
2, (2.2.1)

where f̃(n1, n2) is given in relation (2.1.9).

The solution of this minimization problem is known as the Wiener filter and the easiest way
is to define the frequency domain:

F̃ (u, v)=

[
H∗(u, v)Sf(u, v)

Sf(u, v)|H(u, v)|2 + Sη(u, v)

]
G(u, v)

=

[
H∗(u, v)

|H(u, v)|2 + Sη(u, v)/Sf(u, v)

]
G(u, v)

=

[
1

H(u, v)

|H(u, v)|2
|H(u, v)|2 + Sη(u, v)/Sf(u, v)

]
G(u, v).

(2.2.2)

Here is used the fact that multiplying a complex variable with its conjugate value is equal
to the square of the magnitude of the complex variable. Filter that includes what is shown in
brackets on the last line of the relation (2.2.2) is called the Wiener filter or filter with minimum
MSE:

Hwiener(u, v) =
1

H(u, v)

|H(u, v)|2
|H(u, v)|2 + Sη(u, v)/Sf(u, v)

, (2.2.3)

where:

- H(u, v) is the blurring function in spectral domain,
- |H(u, v)|2 = H∗(u, v)H(u, v), H∗(u, v) is the complex conjugate of H(u, v),

- Sη(u, v) is the power spectrum of the noise, and

- Sf(u, v) is the power spectrum of the ideal image.

To obtain the restored image in the original spatial domain is necessary on the outcome in
frequency domain F̃ (u, v) obtained by relation (2.2.2) to make the inverse Fourier transform.
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In the absence of noise we have Sη(u, v) = 0, so that Wiener-filter approximates the inverse
filter:

Hwiener(u, v)|Sη(u,v)→0 =

⎧⎪⎪⎨⎪⎪⎩
1

H(u, v)
for H(u, v) �= 0,

0 for H(u, v) = 0.

(2.2.4)

In many situations where an recorded image is noisy, Wiener filter is a compromise between
the inverse filtering restoration and suppression of noise for those frequencies whereH(u, v) → 0.
Key factors in this compromise are the power spectra of the ideal image and the noise. For
frequencies where Sη(u, v) � Sf(u, v), the Wiener filter approaching the inverse filter, while
the frequencies where Sη(u, v) � Sf(u, v) the Wiener filter acts as a filter that do not miss
frequencies i.e. Hwiener(u, v) → 0.

2.3 The constrained least-squares filter

Wiener filter presented in the previous section has some disadvantages. One of the disadvan-
tages is that the power spectra of the original image and the noise must be known. The method
presented in this section requires knowledge of the mean and variance of noise. Since these two
parameters can usually be calculated from the given degraded image and this is an important
advantage of this method [26].

Another difference is that the Wiener filter is based on the minimization of statistical criteria
and as such it is optimal in an average sense. The method presented here has the noteworthy
feature that gives optimal result for each image to which it is applied. Of course you need to
take into account that these optimal criteria that are met in a theoretical point of view, not
associated with the dynamics of visual perception. The choice that one algorithm or method is
better than another, almost always determined by the obtained visual quality of the received
images.

If restoration is good, blurred version of the restored image should be approximately equal
to the recorded degraded image:

h(n1, n2) ∗ f̃(n1, n2) ≈ g(n1, n2). (2.3.5)

More reasonable expectation is that restored image to satisfy the relation:

∥∥∥g(n1, n2)− h
(
n1, n2 ∗ f̃(n1, n2)

)∥∥∥2 = 1

NM

N−1∑
k1=0

M−1∑
k2=0

(
g(k1, k2)− h(k1, k2) ∗ f̃(k1, k2)

)2

≈ σ2
η

(2.3.6)

where σ2
η is the variance of the noise. There are many potential solutions that satisfy the relation

(2.3.6). Another criterion is need to obtain the proper solution from the many solutions. The
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constrained least-squares filter (CLS filter) Hcls is obtained as one of many potential solutions
that satisfy the relation:

Ω(f̃(n1, n2))=‖c(n1, n2) ∗ f̃(n1, n2)‖2

=
1

NM

N−1∑
k1=0

M−1∑
k2=0

(c(k1, k2) ∗ f̃(k1, k2))2,
(2.3.7)

where c(n1, n2) is the PSF of a two dimensional highpass filter.

Interpretation of Ω(f̃(n1, n2)) is that it gives a measure of the content of the restored image
at high frequencies. The minimization of this measure and the limit given by (2.3.6) we get
a solution that satisfies both conditions: it is from the set of potential solutions that satisfy
the relation (2.3.6) and have less content at high frequency. A typical choice for c(n1, n2) is a
discrete approximation of the second derivative, known as two-dimensional Laplacian operator:

c(n1, n2) =

⎛⎝ 0 −1 0
−1 4 −1
0 −1 0

⎞⎠ . (2.3.8)

Solution in the spectral domain [26] of the described optimization problem is:

F̃ (u, v) =

[
H∗(u, v)

|H(u, v)|2 + α|C(u, v)|2
]
G(u, v). (2.3.9)

Thus, the constrained least-squares filter (CLS filter) Hcls in discrete Fourier domain is
given by the relation:

Hcls(u, v) =
H∗(u, v)

H∗(u, v)H(u, v) + αC∗(u, v)C(u, v)
, (2.3.10)

where α is a regularization parameter that should be chosen so the relation (2.3.6) is satisfied.
Although there are analytical approaches for assessing the regularization parameter, usually
parameter α is adjusted interactively until you get acceptable results [6, 43].

It should be noted that although the motivation for designing the two filters are quite
different formulation of WF (2.2.3) and CLS filter (2.3.10) are quite similar. These filters work
equally well, and they behave in a similar way when the noise variance σ2

η is approaching zero.

2.4 The Lucy-Richardson algorithm

The two above defined methods for image restoration are linear. They are also known as direct
methods, in the sense that once you specify the restoration filter, the solution is obtained by
applying once the filter. This ease of implementation associated with small needs of computer
computational and well established theoretical base makes linear techniques essential tool in
the image restoration.

Over the past two decades, nonlinear iterative techniques were accepted as tools for image
restoration and sometimes gave better results than those obtained with linear methods.Basic
limitations of nonlinear methods that their behavior is not always predictable and generally
require significantly more computational resources. The first limitation is losing in importance
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given the fact that nonlinear methods have proved better in terms of linear methods in a wide
range of applications [39]. The second limitation is becoming less important because in the last
decade we are witness of dramatically increase in the computational power.

One iterative nonlinear method is the Lucy-Richardson algorithm, developed independently
by Richardson in 1972 [77] and Lucy in 1974 [52]. Lucy-Richardson algorithm (LR shortly),
derived from the formulation for maximum likelihood in which the image is modeled with
Poisson statistics. By maximizing the likelihood function of the model gives the following
relation which is satisfied when iteration converges:

f̃k+1(n1, n2) = f̃k(n1, n2)

[
h(−n1,−n2) ∗ g(n1, n2)

h(n1, n2) ∗ f̃k(n1, n2)

]
(2.4.1)

The iterative nature of the algorithm is obvious. Nonlinear nature comes from dividing
with f̃ on the right side in relation (2.4.1). As with other nonlinear methods, the question of
when to stop Lucy-Richardson algorithm is generally difficult to answer. The most common
approach is to observe the output and to terminate the algorithm when the result is acceptable
for the given application.

2.5 The symmetric minimal rank solution

The notation Rs×t denotes the set of all s× t real matrices. Let SRRs×s, ASRs×s and ORs×s be
the sets of all s× s real symmetric, antisymmetric and orthogonal matrices, respectively. Let
‖A‖, A†, AT , R(A) and rang(A) denote the Frobenius norm, the Moore-Penrose generalized
inverse, the transpose, range and rank of A ∈ R

s×t, respectively. The matrix Is is identity
matrix of order s. The inverse matrix problem assumes that X ∈ Rs×t and B ∈ Rs×t and a
positive integer r are given. Find A ∈ Rs×s such that AX = B and rang(A) = r.

In this section we use the algorithm from [96] for finding the matrix Ã, for a given A∗, such
that

‖A∗ − Ã‖ = min
A∈Sm̃

‖A∗ − A‖, (2.5.1)

where S1 = {A ∈ SRs×s| AX = B} is the solution set, m̃ = min
A∈S1

rang(A) and

Sm̃ = {A| rang(A) = m̃, A ∈ S1}
is the symmetric minimal rank solution from the solution set S1. Construction of the matrix
Ã is based on the following statement from [96].

Proposition 2.5.1. [96, Theorem 4.1] Given X,B ∈ Rs×m, assume that the singular value
decomposition of X is given by

X = U

[
Σ 0
0 0

]
V T = U1ΣV

T
1 , (2.5.2)

where
U =

[
U1 U2

] ∈ OR
s×s, U1 ∈ R

s×k,

V =
[
V1 V2

] ∈ OR
m×m, V1 ∈ R

m×k, k = r(X),

Σ = diag(σ1, σ2, . . . , σk), σ1 ≥ . . . ≥ σk > 0.
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Let

A = U

[
A11 A12

A21 A22,

]
UT (2.5.3)

where
A11 = UT

1 BV1Σ
−1 ∈ SR

k×k, A12 = Σ−1V T
1 BTU2 ∈ SR

k×(n−k)

and
A21 = U2BV1Σ

−1 ∈ SR
(n−k)×k

satisfy
A11 = AT

11, A21 = AT
21, A22 = AT

22.

Suppose that the next equations, ensuring solvability of the matrix equation AX = B, are
satisfied:

BV2 = 0, XTB = BTX, (2.5.4)

the singular value decomposition of G1 = A21

(
I − A†

11A11

)
is given by

G1 = P

[
Γ 0
0 0

]
QT = P1ΓQ

T
1 , (2.5.5)

where
P =

[
P1 P2

] ∈ OR
(s−k)×(s−k), P1 ∈ R

(s−k)×t,

Q =
[
Q1 Q2

] ∈ OR
k×k, Q1 ∈ R

k×t, t = r(G1),

Γ = diag(α1, α2, . . . , αk), α1 ≥ . . . ≥ αk > 0.

Then (2.5.1) has a unique solution Ã, which can be written as

Ã = A0 + U2P1P
T
1 (A

∗
22 − A04)P1P

T
1 U

T
2 , (2.5.6)

where

A0 = BX† + (BX†)T (I −XX†) + (I −XX†)BX†(XX†BX†)†(BX†)T (I −XX†), (2.5.7)

X† is the Moore-Penrose inverse of X, equal to

X† = V1Σ
−1UT

1

and A∗
22 and A04 are given by

UTA0U =

[
A01 A02

A03 A04

]
, UTA∗

1U =

[
A∗

11 A∗
12

A∗
21 A∗

22

]
, (2.5.8)

where A01 ∈ SR
k×k and A∗

11 ∈ SR
k×k.

The matrix A∗
1 comes from the notion that for any A∗ ∈ Rs×s, we have

A∗ = A∗
1 + A∗

2, (2.5.9)

where A∗
1 ∈ SRs×s, A∗

2 ∈ (SRs×s)⊥, and (SRs×s)⊥ is orthogonal complement space of SRs×s.
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2.6 Moment based image reconstruction method

Moment functions have been used extensively in a number of applications in image analysis, such
as pattern recognition, compression, image reconstruction. Furthermore, moment of images
have been used in computer vision applications as well as in medical imagining (see [22, 63, 64,
66, 79, 91, 90, 89]).

Moments introduced by Teague [90] are orthogonal moments and based on the theory of
orthogonal polynomials. These type of moments are less sensitive to noise and invariant to
linear transformation [90]. The moments with discrete orthogonal bases assure very precise
image reconstruction, acceptable noise tolerance and are applicable for implementation [63, 64].

Although moments are originally defined in continuous form, discrete formulae are regu-
larly in use for practical reasons. Discrete orthogonal moments have better accuracy in image
restoration process with respect to continuous moments [65]. A number of orthogonal discrete
moments have been recently introduced. A detailed description of these methods can be found
in [15]. In this subsection we show some of the results from [15] for the sake of completeness.

Moments are particularly popular due to their compact description, their capability to select
differing levels of detail and their known performance attributes (see [22, 59, 66, 90, 89, 91]).
It is a well-recognized property of moments that they can be used to reconstruct the original
function, i.e., none of the original image information is lost in the projection of the image on to
the moment basis functions, assuming an infinite number of moments are calculated. This is
also consistent with work on other types of reconstruction, such as eigenanalysis where it has
been found that increasing numbers of eigenvectors are required to capture image detail [79]
and again exceed the number required for recognition.

Describing images with moments instead of other more commonly used image features means
that global properties of the image are used rather than local properties. The most common
reconstruction method of an image from some of its moments is based on the least squares
approximation of the image using orthogonal polynomials [63, 70]. In contrast, an image can
also be expressed as an element of a vector space, therefore it can be expressed in as a linear
combination of the elements of any not necessarily orthogonal basis of this space.

The reconstruction of an image from its moments is not necessarily unique. Thus, all
possible methods must impose extra constraints in order to its moments uniquely solve the
reconstruction problem.

In this section the constraint that introduced is related to the number of coefficients and
the spatial resolution of the image. The Haar basis is unique among the functions we have
examined as it actually defines what is referred to as a ’wavelet’. Wavelet functions are a class
of functions in which a ’mother’ function is translated and scaled to produce the full set of
values required for the full basis set. Limiting the resolution of an image means eliminating
those regions of smaller size than a given one. The Haar coefficients are obtained from the
projection of the image onto the discrete Haar functions Bk,l(m) for k which is a power of 2,
and are defined as

Bk,l(m) =
1√
k
,

in the case l = 1, and for l > 1

Bk,l(m) =

⎧⎨⎩
+
√

q
k
, if p ≤ m < p+ k

2q

−√ q
k
, if p+ k

2q
≤ m ≤ p+ k

q

0, otherwise
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with q = 2[log2(l−1)] and p = k(l−1−q)
q

+ 1, where [.] stands for the function fix(x), which rounds
the elements of x to the nearest integer towards zero.

We showed that it is possible to use basis functions in the reconstruction different from
orthogonal polynomials, such as Haar basis. The Haar basis allows introducing constraints
relative to the spatial resolution on the image to be reconstructed. Following that, the standard
least-squares orthogonal reconstruction method can be seen as a particular case of our basis
functions reconstruction method. The limitation of the image resolution corresponds to the
elimination of the corresponding Haar function coefficients.

The approximation of an image FXY in the least square sense, can be expressed in terms of
the projection matrix Pkl:

Pkl = (BXk)
TFXYBY l

as
F T
XY = BT

Xk(BXkB
T
Xk)

−1Pkl(B
T
Y lBY l)

−1BT
Y l = (BXk)

−1
R Pkl(BY l)

−1
L , (2.6.1)

where ()T and ()−1 denote the transpose and the inverse of the given matrix. The operations
()−1

L and ()−1
R stand for the left and right inverses, both equal to the Moore-Penrose inverse

and are unique. Among the multiple inverse solutions it chooses the one with minimum norm.
As the higher order moments reached the reconstruction of the image, it will become more
accurate.

We use the approach described in [15, page 350]. For more details about the Fourier basis,
see also [19]. Definition of Haar coefficients can be found in [15, page 351].

2.7 Tikhonov and TSVD image restoration methods

In this chapter we present a short overview of the two methods, namely Truncated Singular
Value Decomposition (TSVD shortly) and Tikhonov (shortly denoted by TIK). More details
for the methods are presented in [32].

The SVD (Singular Value Decomposition) is a matrix computation tool for analyzing of
the linear system of equation Ax = b. The x and b are long vectors obtained by stacking the
columns from the images X and B. The matrix X ∈ Rm×n is desired sharp image, the matrix
B ∈ Rm×n is recorded blurred image and the large blurring matrix A ∈ RN×N , N = m ∗ n. For
this two methods is used the following SVD of the matrix A [32]:

A = UΣV T , (2.7.1)

where U and V are orthogonal matrices which satisfy UTU = IN and V TV = IN . The matrix
Σ is diagonal matrix with entries σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0.

These two methods belongs to the family of the spectral filtering methods because they give
us control on the spectral content of the deblurred image with the filter factors φi [32]. With
this approach the form of the approximation solution for the Ax = b is

xfilt =

N∑
i=1

φi
uT
i b

σi
vi, (2.7.2)

where the columns ui of U are called the left singular vectors and the columns vi of V are the
right singular vectors. From UTU = IN follow that uT

i uj = 0 if i �= j, and similarly for vTi vj = 0
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if i �= j. With different selection of the filter factors are obtained different spectral filtering
algorithm, for example TSVD and TIK methods.

For TSVD method, also called pseudo-inverse filter, the filter factors are define to be one
for large singular value and sero for the rest [32]. The filter factor for TSVD method are given
by

φi ≡
{

1 i = 1, . . . , k,
0 i = k + 1, . . . , N,

(2.7.3)

where k is parameter called truncation and determines the number of the SVD components in
the regularized solution and the truncation parameter satisfies 1 ≤ k ≤ N .

The filter factors for the TIK method [32] are defined as

φi ≡ σ2
i

σ2
i + α2

, i = 1, . . . , N. (2.7.4)

The parameter α is regularization parameter and α > 0. Tikhonov solution is related with
the minimization problem

min
x

{‖b− Ax‖22 + α2‖x‖22}, (2.7.5)

and gives the solution in the form

xfilt =

N∑
i=1

σ2
i

σ2
i + α2

uT
i b

σi
vi. (2.7.6)

The filter factors of the Tikhonov solution [32] satisfy

φi =

⎧⎪⎨⎪⎩
1−

(
α
σi

)2

+O
((

α
σi

)4)
, σi � α,(

σi

α

)2

+O
((

σi

α

)4)
, σi � α.

(2.7.7)

The relation (2.7.7) comes from the Taylor expansion

(1 + ε)−1 = 1− ε+
1

2
ε2 +O(ε3), (2.7.8)

in the following relation:

φi =

{
1

1+α2/σ2
i
, σi � α,

1
1+σ2

i /α
2 , σi � α.

(2.7.9)
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Chapter 3

Non-iterative methods for image
restoration

3.1 Application of the pseudoinverse computation in re-

construction of blurred images

In the present section, we investigate the problem of removing the blur from images, caused
by a uniform linear motion. Our assumptions are that the linear motion corresponds to an
integral number of pixels, and it is aligned with the horizontal (or vertical) sampling. We are
concentrated on the usage of the Moore-Penrose inverse solution of a given matrix equation
which represents a mathematical model of the uniform linear motion blur.

The methods of image restoration, based on the usage of the Moore-Penrose inverse, have
been exploited in many recent papers [12, 13, 14]. Several methods for computing the Moore-
Penrose inverse have been introduced in [3]. One of the most commonly used methods, is the
method of Singular Value Decomposition (SVD). This method is very accurate but also time-
intensive since it requires a large amount of computational resources, especially in case of large
matrices. An algorithm for fast computation of the Moore-Penrose inverse is also presented in
the recent work of P. Courrieu [17]. Courrieu’s algorithm is based on the reverse order law for
matrix pseudoinverse (eq. 3.2 from [74]), and on the full-rank Cholesky factorization of possibly
singular symmetric positive matrices. Another very fast and reliable method for estimation of
the Moore-Penrose inverse of full rank rectangular matrices is given by V. Katsikis and D.
Pappas [46]. The method uses a special type of tensor product of two vectors.

All methods for computing the Moore-Penrose inverse, mentioned above, are either iterative
or use some kind of matrix factorization. The method we propose, explore the structure of
the degradation matrix of the model and generates the Moore-Penrose inverse analytically, by
means of a set of rules. The motivation behind, is the very proper structure of the matrix which
participates as a degradation system in the image formation process. The introduced method
is very fast, which is its main advantage. On the other hand, the main disadvantage of the
proposed method is its limitation to uniform linear motion blur degradations. The presented
numerical results claim the expected decrease in CPU time.

In the next subsections we present the ideas behind the processes of image restoration which
are based on the usage of the Moore-Penrose inverse and a new method for reconstruction of
blurred images, by generating the Moore-Penrose inverse of the model matrix analytically. In

23
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Section 4.1, by reporting numerical results, we observe certain enhancement in the computa-
tional time and the Improvement in Signal to Noise Ration (ISNR), compared to other standard
methods for image restoration.

3.1.1 Preliminaries

The matrix A† which satisfies the following properties

AA†A = A, A†AA† = A†, (AA†)T = AA†, (A†A)T = A†A,

is called the Moore-Penrose inverse of the matrix A.

This section refers to the formation of the mathematical model that reflects the process of
removing the blur in images, which is caused by a uniform linear motion as well as the matrix
pseudoinverse solution of the problem.

Suppose that the matrix F ∈ R
r×m corresponds to the original image with picture elements

fi,j, i = 1, . . . , r, j = 1, . . . , m and G ∈ Rr×m with pixels gi,j, i = 1, . . . , r, j = 1, . . . , m, is
the matrix corresponding to the degraded image. Let l be an integer indicating the length of
the linear motion blur in pixels and n = m + l − 1. In practice the degradation (index l) is
rarely known exactly, so that it must be identified from the blurred image itself. To estimate
the index l, two different cepstral methods can be used: one dimensional or two dimensional
cepstral method [48]. To avoid the problem when the information from the exact image spills
over the edges of the recorded image, we supplement the original image with boundary pixels
that best reflect the original scene. Without any confusion we are using the same symbol F for
the enlarged original image (matrix) with remark that F now becomes a matrix of dimensions
r × n. First, we suppose that the blurring is a horizontal phenomenon. Let us denote the
degradation matrix by H ∈ Rm×n. For each row fi of the matrix F and the respective row gi
of the matrix G we consider an equation of the form

gTi = HfT
i , gTi ∈ R

m, fT
i ∈ R

n, H ∈ R
m×n. (3.1.1)

The objective is to estimate the original image F , row by row, using the corresponding rows
of the known blurred image G and a priori knowledge of the degradation phenomenon H .

Equation (3.1.1) can be written in the matrix form as

G =
(
HF T

)T
= FHT , G ∈ R

r×m, H ∈ R
m×n, F ∈ R

r×n. (3.1.2)

There is an infinite number of exact solutions for f that satisfy the equation (3.1.1). But,
only the Moore-Penrose inverse solution solves uniquely the next minimization problem (see,
for example [3]):

min ‖f‖2, subject to min ‖Hf − g‖2. (3.1.3)

The unique vector f̃ satisfying (3.1.3) represents a row of the restored image [7, 12, 13, 14],
and it is defined by

f̃ = H†g. (3.1.4)

The matrix form of the equation (3.1.4) i.e., the restored image F̃ is given by

F̃ = G(H†)T . (3.1.5)
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The matrix F̃ defined in (3.1.5) is the minimum-norm least-squares solution of the matrix
equation (3.1.2).

The matrix equation which characterizes the vertical motion blurring process is given by

G = HF, G ∈ R
r×m, H ∈ R

r×n, F ∈ R
n×m, n = r + l − 1. (3.1.6)

The corresponding restored image can be computed using the Moore-Penrose inverse by the
following formula

F̃ = H†G. (3.1.7)

We assume that the blurring is a local phenomenon, spatially invariant as well that the
imaging process captures all light and no additional noise is included. Taking into consideration
the given requirements, the degradation matrix of the blurring process reduces to a matrix
H = toeplitz(h1, h1). The matrix H is non-symmetric Toepltiz matrix consisting of m rows
and n = m + l − 1 columns, determined by its first column h1 = (hi,1)

m
i=1 and its first row

h1 = (h1,j)
n
j=1 as follows:

hi,1 =

{
1/l, i = 1,
0, i = 2, . . . , m,

and h1,j =

{
1/l, j = 1, . . . , l,
0, j = l + 1, . . . , n.

(3.1.8)

An arbitrary ith row of the blurred image can be expressed using the ith row of the original
image extended with the boundary pixels as

⎡⎢⎢⎢⎢⎢⎣
gi,1
gi,2
gi,3
...

gi,m

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
l

1
l

· · · 1
l

0 0 0 . . . 0

0 1
l

1
l

· · · 1
l

0 0 . . . 0

0 0 1
l

1
l

· · · 1
l

0 . . . 0

...
...

...
. . .

. . .
...

. . .
...

0 0 0 · · · 1
l

1
l

· · · 1
l

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
fi,1
fi,2
fi,3
...

fi,n

⎤⎥⎥⎥⎥⎥⎦ , (3.1.9)

where l− 1 elements of the vector fi, are not actually the pixels from the original scene; rather
they are boundary pixels. How many boundary pixels will be added above the vector f depends
of the nature and direction of the movement. However, the rest of them, i.e., l − 1 minus the
number of pixels added above the vector f , would present the boundary pixels right of the
horizontal line, and are added below the vector f [32].

The process of non–uniform blurring assumes that the blurring of the columns in the image
is independent with respect to the blurring of the rows. In this case two matrices participate in
the formation of the process and the relation between the original and the blurred image can
be displayed with the following relation

G = HcFHT
r , G ∈ R

m1×m2 , Hc ∈ R
m1×r, F ∈ R

r×n, Hr ∈ R
m2×n, (3.1.10)

where n = m2 + lr − 1, r = m1 + lc − 1, lr is the length of the horizontal blurring in pixels and
lc is the length of the vertical blurring in pixels. In this case, the Moore-Penrose solution of
the system (3.1.10) is given by

F̃ = H†
cG(HT

r )
†. (3.1.11)



26 CHAPTER 3. NON-ITERATIVE METHODS FOR IMAGE RESTORATION

3.1.2 New image restoration method

First, we define a method of image restoration in the case when the number of columns of the
image, enlarged by boundary pixels, can be divided by an appropriate number of blurring pixels,
i.e., when the equality n = l · p holds. We show that in this case the Moore-Penrose inverse H†

can be generated analytically, without any iterations. Later, we generalize the method to the
case when the dimension n is arbitrary.

Let us suppose that

n = m+ l − 1 = l · p,
where the number of blurring pixels l is a positive integer. In the rest of the section, we
construct the matrix H̃ = [h̃ij ], i = 1, . . . , n, j = 1, . . . , m and show that it is actually the
Moore-Penrose inverse of the degradation matrix H .

All elements of the matrix H̃, excluding zero elements, can be represented by the following
two sequences:

xk = − l

n
(m− l(k − 1)− 1) = −m− l(k − 1)− 1

p
, k = 1, 2, . . . , p− 1,

yk =
l

n
(m− l(k − 1)) =

m− l(k − 1)

p
, k = 1, 2, . . . , p.

Additionally, we put z = yp =
1
p
.

The general layout of the matrix H̃ ∈ Cn×n in the case n = m + l − 1 = l · p is given in
Figure 3.1.1.

��

B1

B2

B3

Bp-1

. ..

. ..
Cp-1

C3

C2

C1

0

��

z

z

z

z

...

0

0

0

0

z

z

z

z

...

z

z

z

z

...

z

z

z

z

...

z

z

z

z

...

z

z

z

z

...

m

l-1

m
upper line

lower line

l-1

Figure 3.1.1: General layout of the matrix H† in the case n = m+ l − 1 = l · p.
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The parallelogram between the blocks Bk and Ck is called zero layer. The line denoted
by upper line refers to the elements above the zero layer of the matrix H̃ which actually
constitute the diagonal of the square m×m matrix formed from the first m rows of the matrix
H̃. Similarly, lower line refers to the elements below the zero layer of the matrix H̃ which
constitute the diagonal of the square m×m matrix formed from the last m rows of the matrix
H̃. The upper line, the lower line, the first l elements of the first row of H̃ and the last l
elements of the last column of H̃ will be denominated as sides of the zero layer.

Further, we preview the structure of the blocks Bk, k = 1, . . . , p− 1. Each block Bk can be
represented via appropriate block Pk of the following form:

Pk =

0

0 0

0 0 0
...

. . .
. . .

. . .

0 0 . . . . . . 0

xk 0 0 . . . . . . 0

−xk xk 0 0 . . . 0 z

−xk xk 0 0
... z

. . .
. . .

. . .
...

. . .
. . . 0

...

−xk xk z

−xk z + xk

yk+1

Zero parallelogram blocks are of dimensions (l − 2) × (l − 1). The block Bk is obtained by
pasting up k times the block Pk, from the bottom upwards, and then from the resulting block
we cut by horizontal line the most upper triangle which has a vertical side containing the upper
l − 2 elements of the block Pk. The missing element of the resulting block Bk is filled by the
value of yk+1. The three steps in the formation process of the blocks Bk are presented in Figure
3.1.2.

In order to write the analytical form of the matrix H̃ we will use the following notation. Let
qi, qj , ri and rj be integers such that for a given ith row and jth column hold i = qil+ri and j =

qjl+ rj. From the previous considerations it is clear that: i ≤ j if and only if h̃ij ∈ Bk, k =

1, 2, . . . , p− 1. Similarly, i ≥ l and i > j if and only if h̃ij ∈ Ck, k = 1, 2, . . . , p− 1. Taking
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Pk ( )1st

Pk (k )th

.

.

.

1st step

.

.

.

2nd step

.

.

.

3rd step

Cutting line

yk+1

= B
k

Pk (2nd)

Pk (k )thPk (k )th

Pk (2nd)Pk (2nd)

Pk ( )1stPk ( )1st

Figure 3.1.2: Formation of the block Bi from the block Pi.

this into account, we present the analytical form of the matrix H̃ as follows

h̃ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yqj+1, i ≤ j, rj = 1, ri = 1,
z + xqj , i ≤ j, rj = 1, ri = 0,
(−1)d+1xqj−1+1, i ≤ j, rj �= 1, qj ≥ qi, (ri−j = 0 or ri−j = l − 1)

z + xp−qj−1, i ≥ l, i > j, rj = 1, ri = 1,
yp−qj , i ≥ l, i > j, rj = 1, ri = 0,
(−1)dxp−qj−1−1, i ≥ l, i > j, rj �= 1, qj ≤ qi, (ri−j = 0 or ri−j = l − 1)

z, rj = 1, ri �= 0, ri �= 1
0, otherwise,

(3.1.12)

where d is 0 if ri−j = 0 and d = 1 otherwise. The first case in (3.1.12) gives the elements that are
not equal to zero or z of the blocks Bk, k = 0, . . . , p−1 plus y1 from the first column. The second
case produces the elements that are not equal to zero or z of the blocks Ck, k = 0, . . . , p − 1
plus y1 from the last column. In order to store the whole matrix we need only to store 2p− 1
elements which is lower than n in the case l > 2.

To illustrate our description we give the full form of the matrix H̃ observing the case p = 4.
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1 x1 y2 x2 y3 x3 y4

z −x1 x1 0 z −x2 x2 0 z −x3 x3 0 z

z −x1 x1 z −x2 x2 z −x3 x3 z

...
. . .

. . .
...

. . .
. . .

...
. . .

. . .
...

z −x1 x1 z −x2 x2 z −x3 x3 z

y4 −x1 z + x1 −x2 z + x2 −x3 z + x3

z + x3 −x3 0 y2 x2 0 y3 x3 0 y4

z x3 −x3 z −x2 x2 z −x3 x3 z
...

. . .
. . .

... −x2 x2 z −x3 x3 z

z x3 −x3 z
. . .

. . .
...

. . .
. . .

...

z x3 −x3 z −x2 x2 z −x3 x3 z

y4 0 x3 y3 −x2 z + x2 −x3 z + x3

z + x3 −x3 z + x2 −x2 0 y3 x3 0 y4

z x3 −x3 z x2 −x2 z −x3 x3 z
...

. . .
. . .

...
. . .

. . .
... −x3 x3 z

z x3 −x3 z x2 −x2 z
. . .

. . .
...

z x3 −x3 z x2 −x2 z −x3 x3 z

y4 0 x3 y3 0 x2 y2 −x3 z + x3

z + x3 −x3 z + x2 −x2 z + x1 −x1 0 y4

z x3 −x3 z x2 −x2 z x1 −x1 z
...

. . .
. . .

...
. . .

. . .
...

. . .
. . .

...

z x3 −x3 z x2 −x2 z x1 −x1 z

z 0 x3 −x3 z 0 x2 −x2 z 0 x1 −x1 z

y4 x3 y3 x2 y2 x1 y1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In order to verify that the matrix H̃ is actually the Moore-Penrose inverse of the matrix H ,
i.e., that H̃ = H† we will use the following two lemmas:

Lemma 3.1.1. The equality HH̃ = I holds for the matrix H̃ given by (3.1.12).

Dokaz. Each row of the matrix H contains l non zero constant elements equal to 1/l, so that

it is obvious that the elements of the matrix HH̃ are

(HH̃)ij =
1

l

i+l−1∑
s=i

h̃sj, i = 1, . . . , m and j = 1, . . . , m.

Therefore, we need to explore the properties of jth column of the matrix H̃ , j = 1, . . . , m, i.e.,
the sums of its l consecutive elements. For this reason, from the representation of the matrix
H̃ given by (3.1.12) we distinguish two different cases:
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1 case : rj = 1.
Each set of l consecutive elements contains only two elements different from z. If both of

them are above the zero layer their sum is yqj+1 + (l− 1)z+ xqj = 0. If both of them are below
the zero layer their sum is xp−qj−1 + (l − 1)z + yp−qj = 0. Otherwise, if one of them is above
the zero layer and the other one is below the zero layer, then their sum is yqj+1 + yp−qj = l.
Unfortunately, as we mentioned before, the last is the case only when i = j.

2 case : rj �= 1.
Each set of l consecutive elements contains only two non zero elements. If those two elements

are above the zero layer or both of them are below the zero layer then it is obvious that their
sum is 0. If one of them is above the zero layer and the other one is below the zero layer, thus
i = j, their sum is −xqj−1+1−xp−qj−1−1, which by easy calculations can be shown that equals l.

So finally for the both cases we have

(HH̃)ij =
1

l

i+l−1∑
s=i

h̃sj =

{
1, i = j
0, i �= j

, i = 1, . . .m, j = 1, . . .m.

i.e. HH̃ = I. �

Lemma 3.1.2. The equality (H̃H)T = H̃H holds for the matrix H̃ given by (3.1.12).

Dokaz. For a given i = 1, . . . , n and j = 1, . . . , n, we should show that (H̃H)ij = (H̃H)ji.

The elements of the matrix H̃H can be presented as

(H̃H)ij =
1

l

min {j,m}∑
s=max {1,j−l+1}

h̃is, i = 1, . . . , n and j = 1, . . . , n. (3.1.13)

Let us denote by s = min {j,m} −max {1, j − l + 1}.
Consequently, we should show that the sum of s consecutive elements in the ith row of the

matrix H̃H where the last element is in the jth column; equals the sum s consecutive elements
in the jth row of the matrix H̃H , where the last element is in the ith column. So the case
when i = j is clear, actually, for a given i these elements actually present the sum of the s
consecutive elements that belong to the zero layer as well as his sides. We continue with the
opposite case when i �= j.

Let us explore the properties of each row i of the matrix H̃ , i = 1, . . . , n. First we recall
that if i ≤ j that means that h̃ij is either y1 or belongs in a block Bk, k = 1, . . . , p− 1. And, if

i > l and i > j that means that h̃ij is either y1 or belongs in a block Ck.

1 case : i < j, ri = 1 and rj �= 1 (i = 1, . . . , n− 1 and j = 1, . . . , n).

From (3.1.13) and definition of the matrix H̃ we have

(H̃H)ij =
1

l
(yqj+1 + xqj+1) =

z

l
.

That means that the sum of each s consecutive elements equals z, if the elements are in
the (kl + 1)st row, k = 0, . . . , p − 1, and the last element is not in the (kl + 1)st column,
k = 0, . . . , p− 1. Also since i < j the last element is above the diagonal of the square matrix
constituted of the first m rows of H̃ .
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We need to compare these values with the values of (H̃H)ji. For this situation we analyze
the opposite case i.e. we interchange the conditions for i and j. Suppose,

i > j, ri �= 1 and rj = 1 (i = 1, . . . , n and j = 1, . . . , n− 1).

From here we continue with two different possibilities, denoted by a1 and a2.
a1: if ri = 0 then

(H̃H)ij =
1

l
(−xqj + z + xqj ) =

z

l
.

a2: if ri �= 0 then

(H̃H)ij =
1

l

{
z, j = 1
z + xp−qj − xp−qj = z, j > 1.

Thus the first case is completed i.e. if i < j, ri = 1 and rj �= 1 (i = 1, . . . , n− 1 and j =

1, . . . , n) then (H̃H)ij = (H̃H)ji.

2 case : i < j, ri = 1 and rj = 1 (i = 1, . . . , m− 1 and j = 1, . . . , m) then

(H̃H)ij = yqj+1 + xqj = z(1 − l).

Note: Since m = l(p− 1) + 1 and n = m+ l − 1, if j > m it follows that rj �= 1.

If the conditions i > j, ri = 1 and rj = 1 (i = 1, . . . , m and j = 1, . . . , m − 1) are
satisfied we obtain

(H̃H)ij =

{
z + xp−1 = z(1 − l), j = 1
z + xp−qj−1 − xp−qj = z(1− l), j �= 1,

which completes the proof in the case 2.
3 case : i < j, ri �= 1 and rj = 1 (i = 1, . . . , m− 1 and j = 1, . . . , m) then

(H̃H)ij =
1

l
(−xqj + z + xqj ) =

z

l
.

Under the assumptions i > j, ri = 1 and rj �= 1 (i = 1, . . . , m and j = 1, . . . , m − 1) one
can verify

(H̃H)ij =
1

l
(z + xp−qj−1 − xp−qj−1) =

z

l
,

so that the verification of the statement in case 3 is completed.

4 case : i < j, ri �= 1 and rj �= 1 (i = 1, . . . , n− 1 and j = 1, . . . , n). Similarly as in the
previous cases, after considering several possibilities, one can derive the following

(H̃H)ij =
1

l

{
z(l − 1), ri = rj, i ≤ m
z, otherwise.

Under the opposite assumptions i > j, ri �= 1 and rj �= 1 (i = 1, . . . , n and j = 1, . . . , n− 1)
we get

(H̃H)ij =
1

l

{
z(l − 1), ri = rj , j ≤ m
z, otherwise,

and the proof is completed. �
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Algorithm 3.1.1 Image deblurring method (MP method).

Require: The blurred image G of dimensions r ×m defined in the blurring process (3.1.9).

Step 1. If m + l − 1 mod l �= 0 then add l ∗ quotient(m + l − 1, l) + l −m boundary pixels,
else add l − 1 boundary pixels.

Step 2. Compute the matrix H† according to the formula (3.1.12).

Step 3. Apply formula (3.1.5).

Step 4. Return F̃ .

Theorem 3.1.1. The matrix H̃ given by (3.1.12) is the Moore-Penrose inverse of the matrix
H.

Proof. Since the matrix H is full row rank matrix its Moore-Penrose inverse is its right inverse.
From this fact and from the previous two lemmas follows the proof of the theorem.

3.2 Application of partitioning method on specific Toeplitz

matrices

We consider the problem of removing non–uniform blur, which corresponds to an integral
number of pixels, in images. The real-life linearly blurred image (denoted by the image array
G), can be modeled as a linear convolution of the original image (denoted by the image array
F ) with a PSF, also known as the blurring kernel (represented by the matrix H).

The Moore-Penrose inverse is a useful tool for solving linear systems and matrix equations
[3, 71]. These useful properties of the Moore-Penrose inverse cause the appearance of the
Moore–Penrose inverse in image restoration process [7, 12, 13, 14]. The approach based on
the usage of the matrix pseudo-inverse in the image restoration is one of the most common
techniques [7].

Appearance of the blur caused by the linear motion is modeled by the matrix equations
FHT = G and HF = G with respect to the unknown matrix F , where H and G are given
matrices of appropriate dimensions. The Moore-Penrose inverse H† of the matrix H , causing
the blur of the original image F into the degraded image G, has been used to solve these
equations [12, 13].

In other words, the main problem we are faced with is to choose an efficient algorithm for
computing the Moore-Penrose inverse H†. The algorithm used in [12, 13] for computing H†

is based on the fast computational method for finding the Moore-Penrose inverse of full rank
matrix, introduced in [42, 46]. Approximations obtained in [12] are reliable and very accurate.
A lot of direct methods have been proposed to compute the Moore-Penrose generalized inverse
of a matrix (see for instance [3, 81]). According to [81], they can be classified as: methods
based on matrix decomposition; methods applicable on bordered matrices and others meth-
ods (including Greville’s recursive method, methods based on the formula A† = (A∗A)(1,3)A∗

and Pyle’s gradient projection methods). The method based on Singular-Value Decomposition
possesses very high computation load (approximately O(n3) operations). P. Courrieu in [17]
proposed an algorithm for fast computation of the Moore-Penrose inverse which is based on
the reverse order law property and the full-rank Cholesky factorization of possibly singular
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symmetric positive matrices. A fast method for computing the Moore-Penrose inverse of full
rank m × n matrices and of square matrices with at least one zero row or column is intro-
duced in [42, 46]. This method exploits a special type of tensor product of two vectors, that is
usually used in infinite dimensional Hilbert spaces. Greville in [29] proposed a recurrent rule
for determining the Moore-Penrose inverse. Udwadia and Kalaba gave an alternative and a
simple constructive proof of the Greville’s formula [92]. Due to its ability to undertake sequen-
tial computing, the Greville’s partitioning method has been extensively applied in statistical
inference, filtering theory, linear estimation theory, system identification, optimization as well
as in analytical dynamics [28, 38, 40, 41, 75]. Recursive computation of the Moore-Penrose
inverse of a matrix to which a block is added, is presented by Bhimsankaram [4]. However,
Bhimsankaram proposes a proof which simply verified that the output of his algorithm satisfies
the four Penrose equations. Udwadia and Kalaba in [93] provided a constructive proof for the
recursive determination of the Moore-Penrose inverse of a matrix to which a block of columns
is added. These results are also extended to other types of generalized inverses in [93].

Our intention is the application of the recursive block partitioning method from [93] as well
as the partitioning method from [29] in the process of removing non–uniform blur in the image
restoration. More precisely, both the block partitioning method and the Greville’s single-column
partitioning method are appropriately modified and applied in computing the Moore-Penrose
inverse solution of the matrix equations HCFHT

R = G with respect to unknown matrix F . The
definitions of the given matrices are given by (3.2.1). The motivation for using these methods
lies in the specific structure of convolution matrices HC and HR. The appropriate structure
of matrices HC and HR reduces the computational complexity of the partitioning method in
calculating pseudoinverses H†

C and H†
R.

In the next subsection we restate some basic definitions, motivations as well as both the re-
cursive block partitioning method and the usual partitioning method for computing the Moore-
Penrose inverse. We give an outline of the process of forming the mathematical model that
reflects the removal of the non–uniform blur in images. Also we describe a new method for
restoring the blurred images which is based on appropriate adaptation of the block partition-
ing method from [93] and the partitioning method from [29]. A few illustrative examples and
comparisons are presented in Section 4.2. Additionally, an example based on the blind decon-
volution is given in Section 4.2.2.

3.2.1 Preliminaries and motivation

We firstly describe the mathematical model that reflects the process of removing the non–
uniform linear motion blur in images. Let R be the set of real numbers, Rm×n be the set of
m×n real matrices and Rm×n

r be the set ofm×n real matrices of rank r. Suppose that the matrix
F ∈ Rr×m corresponds to the original image with picture elements fi,j, i = 1, . . . , r, j = 1, . . . , m
and G ∈ Rr×m with pixels gi,j, i = 1, . . . , r, j = 1, . . . , m is the matrix corresponding to the
degraded image.

The process of the non–uniform blurring assumes that the blurring of columns in the image
is independent with respect to the blurring of its rows. In this case, the relation between the
original and blurred image can be expressed by the matrix equation

G = HCFHT
R , G ∈ R

r×m, HC ∈ R
r×n,

F ∈ R
n×t, HR ∈ R

m×t,
(3.2.1)
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where n = r + lc − 1, t = m+ lr − 1, lc is length of the vertical blurring and lr is length of the
horizontal blurring (in pixels).

To avoid the problem when the information from the original image spills over the edges of
the recorded image, we supplement the original image with boundary pixels that best reflect
the original scene. Without any confusion we are using the same symbol F for the enlarged
original image (matrix) with remark that F now becomes of dimensions n× t.

In order to restore the blurred image G included in the model (3.2.1) we use the Moore–
Penrose inverse approach, which leads to the solution

F̃ = H†
CG(H†

R)
T . (3.2.2)

We define an adaptation of the well-known partitioning method to compute the Moore–
Penrose inverses H†

C and H†
R. The notation Ai, i ∈ {1, . . . , n} denotes the first i columns of a

matrix A ∈ Rm×n. Particularly, ai (resp. ai) means the ith column (resp. the ith row) of A.
By iAk, i ∈ {1, . . . , n − 1}, k ∈ {1, . . . , n− i} we denote the submatrix of A which consists of
the columns ai+1, . . . , ai+k. The m×m identity matrix is denoted by Im and Om is zero matrix
of order m×m. The notation 0 stands for the zero column vector of an appropriate dimension.

For the sake of completeness, we restate the block recursive algorithm for computing Moore-
Penrose inverse of matrix B = [A|C], which denotes a matrix A augmented by an appropriate
matrix C.

Lemma 3.2.1. [93] Let B = [A| C] be an m × (r + p) complex matrix whose last p columns
are denoted by C. Let

R = I −AA†, Q = (RC)TRC,

F = I −Q†Q, Z = A†CF.
(3.2.3)

Then

B† =
[
A†(I − CV )

V

]
(3.2.4)

where

V = Q†CTR + (I + ZTZ)−1ZTA†(I − CQ†CTR). (3.2.5)

We also restate the Greville’s single-column finite recursive algorithm from [29].

Lemma 3.2.2. [29] Let A be an m× n complex matrix and a be an m× 1 constant vector. By
[A|a] we denote the matrix A augmented by an appropriate vector a. Then

[A|a]† =
[
A† − db∗

b∗

]
, (3.2.6)

where
d = A†a,

b =

{
1
c∗cc, c �= 0

1
1+d∗d(A

†)∗d, c = 0,

(3.2.7)

and

c = (I − AA†)a. (3.2.8)
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3.2.2 Adaptation of the partitioning method

It is known that an arbitrary linear blurring process can be represented by (3.2.1) where the
matrices HC and HR are characteristic Toeplitz matrices of the following form, see for example
[32]:

H = [ Hm m+1Hn ] ∈ R
m×n, n = m+ l − 1, (3.2.9)

where

Hm=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 h2 h3 . . . hl 0 0 0

0 h1 h2 h3 . . . hl 0 0

0 0
. . .

. . .
. . . · · · . . . 0

0 0 0 h1 h2 h3 . . . hl

0 0 0 0 h1 h2 h3 . . .

0 0 0 0 0 h1 h2 h3

0 0 0 0 0 0
. . .

. . .

0 0 0 0 0 0 0 h1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.2.10)

m+1Hn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

hl 0 0 0

. . . hl 0 0

. . . · · · . . . 0

h2 h3 . . . hl

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.2.11)

and the sum of the elements h1, . . . , hl is equal to 1. The parameter l represent the length of
the horizontal/vertical blur (in pixels).

It is important to emphasize that our method can be successfully applied to restore a blurred
image in which the blur is caused by an arbitrary linear motion.

We pay special attention to Gaussian blur. Blurring that is caused by atmospheric turbu-
lence, out-of-focus and motion of the camera can be modeled by Gaussian blurring function
[37]. In Gaussian blur model the vector h = [h1, h2, . . . , hl] is equal to

h = [γ(−p), . . . , γ(0), . . . , γ(k)]

where γ(i) = e−i2/(2s2), p = �l/2�, k = �l/2�. The parameter s represents the width of the
blurring function. The vector h is normalized by dividing each element of h by the sum of its
elements. This vector represents the so called one-dimensional Gaussian function. The non-
uniform Gaussian blurring model G = HCFHT

R corresponds to the model where the blurring
matrix is obtained by convolving the original matrix F by the PSF function which is equal with
two-dimensional Gaussian matrix PSF = [pi,j ] with entries pi,j = e−i2/(2s2)−j2/(2s2).

In order to see how boundary conditions can be incorporated in the model, for the sake of
the simplicity, let us retain on the horizontal blurring model (HC = I,HR = H). An arbitrary
ith row gi of the blurred image can be expressed using the ith row f i of the original image
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extended by incorporating the boundary conditions as

(
gi
)T

=H
(
f i
)T ⇐⇒

⎡⎢⎣ gi,1
...

gi,m

⎤⎥⎦=H

⎡⎢⎣ fi,1
...

fi,n

⎤⎥⎦ ,

i = 1, 2, . . . , r,

(3.2.12)

where l− 1 elements of the vector f i, are not actually the pixels from the original scene; rather
they are boundary pixels. How many boundary pixels are placed at the top of the vector f i

depends of the nature and direction of the movement (causer of the blur). However, the rest of
them, i.e. l−1 minus the number of pixels placed at the top of the vector f i, would present the
boundary pixels right of the horizontal line, and should be placed to the bottom of the vector
f i [32].

Courrieu in the paper [17] compared the introduced method geninv with four usual algo-
rithms (the Greville’s partitioning method, the SVD method, full rank QR and an iterative
method of optimized order [3]). It is claimed that the best results are achieved by the geninv
method, while the worst results are generated by the partitioning method. In the present sec-
tion we propose an adaptation of the partitioning method to the Toeplitz matrices of the form
(3.2.9)–(3.2.11).

Our motivation for using the block partitioning method [93] and the Partitioning method
from [29] in order to find H† is explained as follows. The quadratic block Hm of the matrix H is
clearly nonsingular upper triangular Toeplitz matrix, so that its inverse can be computed very
easy. Later, recursive rules (3.2.3)–(3.2.5) and (3.2.6)–(3.2.8) can be significantly simplified,
according to specific structure of the block C and the vector a, respectively.

The following particular case of the Lemma 3.2.1 defines simplifications of recursive steps
(3.2.3)–(3.2.5) in calculating the Moore-Penrose inverse H†.

Lemma 3.2.3. Assume that the matrix H ∈ Rm×n, n = m+ l − 1 causes the blurring process
in (3.2.12). The Moore-Penrose inverse of its first p+ k columns, partitioned in the block form
Hp+k = [Hp| pHk], p ∈ {1, . . . , n− 1}, k ∈ {1, . . . , n− p}, is defined by

H†
p+k=

[
H†

p

(
I − pHk · BT

)
BT

]
=

[
H†

p −DBT

BT

]
, (3.2.13)

where
D=H†

p · pHk and B=(H†
p)

TD(I +DTD)−1. (3.2.14)

Proof. Follows from Lemma 3.2.1, taking into account that the degradation matrix is of full
row rank and the fact that equalities in (3.2.3) reduce to

R = Q = Om, F = Im, V = BT , Z = D = H†
p · pHk,

observing this particular case.

Also, the Greville’s Partitioning method (3.2.6)–(3.2.8) reduces to the following computa-
tional procedure.

Lemma 3.2.4. The Moore-Penrose inverse of the matrix Hi is equal to

H†
i =

[
H†

i−1 − dib
T
i

bTi

]
, (3.2.15)
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where

di=H†
i−1 · hi and bi=

(
1 + dTi di

)−1
(H†

i−1)
Tdi. (3.2.16)

Since we know the inverse H−1
m , which is completely determined by vector x from (3.2.17),

any pragmatical implementation of the new method uses only partitions of the form Hp+k =
[Hp| pHk], p ≥ m, k ∈ {1, . . . , n−m}.

According to Lemma 3.2.3 we propose the Algorithm 3.2.1 for computing the Moore-Penrose
inverse of the specific Toeplitz matrix H .

Algorithm 3.2.1 Computing the Moore-Penrose inverse of the matrix H .

Input: The matrix H of dimensions m× (m+ l − 1) given by (3.2.9).

Step 1. Separate the block Hm of the matrix H .

Step 2. Generate H†
m = H−1

m using the vector x from (3.2.17).

Step 3. Take p = m and choose k such that 1 ≤ k ≤ l − 1 as well as l−1
k

∈ N.

Step 4. Compute H†
p+k=[Hp| pHk]

† according to Lemma 3.2.3.

Step 5. Set p = p+ k.

Step 6. If p �= n then go to Step 4; otherwise, go to the next step.

Step 7. Return H†
n.

It is not difficult to verify that the choice k = 1 in all recursive steps of Algorithm 3.2.1
produces the particular case of Greville’s recursive method corresponding to Lemma 3.2.4. Also,
in the case p = m, k = l − 1 Algorithm 3.2.1 reduces to the Algorithm 3.2.2.

Algorithm 3.2.2 Computing the Moore-Penrose inverse of the matrix H in the case k = l−1.

Input: The matrix H of dimensions m× (m+ l − 1) defined in the blurring process (3.1.9).

Step 1. Separate matrix H into two blocks Hm and mHl−1, that is H = [Hm| mHl−1].

Step 2. Generate H†
m = H−1

m using the vector x from (3.2.17).

Step 3. ComputeH†=[Hm| mHl−1]
† according to Lemma 3.2.3.

Choosing the most efficient case with respect to the computational time, we derive an
efficient method for computing the Moore-Penrose inverse of the degradation matrix H , and
respectively an efficient method for image restoring processes based on the equation (3.2.2).

In order to invert the matrix Hm defined in (3.2.10) look at the matrix equationHmH
−1
m = I.

Since the matrix Hm is upper triangular Toeplitz matrix, it is well-known that its inverse is
also upper triangular Toeplitz matrix. Therefore, the whole matrix H−1

m is determined by its
last column. We denote the last column of H−1

m by x. To generate the vector x we consider the
following equation

Hm · x = em, (3.2.17)

where em denotes the last column of the identity matrix Im. Looking at the methods incor-
porated in the programming package MATLAB we decide to use the linsolve() function using
the option opts.UT = true that imposes computations adopted to upper triangular matrices.
After computing the vector x, it is easy to determines the whole matrix H−1

m .
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Complexity of Partitioning method

In order to determine the best choice of the positive integer k in Algorithm 3.2.1, we compare
computational complexities of Algorithm 3.2.1 and Algorithm 3.2.2. Let us denote by I(n) the
complexity of the algorithm for inverting a given n × n matrix (as in [16]). Also by A(n) we
denote the complexity of the addition/subtraction of two n×n matrices and by M(m,n, k) the
complexity of multiplying m × n matrix by n × k matrix. The simpler notation M(n) (taken
from [16]) is used instead of M(n, n, n).

In the remaining of this subsection we consider the computational complexity of the two
opposite choices in Algorithm 3.2.1. The choice p = m, k = 1 is called Partitioning method
(PM method shortly). The opposite choice p = m, k = l− 1, used in Algorithm 3.2.2, is called
Block Partitioning Method (shortly BPM method).

It is well-known that the complexity of matrix inversion is equal to complexity of matrix
multiplication. More precisely, the ordinary inverse of any real nonsingular n × n matrix can
be computed in time I(n) = O(M(n)) [16]. The notation O(f(n)) is described, also, in [16].

The complexity of Algorithm 3.2.2 is of the order

EBPM =I(m)+3M(m,m, l−1)+2M(m, l−1, l−1)

+ I(l − 1) + A(l − 1) + A(m).
(3.2.18)

Scanning Algorithm 3.2.1 in a similar way, it is not difficult to verify that its ith recursive step
requires complexity of the order

Ci = M(m+ i− 1, m, 1) +M(1, m+ i− 1, 1)

+M(m,m+ i− 1, 1),

for each i = 1, . . . , l − 1. Therefore, the complexity of the complete algorithm is

EPM = I(m)+

l−1∑
i=1

Ci. (3.2.19)

Since l � m, we conclude that the computational complexity for (I + DTD)−1, equal to
I(l − 1), is substantially smaller than the complexity of required matrix multiplications. Also,
upon the adopted implementation for computing H†

m = H−1
m , based on (3.2.17), we have

I(m) ≈ O
(
(m− 1)m

2

)
= O(m2).

Therefore, the upper bound estimation of complexities EBPM and EPM does not include the
computational effort of the included matrix inversions. The upper bounds for the complexity
of Algorithm 3.2.2 and Algorithm 3.2.1 are given, respectively, by

EBPM ≤ O(M(m,m, l − 1)),

EPM ≤ l · O(M(m,m+ l, 1)).

If A is m×n and B is n×k matrix, then the computational complexity of the product A ·B in
MATLAB is M(m,n, k) = O(nmk), since MATLAB does not use Strassen’s method (or any other
rapid method) for matrix multiplication. Therefore, according to (3.2.18) and (3.2.19)

EBPM ≤ O(m2l −m2), EPM ≤ O(m2l +ml2).
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Consequently, the upper bound for the computational complexity of Algorithm 3.2.2 is less than
the computational complexity of Algorithm 3.2.1. According to these theoretical investigations
as well as on the basis of performed numerical experiments, we conclude that Algorithm 3.2.2
is better choice. The CPU times depend upon two parameters: computational complexity and
implementation details incorporated into the programming language MATLAB.

On the other hand, according to known result from [67], the number of required operations
for Greville’s method is equal to

φ(Greville) = 2m2n− nr2

2
,

where m,n are dimensions of the input matrix and r is its rank. In our case, the number
of arithmetic operations required by the original Greville’s method for computing H†, H ∈
R

m×(m+l−1)
m , is equal to

EGreville = 2m2(m+ l − 1)− (m+ l − 1)m2

2
≈ O(m3).

Analysis of methods for computing H†
m

In order to confirm the efficiency of Algorithm 3.2.2, we compared Block Partitioning Method
with three recently announced methods for computing the Moore-Penrose inverse in [12, 14, 17,
46]. Therefore, the following algorithms for computing the Moore-Penrose inverse are compared:
1. Block Partitioning Method (shortly BPM), presented by Algorithm 3.2.2,
2. Ginv method, defined by the MATLAB function ginv.m from [46],
3. Qrginv method, defined by the MATLAB function qrginv.m from [14, 45],
4. Courrieu method from [17].

A comparison of several direct algorithms for computing the Moore–Penrose inverse of full
column rank matrices is presented in [82]. Also, computational cost of these methods for
computing the Moore–Penorse inverse of full column rank matrix A ∈ Rm×n is given in Table 1
from [82]. In our case, we have the situation A = HT ∈ Rm+l−1×m. According to computational
complexities presented in [82], the complexity of Courrieu method is equal to

EChol = 3(m+ l − 1)m2 +m3/3

and the complexity of Qrginv method is

EQrpivot = 5(m+ l − 1)m2 − 4m3/3.

Ginv method for computing A† is based on the formula A† = (AAT )−1A and MATLAB imple-
mentation is based on the least squares solution of the matrix equation (ATA)X = AT . In the
particular case A = H , computational complexity of Ginv method is

EGinv=O(M(m,m+l−1, m))+I(m)+M(m,m,m+l−1).

Taking into account l < m we derive the following computational complexities:

EChol ≈ O(m3), EQrpivot ≈ O(m3),

EGinv ≈ O(m3), EGreville ≈ O(m3).

Since
EBPM ≈ O(m2l),

we conclude that the Block Partitioning Method has the smallest computational complexity.
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3.3 Removal of blur in images based on least squares

solutions

The main goal of this section is the development of an algorithm that allows us to remove a
linear motion blur from images. The algorithm is based on the least squares solution of a matrix
equation which represents the mathematical model of the linear motion blur. The least squares
solution includes the Moore-Penrose inverse of the blurring matrix as well as an arbitrary matrix
Y . Satisfactory results are obtained when the matrix Y is suitably defined. Appropriate choice
of the matrix Y leads to significant improvements with respect to the classical image restoration
algorithms as well as the image restoration approach based on the Moore-Penrose solution of
certain matrix equations, which is investigated in [12, 13].

Following, the proposed reconstruction method the image was expressed as an element of
a vector space that can be seen as a linear combination of the elements of any not necessarily
orthogonal basis of this space. In this section we showed that it is possible to use basis functions
in the reconstruction different from orthogonal polynomials, such as Haar basis. Overall, this
section presents a reconstruction method that sheds new light on the inverse problems and finds
application on the image processing and analysis.

Two main contributions of this method can be displayed. First, we define robust and
resolute image reconstruction method which can be used as improvement of an arbitrary image
restoration method. The second contribution is a freshly vision of the image analysis through
a basis function approach. The numerical and experimental results related to this method are
described in Section 4.3.

3.3.1 Description of the method

We start from the mathematical model in which the linear motion is a local phenomenon, the
imaging process captures all light and no additional noise is included. Under these assumptions,
an arbitrary ith row gi = [gi,1, . . . , gi,m] of the blurred image G ∈ Rp×m can be related with the
ith row fi = [fi,1, . . . , fi,m] of the original image F0, extended by taking into considerations the
boundary conditions, as in (3.3.1)

gTi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hu · · · h1 h0 h−1 · · · h−u

. . .
... h1 h0

. . .
...

. . .

hu

... h1

. . . h−1 · · · h−u

hu · · · . . . h0
. . .

...
. . .

hu h1
. . . h−1 h−u

. . .
...

. . . h0

. . . h−u

hu h1
. . .

... h−u

. . .
...

. . . h0 h−1

...
. . .

hu · · · h1 h0 h−1 · · · h−u

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wi,1

...
wi,u

fi,1
...

fi,m
vi,1
...

vi,u

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(3.3.1)
The quantities hi are real numbers and n− 1 = 2u elements of the right hand vector, denoted
by wi,1, . . . wi,u and vi,1, . . . vi,u, are not actually the pixels from the original scene; rather they
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are boundary pixels. The boundary pixels left of the horizontal line, which are added above the
initial vector fi = {fi,1, . . . , fi,m}T ∈ R

m, depends of the nature and direction of the movement.
The u boundary pixels right of the horizontal line are added below the vector fi [32]. The
equation (3.3.1) can be written in the form

gTi =
[
H−1 H0 H1

] ⎡⎣ fi,−1

fT
i

fi,1

⎤⎦ , (3.3.2)

where

fi,−1 =

⎡⎢⎣ wi,1

...
wi,u

⎤⎥⎦ , fi,1 =

⎡⎢⎣ vi,1
...
vi,t

⎤⎥⎦ , H−1 ∈ R
m×u, H1 ∈ R

m×u, H0 ∈ R
m×m.

The mathematical model (3.3.2) is reused mainly from [23, 32]. The matrix H is m × s real
matrix, the index n indicates the length of linear motion blur in pixels and s = m + n − 1 =
m+ 2u, m � n.

The objective is to estimate the original image F0 ∈ Rp×m row per row (contained in the
vector fT

i ), by exploiting given row of a blurred image (contained in the vector gTi ) and a priori
knowledge of the degradation phenomenon

H =
[
H−1 H0 H1

]
.

Denote by F−1 (resp. by F1) the matrix whose columns are fi,−1 (resp. fi,1). By F we denote
the block matrix

F =
[
F−1 F T

0 F1

] ∈ R
p×s,

where F−1 ∈ Rp×u, F1 ∈ Rp×u, F0 ∈ Rp×m. Then the equation (3.3.2) can be written in matrix
form as

G =

⎛⎝[ H−1 H0 H1

] ⎡⎣ F−1

F T
0

F1

⎤⎦⎞⎠T

=
[
F T
−1 F0 F T

1

] ⎡⎣ HT
−1

HT
0

HT
1

⎤⎦
= FHT , G ∈ R

p×m, H ∈ R
m×s, F ∈ R

p×s, s = m+ n− 1.

(3.3.3)

Different boundary conditions (BCs) are known. Main of them are restated from [80] as
follows.

- The zero (Dirichlet) BCs assume that pixels outside the domain of consideration are black.
This implies F−1 = F1 = O, where O denotes the zero p × u matrix. Then the matrix
system in (3.3.3) can be shortly written by

G = F0H
T
0 .

- The periodic BCs assume that the true scene is comprised of periodic copies of F0. The
matrix equation (3.3.3) obtains the form

G = F0

([
O H−1

]
+H0 +

[
H1 O

])T
,
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where O is the m× (m− u) zero block. Equivalently, in (3.3.3) we can use

fi,−1 =

⎡⎣ fi,m−u

· · ·
fi,m

⎤⎦ , fi,1 =

⎡⎣ fi,1
· · ·
fi,u

⎤⎦ .

- The reflective BCs means that the data outside the domain of consideration are taken as
a reflection of the data inside. In this case, the matrix equation (3.3.3) becomes

G = F0

([
O H−1

]
J +H0 +

[
H1 O

]
J
)T

,

where O is the m× (m− u) zero block and

J =

⎡⎣ 1
. . .

1

⎤⎦
is the m×m reversal matrix. In this case, in (3.3.3) we have

fi,−1 =

⎡⎣ fi,m
· · ·

fi,m−u

⎤⎦ , fi,1 =

⎡⎣ fi,u
· · ·
fi,1

⎤⎦ .

Since there is an infinite number of exact solutions for F which satisfy the equation G =
FHT , additional criterions that ensure a sharp restored matrix is required. This section provides
a new method for restoration of a blurred image using the set of least squares solutions of the
matrix equation (3.3.3). The least squares solutions in this section are generated using the
generalized inverses.

Generalized inverses are used in the case of a singular square matrix, or in the case of a
rectangular m × n matrix. In fact, many kinds of generalized inverses are widely used in the
literature. The Moore-Penrose inverse of a matrix A ∈ C

m×n is the unique matrix A† satisfying
the following four matrix equations:

(1) AXA = A (2) XAX = X (3) (AX)∗ = AX (4) (XA)∗ = XA. (3.3.4)

A matrix X is called an {i, j, k}–inverse of A (with i, j, k ∈ {1, 2, 3, 4}) if X satisfies the ith,
jth and kth Penrose equations. Then this matrix is not unique. Many problems in applied
linear algebra have been solved using {i, j, k}–inverses. A particular {1}–inverse (or g–inverse)
of A is noted by A(1) and finds applications in solving linear systems of equations or matrix
equations.

We start from the following well-known result [3, 94].

Proposition 3.3.1. Let A ∈ C
n×p, B ∈ C

s×m, D ∈ C
n×m. The matrix equation

AXB = D (3.3.5)

is consistent if and only if
AA(1)DB(1)B = D (3.3.6)

for some g–inverses A(1) and B(1), in which case the general solution is

X = A(1)DB(1) + Y −A(1)AY BB(1) (3.3.7)

for arbitrary Y ∈ Cp×s.
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The matrix equation (3.3.3) is a particular case (A ≡ I, B ≡ HT , D ≡ G,X ≡ F ) of
(3.3.5), where I is an appropriate identity matrix. We use A† and B† instead of A(1) and B(1),
respectively. Then the condition for the existence (3.3.6) yields

G(HT )†HT = G, (3.3.8)

which is evidently true (since HT is left invertible). The general solution of the form (3.3.7)
becomes

F = G(HT )† + Y
(
I −HT (HT )†

)
= G(HT )† + Y

(
I − (H†H)T

)
= G(HT )† + Y

(
I −H†H

)
.

(3.3.9)

The matrix Y ∈ R
p×s, which can be randomly chosen, can be determined in different ways.

1. The first approach.
In the case Y = O, where O is the zero p×s matrix, (3.3.9) produces the next approximation

F of the original image F :
F = G(HT )†. (3.3.10)

This solution is investigated in [12, 13]. Since the Moore-Penrose inverse possesses well-known
minimal properties (see, for example [53, 54, 55, 71]), the approximation F is the least squares
solution of (3.3.3), i.e.

‖FHT −G‖2 ≤ ‖XHT −G| X ∈ R
p×s‖2. (3.3.11)

2. The second approach.
So far developed algorithms based on the usage of the Moore-Penrose inverse assume the

condition Y = O. This assumption exploits the Moore-Penrose solution of the matrix equation,
i.e. the least squares solution of minimal norm. But, the minimal norm attribute, imposed
to the restored image, may be in most of cases only the redundant property. Therefore, it is
realistic to expect that the approach based on the opposite assumption Y �= O will show better
performances in some cases. According to (3.3.9), approximation of the original image is given
by

E(Y ) = F̃ = G(HT )† + Y
(
I −H†H

)
= F + Y

(
I −H†H

)
, Y ∈ R

p×s. (3.3.12)

In the case X = F̃ the inequality in (3.3.11) becomes equality, which means that F̃ is also the
least squares solution. The minimal norm property

‖F‖2 ≤ ‖F̃‖2 = ‖F + Y
(
I −H†H

) ‖2, (3.3.13)

associated with the Moore-Penrose solution, is needless in the image restoration process. It is
necessary to determine Y in such a way that the approximation F̃ produces better values for
the ISNR and PSNR with respect to the solution F generated by (3.4.8), which is used in
[12, 13].

One possible way to choose optimal values for Y is described in the sequel. It is necessary
to minimize the matrix norm

‖F̃ − F‖2,
i.e. to solve the optimization problem

min Q(Y ) = ‖G(HT )† + Y
(
I −H†H

)− F‖2 (3.3.14)

with respect to unknown matrix Y and an arbitrary matrix norm.



44 CHAPTER 3. NON-ITERATIVE METHODS FOR IMAGE RESTORATION

Remark 3.3.1. The inequalities of the form (3.3.11) and (3.3.13) was originally stated for
arbitrary matrix equation AX = B by Penrose [71] for the Frobenius norm ‖ · ‖F of matrices.
The Frobenius norm is defined by

‖A‖F =

√∑
i

∑
j

|aij|2.

Penrose’s inequalities (3.3.11) and (3.3.13) has been extended in [53, 54, 55] to the supremum
norm and the Lp norm as well as to the set of {1, 3} and {1, 4} inverses. Throughout this
section, the matrix norm used is the ‖A‖2 norm, which is the most commonly used together
with the Frobenius norm in numerical linear algebra. The ‖A‖2 norm is defined as

‖A‖2 = sup x �=0

‖Ax‖2
‖x‖2 ,

where

‖x‖2 =
√∑

i

x2
i

is the well–known vector norm. Both norms are measuring distance, they are equivalent and
are related with a well known inequality:

‖A‖2 ≤ ‖A‖F ≤ √
r ‖A‖2

where r is the rank of A. (For more, see [25], p. 52- 58)

3. Ideal solution of the problem (3.3.14) can be generated from the matrix equation

Yopt(I −H†H)− (F −G(HT )†) = O, (3.3.15)

which implies

Yopt(I −H†H)− (F − FHT (HT )†) = Yopt(I −H†H)− F (I −H†H) = 0

and later
Yopt = F.

But, the choice Y = F is not allowed (confirms the claim that there is no hope that we can
recover the original image exactly! [32]) Therefore, the only possible approach is to use values
for Y as close as possible to the original image F which will give us better results than in the
case Y = O. We have observed that the operator E(Y ), defined in (3.5.2), behaves as the
improvement of the picture Y . Further, our experience is that better values for Y (closer to
F ) produce better improvements. On the contrary, when the matrix Y is selected to be ”far”
from the original image, the improvement of Y is still worse with respect to the Moore-Penrose
reconstruction (corresponding to the choice Y = O).

The method proposed in this section is an improvement of image restoration methods. It can
not be considered as independent, but in symbiosis with another image restoration methods.
Therefore, it has been tested against well known restoration methods. If the image restoration
method is denoted by Y , then the improvement is denoted by E(Y ). We later compare values
ISNR(Y ) against corresponding values ISNR(E(Y )) as well as values PSNR(Y ) against
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values PSNR(E(Y )). The possible choice for Y is any image restoration method. Among
others, Y may coincide with any typical image restoration method, and even with some of
iterative methods that present results of the restoration process with and without noise.

In the next statement we prove the basic property of the transformation E: the improvement
E(Y ) of Y is only single-stage.

Proposition 3.3.2. The operator E is idempotent on the set R(E), where R(E) denotes the
range of E:

E2(Y ) = E(E(Y )) = E(Y ).

Dokaz. Proof follows from the facts that G(HT )†
(
I −H†H

)
is the zero p × s matrix and

I −H†H is idempotent. �

In order to estimate the computational complexity of the operator E we use standard
notations from [16]. The complexity of the algorithm for computing the pseudoinverse of a given
m×n matrix is denoted by Pinv(m,n), and we identify it with the complexity of the standard
Matlab function pinv. Later, by A(m,n) we denote the complexity of the addition/subtraction
of two m × n matrices. The notation T(m,n) denotes the complexity of the transposition of
m × n matrix, and by M(m,n, k) = mnk the complexity of multiplying m × n matrix with
n× k matrix.

The complexity for computation of the value F = G(HT )† is equal to Pinv(s,m)+M(p,m, s).

The computational complexity of E(Y ) = F̃ is equal to

Pinv(s,m) +M(p,m, s) + T(s,m) +M(s,m, s) +M(p, s, s) +A(p, s),

where Y is appropriately selected matrix.

We propose a Haar reconstruction of the original image, as it is presented in the Section
2.6, as a candidate for the matrix Y .

3.4 Image deblurring process based on separable restora-

tion methods

The method is based on the least squares solution of a matrix equation which models the
linear motion blur and includes the Moore-Penrose inverse of the blurring matrix as well as
an appropriately chosen matrix. Significant improvements are attained with respect to the
classical approach based on the Moore-Penrose solution of certain matrix equations, which is
investigated in [12]. Experimental evaluation and numerical results of the proposed method
are described in Section 4.4.

3.4.1 Motivation and description of the method

The objective is to estimate the original image F row per row by exploiting a given row of a
blurred image G and a priori knowledge of the degradation phenomenon H . Denote the ith
row of the matrix F by fi = [fi,1, . . . , fi,s] and ith row of G by gi = [gi,1, . . . , gi,m]. It is assumed
that the linear motion is a local phenomenon, the imaging process captures all light and no
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additional noise is included. Under these assumptions, an arbitrary ith row of the blurred
image can be related with the ith row of the original image [12]:

⎡⎢⎢⎢⎣
gi,1
gi,2
...

gi,m

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

hn hn−1 · · · h1 0 0 0 . . . 0

0 hn hn−1 · · · h1 0 0 . . . 0

0 0 hn hn−1 · · · h1 0 . . . 0

...
...

...
. . .

. . .
...

. . .
...

0 0 0 · · · hn hn−1 · · · h1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
fi,1
fi,2
...

fi,s

⎤⎥⎥⎥⎦ , (3.4.1)

where hi are real numbers. The equation (3.4.1) can be rewritten as

gTi = HfT
i , gTi ∈ R

m, fT ∈ R
s, H ∈ R

m×s. (3.4.2)

The positive integer n indicates the length of linear motion blur in pixels and s = m+ n− 1.

Equation (3.4.2) can be written in matrix form as

G =
(
HF T

)T
= FHT , G ∈ R

r×m, H ∈ R
m×s, F ∈ R

r×s. (3.4.3)

The process of the separable blurring assumes that the blurring of the columns in the image
is independent of the blurring of the rows. The separable blurring is modeled by two matrices,
so that the relation between the original and blurred image can be expressed by the following
relation [32]:

G = HcFHT
r , G ∈ R

m1×m2 , Hc ∈ R
m1×r, F ∈ R

r×s, Hr ∈ R
m2×s, (3.4.4)

where s = m2 + n1 − 1, r = m1 + n2 − 1, n1 is the length of the horizontal blurring in pixels
and n2 is length of the vertical blurring in pixels.

The following matrix equations in X are used to define various generalized inverses of any
m× n real matrix A:

(1) AXA=A, (2) XAX=X, (3) (AX)T =AX, (4) (XA)T =XA,

where the superscript T denotes the transpose matrix. The set of matrices obeying the equations
represented in S is denoted by A{S}, for arbitrary sequence S of the elements from {1, 2, 3, 4}.
Any matrix X ∈ A{S} is known as an S-inverse of A and it is denoted by A(S) [3, 94]. the
Moore-Penrose inverse X = A† of A satisfies the set of the equations (1), (2), (3) and (4). The
matrix equation (1) characterizes those generalized inverses X that are of use in analyzing the
solutions of some matrix equations.

This section provides a new method for restoration of a blurred image using the set of
the least squares solutions of the matrix equations presented in (3.4.4) and particularly in
(3.4.3). Using well-known result about the general matrix equation AXB = D from [3, 94] we
immediately obtain general solution of the matrix equation (3.4.4) in the form

H(1)
c G(HT

r )
(1) + Y −H(1)

c HcY HT
r (H

T
r )

(1). (3.4.5)

The consistency condition
HcH

(1)
c G(HT

r )
(1)(HT

r ) = G
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is evidently satisfied, since Hc is right invertible and HT
r is left invertible. Without loss of gen-

erality, the pseudoinverses H†
c and (HT

r )
† can be used instead of H

(1)
c and (HT

r )
(1), respectively.

Our main idea can be described as follows. A blurred image or its restoration we equalize
with Y . Then we recommend the next transformation of the picture Y , which is based on the
general solution of the form (3.4.5):

E1(Y ) = F̆ = H†
cG(HT

r )
† + Y −H†

cHcY HT
r (H

T
r )

†

= H†
cG(HT

r )
† + Y −H†

cHcY H†
rHr.

(3.4.6)

In the particular case Hc = I the operator E1(Y ) reduces to the operator E(Y ), which
is investigated in Stanimirović et al, [83]. The present section is an extension of the ideas
presented in [83], that is, to investigate possible values of the matrix Y in (3.4.6). The authors
in [83] observed that the transformation (a least squares solution of (3.4.3))

E(Y ) = F̃ = G(HT )† + Y
(
I −H†H

)
= F + Y

(
I −H†H

)
, Y ∈ R

r×s (3.4.7)

improves the restoration Y of the degraded image. The matrix Y ∈ Rr×s, which can be
randomly chosen, can be determined in different ways. There are no specific conditions for
that, any random matrix Y can be transformed into E(Y ), so an investigation for possible
candidates will be presented in order to find the appropriate ones.

The authors in [83] observed that the best choice is Yopt = F (which is an unacceptable
choice). Also, our experience from [83] is that better values for Y (closer to F ) produce better
improvements. In the case Y = O, where O is the zero matrix of appropriate dimensions, E(Y )
produces the next approximation F of the original image F :

E(O) = F = G(HT )†. (3.4.8)

Numerical experiments based on the transformation (3.4.8) are investigated in [12, 13].

A number of image restoration algorithms is based on the usage of the Moore-Penrose
inverse. The approach which assumes the condition Y = O in (3.4.7) exploits the Moore-
Penrose solution of the matrix equation, i.e. the least squares solution of minimal norm (see,
for example [53, 71]). But, the minimal norm attribute

‖F‖2 ≤ ‖F̃‖2 = ‖F + Y
(
I −H†H

) ‖2,
associated with the Moore-Penrose solution, may be in most of cases only the redundant prop-
erty. Therefore, it is realistic to expect that the approach based on the opposite assumption
Y �= O will show better performances in some cases. Only when the matrix Y is selected
to be ”far” from the original image, the improvement of Y is still worse with respect to the
Moore-Penrose reconstruction (corresponding to the case Y = O). Some of the examples that
confirm this expectation are studied in [83]. In addition, it is reasonable to expect that the
minimal norm property

‖H†
cG(HT

r )
†‖2 ≤ ‖H†

cG(HT
r )

† + Y −H†
cHcY H†

rHr‖2
is needless in the image restoration process. Our goal in [83] was to determine Y in such a

way that the approximation F̃ produces better values for ISNR and PSNR with respect to the
solution F which is used in [12, 13]. Extending this idea, in the present section we investigate



48 CHAPTER 3. NON-ITERATIVE METHODS FOR IMAGE RESTORATION

values for Y that provide better values for ISNR and PSNR values corresponding to F̆ with
respect to values that correspond to H†

cG(HT
r )

†.

Two main aims in this section may be featured as follows:

– Extend investigations of the operator E(Y ) from [83], corresponding to uniform linear motion
blur, to the operator E1(Y ), defined in (3.4.6) and corresponding to the separable motion blur.

– Continue the research of the operators E(Y ) and E1(Y ) by choosing another appropriate
values for the matrix Y .

The authors in [83] have shown that the operator E(Y ) is idempotent. In Proposition 3.4.1
we prove that the generalization E1(Y ) of E(Y ) satisfies the same property.

Proposition 3.4.1. Consider the blurring model (3.4.4), i.e. F is the original and G is the
blurred image. Let Φ(E1) be the set of fixed points of the operator E1 and R(E1) be the range
of E1. We have that

Φ(E1) ⊇ R(E1) ∪ {F}. (3.4.9)

Proof. Firstly we show that the operator E1(Y ) is idempotent, i.e.

E2
1(Y ) = E1(Y ).

The proof of this statement follows from

E2
1(Y ) = H†

cG(HT
r )

†+
[
H†

cG(HT
r )

† + Y −H†
cHcY H†

rHr

]
−H†

cHc

[
H†

cG(HT
r )

† + Y −H†
cHcY H†

rHr

]
H†

rHr

and several transformations based on elementary properties of the Moore-Penrose inverse.

In the rest of the proof we prove that E1(F ) = F. Using (3.4.4) we get

E1(F ) = H†
c (HcFHT

r )(H
T
r )

† + F −H†
cHcFH†

rHr.

Using basic properties of the Moore–Penrose inverse we get HT
r (H

T
r )

† = H†
rHr and prove

E1(F ) = F.

For appropriate choice of the matrix Y we propose, for example, reconstructions of blurred
image by two commonly used filters from the collection of least-squares filters, namely the
Wiener filter (WF) and the Constrained least-squares filter (CLS) [6]. We also propose the
Symmetric Minimal Rank Solution (SMRS) of the inverse matrix problem AX = B from [96]
as a possible choice of the matrix Y . Another approach for the selection of the matrix Y is
to use a moment base methods, such as the Haar basis and the Fourier basis. These methods
are selected because of their capability to transform the intensity information of an image
into spectral and spatial associated information, correspondingly. Short overview of some least
squares filters for the image restoration as well as the SMRS solution of the matrix equation
which models the image blurring process and also the moments approach are presented in
Chapter 2. Some specific things related to SMRS is presented in the next subsection.

3.4.2 The symmetric minimal rank solution

We observe that the matrix equation (3.4.3) with respect to the unknown matrix F is one
manifestation of the inverse matrix problem. The symmetric minimal rank solution (SMRS
solution) of the inverse matrix problem, applied to the particular case (3.4.3), is used as a
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candidate for the matrix Y because it has a very interesting property with respect to the
operator E.

Our motivation to use the symmetric minimal rank solution comes from the following two
facts: firstly, the inverse matrix problem AX = B is of the same general form as the mathe-
matical model (3.4.3); secondly, the symmetric minimal rank solution of the matrix equation
AX = B with respect to the matrix A is given in [96]. Additionally, it was shown that sym-
metric minimal rank solution shows interesting properties with respect to the operator E. The
SMRS solution is not applicable to the operator E1.

We also propose the usage of the symmetric minimal rank solution (SMRS solution) of
the matrix equation (3.4.3) in the role of the matrix Y . Why the SMRS solution, irrelevant
for image restoration, is a good choice for Y ? According to (3.4.9), so far we discovered
the following subset of the fixed points set of the operator E: unallowable choice Y = F
and the choice Y = E(Y1), Y1 arbitrary. In the next statement we prove that the property
E2(SMRS) = E(SMRS) is also caused by the more strong property E(SMRS) = SMRS.
In this way, Y = SMRS is another fixed point of the operator E.

A simple comparison of the matrix equations AX = B and (3.4.3) gives

A ≡ F, X ≡ HT , B ≡ G. (3.4.10)

The criterion for restoration of a blurred image that we are using is the optimal approximation
to the set of the minimal rank solution Sm̃, given by (2.5.1), can be written alternatively:

‖F − F̃‖ = min
Fm∈Sm̃

‖F − Fm‖, (3.4.11)

where F is given and F̃ is restored image (denoted by SMRS). The solution for restored image,
according to (2.5.6) from Proposition 2.5.1, is the following:

F̃ = SMRS = A0 + U2P1P
T
1 (A

∗
22 − A04)P1P

T
1 U

T
2 . (3.4.12)

Since in our case the matrix X is right invertible

XX† = HT
(
HT

)†
= I

we have
A0 = BXT = G

(
HT

)†
= F, (3.4.13)

where U2, P1, A
∗
22, and A04 are presented above.

Theorem 3.4.1. In the case Y = SMRS we have E(Y ) = Y .

Proof. We just need to prove that in the case Y = SMRS we have

G(HT )† − Y H†H = O.

By replacing Y from (3.4.12) and A0 from (3.4.13), we get

G(HT )† − Y H†H = G(HT )† −
(
G
(
HT

)†
+ U2P1P

T
1 (A

∗
22 − A04)P1P

T
1 U

T
2

)
H†H

= G(HT )† −G
(
HT

)†
H†H − U2P1P

T
1 (A

∗
22 − A04)P1P

T
1 U

T
2 H

†H.
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Since the equality
(
HT

)†
H†H =

(
HT

)†
holds, we conclude that

G(HT )† − Y H†H = −U2P1P
T
1 (A

∗
22 − A04)P1P

T
1 U

T
2 H

†H.

In order to prove that G(HT )† − Y H†H = 0 we will show that UT
2 H

†H = 0.
Indeed,

UT
2 H

†H = UT
2

[
U1 U2

] [ Σ−1 0
0 0

]
V TV

[
Σ 0
0 0

] [
UT
1

UT
2

]
where the columns of U1 form a basis for the range of H and the columns of U2 form a basis
for the kernel of HT .
So, we have that

UT
2 H

†H = UT
2

[
U1 U2

] [ UT
1

0

]
= UT

2 U1U
T
1 .

Using the fact that U1U
T
1 is a projection matrix on the range of H along the kernel on HT

(The SVD factorization is a special case of the URV factorization, see eg [57] pages 404 and
555) we get that

UT
2 U1U

T
1 = 0 (3.4.14)

Therefore,
G(HT )† − Y H†H = 0

which is equivalent to E(Y ) = Y .

Regularization of the symmetric minimal rank solution

Since image restoration is an ill-posed inverse problem, some kind of regularization is of always
very critical. This fact was the motivation to enforce a regularization for SMRS solution of
the inverse matrix problem. The regularization is defined applying two weighting coefficients,
denoted by α and β. For this purpose we consider (2.5.7) in the form

A0 = BX† + A01,

where

A01 = (BX†)T (I −XX†) + (I −XX†)BX†(XX†BX†)†(BX†)T (I −XX†). (3.4.15)

Then the SMRS regularization is defined by

A′
0=BX† + αA01,

Ã′=A′
0 + β

(
U2P1P

T
1 (A

∗
22 −A04)P1P

T
1 U

T
2

)
.

(3.4.16)

For the sake of simplicity, we denote the SMRS regularization, defined in (3.4.15)-(3.4.16), by
SMRSα,β .
Two important cases in the regularization SMRSα,β can be distinguished:

− SMRS0,0 = E(Y = 0) = F̃ = G(HT )†;
− SMRS1,1 = SMRS.
Numerical results show that some choices of the parameters α, β provide better restorations
with respect to usual SMRS, which is confirmed by ISNR(SMRSα,β) > ISNR(SMRS).
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3.5 Improving the Tikhonov and TSVD image deblur-

ring methods

The main goal of this section is further investigation of the algorithm, introduced in [83], that
allows us to remove a linear motion blur from images. In this section we showed that it is
possible to use Tikhonov (TIK) and Truncated Singular Value Decomposition (TSVD) image
restoration methods as two possible candidates for the matrix Y . In this way we show that it is
possible to improve the restoration of images in terms of restoration when using only Tikhonov
and TSVD methods for the restoration of the images.

In Chapter 2 we restate two image restoration methods which we use in Section 3.5: Trun-
cated Singular Value Decomposition (TSVD) and Tikhonov method (TIK), presented in [32].

3.5.1 Motivation and presentation of the method

Mathematical model, in which the linear motion is a local phenomenon and no additional noise
is included, relates an arbitrary ith row gi = [gi,1, . . . , gi,m] of the blurred image G ∈ R

p×m

with corresponding ith row fi = [fi,1, . . . , fi,m] of the original image F0, by the following matrix
equation [23, 32]:

gTi =
[
H−1 H0 H1

] ⎡⎣ fi,−1

fT
i

fi,1

⎤⎦ , (3.5.1)

where

fi,−1 =

⎡⎢⎣ wi,1

...
wi,u

⎤⎥⎦ , fi,1 =

⎡⎢⎣ vi,1
...

vi,u

⎤⎥⎦ .

Elements wi,1, . . . wi,u and vi,1, . . . vi,u of the right hand vector are boundary pixels. The bound-
ary pixels left of the horizontal line, which are added above the initial vector fT

i ∈ Rm, depends
of the nature and direction of the movement. The u boundary pixels right of the horizontal
line are added below the vector fi [32]. Further, the matrices

H−1 ∈ R
m×u, H1 ∈ R

m×u, H0 ∈ R
m×m

are determined implicitly in the block matrix

H =
[
H−1 H0 H1

]
,
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which is defined by

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hu · · · h1 h0 h−1 · · · h−u

. . .
... h1 h0

. . .
...

. . .

hu

... h1
. . . h−1 · · · h−u

hu · · · . . . h0

. . .
...

. . .

hu h!
. . . h−1 h−u

. . .
...

. . . h0
. . . h−u

hu h1

. . .
... h−u

. . .
...

. . . h0 h−1

...
. . .

hu · · · h1 h0 h−1 · · · h−u

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The quantities hi are real numbers, n− 1 = 2u. The real matrix H is with dimension m × s.
The index n indicates the length of linear motion blur in pixels and s = m+ n− 1 = m+ 2u,
m � n.

If we know the degradation phenomenon H , the objective is to estimate the original image
F0 ∈ R

p×m row per row (vector fT
i ) from the row of a blurred image (vector gTi ). Then it is

possible to consider the block matrix

F =
[
F−1 F T

0 F1

] ∈ R
p×s,

whose blocks are of the order F−1 ∈ R
p×u, F1 ∈ R

p×u, F0 ∈ R
p×m and F−1 (resp. by F1)

represent the matrix whose columns are fi,−1 (resp. fi,1). Different boundary conditions: zero,
periodic and reflective are presented in Section 3.5.1.

In papers [83, 85] we derive and investigate a new method for restoration of a blurred
image using the set of least squares solutions of the matrix equation (3.3.3). The least squares
solutions in this section are generated using the Moore–Penrose inverse inverse. The Moore-
Penrose inverse of a matrix A ∈ Cm×n is the unique matrix, denoted by A†, satisfying the
following four matrix equations:

(1) AXA = A (2) XAX = X (3) (AX)∗ = AX (4) (XA)∗ = XA.

A matrix X is called an {i, j, k}–inverse of A (with i, j, k ∈ {1, 2, 3, 4}) if X satisfies the ith,
jth and kth Penrose equations. Particularly, any {1}–inverse (or g–inverse) of A is noted by
A(1) and finds applications in solving linear systems of equations or matrix equations.

The general solution of the the matrix equation (3.3.3) is given by

E(Y ) = F̃ = G(HT )† + Y
(
I −H†H

)
, (3.5.2)

where the matrix Y ∈ Rp×s can be randomly chosen. Our original intention was to use values
for Y as close as possible to the original image F which will give us better results than in the
case Y = O, which produces the matrix

F̂ = G(HT )†.

The choice Y = O is investigated in [12, 13]. Furthermore, we have observed in [83, 85] that
the operator E(Y ) frequently behaves better improvement of blurred image with respect to
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restoration contained in Y . Therefore, the method proposed in [83, 85] is an improvement of
image restoration methods.

There is no practical reason to consider the operator E(Y ) as independent, but in symbio-
sis with the image restoration method Y . Therefore, it has been tested against well known
restoration methods. If the image restoration method is denoted by Y , then the improve-
ment is denoted by E(Y ). We later compare values ISNR(Y ) against corresponding values
ISNR(E(Y )) as well as values PSNR(Y ) against values PSNR(E(Y )). Comparison of ISNR
and PSNR values corresponding to E(Y ) with other image restoration methods is not of in-
terest; it is only meaningful to compare mutually values corresponding to restorations Y and
E(Y ). The possible choice for Y is any image restoration method.

Regularization methods for computing stabilized solutions to the ill-posed problems occur
often enough in science and engineering to make it meaningful to present a general framework for
their numerical treatment [31]. Matrices with ill-determined numerical rank, on the other hand,
are obtained from underlying ill posed problems where the concept of rank has no instinctive
interpretation. Examples of such problems are: digital image restoration, solution of integral
equations in solid state physics, inverse Radon and Laplace transformation [31]. Continuing
investigation from [83, 85], we propose two direct regularization methods: Truncated Singular
Value Decomposition and Tikhonov reconstruction of the original image as two possible choices
for the matrix Y .

Through experimental results presented in Section 4.5 we confirm that if we select for the
matrix Y the results obtained from the TIK and TSVD methods we will improve the restoration
of images, comparing with the using only TIK and TSVD methods for the restoration of the
images.
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Chapter 4

Experimental and numerical results

In image restoration the improvement in quality of the original image F (n1, n2) over the
recorded blurred one G(n1, n2) is measured by the signal-to-noise ratio (SNR) improvement.
The SNR of the recorded (blurred) image is defined as follows in decibels:

SNRG = 10 log10

( ∑
n1,n2 F

2(n1, n2)∑
n1,n2(G(n1, n2)− F (n1, n2))2

)
.

The SNR of the restored image F̃ (n1, n2) is similarly defined by

SNR
˜F = 10 log10

( ∑
n1,n2 F

2(n1, n2)∑
n1,n2(F̃ (n1, n2)− F (n1, n2))2

)
.

Then, the improvement in SNR is given by

ISNR=SNR
˜F − SNRG=10 log10

(∑
n1,n2(G(n1, n2)− F (n1, n2))

2∑
n1,n2(F̃ (n1, n2)− F (n1, n2))2

)
. (4.0.1)

The improvement in SNR is basically a measure that expresses the reduction of disagreement
with the ideal image when comparing the distorted and restored image. Note that all of the
above signal-to-noise measures can only be computed in case when the ideal image is available,
i.e., in an experimental setup or in a design phase of the restoration algorithm. The unit of the
ISNR is given in dB.

The peak signal-to-noise ratio (PSNR) is defined as the ratio between a signal’s maximum
power and the power of the signal’s noise. In image processing and analysis it has been exten-
sively used as a criterion to measure the quality of reconstructed images that have usually been
compressed. Each picture element (pixel) has a color value that can change when an image is
compressed and then uncompressed. In this section we use the following definition for PSNR:

PSNR = 20 log10

⎛⎜⎜⎝ max{F (n1, n2)}√
(1/(n1 ∗ n2))

∑n1

i=0

∑n2

j=0

(
F (i, j)− F̃ (i, j)

)2

⎞⎟⎟⎠ , (4.0.2)

where max{F (n1, n2)} is the largest possible value of the original image and the denominator is

defined as the root mean square difference between the original and the reconstructed images.
The unit of the PSNR is also given in dB.

55
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4.1 Application of the pseudoinverse computation in re-

construction of blurred images

In this section we present numerical results which are obtained by testing the method proposed
in Algorithm 3.1.1 (MP method) on X-ray images. In order to confirm the efficiency, we
compared our method with three recently announced methods for computing the Moore-Penrose
inverse of the matrix H . Summarizing, the following four methods are compared:

1. The MP method,
2. Pappas1 method, defined by the MATLAB function ginv.m from [46],
3. Pappas2 method, defined by the MATLAB function qrginv.m from [14],
4. Courrieu method from [17].

The experiments are done using Matlab programming language [38] on an Intel(R) CPU
T2130 @ 1.86 GHz 1.87 GHz 32-bit system with 2 GB of RAM memory. Tests are made for
several images of dimensions r ×m. The index l that takes values between 10 and 100 is the
varying parameter for a given image.

Also we compared the efficiency of four different strategies of image restoration: the ap-
proach based on the Moore-Penrose inverse, the Wiener filter (WF ), the constrained least-
squares (CLS) filter, and the Lucy-Richardson (LR) algorithm. For the implementation of
the Wiener filter, the constrained least-squares filter, and Lucy-Richardson algorithm we used
built–in functions from the Matlab package [27].

Figure 4.1.1 presents one practical example for restoring blurred X-ray image. The image is
taken from the results obtained from Google Image search with the keywords ”X-ray image”.
The picture in Figure 4.1.1 called Original image shows the original X-ray image. The image
is divided into r = 843 rows and m = 1050 columns. To prevent loosing information from the
boundaries of the image, we assumed zero boundary conditions, which implies that values of the
pixels of the original image F outside the domain of consideration are zero (black). This choice
is natural for X-ray images since the background of these images is black. The picture named as
Degraded image presents the degraded X-ray image with a uniform horizontal motion of length
l = 80. The pictures named as Moore-Penrose Inverse, Wiener Restored Image, Constrained
LS Restored Image and Lucy-Richardson Restored Image denote the images obtained after the
application of the corresponding restoration algorithms. From Figure 4.1.1, it is clear that the
MP method produces the best result.

The difference in quality of the restored images among the three methods (WF , CLS and
LR) is insignificant, and can hardly be seen by human eye. For this reason, the ISNR is applied
in order to compare the quality of the restored images. Figure 4.1.2 shows the corresponding
ISNR value of the restored images as a function of l for theMP method and the other mentioned
classical methods. This figure illustrates that the MP method for image restoration has the
best quality of the restored image with respect to the other methods.

As we have already mentioned, the main advantage of the proposed method for computing
the Moore-Penrose inverse, is the time required to obtain the restored image compared to
other methods for computing the Moore-Penrose inverse. Figure 4.1.3 shows the corresponding
computational time, denoted by t(sec), as a function of l < 100 pixels for the MP method and
the other three considered methods for computing the Moore–Penrose inverse. Obviously, the
minimal computational time is reached by the MP method.

The next two examples refer to the case when, in the inception, the image is degraded by
including an image noise and later it is followed by a uniform linear blur. The corresponding
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Figure 4.1.1: Removal of blur, caused by a uniform horizontal motion.
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Figure 4.1.2: Improvement in signal-to-noise-ratio vs. length of the blurring process.

mathematical model generalizes the horizontal blurring process presented with (3.1.2) and it
becomes

GN = (F +N)HT = FNH
T , (4.1.1)

where N is an additive noise and GN is the blurred noisy image. To obtain approximation of
the original image, we apply two steps:
1. Calculate the restored matrix FN by using (3.1.5), to produce F̃N = GN(H

†)T ;
2. Obtain the restored image F̃ by applying filtering process on the image F̃N obtained in Step
1.

Similarly, we can formulate a process in the case of having two ways degraded image (with
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Figure 4.1.3: Computational time vs. length of the blurring process.

noise and vertical blur). The noisy image, the blurred noisy image and the restored images
obtained by using different methods are presented in Figure 4.1.4.

Figure 4.1.4: Removal of blur, caused by noise and uniform horizontal motion with r = 843, n =
1050 and l = 40.

The results for ISNR and the peak signal-to-noise ratio (PSNR) [6] for the original image
given in Figure 4.1.1, are presented in Figure 4.1.5 and Figure 4.1.6. The original image is
degraded in two ways: by ”salt and pepper” (white and black) noise with noise density of 0.03
and after that it is blurred by a uniform linear motion with l pixels. The 2-D median filtering is
used for the image restoration. The image restoration procedures based on the Moore-Penrose
inverse, applied to images degraded by both the motion blur and noise, are more reliable and
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accurate compared to other image restoration methods.
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Figure 4.1.5: Improvement in signal-to-noise-ratio vs. length of the blurring process.
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Figure 4.1.6: Peak signal-to-noise ratio vs. length of the blurring process.

The ISNR and PSNR values presented in Figure 4.1.5 and Figure 4.1.6 indicate that MP
method is the best among the other methods.

Similar numerical results are generated when the image is blurred by a non-uniform motion
detrmined with the relations (3.1.10) and (3.1.11). The case when the image is blurred by a
non-uniform blurring with parameters lc = 35 and lr = 25, is presented in Figure 4.1.7.
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Figure 4.1.7: Removal of blur, caused by the non-uniform blurring model with lc = 35 and
lr = 25.

A confirmation that the proposed MP method is faster than the other methods for com-
puting the Moore-Penrose inverse is illustrated in Figure 4.1.8.
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Figure 4.1.8: Computational time versus variable length lr and lc = 25 of the blurring process.

The results presented in Figure 4.1.8 are made on an Intel(R) Core(TM) i5 CPU M430 @
2.27 GHz 64/32-bit system with 4 GB RAM memory.
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4.2 Application of partitioning method on specific Toeplitz

matrices

We compared the CPU time required for computation of the Moore–Penrose inverse of Toeplitz
matrix H resulting from linear systems convolution kernel. Experiments are done using MATLAB

programming package [38] on an Intel(R) Core(TM) i5 CPU M430 @ 2.27 GHz 64/32-bit system
with 4 GB RAM memory. Since the algorithms we compared with are implemented in MATLAB,
we also chose MATLAB as a framework for the implementation of proposed algorithms.

In Fig. 4.2.1 and Fig. 4.2.2 we present the results which refer to the computational time
t(sec) needed to compute the Moore-Penrose inverse H† as a function of the length of the
blurring process l ≤ 90 (pixels). Values incorporated in these figures are obtained for randomly
generated matrix of dimensions 1000×1200, which corresponds to a randomly generated image
of the same dimensions, which is blurred by Gaussian function. CPU times illustrated on Fig.
4.2.1 and Fig. 4.2.2 confirm that the proposed BPM method for computing H† is faster than
the other considered methods.
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Figure 4.2.1: CPU time for computing MP inverse of the random matrix H versus lr (lc = 30).

It is easy to observe that the Block Partitioning Method overcomes Ginv and QrGinv
methods. On the other hand, the authors in [46] concluded that the method Ginv is faster
with respect to Courrieu method. Thus, after the modifications described before, partitioning
method becomes the fastest compared to three considered methods for computing the Moore–
Penrose inverse.

In addition we compare the accuracy of the results of the our method with the other three
methods. We use ginvtest function from [46] and the accuracy was examined with the matrix
2-norm in error matrices corresponding to the four Moore-Penrose equations. In Table 4.2.1
we present average errors for different values of the parameter s, regarding the four Penrose
equations. The presented average values were generated by varying the parameter l from 5
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Figure 4.2.2: CPU time for computing MP inverse of the random matrix H versus lc (lr = 25).

to 90 with step 1. Based on the results shown in Table 4.2.1 the following conclusions are
imposed. Greatest norms and thus the worst results are generated by Courrieu Method. BPM
produces the best results for the Penrose equations (1), (2) and (3). Ginv and Qrginv methods
give slightly better results regarding the matrix equation (4) with respect to BPM method.

Despite the differences in the matrix norms that can be observed from Table 4.2.1, differences
in ISNR and PSNR values are negligible for all considered methods for computing the Moore–
Penrose inverse. Therefore, the CPU time for computing H† is only reliable criterion for the
comparison of different methods for computing the Moore–Penrose inverse.

4.2.1 Restoring blur and noise

In this subsection attention has been paid to the model images degraded by a sequence of
mutually independent operations. First, the noise is imposed to the image and after that the
noisy image is blurred by the non-uniform Gaussian function. In this case the mathematical
model of the non-uniform blurring process presented by (3.2.1) becomes

GN = HC(F +N)HT
R = HCFNH

T
R , (4.2.1)

where GN is blurred noisy image and N is an additive noise. Two steps are used to restore the
original image:
1. Calculate the restored matrix F̃N = H†

CGN(H
†
R)

T of FN ;

2. Generate image F̃ by applying the filtering process on the image F̃N . Depending on the
type of noise we use a rotationally symmetric Gaussian lowpass filter or two dimensional median
filter.
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Table 4.2.1: Average error results regarding the four Moore-Penrose equations for 5≤ l≤90.
s 2-norm in error matrices BPM Ginv Qrginv Courrieu Method

100 ‖TT †T − T‖2 1.4630 × 10−14 1.9417 × 10−14 1.1482 × 10−14 1.0614 × 10−10

‖T †TT † − T †‖2 3.0370 × 10−12 7.8286 × 10−9 1.6753 × 10−11 6.3123 × 10−8

‖TT † − (TT †)∗‖2 9.8858 × 10−14 1.1352 × 10−11 9.9422 × 10−13 5.7959 × 10−8

‖T †T − (T †T )∗‖2 3.0602 × 10−13 1.8363 × 10−14 1.0475 × 10−13 5.4743 × 10−11

200 ‖TT †T − T‖2 1.4206 × 10−14 1.9703 × 10−14 1.1243 × 10−14 1.0124 × 10−10

‖T †TT † − T †‖2 2.9713 × 10−12 7.9161 × 10−9 1.7050 × 10−11 5.9056 × 10−8

‖TT † − (TT †)∗‖2 9.6917 × 10−14 1.1066 × 10−11 9.9735 × 10−13 5.4223 × 10−8

‖T †T − (T †T )∗‖2 2.8939 × 10−13 1.8014 × 10−14 1.0298 × 10−13 5.2727 × 10−11

300 ‖TT †T − T‖2 1.3947 × 10−14 1.9369 × 10−14 1.1166 × 10−14 1.0056 × 10−10

‖T †TT † − T †‖2 2.9527 × 10−12 7.7109 × 10−9 1.6426 × 10−11 5.8595 × 10−8

‖TT † − (TT †)∗‖2 9.5872 × 10−14 1.0968 × 10−11 9.5566 × 10−13 5.3950 × 10−8

‖T †T − (T †T )∗‖2 2.8583 × 10−13 1.7938 × 10−14 1.0321 × 10−13 5.2229 × 10−11

400 ‖TT †T − T‖2 1.4104 × 10−14 1.9736 × 10−14 1.1157 × 10−14 1.0066 × 10−10

‖T †TT † − T †‖2 2.9505 × 10−12 7.8669 × 10−9 1.7028 × 10−11 5.8529 × 10−8

‖TT † − (TT †)∗‖2 9.6935 × 10−14 1.0957 × 10−11 9.8089 × 10−13 5.3809 × 10−8

‖T †T − (T †T )∗‖2 2.9034 × 10−13 1.7916 × 10−14 1.0235 × 10−13 5.2246 × 10−11

500 ‖TT †T − T‖2 1.4107 × 10−14 1.9210 × 10−14 1.1180 × 10−14 9.9086 × 10−11

‖T †TT † − T †‖2 2.8297 × 10−12 7.2584 × 10−9 1.6637 × 10−11 5.7496 × 10−8

‖TT † − (TT †)∗‖2 9.4099 × 10−14 1.0957 × 10−11 9.6248 × 10−13 5.2747 × 10−8

‖T †T − (T †T )∗‖2 2.9047 × 10−13 1.7940 × 10−14 1.0084 × 10−13 5.2127 × 10−11

(a) Original image (b) Blurred noisy (c) Moore-Penrose restore

(d) Wiener filter restore (e) Tikhonov Regularization restore (f) Lucy-Richardson restore

Figure 4.2.3: Removal of blur, caused by Gaussian model with lc = 25 and lr = 45, on a X-ray
image.

Fig. 4.2.3 presents practical example of restoring blurred X-ray image. The image is taken
from the results obtained after the Google Image search with the keyword ”X-ray image” and
location of the image is on
http://www.tetburyhospital.co.uk/admin/subroutines/blob.php?id=13&blob=ablob.

http://www.tetburyhospital.co.uk/admin/subroutines/blob.php?id=13&blob=ablob
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Fig. 4.2.3 demonstrates the efficiency of four different methods for the image restoration: the
Moore-Penrose inverse based approach, Wiener filter (WF), Lucy-Richardson (LR) algorithm
and Tikhonov Regularization (TR) method. For the implementation of the Wiener filter and
Lucy-Richardson algorithm we used incorporated built-in functions from the MATLAB package.
For Wiener filter we use MATLAB function with two input parameters: blurred noisy image
GN and point-spread function PSF. For Lucy-Richardson algorithm we have used additional
parameter for the number of iterations with constant value 10. Implementation of Tikhonov
Regularization method is based on Kronecker decomposition and the code presented in [32].

On Fig. 4.2.3 we illustrate the original, the blurred noisy and the restored images obtained
by different methods. Figure denoted by Original image from Fig. 4.2.3 shows the original
X-ray image. The image is divided into r = 750 rows and m = 1050 columns. To prevent
loosing information from the boundaries of the image, we assumed zero boundary conditions,
which implies that values of the pixels of the original image F outside of the image window
are zero. This choice is natural for X-ray images since the background of these images is black.
The pixels of the original image are degraded by the Gaussian white noise of mean 0 and
variance 0.01 and later blurred by non-uniform Gaussian function according to model (4.2.1).
For filtering we use a rotationally symmetric Gaussian low pass filter of size 3 with standard
deviation 45.

The difference in quality of the restored images regarding three methods (Moore-Penrose,
Wiener and the Tikhonov) is insignificant, and can hardly be seen by a human eye. For this
reason, we use a common method for comparing restored images, i.e. we analyze the so called,
improved signal-to-noise ratio (ISNR). The results for the parameters ISNR [6], presented on
Fig. 4.2.4, show that the restoration of the serial degraded images with the Moore-Penrose
inverse is more reliable and accurate than restoration with other mentioned methods. In the
Fig. 4.2.4 we used the s = lr/2 and s = lc/2 for non-uniform blurring process. The graph
marked with MP inverse illustrates numerical values generated by an arbitrary method for
computing the Moore–Penrose inverse.

Similar results are generated for another values of the parameter s. To illustrate this fact,
in the Fig. 4.2.5 are presented results for (ISNR) corresponding to the choice s = 30.

For confirmation of our results on the next two figures we present results for the Dice
Coefficient (DC) as a measure of the similarity between sets. Rang of the DC is from 0 to 1,
where 0 indicates the sets are disjoint and 1 indicates the sets are identical [20, 18]. Parameters
used in the Fig. 4.2.6 and Fig. 4.2.7 are the same with Fig. 4.2.4 and Fig. 4.2.5, appropriate.

Since we know that the deblurring process is in favor of the Moore-Penrose inverse, in the
sequel we only compare the computational time of the methods which are based on the Moore-
Penrose inverse approach. Thus, we compare the CPU time required by our method with
the CPU time required by previously mentioned methods. The computational time needed to
restore the degraded X-ray image by means of these methods which use the Moore-Penrose
inverse approach, is shown in the Fig. 4.2.8 and the Fig. 4.2.9. For a given image the varying
parameter is the parameter lr (lc) that takes values between 5 and 90.

As it is expected, the proposed method shows better performances with respect to the other
tested methods.

Obviously, the proposed method is not only restricted to restoration of blurred X-ray images,
but also can be used for other practical implementations, such as deblurring images arising in
Automatic Number Plate Recognition (ANPR) systems. We assume that the blur that appears
in images from ANPR systems is caused by ”salt and paper” noise and non-uniform Gaussian
model, given by (4.2.1). In ”salt and pepper” noise, the corrupted pixel may take just one of
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two different values: black or white. These values are taken randomly with noise density equal
to 0.05.

To prevent loosing information from the boundaries of the image, we assumed periodic
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Figure 4.2.4: ISNR versus lc for the removal of blur given by the model (4.2.1) (lr = 35).
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Figure 4.2.5: ISNR versus lc for the removal of blur given by the model (4.2.1) (lr = 35 and
s = 30).
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boundary conditions for ANPR images. Fig. 4.2.10 presents the results obtained by restoring
an image from the ANPR system with dimensions 1023× 1250.

ANPR image is taken from implemented system of automatic recognition of license plates
of the Customs Administration in Serbia.
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Figure 4.2.6: DC versus lc for the removal of blur given by model (4.2.1) (lr = 35).
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Figure 4.2.7: DC versus lc for the removal of blur given by model (4.2.1) (lr = 35 and s = 30).
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Figure 4.2.8: CPU time for removing of blur caused by Gaussian function and noise versus lr
(lc = 25).
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Figure 4.2.9: CPU time for removing of blur caused by Gaussian function and noise versus lc
(lr = 35).
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(a) original image (b) blurred noisy image (c) Moore-Penrose restored image

Figure 4.2.10: Removal of blur, caused by ”salt and paper” noise and Gaussian function (lc = 25,
lr = 40).
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Figure 4.2.11: Time versus lr in removal of blur given by the model (4.2.1) and ”salt and paper”
noise (lc = 35).

Fig. 4.2.11 and Fig. 4.2.12 decidedly approves that the time required to obtain a restored
ANPR image using the proposed method is again smallest with respect to other considered
methods.

Also we wanted to confirm our previous findings in terms of speed for our method and other
methods on a standard MATLAB image Lena. On Fig. 4.2.13 and Fig. 4.2.14 are presented results
for Lena image and periodic boundary condition, which degraded by the Gaussian white noise of
mean 0 and variance 0.01 and blurred by non-uniform Gaussian function (4.2.1). Rotationally
symmetric Gaussian low pass filter of size 3 with standard deviation 45 is used for filtering.
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Figure 4.2.12: Time versus lc in removal of blur given by the model (4.2.1) and ”salt and paper”
noise (lr = 40).

(a) original image (b) blurred noisy image (c) Moore-Penrose restored image

Figure 4.2.13: Removal of blur, caused by Gaussian model with lc = 40 and lr = 35, on a Lena
image.
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Figure 4.2.14: Time versus lr in removal of blur given by model (4.2.1) and Gaussian noise
(lc = 50), for a Lena image.

4.2.2 Blind deconvolution

So far in the section we have assumed that the convolution kernel PSF (in our case matrices Hr

and Hc) is known. Let us suppose that the PSF is unknown or, at best, that it can be poorly
determined. The technique of recovering the target scene from a blurred image in the presence
of a poorly determined or unknown PSF is also known as blind deconvolution.

In the following, we show how the proposed block partitioning method can be applied in
the case when the PSF (or matrices Hr and Hc) is unknown. Therefore, the first task is to see
how to estimate PSF, and later to obtain the unknown matrices Hr and Hc, from the real-life
blurred image. For the sake of simplicity, in the sequel, instead of matrices Hr and Hc (which
are given by (3.2.9)) we consider only matrix H . Since, our main goal is not to deal with
blind deconvolution process we only present one illustrative example. In order to estimate the
unknown PSF from the given blurred image we use the built-in MATLAB function deconvblind().
This function deconvolves given image F using the maximum likelihood algorithm, returning
both the deblurred image G and a restored PSF. Once we find a two-dimensional PSF we need
to compute one-dimensional vector h which completely determines the matrix H .

We start with standard image ”cameraman.tif”. Similarly, as in example presented by
MathWorks, in order to make the process of restoring the image easier, we assume the presence
of the blur without additional presence of the noise. The example can be found on the following
address: http://www.mathworks.com/products/image/

examples.html?file=/products/demos/

shipping/images/ipexblind.html.

The blur is simulated by convolving a Gaussian filter with the true image. The Gaussian filter
then represents a point spread function.

http://www.mathworks.com/products/image/
examples.html?file=/products/demos/
shipping/images/ipexblind.html
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(a) Original image (b) Blurred image (c) True PSF

(d) Moore-Penrose restore (e) Restored by deconvblind (f) Restored PSF

Figure 4.2.15: Removal of blur, based on convolution estimation approach, caused by Gaussian
PSF on Cameraman image.

F = imread(’cameraman.tif’);

PSF=fspecial(’gaussian’,11,10);

Blurred = imfilter(I,PSF);

INITPSF = ones(size(PSF));

WT = zeros(size(I));

WT(5:end-4,5:end-4) = 1;

[G P] = deconvblind(Blurred,INITPSF,40,[],WT);

We took the standard values for the input parameters of function deconvblind(). Last pa-
rameter WEIGHT (shorter WT) specifies which pixels in the input image F are considered in the
restoration. We assumed that the boundary pixels are excluded from consideration, by assig-
ning it a value of 0 in the WT array. In Fig. 4.2.15 (c) and (f) we can see the original PSF and
also the estimated PSF (denoted by P). As we mentioned, from two-dimensional matrix P we
have to find the one-dimensional vector h. The only pixels that we need, for this purpose, are
situated on the diagonal of the matrix P . Thus, in the process of image reconstruction by our
method the only information that is relevant to us is the main diagonal of the matrix P . What
we are, actually, interested in is how good pixels on the diagonal are estimated, while for the
rest of the estimated matrix P we don’t care. In Fig. 4.2.15 (d) and (e) one can also found the
restored images obtained by our method and by function deconvblind(), respectively.

If we compare the restored image from Fig. 4.2.15 (d) and (e) with two parameters ISNR
and PSNR (peak signal-to-noise ratio) [6], the value for the Moore-Penrose restore is higher
than obtained by the function deconvblind(). These results are presented in the following
Table 4.2.2.



72 CHAPTER 4. EXPERIMENTAL AND NUMERICAL RESULTS

Table 4.2.2: Results for ISNR and PSNR for Fig. 4.2.15 (d) and (e).
Parameters Moore-Penrose restore deconvblind() restore

ISNR (dB) 5.2906 3.8689

PSNR (dB) 26.2945 24.8728
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Figure 4.2.16: Error of the estimated blur length with 2D cepstral method for the standard
MATLAB image Cameraman.

Motion blur is an effect you will see in images of scenes where objects are moving. It is
mostly noticeable when the exposure is long, or if objects in the scene are moving rapidly. Our
method we can implement for restore an image that has been blurred by uniform linear motion.
In the next part we present the results when is implement the full system of image restoration
which is consist of two phase: motion estimation and image deblurring with the parameter
estimate in the first phase. To estimate the length of motion blur l, 2-D cepstral methods are
employed. This is how we represent Cepstrum Domain [48]:

Cep(g(x, y)) = infFT{log(FT (g(x, y)))} (4.2.2)

The Figure 4.2.16 illustrate that when we used 2-D cepstral methods for motion blur esti-
mation we have low level of error for estimation of the parameter l.

The restored images produced from the two phase image restoration system and by the
function deconvblind() are presented on the Fig. 4.2.17 for Cameraman image and Fig. 4.2.18
for Lena image. Results for parameters ISNR and PSNR are presented in the Table 4.2.3.
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(a) Blurred image (b) Moore-Penrose restored image (c) deconvblind restored image

Figure 4.2.17: Removal of blur, caused by horizontal motion and length of blur (l = 49) for
Cameraman image.

(a) Blurred image (b) Moore-Penrose restored image (c) deconvblind restored image

Figure 4.2.18: Removal of blur, caused by horizontal motion and length of blur (l = 28) for
Lena image.

Table 4.2.3: Results for ISNR and PSNR for Fig. 4.2.17 and Fig. 4.2.18.
Image Parameters Moore-Penrose restore deconvblind() restore

Cameraman ISNR (dB) 8.8557 3.4342

Cameraman PSNR (dB) 27.9935 22.5720

Lena ISNR (dB) 8.2999 3.5891

Lena PSNR (dB) 29.6519 24.9411
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4.3 Removal of blur in images based on least squares

solutions

In this section we have applied the proposed least squares transformation, given by equations
(3.5.2), on the image restoration process. Our basic idea is to use the output (2.6.1) as a
candidate for the matrix Y . We present numerical results for Y and E(Y ), compare the obtained
results with each other and with results generated by the Moore–Penrose solution F , defined in
(3.4.8), of the matrix system (3.5.2). The uniform linear motion is assumed in the experiments,
which implies hi = 1/n, i = −u, . . . , u. The experiments have been performed using Matlab
programming language [38] on an Intel(R) Core(TM)2 Duo CPU T5800 @ 2.00 GHz 32-bit
system with 2 GB of RAM memory running on the Windows Vista Business Operating System.

4.3.1 Application of the method on blurred images

Several tests were performed in order to evaluate the effectiveness of the method. The first set
of tests are aimed at the calculation of the improvement and the peak signal-to-noise ratio for
the reconstruction of image for various values n of the blurring process. The second set of tests
is related to the same criteria of simulating the reconstruction method but this time against
different values of moments. Finally, the last set of tests aimed at accenting the reconstruction
error between the original image and the reconstructed image for various values of Haar coeffi-
cients

The standard test image ’Lena’ is shown in Figure 4.3.1(a). The blurred image that has
been degraded by a uniform linear motion in the horizontal direction (that is usually results of
camera panning or fast object motion and modeled by the matrix equations (3.3.1) and (3.3.3))
is presented in Figure 4.3.1(b).

(a) Lena (b) Blurred image of Lena

Figure 4.3.1: (a) Image of Lena, (b) Blurred image of Lena by the uniform linear motion of
length n = 50.

The blurred images of Lena, where the periodic and reflective boundary conditions are
imposed to the original image, are shown in figures 4.3.2(a) and (b), respectively.



4.3. REMOVAL OF BLUR IN IMAGES BASED ON LEAST SQUARES SOLUTIONS 75

(a) Blurred image of Lena under periodic BCs (b) Image of Lena under reflective BCs

Figure 4.3.2: Blurred image of Lena for length n = 50 and different BCs.

Figures 4.3.3(a), and 4.3.3(b) show the Haar basis moment reconstructed image for the cases
of k = l = 55 and k = l = 195, respectively.

(a) k = l = 55 (b) k = l = 195

Figure 4.3.3: Reconstruction of Lena from Haar basis moments.

We consider the ISNR and the PSNR values for increasing values n = 10, 12, 14, . . . , 100 for
the cases of the zero, periodic and the reflective boundary conditions. Graphical representations
on figures 4.3.4–4.3.9 correspond to the following values:

(a) ISNR(E(B195,195)), where B195,195 is the Haar based reconstructed image for k = l = 195;
(b) ISNR(E(B55,55)), where B55,55 denotes the Haar based reconstructed image for k = l = 55;
(c) ISNR(E(O));
(d) Wiener filter;
(e) Lucy-Richardson algorithm.

The Wiener filter and the Lucy-Richardson algorithm are two standard methods for image
restoration. Wiener filter is selected from the family of least-squares filters and the Lucy-
Richardson algorithm is iterative method [6, 26, 38].
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Figures 4.3.4, 4.3.5 and 4.3.6 illustrate the ISNR values for increasing values n of the
blurring processes, in the case when the zero, periodic and reflective boundary conditions,
respectively, are assumed.
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Figure 4.3.4: ISNR versus length n of the blurring process under zero BCs.
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Figure 4.3.5: ISNR versus length n of the blurring process under periodic BCs.

The quantity

rn,s =
ISNRn,s

max{ISNRn,s : s ∈ {E(B195,195), E(B55,55), E(O),WF, LR}}
is called the performance ratio. Finally, the performance of the solver s is defined by the
following cumulative distribution function

ρI(s) =
np∑
rn,s

,
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Figure 4.3.6: ISNR versus length n of the blurring process under reflective BCs.

where np = 46 is the number of numerical experiments.
Similar notations, replacing ISNR values by corresponding PSNR values, could be defined

for the performance metric PSNR. By PSNRn,s we denote the number of iterations required
to solve the blurring problem with the length n by the solver s. The performance ratio is now
defined by

rn,s =
PSNRn,s

max{PSNRn,s : s ∈ {E(B195,195), E(B55,55), E(O),WF, LR}} .

The performance of the solver s is defined by the quotient

ρP (s) =
np∑
rn,s

.

Corresponding PSNR values are illustrated on figures 4.3.7, 4.3.8 and 4.3.9.
Clearly that rn,s ≤ 1 and greater values for rn,s are desirable, so that the best possible

property for a solver s is ρI(s) = 1. We will say that the solver s1 overcomes the solver s2 if
the inequality ρI(s1) ≥ ρI(s2) is satisfied. This situation will be marked by s1 � s2.

Several conclusions related to the operator E, Wiener filter and Lucy-Richardson algorithm
are observed.

Conclusion 1. Values for ρI(s) are arranged in Table 4.3.1.

Table 4.3.1: Values for ρI(s).
ρI(E(B195,195)) ρI(E(B55,55)) ρI(E(O)) ρI(WF ) ρI(LR)

Zero Bcs 1 0.732026 0.524752 -0.299391 -0.052279

Periodic Bcs 0.909776 0.797877 0.781241 0.756565 0.287797

Reflective Bcs 0.974235 0.859957 0.903068 -0.873373 -0.044270
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Figure 4.3.7: PSNR versus length n of the blurring process under zero BCs.
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Figure 4.3.8: PSNR versus length n of the blurring process under periodic BCs.

The comparison between considered image restoration solvers could be presented in Table
4.3.2.

Table 4.3.2: Comparison of considered solvers with respect to ISNR.
Comparison

Zero Bcs E(B195,195) � E(B55,55) � E(O) � LR � WF

Periodic Bcs E(B195,195) � E(B55,55) � E(O) � WF � LR

Reflective Bcs E(B195,195) � E(O) � E(B55,55) � WF � LR
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Figure 4.3.9: PSNR versus length n of the blurring process under reflective BCs.

Values for ρP (s) are arranged in Table 4.3.3.

Table 4.3.3: Values for ρI(s).
ρP (E(B195,195)) ρP (E(B55,55)) ρP (E(O)) ρP (WF ) ρP (LR)

Zero Bcs 1 0.863191 0.755812 0.336527 0.462760

Periodic Bcs 0.968595 0.926170 0.917733 0.905111 0.736051

Reflective Bcs 0.992455 0.9525998 0.964817 0.386173 0.649018

The comparison between the solvers with respect to PSNR values is given in Table 4.3.4.

Table 4.3.4: Comparison of considered solvers with respect to PSNR.
Comparison

Zero Bcs E(B195,195) � E(B55,55) � E(O) � LR � WF

Periodic Bcs E(B195,195) � E(B55,55) � E(O) � WF � LR

Reflective Bcs E(B195,195) � E(O) � E(B55,55) � LR � WF

From tables 4.3.2 and 4.3.4 we conclude that E(B195,195), E(B55,55) and E(O) significantly
overcome two standard image restoration algorithms (Wiener filter and Lucy-Richardson
algorithm).

Conclusion 2. From figures 4.3.4–4.3.9 it can be clearly seen that all the measurements taken
decrease as the length of the blurring process increase. The decrement in the declination
of presented graphs is self–evidence.
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Conclusion 3. Figure 4.3.10 shows the ISNR (line marked with squares) and the PSNR (line
marked with circles), for various values of moment indices k, l from values k = l = 10 to
k = l = 400 with the step 5 and keeping the blurring process constant with the length
n = 50. Also, the zero boundary conditions are assumed.
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Figure 4.3.10: ISNR and PSNR versus values of moment, with constant n.

It is evident that the robustness of the improvement E(Y ) increases considerably with
the increase of the number of moments. This fact could be observed on Figure 4.3.10.

In the sequel, on Figure 4.3.11 we illustrate the usefulness of the proposed method on the
most obvious way. We can see clearly that both restorations E(Y =B55,55) and E(Y =B195,195)
of the image are better than the restoration E(Y = O), based on the Moore-Penrose solution.
The best restoration is evidently reached in the case E(Y =B195,195).

In what follows, we investigate an interesting property of the operator E(Y ), representing
correlation between ISNR(E(Y )) and ISNR(Y ). For this purpose, we need some additional
ISNR and PSNR values, for some different choices of the matrix Y . In Table 4.3.5 we present

(a) Y = B55,55 (b) Y = B195,195 (c) Y = O

Figure 4.3.11: Restoration of Lena for different Y .
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generated values for ISNR(Y ) and PSNR(Y ) as well as corresponding values ISNR(E(Y ))
and PSNR(E(Y )).
We used for Y the following matrices:
– Y = rand(0, 1), where rand generates a random matrix with entries from the interval (0, 1)
uniformly distributed;
– Y = nctrnd(1, 100), whose entries are random numbers chosen from the noncentral t distri-
bution with parameters 1 and 100;
– Y = frnd(2, 2), which contains random numbers chosen from the F distribution with param-
eters 2 and 2;
– Y = lognrnd(1, 2) with entries from a lognormal distribution with parameters 1 and 2;
– Y = randn(0, 1), containing pseudo-random values drawn from a normal distribution with
mean zero and standard deviation one;
– Y = O.

ISNR and PSNR values generated for the choice Y = F̃ are denoted by ISNR(Y ) and
PSNR(Y ), respectively.

Table 4.3.5: ISNR and PSNR values (in dB) for different choices of Y .
ISNR(Y ) PSNR(Y ) ISNR(E(Y )) PSNR(E(Y ))

Y = nctrnd(1, 100) -84.4601 15.96 -61.8865 14.83
Y = frnd(2, 2) -47.4319 15.16 -26.6929 18.12
Y = lognrnd(1, 2) -15.2974 13.07 -1.2873 17.42
Y = randn(0, 1) -10.6372 16.46 11.3462 20.58

Y = O -10.6373 16.41 11.3497 20.58

Y = rand(0, 1) -10.6079 16.41 11.3639 20.59
Y = B55,55 4.9200 21.66 16.6965 24.58
Y = B195,195 10.6296 26.24 22.9395 30.50

Table 4.3.5 has been divided into three parts horizontally. The middle part is a row denoted
by Y = O, which contains ISNR and PSNR values generated in the case Y = O. The first
part of the table contains some of the functions where the results presented for the ISNR and
the PSNR are worst than the case for Y = O. The second part includes the cases where the
functions E(Y ), including our Haar moment based method, provide better results than the
Moore–Penrose reconstruction method.

The results contained in Table 4.3.5 can be seen as one more evidence that values for Y
closer to the original image F produce better improvements and when Y is far from F , the
results are better for Y = O. More precisely, in all of the experiments, ISNR(Y ) < ISNR(O)
implies ISNR(E(Y )) < ISNR(E(O)) and alternatively ISNR(Y ) > ISNR(O) implies that
ISNR(E(Y )) > ISNR(E(O)). Furthermore, it is obvious that the values ISNR(E(Y )) (resp.
PSNR(E(Y ))) has greater values with respect to ISNR(Y ) (resp. PSNR(Y )).

Remark 4.3.1. The operator E(Y ) behaves as the improvement for each Y which is not of the
form Y = E(X), for a matrix X. More precisely, our experience and Proposition 3.3.2 indicate

ISNR(E(Y )) ρ ISNR(Y ), where ρ =

{
>, Y /∈ R(E),
=, Y ∈ R(E).
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Therefore, it is seems reasonable to assume that there is a threshold real value t which guarantees
that ISNR(E(Z)) > ISNR(E(Y = O)) = 11.3497, for each Z which satisfies ISNR(Z) > t.
The case Y = O is especially separated because it has already been studied in the literature.
According to results presented in Table 4.3.5, we conclude that

t =

{
ISNR(O) = −10.6373, Z /∈ R(E),
ISNR(E(O)) = 11.3497, Z ∈ R(E).

Taking into account the PSNR values from Table 4.3.5, we get

t =

{
PSNR(O) = 16.41, Z /∈ R(E),
PSNR(E(O)) = 20.58, Z ∈ R(E).

The regression line has been approximated according to the calculated values of the ISNR(Y )
and ISNR(E(Y )) represented on Table 4.3.5. The equation of the regression line is

ISNR(E(Y )) = 0.9104 · ISNR(Y ) + 16.5881.

The results were plotted on Figure 4.3.12, where the isolated circles represent the calculated
values and the solid line represents the approximated regression line.
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Figure 4.3.12: Linear Regression between ISNR(Y ) and ISNR(E(Y )).

4.3.2 Application of the method on blurred and noisy images

Noise is unavoidable in most of applications, so that a real observation is thus often modeled
by

HFXY + ns = FXY

provided that the noise ns is additive, although multiplicative noise can be handled similarly.
In another formulation the noise can also be simulated by rewriting the equation as

FXY =

p∑
k=1

m∑
l=1

FXY (k, l)h(i, j; k, l) + ns(i, j) (4.3.1)

where i = 1, . . . , p and j = 1, . . . , m.
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(a) Noisy degraded image (b) Noisy and motion blurred image (c) Restored image

Figure 4.3.13: Restoration of noisy and motion blurred Lena.

In Figure 4.3.13(a), we simulate a noise model where a number of pixels are corrupted and
randomly take on a value of white and black (salt and pepper noise) with noise density equal
to 0.1. The image that we receive from a faulty transmission line can contain this form of
corruption. In Figure 4.3.13 (b) we present the original image while a motion blurred and a
salt and pepper noise has been added to it. Figure 4.3.13 (c) demonstrates the application of
a low pass rotationally symmetric Gaussian filter of standard deviation equal to 45 after using
the moment based restoration method for E(Y = B195,195).

Accordingly, the graphical representation of the ISNR against the noise density of the salt
and pepper noise interference is illustrated on Figure 4.3.14. The bottom curve (in green)
represents the case where the matrix Y filled with random entries, the middle graph (in red)
represents the case where the matrix Y is equal to zero and finally the upper curve (in blue)
corresponds to the case where the matrix Y is a moment based image restoration matrix using
as Y = B195,195. It can be seen that the latter case provides the best obtained result, in all of
the cases the number of blurring process kept a high constant value equal to 100.
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Figure 4.3.14: ISNR against the noisy density for the salt and pepper interference case.

For convenience and comparison reasons the graphical representation of the ISNR against
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the noise density of the Gaussian noise interference is illustrated on Figure 4.3.15.
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Figure 4.3.15: ISNR against the noisy density for the Gaussian interference case.

The bottom curve (in green) illustrates the data generated in the case where the matrix Y
filled with random entries, the middle graph (in red) represents the case Y = O and the upper
graph (in blue) represents the case where the matrix Y is a moment based image restoration
matrix, that is, Y = B195,195.

In Table 4.3.6 we present the normalized reconstruction error given by

NE =
1√∑X

x=1

∑Y
y=1[FXY ]2

√√√√ X∑
x=1

Y∑
y=1

[FXY − FXY ]2,

where FXY and FXY are the original and the reconstructed images respectively. This time the
image goes through a motion - blurred and noisy process according to formula presented on eq.
(4.4.1). The noise part is a Gaussian white noise with constant mean value at 0 and variance
that varies from 0.01 to 0.10 as shown on Table 4.3.6. Image processing and analysis are based
on filtering the content of the images in a certain way. The filtering process that is used in
order to clear the image is achieved by applying a low-pass rotationally inverse Gaussian filter,
in this case on the generalized inverse or Haar based reconstructed image.

After a considerable investigation and for observations where noise is present, the threshold
point has been traced. That point is where the results obtained from our proposed method
are identical to the Moore-Penrose reconstruction method (where Y = O). In our case the
threshold point attained when the Haar coefficients are equal to k = l = 30. It is worth
noticing that for the case where noise is not present, the threshold point is attained for very
low values of the Haar coefficients.
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Table 4.3.6: Normalized reconstruction error.
Variance NE (for Y = 0) NE (for B55,55) NE (for B195,195)

0.01 0.2094 0.2039 0.1848
0.02 0.2460 0.2225 0.2003
0.03 0.2491 0.2281 0.2104
0.04 0.2692 0.2532 0.2153
0.05 0.2778 0.2336 0.2363
0.06 0.2923 0.2533 0.2516
0.07 0.3029 0.2646 0.2711
0.08 0.3267 0.2713 0.2691
0.09 0.3297 0.2896 0.2848
0.10 0.3381 0.3122 0.2958

4.4 Image deblurring process based on

separable restoration methods

In this section we apply the proposed transformations E(Y ) and E1(Y ) to several types of
possible values for the matrix Y . The assumption hi = 1/n, i = 1, . . . , n is imposed in matrices
Hc andHr. The experiments are performed using Matlab programming language on an Intel(R)
Core(TM) i5 CPU M430 @ 2.27 GHz 64/32-bit system with 4 GB of RAM memory running
on the Windows 7 Ultimate Operating System.

4.4.1 Results for Wiener Filter, CLS Filter and SMRS solution

The uniform linear blur case. The tested image Lena is shown in Figure 4.4.1(a). The
blurred image that has been degraded by a uniform linear motion in the horizontal direction is
presented in Figure 4.4.1(b).

(a) (b)

Figure 4.4.1: (a) Image of Lena, and (b) Blurred Image of Lena from uniform linear motion
with n = 62.

The ISNR and the PSNR values are presented on the figures 4.4.2 and 4.4.3, respectively,
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for different values of the length n of the blurring processes. The left graphical representations
on these figures show the ISNR and the PSNR values generated after the removal of blur by
means of two standard image restoration methods (such as Wiener filter – WF , constrained
least-squares filter –CLS), as well as the Symmetric Minimal Rank Solution (SMRS) of the
matrix equation (3.4.3). The presentation of the ISNR and the PSNR values corresponding to
E(Y ) for Y = O, Y = WF , Y = CLS are given in the right graphs on figures 4.4.2 and 4.4.3.
Because of the completeness of the comparison, values for ISNR(O) and PSNR(O) are also
shown on the left images.
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Figure 4.4.2: ISNR versus length n of the blurring process for Lena and uniform blur for (a)
O, WF,CLS, SMRS, and (b) E(Y = O), E(Y = WF ), E(Y = CLS), E(Y = SMRS).
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Figure 4.4.3: PSNR versus length n of the blurring process for Lena and uniform blur for (a)
O, WF,CLS, SMRS, and (b) E(Y = 0), E(Y = WF ), E(Y = CLS), E(Y = SMRS).

We note that the results obtained applying the image restoration algorithms WF and CLS
are almost identical, so that corresponding graphs overlap on both pictures. Changes from
values ISNR(Y ) and PSNR(Y ) to corresponding values ISNR(E(Y )) and PSNR(E(Y ))
were different.
• In the cases Y = WF and Y = CLS there was an identical increasing.
• The values ISNR(E(Y = O)) and PSNR(E(Y = O)) have the greatest increase compared
to ISNR(O) and PSNR(O).
• The values ISNR(SMRS) and ISNR(E(Y = SMRS)) are identical (as well as PSNR(SMRS)
and PSNR(E(Y = SMRS))), as it can be expected from Theorem 3.4.1.
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• Hierarchy corresponding to both ISNR(Y ) and PSNR(Y ) values (observed in left graphs
on figures 4.4.2 and 4.4.3) retains the same in the cases ISNR(E(Y )) and PSNR(E(Y )) in
the choices Y = WF, Y = CLS (present situation in right graphs on figures 4.4.2 and 4.4.3).
Since the equality ISNR(SMRS) = ISNR(E(Y = SMRS)) evidently holds, the selection
Y = SMRS lose the priority with respect to the case Y = O, seen at the graphs shown in
figures 4.4.2(a) and 4.4.3)(a).

Figures 4.4.4(a), 4.4.4(b), and 4.4.4(c) show the reconstructed image Lena with with three
standard image restoration methods described in Chapter 2.

(a) (b) (c)

Figure 4.4.4: Reconstruction of Lena with: (a) WF , (b) CLS, (c) SMRS.

Figure 4.4.5 illustrates improvements in the restoration, which is obtained applying the operator
E(Y ).

(a) (b) (c)

Figure 4.4.5: Restoration of Lena with: (a) E(Y = WF ); (b) E(Y = CLS); (c) E(Y = O).

Comparing figures 4.4.4 and 4.4.5 it is obviously clear that E(Y ) gives better restorations
with respect to restorations generated by Y . From Figure 4.4.5 it is clearly apparent by the
human eye that each of the restorations E(WF ), E(CLS) produces better reconstruction with
respect to the choice Y = O, corresponding to the Moore–Penrose solution of the matrix
equation (3.4.3).

In Table 4.4.1 we illustrate our hypothesis from [83] that the opposite inequality

ISNR(E(Y )) < ISNR(Y )

is satisfied in the case when the matrix Y is almost the same as the original F . Since so far no
image restoration method that could generate such a big improvement is known, the matrix Y is
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obtained as a small degradation of F , not by applying an image restoration method. Numerical
experience shows that for standard Matlab pictures, such as Lena, Barbara, Boat, Man and
other ISNR(Y ) > 180 implies ISNR(Y ) > ISNR(E(Y )). This experience can be formally
verified using the trend line y = 0.9104∗x+16.5881 from [83]. The inequality y < x is satisfied
in the case x > 16.588/0.09 ≈ 184.31. For example, the results for ’Lena’ corresponding to
values ISNR(Y ) and ISNR(E(Y )) for all values n from 5 to 101 with step 3 are arranged in
Table 4.4.1.

Table 4.4.1: Values for n, ISNR(Y ) and ISNR(E(Y )).
n ISNR(Y ) ISNR(E(Y )) n ISNR(Y ) ISNR(E(Y ))

5 249.2923918 246.5754751 56 261.1267412 245.0397281
8 252.5410863 245.8133034 59 261.3197821 244.7947034
11 254.0380289 245.4559672 62 261.5020619 244.5066636
14 255.290775 247.8147012 65 261.6693869 245.3431482
17 256.1627449 245.0849736 68 261.8267126 245.3387704
20 256.9266896 247.1001053 71 261.9720388 244.7968745
23 257.5158629 246.4096921 74 262.1082977 244.9597282
26 258.0526813 246.8480396 77 262.2343166 243.3086415
29 258.503794 245.9257102 80 262.3524128 245.0872482
32 258.9244034 245.3700613 83 262.4623246 243.7656052
35 259.2885286 244.8638084 86 262.5664801 244.6452163
38 259.6271666 245.6146567 89 262.6646006 244.0284835
41 259.9272486 245.5255758 92 262.7584279 244.6950721
44 260.2088708 243.9298914 95 262.847103 243.8340798
47 260.461986 245.844263 98 262.9314357 244.3155611
50 260.7001833 245.3140994 101 263.0108589 242.6759354
53 260.9182511 244.2328601

The results arranged in Table 4.4.1 confirm the next facts:

− the inequality ISNR(E(Y )) < ISNR(Y ) holds;

− increase in values ISNR(Y ) implies decrease in values ISNR(E(Y )).

We also made numerical results for SMRSα,β. For selected values n = 35, 44, 53, 62 and
α, β = 0, 0.1, 0.2, . . . , 1 derived results are arranged in Table 4.4.2.

Table 4.4.2: Selected values ISNR(Y = SMRSα,β) for given values n.
n ISNR(SMRS0,0) ISNR(SMRS1,1) max(ISNR(SMRSα,β))

35 14.10480781 14.30639718 ISNR(SMRS0.5,1) = 14.91242836

44 13.21132067 12.42006111 ISNR(SMRS0.4,1) = 13.68685028

53 12.97303198 11.32319729 ISNR(SMRS0.3,1) = 13.17562410

62 11.98878458 10.60190380 ISNR(SMRS0.3,1) = 12.23963421
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From Table 4.4.2 we can conclude that for some values of the weighting coefficients α and β we
obtain higher values for the ISNR in terms when coefficient have value 0 or 1. These mean that
for a given value of the uniform linear motion n, we can determine the values of the coefficients
α = r1 and β = r2 for which is valid that

ISNR(SMRSα,β) = ISNR(SMRSr1,r2) > ISNR(SMRS0,0) = E(Y = 0)

and
ISNR(SMRSα,β) = ISNR(SMRSr1,r2) > ISNR(SMRS1,1).

The separable motion blur case. The input image Lena blurred by separable motion
with n1 = 30 and n2 = 44 is given in Figure 4.4.6.

(a) (b)

Figure 4.4.6: (a) Image of Lena, and (b) Blurred Image of Lena by separable motion with
n1 = 30 and n2 = 44.

Values for ISNR and PSNR arising after the application of separable motion blurring on
the input image Lena are illustrated in figures 4.4.7 and 4.4.8, respectively.
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Figure 4.4.7: ISNR versus variable length n2 and n1 = 30 of the blurring process for separable
motion blur (a) O, WF,CLS and (b) E1(Y = O), E1(Y = WF ), E1(Y = CLS).

From figures 4.4.7 and 4.4.8 we observe relations ISNR(E1(Y )) > ISNR(Y ) and
PSNR(E1(Y )) > PSNR(Y ). As a consequence, E1(Y ) produces evidently better restorations
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Figure 4.4.8: PSNR versus variable length n2 and n1 = 30 of the blurring process for separable
motion blur (a) O,WF,CLS and (b) E1(Y = O), E1(Y = WF ), E1(Y = CLS).

with respect to restorations defined by Y . This fact is confirmed by the next two figures 4.4.9
and 4.4.10.

(a) (b)

Figure 4.4.9: Reconstruction of Lena with: (a) Y = WF , (b) Y = CLS.

The numerical results corresponding to the restoration of the image Barbara degraded by
the separable motion blur are identical as in the previous case, where the input picture Lena is
chosen.

4.4.2 Results for moment based methods

In this subsection the matrix Y was substituted by the moment representation of the image.
For comparison reasons the number of moments Bk,l presented on section 2.6 was kept constant
with k = l = 55 or k = l = 155. The values of Y obtained applying the Haar (resp. Fourier)
basis in these cases are denoted by Y = H55 and Y = H155 (resp. Y = F55 and Y = F155).

Results corresponding to the Haar basis
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(a) (b) (c)

Figure 4.4.10: Restoration of Lena with: (a) E1(Y = WF ); (b) E1(Y = CLS); (c) E1(Y = O).

The uniform blur case.

The ISNR and PSNR values obtained applying the operator E(Y ) on the blurred image
Lena are shown on left and right graph on Figure 4.4.11, respectively. The selected values for
the Y are Y = O, Y = H55 and Y = H155.
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Figure 4.4.11: a) ISNR values for E(Y ), b) PSNR values for E(Y ) generated using Y = O,
Y = H55 and Y = H155.

Values corresponding to the cases Y = H55 and Y = H155 are better than the corresponding
results generated by the choice Y = O.

The separable motion blur case.

The image Lena blurred by the separable motion with n1 = n2 = n is tested. The results
for the ISNR and PSNR values were plotted on Figure 4.4.12.

The Haar moment basis analysis provides better results for the image reconstruction when
it is used as a value for Y compared to the normal restoration process where Y is equal to the
zero matrix.

Results corresponding to the Fourier Transform

The uniform blur case.
The ISNR and PSNR values for E(Y ) corresponding to the tested image Lena are shown

in Figure 4.4.13. Chosen values for Y are Y = O, Y = F55 and Y = F155.
The separable motion blur case.
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Figure 4.4.12: a) ISNR values for E1(Y ), b) PSNR values for E1(Y ) generated for n1 = n2

using as Y = O, Y = H55, Y = H155.

0 10 20 30 40 50 60 70 80 90 100
5

10

15

20

25

30

35

n = length of the blurring process

IS
N

R
 (

dB
)

ISNR results for Y = 0, F 55, F155

 

 

ISNR(E(Y=0))
ISNR(E(Y = F 55))
ISNR(E(Y = F 155))

0 10 20 30 40 50 60 70 80 90 100
20

25

30

35

40

45

50

55

60

65

n = length of the blurring process

P
S

N
R

 (
dB

)

PSNR results for Y = 0, F 55, F 155

 

 

PSNR(E(Y = 0))
PSNR(E(Y = F 55))
PSNR(E(Y = F 155))

(a) (b)

Figure 4.4.13: a) ISNR values for E(Y ), b) PSNR values for E(Y ) generated using Y = O,
Y = F55, Y = F155.

The input image Lena blurred by the separable motion with n1 = n2 = n is tested. The
ISNR and PSNR values are shown in the following figure:

The information that can be extracted from the ISNR and PSNR figures is that the im-
provement on the restored image is significantly better in all of the cases where the moment
basis analysis was used as a value for Y than the one used by the generalized inverse method
where Y = O.

The results were similar for all other images used for numerical experiments.

4.4.3 Final comparisons

Finally, we will present an overall comparison between the methods presented in Section 3.3 in
the uniform blur case. The ISNR and the PSNR values of E(Y ) are generated for all considered
choices of the matrix Y .

As we can see, it is clear that the moment based methods (Fourier basis and Haar basis)
give much better results that all other methods tested. We can also see that among the other
methods, the case Y = WF gives greater ISNR and PSNR values and that the case Y = SMRS
is the least preferred candidate for the matrix Y . Since the values corresponding to the choice
Y = CLS almost coincide with those of the Weiner filter (Y = WF ) in both criterions (ISNR
and PSNR), they are not presented in these figures.

Overall, it seems that for various cases that have been tested for the matrix Y , the best
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Figure 4.4.14: a) ISNR values for E1(Y ) and b) PSNR values for E1(Y ) generated using Y = O,
Y = F55, Y = F155, n1 = n2 = n.
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Figure 4.4.15: a) ISNR values of E(Y ); b) PSNR values of E(Y ), for all cases of Y presented.

results obtained when Fourier (spectral domain) and Haar (spatial domain) moments were
used. It is therefore desirable that the original image is known. On the other hand, the
moment method provides a fast recovery technique by taking the necessary coefficients each
time depending on the original image. Generally moments provide information on its low
frequency of an image. The higher number of moments used the more detail of the image
captured. Moreover, the method is independent from the filtering process which provides a
serious advantage compared to the other image processing and analysis techniques tested in
this section.

4.4.4 Application of the method on blurred and noisy images

In most applications noise is unavoidable and a real observation is thus often modeled by

G = FHT +N

where N is the noise additive matrix, provided that the noise N is additive. The multiplicative
noise can be handled similarly. In another formulation the noise can also be simulated by
rewriting the above equation as

SXY =

p∑
k=1

m∑
l=1

SXY (k, l)h(i, j; k, l) + ns(i, j) (4.4.1)
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where i = 1, . . . , p and j = 1, . . . , m.

As it was shown in the previous subsection, the moment based methods (Fourier basis and
Haar basis) give significantly better results than all other methods tested. The presence of
noise will only be investigated in such cases.

In Figure 4.4.16(a), we simulate a noise model where a number of pixels are corrupted and
randomly take on a value of white and black (salt and pepper noise) with noise density equal
to 0.1. The image that we receive from a faulty transmission line can contain this form of
corruption. In Figure 4.4.16 (b) we present the damaged image that is obtained by a motion
blur and a salt and pepper noise. Figure 4.4.16 (c) demonstrates the result of applying a low
pass rotationally symmetric Gaussian filter of standard deviation equal to 45 after using the
moment based restoration method for E(Y = H155).

(a) (b) (c)

Figure 4.4.16: (a) Noisy degraded Lena image, (b) noisy and motion blurred Lena image and
(c) Restored based on the proposed method and noisy filtered image using the Haar basis.

Accordingly, the graphical representation of the ISNR against the noise density of the salt
and pepper noise interference is illustrated on Figure 4.4.17. The bottom curves (in green)
represent the case where the matrix Y is filled with random entries, the middle ones (in red)
represent the case where the matrix Y is equal to zero and finally the upper curves (in blue)
correspond to the case where the matrix Y is a moment based image restoration matrix using
as Y = H155, or as Y = F155 respectively. It can be seen that the latter case provides the best
obtained result, in all of the cases the number of blurring process kept a high constant value
equal to 100, for both the Haar and the Fourier basis.

For convenience and comparison reasons, the graphical representation of the ISNR against
the noise density of the Gaussian noise interference is illustrated on Figure 4.4.18. The bottom
curves (in green) illustrate the data generated in the case where the matrix Y filled with
random entries, the middle ones (in red) represent the case Y = 0 and the upper graphs (in
blue) represent the case where the matrix Y is a moment based image restoration matrix, that
is, Y = H155 on graph (a) and Y = F155 on graph (b).

In Table 4.4.3 we present the normalized reconstruction error given by

NE =
1√∑X

x=1

∑Y
y=1[SXY ]2

√√√√ X∑
x=1

Y∑
y=1

[SXY − SXY ]2,
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Figure 4.4.17: ISNR against the noisy density for the salt and pepper interference case: (a)
The Haar Basis and (b) The Fourier Basis.
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Figure 4.4.18: ISNR against the noisy density for the Gaussian interference case: (a) The Haar
Basis and (b) The Fourier Basis.

where SXY and SXY are the original and the reconstructed images respectively. This time the
image goes through a motion - blurred and noisy process according to formula presented on eq.
(4.4.1). The noise part is a Gaussian white noise with constant mean value at 0 and variance
that varies from 0.01 to 0.10 as shown on Table 4.4.3. Image processing and analysis are based
on filtering the content of the images in a certain way. The filtering process that is used in
order to clear the image is achieved by applying a low-pass rotationally inverse Gaussian filter,
in this case on the generalized inverse or Haar based reconstructed image.

After considerable investigation and observations where noise is present, the threshold point
has been traced. That point is where the results obtained from our proposed method are
identical to the Moore- Penrose reconstruction method (where Y = O). In our case, the
threshold point is attained when the Haar coefficients are equal to k = l = 30, while for the
Fourier coefficients the threshold point was found to be k = l = 27. It is worth noticing that
for the case where noise is not present, the threshold point is attained for very low values of
the Haar and the Fourier coefficients.
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Table 4.4.3: Normalized reconstruction error.
Variance Y = 0 Y = H55,55 Y = H155,155 Y = F55,55 Y = F155,155

0.01 0.2094 0.2039 0.2125 0.1292 0.2135
0.02 0.2460 0.2225 0.2483 0.1394 0.2492
0.03 0.2491 0.2281 0.2571 0.1547 0.2539
0.04 0.2692 0.2532 0.2856 0.1667 0.2717
0.05 0.2778 0.2336 0.2996 0.1857 0.2785
0.06 0.2923 0.2533 0.3073 0.1925 0.2953
0.07 0.3029 0.2646 0.3102 0.1980 0.3048
0.08 0.3267 0.2713 0.3317 0.2082 0.3248
0.09 0.3297 0.2896 0.3357 0.2188 0.3379
0.10 0.3381 0.3122 0.3426 0.2252 0.3473

4.5 Improving the Tikhonov and TSVD image deblur-

ring methods

We present numerical results for E(Y ), where Y take value from TSVD or TIK method,
and compare the obtained results with results generated by TSVD (2.7.3) and TIK (2.7.4)
method. The uniform linear motion is assumed in the experiments, which implies hi = 1/n,
i = −u, . . . , u. The experiments have been performed using Matlab programming language [38]
on an Intel(R) Core(TM)i3 CPU M380 @ 2.53 GHz 64 bit system with 2 GB of RAM memory
running on the Windows 7 Enterprise.

We consider the blurred image that has been degraded by a uniform linear motion in the
horizontal direction that is modeled by the matrix equation (3.3.3). The length of the blurring
process is denoted by l.

Data corresponding to standard test image ’Lena’ are displayed on figures 4.5.1 and 4.5.2.
The left (resp. right) graphic on Figure 4.5.1 displays data which are generated applying the
Tikhonov (resp. TSVD) image deblurring method based on the FFT (Fast Fourier Transforms)
algorithm. FFT is an efficient algorithm to compute matrix-vector multiplication [32], which is
needed for spectral decomposition of the matrix A from (2.7.1). Data obtained by TIK image
deblurring using the FFT algorithm and TSVD image deblurring using the FFT algorithm are
denoted by TIKfft and TSVDfft, respectively.

Figure 4.5.1 displays data corresponding to zero boundary conditions.

Figure 4.5.2 presents data corresponding to reflective boundary conditions.

Data obtained restoring the test image ’Barbara’ are shown on figures 4.5.3 and 4.5.4.

In the following figure we show results for parameter PSNR when we use periodic boundary
condition in TIK and TSVD image deblurring with using of Kronecker decomposition [32].
Methods with this decomposition are presented with subscript SEP in the Figure 4.5.5.

Confirmation that the image restorations obtained by (3.5.2) (i.e. (E(TIK) and E(TSV D))
are better than the restoration produced by a straight application of the TIK and TSVD
methods could be observed from figures 4.5.6, 4.5.7 and 4.5.8 for Lena image and different
boundary conditions.

Results corresponding to Barbara image and periodic boundary conditions are presented on
Figure 4.5.9.
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Figure 4.5.1: ISNR versus length l of the uniform blurring process for Lena and zero boundary
conditions
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Figure 4.5.2: ISNR versus length l for Lena and reflective boundary conditions

4.6 Comparison with the least squares solution

For the sake of simplicity let us again focus on the blur which is caused by a horizontal motion.
In this section we compare the effectiveness of the method based on the usage of the Moore-
Penrose inverse with the method which uses the least squares solution of the following linear
system

gi,j =
l−1∑
k=0

hkfi,j+k, i = 1, . . . , r, j = 1, . . . , m, (4.6.1)

arising from (3.2.9)–(3.2.12) (with n = m+ l− 1). Corresponding solution is derived using the
standard MATLAB function mrdivide() and it will be denoted as LS solution in test examples.
Function mrdivide(B,A) (or its equivalent B/A) performs matrix right division (forward slash)
[56]. Matrices B and A must have the same number of columns.

If A is a square matrix, B/A is roughly the same as B*inv(A). If A is an n×n matrix and B
is a row vector with n elements, or a matrix with several such rows, then X = B/A is the solution
of the equation XA = B computed by using Gaussian elimination with partial pivoting. If B
is an m × n matrix with m ∼= n and A is a column vector with m components, or a matrix
with several such columns, then X = B/A is a solution in the least-squares sense to the under-
or overdetermined system of equations XA = B. In other words, X minimizes norm(A*X -
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Figure 4.5.3: ISNR versus length l for Barbara and zero boundary conditions
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Figure 4.5.4: ISNR versus length l for Barbara and reflective boundary conditions
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Figure 4.5.5: PSNR versus length l of the uniform blurring process periodic boundary conditions

B). The rank k of A is determined from the QR decomposition with column pivoting. The
computed solution X has at most k nonzero elements per column. If k < n, this is usually not
the same solution as X = B*pinv(A), which returns a least-squares solution with the smallest
norm ‖X‖. The presented results show that using the pseudo inverse approach leads to better
improvements than solving the system directly.

In the case of the underdetermined or overdetermined system of equations G = FHT the
least squares solution F = G/HT is usually not the same as the least square solutions of the
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(a) Original image (b) Blurred image (c) TIK restore

(d) E(TIK) restore (e) TSVD restore (f) E(TSVD)

Figure 4.5.6: Removal of blur length l = 34 on a Lena image with zero boundary conditions.

(a) Original image (b) Blurred image (c) TIK restore

(d) E(TIK) restore (e) TSVD restore (f) E(TSVD)

Figure 4.5.7: Removal of blur length l = 64 on a Lena image with reflective boundary conditions.
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(a) Original image (b) Blurred image (c) TIK restore (d) E(TIK)

Figure 4.5.8: Removal of blur length l = 46 on a Lena image with periodic boundary conditions.

(a) Original image (b) Blurred image (c) TIK restore (d) E(TIK)

Figure 4.5.9: Removal of blur length l = 46 on a Barbara image with periodic boundary
conditions.

minimal norm F = G(HT )†. The comparison between the Moore-Penrose approach and least
square solutions for the problem (3.2.12) is illustrated in the next figure. Blurring using in
this example are uniform Gaussian with length l = 50 and Gaussian white noise of mean 0
and variance 0.05 . The left picture in Fig. 4.6.1 shows the restored image obtained as the
direct solution of the system (4.6.1) while the right image shows the image in which the blur is
restored based on the usage of the Moore-Penrose inverse.

(a) the LS solution (b) the Moore-Penrose inverse solution

Figure 4.6.1: Restoration arising from the LS solution and the Moore-Penrose inverse.

The difference in the quality of the restored images is in favor of the Moore-Penrose in-
verse approach and can be seen with the human eye. This illustration was confirmed by the
corresponding values of the ISNR parameter, which are illustrated in Fig. 4.6.2.
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Figure 4.6.2: ISNR values arising from the Moore–Penrose inverse approach and the LS solution.
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Chapter 5

Conclusion

In the Ph.D. dissertation, we analyzed, presented and developed new non-iterative methods
for image restoration of images. The images are blurred or degraded by uniform or non–
uniform linear motion. The methodology used is based on mathematical analysis, computer
implementation and experimental tests. The environment in which the implementation has
been developed and experimental tests have been made for the new image restoration methods
is the software package MATLAB.

Conclusions for different presented non-iterative methods:

• Application of the pseudoinverse computation in reconstruction of blurred images: The
method is based on the usage of the Moore-Penrose inverse solution of the matrix equation
which presents a model of the motion blur. Our method exploits the structure of the
blurring matrix and generates its pseudoinverse directly, without any iterations. The
main advantage of the method is found in the decrease of the CPU time with respect
to other methods for paseudoinverse computation. We illustrate the theoretical findings
by comparing the Moore-Penrose inverse method against the Wiener filter, Constrained
least-squares filter and Lucy-Richardson algorithm. Also, we present numerical results in
which we compare our method (called MP method) with well-known Pappas1, Pappas2
and Courrieu methods.

• Application of partitioning method on specific Toeplitz matrices: Motivated by the prob-
lem of restoring blurred images via well developed mathematical methods which are based
on the Moore-Penrose inverse computation, we introduced a computational method to re-
store images that have been blurred by the non–uniform linear motion. The presented
method is based on appropriate adaptations of well-known computational methods intro-
duced in [93] and [29]. Using the specific structure of the matrix H as well as the fact
that H†

m can be computed easily, we adjust the partitioning methods in order to obtain
the most efficient one.
We compare our method with respect to two methods for fast computing the Moore-
Penrose inverse introduced in [42, 46] and used in [12, 13, 14] as well as with the Courrieu
method [17]. The main advantage of the proposed method is a significant reduction of
the CPU time required to obtain the restored image compared to other methods based on
the Moore-Penrose inverse approach. This fact agrees with the given theoretical results
concerning analysis of computational complexities of algorithms.
The introduced method can be used to restore a noisy X-ray image that has been blurred
by non–uniform linear motion. Also, our method, except in radiography, can be used in
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different practical realizations, such as restoration of images from ANPR systems. Ad-
ditionally, the proposed method can be applied to real-life images that could be blurred
due to camera motion or lack of focus.

• Removal of blur in images based on least squares solutions : The method is based on the
least square solution of the matrix equation XB = D with respect to unknown X . The
objective of this method was the recovery of an image from degraded observations often
caused by linear motion in several scientific areas including medical imaging and diagnosis,
military surveillance, satellite and astronomical imaging, and remote sensing. By using
the proposed method, the resolution of the restored image remains at a very high level,
although the main advantage of the method was found on the improvements of ISNR
and PSNR that has been increased considerably compared to the other methods and
techniques. We present the results by comparing our method with the method based on
the Moore-Penrose, which is a well established and tested method used for fast recovered
and high resolution restored images.
The proposed method is an improvement of a method that has been tested against well
known restoration methods (e.g. [12, 13] and the references within these papers) and
has been found that provide better results and faster recovery against that methods.
Moreover, it could find applications in more applied fields such as image watermarking
(see [78]) in which case it has been also compared with well tested and current applied
methods and was found to be working better against noise interference on the original
image. Following that, the improvement version of the method also provides a more
accurate more robust and faster recovery method.
The study shows that the proposed moments perform consistently better in terms of
images reconstruction capability and invariant recognition accuracy in noisy or noise-free
environment and can be potentially useful as feature descriptor in image analysis.

• Image deblurring process based on separable restoration methods: A new computational
method is introduced that finds applications on image reconstruction and restoration.
The method is based on the least square solution of the matrix equation representing
an image that has been blurred by linear motion (of the general form AXB = D). The
method has been tested on various images and measurements such as the ISNR and PSNR
values which are used in order to indicate the advantage of the technique. Comparison of
the method with several image restoration algorithms is also presented. The essence of
the method is that it can be applied after the known image restoration algorithms. The
main advantage of our method is found in the improvements of ISNR and PSNR that
have been increased considerably compared to the other methods and techniques which
are applied immediately before that method. In this study, we present the results by
comparing our method with that of the Moore- Penrose inverse, the Wiener filter and
other well established and tested methods used for fast recovering and high resolution
restored images. The main difference between other image restoration methods and the
proposed method, is that the already used methods use a matrix Y while our method is
using E(Y ).
We also presented and tested the SMRS solutions although they were less preferred. The
reason for this is the interesting property E(Y ) = Y . We found that this property has
been satisfied in the cases Y = SMRS, Y = F and Y = E1(Y1).
The proposed moments method performs consistently better in terms of image reconstruc-
tion capability and invariant recognition accuracy in a noisy or a noise-free environment
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and can be potentially useful as feature descriptor in image analysis. Experimental results
show that the proposed computational approach provides a better result on the image re-
construction than a blurred model, linear blur or not, especially in the case when applied
for an incremental number of Haar or Fourier basis coefficients. The simulations presented
in this method enable us to evaluate the current methods. Possible developments of the
proposed algorithm can be generalized and find application in other scientific areas where
the image restoration is needed, even if blur or noise is present.

• Improving the Tikhonov and TSVD image deblurring methods: We have introduced im-
proving of the Tickhonov and TSVD method, based on the least square solution of the
matrix equation XB = D with respect to unknown X . By using the proposed im-
provement, the resolution of the restored image remains at a very high level. The main
advantage of the proposed approach was found in the improvements of ISNR and PSNR.
We present the results by comparing our method with the Tickhonov and TSVD method,
which is a well established and tested method used for fast recovered and high resolution
restored images.
The objective of this method was the recovery of an image from degraded observations
often caused by linear motion. This approach can be applied in several scientific areas
including medical imaging and diagnosis, military surveillance, satellite and astronomical
imaging, and remote sensing.

In our future investigations we will try to develop and implement the methods for image
restoration, when the characteristics of the degrading system or the blurring matrix is unknown.
Also we will make an effort to develop mathematical methods for spatially variant out-of-focus
blur removal and for spatially variant motion blur removal. Spatially variant blur is a type of
deformation where different pixels in an image are blurred differently.

We consider that the results presented in the Ph.D. dissertation besides their contribution
in the fields of image restoration, computational and applied mathematics will serve as a in-
spiration for future investigations in these fields, and implementation of the results in some
practical realizations.
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method on specific Toeplitz matrices, International Journal of Applied Mathematics and
Computer Science, Accepted for publication.
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