

Niš,2014

University of Niš
Faculty of Sciences and Mathematics

 Department of Computer Science

Ivana Z. Micić

BISIMULATIONS FOR
FUZZY AUTOMATA

PhD thesis

Niš,2014

Univerzitet u Nišu
Prirodno-matematički fakultet
Departman za računarske nauke

Ivana Z. Micić

BISIMULACIJE ZA FAZI
AUTOMATE

Doktorska disertacija

 Supervisor: Jelena Ignjatović

 Associate Professor

 Faculty of Sciences and Mathematics

 University of Niš,Serbia

Members of Miroslav Ćirić

the Commission: Full Professor

 Faculty of Sciences and Mathematics

 University of Niš, Serbia

 Heiko Vogler

 Full Professor

 Faculty of Computer Science

 Technische Universität,Dresden,Germany

 Manfred Droste

 Full Professor

 Institut für Informatik

 Universität Leipzig, Germany

 Nada Damljanović

 Assistant Professor

 Faculty of Tehnical Sciences in Čačak

 University of Kragujevac, Serbia

Date of Defense

Contents

1 Fundamental concepts . 5
1.1. Ordered sets and lattices . 5
1.2. Complete residuated lattices . 10
1.3. Fuzzy sets and fuzzy relations . 15
1.4. Uniform fuzzy relations . 20

2 Fundamentals of fuzzy automata . 25
2.1. Fuzzy automata . 27
2.2. Crisp-deterministic fuzzy automata . 30
2.3. Factor and afterset fuzzy automata . 31
2.4. Simulations and bisimulations between fuzzy automata 38

3 Computation of the greatest bisimulations . 43
3.1. The residuals . 45
3.2. Computation of the greatest bisimulations 48
3.3. Computational examples . 55

4 Weak bisimulation for fuzzy automata . 59
4.1. Weak simulation for fuzzy automata . 60
4.2. Weak bisimulation for fuzzy automata . 64
4.3. Uniform weak bisimulations . 71
4.4. Weak forward bisimulation equivalent automata 77

5 Paige-Tarjan type algorithms . 81
5.1. Right and left invariant fuzzy quasi-orders 82
5.2. Computing the right invariant equivalences on

non-deterministic automata . 93

A C♯ codes . 99

B Bisimulacije za fazi automate . 125

v

vi Contents

C Biography of Author . 143

References . 145
. 145

Preface

The theory of fuzzy sets originated from the need to formalize the imprecise
aspects of human knowledge and to present them by using mathematical
models. It was initiated by L.A.Zadeh in 1965, who provided a way to dis-
tinguish the subtle nuances of the membership of an element to a particular
class. As such problems are common in operation with classes of objects
encountered in the real, physical world, fuzzy sets have a large field of ap-
plication. Zadeh, also introduced the notion of fuzzy relations, in particular
the notion of fuzzy equivalences and fuzzy quasi-orders. Due to the fact
that fuzzy relations enable freedom in expressing barely noticeable traces of
connectivity between elements, they are extensively applied in the model-
ing of various concepts in the so-called " soft " sciences such as psychology,
linguistics and in many other scientific fields.

From the very beginning of the theory of fuzzy sets, fuzzy automata and
languages are studied as a means for bridging the gap between the precision
of computer languages and vagueness and imprecision, which are frequently
encountered in the study of natural languages. Study of fuzzy automata and
languages was initiated in 1960s by Santos [110, 111, 113], Wee [122], Wee
and Fu [123], and Lee and Zadeh [73]. During the decades, fuzzy automata
and languages have gained wide field of application including lexical anal-
ysis, description of natural and programming languages, learning systems,
control systems, clinical monitoring, pattern recognition, error correction,
neural networks, knowledge representation, databases, discrete event sys-
tems etc.

One of the most important problems of automata theory is to determine
whether two given automata are equivalent, i.e. whether they have the same
behavior. The behavior of an deterministic, nondeterministic or fuzzy au-
tomaton can be considered as the language or fuzzy language recognized
by it. Namely, two automata are equivalent, or more precisely language-
equivalent, if they recognize the same language. For deterministic finite au-
tomata the equivalence problem is solvable in polynomial time, but for non-
deterministic and fuzzy finite automata it is computationally hard (PSPACE-

1

2 Preface

complete). Another important issue is to express the language-equivalence
of two automata as a relation between their states, if such relationship exists,
or find some kind of relations between states which would approximate the
language-equivalence. The language-equivalence of two deterministic au-
tomata can be expressed in terms of relationships between their states, but in
the case of nondeterministic and fuzzy automata the problem is more com-
plicated, and we can only examine various approximations of the language-
equivalence.

A widely-used concept for modeling “equivalence” between states of
automata is that of bisimulation. Bisimulations have been introduced by
Milner [81] and Park [89] in concurrency theory, and they were successfully
exploited to model equivalence between various systems, as well as to reduce
the number of states of these systems. Roughly, at the same time, they have
also been discovered in some areas of mathematics, e.g., in modal logic and
set theory. Nowedays, the bisimulations are employed in many areas of
computer science, such as functional languages, object-oriented languages,
domains, types, data types, compiler optimizations, databases, verification
tools, program analysis, etc.

The main aim of this dissertation is to investigate bisimulations for fuzzy
automata, with the special emphasis on the problem of finding the greatest
bisimulation of appropriate systems. Besides, bisimulations will be consid-
ered as a means for approximating the language-equivalence, as well as for
use in the state reduction of fuzzy automata.

In the first chapter we will introduce basic concepts of the theory of
ordered sets and lattices. The special attention will be devoted to complete
residuated lattices because we will observe them as the structures of truth
values in the further work. Then we will introduce the basic notions of the
fuzzy set theory and afterwards, main properties of fuzzy functions and
fuzzy relations, especially uniform fuzzy relations. Main features of fuzzy
equivalences and fuzzy quasi-orders will be presented at the end of this
chapter.

In the second chapter of the dissertation fundamental concepts and im-
portant famous results of fuzzy automata theory will be presented. We will
observe the most important type of crisp deterministic fuzzy automata, the
Nerode fuzzy automaton. This automaton can be obtained from a given
fuzzy automaton using the generalization of the classical subset construction
method for fuzzy automata [53, 56]. Further, we will introduce a factor fuzzy
automaton obtained employing fuzzy equivalence and an afterset and a fore-
set fuzzy automaton obtained using fuzzy quasi-order on the set of states
of the given automaton. Finally, the two types of simulations between fuzzy
automata, named forward and backward simulations, will be observed. Con-
sidering four possible cases when a fuzzy relation and its inverse are forward
or backward simulations we will consider four types of bisimulations: for-
ward, backward, forward-backward and backward-forward bisimulations.
These concepts have been introduced by Ćirić et al. in [22].

Preface 3

In the chapter three, we will provide efficient algorithms which decide
whether there exist any of the above-mentioned types of simulations/bisim-
ulations between the given fuzzy automata and compute the greatest one,
whenever it exists. The algorithms are based on the computing of the greatest
post-fixed point, contained in a given fuzzy relation, of an isotone function
on the lattice of fuzzy relations. At the end of this chapter, the work of the
algorithm would be illustrated by a few examples, which also show that no
type of bisimulations has a distinct advantage with respect to the others. In
other words, given examples show that between two fuzzy automata there
may exist the certain type of bisimulation, while there is no other of tree
types of bisimulations.

In the fourth chapter we will introduce two new types of bisimulations
for fuzzy automata, weak forward and weak backward bisimulations. Weak
forward and weak backward bisimulations provide better approximations
of the language-equivalence and when employed in the state reduction they
provide better reductions than forward and backward bisimulations. Here
we will propose the procedures for deciding whether there exist weak for-
ward or weak backward simulations and bisimulations, and for computing
the greatest ones, whenever they exist. Then weak bisimulations will be stud-
ied in conjunction with the concept of a uniform fuzzy relations. So called
uniform weak bisimulations between two fuzzy automata will be exam-
ined here and we will give their characterization in terms of isomorphisms
between their Nerode and reverse Nerode automata.

The state reduction of fuzzy automata will be studied in the fifth chap-
ter. The right invariant and the left invariant fuzzy quasi-orders and fuzzy
equivalences, introduced in [117] are, in general, equally good in the state
reduction of fuzzy automata, but in [117] it was also shown that right and
left invariant fuzzy quasi-orders give better reductions than right and left
invariant fuzzy equivalences. The new algorithm for computing the greatest
right (left) invariant fuzzy quasi-order (equivalence) for the given fuzzy au-
tomaton, based on the famous Paige-Tarjan’s coarsest partition problem [88]
will be introduced here. Afterwards, we will determine the complexity of this
algorithm and we will propose its modification- an algorithm for comput-
ing the greatest right invariant equivalence on the given non-deterministic
automaton.

At the end, I want to thank my mentor, Professor Jelena Ignjatović, for the
generous help and friendly support during the preparation of this disserta-
tion and beyond, the professor Miroslav Ćirić, for the constant motivation
and inspiration for scientific research. Moreover I want to thank to Mr.Ivan
Stanković for kind help in drafting of the program which implements the
results from the dissertation. Also I want to thank to my family and to all
people who have supported me and supplied the necessary understanding
during the preparation of the thesis.

Chapter 1

Fundamental concepts

In this chapter we introduce some basic notions and notations of the lattice
theory and the theory of fuzzy sets, as well as some fundamental properties
of the introductory concepts that will be used in our further work.

This chapter is composed of four sections. In Section 1.1, crisp relations
and their important types will be introduced and special attention will be
paid to partial orders and ordered sets. Afterwards, we will introduce notions
of the order preserving mappings, isomorphisms, and basic notions from the
lattice theory related to fuzzy sets. A notion of the residuated lattice, which
will be used as a structure of truth values for fuzzy automata and fuzzy
relations, and its properties will be presented in Section 1.2. In Section 1.3,
notions of a fuzzy set and a fuzzy relation will be given. In the same section,
we will define the inverse fuzzy relation, composition of fuzzy relations and
notions of fuzzy equivalence and fuzzy quasi-order relations. The special
type of fuzzy relations, called uniform fuzzy relations, will be introduced
in Section 1.4. The uniform fuzzy relations play an important role in the
theory of fuzzy simulations and bisimulations, and their main features will
be established in this section.

The terms and notations in this chapter will be introduced in accordance
with notions and notations from the following books: Blyth [5] and Birkhoff
[6] for Section Ordered sets and lattices, R. Bělohlávek [4] for Section Com-
plete residuated lattices and Section Fuzzy sets and relations. The notations
from Section Uniform fuzzy relation are according to the work of M. Ćirić, J.
Ignjatović, S. Bogdanović[20].

1.1. Ordered sets and lattices

Let A be a non-empty set. A binary relation, or just a relation on A is any
subset R of the Cartesian product A×A.

5

6 1 Fundamental concepts

The special types of relations which are widely used are so called, trivial
relations and the identity relation given by:

- the empty relation, usually denoted by ∅;
- the identity relation △A = {(x,x)|x ∈ A};
- the universal relation ∇A = {(x, y)|x, y ∈ A}.

Let R be a relation on a set A. If elements a,b ∈ A are in a relation R, it can be
written (a,b) ∈ R, or more usual aRb.

The composition of relations R and S on the set A is a relation R◦S on A
defined by:

R◦S = {(a,c) ∈ A×A| (∃ b ∈ A)(a,b) ∈ R and (b,c) ∈ S}.

The inverse relation of the given relation R on A is a relation R−1 on A defined
by:

R−1 = {(a,b)|(b,a) ∈ R}.

Given relation R on a non-empty set A is called:

(1) reflexive if (a,a) ∈ R for every a ∈ A, that is, if △A ⊆ R;
(2) symmetric if (a,b) ∈ R implies (b,a) ∈ R for all a,b ∈ A, i.e., R−1 ⊆ R;
(3) antisymmetric if (a,b) ∈ R and (b,a) ∈ R implies a = b for all a,b ∈ A, i.e.,

R−1∩R = △A;
(4) transitive if (a,b) ∈ R and (b,c) ∈ R implies (a,c) ∈ R for all a,b,c ∈ A, i.e.,

R◦R ⊆ R.

A reflexive, symmetric and transitive relation on the non-empty set A is
called a equivalence relation on A. A reflexive, antisymmetric and transitive
relation on the non-empty set A is called a partial order on A, or briefly an
order on A. The order is usually denoted by 6.

Thus 6 is an order on A if and only if :

(1) a 6 a for every a ∈ A;
(3) If a 6 b and b 6 a implies a = b for all a,b ∈ A;
(4) If a 6 b and b 6 c implies a 6 c for all a,b,c ∈ A.

A pair (A,6), where A is a non-empty set and 6 is an order on A is called a
partially ordered set or just an ordered set. For the sake of simplicity instead of
statement "(A,6) is a ordered set" we will use "A is an ordered set". Important
examples are:

Example 1 Ordered set (N, |), where N is the set of natural numbers and
the relation | of divisibility, defined by m |n if and only if m divides n, is
an order onN;

Example 2 Ordered set (P(A),⊆), where P(A) is the set of all subsets of a
non-empty set A and the relation ⊆ of set inclusion is an order on P(A).

1.1. Ordered sets and lattices 7

A partially ordered set P is said to satisfy the descending chain condition
(briefly DCC) if every descending sequence of elements of P eventually
terminates, i.e., if for every descending sequence {ak}k∈N of elements of P
there exists k ∈N such that ak = ak+l, for all l ∈N. In other words, P satisfies
DCC if there is no infinite descending chain in P.

If 6 is an order on A, then < denote the relation on A given by:

a < b if and only if a 6 b and a , b,

and with > and > we denote the inverse of relations 6 and <, respectively.
An ordered 6 on A is a linear order on A if for every a,b ∈ A holds a 6 b or
b 6 a. In this case A is a linearly ordered set.

A mappingφ from the ordered set A to the ordered set B is called isotonic or
order preserving if a6 b implies φ(a)6φ(b) for all a,b ∈A. Similarly, a mapping
φ from the ordered set A to the ordered set B is called antitonic if a6 b implies
φ(a) > φ(b) for all a,b ∈ A. A mapping φ is an isomorphism of ordered sets A
and B, or ordered isomorphism from A to B, if φ is a bijection from A to B then
φ and φ−1 both are isotonic mappings.

Let A be an ordered set. An element a ∈ A is called:

- the minimal element of the set A, if x 6 a implies x = a for every x ∈ A, that
is, if there is no element in the set A which is strictly smaller than a;

- the maximal element of the set A, if a 6 x implies x = a for every x ∈ A, that
is, if there is no element in the set A which is strictly larger than a;

- the least element of the set A, if for every x ∈ A holds a 6 x, i.e., if a is less
or equal than any element from A;

- the greatest element of the set A, if for every x ∈ A holds x 6 a, i.e., if a is
greater or equal than any element from A.

Let H be a non-empty subset of ordered set A. An element a ∈ A is called:

- the upper bound of the set H, if x 6 a for every x ∈H;
- the lower bound of the set H, if a 6 x for every x ∈H;
- the least upper bound or the supremum of the set H, if it is the least element

in the set of all upper bounds of H, in other words, if it is the upper bound
of H and for any upper bound b of the set H there holds a 6 b;

- the greatest upper bound or the infimum of the set H, if it is the greatest
element in the set of all lower bounds of H, in other words, if it is the
lower bound of H and for any lower bound b of the set H there holds b6 a.

The supremum of the set H, if it exists, is denoted by
∨

H, whereas the
infimum of H, if it exists, is usually denoted by

∧
H. If H = {ai | i ∈ I}, instead

of
∨

H and
∧

H we can write, respectively:
∨

i∈I

ai and
∧

i∈I

ai.

8 1 Fundamental concepts

An ordered set, such that every two-element subset has the supremum and
the infimum is called a lattice. It can be easily proven, by induction, that
every finite subset of a lattice has a supremum and infimum. However, for
an infinite subset of a lattice, it doesn’t have to be the case.

Let L be a lattice. Then, we can define two binary operations
∨

and
∧

on
L, as follows here:

∨
(a,b) = a∨ b and

∧
(a,b) = a∧ b.

Operations
∨

and
∧

are called union and intersection, respectively. Therefore,∨
H is a union of the set H and a∨b is a union of elements a and b, and similarly∧
H is a intersection of the set H and a∧ b is a intersection of elements a and b.

Theorem 1.1. Let L be a lattice. Then for every a,b,c ∈ L the following holds:

(L1) a∧ a = a, a∨ a = a (idempotents);
(L2) a∧ b = b∧ a, a∨ b = b∨ a (commutativity);
(L3) (a∧ b)∧ c= a∧ (b∧ c), (a∨ b)∨ c= a∨ (b∨ c) (associativity);
(L4) a∧ (a∨ b)= a, a∨ (a∧ b)= a (absorption).

The conditions (L1)− (L4) of the Theorem 1.1 are called the lattice axioms.
A subset X of the lattice L is called sublattice if a∧ b ∈ X and a∨ b ∈ X for

all elements a,b ∈ X.
For the lattice L and an element a ∈ L, sublattices

[a) = {x ∈ L |a 6 x} and (a] = {x ∈ L |x 6 a}

are half-open intervals of the lattice L, and for all a,b ∈ L sublattices

(a,b) = {x ∈ L |a < x < b} and [a,b] = {x ∈ L |a 6 x 6 b}

are the open interval and the closed interval, respectively.
If a non empty set L, together with arbitrary elements a,b ∈ L contains

a∧ b, or a∨ b then L is called ∧-sublattice (lower sublattice), or ∨-sublattice
(upper sublattice), respectively.

A non-empty subset I of a lattice L is called ideal if:

(1) x 6 a implies x ∈ I, for every element a ∈ I and x ∈ L;
(2) a∨ b ∈ I, for all a,b ∈ I.

It can easily be shown that subset I is an ideal of the lattice L if:

a∨ b ∈ I if and only if both a and b are elements of I.

The dual notion of this concept is the dual ideal. Therefore, a non-empty
subset D of a lattice L is the dual ideal if:

(1) a 6 x implies x ∈ I, for every element a ∈D and x ∈ L;
(2) a∧ b ∈ I, for all a,b ∈ I.

1.1. Ordered sets and lattices 9

Let a ∈ L. Notice that the half-open intervals (a] and [a), are the ideal and the
dual ideal of the lattice L, respectively, and they are called the principal ideal
generated by a and the principal dual ideal generated by a .

The least element of the lattice L, if it exists, is denoted by 0, and the
greatest element,if it exists, is denoted by 1. A bounded lattice is a lattice that
has the greatest element 1 and the least element 0.

It can easily be shown that on every lattice L the following conditions are
equivalent:

(L5) a∧ (b∨ c)= (a∧ b)∨ (a∧ c), for all a,b,c ∈ L;
(L5’) a∨ (b∧ c)= (a∨ b)∧ (a∨ c), for all a,b,c ∈ L.

The lattice which satisfies any of previous conditions is called a distributive
lattice.

Let L be a bounded lattice with 0 and 1. An element b ∈ L is called a
complement of a element a ∈ L if :

a∧ b = 0, a∨ b = 1.

In this case, a ∈ L is the complement of the element b ∈ L. As we can see,
the relation " to be a complement" is a symmetric relation. In every distribu-
tive lattice it can easily be shown that every element a ∈ L has at most one
complement, which will be denoted with a′ ∈ L.

A bounded distributive lattice in which every element has a complement
is called a Boolean lattice. The mapping a→ a′ is a unary operation on L called
complement operation.

As we mentioned before, every finite subset of a lattice has a supremum
and infimum. However, this is not necessarily true when a subset of the net-
work is infinite. A lattice, in which every subset (finite as well as infinite), has
a supremum and infimum is called a complete lattice. Clearly, every complete
lattice is bounded. A subset K of a complete lattice L is a complete sublattice
of L if supremum and infimun (in L) of every non-empty subset of K belongs
to K.

Most studied examples of lattices are:

Example 1. The set N of natural numbers is partially ordered set with re-
spect to the division relation, and with respect to this relation the setN is
a lattice, where operations of infimum and supremum are defined by:

a∧ b = 1cd(a,b), and a∨ b = lcm(a,b).

Example 2. For every set A, the partitive set of the set A is denoted by P(A).
This set is partially ordered with the inclusion relation, and with respect
to this relation P(A) is a lattice. The operations infimum and supremum
are set intersection and set union, respectively. Zero and one are ∅ and A,
respectively.

Example 3. With E (A) denote the set of all equivalence relations on a non-
empty set A. This set is partially ordered with the inclusion relation, and

10 1 Fundamental concepts

with respect to that order it is a complete lattice. Namely, the operation of
infimum on E (A) is the operation of intersection of two relations, whereas
the operation of supremum is not a union of relations, because of the fact
that the union of two equivalences does not have to be an equivalence
relation. For an arbitrary non-empty subset B of E (A), the set 〈B〉 is the
sub-semigroup of the semigroup of binary relations on the set A generated
by B. Then 〈B〉 is equal to the set union of all relations from 〈B〉. Zero and
one are △A and ∇A, respectively.

1.2. Complete residuated lattices

Fuzzy logic is a superset of conventional (Boolean) logic that has been ex-
tended to handle the concept of partial truth - truth values between "com-
pletely true" and "completely false". It is the logic underlying modes of rea-
soning which are approximate rather than exact. The importance of fuzzy
logic derives from the fact that most modes of human reasoning and espe-
cially common sense reasoning are approximate in nature.

In the fuzzy logic, each proposition assigns a truth degree taken from some
scale L of truth degrees. If propositions ϕ and ψ are assigned truth degrees
a and b, which are denoted by ||ϕ|| = a and ||ψ|| = b, then a 6 b means that ϕ
is less true than ψ. According to this, L is required to be partially ordered.
Further, it is convenient to require 0 to assign the truth value of "completely
false" and 1 to assign the truth value of "completely true". Therefore, L is
equipped with partial order 6 and 0 and 1 are the least and the greatest
element in L, respectively.

Let {ϕi | i ∈ I} denote the set of propositions. The generalization of the clas-
sical bivalent logic, leads to the assumption that the truth value of expression
" there exists i such that ϕi" is a supreme of all truth values ϕi, that is, ||"there
exists i such that ϕi" || =

∨
i∈I ||ϕi|| (where ||ϕ|| is a truth value of ϕ). There-

fore, L is required to have arbitrary supremum and (dually) infimum, i.e.
(L,6,0,1) is required to be a complete lattice.

Scale L needs to be equipped with (truth functions of) logical connectives.
As in classical logic, we need binary functions ⊗ : L×L→ L of conjunction
and→: L×L→ L of implication.

Naturally, the conjunction should be commutative and associative. More-
over, the fact that the truth degree of conjunction of a proposition ϕ with a
fully true proposition ψ(||ψ||= 1) equals the truth degree of ϕ, implies that 1
should be a natural element for ⊗. Thus, it is required (L,⊗,1) to be a com-
mutative monoid. Also, the desirable property of conjunction is monotony -
more true the propositions, more true their conjunction.

In the classical logic one of the most commonly used concept is modus
ponens. Modus ponens is an inference rule saying: if ϕ is valid and ϕ→ ψ
is valid then we may infer that ψ is valid. An appropriate formulation of

1.2. Complete residuated lattices 11

modus ponens in the fuzzy setting is the following: if ϕ is valid in degree
at least a and ϕ→ ψ is valid in degree at least b then we may infer that ψ is
valid in degree at least a⊗ b.

Next, we want modus ponens to satisfy two points: it should be sound
and, at the same time, it should yield the highest possible estimation of
validity of ψ. Soundness: The requirement of soundness says that when
evaluating formulas, if the truth degree of ϕ is at least a (a 6 ||ϕ||) and the
truth degree of ϕ→ ψ is at least b (b 6 ||ϕ⇒ ψ||) then the truth degree of
ψ is at least as high as the degree obtained by modus ponens (a⊗ b 6 ||ψ||).
Particularly, if ||ϕ|| = a and ||ψ|| = c, then since ||ϕ⇒ ψ|| = a→ c, soundness
says that b 6 a→ c implies a⊗ b 6 c.

The highest possible estimation of validity of ψ: Let ||ϕ|| = a and ||ψ|| = c.
Then ||ϕ⇒ψ||= a→ c and since we require soundness, a⊗ (a→ c) needs to be
a lower estimation of c, i.e. a⊗ (a→ c)6 c. Since⊗ is non-decreasing, the lower
estimation a⊗ (a→ c) is higher, higher is a→ c. Since we want a⊗ (a→ c) to
be the highest possible estimation of c, a→ c needs to be the highest degree
for which a⊗ (a→ c) 6 c. That is, if b is any truth degree for which a⊗ b 6 c
then b 6 a→ c. In other words, the requirement of the highest estimation of
validity of ψ yields that a⊗ b6 c implies b 6 a→ c.

According to this, → and ⊗ should form an adjoint pair, i.e., they should
satisfy the adjunction property: for all a,b,c ∈ L,

a⊗ b6 c ⇔ a 6 b→ c. (1.1)

The algebraic structure which satisfies all previous conditions is a complete
residuated lattice.

A residuated lattice is an algebra L = (L,∧,∨,⊗,→,0,1) such that:

(L1) (L,∧,∨,0,1) is a lattice with the least element 0 and
the greatest element 1,

(L2) (L,⊗,1) is a commutative monoid with the unit 1,
(L3) ⊗ and→ form an adjoint pair.

If, in addition, (L,∧,∨,0,1) is a complete lattice, then L is called a complete
residuated lattice.

The operations ⊗ (called multiplication) and → (called residuum) are in-
tended for modeling the conjunction and implication of the corresponding
logical calculus, and supremum (

∨
) and infimum (

∧
) are intended for mod-

eling of the existential and general quantifier, respectively.
On the complete residuated lattice the following operations can be de-

fined:

biresiduum (or biimplication) : a↔ b = (a→ b)∧ (b→ a),

negation : ¬a = a→ 0,

n-th degree : a0 = 1 and an+1 = an⊗ a.

12 1 Fundamental concepts

Biimplication is the operation used for modeling the equivalence of truth
values, whereas the negation is used for modeling the complement of a truth
value.

The most studied and applied structures of truth values, defined on the
real unit interval [0,1] with:

a∧ b =min(a,b) and a∨ b =max(a,b)

are: the Łukasiewicz structure:

a⊗ b=max(a+ b− 1,0), a→ b =min(1− a+ b,1),

the Goguen (product) structure:

a⊗ b = a · b, a→ b =

1, if a 6 b,

b/a, otherwise,

and the Gödel structure:

a⊗ b=min(a,b), a→ b =

1, if a 6 b,

b, otherwise.

Another important set of truth values is the set {a0,a1, . . . ,an}, 0 = a0 < · · · <
an = 1, with

ak⊗ al = amax(k+l−n,0) and ak→ al = amin(n−k+l,n) .

A special case of the latter algebras is the two-element Boolean algebra
of classical logic with the support {0,1}. The only adjoint pair on the two-
element Boolean algebra consists of the classical conjunction and implication
operations. This structure of truth values we call the Boolean structure.

All structures: the Łukasiewicz, Goguen and Gödel are residuated lattices
induced by t-norms.

t-norm is a binary operation on real [0,1] which is associative, com-
mutative, monotone and where 1 is unit element, that is ⊗ is mapping
⊗ : [0,1]× [0,1]→ [0,1] which satisfies the following conditions:

(a⊗ b)⊗ c= a⊗ (b⊗ c),

a⊗ b = b⊗ a,

b1 6 b2 ⇒ a⊗ b1 6 a⊗ b2,

a⊗ 1 = a.

Generally, an algebra ([0,1],∨,∧,⊗,→,0,1) is a complete residuated lattice if
and only if ⊗ is a left-continuous t-norm (i.e. limn→∞(an⊗b) = (limn→∞an)⊗b)
and then the residuum is defined by x→ y =

∨
{u ∈ [0,1] |u⊗ x6 y}.

1.2. Complete residuated lattices 13

Here, we recall some important truth structures, which are residuated
lattices, but satisfy some additional conditions.

A residuated lattice L satisfying x⊗ y = x∧ y is called a Heyting algebra.
Moreover, if L is a complete lattice, than it is called a complete Heyting algebra,
if the partial order in 6 in L is linear, then L is a linearly ordered Heyting
algebra. The most important example of the linearly ordered Heyting algebra
is real unit interval [0,1] with the Gödel pair of adjoint operations, i.e. with
the standard minimum t-norm.

BL-algebra (Basic Logic Algebra) is a residuated lattice which satisfies the
condition a∧b = a⊗ (a→ b) (divisibility) and (a→ b)∨ (b→ a) = 1 (prelinear-
ity).

MV-algebra (Multi Valued Algebra) is a BL-algebra in which a=¬¬a (double
negation is allowed).

P-algebra (product algebra) is BL-algebra which satisfies (c→ 0)→ 0 6 ((a⊗
c)→ (b⊗ c))→ (a→ b) and a∧ (a→ 0) = 0.

G-algebra (Gödel algebra) is BL-algebra which satisfies a⊗ a = a (idempo-
tents).

Boolean algebra is a residuated lattice which is both the Heyting algebra
and the MV-algebra.

Because of its prominent monoid structures, in some papers the residu-
ated lattices are called integral, commutative, residuated l-monoids, whereas
some authors the notion of residuated lattice use for more general structures.

If every finitely generated subalgebra of a residuated lattice L is finite,
then L is called locally finite. For example, every Gödel algebra, and hence,
the Gödel structure, is locally finite, whereas the product structure is not
locally finite.

The following theorem recalls the basic properties of residuated lattices:

Theorem 1.2. For every residuated lattice the following holds:

b 6 a→ (a⊗ b), a 6 (a→ b)→ b, (1.2)

a⊗ (a→ b) 6 b, (1.3)

a 6 b ⇔ a→ b = 1, (1.4)

a→ a = 1, a→ 1 = 1, 1→ a = a, (1.5)

0→ a = 1, (1.6)

a⊗ 0= 0⊗ a= 0, (1.7)

a⊗ b6 a, a 6 b→ a, (1.8)

a⊗ b6 a∧ b, (1.9)

a⊗ b→ c = a→ (b→ c), (1.10)

(a→ b)⊗ (b→ c) 6 (a→ c), (1.11)

a→ b is the greatest element of {c |a⊗ c6 b} (1.12)

a⊗ b is the least element of {c |a 6 b→ c}. (1.13)

14 1 Fundamental concepts

The next theorem shows that with respect to 6, the operation ⊗ is isotonic in
both arguments, the operation → is isotonic in the second and antitonic in
the first argument.

Theorem 1.3. In every residuated lattice the following holds:

b1 6 b2⇒ a⊗ b1 6 a⊗ b2, (1.14)

b1 6 b2⇒ a→ b1 6 a→ b2, (1.15)

a1 6 a2⇒ a2→ b 6 a1→ b. (1.16)

In the sequel, some other properties of residuated lattices will be presented.

Theorem 1.4. In every residuated lattice the following inequalities hold:

a→ b 6 (a∧ c)→ (b∧ c), (1.17)

a→ b 6 (a∨ c)→ (b∨ c), (1.18)

a→ b 6 (a⊗ c)→ (b⊗ c), (1.19)

a→ b 6 (b→ c)→ (a→ c), (1.20)

a→ b 6 (c→ a)→ (c→ b). (1.21)

The next theorem describes a relationship between operations ∨ and ∧, for
any family of residuated lattice elements, and operations ⊗ and→.

Theorem 1.5. The following assertions hold for every index set I:

a⊗
(∨

i∈I

bi

)
=

∨

i∈I

(a⊗ bi), (1.22)

a→
(∧

i∈I

bi

)
=

∧

i∈I

(a→ bi), (1.23)

(∨

i∈I

ai

)
→ b =

∧

i∈I

(ai→ b), (1.24)

∨

i∈I

(ai→ b) =
(∧

i∈I

ai

)
→ b, (1.25)

a⊗
∧

i∈I

bi 6

∧

i∈I

(a⊗ bi). (1.26)

∧

i∈I

(ai→ bi) 6
(∧

i∈I

ai

)
→

(∧

i∈I

bi

)
(1.27)

∧

i∈I

(ai→ bi) 6
(∨

i∈I

ai

)
→

(∨

i∈I

bi

)
(1.28)

∨

i∈I

(a→ bi) 6 a→
(∧

i∈I

bi

)
(1.29)

Theorem 1.6. In every residuated lattice the following assertions hold:

1.3. Fuzzy sets and fuzzy relations 15

a→ b = ((a→ b)→ b)→ b, (1.30)

a⊗ (a→ b) = b ⇔ (∃c)(a⊗ c= b), (1.31)

a→ (a⊗ b)= b ⇔ (∃c)(a→ c = b), (1.32)

(b→ a)→ a = b ⇔ (∃c)(c→ a = b), (1.33)

(a∧ b)⊗ (a∨ b)6 a⊗ b, (1.34)

a∨ b 6 ((a→ b)→ b)∧ ((b→ a)→ a), (1.35)

a∧ b > a⊗ (a→ b), (1.36)

a⊗ (b→ c) 6 b→ (a⊗ c). (1.37)

1.3. Fuzzy sets and fuzzy relations

The complete residuated lattice L will be the structure of truth values in
further text.

A fuzzy subset of a set A over L , or simply a fuzzy subset of A, is any
mapping from A into L. Ordinary crisp subsets of A are considered as fuzzy
subsets of A taking membership values in the set {0,1} ⊆ L.

Let f and 1 be two fuzzy subsets of A. The equality of f and 1 is defined
as the usual equality of mappings, i.e.,

f = 1 if and only if f (x) = 1(x), for every x ∈ A.

The inclusion f 6 1 is also defined pointwise:

f 6 1 if and only if f (x) 6 1(x), for every x ∈ A.

Endowed with this partial order the set F (A) of all fuzzy subsets of A forms
a complete residuated lattice, in which the meet (intersection)

∧
i∈I fi and

the join (union)
∨

i∈I fi of an arbitrary family { fi}i∈I of fuzzy subsets of A are
mappings from A to L defined by

∧

i∈I

fi

 (x) =

∧

i∈I

fi(x),

∨

i∈I

fi

 (x) =

∨

i∈I

fi(x),

and the product f ⊗ 1 is a fuzzy subset defined by f ⊗ 1(x) = f (x)⊗ 1(x), for
every x ∈ A.

The crisp part of a fuzzy subset f ∈F (A) is a crisp subset f̂ = {a ∈A | f (a)= 1}
of A. It may be noted that many authors use the term "kernel" instead of the
term "crisp part" and denote "ker f " instead of f̂ . However, in this work we
will use the term "kernel" in its usual meaning. Namely, the kernel of fuzzy
subset f of a set A, denoted by ker f , is an equivalence relation on A defined
by:

16 1 Fundamental concepts

ker f = {(x, y) ∈ A×A | f (x) = f (y)}.

The hight of fuzzy subset f, denoted by ‖ f ‖, is defined by:

‖ f ‖ =
∨

x∈A

f (x).

A fuzzy relation between sets A and B (in this order) is any mapping
from A×B to L, i.e. , any fuzzy subset of A×B, and the equality, inclusion
(ordering), joins and meets of fuzzy relations are defined as for fuzzy sets.
The set of all fuzzy relations between A and B will be denoted by R(A,B).
In particular, a fuzzy relation on a set A is any function from A×A to L, i.e.,
any fuzzy subset of A×A. The set of all fuzzy relations on A will be denoted
by R(A).

The inverse(converse, or transpose) of a fuzzy relation ϕ ∈R(A,B) is a fuzzy
relation ϕ−1 ∈R(B,A) defined by

ϕ−1(b,a) = ϕ(a,b), for all a ∈ A and b ∈ B.

A crisp relation is a fuzzy relation which takes values only in the set {0,1}, and
if ϕ is a crisp relation of A to B, then expressions ”ϕ(a,b)= 1” and ”(a,b) ∈ ϕ”
will have the same meaning.

The crisp part of fuzzy relation ϕ, denoted by ϕ̂ is a crisp relation which
satisfies:

(a,b) ∈ ϕ̂ ⇔ ϕ(a,b) = 1,

for every a,b ∈ A.
For non-empty sets A, B, C and fuzzy relationsϕ ∈R(A,B) andψ ∈R(B,C),

their composition ϕ◦ψ is a fuzzy relation from R(A,C) defined by

(ϕ◦ψ)(a,c)=
∨

b∈B

ϕ(a,b)⊗ψ(b,c), (1.38)

for all a ∈ A and c ∈ C. Next, if f ∈ F (A), ϕ ∈ R(A,B) and 1 ∈ F (B), the
compositions f ◦ϕ and ϕ ◦ 1 are fuzzy subsets of B and A, respectively,
which are defined by

(f ◦ϕ)(b) =
∨

a∈A

f (a)⊗ϕ(a,b), (ϕ◦1)(a)=
∨

b∈B

ϕ(a,b)⊗1(b), (1.39)

for every a ∈ A and b ∈ B.
In particular, for fuzzy subsets f and 1 of A we write

f ◦1 =
∨

a∈A

f (a)⊗1(a). (1.40)

1.3. Fuzzy sets and fuzzy relations 17

Let A, B, C and D be non-empty sets. Then for any ϕ1 ∈R(A,B), ϕ2 ∈R(B,C)
and ϕ3 ∈R(C,D) we have:

(ϕ1 ◦ϕ2)◦ϕ3 = ϕ1 ◦ (ϕ2 ◦ϕ3), (1.41)

and for ϕ0 ∈R(A,B), ϕ1,ϕ2 ∈R(B,C) and ϕ3 ∈R(C,D) we have that

ϕ1 6 ϕ2 implies ϕ0 ◦ϕ1 6 ϕ0 ◦ϕ2 and ϕ1 ◦ϕ3 6 ϕ2 ◦ϕ3. (1.42)

Further, for any ϕ ∈ R(A,B), ψ ∈R(B,C), f ∈F (A), 1 ∈F (B) and h ∈F (C)
we can easily verify that

(f ◦ϕ)◦ψ= f ◦(ϕ◦ψ), (f ◦ϕ)◦1= f ◦(ϕ◦1), (ϕ◦ψ)◦h=ϕ◦(ψ◦h), (1.43)

and consequently, the parentheses in (1.43) can be omitted, as well as the
parentheses in (1.41). Finally, for all ϕ,ϕi ∈R(A,B), (i ∈ I) and ψ,ψi ∈R(B,C),
(i ∈ I) we have that

(ϕ◦ψ)−1 = ϕ−1 ◦ψ−1 (1.44)

ϕ◦
(∨

i∈I

ψi

)
=

∨

i∈I

(ϕ◦ψi),
(∨

i∈I

ϕi

)
◦ψ =

∨

i∈I

(ϕi ◦ψ) (1.45)

(∨

i∈I

ϕi

)−1
=

∨

i∈I

ϕ−1
i . (1.46)

We note that if A, B and C are finite sets of cardinality |A| = k, |B| = m and
|C| = n, then ϕ ∈ R(A,B) and ψ ∈ R(B,C) can be treated as k×m and m× n
fuzzy matrices over L , and ϕ ◦ψ is the matrix product. Analogously, for
f ∈F (A) and 1 ∈F (B) we can treat f ◦ϕ as the product of a 1× k matrix f
and a k×m matrix ϕ (vector-matrix product), ϕ◦1 as the product of an k×m
matrix ϕ and an m× 1 matrix 1t, the transpose of 1 (matrix-vector product),
and f ◦1 as the scalar product of vectors f and 1.

A fuzzy relation R on A is said to be:

(R) reflexive (or fuzzy reflexive) if R(a,a) = 1, for every a ∈ A;
(S) symmetric (or fuzzy symmetric) if R(a,b) = R(b,a), for all a,b ∈ A;
(T) transitive (or fuzzy transitive) if R(a,b)⊗R(b,c) 6 R(a,c), for all a,b,c ∈ A.

It can easily be shown, that R◦R = R holds for any reflective and transitive
relation R on A.

For a fuzzy relation R on the set A, the fuzzy relation R∞ on A defined by

R∞ =
∨

n∈N

Rn.

is the least transitive fuzzy relation on A containing R, and it is called the
transitive closure of R.

18 1 Fundamental concepts

A reflexive, symmetric and transitive fuzzy relation on A is called a fuzzy
equivalence. With the respect to the inclusion of fuzzy relations, the set E (A) of
all fuzzy equivalences on A is a complete lattice, in which the meet coincide
with the ordinary intersection of fuzzy relations, but in the general case, the
join in E (A) does not coincide with the ordinary union of fuzzy relations.

A fuzzy equivalence E on a set A is called a fuzzy equality if E(a,b) = 1
implies a = b, for all a,b ∈ A. In other words, E is a fuzzy equality if and only
if its crisp part Ê is a crisp equality.

The equivalence class of fuzzy relation E on A determined by a ∈ A is the
fuzzy subset Ea of A defined by

Ea(b) = E(a,b), for every b ∈ A.

The set A/E= {Ea |a ∈A} is called the factor set of A w.r.t. E (cf. [4]). The natural
function from A to A/E is the fuzzy relation ϕE ∈R(A,A/E) defined by

ϕE(a,Eb) = E(a,b), for all a,b ∈ A.

A fuzzy relation on a set A which is reflexive and transitive is called a
fuzzy quasi-order, and a reflexive and transitive crisp relation on A is called
a quasi-order. As well as the set E (A), the set Q(A) of all fuzzy quasi-orders
on A is a complete lattice, in which the meet coincide with the ordinary
intersection of fuzzy relations and, in the general case, the join in Q(A) does
not coincide with the ordinary union of fuzzy relations. Namely, if R is the
join in Q(A) of a family {Ri}i∈I of fuzzy quasi-orders on A, then R can be
represented by:

R =
(∨

i∈I

R
)∞
=

∨

n∈N

(∨

i∈I

R
)n
.

The R-afterset of a, a ∈ A, is the fuzzy set Ra ∈ LA defined by:

Ra(b) = R(a,b), for any b ∈ A,

while the R-foreset of a is the fuzzy set Ra ∈ LA defined by:

Ra(b) = R(b,a), for any b ∈ A.

The set of all R-aftersets will be denoted by A/R, and the set of all R-foresets
will be denoted by A\R. Clearly, if R is a fuzzy equivalence, then A/R =A\R
is the set of all equivalence classes of R.

For a fuzzy quasi-order R on a set A, a fuzzy relation ER defined by
ER = R∧R−1 is a fuzzy equivalence on A, which is called a natural fuzzy
equivalence of R.

A fuzzy quasi-order R on a set A is a fuzzy order if R(a,b) = R(b,a) = 1
implies a = b, for all a,b ∈ A, i.e., if the natural fuzzy equivalence ER of R is a

1.3. Fuzzy sets and fuzzy relations 19

fuzzy equality. Clearly, a fuzzy quasi-order R is a fuzzy order if and only if
its crisp part R̂ is a crisp order.

If f is an arbitrary fuzzy subset of A, then fuzzy relations R f and R f on A
defined by

R f (a,b) = f (a)→ f (b), R f (a,b) = f (b)→ f (a), (1.47)

for all a,b ∈ A, are fuzzy quasi-orders on A.
Also, for arbitrary fuzzy subset f on A, the fuzzy relation E f defined by:

E f (a,b) = f (a)↔ f (b), a,b ∈ A,

is a fuzzy equivalence on A.
The following theorem recalls some important features of quasi orders

and natural equivalences.

Theorem 1.7. Let R be a fuzzy quasi-order on a set A and E the natural fuzzy
equivalence of R. Then

(a) For arbitrary a,b ∈ A the following conditions are equivalent:

(1) E(a,b) = 1;
(2) Ea = Eb;
(3) Ra = Rb;
(4) Ra = Rb.

(b) Functions Ra→ Ea of A/R to A/E, and Ra→ Ra of A/R to A\R, are bijective
functions.

If A is a finite set with n elements and a fuzzy quasi-order R on A is treated
as an n×n fuzzy matrix over L , then R-aftersets are row vectors, whereas
R-foresets are column vectors of this matrix. The previous theorem says that
i-th and j-th row vectors of this matrix are equal if and only if its i-th and
j-th column vectors are equal, and vice versa. Moreover, we have that R is a
fuzzy order if and only if all its row vectors are different, or equivalently, if
and only if all its column vectors are different.

The next lemmas recall some properties of fuzzy quasi orders and fuzzy
equivalences which will be needed in our further work.

Lemma 1.1. Let P,R ∈Q(A) be fuzzy quasi-orders on A. Then, relation P∧R is
also a fuzzy-quasi order.

Lemma 1.2. Let E,F ∈ E (A) be fuzzy equivalences on A. Then, relation E∧ F is
also a fuzzy equivalence.

Lemma 1.3. Let P,R ∈Q(A) and P 6 R. Then P◦R = R.

Lemma 1.4. Let P,R ∈Q(A) and P 6 R. Then following holds for every a ∈ A:

P(b,c) 6 Ra(c)→ Ra(b), b,c ∈ A.

20 1 Fundamental concepts

Proof. According to Lemma 1.3 we have P◦Q =Q. Hence, for all a,b ∈ A

P◦R(b,a) =
∨

c∈A

P(b,c)⊗R(c,a)= R(b,a),

therefore, for all a,b,c ∈ A

P(b,c)⊗R(c,a)6 R(b,a),

which is by adjunction property equivalent to

P(b,c) 6 R(c,a)→ R(b,a) = Ra(c)→ Ra(b) = (Ra← Ra)(b,c).

Therefore, P(b,c) 6 Ra(c)→ Ra(b), for all a,b,c ∈ A.

Lemma 1.5. Let E,F ∈ E (A) and E 6 F. Then for all a ∈ A the following holds:

E(b,c) 6 Fa(b)↔ Fa(c), b,c ∈ A.

Proof. It can be proved in the similar way as in the proof of Lemma 1.4

1.4. Uniform fuzzy relations

Let A and B be non-empty sets and let E and F be fuzzy equivalences on A
and B, respectively. If a fuzzy relation ϕ ∈R(A,B) satisfies:

(EX1) ϕ(a1,b)⊗E(a1,a2) 6 ϕ(a2,b), for all a1,a2 ∈ A and b ∈ B,
then it is called extensional with respect to E, and if it satisfies

(EX2) ϕ(a,b1)⊗F(b1,b2) 6 ϕ(a,b2), for all a ∈ A and b1,b2 ∈ B,
then it is called extensional with respect to F. If ϕ is extensional with respect
to E and F, and it satisfies

(PFF) ϕ(a,b1)⊗ϕ(a,b2) 6 F(b1,b2), for all a ∈ A and b1,b2 ∈ B,

then it is called a partial fuzzy function with respect to E and F.
By the adjoint property and the symmetry the conditions (EX1) and (EX2)

are equivalent to:

(EX1’) E(a1,a2) 6 ϕ(a1,b)↔ ϕ(a2,b), for all a1,a2 ∈ A and b ∈ B,
(EX2’) F(b1,b2) 6 ϕ(a,b1)↔ ϕ(a,b2), for all a ∈ A and b1,b2 ∈ B.

For any fuzzy relation ϕ ∈R(A,B) we can define a fuzzy equivalence E
ϕ
A

on A by
E
ϕ
A

(a1,a2) =
∧

b∈B

ϕ(a1,b)↔ ϕ(a2,b), (1.48)

for all a1,a2 ∈ A, and a fuzzy equivalence E
ϕ
B

on B by

1.4. Uniform fuzzy relations 21

E
ϕ
B

(b1,b2) =
∧

a∈A

ϕ(a,b1)↔ ϕ(a,b2), (1.49)

for all b1,b2 ∈ B. They will be called fuzzy equivalences on A and B induced by
ϕ, and in particular, E

ϕ
A

will be called the kernel of ϕ, and E
ϕ
B

the co-kernel ofϕ.
According to (EX1’) and (EX2’), E

ϕ
A

and E
ϕ
B

are the greatest fuzzy equivalences
on A and B, respectively, such that ϕ is extensional with respect to them.

A fuzzy relation ϕ ∈ R(A,B) is called just a partial fuzzy function if it is
a partial fuzzy function with respect to E

ϕ
A

and E
ϕ
B

. Partial fuzzy functions
were characterized in [20] as follows:

Theorem 1.8. Let A and B be non-empty sets and let ϕ ∈ R(A,B) be a fuzzy
relation. Then the following conditions are equivalent:

(1) ϕ is a partial fuzzy function;
(2) ϕ−1 is a partial fuzzy function;
(3) ϕ−1 ◦ϕ 6 E

ϕ
B

;
(4) ϕ◦ϕ−1

6 E
ϕ
A

;
(5) ϕ◦ϕ−1 ◦ϕ 6 ϕ.

A fuzzy relation ϕ ∈ R(A,B) is called an L -function if for each a ∈ A there
exists b ∈ B such that ϕ(a,b) = 1 [36, 35], and it is called surjective if for each
b ∈ B there exists a ∈A such that ϕ(a,b) = 1, i.e., if ϕ−1 is an L -function. For a
surjective fuzzy relation ϕ ∈R(A,B) we also say that it is a fuzzy relation of
A onto B. If ϕ is an L -function and it is surjective, i.e., if both ϕ and ϕ−1 are
L -functions, then ϕ is called a surjective L -function.

Let us note that a fuzzy relation ϕ ∈R(A,B) is an L -function if and only
if there exists a function ψ : A→ B such that ϕ(a,ψ(a)) = 1, for all a ∈ A. A
function ψ with this property we will call a crisp description of ϕ, and we
will denote by CR(ϕ) the set of all such functions.

An L -function which is a partial fuzzy function with respect to E and F is
called a perfect fuzzy function with respect to E and F. Perfect fuzzy functions
were introduced and studied by Demirci [34, 35]. A fuzzy relationϕ ∈R(A,B)
which is a perfect fuzzy function with respect to E

ϕ
A

and E
ϕ
B

will be called
just a perfect fuzzy function.

Let A and B be non-empty sets and let ϕ ∈ R(A,B) be a partial fuzzy
function. If, in addition, ϕ is a surjective L -function, then it will be called
a uniform fuzzy relation. In other words, a uniform fuzzy relation is a perfect
fuzzy function having the additional property that it is surjective.

Next, we recall the characterizations of uniform fuzzy relation from [20]
which will be useful in our further work.

Theorem 1.9. Let A and B be non-empty sets and let ϕ ∈ R(A,B) be a fuzzy
relation. Then the following conditions are equivalent:

(1) ϕ is a uniform fuzzy relation;
(2) ϕ−1 is a uniform fuzzy relation;

22 1 Fundamental concepts

(3) ϕ is a surjective L -function and ϕ◦ϕ−1 ◦ϕ = ϕ;
(4) ϕ is a surjective L -function and E

ϕ
A
= ϕ◦ϕ−1;

(5) ϕ is a surjective L -function and E
ϕ
B
= ϕ−1 ◦ϕ;

(6) ϕ is an L -function, and for all ψ ∈ CR(ϕ), a ∈ A and b ∈ B we have that:

ψ is E
ϕ
B

-surjective and ϕ(a,b) = E
ϕ
B

(ψ(a),b);

(7) ϕ is an L -function, and for all ψ ∈ CR(ϕ), a1,a2 ∈ A we have that:

ψ is E
ϕ
B

-surjective and ϕ(a1,ψ(a2)) = E
ϕ
A

(a1,a2).

Corollary 1.1. Let A and B be non-empty sets and let ϕ ∈ R(A,B) be a uniform
fuzzy relation. Then for all ψ ∈ CR(ϕ) and a1,a2 ∈ A we have that

E
ϕ
A

(a1,a2) = E
ϕ
B

(ψ(a1),ψ(a2)) (1.50)

Let A and B be non-empty sets. According to Theorem 1.9, a fuzzy relation
ϕ ∈R(A,B) is a uniform fuzzy relation if and only if its inverse relation ϕ−1

is a uniform fuzzy relation. Further, from conditions (4) and (5) of the same
theorem, we have that the kernel of ϕ−1 is the co-kernel of ϕ and conversely,
the co-kernel of ϕ−1 is the kernel of ϕ, that is

E
ϕ−1

B
= E

ϕ
B

and E
ϕ−1

A
= E

ϕ
A

The following theorems will be very useful in our further work.

Theorem 1.10. Let A and B be non-empty sets, and let ϕ ∈R(A,B) be a uniform
fuzzy relation, let E = E

ϕ
A

and F = E
ϕ
B

, and let ϕ̃ : A/E→ B/F be the function given
by

ϕ̃(Ea) = Fψ(a), for any a ∈ A and ψ ∈ CR(ϕ). (1.51)

Then ϕ̃ is a well-defined function (it does not depend on the choice of ψ ∈ CR(ϕ)

and a ∈ A), it is a bijective function of A/E onto B/F and (ϕ̃)−1 = ϕ̃−1.

Theorem 1.11. Let A and B be non-empty sets, and letϕ1,ϕ2 ∈R(A,B) be uniform
fuzzy relations. Then the following conditions are equivalent:

(1) ϕ1 6 ϕ2;
(2) ϕ−1

1 6 ϕ
−1
2 ;

(3) CR(ϕ1) ⊆ CR(ϕ2) and E
ϕ1
A
6 E

ϕ2
A

;

(4) CR(ϕ1) ⊆ CR(ϕ2) and E
ϕ1
B
6 E

ϕ2
B

.

As a direct consequence of the previous theorem we obtain the following
corollary which shows that a uniform fuzzy relation is uniquely determined
by its crisp representation and kernel, as well as by its crisp representation
and co-kernel.

1.4. Uniform fuzzy relations 23

Lemma 1.6. Let A and B be non-empty sets, and let ϕ1,ϕ2 ∈R(A,B) be uniform
fuzzy relations. Then the following conditions are equivalent:

(1) ϕ1 = ϕ2;
(2) ϕ−1

1 = ϕ
−1
2 ;

(3) CR(ϕ1) = CR(ϕ2) and E
ϕ1
A
= E

ϕ2
A

;

(4) CR(ϕ1) = CR(ϕ2) and E
ϕ1
B
= E

ϕ2
B

.

The composition of two uniform fuzzy relations need not be a uniform
fuzzy relation. However, if the co-kernel of the first fact or of the composi-
tion is contained in the kernel of the second factor, then the composition is
uniform, as the following theorem shows.

Theorem 1.12. Let A, B and C be non-empty sets, and let ϕ1 ∈R(A,B) and ϕ2 ∈

R(B,C).

(1) If ϕ1 and ϕ2 are surjective L -functions, then ϕ1 ◦ϕ2is also a surjective
L -function.

(2) If ϕ1 and ϕ2 are uniform fuzzy relations such that E
ϕ1
B
6 E

ϕ2
B

, then ϕ1 ◦ϕ2 is
also a uniform fuzzy relation.

Chapter 2

Fundamentals of fuzzy automata

Study of fuzzy automata and languages was initiated in 1960s by Santos
[110, 111, 113], Wee [122], Wee and Fu [123], and Lee and Zadeh [80]. From
late 1960s until early 2000s mainly fuzzy automata and languages with
membership values in the Gödel structure have been considered (cf., e.g.,
[38, 45, 84]). The idea of studying fuzzy automata with membership values
in some structured abstract set comes back to Wechler [121]. Nowadays,
fuzzy automata over complete residuated lattices, lattice-ordered monoids,
and other kinds of lattices are extensively studied. Fuzzy automata taking
membership values in a complete residuated lattice were first introduced
by Qiu in [96, 97], where some basic concepts were discussed, and later,
Qiu and his coworkers have carried out comprehensive research of these
fuzzy automata (cf. [98, 100, 124, 125, 126, 127, 128]). From a different point
of view, fuzzy automata over a complete residuated lattice were studied by
Ignjatović, Ćirić and their coworkers in [22, 26, 27, 52, 53, 54, 56, 116].

Bisimulation is a binary relation between state transition systems (e.g.
automata), connecting systems which behave in the same way in the sense
that one system simulates the other and vice-versa. Bisimulations have two
main roles. First, they are used to model the equivalence between states
of two different automata and approximate the language-equivalence. As
we have already said, the problem of determining whether two given au-
tomata are language-equivalent is computationally hard, but we will see that
the problem of determining whether two given automata are Şbisimulation
equivalentŤ, i.e., whether there is a bisimulation between them, is solvable in
polynomial time. Hence, bisimulations are generally considered as the best
way to model the language-equivalence, because they give a close enough
approximation of the language-equivalence and are efficiently computable.

Bisimulations are also used to reduce the number of states of automata. To
illustrate the role of the state reduction, note that in real-life applications
of automata we typically start from an ordinary or fuzzy regular expres-
sion, which is then converted to a nondeterministic or fuzzy finite au-
tomaton (cf. [76, 116]). However, the practical implementation usually re-

25

26 2 Fundamentals of fuzzy automata

quires a deterministic finite automaton or a deterministic fuzzy finite au-
tomaton, and the obtained nondeterministic or fuzzy automaton has to be
determinized. On the other hand, determinization can cause an exponen-
tial blow up in the number of states, and in the case of fuzzy finite au-
tomata over certain structures of membership values (such as the prod-
uct structure), determinization can even result in an infinite automaton
(cf. [19, 53, 56, 65, 76]). That is why the number of states of a fuzzy finite
automaton has to be reduced prior to determinization.

Another important example that illustrates the significance of the state
reduction is modeling of discrete event systems. A discrete event system is
a dynamical system whose state space is described by a discrete set, and
states evolve as a result of asynchronously occurring discrete events over
time [24, 51]. Such systems have significant applications in many fields
of computer science and engineering, such as concurrent and distributed
software systems, computer and communication networks, manufacturing,
transportation and traffic control systems, etc. In many situations states and
state transitions, as well as control strategies, are somewhat imprecise, un-
certain and vague. To take this kind of uncertainty into account, Lin and
Ying extended classical discrete event systems to fuzzy discrete event systems
by proposing a fuzzy finite automaton model [78, 79]. Fuzzy discrete event
systems have been studied in [29, 30, 31, 68, 78, 79, 72, 75, 99, 101], and
they have been successfully applied to biomedical control for HIV/AIDS
treatment planning, robotic control, intelligent vehicle control, waste-water
treatment, examination of chemical reactions, and in other fields.

Usually, a discrete event system is modeled by a deterministic or nonde-
terministic finite automaton, and recently by a fuzzy finite automaton, with
events modeled by input letters, and the behavior of a discrete event system
is described by the language or fuzzy language generated by the automa-
ton. Discrete event models of complex dynamical systems are built rarely in
a monolithic manner. Instead, a modular approach is used where models of
individual components are built first, followed by the composition of these
models to obtain the model of the overall system. In the automaton modeling
formalism the composition of individual automata (that model interacting
system components) is typically formalized by the parallel composition of
automata. Once a complete system model has been obtained by parallel com-
position of a set of automata, the resulting monolithic model can be used
to analyze the properties of the system, such as safety properties, blocking
properties, observability, diagnosability, controllability, etc. (cf. [24, 51]). The
main problem that may arise here is that the size of the state set of the par-
allel composition may in the worst case grow exponentially in the number
of automata that are composed. This process is known as the curse of di-
mensionality in the study of complex systems composed of many interacting
components. The mentioned problem may be mitigated if we adopt modular
reasoning, which can make it possible to replace components in the parallel
composition by smaller equivalent automata that are obtained by the state

2.1. Fuzzy automata 27

reduction of the components, and then to analyze a simpler system. For
example, such an approach has been applied in [117] in conflict analysis of
fuzzy discrete event systems.

The most common structures on which bisimulations have been stud-
ied are labelled transition systems, but they have also been investigated
in the context of deterministic, nondeterministic, weighted, probabilistic,
timed and hybrid automata. Recently, bisimulations have been discussed
in the context of fuzzy automata in [18, 22, 26, 27, 54, 94, 117, 118].In the
study of bisimulation for fuzzy automata, two general approaches can be
destinguish. The first approach, uses ordinary crisp relations and functions
[18, 94, 118]. Another approach, proposed in [26, 27, 54, 117], is based on
the use of fuzzy relations, which have been shown to provide better re-
sults both in the state reduction and the modeling of equivalence of fuzzy
automata. The same approach has been used in [22], in the study of simu-
lations and bisimulations between fuzzy automata, where simulations and
bisimulations have also been defined as fuzzy relations. There have been
introduced two types of simulations (forward and backward simulations)
and four types of bisimulations (forward, backward, forward-backward,and
backward-forward bisimulations).

In this chapter fuzzy automata with membership values in complete resid-
uated lattices will be considered. In the first section the notion of fuzzy
automata and fuzzy language will be stated. Also the definition of the left
(right) derivative of a fuzzy language and the definition of the minimal au-
tomaton of a fuzzy language will be given. Further, in Section 2.2., the crisp-
deterministic fuzzy automata will be discussed. As an significant member
of the class of all crisp-deterministic fuzzy automata, the Nerode fuzzy au-
tomaton will be presented. Moreover, the minimal crisp-deterministic fuzzy
automaton of fuzzy language will be defined and the derivative automaton
as the representative of this class will be discussed. In the Section 2.3. we
will present the factor, afterset and foreset fuzzy automata as well as their
main features. At the and of this chapter, simulations and bisimulations,
introduced in [22], will be observed.

The results in this section are presented according to the results given by
M. Ćirić et all. in [56, 22, 117].

2.1. Fuzzy automata

Without loss of generality, in further text we suppose that L is a complete
residuated lattice and that X is an (finite) alphabet.
A fuzzy transition system over L and X is a pair A = (A,δA), where:

- A is a non-empty set, called the set of states;
- δA : A×X×A→ L is a fuzzy subset of A×X×A, called the fuzzy transition

function.

28 2 Fundamentals of fuzzy automata

A fuzzy automaton over L and X , or simply a fuzzy automaton, is a quadru-
ple A = (A,δA,σA,τA), where:

- A is a non-empty set, called the set of states;
- δA : A×X×A→ L is a fuzzy subset of A×X×A, called the fuzzy transition

function;
- σA : A→ L is the fuzzy subset of A, called the fuzzy set of initial states;
- τA : A→ L is the fuzzy subset of A, called the fuzzy set of terminal states.

In cases where it is clear which set of states is underlying for δA, σA and τA,
the superscript A will be omitted, i.e., instead of A = (A,δA,σA,τA) we will
write simplyA = (A,δ,σ,τ).

We can interpret δ(a,x,b) as the degree to which an input letter x ∈
X causes a transition from a state a ∈ A into a state b ∈ A, whereas we can
interpret σ(a) and τ(a) as the degrees to which a is respectively an input state
and a terminal state. For methodological reasons we sometimes allow the
set of states A to be infinite. A fuzzy automaton whose set of states is finite
is called a fuzzy finite automaton.

Let X∗ denote the free monoid over the alphabet X, and let e ∈ X∗ be the
empty word. The function δ can be extended up to a function δ∗ : A×X∗×A→
L as follows: If a,b ∈ A, then

δ∗(a,e,b) =

1, if a = b,

0, otherwise,
(2.1)

and if a,b ∈ A, u ∈ X∗ and x ∈ X, then

δ∗(a,ux,b) =
∨

c∈A

δ∗(a,u,c)⊗ δ(c,x,b). (2.2)

By (1.22) and Theorem 3.1 [76] (see also [96, 100]), we have that

δ∗(a,uv,b) =
∨

c∈A

δ∗(a,u,c)⊗ δ∗(c,v,b), (2.3)

for all a,b ∈ A and u,v ∈ X∗. In other words, if w = x1x2 · · ·xn, such that
x1,x2, ..,xn ∈ X, then

δ∗(a,w,b) =
∨

c1,..,cn−1∈An−1

δ(a,x1,c1)⊗ δ(c1,x2,c2)⊗ · · ·⊗ δ(cn−1,xn,b). (2.4)

If for any u ∈ X∗ we define a fuzzy relation δu on A by

δu(a,b) = δ∗(a,u,b), (2.5)

for all a,b ∈ A, called the fuzzy transition relation determined by u, then (2.3)
can be written as

2.1. Fuzzy automata 29

δuv = δu ◦δv, (2.6)

for all u,v ∈ X∗. Equality (2.6) means that with respect to the composition of
fuzzy relations, the fuzzy transition relation is a semigroup. This semigroup
will be called the semigroup of transition of fuzzy automaton A .

Let A = (A,δ,σ,τ) be a fuzzy automaton. Then δ̂, the crisp part of δ, is a
crisp subset of A×X×A, and σ̂ and τ̂, crisp subsets of σ and τ, respectively, are
ordinary subsets of A. The automaton Â = (A, δ̂, σ̂, τ̂) is a nondeterministic
automaton which is called a crisp part of A .

If δ is a crisp subset of A×X×A, that is, δ : A×X×A→ {0,1}, and σ
and τ are crisp subsets of A, then A is an ordinary nondeterministic automa-
ton, which means that the notion of fuzzy automaton generalize the notion
of nondeterministic automaton. Precisely, nondeterministic automata are
fuzzy automata over the Boolean structure. They will also be called Boolean
automata. Clearly, the extension of the mapping δ is a crisp subset of A×X∗×A.

If δ is a mapping from A×X→ A, then A is ordinary deterministic au-
tomaton. Also, extension of the mapping δ is mapping from A×X∗ to A. For
the deterministic automaton A = (A,δ,σ,τ), a ∈ A and u ∈ X∗ the state δ(a,u)
will be denoted by au.

The reverse fuzzy automaton of a fuzzy automaton A = (A,δ,σ,τ) is defined
as the fuzzy automaton ¯A = (A, δ̄, σ̄, τ̄) whose fuzzy transition function is
defined by :

δ̄(a1,x,a2) = δ(a2,x,a1) for all a1,a2 ∈ A, x ∈ X,

and fuzzy sets of initial and terminal states are σ̄ = τ and τ̄ = σ.
Fuzzy automata A = (A,δA,σA,τA) and A ′ = (A′,δA′ ,σA′ ,τA′) are isomor-

phic if there is a bijective functionφ : A→A′ such that δA
x (a,b)= δA′

x (φ(a),φ(b)),
for all a,b ∈ A and x ∈ X, and also, σA(a) = σA′(φ(a)) and τA(a) = τA′ (φ(a)), for
every a ∈ A. It is easy to check that in this case we also have that

δA
u (a,b) = δA′

u (φ(a),φ(b)), for all a,b ∈ A and u ∈ X∗. (2.7)

A fuzzy language in X∗ over L , or briefly a fuzzy language, is any fuzzy
subset of X∗, i.e., any function from X∗ into L. A fuzzy language recognized
by a fuzzy automaton A = (A,δ,σ,τ), denoted as [[A]], is a fuzzy language in
F (X∗) defined by

[[A]](e) = σA ◦τA,

[[A]](u) = σA ◦δA
x1
◦δA

x2
◦ · · · ◦δA

xn
◦τA,

(2.8)

for any u= x1x2 . . .xn ∈X+, where x1,x2, . . . ,xn ∈X. In other words, the equality
(2.8) means that the membership degree of the word u to the fuzzy language
[[A]] is equal to the degree to which A recognizes or accepts the word
u. Using notation from (1.39), and the second equality in (1.41), we can state

30 2 Fundamentals of fuzzy automata

(2.8) as
[[A]](u) = σ◦δu ◦τ. (2.9)

Fuzzy automata A and B are called language equivalent, or sometimes just
equivalent, if [[A]] = [[B]].

Cardinality of a fuzzy automaton A = (A,δA,σA,τA), in notation |A |, is
defined as the cardinality of its set of states A. A fuzzy automaton A is
called minimal fuzzy automaton of a language f ∈ F (X∗) if it recognizes f
and |A | < |A ′|, for any fuzzy automaton A ′ recognizing f . A minimal fuzzy
automaton recognizing a given fuzzy language f is not necessarily unique
up to an isomorphism. This is also true for nondeterministic automata.

For more information on fuzzy automata over complete residuated lattices
we refer to [27, 117, 52, 53, 54, 96, 100, 124, 127, 56]

2.2. Crisp-deterministic fuzzy automata

Let A = (A,δ,σ,τ) be a fuzzy automaton over X and L . The fuzzy transition
function δ is called crisp-deterministic if for every x ∈ X and every a ∈ A there
exists a′ ∈ A such that δx(a,a′) = 1, and δx(a,b) = 0, for all b ∈ A \ {a′}. The
fuzzy set of initial states σ is called crisp-deterministic if there exists a0 ∈ A
such that σ(a0) = 1 and σ(a) = 0 for every a ∈ A\ {a0}. If both σ and δ are crisp-
deterministic, then A is called a crisp-deterministic fuzzy finite automaton (for
short: cdffa).

Equivalently, we can define a crisp-deterministic fuzzy finite automaton
over X and L as a quadruple A = (A,δ,a0,τ), where A is a non-empty set of
states, δ : A×X→A is a transition function, a0 ∈A is an initial state and τ : A→ L
is a fuzzy set of final states.

The transition function δ can be extended to a function δ∗ : A×X∗→A as
follows: δ∗(a,ε) = a, for each a ∈A, and δ∗(a,ux)= δ(δ∗(a,u),x), for every a ∈A,
u ∈ X∗ and x ∈ X. Also, we allow the set A to be infinite, and then A is called
a crisp-deterministic fuzzy automaton (for short: cdfa). The language of A is the
fuzzy language [[A]] : X∗→ L defined by

[[A]](u) = τ(δ∗(a0,u)) . (2.10)

for every u ∈ X∗. Obviously, the image of [[A]] is contained in the image of τ
which is finite if the set of states A is finite.

A fuzzy languageϕ : X∗→ L is called cdffa-recognizable if there exists a crisp-
deterministic fuzzy finite automaton A over X and L such that [[A]]=ϕ. We
also say that A recognizes ϕ.

Next, the Nerode automaton of a fuzzy automaton A = (A,δ,σ,τ) is a crisp-
deterministic fuzzy automaton AN = (AN,δN,σA

e ,τN), such that AN = {σA
u |u ∈

X∗} where σA
u = σ

A ◦ δA
u ,for every u ∈ X∗ and δN : AN ×X −→ AN and τN ∈

F (AN) are defined with

2.3. Factor and afterset fuzzy automata 31

δN(σA
u ,x) = σA

ux, τN(σA
u) = σA

u ◦τ
A,

for every u ∈ X∗ and x ∈ X. The automaton AN is language equivalent to
A . The notion of Nerode automaton of a given fuzzy automaton was first
introduced by Ignjatović, Ćirić, Bogdanović and Petković in [56], for fuzzy
automata over complete residuated lattices and lattice ordered moniods.

A crisp-deterministic fuzzy automatonA is called minimal crisp-deterministic
fuzzy automaton of a language f ∈F (X∗) if it recognizes f and |A | < |A ′|, for
any crisp-deterministic fuzzy automaton A ′ recognizing f .

Given a fuzzy languageϕ : X∗→L and v∈X∗, we define the fuzzy language
v−1ϕ : X∗ → L and ϕv−1 : X∗ → L by letting v−1ϕ(u) = ϕ(vu) and ϕv−1(u) =
ϕ(uv) for u ∈ X∗. The fuzzy language v−1ϕ is called a left derivative, and the
fuzzy language ϕv−1 a right derivative of ϕ with respect to v.

For a fuzzy languageϕ : X∗→ L, let Aϕ = {u
−1ϕ | u ∈X∗}denote the set of all

left derivatives of ϕ, and let δϕ : Aϕ×X→ Aϕ and τϕ : Aϕ→ L be mappings
defined by

δϕ(ψ,x) = x−1ψ and τϕ(ψ) = ψ(ε), (2.11)

for everyψ ∈Aϕ and x ∈X. Then Aϕ = (Aϕ,δϕ,ϕ,τϕ) is an accessible cdfa, and
it is called the derivative automaton of the fuzzy languageϕ [56, 52]. It has been
proved in [56] that the derivative automaton Aϕ is finite if and only if the
fuzzy language ϕ is cdffa-recognizable. Namely, Aϕ is a minimal cdfa which
recognizesϕ [56]. An algorithm for construction of the derivative automaton
of a fuzzy language, has been also given in [56].

2.3. Factor and afterset fuzzy automata

Let A = (A,δA,σA,τA) be a fuzzy automaton and let E a fuzzy equivalence
relation on A. The factor fuzzy automaton of A with respect to E is the fuzzy
automaton A /E = (A/E,δA/E,σA/E,τA/E), where: the set of state is A/E =
{Ea| a ∈ A}, the fuzzy transition relation δA/E : A/E×X×A/E→ L is defined
by:

δA/E(Ea,x,Eb) =
∨

a′ ,b′∈A

E(a,a′)⊗ δA(a′,x,b′)⊗E(b′,b) = Ea ◦δ
A
x ◦Eb,

for every Ea,Eb ∈ A/E, and x ∈ X, the fuzzy set σA/E ∈F (A) of initial states is
defined by:

σA/E(Ea) = σA ◦Ea, for every Ea ∈ A/E,

and the fuzzy set τA/E ∈F (A) of terminal states by:

τA/E(Ea) = Ea ◦τ
A, for every Ea ∈ A/E.

32 2 Fundamentals of fuzzy automata

The fuzzy language [[A /E]] recognized by the factor fuzzy automaton
A /E is given by

[[A /E]](e) = σA ◦E◦τA, (2.12)

[[A /E]](u) = σ◦E◦δx1 ◦E◦δx2 ◦E · · · ◦E◦δxn ◦E◦τ, (2.13)

for u = x1x2 . . .xn ∈ X+, where x1,x2, . . . ,xn ∈ X.
Here, we recall the results from [117], concerning factor fuzzy automata,

which will be useful in the further work.

Theorem 2.1. Let A = (A,δA,σA,τA) be an automaton, and let E and F be fuzzy
equivalences on A such that E 6 F. Then a relation F/E ∈F (A/E) defined by:

F/E(Ea,Eb) = F(a,b), Ea,Eb ∈ A/E. (2.14)

is a fuzzy equivalence on A/E, and the factor fuzzy automata (A /E)/(F/E) and
A /F are isomorphic.

Theorem 2.2. Let A = (A,δA,σA,τA) be a fuzzy automaton and E a fuzzy equiva-
lence on A.

The functionΦ : EE(A)→ E (A/E), where EE(A)= {F ∈ E (A) | E6 F}, defined by

Φ(F) = F/E, for every F ∈ EE(A), (2.15)

is a lattice isomorphism, i.e., it is surjective and

F 6 G ⇔ Φ(F) 6Φ(G), for all F,G ∈ EE(A). (2.16)

For fuzzy automaton A = (A,δA,σA,τA) and fuzzy quasi-order R on A,
the fuzzy automaton A /R = (A/R,δA/R,σA/R,τA/R) where the set of states
A/R = {Ra | a ∈ A}, the fuzzy transition function δA/R : A/R×X×A/R→ L is
given by

δA/R(Ra,x,Rb) =
∨

a′,b′∈A

R(a,a′)⊗ δA(a′,x,b′)⊗R(b′,b), (2.17)

or equivalently

δA/R(Ra,x,Rb) = (R◦δA
x ◦R)(a,b) = Ra ◦δ

A
x ◦Rb, (2.18)

for all Ra,Rb ∈ A/R and x ∈ X, the fuzzy set σA/R ∈ LA/R of initial states is
defined by

σA/R(Ra) =
∨

a′∈A

σA(a′)⊗R(a′,a) = (σA ◦R)(a) = σA ◦Ra, a ∈ A; (2.19)

the fuzzy set τA/R ∈ LA/R of terminal states is defined by

2.3. Factor and afterset fuzzy automata 33

τA/R(Ra) =
∨

a′∈A

R(a,a′)⊗τA(a′) = (R◦τA)(a) = Ra ◦τ
A, a ∈ A, (2.20)

is called the afterset fuzzy automaton of A w.r.t. R.
The fuzzy language [[A /R]] recognized by the afterset fuzzy automaton

A /R is given by

[[A /R]](e) = σA ◦R◦τA,

[[A /R]](u) = σA ◦R◦δA
x1
◦R◦δA

x2
◦R◦ · · · ◦R◦δA

xn
◦R◦τA,

(2.21)

for every u = x1x2 . . .xn ∈ X∗, where x1,x2, . . . ,xn ∈ X.
Let us note that previous equation follows directly from the definition

of the afterset automaton A /R and the fact that R ◦R = R for every fuzzy
quasi-order R.

Analogously, for a fuzzy automaton A = (A,δA,σA,τA), the foreset fuzzy
automaton of A w.r.t. R is a fuzzy automaton A \R = (A\R,δA\R,σA\R,τA\R)
with:

the set of states A\R = {Ra | a ∈ A}, the fuzzy transition function δA\R

defined by

δA\R(Ra,x,Rb) =
∨

a′ ,b′∈A

R(a,a′)⊗ δA(a′,x,b′)⊗R(b′,b)

= (R◦δA
x ◦R)(a,b) = Ra ◦δ

A
x ◦Rb, (2.22)

for all for any Ra,Rb ∈ A\R and x ∈ X, a fuzzy set σA\R ∈ LA\R of initial states
is given by

σA\R(Ra) =
∨

a′∈A

σA(a′)⊗R(a′,a) = (σA ◦R)(a) = σA ◦Ra, Ra ∈ A\R, (2.23)

and the fuzzy set τA\R ∈ LA\R of terminal states is given by

τA\R(Ra) =
∨

a′∈A

R(a,a′)⊗τA(a′) = (R◦τA)(a) = Ra ◦τ
A, Ra ∈ A\R. (2.24)

It can easily be shown that:

Theorem 2.3. For any fuzzy quasi-order R on a fuzzy automaton A the afterset
fuzzy automaton A /R and the foreset fuzzy automaton A \R are isomorphic.

In view of the previous theorem, in the rest of this section we will consider
only afterset fuzzy automata. We will see in the following example that the
factor fuzzy automata A /ER of A , w.r.t. the natural fuzzy equivalence ER

of R, is not necessary isomorphic to fuzzy recognizers A /R and A \R, but
by (b) of Theorem 1.7, it has the same cardinality as A /R and A \R, and if
[[A]] = [[A /R]](= [[A \R]]), then we also have that [[A]] = [[A /ER]].

34 2 Fundamentals of fuzzy automata

Example 2.1. Let L be the Boolean structure, and let A = (A,δ,σ,τ) be a
fuzzy automaton over L , where A = {1,2,3}, X = {x, y}, and fuzzy transition
relations σ, δx, δy and τ are given by

σ =
[
1 1 1

]
, δx =

1 0 0
0 0 0
0 0 0

 , δy =

1 0 0
1 1 0
1 0 0

 , τA =

1
0
0

 .

The fuzzy quasi order R on A and its natural fuzzy equivalence ER are given
by

R =

1 1 1
0 1 1
0 1 1

 , ER =

1 0 0
0 1 1
0 1 1

 .

The afterset fuzzy automaton A /R is not isomorphic to the factor fuzzy
automaton A /ER , since:

R◦δy ◦R =

1 1 1
1 1 1
1 1 1

 , ER ◦δy ◦ER =

1 0 0
1 1 1
1 1 1

 .

For a fuzzy automaton A = (A,δ,σ,τ) and a fuzzy quasi-order R on A we
can define the fuzzy automaton A |R = (A,σA|R,δA|R,τA|R), where the set of
states, the input alphabet, the fuzzy set of initial states and the fuzzy set of
final states are the same as in the original automaton, and the fuzzy transition
function is defined as follows:

δA|R(a,x,b) = (R◦δx ◦R)(a,b), for all a,b ∈ A and x ∈ X.

The following theorem is a result from [117] and it presents a version of the
well-known Second Isomorphism Theorem, concerning fuzzy automata and
fuzzy quasi-orders on them.

Theorem 2.4. Let A = (A,δ,σ,τ) be a fuzzy automaton and let R and S be fuzzy
quasi-orders on A such that R < S. Then a fuzzy relation S/R on A /R defined by

S/R(Ra,Rb) = S(a,b), for all a,b ∈ A, (2.25)

is a fuzzy quasi-order on A /R and fuzzy recognizers A /S, (A /R)/(S/R) and
(A /R)/S are isomorphic.

Let us note that if A is a fuzzy automaton, A is its set of states, and R, S
and T are fuzzy quasi-orders on A such that R 6 S and R 6 T, then

S 6 T ⇔ S/R 6 T/R, (2.26)

and hence, a mapping Φ : QR(A) = {S ∈ Q(A) |R 6 S} → Q(A/R), given by
Φ : S→ S/R, is injective (in fact, it is an order isomorphism of QR(A) onto a

2.3. Factor and afterset fuzzy automata 35

subset of Q(A/R)). In particular, for a fuzzy quasi-order R on A, the fuzzy
relation R/R on A/R will be denoted by R̃. It can be easily verified that R̃ is
a fuzzy quasi-order on A/R, and if E is a fuzzy equivalence on A, then Ẽ is a
fuzzy equality on A/E.

As we maintained in Section 2.1., for a given fuzzy automaton A =

(A,δ,σ,τ) over X and L the fuzzy language recognized by A is:

[[A]](e) = σA ◦τA,

[[A]](u) = σA ◦δA
x1
◦δA

x2
◦ · · · ◦δA

xn
◦τA,

for any u = x1x2 · · ·xn ∈ X∗.
According to this and equality (2.21), we obtain that the fuzzy automaton

A and the afterset automaton A /R are equivalent, i.e. they recognize the
same language if and only if the fuzzy quasi-order R is a solution to a system
of fuzzy relation equations:

σA ◦τA = σA ◦R◦τA,

σA ◦δA
x1
◦δA

x2
◦ · · · ◦δA

xn
◦τA = σA ◦R◦δA

x1
◦R◦δA

x2
◦R◦ · · · ◦R◦δA

xn
◦R◦τA,

(2.27)
for all n ∈N and x1,x2, · · · ,xn ∈ X.

The general system has at least one solution in Q(A), the equality relation
on A. It will be called the trivial solution. To attain the best possible reduction
of A , we have to find the greatest solution to the general system in Q(A), if
it exists, or to find as big solution as possible. However, the general system
does not necessary have the greatest solution and also, it may consist of
infinitely many equations, and finding its nontrivial solutions may be a very
difficult task. For that reason we will aim our attention to some instances of
the general system. These instances have to be as general as possible, but
they have to be easier to solve. From a practical point of view, these instances
have to consist of finitely many equations. The next theorem shows some
properties of the set of all solutions to the general system.

Theorem 2.5. Let A = (A,δ,σ,τ) be a fuzzy automaton.
The set of all solutions to the general system in Q(A) is an order ideal of the

lattice Q(A).
Consequently, if a fuzzy quasi-order R on A is a solution to the general system,

then its natural fuzzy equivalence ER is also a solution to the general system.

The following example shows that there are fuzzy quasi-orders which are
not solutions to the general system, but their natural fuzzy equivalences are
solutions to this system.

Example 2.2. Let L be the Boolean structure, let A = (A,δA,σA,τA) be a fuzzy
automaton over L , where A = {1,2,3}, X = {x, y}, and δA

x , δA
y , σA and τA are

given by

36 2 Fundamentals of fuzzy automata

δA
x =

1 0 0
0 0 0
0 0 0

 , δA

y =

0 1 0
1 1 1
1 0 0

 , σA =

[
1 1 1

]
, τA =

1
0
1

 ,

and consider a fuzzy quasi-order R on A given by

R =

1 1 1
0 1 1
0 0 1

 .

Then we have that

σA ◦R◦δA
x ◦R◦δA

y ◦R◦τA = 1 , 0 = σA ◦δA
x ◦δ

A
y ◦τ

A,

so R is not a solution to the general system, but its natural fuzzy equivalence
ER is the equality relation on A, and hence, it is a solution to the general
system.

The next example demonstrates one shortcoming of state reductions by
means of fuzzy quasi-orders and fuzzy equivalences. Namely, we show that
for some fuzzy automata no reduction will result in its minimal automaton.

Example 2.3. Let L be the Boolean structure and A = (A,δA,σA,τA) a fuzzy
automaton over L , where |A| = 4, X = {x}, and δA,σA, and τA are given by

δA
x =

1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

, σA =

[
0 1 0 0

]
, τA =

0
0
1
1

.

It is easy to check that for each u ∈ X∗ the following is true:

[[A]](u) =

0 if u = e or u = xn, for n > 2,
1 if u = x,

(in fact, A is a nondeterministic automaton and [[A]] is an ordinary crisp
language consisting only of the letter x). If B = (B,δB,σB,τB) is a fuzzy au-
tomaton over L with |B| = 2, and

δB
x =

[
0 1
0 0

]
, σB =

[
1 0

]
, τB =

[
0
1

]
,

then B recognizes [[A]], and it is a minimal fuzzy automaton of [[A]], since
[[A]] can not be recognized by a fuzzy automaton with only one state.

Consider now an arbitrary fuzzy equivalence

2.3. Factor and afterset fuzzy automata 37

E =

1 a12 a13 a14
a12 1 a23 a24
a13 a23 1 a34
a14 a24 a34 1

on A, and suppose that E is a solution to the general system corresponding
to the fuzzy automaton A . We will show that E can not reduce A to a fuzzy
automaton with two states.

First, by σA ◦E ◦ τA = a23 ∨ a24 and σA ◦E ◦ τA = σA ◦ τA = [[A]](e) = 0 it
follows a23 = a24 = 0. Next, reflexivity and transitivity of E yield E ◦E = E,
what implies

a12∧ a13 = 0, a12 = 0 or a13 = 0 (2.28)

a12∧ a14 = 0, a12 = 0 or a14 = 0 (2.29)

a13∨ (a14∧ a34) = a13, i.e., a13 = 0 implies a14 = 0 or a34 = 0, (2.30)

a14∨ (a13∧ a34) = a14, a14 = 0 implies a13 = 0 or a34 = 0, (2.31)

a34∨ (a13∧ a14) = a34, a34 = 0 implies a13 = 0 or a14 = 0. (2.32)

If a12 = 1, then by (2.28) and (2.29) we obtain a13 = a14 = 0, and hence

E =

1 1 0 0
1 1 0 0
0 0 1 0
0 0 0 1

or E =

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

.

However, none of these two matrices is a solution to the general sys-
tem. Therefore, we conclude that a12 = 0. According to (2.30), (2.31) and
(2.32), we distinguish the following five cases

a13 = a14 = a34 = 0,

a13 = a14 = 0, a34 = 1,

a13 = a34 = 0, a14 = 1,

a14 = a34 = 0, a13 = 1,

a13 = a14 = a34 = 1,

and we obtain that E has one of the following forms

E=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, E =

1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 1

, E=

1 0 0 1
0 1 0 0
0 0 1 0
1 0 0 1

, E =

1 0 1 0
0 1 0 0
1 0 1 0
0 0 0 1

, E =

1 0 1 1
0 1 0 0
1 0 1 1
1 0 1 1

. (2.33)

In the first case, E is the equality relation, and it does not provide any
reduction of A , and in the second and fourth case, it can be easily verified that
E is a solution to the general system, but it reduces A to a fuzzy automaton

38 2 Fundamentals of fuzzy automata

with three states. Finally, in the third and fifth case, E is not a solution to the
general system, since

σA ◦E◦δA
x ◦E◦δA

x ◦E◦τA
x = 1 , 0 = σA ◦δA

x ◦δ
A
x ◦τ

A
x .

Therefore, any state reduction of A by means of fuzzy equivalences does
not provide fuzzy automaton with less than three states.

2.4. Simulations and bisimulations between fuzzy automata

Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata, and let γ ∈
R(A,B) be a non-empty fuzzy relation. We call γ a forward simulation if it
satisfies

σA
6 σB ◦γ−1, (f s-1)

γ−1 ◦δA
x 6 δ

B
x ◦γ

−1, for every x ∈ X, (f s-2)

γ−1 ◦τA
6 τB, (f s-3)

and a backward simulation if

τA
6 γ◦τB, (bs-1)

δA
x ◦γ 6 γ◦δ

B
x , for every x ∈ X, (bs-2)

σA ◦γ 6 σB. (bs-3)

Furthermore, we call γ a forward bisimulation if both γ and γ−1 are forward
simulations, i.e., if γ satisfies

σA
6 σB ◦γ−1, σB

6 σA ◦γ,
(f b-1)

γ−1 ◦δA
x 6 δ

B
x ◦γ

−1, γ◦δB
x 6 δ

A
x ◦γ, for every x ∈ X, (f b-2)

γ−1 ◦τA
6 τB, γ◦τB

6 τA, (f b-3)

and a backward bisimulation, if both γ and γ−1 are backward simulations, i.e.,
if γ satisfies

τA
6 γ◦τB, τB

6 γ−1 ◦τA,
(bb-1)

δA
x ◦γ 6 γ◦δ

B
x , δB

x ◦γ
−1
6 γ−1 ◦δA

x , for every x ∈ X, (bb-2)

σA ◦γ 6 σB, σB ◦γ−1
6 σA. (bb-3)

2.4. Simulations and bisimulations between fuzzy automata 39

Also, if γ is a forward simulation and γ−1 is a backward simulation, i.e., if γ
satisfies

σA
6 σB ◦γ−1, τB

6 γ−1 ◦τA, (f bb-1)

γ−1 ◦δA
x = δ

B
x ◦γ

−1, for every x ∈ X,
(f bb-2)

σB ◦γ−1
6 σA, γ−1 ◦τA

6 τB, (f bb-3)

then γ is called a forward-backward bisimulation, and if γ is a backward simu-
lation and γ−1 is a forward simulation, i.e., if

σB
6 σA ◦γ, τA

6 γ◦τB, (b f b-1)

δA
x ◦γ = γ◦δ

B
x , for every x ∈ X,

(b f b-2)

σA ◦γ 6 σB γ◦τB
6 τA. (b f b-3)

then γ is called a backward-forward bisimulation.
For the sake of simplicity, we will call γ just a simulation if γ is either

a forward or a backward simulation, and just a bisimulation if γ is any of
the four types of bisimulations defined above. Moreover, forward and back-
ward bisimulations will be called homotypic, whereas backward-forward and
forward-backward bisimulations will be called heterotypic. Moreover, for any
w ∈ { f s,bs, f b,bb, f bb,b f b}, a fuzzy relation γ which satisfies (w-1), (w-2) and
(w-3) will be called simply a simulation/bisimulation of type w.

A B

σA σB

τA τB

a0

...

ak

ak+1

...

an

b0

...

bk

bk+1

...

bn

x1

xk

xk+1

xk+2

xn

x1

xk

xk+1

xk+2

xn

γ

Fig. 2.1 Forward and backward simulation

The meaning of forward and backward simulations can be best explained
in the case when A and B are nondeterministic (Boolean) automata. For
this purpose we will use the diagram shown in Figure 1. Let γ be a forward

40 2 Fundamentals of fuzzy automata

simulation between A and B and let a0,a1, . . . ,an be an arbitrary successful
run of the automaton A on a word u = x1x2 · · ·xn (x1,x2, . . . ,xn ∈ X), i.e., a
sequence of states of A such that a0 ∈ σA, (ak,ak+1) ∈ δA

xk+1
, for 06 k6 n−1, and

an ∈ τA. According to (f s-1), there is an initial state b0 ∈ σB such that (a0,b0) ∈
γ. Suppose that for some k, 0 6 k 6 n− 1, we have built a sequence of states
b0,b1, . . . ,bk such that (bi−1,bi) ∈ δB

xi
and (ai,bi) ∈ γ, for each i, 1 6 i 6 k. Then

(bk,ak+1) ∈ γ−1 ◦ δA
xk+1

, and by (f s-2) we obtain that (bk,ak+1) ∈ δB
xk+1
◦γ−1, so

there exists bk+1 ∈B such that (bk,bk+1) ∈ δB
xk+1

and (ak+1,bk+1) ∈γ. Therefore, we
have successively built a sequence b0,b1, . . . ,bn of states of B such that b0 ∈ σB,
(bk,bk+1) ∈ δB

xk+1
, for every k, 0 6 k 6 n− 1, and (ak,bk) ∈ γ, for each k, 0 6 k 6

n. Moreover, by (f s-3) we obtain that bn ∈ τB. Thus, the sequence b0,b1, . . . ,bn

is a successful run of the automaton B on the word u which simulates the
original run a0,a1, . . . ,an of A on u. In contrast to forward simulations, where
we build the sequence b0,b1, . . . ,bn moving forward, starting with b0 and
ending with bn, in the case of backward simulations we build this sequence
moving backward, starting with bn and ending with b0. In a similar way
we can understand forward and backward simulations between arbitrary
fuzzy automata, taking into account degrees of possibility of transitions and
degrees of relationship.

Given fuzzy automata A = (A,δA,σA,τA) and B = (B,δB,σB,τB), a fuzzy
relation γ ∈ R(A,B) is a backward simulation between fuzzy automata A

and B if and only if it is a forward simulation between the reverse fuzzy
automata ¯A and B̄. Therefore, forward and backward simulations, forward
and backward bisimulations, and backward-forward and forward-backward
bisimulations, are mutually dual concepts, what means that for any state-
ment on some of these concepts which is universally valid (valid for all fuzzy
automata) there is the corresponding universally valid statement on its dual
concept.

It is clear that bisimulation is a fuzzy relation which realizes simulation
of a fuzzy automaton by another,and its inverse realizes there verse simula-
tion. However, bisimulation is a more restrictive concept than the two-way
simulation, by which we mean a pair of simulations of a fuzzy automaton to
another,and viceversa, which are not necessarily mutually inverse. Thus,the
following example demonstrates a pair of fuzzy automata A and B such
that there are forward simulations between A and B and between B and
A , but there is no any forward bisimulation between A and B.

Example 2.4. Let L be the Gödel structure, and let A = (A,δA,σA,τA) and
B = (B,δB,σB,τB) be fuzzy automata over L and X = {x, y} with |A| = 3,
|B| = 2 and

σA =
[
0 0 1

]
, δA

x =

1 0.3 0.4
0.5 1 0.3
0.4 0.6 0.7

 , δA

y =

0.5 0.6 0.2
0.6 0.3 0.4
0.7 0.7 1

 , τA =

1
1
1

 .

2.4. Simulations and bisimulations between fuzzy automata 41

σB =
[
0.7 1

]
, δB

x =

[
1 0.6

0.6 0.7

]
, δA

y =

[
0.6 0.6
0.7 1

]
, τA =

[
1
1

]
.

We have that fuzzy relations

ϕ =

1 0.7
1 0.7

0.6 1

 , φ =

[
1 1 0.7

0.6 0.6 1

]
.

are, respectively,the greatest forward simulation between A and B, and
viceversa, but there is no forward bisimulation between A and B. Indeed,
let α be an arbitrary fuzzy relation between A and B such that ϕ 6 α, i.e.,

α =

1 a
1 b
c 1

 , with a > 0.7, b > 0.7 and c > 0.6.

If α−1 ◦δA
x 6 δ

B
x ◦α

−1 , then we easily obtain that a 6 0.7, b 6 0.7, and c 6 0.7,
what means that a = b = 0.7 and 0.6 6 c 6 0.7. Moreover, if α−1 ◦δA

y 6 δ
B
y ◦α

−1,
then we obtain that c 6 0.6, and hence, c = 0.6. Therefore, we have proved
that α = ϕ, and so ϕ is the greatest forward simulation between A and B.
In a similar way we show that φ is the greatest forward simulation between
B and A . Suppose now that β is an arbitrary forward bisimulation between
A and B. Then β 6 ϕ and β 6 φ−1, i.e., β 6 ϕ∧φ−1, what implies

σA ◦β = σA ◦ (ϕ∧φ−1)
[
1 0 0

]
◦

1 0.6
1 0.6

0.6 1

 =

[
0.6 1

]
<

[
0.7 1

]
= σB.

This contradicts our assumption that β is a forward bisimulation. Hence,there
is not any forward bisimulation between A and B.

In numerous papers dealing with simulations and bisimulations, forward
simulations and forward bisimulations have been mostly studied. They have
been usually called just simulations and bisimulations, or strong simulations
and strong bisimulations (cf. [72,73,91]). The greatest bisimulation equiva-
lence relation has been usually called the bisimilarity. Automata between
which there is a bisimulation have been often called bisimilar. Distinction
between forward and backward simulations, and forward and backward
bisimulations, has been made, for instance, in [12,35,68] (for various kinds of
automata), but less or more these concepts differ from the concepts having
the same name which are considered here. More similar to our concepts of
forward and backward simulations and bisimulations are those studied in
[11], and in [36,37] (for tree automata).

For more information about bisimulations we refer to [1, 24, 40, 44, 77,
82, 83, 103, 109].

Chapter 3

Computation of the greatest simulations and
bisimulations between fuzzy automata

As it is mentioned earlier the simulations and bisimulations, introduced
in [22] play significant role in the theory of bisimulations for fuzzy automata
over complete residuated lattices. In [22] it has been proved that if there is at
least one simulation/bisimulation of some of these types between the given
fuzzy automata, then there is the greatest simulation/bisimulation of this
kind. However, there has not been given any efficient algorithm for deciding
whether there is a simulation/bisimulation of some of these types between
the given fuzzy automata, and for computing the greatest one, if it exists. In
[22] a theorem has been proved which can be used just for checking the
existence of a uniform forward bisimulation (i.e., a complete and surjective
forward bisimulation) between the given fuzzy automata. According to this
theorem, there is a uniform forward bisimulation between fuzzy automata A

and B if and only if there is a special isomorphism between the factor fuzzy
automata of A and B with respect to their greatest forward bisimulation
fuzzy equivalences. Using the algorithm provided in [27], in numerous cases
we can efficiently compute the greatest forward bisimulation fuzzy equiva-
lences E on A and F on B. Then we can construct factor fuzzy automata A /E
and B/F, and check whether there is an isomorphism between them that sat-
isfies an additional condition stated in [22]. But, even when we are able to
efficiently compute the greatest forward bisimulations E and F and construct
the factor fuzzy automata A /E and B/F, it may be difficult to determine
whether there is an isomorphism between A /E and B/F that satisfies this
additional condition. This problem comes down to the well-known graph iso-
morphism problem, which is one of the few important algorithmic problems
whose rough computational complexity is still not known, and it is generally
accepted that it lies between P and NP-complete if P,NP (cf. [115]). Fortu-
nately, although no worst-case polynomial-time algorithm is known, testing
graph isomorphism is usually not very hard in practice.

In this chapter, for any of the types of simulations/bisimulations, intro-
duced in the Chapter 2, we will provide an efficient algorithm for deciding

43

44 3 Computation of the greatest bisimulations

whether there is a simulation/bisimulation of this type between the given
fuzzy automata, and for computing the greatest one, whenever it exists. The
algorithms are based on the method developed in [55], which comes down
to the computing of the greatest post-fixed point, contained in a given fuzzy
relation, of an isotone function on the lattice of fuzzy relations. Namely,
for each type of simulations and bisimulations we will determine the cor-
responding isotone and image-localized function φ on the lattice of fuzzy
relations, as well as the corresponding initial fuzzy relation π, and the com-
puting of the greatest simulation/bisimulation of this type we will reduce to
the the computing of the greatest post-fixed point of φ contained in π. This
is an iterative procedure by which we will successively build a decreasing
sequence of relations, starting from the relationπ and using the functionφ. If
this sequence is finite, then it stabilizes and its smallest member is exactly
the fuzzy relation which we are searching for, the greatest post-fixed point
of φ contained in π. We will determine sufficient conditions under which
this sequence is finite, when our algorithm terminates in the finite number
of steps (cf. Theorem 3.4), as well as sufficient conditions under which the
infimum of this sequence is exactly the fuzzy relation which we are searching
for (cf. Theorem 3.6). Modifying the algorithms for computing the greatest
simulations and bisimulations we will provide algorithms for computing
the greatest crisp simulations and bisimulations between fuzzy automata
(cf. Proposition 3.1). These algorithms always terminate in a finite number
of steps, independently of the properties of the underlying structure of truth
values, but we will show that there are fuzzy automata such that there is a
simulation or bisimulation of a given type between them, and there is not
any crisp simulation/bisimulation of this type (cf. Example 3.1).

The chapter will be composed of three sections. In Section 3.1. right and
left residuals of fuzzy relation will be discussed. Using residuals for any of
the above mentioned simulations and bisimulations we will define the cor-
responding function on the lattice of fuzzy relations. Section 3.2. will contain
main results on the computing of the greatest simulations and bisimulations
between fuzzy automata. In Section 3.3. we will present examples which
demonstrate the application of the algorithms and clarify relationships be-
tween different types of simulations and bisimulations.

It is worth noting that algorithms for deciding whether there are simula-
tions and bisimulations between nondeterministic automata, and the com-
puting of the greatest simulations and bisimulations, if they exist, were
given in [21, 70]. Various algorithms for the computing of the greatest
bisimulation equivalences on labelled transition systems can be found in
[40, 44, 67, 88, 102, 105].

The results from this chapter are published in [23].
The results in this chapter are original and are closely relates to the results

of Ignjatović et all. in [57].

3.1. The residuals 45

3.1. The residuals

Here, we introduce several notions and notation that will be used in the
chapter.

For non-empty sets A and B and fuzzy subsets η ∈F (A) and ξ ∈F (B),
fuzzy relations η\ξ ∈R(A,B) and η/ξ ∈R(A,B) are defined as follows

(η\ξ)(a,b) = (η(a) → ξ(b)), (3.1)

(η/ξ)(a,b) = (ξ(b) → η(a)), (3.2)

for arbitrary a ∈ A and b ∈ B. Let us note that η/ξ = (ξ\η)−1.
We have the following.

Lemma 3.1. Let A and B be non-empty sets and let η ∈F (A) and ξ ∈F (B).

(a)The set of all solutions to the inequality η◦χ 6 ξ, where χ is an unknown fuzzy
relation between A and B, is the principal ideal of R(A,B) generated by the fuzzy
relation η/ξ.

(b)The set of all solutions to the inequality χ◦ξ 6 η, where χ is an unknown fuzzy
relation between A and B, is the principal ideal of R(A,B) generated by the fuzzy
relation η\ξ.

Proof. These are the well-known results by E. Sanchez (cf. [106, 107, 108]).

Note that (η/ξ)∧ (η\ξ) = η|ξ, where η|ξ is a fuzzy relation between A and
B defined by

(η|ξ)(a,b) = (η(a) ↔ ξ(b)), (3.3)

for arbitrary a ∈ A and b ∈ B.
Next, let A and B be non-empty sets and let α ∈ R(A), β ∈ R(B) and

γ ∈ R(A,B). The right residual of γ by α is a fuzzy relation α\γ ∈ R(A,B)
defined by

(α\γ)(a,b) =
∧

a′∈A

(α(a′,a)→ γ(a′,b)), (3.4)

for all a ∈ A and b ∈ B, and the left residual of γ by β is a fuzzy relation
γ/β ∈R(A,B) defined by

(γ/β)(a,b) =
∧

b′∈B

(β(b,b′)→ γ(a,b′)), (3.5)

for all a ∈ A and b ∈ B. We think of the right residual α\γ as what remains of
γ on the right after “dividing” γ on the left by α, and of the left residual γ/β
as what remains of γ on the left after “dividing” γ on the right by β. In other
words,

α◦γ′ 6 γ ⇔ γ′ 6 α\γ, γ′ ◦β 6 γ ⇔ γ′ 6 γ/β, (3.6)

46 3 Computation of the greatest bisimulations

for all α ∈R(A), β ∈R(B) and γ′,γ ∈R(A,B). In the case when A = B, these
two concepts become the well-known concepts of right and left residuals of
fuzzy relations on a set (cf. [55]).

We also have the following.

Lemma 3.2. Let A and B be non-empty sets and let α ∈ R(A), β ∈ R(B) and
γ ∈R(A,B).

(a)The set of all solutions to the inequality α◦χ 6 γ, where χ is an unknown fuzzy
relation between A and B, is the principal ideal of R(A,B) generated by the right
residual α\γ of γ by α.

(b)The set of all solutions to the inequality χ◦β 6 γ, where χ is an unknown fuzzy
relation between A and B, is the principal ideal of R(A,B) generated by the left
residual γ/β of γ by β.

Proof. These are also results by E. Sanchez (cf. [106, 107, 108]).

As we said in the introduction, the problem of deciding whether there is
a simulation or bisimulation of a given type between fuzzy automata, and
the problem of computing the greatest simulation/bisimulation of this type,
will be reduced to the problem of computing the greatest post-fixed point,
contained in a given fuzzy relation, of an appropriate isotone function on
the lattice of fuzzy relations. For this purpose we define the following fuzzy
relations and functions on the lattice of fuzzy relations.

Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata. We define
fuzzy relations πw ∈ R(A,B), for w ∈ { f s,bs, f b,bb, f bb,b f b}, in the following
way:

π f s = τA\τB, (3.7)

πbs = σA\σB, (3.8)

π f b = (τA\τB)∧ (τA/τB) = τA|τB, (3.9)

πbb = (σA\σB)∧ (σA/σB) = σA|σB, (3.10)

π f bb = (τA\τB)∧ (σA/σB), (3.11)

πb f b = (σA\σB)∧ (τA/τB). (3.12)

Moreover, we define functionsφw : R(A,B)→R(A,B), for w ∈ { f s,bs, f b,bb, f bb,b f b},
as follows:

3.1. The residuals 47

φ f s(γ) =
∧

x∈X

[(δB
x ◦γ

−1)/δA
x]−1, (3.13)

φbs(γ) =
∧

x∈X

δA
x \(γ◦δ

B
x), (3.14)

φ f b(γ) =
∧

x∈X

[(δB
x ◦γ

−1)/δA
x]−1∧ [(δA

x ◦γ)/δB
x] = φ f s(γ)∧ [φ f s(γ−1)]−1, (3.15)

φbb(γ) =
∧

x∈X

[δA
x \(γ◦δ

B
x)]∧ [δB

x\(γ
−1 ◦δA

x)]−1 = φbs(γ)∧ [φbs(γ)]−1, (3.16)

φ f bb(γ) =
∧

x∈X

[(δB
x ◦γ

−1)/δA
x]−1∧ [δB

x\(γ
−1 ◦δA

x)]−1 = φ f s(γ)∧ [φbs(γ−1)]−1,

(3.17)

φb f b(γ) =
∧

x∈X

[δA
x \(γ◦δ

B
x)]∧ [(δA

x ◦γ)/δB
x] = φbs(γ)∧ [φ f s(γ−1)]−1, (3.18)

for any γ ∈R(A,B). Notice that in the expression “φw(α−1)” (w ∈ { f s,bs}) we
denote by φw a function from R(B,A) into itself.

The next theorem provides equivalent forms of the second and third
conditions in the definitions of simulations and bisimulations.

Theorem 3.1. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata
and w ∈ { f s,bs, f b,bb, f bb,b f b}. A fuzzy relation γ ∈R(A,B) satisfies conditions
(w-2) and (w-3) if and only if it satisfies

γ 6 φw(γ), γ 6 πw. (3.19)

Proof. We will prove only the case w = f s. The assertion concerning the case
w = bs follows by the duality, and according to equations (3.9)–(3.12) and
(3.15)–(3.18), all other assertions can be obtained by the first two.

Consider an arbitrary γ ∈R(A,B). According to Lemma 3.1(b), γ satisfies
condition (f s-3) if and only if γ−1

6 τB/τA = (τA\τB)−1, which is equivalent
to γ 6 τA\τB = π f s. Therefore, γ satisfies (f s-3) if and only if γ 6 π f s.

On the other hand, γ satisfies (f s-2) if and only if

γ−1(b,a)⊗ δA
x (a,a′) 6 (δB

x ◦γ
−1)(b,a′),

for all a,a′ ∈ A, b ∈ B and x ∈ X. According to the adjunction property, this is
equivalent to

γ−1(b,a) 6
∧

a′∈A

[δA
x (a,a′)→ (δB

x ◦γ
−1(b,a′))] = ((δB

x ◦γ
−1)/δA

x)(b,a)

for all a ∈ A, b ∈ B and x ∈ X, which is further equivalent to

γ(a,b) 6
∧

x∈X

[(δB
x ◦γ

−1)/δA
x]−1(a,b) = (φ f s(γ))(a,b)

48 3 Computation of the greatest bisimulations

for all a ∈ A and b ∈ B. Therefore, γ satisfies (f s-2) if and only if γ 6 φ f s(γ).
Now we conclude that a fuzzy relation γ ∈R(A,B) satisfies (f s-2) and (f s-

3) if and only if it satisfies (3.19) (for w = f s), which was to be proved.

3.2. Computation of the greatest simulations and
bisimulations

We will provide a method for computing the greatest simulations and bisim-
ulations between fuzzy automata adapting the method developed in [55] for
computing the greatest post-fixed points of an isotone function on the lattice
of fuzzy relations on a single set.

Let A and B be non-empty sets and let φ : R(A,B)→ R(A,B) be an iso-
tone function, i.e., let α 6 β implies φ(α) 6 φ(β), for all α,β ∈R(A,B). A fuzzy
relationα ∈R(A,B) is called a post-fixed point ofφ if α6φ(α). The well-known
Knaster-Tarski fixed point theorem (stated and proved in a more general con-
text, for complete lattices) asserts that the set of all post-fixed points ofφ form
a complete lattice (cf. [104]). Moreover, for any fuzzy relation π ∈R(A,B) we
have that the set of all post-fixed points of φ contained in π is also a com-
plete lattice. According to Theorem 3.1, our main task is to find an efficient
procedure for computing the greatest post-fixed point of the function φw

contained in the fuzzy relation πw, for each w ∈ { f s,bs, f b,bb, f b f ,b f b}.
It should be noted that the set of all post-fixed points of an isotone func-

tion on a complete lattice is always non-empty, because it contains the least
element of this complete lattice. However, this set may consist only of that
single element. In our case, when we are working with a lattice of fuzzy rela-
tions, the empty relation may be the only post-fixed point, whereas we have
defined simulations and bisimulations to be non-empty fuzzy relations. This
requirement is necessary because the empty relation can not satisfy the con-
dition (w-1), unless the fuzzy set of initial states or the fuzzy set of terminal
states is also empty. Therefore, our task is actually to find an efficient pro-
cedure for deciding whether there is a non-empty post-fixed point of φw

contained in πw, and if it exists, then find the greatest one.
Letφ : R(A,B)→R(A,B) be an isotone function andπ ∈R(A,B). We define

a sequence {γk}k∈N of fuzzy relations from R(A,B) by

γ1 = π, γk+1 = γk∧φ(γk), for each k ∈N. (3.20)

The sequence {γk}k∈N is obviously descending. If we denote by γ̂ the greatest
post-fixed point of φ contained in π, we can easily verify that

γ̂ 6
∧

k∈N

γk. (3.21)

3.2. Computation of the greatest bisimulations 49

Now two very important questions arise. First, under what conditions the
equality holds in (3.21)? Even more important question is: under what con-
ditions the sequence {γk}k∈N is finite? If this sequence is finite, then it is not
hard to show that there exists k ∈N such that γk = γm, for every m > k, i.e.,
there exists k ∈N such that the sequence stabilizes on γk. We can recognize
that the sequence has stabilized when we find the smallest k ∈N such that
γk = γk+1. In this case γ̂ = γk, and we have an algorithm which computes γ̂
in a finite number of steps.

Some conditions under which equality holds in (3.21) or the sequence is
finite were found in [55], for fuzzy relations on a single set. It is easy to show
that the same results are also valid for fuzzy relations between two sets. In
the sequel we present these results.

First we note that a sequence {γk}k∈N of fuzzy relations from R(A,B) is
finite if and only it it is image-finite, which means that the set

⋃
k∈N Im(γk)

is finite. Next, the function φ : R(A,B)→ R(A,B) is called image-localized if
there exists a finite K ⊆ L such that for each fuzzy relation γ ∈ R(A,B) we
have

Im(φ(γ)) ⊆ 〈K∪ Im(γ)〉, (3.22)

where 〈K∪ Im(γ)〉 denotes the subalgebra of L generated by the set K∪
Im(γ). Such K will be called a localization set of the function φ.

Theorem analogous to the following theorem was proved in [55] for fuzzy
relations on a single set, but its proof can be easily transformed into the proof
of the corresponding theorem concerning fuzzy relations between two sets.

Theorem 3.2. Let the function φ be image-localized, let K be its localization set, let
π ∈R(A,B), and let {γk}k∈N be the sequence of fuzzy relations in R(A,B) defined
by (3.20). Then ⋃

k∈N

Im(γk) ⊆ 〈K∪ Im(π)〉. (3.23)

If, moreover, 〈K∪ Im(π)〉 is a finite subalgebra of L , then the sequence {γk}k∈N is
finite.

Going back now to the functions φw, for w ∈ { f s,bs, f b,bb, f bb,b f b}, we
prove the following.

Theorem 3.3. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be arbitrary au-
tomata.

For any w ∈ { f s,bs, f b,bb, f bb,b f b} the function φw is isotone and image-
localized.

Proof. We will prove only the case w = f s. The assertion concerning the case
w = bs follows by the duality, and according to equations (3.9)–(3.12) and
(3.15)–(3.18), all other assertions can be derived from the first two.

Let γ1,γ2 ∈R(A,B) be fuzzy relations such that γ1 6 γ2, and consider the
following systems of fuzzy relation inequalities:

50 3 Computation of the greatest bisimulations

χ−1 ◦δA
x 6 δ

B
x ◦γ

−1
1 , x ∈ X; (3.24)

χ−1 ◦δA
x 6 δ

B
x ◦γ

−1
2 , x ∈ X. (3.25)

where χ ∈R(A,B) is an unknown fuzzy relation. Using Lemma 3.2 (b) and
the definition of an inverse relation, it can be easily shown that the set of all
solutions to system (3.24) (resp. (3.25)) form a principal ideal of R(A,B)
generated by φ f s(γ1) (resp. φ f s(γ2)). Since for each x ∈ X we have that
δB

x ◦ γ
−1
1 6 δ

B
x ◦ γ

−1
2 , we conclude that every solution to (3.24) is a solution

to (3.25). Consequently, φ f s(γ1) is a solution to (3.25), so φ f s(γ1) 6 φ f s(γ2).
Therefore, we have proved that φ f s is an isotone function.

Next, let K =
⋃

x∈X(Im(δA
x)∪ Im(δB

x)) and let γ ∈ R(A,B) be an arbitrary
fuzzy relation. It is evident that Im(φ f s(γ))⊆ 〈K

⋃
Im(γ)〉, and since the input

alphabet X is finite, then K is also finite. This confirms that the function φ f s

is image-localized.

Now we are ready to prove the main result of this chapter, which pro-
vides algorithms for deciding whether there is a simulation or bisimulation
of a given type between fuzzy automata, and for computing the greatest
simulations and bisimulations, when they exist.

Theorem 3.4. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata,
let w ∈ { f s,bs, f b,bb, f bb,b f b}, and let a sequence {γk}k∈N of fuzzy relations from
R(A,B) be defined by

γ1 = π
w, γk+1 = γk∧φ

w(γk), for each k ∈N. (3.26)

If 〈Im(πw)∪
⋃

x∈X(Im(δA
x)∪Im(δB

x))〉 is a finite subalgebra of L , then the following
is true:

(a)the sequence {γk}k∈N is finite and descending, and there is the least natural
number k such that γk = γk+1;

(b)γk is the greatest fuzzy relation in R(A,B) which satisfies (w-2) and (w-3);
(c) if γk satisfies (w-1), then it is the greatest fuzzy relation in R(A,B) which satisfies

(w-1), (w-2) and (w-3);
(d)if γk does not satisfy (w-1), then there is no any fuzzy relation in R(A,B) which

satisfies (w-1), (w-2) and (w-3).

Proof. We will prove only the case w = f s. All other cases can be proved in a
similar manner.

So, let 〈Im(π f s)∪
⋃

x∈X(Im(δA
x)∪ Im(δA

x))〉 be a finite subalgebra of L .
(a) According to Theorems 3.3 and 3.2, the sequence {γk}k∈N is finite and

descending, so there are k,m ∈N such that γk = γk+m, whence γk+1 6 γk =

γk+m 6 γk+1. Thus, there is k ∈N such that γk = γk+1, and consequently, there
is the least natural number having this property.

(b) By γk = γk+1 = γk ∧φ
f s(γk) we obtain that γk 6 φ

f s(γk), and also, γk 6

γ1 = π f s. Therefore, by Theorem 3.1 it follows that γk satisfies (f s-2) and
(f s-3).

3.2. Computation of the greatest bisimulations 51

Let α ∈ R(A,B) be an arbitrary fuzzy relation which satisfies (f s-2) and
(f s-3). As we have already noted, α satisfies (f s-3) if and only if α 6 π f s =

γ1. Next, suppose that α 6 γn, for some n ∈ N. Then for every x ∈ X we
have that α−1 ◦ δA

x 6 δ
B
x ◦ α

−1
6 δB

x ◦ γ
−1
n , and according to Lemma 3.2 (b),

α−1
6 (δB

x ◦γ
−1
n)/δA

x , i.e., α 6 [(δB
x ◦ γ

−1
n)/δA

x]−1 = φ f s(γn). Therefore, α 6 γn ∧

φ f s(γn) = γn+1. Now, by induction we obtain that α 6 γn, for every n ∈N,
and hence, α 6 γk. This means that γk is the greatest fuzzy relation in R(A,B)
satisfying (f s-2) and (f s-3).

(c) This follows immediately from (b).
(d) Suppose that γk does not satisfy (f s-1). Let γ ∈R(A,B) be an arbitrary

fuzzy relation which satisfies (f s-1), (f s-2) and (f s-3). According to (b) of this
theorem, γ 6 γk, so we have that σA

6 σB ◦γ−1
6 σB ◦γ−1

k
. But, this contradicts

our starting assumption that γk does not satisfy (f s-1). Hence, we conclude
that there is no any fuzzy relation in R(A,B) which satisfies (f s-1), (f s-2) and
(f s-3).

Algorithm 3.5 Construction of the greatest simulation / bisimulation The in-
put of this algorithm are fuzzy finite automata A = (A,δA,σA,τA) and
B = (B,δB,σB,τB). The algorithm decides whether there is a simulation or
bisimulation between A and B of a given type w ∈ { f s,bs, f b,bb, f bb,b f b},
and when it exists, the output of the algorithm is is the greatest simula-
tion /bisimulation of the type w.

The procedure is to construct the sequence of fuzzy relations {γk}k∈N, in
the following way:

(A1) In the first step we compute πw and we set γ1 = πw.
(A2) After the kth step let a fuzzy relation γk have been constructed.
(A3) In the next step we construct the fuzzy relation γk+1 by means of the

formula γk+1 = γk∧φ
w(γk).

(A4) Simultaneously, we check whether γk+1 = γk.
(A5) When we find the smallest number k such thatγk+1 =γk, the procedure

of constructing the sequence {γk}k∈N terminates, and we check whether
γk satisfies (w-1).
Ifγk satisfies (w-1), then it is the greatest simulation / bisimulation between
A and B of type w, and if γk does not satisfy (w-1), then there is no any
simulation /bisimulation between A and B of type w.

If the underlying structure of membership values L is locally finite, then
the algorithm terminates in a finite number of steps, for any fuzzy finite
automata over L . On the other hand, if L is not locally finite, then the
algorithm terminates in a finite number of steps under conditions determined
by Theorems 3.2 and 3.4.

Note that the claim of Theorem 3.4 referring to forward bisimulations,
i.e., the related part of Algorithm 5.3, is a straightforward generalization
of a well-known result concerning forward bisimulations between ordinary
nondeterministic automata, given in Kozen’s book [70, page 106]. Theorem

52 3 Computation of the greatest bisimulations

3.4 also generalizes recent results given in [21], which refer to all four types
of bisimulations between nondeterministic automata.

Next, we will consider the case when L = (L,∧,∨,⊗,→,0,1) is a complete
residuated lattice satisfying the following conditions:

x∨
(∧

i∈I

yi

)
=

∧

i∈I

(x∨ yi), (3.27)

x⊗
(∧

i∈I

yi

)
=

∧

i∈I

(x⊗ yi), (3.28)

for all x ∈ L and {yi}i∈I ⊆ L. Let us note that if L = ([0,1],∧,∨,⊗,→,0,1),
where [0,1] is the real unit interval and ⊗ is a left-continuous t-norm on
[0,1], then (3.27) follows immediately by linearity of L , and L satisfies
(3.28) if and only if ⊗ is a continuous t-norm, i.e., if and only if L is a BL-
algebra (cf. [4, 10]). Therefore, conditions (3.27) and (3.28) hold for every
BL-algebra on the real unit interval. In particular, the Łukasiewicz, Goguen
(product) and Gödel structures fulfill (3.27) and (3.28).

Under these conditions we have the following.

Theorem 3.6. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata,
let w ∈ { f s,bs, f b,bb, f bb,b f b}, let {γk}k∈N be the sequence of fuzzy relations from
R(A,B) defined by (3.26), and let

γ =
∧

k∈N

γk. (3.29)

If L is a complete residuated lattice satisfying (3.27) and (3.28), then the following
is true:

(a) γ is the greatest fuzzy relation in R(A,B) which satisfies (w-2) and (w-3);
(b) if γ satisfies (w-1), then it is the greatest fuzzy relation in R(A,B) which satisfies

(w-1), (w-2) and (w-3);
(c) if γ does not satisfy (w-1), then there is no any fuzzy relation in R(A,B) which

satisfies (w-1), (w-2) and (w-3).

Proof. We will prove only the case w = f s. All other cases can be proved
similarly.

So, let L be a complete residuated lattice satisfying (3.27) and (3.28). First,
notice that it has been shown in [27] that if (3.27) holds, then for all descending
sequences {xk}k∈N, {yk}k∈N ⊆ L we have

∧

k∈N

(xk∨ yk) =
(∧

k∈N

xk

)
∨

(∧

k∈N

yk

)
. (3.30)

(a) For arbitrary x ∈ X, a ∈ A and b ∈ B we have that

3.2. Computation of the greatest bisimulations 53

(∧

k∈N

(δB
x ◦γ

−1
k)

)
(b,a) =

∧

k∈N

(δB
x ◦γ

−1
k)(b,a) =

∧

k∈N

(∨

b′∈B

δB
x (b,b′)⊗γ−1

k (b′,a)
)

=
∨

b′∈B

(∧

k∈N

δB
x (b,b′)⊗γ−1

k (b′,a)

)
(by (3.30))

=
∨

b′∈B

(
δB

x (b,b′)⊗
(∧

k∈N

γ−1
k (b′,a)

))
(by (3.28))

=
∨

b′∈B

(
δB

x (b,b′)⊗γ−1(b′,a)
)
= (δB

x ◦γ
−1)(b,a),

which means that ∧

k∈N

δB
x ◦γ

−1
k = δ

B
x ◦γ

−1,

for every x ∈ X. The use of condition (3.30) is justified by the facts that
B is finite, and that {γ−1

k
(b′,a)}k∈N is a descending sequence, so {δB

x (b,b′)⊗
γ−1

k
(b′,a)}k∈N is also a descending sequence.

Now, for all x ∈ X and k ∈N we have that

γ 6 γk+1 6 φ
f s(γk) = [(δB

x ◦γ
−1
k)/δA

x]−1,

which is equivalent to
γ−1 ◦δA

x 6 δ
B
x ◦γ

−1
k .

As the last inequality holds for every k ∈N, we have that

γ−1 ◦δA
x 6

∧

k∈N

δB
x ◦γ

−1
k = δ

B
x ◦γ

−1,

for every x ∈X. Therefore, γ satisfies (f s-2). Moreover, γ 6 γ1 = π f s, so γ also
satisfies (f s-3).

Next, let α ∈ R(A,B) be an arbitrary fuzzy relation satisfying (f s-2) and
(f s-3). According to Theorem 3.1, α 6 φ f s(α) and α 6 π f s = γ1. By induction
we can easily prove that α 6 γk for every k ∈N, and therefore, α 6 γ. This
means that γ is the greatest fuzzy relation in R(A,B) which satisfies (f s-2)
and (f s-3).

The assertion (b) follows immediately from (a), whereas the assertion (c)
can be proved in the same way as the assertion (d) of Theorem 3.4.

In some situations we do not need simulations and bisimulations that
are fuzzy relations, but those that are ordinary crisp relations. Moreover,
in cases where our algorithms for computing the greatest simulations and
bisimulations fail to terminate in a finite number of steps, we can search for
the greatest crisp simulations and bisimulations. They can be understood as
a kind of “approximations” of the greatest fuzzy simulations and bisimu-

54 3 Computation of the greatest bisimulations

lations. Here we show that the above given algorithms for computing the
greatest fuzzy simulations and bisimulations can be modified to compute the
greatest crisp simulations and bisimulations. The new algorithms terminate
in a finite number of steps, independently of the properties of the under-
lying structure of truth values. In the next section we will give an example
which shows that the greatest crisp simulations and bisimulations can not be
obtained simply by taking the crisp parts of the greatest fuzzy simulations
and bisimulations. In fact, our example shows that there may be a fuzzy
simulation/bisimulation of a given type between two fuzzy automata, but
there is not any crisp simulation/bisimulation of this type between them.

Let A and B be non-empty finite sets, and let Rc(A,B) denote the set of all
crisp relations from R(A,B). It is not hard to verify that Rc(A,B) is a com-
plete sublattice of R(A,B), i.e., the meet and the join in R(A,B) of an arbitrary
family of crisp relations from Rc(A,B) are also crisp relations (in fact, they
coincide with the ordinary intersection and union of crisp relations). More-
over, for each fuzzy relation γ ∈R(A,B) we have that γc ∈Rc(A,B), where γc

denotes the crisp part of a fuzzy relation γ (in some sources called the kernel
of γ), i.e., a function γc : A×B→ {0,1} defined by γc(a,b) = 1, if γ(a,b) = 1,
and γc(a,b) = 0, if γ(a,b) < 1, for arbitrary a ∈ A and b ∈ B. Equivalently,
γc is considered as an ordinary crisp relation between A and B given by
γc = {(a,b) ∈ A×B | γ(a,b) = 1}.

For each functionφ : R(A,B)→R(A,B) we define a functionφc : Rc(A,B)→
Rc(A,B) by

φc(γ) = (φ(γ))c, for any γ ∈R
c(A,B).

If φ is isotone, then it can be easily shown that φc is also an isotone function.
We have that the following is true.

Proposition 3.1. Let A and B be non-empty finite sets, let φ : R(A,B)→R(A,B)
be an isotone function and let π ∈R(A,B) be a given fuzzy relation. A crisp relation
̺ ∈Rc(A,B) is the greatest crisp solution in R(A,B) to the system

χ 6 φ(χ), χ 6 π, (3.31)

if and only if it is the greatest solution in Rc(A,B) to the system

ξ 6 φc(ξ), ξ 6 πc, (3.32)

where χ is an unknown fuzzy relation and ξ is an unknown crisp relation.
Furthermore, a sequence {̺k}k∈N ⊆R(A,B) defined by

̺1 = π
c, ̺k+1 = ̺k∧φ

c(̺k), for every k ∈N, (3.33)

is a finite descending sequence of crisp relations, and the least member of this sequence
is the greatest solution to the system (3.32) in Rc(A,B).

Proof. The proof of this proposition can be obtained simply by translating the
proof of Theorem 5.8. [55] to the case of relations between the two sets.

3.3. Computational examples 55

Taking φ to be any of the functions φw, for w ∈ { f s,bs, f b,bb, f bb,b f b},
Proposition 3.1 gives algorithms for deciding whether there is a crisp sim-
ulation or bisimulation of a given type between fuzzy automata, and for
computing the greatest crisp simulations and bisimulations, when they ex-
ist. As we have seen in Proposition 3.1, these algorithms always terminate in
a finite number of steps, independently of the properties of the underlying
structure of truth values. However, as we have already mentioned, in the
next section we will give an example which shows that there may be a fuzzy
simulation/bisimulation of a given type between two fuzzy automata, and
there is not any crisp simulation/bisimulation of this type between them.

It is worth noting that functions (φw)c, for all w ∈ { f s,bs, f b,bb, f bb,b f b},
can be characterized as follows:

(a,b) ∈ (φ f s)c(̺) ⇔ (∀x ∈ X)(∀a′ ∈ A)δA
x (a,a′) 6 (δB

x ◦̺
−1)(b,a′),

(a,b) ∈ (φbs)c(̺) ⇔ (∀x ∈ X)(∀a′ ∈ A)δA
x (a′,a) 6 (̺◦δB

x)(a′,b),

(φ f b)c(̺) = (φ f s)c(̺)∧ [(φ f s)c(̺−1)]−1, (φbb)c(̺) = (φbs)c(̺)∧ [(φbs)c(̺−1)]−1,

(φ f bb)c(̺) = (φ f s)c(̺)∧ [(φbs)c(̺−1)]−1, (φb f b)c(̺) = (φbs)c(̺)∧ [(φ f s)c(̺−1)]−1,

for all ̺ ∈Rc(A,B), a ∈ A and b ∈ B.

3.3. Computational examples

In this section we give examples which demonstrate the application of our
algorithms and clarify relationships between different types of simulations
and bisimulations.

The first example demonstrates the case when there are all types of sim-
ulations and bisimulations, but there is not any crisp bisimulation between
two given automata.

Example 3.1. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be automata over
the Gödel structure and an alphabet X = {x, y}, with |A|= 3, |B|= 2, and fuzzy
transition relations and fuzzy sets of initial and terminal states which are
represented by the following fuzzy matrices and vectors:

σA =
[
1 1 1

]
, δA

x =

1 0.3 0.4
0.5 1 0.3
0.4 0.6 0.7

 , δA

y =

0.5 0.6 0.2
0.6 0.3 0.4
0.7 0.7 1

 , τA =

1
1
1

 , (3.34)

σB =
[
1 1

]
, δB

x =

[
1 0.6

0.6 0.7

]
, δB

y =

[
0.6 0.6
0.7 1

]
, τB =

[
1
1

]
. (3.35)

Using algorithms based on Theorem 3.4 we obtain that there are all types of
simulations and bisimulations between fuzzy automata A and B, and the
greatest simulations and bisimulations are given by matrices

56 3 Computation of the greatest bisimulations

γ f s =

1 0.7
1 0.7

0.6 1

 , γbs =

1 0.7
1 0.7

0.7 1

 ,

γ f b =

1 0.6
1 0.6

0.6 1

 , γbb =

1 0.7
1 0.7

0.7 1

 , γ f bb =

1 0.7
1 0.7

0.6 1

 , γb f b =

1 0.6
1 0.6

0.7 1

 .

On the other hand, using the version of the algorithms for crisp simulations
and bisimulations, we obtain that there is not any crisp bisimulation between
fuzzy automata A and B.

The second example demonstrates the case when there are is a forward
bisimulation, but there is not any other type of bisimulations between two
given automata.

Example 3.2. Let us change σA in (3.34) and σB in (3.35) to

σA =
[
0 1 0

]
, σB =

[
1 0.5

]
.

Then the greatest forward bisimulation between fuzzy automata A and B

is given by

γ f b =

1 0.6
1 0.6

0.6 1

 ,

but there are no bisimulations of any other type between A and B.

Due to the duality between forward and backward bisimulations, it is pos-
sible to construct automata between which there is a backward bisimulation,
but there is not any other type of bisimulations.

We can also give an example which demonstrates the case when there
are is a backward-forward bisimulation, but there is not any other type of
bisimulations between two given automata.

Example 3.3. Let us change σA in (3.34) and σB in (3.35) to

σA =
[
0 0 1

]
, σB =

[
0.7 1

]
.

Then the greatest backward-forward bisimulation between fuzzy automata
A and B is given by

γb f b =

1 0.6
1 0.6

0.7 1

 ,

but there are no bisimulations of any other type between A and B.

Due to the duality between backward-forward and forward-backward
bisimulations, it is possible to construct automata between which there is a
backward bisimulation, but there is not any other type of bisimulations.

3.3. Computational examples 57

Next, we give an example which demonstrates the case when there is not
any type of simulations and bisimulations between two given automata.

Example 3.4. Let us change σA in (3.34) and σB in (3.35) to

σA =
[
1 0 0

]
, σB =

[
0.5 1

]
.

Then there are no simulations and bisimulations of any type between A and
B.

The following example considers the case (over the product structure)
when the sequence of fuzzy relations defined by (3.26) is infinite, and its
intersection is the greatest forward bisimulation between the given fuzzy
automata.

Example 3.5. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be automata over
the Goguen (product) structure and an alphabet X = {x}, with |A| = 3, |B| = 2,
and fuzzy transition relations and fuzzy sets of initial and terminal states
which are represented by the following fuzzy matrices and vectors:

σA =
[
1 1 1

]
, δA

x =

1 1 0
1 1 0
0 0 1

2

 , τA =

1
1
1

 , σB =

[
1 1

]
, δB

x =

[
1 0
0 1

2

]
, τB =

[
1
1

]
.

Computing the sequence {γk}k∈N for forward bisimulations by the formula
(3.26) (w = f b) we obtain that

γk =

1 1
2k−1

1 1
2k−1

1
2k−1 1

, for each k ∈N, γ =

∧

k∈N

γk =

1 0
1 0
0 1

 .

According to Theorem 3.6, γ is the greatest forward bisimulation between
fuzzy automata A and B.

The last example shows that the finiteness of the subalgebra 〈Im(πw)∪⋃
x∈X(Im(δA

x)∪ Im(δB
x))〉 of L , which appears as an assumption in Theorem

3.4, is sufficient for the finiteness of the sequence defined by (3.26), but it is
not necessary.

Example 3.6. Let us change σA, σB, τA and τB in the previous example to

σA =
[
1 1 0

]
, σB =

[
1 0

]
, τA =

1
1
0

 , τB =

[
1
0

]
.

Computing the fuzzy relations γk, k ∈N, using the formula (3.26), we obtain
that

58 3 Computation of the greatest bisimulations

γ1 = γ2 =

1 0
1 0
0 1

 ,

and it is the greatest greatest forward bisimulation between fuzzy automata
A and B.

On the other hand, we have that the subalgebra 〈Im(πw)∪Im(δA
x)∪Im(δB

x)〉
of L is not finite, since it contains 1

2k , for every k ∈N.

Chapter 4

Weak bisimulation for fuzzy automata

In the case of nondeterministic and fuzzy automata the problem of express-
ing the language equivalence in terms of relationships between states of
given automata is very complicated, and we can only examine different ap-
proximations of the language-equivalence. The problem of language equiv-
alence of fuzzy automata was first studied by Santos in [111, 112], where he
considered equivalence of finite max-min fuzzy automata and max-product
fuzzy automata. The equivalence problem for fuzzy automata with mem-
bership degrees in a bounded chain was studied by Peeva [95], where she
considered various special equivalence problems and provided their algo-
rithmic decidability. Later, equivalence of fuzzy automata over complete
residuated lattice was discussed by Xing et al. in [128].

Although, the bisimulations, introduced in Chapter 2, are shown to be a
very good means for approximating the language equivalence between two
fuzzy automata, there exist fuzzy automata which are language equivalent
but there is no any type of bisimulation between them. In order to more
precisely describe the class of all relations between the states of fuzzy au-
tomata, which preserve the language equivalence, the more general class of
bisimulation is introduced.

The fundamental goal of this chapter is to define two new kinds of
bisimulations, weak forward and backward bisimulations, which provide
better approximations of the language-equivalence than forward and back-
ward bisimulations. Moreover the weak simulations and bisimulations pro-
vide better results in the reduction of the states of fuzzy automata.

Because of the fact that every bisimulation is primarily a simulation, in the
Section 4.1. the notion of weak forward and backward simulation will be in-
troduced and some fundamental properties will be discussed. It is important
to mention, that weak forward(backward) simulation is generalization of the
notion of forward(backward) simulation. It will be shown that the existence
of weak forward (backward) simulation between two automata implies lan-
guage inclusion between them. The procedures for deciding whether there

59

60 4 Weak bisimulation for fuzzy automata

exist weak forward and backward simulations, and for computing the great-
est ones, whenever they exist will be presented(Theorem 4.2).

Afterwards, in Section 4.2. the notion of weak forward and backward
bisimulations will be given and their main features will be considered. The
weak bisimulations approximate the language equivalence better then weak
simulations, that is, the existence of weak forward (backward) bisimulation
between two automata implies their language equivalence. The example
showing that weak forward bisimulations are better means for modeling
the language equivalence between fuzzy automata than forward bisimula-
tions will be presented(Example 4.2). In the same section, the procedure for
computing the greatest weak bisimulations will be proposed(Theorem 4.5).
Further, a weak forward bisimulation from a fuzzy automaton A into itself,
called a weak forward bisimulation on A will be discussed. In the class of
all weak forward bisimulations on A , the special attention will be dedicate
to these which are equivalences. The example showing fuzzy automata for
which the reduction by means of the greatest weak forward bisimulation
equivalence gives better results than one obtained by means of the greatest
forward bisimulation equivalence will be given(Example 4.3).

In the Section 4.3., weak bisimulations will be studied in conjunction
with the concept of a uniform fuzzy relation, which has been introduced in
[20], and further developed in [22]. In particular, it will be shown that two
fuzzy automata A and B are weak forward bisimulation equivalent, i.e.,
there is a uniform weak forward bisimulation between them, if and only
if there is a weak forward isomorphism between the factor fuzzy automata
with respect to the greatest weak forward bisimulation equivalences on A

and B (Theorem 4.14). An analogous theorem can be proved for weak back-
ward bisimulation equivalent fuzzy automata. Also, uniform weak back-
ward and forward bisimulations between two fuzzy automata in terms of
isomorphisms between their Nerode and reverse Nerode automata will be
characterized(Theorem 4.13).

In the Section 4.4. the weak forward bisimulation equivalence between
fuzzy automata will be discussed.

The results from this chapter are published in [64].
All results in this chapter are original and are closely associated with the

results of Ćirić, Ignjatović and Damljanović [20, 21, 22].

4.1. Weak simulation for fuzzy automata

Let A = (A,δA,σA,τA) be a fuzzy automaton. For all u ∈ X∗, we define fuzzy
sets σA

u ,τ
A
u ∈F (A) as follows:

σA
u (a) =

∨

b∈A

σA(b)⊗ δA
u (b,a), τA

u (a) =
∨

b∈A

δA
u (b)⊗τA(b,a),

4.1. Weak simulation for fuzzy automata 61

i.e.,
σA

u = σ
A ◦δA

u , τA
u = δ

A
u ◦τ

A.

It is worth noting that fuzzy sets σA
u (u ∈ X∗) play the key role in the deter-

minization of the fuzzy automaton A (cf., e.g., [53, 56]), and consequently,
fuzzy sets τA

u (u ∈ X∗) are used in the determinization of the reverse fuzzy
automaton of A .

Moreover, for each a ∈ A the left fuzzy language of the state a and the right
fuzzy language of the state a are a fuzzy languages σa,τa : X∗→ L defined by:

σA
a (u) =

∨

b∈A

σA(b)◦δA
u (b,a), τa(u) =

∨

b∈A

δA
u (a,b)⊗τ(b) u ∈ X∗.

It can easily be shown that, for every u ∈ X∗ and a ∈ A:

σa(u) = σu(a), τa(u) = τu(a). (4.1)

Further, let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata. A
fuzzy relation ϕ ∈R(A,B) which is a solution to the system of fuzzy relation
inequalities:

σA
6 σB ◦ϕ−1 (4.2)

ϕ−1 ◦τA
u 6 τ

B
u u ∈ X∗ (4.3)

is called a weak forward simulation, and if ϕ is a solution to

τA
6 ϕ◦τB (4.4)

σA
u ◦ϕ 6 σ

B
u u ∈ X∗ (4.5)

then it is called a weak backward simulation.
Weak forward and weak backward simulations are generalization of the

notion of forward and backward simulations introduce in [22].
For the sake of simplicity, we will call ϕ just a weak simulation if it is

either a weak forward or a weak backward simulation.

Lemma 4.1. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata and
ϕ ∈R(A,B) a fuzzy relation, then the following holds:

Ifϕ is a forward(resp. backward) simulation, thenϕ is a weak forward(resp. back-
ward) simulation.

Proof. Let ϕ be a forward simulation, i.e. ϕ satisfies (fs-1)-(fs-3). Thus, (4.2)
holds and for u = ε (4.3) holds. Now, let (4.3) hold, for all words u = x1 . . .xn ∈

X∗ of length n ∈N. For k = n+ 1 consider a word u ∈ X∗ of length k, that is
u = vx where x ∈ X and v ∈ X∗ is a word of length n. We have

ϕ−1 ◦τA
u = ϕ

−1 ◦δA
x ◦τ

A
v 6 δ

B
x ◦ϕ

−1 ◦τA
v 6 δ

B
x ◦τ

B
v = τ

B
xv = τ

B
u .

Hence, by induction we have shown thatϕ is a weak forward simulation.

62 4 Weak bisimulation for fuzzy automata

Theorem 4.1. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata
and ϕ ∈R(A,B) a fuzzy relation. If ϕ is a weak simulation, then ‖A‖ 6 ‖B‖.

Proof. Let ϕ be a weak forward simulation between the automata A and
B.Then ϕ satisfies (4.2) and (4.3), so for every u ∈ X∗, we have

‖A‖(u) = σA ◦δA
u ◦τ

A = σA ◦τA
u 6 σ

B ◦ϕ−1 ◦τA
u 6 σ

B ◦τB
u = σ

B ◦δB
u ◦τ

B = ‖B‖(u)

Therefore, ‖A‖(u) 6 ‖B‖(u) for any u ∈ X∗.

The following lemma can be easily proved using the definition of weak
forward and backward simulations and the reverse fuzzy automaton.

Lemma 4.2. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata. A
fuzzy relationϕ ∈R(A,B) is a weak backward simulation between automata A and
B if and only if ϕ is a weak forward simulation between the reverse fuzzy automata

¯A and B̄.

From this lemma, we conclude that for any statement on weak forward
simulations which is universally valid (for all fuzzy automata) there is
the corresponding universally valid statement on weak backward simu-
lations. Accordingly, we will deal only with weak forward simulations.

It can be easily shown that the following holds.

Lemma 4.3. The composition of two weak forward simulations and the union of an
arbitrary family of weak forward simulations is also weak forward simulation.

The following theorem gives a way to decide whether there is a weak
forward simulation between two automata, and whenever it exists, provides
a method to construct the greatest one.

Theorem 4.2. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata,
and let ϕ ∈R(A,B) be a fuzzy relation defined by:

ϕ(a,b) =
∧

u∈X∗

τA
u (a)→ τB

u(b)

for every a ∈ A,b ∈ B. If ϕ satisfies (4.2), then it is the greatest weak forward
simulation from A to B, otherwise, if ϕ does not satisfy (4.2), then there is no weak
forward simulation from A to B.

Proof. Let ϕ satisfies (4.2) and let ψ ∈ R(A,B) be arbitrary solution to (4.3).
Then, ∨

a∈A

ψ−1(b,a)⊗τA
u (a) 6 τB

u(b) u ∈ X∗

that is,
ψ−1(b,a)⊗τA

u (a) 6 τB
u(b) u ∈ X∗

for each a ∈ A and b ∈ B. By adjunction property, we have

4.1. Weak simulation for fuzzy automata 63

ψ−1(b,a) 6 τA
u (a)→ τB

u(b) u ∈ X∗

for each a ∈ A and b ∈ B. So,

ψ−1(b,a) 6
∧

u∈X∗

τA
u (a)→ τB

u(b) = ϕ(a,b) a ∈ A,b ∈ B

i.e.,
ψ(a,b) 6 ϕ(a,b) a ∈ A,b ∈ B.

Thus, a fuzzy relationψ is a solution to (4.3) if and only ifψ6ϕ. Accordingly,
ϕ is the greatest solution to (4.3) and therefore it is the greatest weak forward
simulation from A to B.

Suppose that ϕ does not satisfy (4.2). And assume the opposite, that is, let
ψ be an weak forward simulation from A to B. But, then we have

σA
6 σB ◦ψ−1

6 σB ◦ϕ−1

which contradicts the factϕ does not satisfy (4.2). So, we conclude that there
is no weak forward simulation from A to B.

By the Theorem 4.5, in order to compute the greatest weak forward sim-
ulation, we need to compute all fuzzy sets τA

u and τB
u , for u ∈ X∗. In other

words, we need to determine all the states of the reverse Nerode automata
¯AN and B̄N, which can be exponential in the number of states of A and B,

or even infinite.
The next algorithm gives method for construction of the set {τv,v ∈ X∗}:

Algorithm 4.3 (Construction of the set {τv,v ∈ X∗}) The input of this algorithm
is a fuzzy automaton A = (A,δ,σ,τ) over X and L, and the output is the set
{τv,v ∈ X∗} of all the fuzzy sets τv, v ∈ X∗. It is constructed inductively in
the following way:

(T1) First we put τε = τ, and we set T0 = {τε}.
(T2) After the i-th step let the set Ti have been constructed, and elements in

Si have been labeled either ’closed’ or ’non-closed’. The meaning of these
two terms will be made clear in the sequel,

(T3) In the succeeding step we make the set Ti+1 by enriching the set Ti as
follows: for every non-closed element τu occurring in Ti, where u ∈X∗, and
every x ∈ X we add an element τxu = δx ◦τu. In the case, τxu is an element
that has already been constructed, we label τxu as closed. The procedure
terminates when all elements are marked closed,

(T4) The resulting set is the set {τv,v ∈ X∗}.

Although, this procedure works in exponential time, in many cases com-
putation of the set {τv,v ∈ X∗} performs more quickly than its worst case
complexity would suggest.

64 4 Weak bisimulation for fuzzy automata

4.2. Weak bisimulation for fuzzy automata

Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata. A fuzzy
relation ϕ ∈R(A,B) is a weak forward bisimulation if both ϕ and ϕ−1 are weak
forward simulations, i.e., if ϕ satisfies (4.2), (4.3) and

σB
6 σA ◦ϕ (4.6)

ϕ◦τB
u 6 τ

A
u u ∈ X∗, (4.7)

and ϕ is called weak backward bisimulation if it satisfies (4.5), (4.4) and

τB
6 ϕ−1 ◦τA (4.8)

σB
u ◦ϕ

−1
6 σA

u u ∈ X∗ (4.9)

i.e., if both ϕ and ϕ−1 are weak backward simulations.
These concepts generalize the notions of bisimulations for fuzzy automata

[22].
The notions of weak simulations and bisimulations were used in a dif-

ferent context in the study of labeled transition systems with ε-transitions
(or silent transitions). However, these concepts differ from our weak simu-
lations and bisimulations. In fact, a weak simulation (bisimulation) between
transition systems A and B is an ordinary (forward) simulation (bisimula-
tion) between A and the transition system obtained from B by removing
ε-transitions.

To simplify, we will call ϕ just a weak bisimulation if it is either a weak
forward or a weak backward bisimulation.

The proof of the following lemma is similar to the proof of the Lemma 4.1
and it will be omitted.

Lemma 4.4. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata and
ϕ ∈R(A,B) a fuzzy relation, then if ϕ is a forward(resp. backward) bisimulation,
then ϕ is a weak forward(resp. backward) bisimulation.

However, the converse does not hold in general.

Example 4.1. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be automata over
Boolean structure with |A|= 4 and |B|= 2 and X= {x, y}, given by the following
graphs:

a2a1

a3 a4

y

x x

x

x

x

A

b2b1
x, y

x

B

4.2. Weak bisimulation for fuzzy automata 65

In terms of Boolean matrices and vectors these automata are given by:

σA =
[
1 0 0 0

]
, δA

x =

0 0 1 0
0 0 1 1
0 1 0 0
0 0 1 0

, δA

y =

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, τA =

0
1
1
0

.

σB =
[
1 0

]
, δB

x =

[
0 1
0 1

]
, δB

y =

[
0 1
0 0

]
, τB =

[
0
1

]
.

Automata A and B are language equivalent, moreover ‖A‖ = ‖B‖= (x+ y)x∗.
The fuzzy relation µ defined by the following matrix:

µ =

1 0
0 1
0 1
0 0

satisfies conditions (4.2), (4.3), (4.6) and (4.7).Hence µ is a weak forward
bisimulation between A and B. Since µ does not satisfies (f b-2), it is not a
forward bisimulation between A and B.

It is important to mention that according to the Lemma 4.2, for every
assertion on weak forward bisimulations which is globally valid there is
the corresponding globally valid assertion on weak backward bisimula-
tions. Therefore, we will deal only with weak forward bisimulations.

Theorem 4.4. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata
and ϕ ∈R(A,B) a fuzzy relation. If ϕ is a weak bisimulation, then ‖A‖ = ‖B‖.

The proof of the previous Theorem is analogue to the proof of the Theorem
4.1.

It can be easily shown that the following holds.

Lemma 4.5. The composition of two weak forward bisimulations and the union of an
arbitrary family of weak forward bisimulations is also weak forward bisimulations.

Moreover, the inverse of a weak forward bisimulation is a weak forward bisimu-
lation.

According to this result, we have the following.

Lemma 4.6. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata
such that there exists at least one weak forward bisimulation from A to B. Then
there exists the greatest weak forward bisimulation from A to B, which is a partial
fuzzy function.

Proof. Let {ϕi}i∈I ∈R(A,B) be family of all weak forward bisimulations from
A to B. Denote ϕ=

∨
i∈Iϕi. According to the previous lemma,ϕ is also weak

forward bisimulation, and it is the greatest one. In order to prove that ϕ is a

66 4 Weak bisimulation for fuzzy automata

partial fuzzy function, we will show ϕ◦ϕ−1 ◦ϕ 6 ϕ. Denote η = ϕ◦ϕ−1 ◦ϕ.
Then for every u ∈ X∗ we have

η◦τB
u = ϕ◦ϕ

−1 ◦ϕ◦τB
u 6 ϕ◦ϕ

−1 ◦τA
u 6 ϕ◦τ

B
u 6 τ

A
u

And similarly, (4.2),(4.3) and (4.6) holds. Therefore, η is a weak forward
bisimulation from A to B. Hence, η6ϕ, andϕ is a partial fuzzy function.

The following theorem gives the procedure for computing the greatest
weak forward bisimulations, whenever it exists.

Theorem 4.5. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata,
and let ϕ ∈R(A,B) be a fuzzy relation defined by:

ϕ(a,b) =
∧

u∈X∗

τA
u (a)↔ τB

u(b), (4.10)

for every a ∈A,b ∈B. Ifϕ satisfies (4.2) and (4.6), then it is the greatest weak forward
bisimulation from A to B, and it is a partial fuzzy function, otherwise, there is no
weak forward bisimulation from A to B.

Proof. This theorem can be proved similarly as Theorems 4.6 and 4.2.

According to (4.1) and (4.11), the greatest weak forward bisimulation can
be presented as:

ϕ(a,b) =
∧

u∈X∗

τA
a (u)↔ τB

b (u). (4.11)

Therefore, the greatest weak forward bisimulation between two fuzzy au-
tomata can be interpreted as a measure of the degrees of equality of the right
languages.

Although the greatest weak bisimulations provide better approximation
of the language-equivalence and better reductions than the ordinary bisim-
ulations, their computation can be computationally hard. But in a lot of
instances this method terminates in acceptable number of steps.

Example 4.2. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be automata over
the Boolean structure with X = {x}, |A|= 4 and |B|= 2. The fuzzy transition re-
lations and fuzzy sets of initial and terminal states are given by the following
Boolean matrices and vectors:

σA =
[
0 1 0 0

]
, δA

x =

1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

, τA =

0
0
1
0

, σB =

[
1 0

]
, δB

x =

[
1 0
1 0

]
, τB =

[
0
1

]
.

In order to compute the greatest weak forward bisimulation using the for-
mula (4.10) we compute τA

u ↔ τB
u , for every u ∈ X∗:

4.2. Weak bisimulation for fuzzy automata 67

τA
e ↔ τB

e =

1 0
1 0
0 1
1 0

, τA

xi ↔ τB
xi =

1 1
1 1
1 1
1 1

,

for every i ∈N. Therefore, we obtain:

ϕ =

1 0
1 0
0 1
1 0

.

Moreover, we can easily check thatϕ satisfies both (4.2) and (4.6). Now, by
Theorem 4.5, ϕ is the greatest weak forward bisimulation between automata
A and B. On the other hand, using Algorithm 3.5 in Chapter 3, we obtain
that there is no forward bisimulation between A and B. Since ϕ is complete
and surjective (i.e., it is a uniform fuzzy relation), we have that A and B are
WFB-equivalent, but they are not FB-equivalent. If we change σA and σB to

σA =
[
0 0 1 0

]
, σB =

[
1 1

]
,

then the fuzzy relation ϕ does not satisfy (4.6). In this case there is no weak
forward bisimulation between A and B. Nevertheless, for any u ∈ X∗ we
have

‖A‖(u) = ‖B‖(u) =

1 if u = ε,

0 otherwise.

Therefore, fuzzy automata A and B are language-equivalent.

In the previous example, for given fuzzy automata, there exists a weak
forward bisimulation between them, i.e. the fuzzy automata are language
equivalent, whereas there is no forward bisimulation. In other words, weak
forward bisimulations are better means for modeling the language equiva-
lence between fuzzy automata than forward bisimulations.

Next, consider an arbitrary fuzzy automaton A = (A,δA,σA,τA). A weak
forward bisimulation from A into itself will be called a weak forward bisimu-
lation on A (analogously we define weak backward bisimulations on A). Since
the equality relation is a weak forward bisimulation on A , the set of all weak
forward bisimulations on A is non-empty. Moreover, according to Theorem
4.5 there is the greatest weak forward bisimulation on A, and we can easily
show that it is a fuzzy equivalence.

Weak forward bisimulations on A which are equivalences will be called
weak forward bisimulation equivalences. The set of all weak forward bisim-
ulation equivalences on A we denote by E w f b(A).

Theorem 4.6. Let A = (A,δA,σA,τA) be a fuzzy automaton. A fuzzy equivalence
E on A is a weak forward bisimulation on A if and only if:

68 4 Weak bisimulation for fuzzy automata

E◦τA
u 6 τ

A
u , u ∈ X∗, (4.12)

or equivalently,

E◦τA
u = τ

A
u , u ∈ X∗.

Proof. Let E be a fuzzy equivalence on A, which satisfies (4.12). Obviously, E
satisfies (4.7). E is a reflexive and therefore it satisfies (4.2) and (4.6). Moreover,
since E is a symmetric fuzzy relation we can easily show that (4.3) holds.
Therefore, E is a weak forward bisimulation on A .

Conversely, if E is a weak forward bisimulation equivalence then (4.12)
holds.

In an analogous way as in the previous theorem, we can show that a fuzzy
equivalence E on A is a weak backward bisimulation on A if and only if the
following holds:

σA
u ◦E 6 σA

u , u ∈ X∗, (4.13)

or equivalently,
σA

u ◦E = σA
u , u ∈ X∗. (4.14)

Theorem 4.7. Let A = (A,δA,σA,τA) be a fuzzy automaton.
The set E w f b(A) of all weak forward bisimulation fuzzy equivalence relations on

A forms a principal ideal of the lattice E (A) of all fuzzy equivalences on A generated
by the relation Ew f b on A defined by

Ew f b(a,b) =
∧

u∈X∗

τA
u (a)↔ τA

u (b), a,b ∈ A. (4.15)

Proof. Evidently, Ew f b is a fuzzy equivalence. Also, according to Theorem 4.5,
Ew f b is the greatest forward bisimulation from A into itself. Next, let E ∈ E (A)
such that E6 Ew f b. Then for every u ∈X∗, we have that E◦τA

u 6 Ew f b ◦τA
u 6 τ

A
u .

Hence, E ∈ E w f b(A).
Conversely, let E ∈ E w f b(A). Hence, E satisfies (4.12). In a similar way, as

in the proof of Theorem 4.2, we show that (4.12) is equivalent to E 6 Ew f b.
Therefore, E 6 Ew f b if and only if E ∈ E w f b(A).

The next example shows that there are automata whose greatest weak
forward bisimulation equivalence is strictly greater than the greatest forward
bisimulation equivalence and the reduction by means of this equivalence
gives better results than one obtained by means of the greatest forward
bisimulation equivalence.

Example 4.3. Let A = (A,δA,σA,τA) be an automaton over the Boolean struc-
ture with X = {x, y} and |A|= 5. The fuzzy transition relation and fuzzy sets of
initial and terminal states are given by the following Boolean matrices and
vectors:

4.2. Weak bisimulation for fuzzy automata 69

σA =
[
1 1 0 0 0

]
, δA

x =

1 0 0 0 0
0 0 0 1 1
0 0 0 0 0
1 0 0 0 0
1 1 0 0 0

, δA

y =

1 0 1 0 0
0 1 0 0 0
0 0 1 0 1
0 1 0 0 0
0 0 0 0 1

, τA =

1
0
1
0
1

.

Computing the fuzzy relation E ∈R(A) using formula (4.15), we obtain:

E =

1 0 0 0 1
0 1 0 1 0
0 0 1 0 0
0 1 0 1 0
1 0 0 0 1

,

and by Theorem 4.7, E is the greatest weak forward bisimulation equivalence
on A . However, the greatest forward bisimulation equivalence on A is a
fuzzy relation F ∈R(A) given by:

F =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

.

Clearly, E is strictly larger than F.

a3

a1

a4

a5

a2

y

x

x

y

x

x

x

y
x, y y

y y

Thus, the first and the fifth state of A , as well as the second and the fourth
state, are equivalent w.r.t. the greatest weak forward bisimulation E, but
there are no states equivalent w.r.t. the greatest forward bisimulation F. This
means that the greatest weak forward bisimulation reduce the number of
states of A to three states, whereas the greatest forward bisimulation does
not reduce the number of states.

70 4 Weak bisimulation for fuzzy automata

b2b1

b3

x

xy
y

x, y x, y

y A /E
Although the reduction of fuzzy automata by means of the greatest weak

forward bisimulations is in general better than one obtained by means of the
greatest forward bisimulations, this reductions does not produce a minimal
fuzzy automata.

Example 4.4. Consider automaton A from Example 4.1. The greatest weak
bisimulation on A is given by the following matrix:

ϕ =

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

.

The reduction of the automaton A by means of ϕ gives the factor fuzzy
automaton A /ϕ that has three states.

Consider now, the equivalence relation E on A defined by:

E =

1 0 0 0
0 1 1 1
0 1 1 1
0 1 1 1

.

The reduction of the automaton A by means of this equivalence gives the
factor fuzzy automaton A /E that has two states and ‖A‖ = L(A /E) (A /E is
equal to automaton B in Example 4.1).

a2a1

a3

x, y

x

x

x

A /ϕ

b2b1
x, y

x

A /E

4.3. Uniform weak bisimulations 71

As previous example suggests there exist fuzzy automata where reduction
by means of some other fuzzy equivalences gives better result then one
obtained by means of the greatest weak forward bisimulation.

4.3. Uniform weak bisimulations

In this section, we will consider weak forward and backward bisimulations
which are uniform fuzzy relations.

Theorem 4.8. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata,
and let ϕ ∈R(A,B) be a uniform fuzzy relation. Then, ϕ is a weak forward bisimu-
lation if and only if following holds:

σA ◦ϕ◦ϕ−1 = σB ◦ϕ−1, σB ◦ϕ−1 ◦ϕ = σA ◦ϕ, (4.16)

ϕ−1 ◦τA
u = τ

B
u , ϕ◦τB

u = τ
A
u , u ∈ X∗. (4.17)

Proof. Letϕ be a weak forward bisimulation between A and B. By (4.2) and
(4.6) we have that:

σA ◦ϕ◦ϕ−1
6 σB ◦ϕ−1 ◦ϕ◦ϕ−1 = σB ◦ϕ−1

6 σA ◦ϕ◦ϕ−1,

so σA ◦ϕ ◦ϕ−1 = σB ◦ϕ−1. Analogously, σB ◦ϕ−1 ◦ϕ = σA ◦ϕ. Moreover, as
ϕ−1 ◦ϕ is reflexive, for each u ∈ X∗ we have that

τA
u 6 ϕ◦ϕ

−1 ◦τA
u 6 ϕ◦τ

B
u 6 τ

A
u ,

and hence, ϕ◦τB
u = τ

A
u . In a similar way we show that ϕ−1 ◦τA

u = τ
B
u , for each

u ∈ X∗.
Conversely, let (4.16) and (4.17) hold. According to reflexivity of ϕ ◦ϕ−1

and ϕ−1 ◦ϕ we have

σA
6 σA ◦ϕ◦ϕ−1 = σB ◦ϕ−1, σB

6 σB ◦ϕ−1 ◦ϕ = σA ◦ϕ.

Therefore, (4.2) and (4.6) hold. Further, directly from (4.17), we conclude that
(4.3) and (4.7) hold. Thus ϕ is a weak forward bisimulation.

Lemma 4.7. Let A = (A,δA,σA,τA) be a fuzzy automaton, let E be a fuzzy equiv-
alence on A , and A /E = (A/E,δA/E,σA/E,τA/E) be the factor fuzzy automaton of
A w.r.t E. If E is a weak forward bisimulation, then

τA/E
u (Ea) = τA

u (a), u ∈ X∗,a ∈ A. (4.18)

Proof. This follows immediately from the definition of τA/E
u and the fact that

E is a weak forward bisimulation equivalence on A .

72 4 Weak bisimulation for fuzzy automata

Theorem 4.9. Let A = (A,δA,σA,τA) be a fuzzy automaton, E a fuzzy equivalence
on A , ϕE the natural function from A to A/E and A /E = (A/E,δA/E,σA/E,τA/E)
the factor fuzzy automaton of A w.r.t E.

Then, E is a weak forward bisimulation equivalence on A if and only if ϕE is a
weak forward bisimulation.

Proof. Let E be a weak forward bisimulation equivalence on A . According
to the previous lemma, for arbitrary a ∈ A and u ∈ X∗ we have:

ϕE ◦τ
A/E
u (a) =

∨

b∈A

ϕE(a,Eb)⊗τA/E
u (Eb) =

∨

b∈A

E(a,b)⊗τA
u (b) = E◦τA

u (a) = τA
u (a),

and also,

σA(a) 6 σA ◦E◦E(a)=
∨

b∈A

σA ◦E(b)⊗E(b,a)=
∨

b∈A

σA/E(Eb)⊗ϕE(a,Eb) =

=
∨

b∈A

σA/E(Eb)⊗ϕ−1
E (Eb,a) = σA/E ◦ϕ−1

E (a).

In a similar way we prove that ϕ−1
E
◦τA

u 6 τ
A/E
u , for each u ∈ X∗, and σA/E

6

σA ◦ϕE. Thus, ϕE is a weak forward bisimulation.
Conversely, let ϕE be a weak forward bisimulation. Now, for arbitrary

u ∈ X∗ and a ∈ A we have that

E◦τA
u (a) = τA/E

u (Ea) = ϕE(a,Ea)⊗τA/E
u (Ea) 6 ϕE ◦τ

A/E
u (a) = τA

u (a).

Therefore, E is a weak forward bisimulation equivalence on A .

Let A = (A,δA,σA,τA) and B= (B,δB,σB,τB) be fuzzy automata. A bijective
function φ of A onto B is called a weak forward isomorphism of fuzzy automata
A and B if

σA(a) = σB(φ(a)), a ∈ A, (4.19)

τA
u (a) = τB

u(φ(a)), a ∈ A,u ∈ X∗, (4.20)

and a weak backward isomorphism of fuzzy automata A and B if

σA
u (a) = σB

u(φ(a)), a ∈ A,u ∈ X∗, (4.21)

τA(a) = τB(φ(a)), a ∈ A. (4.22)

The notion of a weak forward(backward) isomorphism generalizes the
notion of an isomorphism between fuzzy automata, that is, the following is
true:

Lemma 4.8. Any isomorphism between two fuzzy automata is also a weak forward
and a weak backward isomorphism between these automata.

4.3. Uniform weak bisimulations 73

Proof. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB), and let φ : A→ B be an
isomorphism between A and B. Then φ satisfies (4.19). Next, according to
(2.7) and the fact that φ is a bijection from A to B, for every u ∈ Xx and a ∈ A,
we have:

τA
u (a) = δA

u ◦τ
A(a) =

∨

c∈A

(δA
u (c,a)⊗τA(a)) =

∨

c∈A

(δB
u(φ(c),φ(a))⊗τB(φ(a))) =

=
∨

φ(c)∈B

(δB
u(φ(c),φ(a))⊗τB(φ(a))) = δB

u ◦τ
B(φ(a)) = τB

u(φ(a)).

Hence, φ satisfies (4.20) and consequently φ is a weak forward isomorphism
from A to B. In an analogous way, we prove that φ is a weak backward
isomorphism.

Moreover, we have:

Lemma 4.9. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB). If there exists a weak
forward isomorphism of fuzzy automata A and B, then ‖A‖ = ‖B‖.

Proof. Let φ : A→ B be a weak forward isomorphism. Then for every u ∈ X∗

we have

L(A)(u) = σA ◦τA
u =

∨

a∈A

σA(a)⊗τA
u (a) =

∨

a∈A

σB(φ(a))⊗τB
u(φ(a)) =

=
∨

b∈B

σB(b)⊗τB
u(b) = σB ◦τB

u = L(B)(u),

which was to be proved.

We can easily prove the following lemma.

Lemma 4.10. The composition of weak forward isomorphisms is a weak forward
isomorphism, and a inverse of the weak forward isomorphism is a weak forward
isomorphism.

Lemma 4.11. Let A = (A,δA,σA,τA), B = (B,δB,σB,τB) be fuzzy automata. If
A and B are weak forward isomorphic, then there exists a uniform weak forward
bisimulation from A to B.

Proof. Let φ : A→ B be an weak forward isomorphism from A to B. Define
a fuzzy relation ϕ ∈R(A,B) by:

ϕ(a,b) =

1, if b = φ(a)
0, otherwise.

It can be easily shown that ϕ is a surjective L -function. Next, for every a ∈A
we have the following:

74 4 Weak bisimulation for fuzzy automata

σA(a) = σB(φ(a)) = σB(φ(a))⊗ϕ−1(φ(a),a) 6 σB ◦ϕ−1(a),

and thus, ϕ satisfies (4.2). According to the definition of ϕ, and (1.7), for
every u ∈ X∗ and b ∈ B, the following holds:

ϕ−1 ◦τA
u (b) =

∨

a∈A

(ϕ−1(b,a)⊗τA
u (a)) = ϕ−1(b,φ−1(b))⊗τA

u (φ−1(b)) =

= τA
u (φ−1(b)) = τB

u(φ(φ−1(b))) = τB
u(b),

and hence, ϕ satisfies (4.3). Similarly we prove that (4.6) and (4.7) hold.
Therefore, ϕ is a weak forward bisimulation. Now, by Theorem 4.6, there
exists the greatest weak forward bisimulation ξ from A to B, which is a
partial fuzzy function. Since ϕ is a surjective L -function and ϕ 6 ξ, then
ξ is also a surjective L -function. Whence, ξ is a uniform weak forward
bisimulation.

Theorem 4.10. Let A = (A,δA,σA,τA), B = (B,δB,σB,τB) be fuzzy automata, and
ϕ ∈R(A,B) be a uniform fuzzy relation. Then ϕ is a weak forward bisimulation if
and only if following is true:

(1)Eϕ
A

is a weak forward bisimulation equivalence on the fuzzy automaton A ;

(2)Eϕ
B

is a weak forward bisimulation equivalence on the fuzzy automaton B;

(3)ϕ̃ is an weak forward isomorphism of factor fuzzy automata A /E
ϕ
A

and B/E
ϕ
B

.

Proof. For the sake of simplicity set E = E
ϕ
A

and F = E
ϕ
B

. Also, let ψ ∈ CR(ϕ) be
an arbitrary crisp description of ϕ.

Letϕ be a uniform weak forward bisimulation. By (iv) and (v) of Theorem
1.9, we have that E = ϕ◦ϕ−1 and F = ϕ−1 ◦ϕ. Now,

τA
u 6 ϕ◦ϕ

−1 ◦τA
u 6 ϕ◦τ

B
u 6 τ

A
u ,

so E ◦τA
u = τ

A
u for each u ∈ X∗, i.e., E is a weak forward bisimulation fuzzy

equivalence. Similarly we prove that F◦τB
u = τ

B
u , for each u ∈X∗, therefore (2)

also holds. According to Lemma 1.10, ϕ̃ is a bijective function of A/E onto
B/F. By Theorem 4.8, we have

σA/E(Ea) = σA ◦E(a) = σA ◦ϕ◦ϕ−1(a) = σB ◦ϕ−1(a)

=
∨

b∈B

σ(b)⊗ϕ(a,b)=
∨

b∈B

σB(b)⊗F(ψ(a),b)= σB/F(Fψ(a)),

and hence, σA/E(Ea) = σB/F(Fψ(a)) = σB/F(ϕ̃(Ea)). Also, the following holds

τA/E
u (Ea) = τA

u (a) = ϕ◦τB
u(a) =

∨

b∈B

F(ψ(a),b)⊗τB
u(b) =

= Fψ(a) ◦τ
B
u = τ

B/F
u (Fψ(a)) = τ

B/F
u (ϕ̃(Ea)).

4.3. Uniform weak bisimulations 75

Therefore, ϕ̃ is a weak forward isomorphism of factor fuzzy automata A /E
ϕ
A

and B/E
ϕ
B

.
Conversely, let (1),(2) and (3) hold. Then,

σA(a) 6 σA ◦E(a) = σA/E(Ea) = σB/F(ϕ̃(Ea)) = σB/F(Fψ(a)) =

=
∨

b∈B

σB(b)⊗F(ψ(a),b)=
∨

b∈B

σB(b)⊗ϕ(a,b)= σB ◦ϕ−1(a),

and similarly, σB
6 σA ◦ϕ.

Now, for arbitrary u ∈ X∗ and a ∈ A we have

ϕ◦τB
u(a) =

∨

b∈B

ϕ(a,b)⊗τB
u(b) =

∨

b∈B

F(ψ(a),b)⊗τB
u(b) =

= τB/F
u (Fψ(a)) = τ

B/F
u (ϕ̃(Ea)) = τA/E

u (Ea) = τA
u (a).

Therefore, ϕ◦τB
u = τ

A
u , which yields ϕ−1 ◦τA

u = ϕ
−1 ◦ϕ◦τB

u = F◦τB
u = τ

B
u , and

hence, ϕ is a weak forward bisimulation.

Theorem 4.11. Let A = (A,δA,σA,τA), B = (B,δB,σB,τB) be fuzzy automata, and
let E be a weak forward bisimulation fuzzy equivalence on A and F a weak forward
bisimulation fuzzy equivalence on B.
Then there exists a uniform weak forward bisimulation ϕ ∈R(A,B) such that

E
ϕ
A
= E and E

ϕ
B
= F, (4.23)

if and only if there exists a weak forward isomorphism φ : A /E→B/F such that
for every a1,a2 ∈ A we have

Ẽ(Ea1 ,Ea2) = F̃(φ(Ea1),φ(Ea1)). (4.24)

Proof. The proof of this theorem is similar to the proof of Theorem 6.4 in
([22]), and it will be omitted.

Theorem 4.12. Let A = (A,δA,σA,τA) be a fuzzy automaton, let E be a weak
forward bisimulation equivalence on A and F a fuzzy equivalences on A such that
E 6 F. Then F is a weak forward bisimulation equivalence on A if and only if F/E
is a weak forward bisimulation equivalence on A /E.

Proof. Let E be a weak forward bisimulation equivalence on A. Then, accord-
ing to the definition of F/E and Lemma 4.7, for every a ∈ A and u ∈ X∗ we
have

F◦τA
u (a) = F/E◦τA/E

u (Ea) 6 τA/E
u (Ea) = τA

u (a).

Therefore, we obtain that (F/E)◦τA/E
u 6 τA/E

u if and only if F◦τA
u 6 τ

A
u , which

was to be proved.

76 4 Weak bisimulation for fuzzy automata

Corollary 4.1. Let A = (A,δA,σA,τA) be an automaton, and let E and F be weak
forward bisimulation equivalences on A such that E 6 F. Then F is the greatest
weak forward bisimulation equivalence on A if and only if F/E is the greatest weak
forward bisimulation equivalence on A/E.

Proof. This is a direct consequence of the previous theorem and Theorem
2.2.

Recall now, that the Nerode automaton of a given fuzzy automaton A =

(A,δ,σ,τ) is a fuzzy automaton AN = (AN,δN,σA
ε ,τ

N).
The reverse Nerode automaton of a fuzzy automaton A is an automaton

˜AN = (ÃN,δÃN ,τA
ε ,τ

ÃN), where ÃN = {τA
u |u ∈X∗}, and δÃN : AN×X −→AN and

τÃN ∈F (AN) are defined with

δÃN (τA
u ,x) = τA

ux, τAN (τA
u) = σA ◦τA

u ,

for every u ∈ X∗ and x ∈ X. The automaton ˜AN is a crisp-deterministic fuzzy
automaton which is isomorphic to the Nerode automaton of the reverse
automaton ˜A of A .

The next theorem gives a characterization of uniform weak forward bisim-
ulations in terms of the reverse Nerode automata. Moreover, in a similar way,
we can characterize uniform weak backward bisimulations in terms of the
Nerode automata.

Theorem 4.13. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata,
and let ϕ ∈R(A,B) be a uniform fuzzy relation. Then ϕ is a weak forward bisimu-
lation from A to A if and only if it satisfies (4.2) and (4.6), and functions

τA
u 7→ ϕ−1 ◦τA

u , τB
u 7→ ϕ◦τB

u , u ∈ X∗,

are mutually inverse isomorphisms between reverse Nerode automata ¯AN and B̄N .

Proof. Consider mappings η : ĀN→ B̄N and φ : B̄N→ ĀN, defined by η(τA
u) =

ϕ−1 ◦τA
u and φ(τB

u) = ϕ◦τB
u for every u ∈ X∗.

Let ϕ be a weak forward bisimulation from A to B. Clearly, 4.2) and (4.6)
hold. According to Theorem 4.8, for every u ∈X∗, η(τA

u)= τB
u ∈ B̄N andφ(τB

u)=
τA

u ∈ ĀN. Thus, ηmaps ĀN into B̄N, andφmaps B̄N into ĀN. Also, by the same
theorem, for every u ∈X∗, η(φ(τB

u))=ϕ−1 ◦ϕ◦τB
u = τ

B
u and φ(η(τB

u))=ϕ◦ϕ−1◦

τA
u = τ

A
u . So, η and ϕ are mutually inverse bijective mappings between ĀN

and B̄N.
Moreover, directly from the definition of η, we have η(τA) = τB.
Also, for every u ∈ X∗ and x ∈ X we have that:

η(δĀσ (τA
u ,x)) = η(τA

xu) = ϕ−1 ◦τA
xu = τ

B
xu = δB̄σ (τB

u ,x) = δB̄σ (η(τA
u),x).

Next, according to Lemma 4.9, the following holds

4.4. Weak forward bisimulation equivalent automata 77

τĀσ (τA
u) = σA ◦τA

u = L(A)(u) = L(B)(u) = σB ◦τB
u = τB̄σ(τB

u) = τB̄σ(η(τA
u)).

Hence, η is an isomorphism of the reverse Nerode automata ¯AN and B̄N.
Similarly we prove that φ is an isomorphism from B̄N to ¯AN.

Conversely, let (4.2) and (4.6) hold, and let η and φ be mutually inverse
isomorphisms between ¯AN and B̄N.

Since τA and τB are the unique initial states of ¯AN and B̄N, we have that
η(τA) = τB and φ(τA) = τB. Thus, ϕ−1 ◦τA = τB and ϕ◦τB = τA.

Suppose that η(τA
u)= τB

u , for every u ∈X∗, of length n. Consider now, v ∈X∗,
of length n+ 1. Assume that v = xu, where u ∈ X∗ is a word of length n, and
x ∈ X. Then,

η(τA
xu) = η(δĀσ (τA

u ,x)) = δB̄σ(η(τA
u),x) = δB̄σ(τB

u ,x) = τB
xu.

Hence, by induction we have η(τA
u) = τB

u , for every u ∈ X∗. Similarly, φ(τB
u) =

τA
u , for every u ∈ X∗, which means that (4.17) holds. Therefore, according to

Theorem 4.8 we conclude that ϕ is a weak forward bisimulation.

4.4. Weak forward bisimulation equivalent automata

Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata. If there exists
a complete and surjective weak forward bisimulation from A to B, then we
say that A and B are weak forward bisimulation equivalent, or briefly WFB-
equivalent, and we write A ∼WFB B. Note that surjectivity and completeness
of this forward bisimulation means that every state of A is equivalent to some
state of B, and vice versa. It is also worth noting, that if there exists an weak
forward bisimulation between A and B, which is complete and surjective,
then the greatest weak forward bisimulation between A and B have the
same property, and according to Theorem 4.6, it is a uniform weak forward
bisimulation.

For arbitrary fuzzy automata A , B and C we have the following:

A ∼WFB A ; A ∼WFB B⇒B ∼WFB A ;

(A ∼WFB B∧B ∼WFB C)⇒A ∼WFB C . (4.25)

Analogously, A and B are weak backward bisimulation equivalent, briefly
WBB-equivalent, in notation A ∼WBB B, if there exists a complete and sur-
jective weak backward bisimulation from A to B.

Next, we prove the following useful lemma.

Lemma 4.12. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata
and let φ be an weak forward isomorphism from A to B. Let E and F be the greatest
weak forward bisimulation equivalences on A and B, respectively.

Then for every a,b ∈ A the following holds:

78 4 Weak bisimulation for fuzzy automata

E(a,b) = F(φ(a),φ(b)).

Proof. By the definition of the greatest weak forward bisimulation equiva-
lences, and a weak forward isomorphism we have:

E(a,b) =
∧

u∈X∗

τA
u (a)↔ τA

u (b) =
∧

u∈X∗

τB
u(φ(a))↔ τB

u(φ(b)) = F(φ(a),φ(b)),

for every a,b ∈ X∗.

Theorem 4.14. Let A = (A,δA,σA,τA) and B = (B,δB,σB,τB) be fuzzy automata,
and let E and F be the greatest weak forward bisimulation equivalences on A and
B. Then A and B are WFB-equivalent if and only if there exists a weak forward
isomorphism between factor automata A /E and B/F.

Proof. Let A and B be WFB-equivalent automata, that is, let there exists a
complete and surjective weak forward bisimulation φ from A to B. Now,
by Theorem 4.6, there exists the greatest weak forward bisimulation ϕ from
A to B, which is a partial fuzzy function. Since φ is complete and surjective,
and φ 6 ϕ, then ϕ is also complete and surjective. Hence, ϕ is a uniform
weak forward bisimulation.

Now, according to Theorem 4.10, E
ϕ
A

and E
ϕ
B

are weak forward bisim-
ulation equivalences on A and B, respectively, and ϕ̃ is a weak forward
isomorphism of factor automata A /E

ϕ
A

and B/E
ϕ
B

.
Let P and Q be respectively the greatest weak forward bisimulation equiv-

alences on A /E
ϕ
A

and B/E
ϕ
B

. Define a function ξ : (A /E
ϕ
A

)/P→ (B/Eϕ
B

)/Q,
by ξ(Pa) =Qϕ̃(a) for every a ∈ E

ϕ
A

. Using Lemma 4.12, it is easy to prove that ξ
is a well-defined bijective function and according to (4.18), (4.25) and the fact
that ϕ̃ is a weak forward isomorphism, we obtain that ξ is a weak forward
isomorphism.

By Corollary 4.1 it follows that P = E/E
ϕ
A

and Q = F/E
ϕ
B

, and according
to Theorem 2.1, A /E is isomorphic to (A /E

ϕ
A

)/P and B/F is isomorphic to
(B/Eϕ

B
)/Q, so A /E is isomorphic to B/F. According to Lemma 4.8 we obtain

that A /E is weak forward isomorphic to B/F.
Conversely, if there exists an weak forward isomorphism from A /E to

B/F, then according to Lemma 4.11, A /E is WFB-equivalent to B/F. Also,
by Theorem 4.9, A and A /E are WFB-equivalent and B and B/F are WFB-
equivalent. Now, according to (4.25), A is WFB-equivalent to B.

Corollary 4.2. Let A be a fuzzy automaton, let E be the greatest weak forward
bisimulation equivalence on A , and let WFB(A) be the class of all automata
which are WFB-equivalent to A . Then A /E is a minimal automaton inWFB(A).
Moreover, if B is any minimal automaton inWFB(A), then there exists a weak
forward isomorphism between A /E and B.

Proof. Let B be an arbitrary minimal automaton in WFB(A), and let F be
the greatest weak forward bisimulation equivalence on B. According to the

4.4. Weak forward bisimulation equivalent automata 79

previous theorem, there exists a weak forward isomorphism between A /E
and B/F, and by Theorem 4.9 and (4.25) it follows that B/F ∈WFB(A).
Now, by minimality of B we have that F is the equality relation on B. Thus,
we obtain B/F � B. Hence, there is a weak forward isomorphism between
A /E and B.

Therefore, A /E is also a minimal automaton inWFB(A).

Chapter 5

Paige-Tarjan type algorithms

The known state minimization algorithms for non-deterministic finite
automata, like those in [14, 71, 86, 87, 114], are not significant in practical
use. Therefore, NFA state reduction methods are widely studied. The state
reduction methods do not necessarily give a minimal NFAs, but they give
"reasonably" small one that can be efficiently constructed.

Minimization algorithms for DFAs are based on computing and merg-
ing indistinguishable states. As an attempt to adopt this method to a non-
deterministic case, Ilie and Yu have introduced the concept of a right in-
variant equivalence on an NFA in [59, 60]. Right invariant equivalences
have been studied in [17, 16, 28, 60, 62, 63]. Furthermore, the same concept
was studied under the name "bisimulation equivalence" in many areas of
computer science and mathematics, such as modal logic, model checking,
set theory, formal verification, etc., and numerous algorithms have been
proposed to compute the greatest bisimulation equivalence on a given la-
beled graph or a labeled transition system (cf. [77, 81, 82, 83, 89, 103]). The
faster algorithms are based on the crucial equivalence between the greatest
bisimulation equivalence and the relational coarsest partition problem (see
[40, 44, 67, 102, 88]).

Ilie and Yu also introduced the dual concept to the concept of right invari-
ant equivalence, called a left invariant equivalence on an NFA, and showed
that even smaller NFAs can be obtained alternating reductions by means
of right invariant and left invariant equivalences [59, 60, 62, 63]. Another
approach in the state reduction was proposed by Champarnaud and Coulon
in [15, 16]. They used quasi-orders (preorders) instead of equivalences and
showed that the method based on quasi-orders gives better reductions than
the method based on equivalences. They gave an algorithm for comput-
ing the greatest right invariant and left invariant quasi-orders on an NFA
working in a polynomial time, which was later improved in [62, 63].

Since fuzzy finite automata are generalizations of NFAs, in the work with
fuzzy automata, the analogue minimization and reduction problems are

81

82 5 Paige-Tarjan type algorithms

also presented. Various researches considered the state reduction problem
for fuzzy automata and they provided several algorithms which are also
based on the idea for computing and merging indistinguishable states [2,
25, 74, 85, 84, 94]. It is worth mentioning, that although these algorithm are
called the minimization algorithms, in the general case they do not produce
the minimal fuzzy automaton in the set of all fuzzy automata recognizing a
given fuzzy language, so these are just reduction algorithms.

Contrary to the deterministic case, where we can effectively detect and
merge indistinguishable states, in the non-deterministic case is difficult to
decide whether two states are distinguishable or not. In the case of fuzzy
automata, this problem is even bigger, due to the fact we work with fuzzy
sets of states. However, in the non-deterministic case indistinguishability
can be successfully modeled by equivalences and quasi-orders. In [26, 27] it
is shown that in the fuzzy case the indistinguishability can be modeled by
fuzzy equivalences, and in [117] it is shown that this can be done by fuzzy
quasi-orders, too. Namely, in [117], the reduction of fuzzy automata by means
of the right and left invariant fuzzy quasi-orders as well as the reduction by
means of the right and left invariant fuzzy equivalences is considered. In the
same paper, it is shown that right invariant fuzzy quasi-orders on the given
automaton A form a complete lattice whose greatest element gives the best
reduction of A by means of fuzzy quasi-orders of this type. Furthermore,
we propose the procedure for computing the greatest right invariant fuzzy
quasi-order on a given fuzzy automaton.

This chapter will also be dedicated to the reduction of fuzzy automata
by means of right and left invariant fuzzy quasi-orders and right and left
invariant fuzzy equivalences, but here we will propose the new algorithm
for computing the greatest right invariant fuzzy quasi-order on the given
fuzzy automaton, which is based on the famous Paige-Tarjan’s coarsest par-
tition problem [88]. Afterwards, the modification of previous algorithm,
which computes the greatest right invariant equivalence on the given non-
deterministic automaton will be proposed. This modified version performs
good complexity. Namely, the complexity of the first algorithm is O(n5m),
where n is the number of the states of the automaton A and m is the size of
the alphabet, whereas the complexity of the modified version is O(n3m).

5.1. Right and left invariant fuzzy quasi-orders

Let A = (A,δ,σ,τ) be a fuzzy automaton over X and L . The fuzzy quasi-
order R ∈R(A) is called right stabile or just r-stabile if it satisfies the following
system of fuzzy relational inequalities:

R◦δx ◦R 6 δx ◦R, x ∈ X. (5.1)

5.1. Right and left invariant fuzzy quasi-orders 83

Similarly, the fuzzy quasi-order R ∈ R(A) is called left stabile(for short l-
stabile) if it satisfies the following system of fuzzy relational inequalities:

R◦δx ◦R 6 R◦δx, x ∈ X. (5.2)

Further, the fuzzy quasi-order R ∈R(A) is said to be right invariant on A if
it is r-stabile and satisfies the following inequality:

R◦τ 6 τ. (5.3)

Analogously, it is called left invariant on A if it is l-stabile and satisfies the
following inequality:

σ◦R 6 σ. (5.4)

According to the fact that the fuzzy quasi-order R is a solution to (5.3) if and
only if:

R 6 τ\τ = π f s,

we conclude that the r-stabile fuzzy quasi-order on the given fuzzy au-
tomaton A is the right invariant fuzzy quasi-order on A if and only if it is
contained in π f s. And similarly, since fuzzy quasi-order R is a solution to
(5.4) if and only if:

R 6 σ\σ = πbs,

we obtain that the l-stabile fuzzy quasi-order on the given fuzzy automaton
A is the left invariant quasi-order on A if and only if it is contained in πbs.

It is worth mentioning that the notion of r-stability and l-stability of fuzzy
quasi-order on fuzzy automaton A = (A,δ,σ,τ), which is introduced here
actually coincides with the notion of right invariant and left invariant fuzzy
quasi-order on a given fuzzy transition system A = (A,δ). Therefore, the
problem of finding the greatest right invariant fuzzy quasi-order on a fuzzy
automaton is equivalent to the problem of finding the greatest right invariant
fuzzy quasi-order on the corresponding fuzzy transition system contained
in a given fuzzy quasi-order R.

Let us note that, since every fuzzy-quasi order is a reflexive relation, it is
easy to prove that fuzzy quasi-order R is right invariant on A if and only if
it satisfies the following system of fuzzy relational inequalities:

R◦δx ◦R = δx ◦R, x ∈ X (5.5)

R◦τ = τ, (5.6)

and that it is left invariant on A if it satisfies the following:

R◦δx ◦R = R◦δx, x ∈ X (5.7)

σ◦R = σ. (5.8)

84 5 Paige-Tarjan type algorithms

A crisp quasi-order on A which is a solution to (5.5) and (5.6) is called a right
invariant quasi-order on A , and a crisp quasi-order which is a solution to
(5.7) and (5.8) is called a left invariant quasi-order on A . Let us note that
a fuzzy quasi-order on A is both r-stabile and l-stabile if and only if it is a
solution to the system

δx ◦R = R◦δx, x ∈ X, (5.9)

and then it is called an stabile fuzzy quasi-order.
It is clear that all right and left invariant fuzzy quasi-orders on a fuzzy

automaton A are solutions of the general system (2.21), and hence, the
corresponding afterset fuzzy transition systems are equivalent to A .

The following theorem presents a version of the important result from
[117] which gives the characterization of the set of all right invariant fuzzy
quasi-orders

Theorem 5.1. Let A = (A,σ,δ,τ) be a fuzzy automaton.

(1) Then the set Qrs(A) of all right stabile fuzzy quasi-orders forms a complete
lattice, which is a complete join-subsemilattice of the lattice Q(A) of all fuzzy
quasi-orders on the set A.

(2) Then the set Qri(A) of all right invariant fuzzy quasi-orders is a principal ideal
of the lattice Qrs(A).

The following lemma gives a characterization of r-stabile fuzzy quasi-
orders:

Lemma 5.1. Let A = (A,δ,σ,τ) be a fuzzy automaton. A fuzzy quasi-order R ∈
Q(A) is r-stabile on A if and only if:

R 6
∧

x∈X

∧

c∈A

(δx ◦Rc)/(δx ◦Rc). (5.10)

Proof. Consider the inequality (5.1), i.e.:
∨

b∈A

R(a,b)⊗ (δx ◦R)((b,c) 6 (δx ◦R)(a,c), x ∈ X, a,c ∈ A. (5.11)

This is equivalent to:

R(a,b)⊗ (δx ◦R)(b,c) 6 (δx ◦R)(a,c), x ∈ X, a,b,c ∈ A,

and according to the adjunction property this is equivalent to the following:

R(a,b) 6
∧

c∈A

(δx ◦R)(b,c)→ (δx ◦R)(a,c), x ∈ X, a,b ∈ A.

Consequently, a fuzzy quasi-order R ∈ R(A) is r-stable if and only if it
satisfies the following inequality

5.1. Right and left invariant fuzzy quasi-orders 85

R 6
∧

c∈A

(δx ◦Rc)/(δx ◦Rc), x ∈ X,

which was to be proved.

As the consequence of the previous lemma we have:

Lemma 5.2. Let A = (A,δ,σ,τ) be a fuzzy automaton over X and P,R ∈ Q(A),
where P 6 R. If P is r-stable then :

P 6 (δx ◦Ra)/(δx ◦Ra), x ∈ X, a ∈ A.

Proof. Let a ∈ A. According to the fact that P is r-stable, i.e. P◦δx ◦P 6 δx ◦P,
for every x ∈ X we have

P◦δx ◦P◦R 6 δx ◦P◦R, x ∈ X.

From P◦R = R◦P = R there holds

P◦δx ◦R 6 δx ◦R, x ∈ X,

or equivalently,
∨

c∈A

P(b,c)⊗ (δx ◦R)(c,a) 6 (δx ◦R)(b,a), a,b ∈ A, x ∈ X.

Therefore, it is clear that the following inequality holds

P(b,c) 6 (δx ◦Ra)/(δx ◦Ra)(b,c), x ∈ X,

for every b,c ∈ A.

Let A = (A,δ,σ,τ) be a fuzzy automaton, let R be a fuzzy quasi-order
on A . With L (δ,τ,R) we will denote the subalgebra of L generated by all
membership values taken by δ and R.

The next theorem provides a method for calculating the greatest right
invariant quasi order:

Theorem 5.2. Let A = (A,δ,σ,τ) be a fuzzy automaton over X and U ∈ R(A)
universal relation on A.

Define the sequences {Qk}k∈N and {Rk}k∈N of fuzzy quasi-orders on A as follows:
Initially for k = 1

R1 =U,

Q1 = π
f s∧

(∧

x∈X

(δx ◦Ra
1)/(δx ◦Ra

1)
)
, (5.12)

where a ∈ A is an arbitrary element.

86 5 Paige-Tarjan type algorithms

Further, for each k > 2 repeat the following step: Find a ∈ A, such that Ra
k
, Qa

k
and set

Rk+1 = Rk∧ (Qa
k/Q

a
k), (5.13)

Qk+1 =Qk∧
(∧

x∈X

(∧

b∈Sa
k

(δx ◦Rb
k+1)/(δx ◦Rb

k+1)
))
, (5.14)

(Sa
k
= {b ∈ A |Qa

k
(b) , 0}), until Rk =Qk. Then:

(a) Sequences {Qk}k∈N and {Rk}k∈N are descending;
(b) Qk 6 Rk for every k ∈N;
(c) For every k ∈N, for all c ∈ A the following holds:

Qk 6

∧

x∈X

(δx ◦Rc
k)/(δx ◦Rc

k); (5.15)

(d) Qk and Rk are fuzzy quasi-orders for every k ∈N;
(e) If Rk = Qk, for some k ∈N, then Qk is the greatest right invariant fuzzy quasi-

order on A ;
(f) If A is finite and L (δ,τ,R) satisfies DCC, then the sequences {Qk}k∈N and
{Rk}k∈N are finite, that is, there exists k ∈N such that Rk =Qk;

Proof. (a) Follows directly from the definition of Qk and Rk;
(b) We prove (b) by induction on k ∈N.
For k = 1, evidently holds Q1 6 R1.
Suppose for k =m, Qm 6 Rm, and prove Qm+1 6 Rm+1.
According to Lemma 1.4 we have Qm 6 Qa

m/Q
a
m, by induction assump-

tion Qm 6 Rm, therefore Qm 6 Rm ∧ (Qa
m/Q

a
m) = Rm+1, and since {Qk}k∈N is

descending, we have that Qm+1 6 Rm+1, and that was to be proved.
(c) We prove (c) also by induction on k ∈N.
Primarily, for k = 1 all the foresets Rc

1 of R1 are equal to each other, because
for any c ∈ A, Rc

1 is defined by Rc
1(b) = 1, for every b ∈ A. By the definition of

Q1 we have :
Q1 6

∧

x∈X

(δx ◦Rc
1)/(δx ◦Rc

1),

for every c ∈ A, and hence for k = 1 inequality (5.26) holds.
Suppose that for k = m, inequality (5.26) holds and let us prove it for

k =m+ 1.
At first, let us note that directly from the definition of Qm+1 we have:

Qm+1 6
∧

x∈X

(
(δx ◦Rc

m+1)/(δx ◦Rc
m+1)

)
, c ∈ Sa

m(c). (5.16)

Next, consider c ∈A where Qa
m(c)= 0, i.e. c ∈ (A−Sa

m). Now we will show that
Rc

m+1 = Rc
m. For all d ∈ A we have

5.1. Right and left invariant fuzzy quasi-orders 87

Rc
m+1(d) = Rm+1(d,c) = Rm(d,c)∧ (Qa

m/Q
a
m)(d,c)=

= Rc
m(d)∧ (Qa

m(c)→Qa
m(d))= Rc

m(d)∧ (0→Qa
m(d)) =

= Rc
m(d)∧1= Rc

m(d).

Now, according to induction assumption we have that

Qm 6

∧

x∈X

(δx ◦Rc
m)/(δx ◦Rc

m), for every c ∈ A,

and we conclude the inequality holds also for all c ∈ (A−Sa
m). Since Qm+1 6Qm

we obtain:

Qm+1 6
∧

x∈X

(
(δx ◦Rc

m+1)/(δx ◦Rc
m+1)

)
, c ∈ (A−Sa

m). (5.17)

From (5.16) and (5.17) we obtain that inequality (5.26) holds for k = m+ 1,
which was to be proved.

(d) By Lemma 1.1 and the fact that for every fuzzy subset f on A relation
defined by equation (1.47) is fuzzy quasi order it follows that Qk and Rk are
fuzzy quasi orders for every k ∈N.

(e) If Rk =Qk, for some k ∈N, then according to (c) the following holds:

Qk 6

∧

x∈X

(δx ◦Qc
k)/(δx ◦Qc

k), for all c ∈ A,

which means that Qk is r-stable. From that and the fact that Qk 6 π
f s, we

conclude Qk is right invariant fuzzy quasi-order on A . In order to show that
Qk is the greatest one, let us consider an arbitrary right invariant fuzzy quasi
order P on A .

We will prove that P 6Qn for every n ∈N, by induction on n.
For n= 1, since P,U are fuzzy quasi-orders such that P6U =R1, according

to Lemma 5.2 we have that P 6 (δ◦Ra
1)/(δ◦Ra

1). Because of the fact P is right
invariant fuzzy quasi-order on A , P have to satisfy the inequality (5.3), which
means P 6 π f s. Thus P 6Q1 holds.

Suppose that assumption P 6Qm holds for n =m, and prove P 6Qm+1.
Since P 6 Qm, using (b), we obtain P 6 Rm and by Lemma 1.4 it follows

P 6 Rm+1. Then again according to Lemma 5.2 we obtain P 6 Qm+1, which
was to be proved.

(f) Let A be a finite fuzzy transition system and let L (δ,τ,R) satisfy DCC.
Then fuzzy relations {Rk}k∈N can be considered as fuzzy matrices with entries
in L (δ,τ,R), and for any pair (a,b) ∈ A×A, the (a,b)-entries of these matrices
form a decreasing sequence {Rk(a,b)}k∈N of elements of L (δ,τ,R). By the
hypothesis, all these sequences stabilize, and since there is a finite number of
these sequences, there exists s ∈N such that after s steps all these sequences
are stabilized. This means that the sequence {Rk}k∈N of fuzzy quasi-orders
also stabilizes after s steps, i.e., Rk = Rk+1.

88 5 Paige-Tarjan type algorithms

Next, we will prove that if Rk = Rk+1 then Rk =Qk. If Rk = Rk+1 then

Rk = Rk+1 = Rk∧ (Qa
k/Q

a
k),

and thus, Rk 6 Qa
k
/Qa

k
. Consequently, Ra

k
6 Qa

k
, and since Qa

k
6 Ra

k
we obtain

Ra
k
= Qa

k
. This means that there is no foreset Ra

k
of Rk such that Ra

k
, Qa

k
, or

equivalently Rk =Qk.

The previous theorem can be transformed into the following algorithm.

Algorithm 5.3 The input is a fuzzy automaton A = (A,X,δA,σA,τA). The algo-
rithm computes the greatest right invariant fuzzy quasi-order Rri on A .

The procedure constructs the sequences of fuzzy quasi-orders {Rk}k∈N and
{Qk}k∈N, in the following way:

(A1) In the first step we set

R1 =U

Q1 = π
f s∧

(∧

x∈X

(δx ◦Ra
1)/(δx ◦Ra

1)
)
.

(A2) After the kth step let Rk and Qk be fuzzy quasi-orders that have been con-
structed.

(A3) In the next step we find first a ∈ A such that Ra
k
,Qa

k
if such exists.

(A4) If a has been found in the previous step, construct the fuzzy quasi-order Rk+1 by
means of the formula (B.55) and the fuzzy quasi-order Qk+1 by (B.56), otherwise
the procedure of constructing the sequence {Rk}k∈N and {Qk}k∈N terminates and
Qk+1 is the greatest right invariant fuzzy quasi-order on A .

According to Theorem 5.2, if the subalgebra L (δ,τ,R) of L , generated by
all values taken by fuzzy transition relations of A and R, satisfies DCC, the
algorithm terminates in a finite number of steps.

Let us analize the computational time of this algorithm. Let n denote the
number of states of A and m the number of letters in the input alphabet X,
and let c∨, c∧, c⊗ and c→ be the computational costs of the operations ∨, ∧,
⊗ and→ in L , respectively. In particular, if L is linearly ordered, then the
operations ∨ and ∧ can be computed in constant time, so c∨ and c∧ can be
omitted, and similarly, when L is the Gödel structure, we can also omit c⊗
and c→.

In the step (A1) in order to compute Q1 we first computeπ f s, which can be
done in time O(n2c→). Next, we compute the composition of fuzzy relations
δA

x and Ra, for first a ∈ A and if this computation is performed according to
the definition of composition od fuzzy relations, its computational time is
O(n2(c⊗ + c∨)). Then we compute

∧
x∈X(δx ◦Ra

1)/(δx ◦Ra
1), and the computa-

tional time of this part is O(mn2(c→+ c∧)). Thus, the total computational time
of (A1) is O(mn2(c→+ c∧+ c⊗+ c∨)).

5.1. Right and left invariant fuzzy quasi-orders 89

In (A3) computational time to find a ∈ A such that Ra
k
, Qa

k
, if it exists, is

O(n2).
In (A4) computing of Rk+1 using formula (B.55) can be done in time

O(n2(c→+ c∧)) and the computing of Qk+1 using formula (B.56) can be done
in O(mn3(c→+ c∧+ c⊗+ c∨)).

The hardest problem is to estimate the number of steps, in the case when
it is finite.We need only to consider Rk because the both sequences have the
same number of elements if they are finite. Consider fuzzy relations Rk as
fuzzy matrices. After each step in the construction of the sequence {Rk}k∈N
we check whether some entry has changed its value, and the algorithm
terminates after the first step in which there was no change. Suppose that
L (δ,τ,R) satisfies DCC. Then {{Rk(a,b)}k∈N | (a,b) ∈A2} is a finite collection of
the finite sequences, so there exists l ∈N such that the number of different
elements in each of these sequences is less than or equal to l. As the sequence
{Rk}k∈N is descending, each entry can change its value at most l− 1 times,
and the total number of changes is less than or equal to (l− 1)(n2− n) (the
diagonal values must always be 1). Therefore, the algorithm terminates after
at most (l− 1)(n2−n)+ 2 steps (changes are happening between the second
and second to last step).

Summing up, we get that the total computation time for the whole algo-
rithm is O(lmn5(c→+ c∧ + c⊗+ c∨)), and hence, the algorithm is polynomial-
time.

Let us note that if the subalgebra L (δ,τ,R) is finite, then we can assume
that l is the number of elements of this subalgebra. In particular, if L is the
Gödel structure, then the only values that can be taken by fuzzy relations
{Rk}k∈N are 1 and those taken by fuzzy relations {δx}x∈X and R, and we
can assume that l = j+ 1, where j is the number of different values taken
by fuzzy relations {δx}x∈X and R. Therefore, in this case the algorithm termi-
nates after at most j(n2−n)+2 steps, or after at most (m+1)n2(n2−n)+2 steps,
since j 6mn2+n2, and the computation time of our algorithm is O(jmn5), or
O(m2n7).

Finally, if L is the Boolean structure, then l = 2, and the algorithm termi-
nates after at most n2−n+2 steps, which means that the computational time
of the algorithm is O(mn5).

According to (c) of Theorem 5.2, if the structure L is locally finite, then
for every fuzzy transition system A over L we have that sequences of fuzzy
quasi-orders defined by (B.55) and (B.56) are finite. However, this does not
necessary hold if L is not locally finite, as the following example shows:

Example 5.1. Let L be the Goguen (product) structure and A = (A,δ,σ,τ) a
fuzzy automaton over L , where A = {1,2}, X = {x}, and δA

x is given by

σ =
[
1 1

]
,δx =

[
0.2 0
0 0.1

]
,τ =

[
1
1

]

90 5 Paige-Tarjan type algorithms

and let R be the universal relation on A. Applying to R the procedure from
Theorem 5.2, we obtain a sequences {Rk}k∈N and {Qk}k∈N of fuzzy quasi-
orders given by

Rk =

[
1 1
1

2k−1 1

]
, Qk =

[
1 1
1
2k 1

]
, k ∈N,

and thus Rk ,Qk, i.e., this sequences is infinite.
In the case fuzzy set of transition states is

τ =

[
1
1

]
,

using the procedure from Theorem 5.2 we obtain

R1 =

[
1 1
1 1

]
, Q1 =

[
1 1
0 1

]
, R2 =

[
1 1
0 1

]
, Q1 =

[
1 1
0 1

]
.

And hence the greatest right invariant equivalence on A is relation R2.

For a fuzzy automaton A = (A,δ,σ,τ) over X and L , the greatest left
invariant fuzzy quasi-order Rli on A can be computed in a similar way as Rri.

Namely, we define a sequences {Rk}k∈N and {Qk}k∈N of fuzzy quasi-orders
on A as follows:

Initially, k = 1:

R1 =U,

Q1 = πbs∧
(∧

x∈X

(R1
a ◦δx)\(R1

a ◦δx)
)
,

where a ∈ A is arbitrary element.
Further, for each k > 2 repeat the following step: Find a ∈ A, such that

Ra
k
,Qa

k
and set

Rk+1 = Rk∧ (Qk
a\Q

k
a), (5.18)

Qk+1 =Qk∧
(∧

x∈X

(∧

b∈Sk
a

(Rk+1
b ◦δx)\(Rk+1

b ◦δx)
))
, (5.19)

until Qk = Rk.
If L is locally finite, then this sequence are necessary finite and Rli

equals the least element.
It is important to maintain that the greatest right and left invariant fuzzy

quasi-orders are calculated using iterative procedures, but these calculations
are not approximative. If these procedures terminate in a finite number of
steps, exact solutions to the considered systems of fuzzy relation equations
are obtained.

5.1. Right and left invariant fuzzy quasi-orders 91

For a fuzzy automaton A = (A,δ,σ,τ) over X and L we give also a proce-
dure for computing the greatest right invariant fuzzy equivalence on A . This
procedure is similar to the procedure given in Theorem 5.2 for fuzzy quasi-
orders, and it also works for all fuzzy automata over a locally finite complete
residuated lattice.

First of all, note that fuzzy equivalence E is a solution to inequality (5.3)
if and only if E 6 τ|τ = π f b.

The following lemma will be needed for proving the main result:

Lemma 5.3. Let E,F ∈ E (A) and E 6 F. If E is r-stable then the following holds:

E 6 (δx ◦Fa)|(δx ◦Fa), x ∈ X, a ∈ A. (5.20)

Proof. In the analogue way as in the proof of the Lemma 5.2, we show that:

E 6 (δx ◦Fa)/(δx ◦Fa), x ∈ X, a ∈ A.

Using the fact that E is symmetric for every b,c ∈ A:

E(b,c) = E(c,b) 6
(
(δx ◦Fa)/(δx ◦Fa)

)
(c,b) =

= (δx ◦Fa)(b)→ (δx ◦Fa)(c) =
(
(δx ◦Fa)\(δx ◦Fa)

)
(b,c).

Therefore, E satisfies (5.20).

Next theorem gives a method to compute the greatest right invariant
fuzzy equivalence on the given automaton A .

Theorem 5.4. Let A = (A,δ,σ,τ) be a fuzzy automaton over X, and U ∈ R(A)
universal relation on A.

Define the sequences {Ek}k∈N and {Xk}k∈N of equivalences on A as follows:
Initially for k = 1

X1 =U,

E1 = π
f b∧

(
(δ◦Xa

1)|(δ◦Xa
1)
)
, for some a ∈ A. (5.21)

Further, for each k ∈ N repeat the following step: Find a ∈ A, such that Xa
k
, Ea

k
and set

Xk+1 = Xk∧ (Ea
k|E

a
k),

Ek+1 = Ek∧
(
(δ◦Ea

k)|(δ◦Ea
k)
)
∧

(∧

b∈Ta
k

(δ◦Xb
k+1)|(δ◦Xb

k+1)
)
, (5.22)

(Ta
k
= {b ∈ A |Ea

k
(b) , 1}) until Xk = Ek. Then:

(a) Sequences {Ek}k∈N and {Xk}k∈N are descending;
(b) For every k ∈N, Ek 6 Xk;

92 5 Paige-Tarjan type algorithms

(c) For every k ∈N, for all c ∈ A the following holds :

Ek 6

∧

x∈X

(
(δx ◦Xc

k)|(δx ◦Xc
k)
)
; (5.23)

(d) For every k ∈N, Xk and Ek are fuzzy equivalence relations;
(e) If Xk =Ek, for some k∈N, then Ek is the greatest right invariant fuzzy equivalence

on A ;
(f) If A is finite and L (δ,τ,R) satisfies DCC, then the sequences {Ek}k∈N and
{Xk}k∈N are finite, that is, there exists k ∈N such that Xk = Ek;

Proof. (a) Follows directly from the definition of Ek and Xk;
(b), (d) and (e) can be proved in the similar way as Theorem 5.2 (b), (d)

and (e), respectively.
(c) We will prove this by induction on the number of states.
For k = 1 it can be proved in the similar way as Theorem 5.2(c).
Further, let k> 1. Let us show, first, that if Ea

k−1(b)= 1 then Xb
k
= Ea

k−1. Using
the fact that if Ea

k−1(b) = 1, then Ea
k−1 = Eb

k−1, and for all c ∈ A we have

Xb
k(c) = Xk(c,b) = Xk−1(c,b)∧ (Ea

k−1|E
a
k−1)(c,b) =

= Xb
k−1(c)∧ (Ea

k−1(b)↔ Ea
k−1(c)) = Xb

k−1(c)∧ (1↔ Ea
k−1(c))

= Xb
k−1(c)∧Ea

k−1(c) = Ea
k−1(c).

From the definition of relation Ek, it follows that Ek is stable w.r.t. Xb
k
, such

that Ea
k−1(b) , 1 and that it is also stable w.r.t. Ea

k−1, that is w.r.t. all Xb
k
, such

that Ea
k−1(b) = 1 . Therefore for k > 1 inequality (5.23) holds.

The following example shows the case where the sequences of equiva-
lences obtained using (5.21) and (B.59) are infinite, whereas the sequences of
fuzzy quasi orders obtained using (5.12) and (B.56) are finite:

Example 5.2. Let L be the Goguen (product) structure and A = (A,δA) a
fuzzy transition system over L , where A = {1,2,3}, X = {x}, and δA

x is given
by

δA
x =

0 1 1
0 1 1
1
2 0 0

 .

If we start from the universal relation on A, according to (5.21) and (B.59)
we obtain infinite sequence {Xk}k∈N and {Ek}k∈N of fuzzy equivalences on A,
where

Xk =

1 1 1
2k−1

1 1 1
2k−1

1
2k−1

1
2k−1 1

, Ek =

1 1 1
2k

1 1 1
2k

1
2k

1
2k 1

, k ∈N.

5.2. Computing the right invariant equivalences on non-deterministic automata 93

On the other hand, if we also start from the universal relation, according to
(5.12) and (B.56) gives a finite sequence {Rk}k∈N of fuzzy quasi-orders on A,
where

R1 =

1 1 1
1 1 1
1 1 1

 , Q1 =

1 1 1
1 1 1
1
2

1
2 1

 , R2 =Q2 =

1 1 1
1 1 1
1
2

1
2 1

 .

The next example shows the case where R is a right invariant fuzzy quasi-
order and a ER is not a right invariant fuzzy equivalence.

Example 5.3. Let L be the Boolean structure, and let A = (A,δA) be a fuzzy
transition system over L , where A = {1,2,3}, X = {x, y}, and fuzzy transition
relations δA

x and δA
y are given by

δA
x =

1 0 0
0 0 0
0 0 0

 , δA

y =

1 0 0
1 1 0
1 0 0

 .

The greatest right invariant fuzzy quasi order Rri on A , its natural fuzzy
equivalence ERri , and the greatest right invariant fuzzy equivalence Eri on A

are given by

Rri =

1 1 1
0 1 1
0 1 1

 , ERri =

1 0 0
0 1 1
0 1 1

 , Eri =

1 0 0
0 1 0
0 0 1

 .

Thus, Eri do not reduce the number of states of A , but Rri reduces A to a
fuzzy transition system with two states.

Moreover, Rri is a right invariant fuzzy quasi-order, but its natural fuzzy equiva-
lence ERri is not a right invariant fuzzy equivalence, because Eri < ERri . We
also have that the afterset fuzzy transition system A /Rri is not isomorphic
to the factor fuzzy transition system A /ERri , since

Rri ◦δA
y ◦Rri =

1 1 1
1 1 1
1 1 1

 , ERri ◦δA

y ◦ERri =

1 0 0
1 1 1
1 1 1

 .

5.2. Computing the right invariant equivalences on
non-deterministic automata

In this section, we present the modification of the algorithm for comput-
ing the greatest right invariant fuzzy equivalence. This method computes
the greatest right invariant equivalences for fuzzy automata over Boolean
structure, i.e. classical non-deterministic automata.

94 5 Paige-Tarjan type algorithms

Theorem 5.5. Let A = (A,δ,σ,τ) be a nondeterministic automaton and U =A×A
universal relation on A.

Define the sequences {Ek}k∈N and {Rk}k∈N of equivalences on A as follows: Initially
for k = 1

R1 =U, E1 = π
f b∩

(⋂

x∈X

(δx ◦Ua)|(δx ◦Ua)
)
,

where a is arbitrary element in A.
Further, for each k ∈N repeat the following step: Find a ∈ A, such that Ra

k
, Ea

k
and set

Rk+1 = Rk∩ (Ea
k|E

a
k), (5.24)

Ek+1 = Ek∩
(⋂

x∈X

(
(δx ◦ (Ra

k −Ea
k))|(δx ◦ (Ra

k −Ea
k))

)
∩ ((δx ◦Ea

k)|(δx ◦Ea
k))

)
, (5.25)

until Rk = Ek. Then:

(a)Sequences {Ek}k∈N and {Rk}k∈N are descending;
(b)For every k ∈N, Ek ⊆ Rk;
(c)For every k ∈N, for all c ∈ A the following holds :

Ek ⊆
⋂

x∈X

(δx ◦Rc
k)|(δx ◦Rc

k); (5.26)

(d)For every k ∈N, Rk and Ek are equivalence relations;
(e) The procedure terminates at most |A| − 1 steps and if it terminates after n steps

then En is the greatest right invariant equivalence on A .

Proof. (a), (b) and (d) can be proved in the analogue way as the proof of the
Theorem 5.4.

(c) We also prove (c) by induction on k ∈N.
In the case k = 1 directly from the definition of E1, we obtain (5.26) holds.
For k = 2, R2 = R1 ∩ (Ea

1|E
a
1) for some a ∈ A. Since R1 = U it has only one

equivalence class and we will call it Ra
1. According to the definition of R2,

we conclude that R2 is also an equivalence relation and it has exactly two
equivalence classes Ea

1 and Ra
1−Ea

1. Now, according to the definition of E2 we
have:

E2 = E1∩
(⋂

x∈X

(
(δx ◦ (Ra

1−Ea
1))|(δx ◦ (Ra

1−Ea
1))

)
∩ ((δx ◦Ea

1)|(δx ◦Ea
1))

)

which means,
E2 ⊆ (δx ◦Ea

1)|(δx ◦Ea
1), x ∈ X (5.27)

and
E2 ⊆ (δx ◦ (Ra

1−Ea
1))|(δx ◦ (Ra

1−Ea
1)), x ∈ X. (5.28)

From (5.27) and (5.28) we have:

5.2. Computing the right invariant equivalences on non-deterministic automata 95

E2 = E2∩
(⋂

x∈X

(
(δx ◦ (Ra

1−Ea
1))|(δx ◦ (Ra

1−Ea
1))

)
∩ ((δx ◦Ea

1)|(δx ◦Ea
1))

)
,

and hence for k = 2 inequality (5.26) holds.
Suppose that for k =m inequality (5.26) is true, that is, for every b ∈ A,

Em = Em∩
(⋂

x∈X

((δx ◦Rb
m)|(δx ◦Rb

m))
)
.

Consider equivalence relation Rm+1 = Rm ∩ (Ea
m|E

a
m), for some a ∈ A such

that Ra
m , Ea

m . According to (b) Ea
m ⊂ Ra

m. This means that except of the
equivalence class Ra

m, equivalence relations Rm and Rm+1 have all equivalence
classes the same. Moreover, Rm has the equivalence class Ra

m, whereas Rm+1
has two equivalence classes Ea

m and Ra
m−Ea

m. Therefore, for any equivalence
class Rb

m+1, b ∈A, such that Rb
m+1 , Ea

m and Rb
m+1 , (Ra

m−Ea
m), according to the

induction assumption we have:

Em+1 ⊆ Em = Em∩
(⋂

x∈X

((δx ◦Rb
m)|(δx ◦Rb

m))
)
=

= Em∩
(⋂

x∈X

((δx ◦Rb
m+1)|(δx ◦Rb

m+1))
)
⊆

⋂

x∈X

((δx ◦Rb
m+1)|(δx ◦Rb

m+1)),

and hence,
Em+1 = Em+1∩

(⋂

x∈X

((δx ◦Rb
m+1)|(δx ◦Rb

m+1))
)
.

Therefore, for every b ∈ A, such that Rb
m+1 , Ea

m and Rb
m+1 , (Ra

m−Ea
m), (5.26)

holds. For equivalence classes Ea
m, according to the definition of Em+1 the

following holds:

Em+1 ⊆ Em∩
(⋂

x∈X

((δx ◦Ea
m)|(δx ◦Ea

m))
)
⊆

⋂

x∈X

((δx ◦Ea
m)|(δx ◦Ea

m)),

which means,
Em+1 = Em+1∩

(⋂

x∈X

((δx ◦Ea
m)|(δx ◦Ea

m))
)
.

In analogue way we prove that:

Em+1 = Em+1∩
(⋂

x∈X

(
(δx ◦ (Ra

m−Ea
m))|(δx ◦ (Ra

m−Ea
m))

))
.

Hence, for k =m+ 1 inequality (5.26) is satisfied, which was to be proved.
(e) According to (a), the sequence {Ek}k∈N is deceasing. So, since the first

equivalence E1 in the worst case can have only one class, and the last equiv-
alence can have at most |A| equivalence classes (identical relation on A), we

96 5 Paige-Tarjan type algorithms

obtain that this algorithm terminates after at most |A| − 1 steps. The other
part of the assertion can be proved in analogue way as Theorem 5.4(e).

According to the previous theorem we have the following procedure for
computing the greatest right invariant equivalence on a given non- deter-
ministic automaton.

Algorithm 5.6 The input of this algorithm is a nondeterministic automaton A =

(A,X,δA,σA,τA). The algorithm computes the greatest right invariant equivalence
Eri on A .

The procedure constructs the sequence of equivalences {Rk}k∈N and {Ek}k∈N, in
the following way:

(A1) In the first step we set

R1 =U

E1 = π
f b∩

(⋂

x∈X

((δx ◦Ra
1)|(δx ◦Ra

1))
)
.

(A2) After the kth step let Rk and Ek be equivalences that have been constructed.
(A3) In the next step we find first a ∈ A such that Ra

k
, Ea

k
if it exists.

(A4) If in the previous step a was found then construct the equivalence Rk+1 by
means of the formula (5.24) and the equivalence Ek+1 by means of the formula
(B.62), otherwise the procedure of constructing the sequence {Rk}k∈N and {Ek}k∈N
terminates and Ek+1 is the greatest right invariant equivalence on A .

Observe now the computational time of this algorithm. Let n denote the
number of states of A and m the number of letters in the input alphabet X, and
let c∪, c∩, c⊗ and c→ be respectively computational costs of the operations
∪, ∩, ⊗ and → in L . Since L is Boolean structure we can assume that
c∪ = c∩ = c⊗ = c→ = 1 and they can be omitted.

In the step (A1) in order to compute E1 we firs compute π f b, which can be
done in time O(n2c→). Next, we compute the composition of fuzzy relations
δA

x and Ra, for first a ∈ A and if this computation is performed according to
the definition of composition od fuzzy relations, its computational time is
O(n2(c⊗ + c∪)). Then we compute

⋂
x∈X(δx ◦Ra

1)|(δx ◦Ra
1), and the computa-

tional time of this part is O(mn2(c→+ c∩)). Thus, the total computational time
of (A1) is O(mn2(c→+ c∩+ c⊗+ c∪)).

In (A3) computational time to find a ∈ A Ra
k
,Qa

k
, if it exists, is O(n2).

In (A4) computing of Rk+1 using formula (5.24) can be done in time
O(n2(c→+ c∩)) and the computing of Ek+1 using formula (B.62) can be done
in O(mn2(c→+ c∩+ c⊗+ c∪)).

As we have shown in the Theorem 5.5(e), the number of steps of the
previous algorithm is at most n− 1 step, i.e. the computational time is O(n).

Summing up, we get that the total computation time for the whole algo-
rithm is O(mn3(c→+ c∩ + c⊗+ c∪)), and since we have the Boolean structure

5.2. Computing the right invariant equivalences on non-deterministic automata 97

we obtain that computational time of the whole algorithm is O(mn3), the
algorithm is polynomial-time.

The following example shows the work of the algorithm.

Example 5.4. Let A = (A,σ,δ,τ) be a non-deterministic automaton given by
the following figure:

a1a0 a2

a3

a4 a5

a6

x y

xy

x

y

x

y

x y

x, y

x, yx

y

Using the Algorithm 5.6(A1) we obtain:

R1 =U =

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

, E1 = π
f b∩

(⋂

x∈X

(δx ◦Ra
1)|(δx ◦Ra

1

))
=

1 1 0 1 0 0 0
1 1 0 1 0 0 0
0 0 1 0 1 1 1
1 1 0 1 0 0 0
0 0 1 0 1 1 1
0 0 1 0 1 1 1
0 0 1 0 1 1 1

.

Now since in (A2), R1
1 , E1

1 we choose the first class E1
1 and compute:

R2 =R1∩(E1
1↔E1

1)

1 1 0 1 0 0 0
1 1 0 1 0 0 0
0 0 1 0 1 1 1
1 1 0 1 0 0 0
0 0 1 0 1 1 1
0 0 1 0 1 1 1
0 0 1 0 1 1 1

, E2 =E1∩
(⋂

x∈X

(δx◦Ea
1)|(δx◦Ea

1)
)
.

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 1 1 1
0 0 0 1 0 0 0
0 0 1 0 1 1 1
0 0 1 0 1 1 1
0 0 1 0 1 1 1

.

Now again R1
2 , E1

2 and we choose the first class to compute R3 and E3:

98 5 Paige-Tarjan type algorithms

E3 = R3 =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 1 1 1
0 0 0 1 0 0 0
0 0 1 0 1 1 1
0 0 1 0 1 1 1
0 0 1 0 1 1 1

.

The factor automaton A /E has four states and it is the minimal automaton
equivalent to A :

L L1

L2 L3

x

y y

x

x

x, yy

The previous example shows the case where for given non-deterministic
automaton the reduction by means of the greatest right invariant equivalence
produces the minimal one.

As we already mentioned, the Algorithm 5.3 for computing the greatest
right invariant fuzzy quasi-order for fuzzy automata over a Boolean structure
runs in O(mn5), so the procedure for computing the greatest right invariant
fuzzy equivalence for fuzzy automata over a Boolean structure, presented
in the previous section, also runs in O(mn5). Therefore, we conclude that
the Algorithm 5.6 gives the significant result when we consider the speed of
execution.

Appendix A

C] codes

Computing the greatest simulations and bisimulations

The following program performs implementation of the Algorithm 3.4
(Chapter 3) for computing the greatest forward and backward simulations
and forward, backward, forward-backward and backward-forward bisimu-
lations between two fuzzy automata.

99

100 A C♯ codes

MainWindows.xaml

<Window x:Class="releqgraph.MainWindow"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Relational Equations" Height="804" Width="870">
 <Grid Height="747" Margin="0,14,-210,14">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="305*"/>
 <ColumnDefinition Width="767*"/>
 </Grid.ColumnDefinitions>
 <Button Content="Load initial A" Height="23" HorizontalAlignment="Left"
Margin="14,211,0,0" Name="button1" VerticalAlignment="Top" Width="75"
Click="button1_Click" />
 <RadioButton Content="(1) Forward simulacija" Height="16"
HorizontalAlignment="Left" Margin="12,48,0,0" Name="radioButton1" VerticalAlignment="Top"
GroupName="equationType" IsChecked="True" />
 <RadioButton Content="(2) Backward simulacija" Height="16"
HorizontalAlignment="Left" Margin="12,70,0,0" Name="radioButton2" VerticalAlignment="Top"
GroupName="equationType" />
 <RadioButton Content="(3) Forward bisimulacija" Height="16"
HorizontalAlignment="Left" Margin="12,92,0,0" Name="radioButton3" VerticalAlignment="Top"
GroupName="equationType" IsEnabled="True" />
 <TextBox Height="86" HorizontalAlignment="Left" Margin="14,270,0,0"
Name="tbInitialA" VerticalAlignment="Top" Width="172" AcceptsTab="False"
AcceptsReturn="True" TextChanged="tbInitial_TextChanged" />
 <TextBox Height="96" HorizontalAlignment="Left" Margin="14,408,0,0"
Name="tbInitialB" VerticalAlignment="Top" Width="172" AcceptsTab="False"
AcceptsReturn="True" TextChanged="tbInitial_TextChanged" />
 <Menu Height="28" HorizontalAlignment="Left" Name="menu1" VerticalAlignment="Top"
Width="848" Grid.ColumnSpan="2"></Menu>
 <TextBox Height="86" HorizontalAlignment="Left" Margin="276,270,0,0"
Name="tbTransitionA" VerticalAlignment="Top" Width="172" AcceptsReturn="True"
Grid.ColumnSpan="2" TextChanged="tbTransitionA_TextChanged" />
 <TextBox Height="86" HorizontalAlignment="Left" Margin="252,270,0,0"
Name="tbFinalA" VerticalAlignment="Top" Width="172" AcceptsReturn="True" Grid.Column="1"
/>
 <TextBox Height="96" HorizontalAlignment="Left" Margin="276,408,0,0"
Name="tbTransitionB" VerticalAlignment="Top" Width="172" AcceptsReturn="True"
Grid.ColumnSpan="2" />
 <TextBox Height="96" HorizontalAlignment="Left" Margin="252,408,0,0"
Name="tbFinalB" VerticalAlignment="Top" Width="172" AcceptsReturn="True" Grid.Column="1"
/>
 <Button Content="Load transition A" Height="23" HorizontalAlignment="Left"
Margin="276,211,0,0" Name="button2" VerticalAlignment="Top" Width="112"
Click="button2_Click" Grid.ColumnSpan="2" />
 <Button Content="Load final A" Height="23" HorizontalAlignment="Left"
Margin="252.045,211,0,0" Name="button3" VerticalAlignment="Top" Width="75"
Click="button3_Click" Grid.Column="1" />
 <Button Content="Run" Height="23" HorizontalAlignment="Left" Margin="12,124,0,0"
Name="button4" VerticalAlignment="Top" Width="75" Click="button4_Click" />
 <Label Height="28" HorizontalAlignment="Left" Margin="14,161,0,0" Name="message"
VerticalAlignment="Top" IsEnabled="True" FontSize="14" FontWeight="Bold"
Foreground="#FFD92426" />
 <TextBox Height="112" HorizontalAlignment="Left" Margin="14,606,0,0"
Name="tbResult" VerticalAlignment="Top" Width="797" VerticalScrollBarVisibility="Auto"
Grid.ColumnSpan="2" />

A C♯ codes 101

MainWindows.xaml

<Label Content="Result" Height="28" HorizontalAlignment="Left" Margin="14,564,0,0"

Name="label4" VerticalAlignment="Top" />
 <RadioButton Content="(4) Backward bisimulacija" Height="16"
HorizontalAlignment="Left" Margin="175,48,0,0" Name="radioButton4"
VerticalAlignment="Top" GroupName="equationType" Grid.ColumnSpan="2"
Checked="radioButton4_Checked" />
 <RadioButton Content="(5) Forward-backward bisimulacija" Height="16"
HorizontalAlignment="Left" Margin="175,70,0,0" Name="radioButton5"
VerticalAlignment="Top" GroupName="equationType" Grid.ColumnSpan="2" />
 <RadioButton Content="(6) Backward-forward bisimulacija" Height="16"
HorizontalAlignment="Left" Margin="175,92,0,0" Name="radioButton6"
VerticalAlignment="Top" GroupName="equationType" Grid.ColumnSpan="2" />
 <Button Content="Exit" Height="23" HorizontalAlignment="Right"
Margin="0,724,37,0" Name="button5" VerticalAlignment="Top" Width="75"
Click="button5_Click" Grid.Column="1" />
 <Button Content="Save Result" Height="23" HorizontalAlignment="Left"
Margin="431,723,0,0" Name="button6" VerticalAlignment="Top" Width="75"
Click="button6_Click" DataContext="{Binding}" Grid.Column="1" />
 <Button Content="Clear Result" Height="23" HorizontalAlignment="Left"
Margin="93,124,0,0" Name="button7" VerticalAlignment="Top" Width="75"
Click="button7_Click" />
 <Button Content="Button" Height="23" HorizontalAlignment="Left"
Margin="428.045,215,0,0" Name="button8" VerticalAlignment="Top" Width="75"
Click="button8_Click" Grid.Column="1" />
 <Button Content="Load initial B" Height="23" HorizontalAlignment="Left"
Margin="14,380,0,0" Name="button9" VerticalAlignment="Top" Width="75"
Click="button9_Click" RenderTransformOrigin="0.427,7.217" />
 <Button Content="Load transition B" Height="23" HorizontalAlignment="Left"
Margin="276,380,0,0" Name="button10" VerticalAlignment="Top" Width="112"
Click="button10_Click" Grid.ColumnSpan="2" />
 <Button Content="Load final B" Height="23" HorizontalAlignment="Left"
Margin="252,380,0,0" Name="button11" VerticalAlignment="Top" Width="75"
Click="button11_Click" Grid.Column="1" />
 </Grid>
</Window>

102 A C♯ codes

MainWindows.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
using System.IO;
using Microsoft.Win32;

namespace releqgraph
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 ///

 public partial class MainWindow : Window
 {
 public const int NUMBER_OF_ITERATIONS = 10;

 public MainWindow()
 {
 InitializeComponent();
 }
 //Load initial A
 private void button1_Click(object sender, RoutedEventArgs e)
 {
 OpenFileDialog openFileDialog = new OpenFileDialog();
 openFileDialog.DefaultExt = "txt";
 if (openFileDialog.ShowDialog().Value)
 {
 string fullPathname = openFileDialog.FileName;
 FileInfo src = new FileInfo(fullPathname);
 TextReader reader = src.OpenText();
 string line = reader.ReadLine();
 tbInitialA.Text = "";
 while (line != null)
 {
 tbInitialA.Text += line + '\n';
 line = reader.ReadLine();
 }
 }
 }
 //Load transition A
 private void button2_Click(object sender, RoutedEventArgs e)
 {
 OpenFileDialog openFileDialog = new OpenFileDialog();
 openFileDialog.DefaultExt = "txt";
 if (openFileDialog.ShowDialog().Value)

A C♯ codes 103

 {

MainWindows.cs

 string fullPathname = openFileDialog.FileName;
 FileInfo src = new FileInfo(fullPathname);
 TextReader reader = src.OpenText();
 string line = reader.ReadLine();
 while (line != null)
 {
 tbTransitionA.Text += line + '\n';
 line = reader.ReadLine();
 }
 }
 }
 //Load final A
 private void button3_Click(object sender, RoutedEventArgs e)
 {
 OpenFileDialog openFileDialog = new OpenFileDialog();
 openFileDialog.DefaultExt = "txt";
 if (openFileDialog.ShowDialog().Value)
 {
 string fullPathname = openFileDialog.FileName;
 FileInfo src = new FileInfo(fullPathname);
 TextReader reader = src.OpenText();
 string line = reader.ReadLine();
 //tbInitial.Text = "";
 while (line != null)
 {
 tbFinalA.Text += line + '\n';
 line = reader.ReadLine();
 }
 }
 }

 //Load initial B
 private void button9_Click(object sender, RoutedEventArgs e)
 {
 OpenFileDialog openFileDialog = new OpenFileDialog();
 openFileDialog.DefaultExt = "txt";
 if (openFileDialog.ShowDialog().Value)
 {
 string fullPathname = openFileDialog.FileName;
 FileInfo src = new FileInfo(fullPathname);
 TextReader reader = src.OpenText();
 string line = reader.ReadLine();
 tbInitialB.Text = "";
 while (line != null)
 {
 tbInitialB.Text += line + '\n';
 line = reader.ReadLine();
 }
 }
 }
 //Load transition B
 private void button10_Click(object sender, RoutedEventArgs e)
 {
 OpenFileDialog openFileDialog = new OpenFileDialog();
 openFileDialog.DefaultExt = "txt";
 if (openFileDialog.ShowDialog().Value)

104 A C♯ codes

 MainWindows.cs

{
 string fullPathname = openFileDialog.FileName;

 FileInfo src = new FileInfo(fullPathname);
 TextReader reader = src.OpenText();
 string line = reader.ReadLine();
 while (line != null)
 {
 tbTransitionB.Text += line + '\n';
 line = reader.ReadLine();
 }
 }
 }
 //Load final B
 private void button11_Click(object sender, RoutedEventArgs e)
 {
 OpenFileDialog openFileDialog = new OpenFileDialog();
 openFileDialog.DefaultExt = "txt";
 if (openFileDialog.ShowDialog().Value)
 {
 string fullPathname = openFileDialog.FileName;
 FileInfo src = new FileInfo(fullPathname);
 TextReader reader = src.OpenText();
 string line = reader.ReadLine();
 //tbInitial.Text = "";
 while (line != null)
 {
 tbFinalB.Text += line + '\n';
 line = reader.ReadLine();
 }
 }
 }

 private void button4_Click(object sender, RoutedEventArgs e)
 {
 try
 {
 //parsing relation from textbox
 Function SigmaA = new Function();
 RelationArray DeltaArrayA = new RelationArray();
 Function TauA = new Function();
 Function SigmaB = new Function();
 RelationArray DeltaArrayB = new RelationArray();
 Function TauB = new Function();
 SigmaA.loadFromStringArray(tbInitialA.Text);
 DeltaArrayA.loadFromStringMatrix(tbTransitionA.Text);
 TauA.loadFromStringArray(tbFinalA.Text);
 SigmaB.loadFromStringArray(tbInitialB.Text);
 DeltaArrayB.loadFromStringMatrix(tbTransitionB.Text);
 TauB.loadFromStringArray(tbFinalB.Text);

 tbResult.Text += '\n';
 tbResult.Text += "================ Initial A =================";
 SigmaA.writeToTextBox(tbResult);
 tbResult.Text += "================ Transition A =================";

A C♯ codes 105

 MainWindows.cs

 tbResult.Text += DeltaArrayA.toString();

 tbResult.Text += "================ Final A =================";
 TauA.writeToTextBox(tbResult);

 tbResult.Text += '\n';
 tbResult.Text += "================ Initial B =================";
 SigmaB.writeToTextBox(tbResult);
 tbResult.Text += "================ Transition B =================";
 tbResult.Text += DeltaArrayB.toString();
 tbResult.Text += "================ Final B =================";
 TauB.writeToTextBox(tbResult);

 if (radioButton1.IsChecked == true)
 solve1(SigmaA, DeltaArrayA, TauA, SigmaB, DeltaArrayB, TauB,
tbResult);
 else if (radioButton2.IsChecked == true)
 solve2(SigmaA, DeltaArrayA, TauA, SigmaB, DeltaArrayB, TauB,
tbResult);
 else if (radioButton3.IsChecked == true)
 solve3(SigmaA, DeltaArrayA, TauA, SigmaB, DeltaArrayB, TauB,
tbResult);
 else if (radioButton4.IsChecked == true)
 solve4(SigmaA, DeltaArrayA, TauA, SigmaB, DeltaArrayB, TauB,
tbResult);
 else if (radioButton5.IsChecked == true)
 solve5(SigmaA, DeltaArrayA, TauA, SigmaB, DeltaArrayB, TauB,
tbResult);
 else if (radioButton6.IsChecked == true)
 solve6(SigmaA, DeltaArrayA, TauA, SigmaB, DeltaArrayB, TauB,
tbResult);

 }
 catch (Exception ex)
 {
 message.Content = ex.Message + ex.StackTrace;
 }
 }

 private void solve1(Function SigmaA, RelationArray DeltaArrayA, Function TauA,
Function SigmaB, RelationArray DeltaArrayB, Function TauB, TextBox tb)
 {
 Relation X1 = new Relation(TauA.Rightarrow(TauB));
 Relation pom = new Relation(X1);
 Relation Inverzija = new Relation(X1.inverse());
 Function KompStart = new Function(SigmaB.fcomposition(Inverzija));
 Boolean startcond = SigmaA.Less(KompStart);
 Boolean forward = true;
 int numberOfIterations = 0;
 while (startcond && forward && numberOfIterations <= NUMBER_OF_ITERATIONS)
 {
 numberOfIterations++;
 tb.Text += '\n';
 tb.Text += "========== Iteration: " + numberOfIterations + " ==========";
 tb.Text += "========== X "+ numberOfIterations + " ==========";
 pom.writeToTextBox(tb);
 Relation next = new Relation(pom.fs(DeltaArrayA, DeltaArrayB));

106 A C♯ codes

 tb.Text += "========== Iteration: " + numberOfIterations + " ==========";
 tb.Text += "========== next " + numberOfIterations + " ==========";
 next.writeToTextBox(tb);
 startcond = SigmaA.Less(SigmaB.fcomposition(next.inverse()));
 if (next.Equals(pom))

 MainWindows.cs

 forward = false;
 pom = new Relation(next);

 }
 if (startcond == false)
 tb.Text += "========== No forward simulation between A and B ==========";
 }

 private void solve2(Function SigmaA, RelationArray DeltaArrayA, Function TauA,
Function SigmaB, RelationArray DeltaArrayB, Function TauB, TextBox tb)
 {
 Relation prev = new Relation(SigmaA.Rightarrow(SigmaB));
 Boolean forward = true;
 Boolean startcond = TauA.Less(TauB.compositionf(prev));
 int numberOfIterations = 0;
 while (startcond && forward && numberOfIterations <= NUMBER_OF_ITERATIONS)
 {
 numberOfIterations++;
 tb.Text += '\n';
 tb.Text += "========== Iteration: " + numberOfIterations + " ==========";

 tb.Text += '\n';
 tb.Text += "========== X " + numberOfIterations + " ==========";
 prev.writeToTextBox(tb);
 Relation next = new Relation(prev.bs(DeltaArrayA, DeltaArrayB));
 tb.Text += "========== Iteration: " + numberOfIterations + " ==========";
 tb.Text += "========== next " + numberOfIterations + " ==========";
 next.writeToTextBox(tb);
 startcond = TauA.Less(TauB.compositionf(next));
 if (next == prev)
 forward = false;
 prev = new Relation(next);
 }
 if (startcond == false)
 tb.Text += "========== No backward simulation between A and B
==========";
 }

 private void solve3(Function SigmaA, RelationArray DeltaArrayA, Function TauA,
Function SigmaB, RelationArray DeltaArrayB, Function TauB, TextBox tb)
 {
 Relation X11 = new Relation(TauA.Rightarrow(TauB));
 Relation pom1 =new Relation(TauA.Leftarrow(TauB));
 Relation X1 = new Relation(X11.infimum(pom1));
 Boolean forwardb = true;
 Boolean startcond1 = SigmaA.Less(SigmaB.fcomposition(X1.inverse()));
 Boolean startcond2 = SigmaB.Less(SigmaA.fcomposition(X1));
 Boolean startcond = startcond1 && startcond2;
 int numberOfIterations = 0;
 while (startcond && forwardb && numberOfIterations <= NUMBER_OF_ITERATIONS)
 {
 numberOfIterations++;

A C♯ codes 107

 MainWindows.cs

 tb.Text += '\n';

 tb.Text += "========== Iteration: " + numberOfIterations + " ==========";
 tb.Text += '\n';
 tb.Text += "========== X " + numberOfIterations + " ==========";
 X1.writeToTextBox(tb);

 Relation X2 = new Relation(X1.fb(DeltaArrayA, DeltaArrayB));

 startcond1 = SigmaA.Less(SigmaB.fcomposition(X2.inverse()));
 startcond2 = SigmaB.Less(SigmaA.fcomposition(X2));
 startcond = startcond1 && startcond2;
 if (X2 == X1)
 forwardb = false;
 X1 = new Relation(X2);
 }
 if (startcond == false)
 tb.Text += "========== No forward bisimulation between A and B
==========";
 }

 private void solve4(Function SigmaA, RelationArray DeltaArrayA, Function TauA,
Function SigmaB, RelationArray DeltaArrayB, Function TauB, TextBox tb)
 {
 Relation X11 = new Relation(SigmaA.Rightarrow(SigmaB));
 Relation X1 = new Relation(X11.infimum(SigmaA.Leftarrow(SigmaB)));
 Boolean startcond1 = TauA.Less(TauB.compositionf(X1));
 Boolean startcond2 = TauB.Less(TauA.compositionf(X1.inverse()));
 Boolean startcond = startcond1 && startcond2;
 Boolean forward = true;
 int numberOfIterations = 0;
 while (startcond && forward && numberOfIterations <= NUMBER_OF_ITERATIONS)
 {
 numberOfIterations++;
 tb.Text += '\n';
 tb.Text += "========== Iteration: " + numberOfIterations + " ==========";
 tb.Text += '\n';
 tb.Text += "========== X " + numberOfIterations + " ==========";
 X1.writeToTextBox(tb);
 Relation X2 = new Relation(X1.bb(DeltaArrayA, DeltaArrayB));
 startcond1 = TauA.Less(TauB.compositionf(X2));
 startcond2 = TauB.Less(TauA.compositionf(X2.inverse()));
 startcond = startcond1 && startcond2;
 if (X2 == X1)
 forward = false;
 X1 = new Relation(X2);
 }
 if (startcond == false)
 tb.Text += "========== No backward bisimulation between A and B
==========";
 }

 private void solve5(Function SigmaA, RelationArray DeltaArrayA, Function TauA,
Function SigmaB, RelationArray DeltaArrayB, Function TauB, TextBox tb)
 {
 Relation X11 = new Relation(TauA.Rightarrow(TauB));
 Relation X1 = new Relation(X11.infimum(SigmaA.Leftarrow(SigmaB)));

108 A C♯ codes

 MainWindows.cs

 Boolean startcond1 = SigmaA.Less(SigmaB.fcomposition(X1.inverse()));

 Boolean startcond2 = TauB.Less(TauA.compositionf(X1.inverse()));
 Boolean startcond = startcond1 && startcond2;
 Boolean forward = true;
 int numberOfIterations = 0;
 while (startcond && forward && numberOfIterations <= NUMBER_OF_ITERATIONS)
 {
 numberOfIterations++;

 tb.Text += '\n';

 tb.Text += "========== Iteration: " + numberOfIterations + " ==========";
 tb.Text += '\n';
 tb.Text += "========== X " + numberOfIterations + " ==========";
 X1.writeToTextBox(tb);
 Relation X2 = new Relation(X1.fbb(DeltaArrayA, DeltaArrayB));
 startcond1 = SigmaA.Less(SigmaB.fcomposition(X2.inverse()));
 startcond2 = TauB.Less(TauA.compositionf(X2.inverse()));
 startcond = startcond1 && startcond2;
 if (X2 == X1)
 forward = false;
 X1 = new Relation(X2);
 }
 if (startcond == false)
 tb.Text += "========== No forward-backward bisimulation between A and B
==========";
 }

 private void solve6(Function SigmaA, RelationArray DeltaArrayA, Function TauA,
Function SigmaB, RelationArray DeltaArrayB, Function TauB, TextBox tb)
 {
 Relation X11 = new Relation(SigmaA.Rightarrow(SigmaB));
 Relation X1 = new Relation(X11.infimum(TauA.Leftarrow(TauB)));
 Boolean startcond1 = TauA.Less(TauB.compositionf(X1));
 Boolean startcond2 = SigmaB.Less(SigmaA.fcomposition(X1));
 Boolean startcond = startcond1 && startcond2;
 Boolean forward = true;
 int numberOfIterations = 0;
 while (startcond && forward && numberOfIterations <= NUMBER_OF_ITERATIONS)
 {
 numberOfIterations++;
 tb.Text += '\n';
 tb.Text += "========== Iteration: " + numberOfIterations + " ==========";
 tb.Text += '\n';
 tb.Text += "========== X " + numberOfIterations + " ==========";
 X1.writeToTextBox(tb);
 Relation X2 = new Relation(X1.bfb(DeltaArrayA, DeltaArrayB));
 startcond1 = TauA.Less(TauB.compositionf(X2));
 startcond2 = SigmaB.Less(SigmaA.fcomposition(X2));
 startcond = startcond1 && startcond2;
 if (X2 == X1)
 forward = false;

A C♯ codes 109

 MainWindows.cs

 X1 = new Relation(X2);
 }
 if (startcond == false)
 tb.Text += "========== No backward-forward bisimulation between A and B
==========";
 }

 private void button5_Click(object sender, RoutedEventArgs e)
 {
 Close();
 }

private void button6_Click(object sender, RoutedEventArgs e)

 {
 SaveFileDialog saveDialog = new SaveFileDialog();
 saveDialog.DefaultExt = ".txt";
 saveDialog.AddExtension = true;
 saveDialog.FileName = "Result";
 saveDialog.OverwritePrompt = true;
 saveDialog.Title = "Save Result";
 saveDialog.ValidateNames = true;
 if (saveDialog.ShowDialog().Value)
 {
 // create a writer and open the file
 StreamWriter tw = new StreamWriter(saveDialog.FileName);
 // write a line of text to the file
 tw.WriteLine(tbResult.Text);
 // close the stream
 tw.Close();
 }
 }

 private void button7_Click(object sender, RoutedEventArgs e)
 {
 tbResult.Text = "";
 }

 private void button8_Click(object sender, RoutedEventArgs e)
 {

 }

 private void radioButton4_Checked(object sender, RoutedEventArgs e)
 {

 }

 private void tbInitial_TextChanged(object sender, TextChangedEventArgs e)
 {

 }

 private void tbTransitionA_TextChanged(object sender, TextChangedEventArgs e)
 {

110 A C♯ codes

Relation.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Text.RegularExpressions;
using System.Windows.Controls;

namespace releqgraph
{
 class Relation
 {
 private int nRows;
 private int mCols;

 private double[,] mat;

 public Relation()
 {
 }

 public Relation(int n, int m)
 {
 nRows = n;
 mCols = m;
 mat = new double[n, m];
 }

 public Relation(int n)
 {
 nRows = n;
 mCols = n;
 mat = new double[n, n];
 }
 //Pravi kopiju matrice
 public Relation(Relation C)
 {
 nRows = C.getNRows();
 mCols = C.getMCols();
 mat = new double[nRows, mCols];
 for (int i = 0; i < nRows; i++)
 for (int j = 0; j < mCols; j++)
 mat[i, j] = C.getElem(i, j);
 }
 //Vraca koliko ima redova
 public int getNRows()
 {
 return nRows;
 }
 //Postavlja broj redova na n
 public void setNRows(int n)
 {
 nRows = n;
 }
 //Vraca koliko ima kolona
 public int getMCols()
 {

A C♯ codes 111

 Relation.cs

 return mCols;
 }
 //Postavlja broj kolona na m
 public void setMCols(int m)
 {
 mCols = m;
 }
 // vraca odgovarajuci element matrice
 public double getElem(int i, int j)
 {
 return this.mat[i, j];
 }
 // postavlja vrednost odgovarajucem elementu matrice
 public void setElem(int i, int j, double elem)
 {
 this.mat[i, j] = elem;
 }
 // postavlja sve elemente matrice na 1
 public void allOnes(int n)
 {
 nRows = n;
 mCols = n;
 mat = new double[n, n];
 for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 mat[i, j] = 1;
 }
 // ucitava string koji smo uneli i pravi matricu
 public void loadFromString(string s)
 {
 string[] lines = Regex.Split(s, "\n");
 List<string> linesList = new List<string>(lines);
 //remove empty lines
 List<string> itemsToRemove = new List<string>();
 foreach (string l in linesList)
 {
 l.Replace("\r", "");
 l.Replace("\n", "");
 l.Trim();
 if (l.Equals(string.Empty) || l.Equals("\r") || l.Equals("\n"))
 itemsToRemove.Add(l);
 }
 foreach (string l in itemsToRemove)
 linesList.Remove(l);
 //check if list contains more then 1 line
 if (linesList.Count() <= 1)
 throw new Exception("Unable to parse matrix!");
 //in the first line we have matrix dimensions
 string[] dims = Regex.Split(linesList[0], " ");
 this.nRows = Convert.ToInt32(dims[0]);
 this.mCols = Convert.ToInt32(dims.Length > 1 ? dims[1] : dims[0]);

 if (linesList.Count() != nRows + 1)
 throw new Exception("Wrong number of rows specified!");

112 A C♯ codes

Relation.cs

 //create relation matrix
 mat = new double[nRows, mCols];

 for (int i = 1; i < linesList.Count(); i++)
 {
 string[] values = Regex.Split(linesList[i], " ");
 if (values.Length != mCols)
 throw new Exception("Wrong number of colums specified in the row: " +
i);
 for (int j = 0; j < values.Length; j++)
 {
 mat[i - 1, j] = Convert.ToDouble(values[j]);
 }
 }
 }
 // upis u tekst boks
 public void writeToTextBox(TextBox tb)
 {
 tb.Text += '\n';
 tb.Text += nRows + " " + mCols + '\n';
 for (int i = 0; i < nRows; i++)
 {
 for (int j = 0; j < mCols; j++)
 {
 tb.Text += mat[i, j];
 if (j == mCols - 1)
 tb.Text += '\n';
 else
 tb.Text += ' ';
 }
 }
 }
 public String toString()
 {
 String stringRepresentation = "";
 stringRepresentation += this.nRows + " " + this.mCols + "\n";
 for (int i = 0; i < this.nRows; i++)
 {
 for (int j = 0; j < this.mCols; j++)
 {
 stringRepresentation += this.mat[i, j];
 if (j < this.mCols - 1)
 stringRepresentation += " ";
 }
 stringRepresentation += "\n";
 }
 return stringRepresentation;
 }
 public Relation rightResidual1(Relation B)
 {
 if (this.nRows != B.getNRows() || this.mCols != B.getMCols())
 throw new Exception("Incompatible relations for right residual!");
 Relation result = new Relation(this.mCols);
 for (int i = 0; i < result.getNRows(); i++)
 {

A C♯ codes 113

Relation.cs

for (int j = 0; j < result.getMCols(); j++)
 {
 if (i == j)
 result.setElem(i, j, 1);
 else
 {
 int el = 1;
 for (int k = 0; k < this.nRows && el == 1; k++)
 if (this.mat[k, i] > B.getElem(k, j))
 el = 0;
 result.setElem(i, j, el);
 }
 }
 }
 return result;
 }
 // levi rezidual tj. A/B
 public Relation leftResidual1(Relation B)
 {
 if (this.nRows != B.getNRows() || this.mCols != B.getMCols())
 throw new Exception("Incompatible relations for left residual!");
 Relation result = new Relation(this.mCols);
 for (int i = 0; i < result.getNRows(); i++)
 {
 for (int j = 0; j < result.getMCols(); j++)
 {
 if (i == j)
 result.setElem(i, j, 1);
 else
 {
 int el = 1;
 for (int k = 0; k < this.mCols && el == 1; k++)
 if (this.mat[j, k] > B.getElem(i, k))
 el = 0;
 result.setElem(i, j, el);
 }
 }
 }
 return result;
 }
 //A^{-1}
 public Relation inverse()
 {
 Relation result = new Relation(this.mCols, this.nRows);
 for (int i = 0; i < result.getNRows(); i++)
 for (int j = 0; j < result.getMCols(); j++)
 result.setElem(i, j, this.getElem(j, i));
 return result;
 }
 // infimum dve relacije
 public Relation infimum1(Relation B)
 {
 if (this.nRows != B.getNRows() || this.mCols != B.getMCols())
 throw new Exception("Incompatible relations for infimum");
 Relation result = new Relation(this.nRows, this.mCols);

114 A C♯ codes

 Relation.cs

for (int i = 0; i < this.nRows; i++)
 for (int j = 0; j < this.mCols; j++)
 result.setElem(i, j, this.mat[i, j] * B.getElem(i, j));
 return result;
 }

 public static Boolean operator ==(Relation A, Relation B)
 {
 if (A.getNRows() != B.getNRows() || A.getMCols() != B.getMCols())
 return false;
 Boolean eq = true;
 for (int i = 0; i < A.getNRows() && eq; i++)
 for (int j = 0; j < A.getMCols() && eq; j++)
 if (A.getElem(i, j) != B.getElem(i, j))
 eq = false;
 return eq;
 }

 public static Boolean operator !=(Relation A, Relation B)
 {
 if (A.getNRows() != B.getNRows() || A.getMCols() != B.getMCols())
 return true;
 for (int i = 0; i < A.getNRows(); i++)
 for (int j = 0; j < A.getMCols(); j++)
 if (A.getElem(i, j) != B.getElem(i, j))
 return true;
 return false;
 }

 public override bool Equals(Object B)
 {
 if (!(B is Relation))
 return false;
 if (this.nRows != ((Relation)B).getNRows() || this.mCols !=
((Relation)B).getMCols())
 return false;
 for (int i = 0; i < this.nRows; i++)
 for (int j = 0; j < this.mCols; j++)
 if (this.mat[i, j] != ((Relation)B).getElem(i, j))
 return false;
 return true;
 }

 public override int GetHashCode()
 {
 return base.GetHashCode();
 }

 private int and(int a, int b)
 {
 return a * b;
 }

A C♯ codes 115

Relation.cs

 private int or(int a, int b)
 {
 if (a + b == 2)
 return 1;
 else
 return a + b;
 }

 // moj A\B
 public Relation rightResidual(Relation B)
 {
 if (this.nRows != B.getNRows())
 throw new Exception("Incompatible relations for right residual!");
 Relation result = new Relation(this.mCols, B.mCols);
 Function pom = new Function(this.nRows);
 for (int i = 0; i < result.getNRows(); i++)
 {
 for (int j = 0; j < result.getMCols(); j++)
 {
 for (int k = 0; k < pom.getNElems(); k++)
 if (this.mat[k, i] <= B.getElem(k, j))
 pom.setFelem(k, 1);
 else
 pom.setFelem(k, (B.getElem(k, j)/this.mat[k, i]));
 result.setElem(i, j, pom.getMin());
 }
 }
 return result;
 }
 // moj A/B
 public Relation leftResidual(Relation B)
 {
 if (this.mCols!= B.getMCols())
 throw new Exception("Incompatible relations for left residual!");
 Relation result = new Relation(this.nRows, B.nRows);
 Function pom = new Function(this.mCols);
 for (int i = 0; i < result.getNRows(); i++)
 {
 for (int j = 0; j < result.getMCols(); j++)
 {
 for (int k = 0; k < pom.getNElems() ; k++)
 if (B.getElem(j, k) <= this.mat[i, k])
 pom.setFelem(k, 1);
 else
 pom.setFelem(k, (this.mat[i, k] / B.getElem(j, k)));
 result.setElem(i, j, pom.getMin());
 }
 }
 return result;
 }
 public Relation composition(Relation B)
 {
 if (this.mCols != B.getNRows())
 throw new Exception("Incompatible relations for composition");

116 A C♯ codes

Relation.cs

 Relation result = new Relation(this.nRows, B.getMCols());
 Function pom = new Function(this.mCols);
 for (int i = 0; i < this.nRows; i++)
 {
 for (int j = 0; j < B.getMCols(); j++)
 {
 for (int k = 0; k < pom.getNElems(); k++)
 pom.setFelem(k, (this.mat[i, k] * B.getElem(k, j)));
 result.setElem(i, j, pom.getMax());
 }
 }
 return result;
 }

 // infimum dve relacije
 public Relation infimum(Relation B)
 {
 if (this.nRows != B.getNRows() || this.mCols != B.getMCols())
 throw new Exception("Incompatible relations for infimum");
 Relation result = new Relation(this.nRows, this.mCols);
 for (int i = 0; i < this.nRows; i++)
 for (int j = 0; j < this.mCols; j++)
 {
 if (this.mat[i, j] < B.getElem(i, j))
 result.setElem(i, j, this.mat[i, j]);
 else
 result.setElem(i, j, B.getElem(i, j));
 }
 return result;
 }

 public Relation bs(RelationArray DeltaArrayA, RelationArray DeltaArrayB)
 {
 Relation previous = new Relation(this);
 for (int i = 0; i < DeltaArrayA.getNumberOfRelations(); i++)
 {
 Relation compRel = new
Relation(this.composition(DeltaArrayB.getRelation(i)));
 Relation rightResidual = new
Relation(DeltaArrayA.getRelation(i).rightResidual(compRel));
 Relation next = new Relation(previous.infimum(rightResidual));
 previous = next;
 }
 return previous;
 }
 public Relation fs(RelationArray DeltaArrayA, RelationArray DeltaArrayB)
 {
 Relation previous = new Relation(this);
 Relation invRel = new Relation(this.inverse());
 for (int i = 0; i < DeltaArrayA.getNumberOfRelations(); i++)
 {
 Relation compRel = new
Relation(DeltaArrayB.getRelation(i).composition(invRel));

A C♯ codes 117

 Relation leftResid = new
Relation(compRel.leftResidual(DeltaArrayA.getRelation(i)));
 Relation invRel1 = new Relation(leftResid.inverse());
 Relation next = new Relation(previous.infimum(invRel1));
 previous = next;
 }
 return previous;
 }
 public Relation fb(RelationArray DeltaArrayA, RelationArray DeltaArrayB)
 {
 Relation previous = new Relation(this);
 Relation invRel = new Relation(this.inverse());
 for (int i = 0; i < DeltaArrayA.getNumberOfRelations(); i++)
 {
 Relation compRel1 = new
Relation(DeltaArrayB.getRelation(i).composition(invRel));
 Relation compRel2 = new
Relation(DeltaArrayA.getRelation(i).composition(this));
 Relation leftResid1 = new
Relation(compRel1.leftResidual(DeltaArrayA.getRelation(i)));
 Relation leftResid2 = new
Relation(compRel2.leftResidual(DeltaArrayB.getRelation(i)));
 Relation invRel1 = new Relation(leftResid1.inverse());
 Relation pomInf = new Relation(invRel1.infimum(leftResid2));
 Relation next = new Relation(previous.infimum(pomInf));
 previous = next;
 }
 return previous;
 }
 public Relation bb(RelationArray DeltaArrayA, RelationArray DeltaArrayB)
 {
 Relation previous = new Relation(this);
 Relation invRel = new Relation(this.inverse());
 for (int i = 0; i < DeltaArrayA.getNumberOfRelations(); i++)
 {
 Relation compRel1 = new
Relation(this.composition(DeltaArrayB.getRelation(i)));
 Relation compRel2 = new
Relation(invRel.composition(DeltaArrayA.getRelation(i)));
 Relation rightResidual1 = new
Relation(DeltaArrayA.getRelation(i).rightResidual(compRel1));
 Relation rightResidual2 = new
Relation(DeltaArrayB.getRelation(i).rightResidual(compRel2));
 Relation invRel2 = new Relation(rightResidual2.inverse());
 Relation pomInf = new Relation(rightResidual1.infimum(invRel2));
 Relation next = new Relation(previous.infimum(pomInf));
 previous = next;
 }
 return previous;
 }

 public Relation fbb(RelationArray DeltaArrayA, RelationArray DeltaArrayB)
 {
 Relation previous = new Relation(this);
 Relation invRel = new Relation(this.inverse());
 for (int i = 0; i < DeltaArrayA.getNumberOfRelations(); i++)
 {

118 A C♯ codes

Function.cs

using System;
using System.Collections.Generic;
using System.Text.RegularExpressions;
using System.Linq;
using System.Text;
using System.Windows.Controls;

namespace releqgraph
{
 class Function
 {
 private int nElems;
 private double[] kol;

 public Function()
 {
 }

 public Function(int n)
 {
 nElems = n;
 kol = new double[n];
 }
 //kopira fju
 public Function(Function C)
 {
 nElems = C.getNElems();
 kol = new double[nElems];
 for (int i = 0; i < nElems; i++)
 kol[i] = C.getFelem(i);
 }
 //Vraca koliko ima elemenata
 public int getNElems()
 {
 return nElems;
 }
 //Postavlja broj elemenata na n
 public void setElems(int n)
 {
 nElems = n;
 }
 // vraca odgovarajuci element niza
 public double getFelem(int i)
 {
 return this.kol[i];
 }

 // vraca min
 public double getMin()
 {
 double pom = this.getFelem(0);
 for (int i = 1; i < this.getNElems(); i++)
 if (this.getFelem(i) < pom)
 pom = this.getFelem(i);
 return pom;
 }

A C♯ codes 119

 Function.cs

 // vraca max
 public double getMax()
 {
 double pom = this.getFelem(0);
 for (int i = 1; i < this.getNElems(); i++)
 if (this.getFelem(i) > pom)
 pom = this.getFelem(i);
 return pom;
 }

 // postavlja vrednost odgovarajucem elementu matrice
 public void setFelem(int i, double elem)
 {
 this.kol[i] = elem;
 }

 // postavlja sve elemente niza na 1
 public void allOneArray(int n)
 {
 nElems = n;

 kol = new double[n];
 for (int i = 0; i < n; i++)
 kol[i] = 1;
 }

 // ucitava string koji smo uneli i pravi niz
 public void loadFromStringArray (string s)
 {
 string[] lines = Regex.Split(s, "\n");
 List<string> linesList = new List<string>(lines);
 linesList.ForEach(delegate(string l)
 {
 l.Trim();
 });
 //remove empty lines
 List<string> itemsToRemove = new List<string>();
 foreach (string l in linesList)
 {
 if (l.Equals(string.Empty))
 itemsToRemove.Add(l);
 }
 foreach (string l in itemsToRemove)
 linesList.Remove(l);
 //check if list contains more then 1 line
 if (linesList.Count() <= 1)
 throw new Exception("Unable to parse array!" +
linesList.Count().ToString());
 //in the first line we have array dimension
 string[] dims = Regex.Split(linesList[0], " ");
 this.nElems = Convert.ToInt32(dims[0]);

 if (linesList.Count() != 2)
 throw new Exception("Wrong number of rows specified!");

120 A C♯ codes

Function.cs

 //create relation array
 kol = new double[nElems];

 string[] values = Regex.Split(linesList[1], " ");
 if (values.Length != nElems)
 throw new Exception("Wrong number of elements specified in the row.
");
 for (int j = 0; j < values.Length; j++)
 {
 kol[j] = Convert.ToDouble(values[j]);
 }

 }
 // upis u tekst boks
 public void writeToTextBox(TextBox tb)
 {
 tb.Text += '\n';
 tb.Text += nElems + '\n';
 for (int i = 0; i < nElems; i++)
 {

 tb.Text += kol[i];
 tb.Text += ' ';
 }
 }

 // right arrow
 public Relation Rightarrow(Function B)
 {
 Relation result = new Relation(this.nElems, B.getNElems());
 for (int i = 0; i < result.getNRows(); i++)
 {
 for (int j = 0; j < result.getMCols(); j++)
 {
 if (this.kol[i] <= B.getFelem(j))
 result.setElem(i, j, 1);
 else
 result.setElem(i, j, (B.getFelem(j)/this.kol[i]));
 }
 }
 return result;
 }
 // left arrow
 public Relation Leftarrow(Function B)
 {
 Relation result = new Relation(this.getNElems(),B.getNElems());
 for (int i = 0; i < result.getNRows(); i++)
 {
 for (int j = 0; j < result.getMCols(); j++)
 {
 if (B.getFelem(j) <= this.getFelem(i))
 result.setElem(i, j, 1);
 else
 result.setElem(i, j,(this.getFelem(i)/B.getFelem(j)));

A C♯ codes 121

Function.cs

 }
 }
 return result;
 }
 public Boolean Less(Function B)
 {
 Boolean result = true;
 int i = 0;
 if (this.nElems != B.getNElems())
 result = false;
 while (result && i < this.nElems)
 {
 if (this.kol[i]>B.getFelem(i))
 result =false;
 i++;
 }
 return result;
 }
 public Function fcomposition(Relation B)
 {
 if (this.nElems != B.getNRows())
 throw new Exception("Incompatible relations for composition");
 Function result = new Function(B.getMCols());
 Function pom = new Function(this.nElems);
 for (int i = 0; i < result.nElems; i++)
 {
 for (int k = 0; k < pom.getNElems(); k++)
 pom.setFelem(k, (this.kol[k] * B.getElem(k, i)));
 result.setFelem(i, pom.getMax());

 }
 return result;
 }
 public Function compositionf(Relation B)
 {
 if (this.nElems != B.getMCols())
 throw new Exception("Incompatible relations for composition");
 Function result = new Function(B.getNRows());
 Function pom = new Function(this.nElems);
 for (int i = 0; i < result.nElems; i++)
 {
 for (int k = 0; k < pom.getNElems(); k++)
 pom.setFelem(k,(B.getElem(i,k)* this.kol[k]));
 result.setFelem(i, pom.getMax());

 }
 return result;
 }
 }

}

122 A C♯ codes

RelationArray.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Text.RegularExpressions;
using System.Windows.Controls;

namespace releqgraph
{
 class RelationArray
 {

 List<Relation> relArray = new List<Relation>();

 public RelationArray()
 {
 }

 public void addNewRelation(Relation r)
 {
 relArray.Add(r);
 }

 public int getNumberOfRelations()
 {
 return this.relArray.Count();
 }
 public Relation getRelation(int i)
 {
 return this.relArray[i];
 }
 public void loadFromStringMatrix(string s)
 {
 string[] lines = Regex.Split(s, "\n");
 List<string> linesList = new List<string>(lines);
 linesList.ForEach(delegate(string l)
 {
 l.Replace("\r", "");
 l.Replace("\n", "");
 l.Trim();
 });
 //remove empty lines
 List<string> itemsToRemove = new List<string>();
 foreach (string l in linesList)
 {
 if (l.Equals(string.Empty) || l.Equals("\r") || l.Equals("\n"))
 itemsToRemove.Add(l);
 }
 foreach (string l in itemsToRemove)
 linesList.Remove(l);
 //check if list contains more then 1 line
 if (linesList.Count() <= 1)
 throw new Exception("Unable to parse matrix!");
 //in the first line we have matrix dimensions
 string[] dims = Regex.Split(linesList[0], " ");
 int numberOfRelations = Convert.ToInt32(dims[0]);

A C♯ codes 123

 RelationArray.cs

 int dimension = Convert.ToInt32(dims[1]);

 for (int i = 0; i < numberOfRelations; i++)
 {
 String relStr = dims[1] + " " + dims[1] + "\n";
 for (int j = i * dimension + 1; j < (i + 1) * dimension + 1; j++)
 relStr += linesList[j] + "\n";
 Relation r = new Relation();
 r.loadFromString(relStr);
 relArray.Add(r);
 }

 }

 public String toString()
 {
 String strRepresentation = "";
 for (int i = 0; i < relArray.Count(); i++)
 {
 strRepresentation += relArray[i].toString();
 strRepresentation += "\n";
 }
 return strRepresentation;
 }
 }
}

Appendix B

Bisimulacije za fazi automate

Teorija fazi skupova nastaje iz potrebe da se odredjeni koncepti ljudskog
znanja predstave pomoću matematičkih modela. Pojam fazi skupa uveo je
L.A.Zadeh 1965. godine. Zadeh je fazi skupove koristio kao sredstvo za
predstaljanje neprecizno definisanih pojmova, pri čemu ova nepreciznost
proističe iz činjenice da za posmatrane pojmove ne postoje strogo odredjenje
granice pripadanja nekoj klasi. Kako se prilikom rada sa klasama objekata u
realnom, fizičkom svetu, često srećemo sa ovakvim pojmovima, fazi skupovi
imaju široku primenu. U istom radu u kome je uveo pojam fazi skupa, Zadeh
je uveo i pojam fazi relacije, a nakon toga i pojam fazi ekvivalencije i fazi
kvazi-ured̄enja. Kako fazi relacije pružaju veliku slobodu izražavanja veza
izmed̄u elemenata, koje se ne mogu lako uočiti, često su korišćene kao modeli
različitih pojmova koji se javljaju u takozvanim "mekim" naukama kao što
su psihologija, lingvistika i u mnogim drugim naučnim oblastima.

Sa pojavom prvih mašinskih jezika, javlja se potreba da se prevazid̄e razli-
ka izmed̄u preciznosti programskog jezika i nepreciznosti prirodnog jezika.
U tu svrhu, u teoriji fazi skupova uveden je pojam fazi automata. Tokom
posladnjih decenija fazi automati i jezici su korišćeni u raznim oblastima,
uključujući leksičku analizu, kontrolne sisteme, klinički monitoring, opis
prirodnih i mašinskih jezika, baze podataka, diskretne sisteme dogad̄aja,
prepoznavanje uzoraka, kao i mnoge druge oblasti.

Jedan od glavnih problema teorije automata jeste da odredi da li su dva
automata ekvivalentna, što obično znači da odredi da li se dva automata
ponašaju na identičan način. U kontekstu determinističkih, nedeterminis-
tičkih i fazi automata ponašanje automata predstavlja jezik ili fazi jezik koji
je raspoznat automatom i prema tome, dva automata su ekvivalentna, ili
preciznije, jezički ekvivalentna ako raspoznaju isti jezik. U slučaju konačnih
determinističkih automata problem ekvivalencije je rešiv u polinomijalnom
vremenu, ali u slučaju nedeterminističkih i fazi automata ovaj problem je NP-
kompletan. Sledeći važan zadatak teorija automata jeste da predstavi jezičku
ekvivalenciju dva automata kao relaciju izmed̄u stanja ovih automata, uko-
liko takva relacija postoji, odnosno da nad̄e relaciju koja bi aproksimirala

125

126 B Bisimulacije za fazi automate

jezičku ekvivalenciju. Jezička ekvivalencija dva deterministička automata
može biti predstavljena u terminima relacije izmed̄u njihovih stanja, dok je
u slučaju nedeteminističkih i fazi automata ovaj problem dosta kompleksniji
i mozemo razviti samo aproksimacije jezičke ekvivalencije.

Najčešće proučavan koncept za modeliranje "ekvivalencije" izmed̄u stanja
automata je bisimulacija. Bisimulacije su teoriju računarstva uvedene od
strane Milnera[81] i Parka[89], a u istom periodu bisimulacije su otkrivene i
u nekim oblastima matematike kao što su modalna logika i teorija skupova.
Danas su bisimulacije rasprostranjene u različitim oblastima računarstva,
kao što su funkcionalni jezici, objektno-orjentisani jezici, tipovi podataka,
optimizacija kompajlera, baze podataka, programska analiza, verifikacioni
alati itd.

Glavni zadatak ove doktorske disertacije je proučavanje bisimulacija za
fazi automate, sa specijalnim osvrtom na nalaženje najvećih bisimulacija na
odgovarajućim sistemima kao i uopštenje pojma bisimulacije da bi se dobila
relacija koja bolje aproksimira jezičku ekvivalenciju ili daje bolje rezultate
pri redukciji fazi automata.

U drugom odeljku disertacije prikazani su fundamentalni pojmovi kao
i poznati rezultati teorije fazi automata. Osim toga, razmatrani su krisp-
deterministički fazi automati. Kao najvažniji predstavnik klase krisp-dete-
rminističkih automata, predstavili smo Nerodov automat. Ovaj automat se
dobija iz datog fazi automata metodom koji predstavlja uopštenje klasične
podskup konstrukcije na fazi slučaj [55, 56]. Zatim smo razmatrali faktor
fazi automate u odnosu na fazi ekvivalencije na skupu stanja tih automata,
kao i faktor fazi automate u odnosu na fazi kvazi-ured̄enja, zvane afterset i
foreset automati. Konačno, predstavljena su dva tipa simulacija izmed̄u fazi
automata, forward i backward simulacije i uzimajući u obzir četiri slučaja
kada je fazi relacija i njen inverz forward i backward simulacija dobili smo
četiri tipa bisimulacija: forward, backward, forward-backward i backward-
forward bisimulacije. Ove koncepte uveli su Ćirić i saradnici u [22], gde
su predstavljeni značajni rezultati u proučavanju bisimulacija fazi automata
nad kompletnim reziduiranim mrežama.

U trećoj glavi je za svaki od napred navedenih tipova simulacija/bisi-
mulacija predstavljen efikasan algoritam za odred̄ivanje da li postoji simu-
lacija/bisimulacija tog tipa izmed̄u datih fazi automata, kao i za računanje
najvećih, ukoliko postoje. Algoritam se bazira na metodi razvijenoj u [55],
koja računa najveću fiksnu tačku izotone funkcije u mreži fazi relacija, koja je
sadržana u datoj fazi relaciji. Na kraju odeljka, rad algoritma je ilustrovan sa
nekoliko primera. Ovi primeri takod̄e pokazuju da nijedan tip bisimulacije
nema značajnu prednost u odnosu na ostale. Drugim rečima, ovi primeri
pokazuju da može da postoji bisimulacija jednog tipa izmed̄u fazi automata,
a da ne postoji bisimulacija ni jednog od tri ostala tipa.

U odeljku četiri uvodimo dve nove bisimulacije za fazi auotmate, slabu
forward i slabu backward bisimulaciju. Slabe forward i backward bisimula-
cije daju bolju aproksimaciju jezičke ekvivalencije nego forward i backward

B Bisimulacije za fazi automate 127

bisimulacije i kada se koriste u redukciji stanja fazi automata daju bolju
redukciju. Procedura za odred̄ivanje da li postoji slaba forward i backward
bisimulacija kao i procedura za računanje najveće kad god takva bisimulacija
postoji, predstavljene su u ovoj glavi. Zatim smo razmatrali slabe bisimu-
lacije u kontekstu unfromnih fazi relacija, takozvane slabe uniformne bisi-
mulacije. Data je, takod̄e, karakterizacija slabih uniformnih backward i fo-
rward bisimulacija izmed̄u fazi automata u terminima izomorfizama izmed̄u
Nerodovih i reverznih Nerodovih automata.

Sekcija pet posvećena je problemu redukcije stanja fazi automata. Desno
i levo invarijantna fazi kvazi-ured̄enja i fazi ekvivalencije, uvedene u [116],
pokazale su se kao veom dobro sredstvo za redukciju broja stanja fazi au-
tomata. U [116], je, takod̄e, pokazano da veća desno (levo) invarijantna fazi
kvazi-ured̄enja (ekvivalencije) daju bolju redukciju. Stoga je ovde razvijen
novi algoritam za računanje najvećeg desno (levo) invarijantnog fazi kvazi-
ured̄enja (ekvivalencije), zasnovan na čuvenom Paige-Tarjanovom problemu
[87]. Kompleksnost ovog algoritma je O(n5m), gde je n broj stanja automata
A , a m veličina alfabeta. Osim toga data je i modifikovana verzija ovog
algoritma koja računa najveću desno-invarijantnu ekvivalenciju na datom
nedeterminističkom automatu. Modifikovana verzija algrotima radi u vre-
menu O(n3m).

Daćemo u kratkim crtama pregled ključnih rezultata predstavljenih u
urad̄enoj doktorskoj disertaciji.

Na kraju bih želela da se zahvalim svom mentoru Profesorki Jeleni Ignja-
tović, za srdačnu pomoć i prijateljske savete tokom izrade doktorske diserta-
cije. Pored toga bih želela da zahvalim Profesoru Miroslavu Ćiriću, za stalnu
inspiraciju i motivaciju za bavljenje naučnim radom, kao i Ivanu Stankoviću
za velikodušnu pomoć u izradi programa za navedene algoritme. Takod̄e,
se zahvaljujem i svojoj porodici na nesebičnoj podršci i razumevanju koje mi
je pružala tokom izrade doktorske teze.

1. Osnovni pojmovi

Reziduirana mreža je algebra L = (L,∧,∨,⊗,→,0,1) takva da

(L1) (L,∧,∨,0,1) je mreža sa najmanjim elementom 0 i najvećim 1,
(L2) (L,⊗,1) je komutativni monoid sa jedinicom 1,
(L3) ⊗ i→ formiraju adjungovani par , zadovoljavaju svojstvo adjungcije:

za sve x, y,z ∈ L,
x⊗ y6 z ⇔ x 6 y→ z. (B.1)

Ako je osim toga (L,∧,∨,0,1) kompletna mreža, tada L nazivamo kompletna
reziduirana mreža .

Operacija ⊗ (zvana multiplikacija) i→ (zvana reziduum) namenjene su za
modeliranje konjunkcije i implikacije odgovarajućih logičih računa, dok su
supremum (

∨
) i infimum (

∧
) namenjeni za modeliranje ekstenzionalnog i

univerzalnog kvantifikatora, respektivno. Operacija↔ definisana sa

128 B Bisimulacije za fazi automate

x↔ y = (x→ y)∧ (y→ x), (B.2)

naziva se bireziduum (ili biimplikacija), i koristi se za modeliranje ekvivalencije
istinitosnih vrednosti.

Osnovna svojstva kompletnih reziduranih mreža mogu se naći u [3, 10].
Najčešće korišćene strukture istinitosnih vrednosti, koje su najviše prouča-

vane i definisane na realnom jediničnom intervalu [0,1] sa x∧ y =min(x, y)
i x ∨ y = max(x, y), su Łukasiewiczeva struktura (x ⊗ y = max(x + y − 1,0),
x→ y=min(1−x+ y,1)), Goguenova (proizvod) struktura (x⊗ y= x · y, x→ y= 1
if x6 y i = y/x inače) i Gödelova struktura (x⊗ y=min(x, y), x→ y= 1 ako x6 y
i = y inače). Sledeći važan skup istinitosnih vrednosti je skup {a0,a1, . . . ,an},
0 = a0 < · · · < an = 1, sa ak⊗ al = amax(k+l−n,0) i ak→ al = amin(n−k+l,n) . Specijalan
slučaj ove algebre je dvoelementna Bulova algebra klasične logike, čiji je
nosač skup {0,1}. Jedini adjungovani par operacija u dvoelementnoj Bulovoj
algebri su klasična konjukcija i implikacija. Ova struktura istinitosnih vred-
nosti se naziva Bulova struktra.

Parcijalno ured̄en skup P zadovoljava uslov opadajućih lanaca (kraće UOL)
ako se svaki opadajući niz elemenata u P završava nakon konačno mnogo
koraka, tj. ako za svaki opadajući niz {ak}k∈N elemenata u P postoji k ∈N tako
da ak = ak+l, za sve l ∈N. Drugim rečima, P zadovoljava UOL ako ne postoji
beskonačan opadajući lanac u P.

U nastavku će L biti kompletna reziduirana mreža. Fazi podskup skupa
A nad L , ili samo fazi podskup od A, je svako preslikavanje iz A u L. Pod
običnim podskupom skupa A podrazumevamo fazi poskup od A koji uzima
vrednosti u skupu {0,1} ⊆ L. Neka su f i 1 dva fazi podskupa od A. Jednakost
fazi poskupova f i 1 definiše se obično kao jednakost preslikavanja, tj. f = 1
ako i samo ako f (x) = 1(x), za svaki x ∈ A. Inkluzija f 6 1 takod̄e se definiše
kao jednakost preslikavanja: f 6 1 ako i samo ako f (x) 6 1(x), za svaki x ∈ A.
Zajedno sa ovim parcijalnim ured̄enjem skup LA svih fazi podskupova od
A formira kompletnu reziduiranu mrežu, u kojoj su presek

∧
i∈I fi i unija∨

i∈I fi proizvoljne familije { fi}i∈I fazi podskupova od A preslikavanja iz A u
L definisana sa

∧

i∈I

fi

 (x) =

∧

i∈I

fi(x),

∨

i∈I

fi

 (x) =

∨

i∈I

fi(x),

i proizvod f ⊗1 je fazi poskup definisan sa: f ⊗1(x)= f (x)⊗1(x), za svaki x ∈A.
Fazi relacija izmed̄u skupova A i B (ovim redom) je svako preslikavanje iz

A×B u L, tj. svaki fazi podskup od A×B, i jednakost, inkluzija (ured̄enje),
unija i presek fazi relacija definisani su kao u slučaju fazi skupova. Skup
svih fazi relacija izmed̄u A i B označićemo sa LA×B. Specijalno, fazi relacija
na skupu A je svaka funkcija iz A×A u L, tj. fazi poskup od A×A. Skup svih
fazi relacija na A biće označen sa LA×A. Reverz ili inverz fazi relacije α ∈ LA×B

je fazi relacija α−1 ∈ LB×A definisana sa α−1(b,a)= α(a,b), za svaki a ∈A i b ∈ B.
Krisp relacija je fazi relacije koja uzima vrednosti samo u skupu {0,1}, i ako

B Bisimulacije za fazi automate 129

je α krisp relacija iz A u B, tada izrazi ”α(a,b) = 1” i ”(a,b) ∈ α” imaju isto
značenje.

Za neprazne skupove A, B i C, i fazi relaciju α ∈ LA×B i β ∈ LB×C, njihova
kompozicija α◦β ∈ LA×C je fazi relacija definisana sa

(α◦β)(a,c)=
∨

b∈B

α(a,b)⊗β(b,c), (B.3)

za sve a ∈ A i c ∈ C. Za f ∈ LA, α ∈ LA×B i 1 ∈ LB, kompozicije f ◦α ∈ LB i
α◦1 ∈ LA su fazi skupovi definisani

(f ◦α)(b) =
∨

a∈A

f (a)⊗α(a,b), (α◦1)(a)=
∨

b∈B

α(a,b)⊗1(b), (B.4)

za svaki a ∈ A i b ∈ B. Konačno, kompozicija fazi skupova f ,1 ∈ LA je skalar
f ◦1 ∈ L definisan sa

f ◦1 =
∨

a∈A

f (a)⊗1(a). (B.5)

Lako je pokazati da je kompozicija fazi relacija asocijativna, tj.

(α◦β)◦γ = α◦ (β◦γ), (B.6)

za sve α ∈ LA×B, β ∈ LB×C i γ ∈ LC×D, i

(f ◦α)◦β = f ◦ (α◦β), (f ◦α)◦1 = f ◦ (α◦1), (α◦β)◦h= α◦ (β◦h) (B.7)

za sve α ∈ LA×B, β ∈ LB×C, f ∈ LA, 1 ∈ LB i h ∈ LC. Stoga, sve zagrade u (B.6) i
(B.7) mogu biti izostavljene.

Fazi relacija ϕ na skupu A naziva se refleksivna, ako ϕ(a,a) = 1, simetrična,
ako ϕ(a,b) = ϕ(b,a), i transitivna, ako ϕ(a,b)⊗ϕ(b,c)6 ϕ(a,c), za sve a,b,c ∈ A.
Refleksivna i tranzitivna fazi relacija naziva se fazi kvazi-ured̄enje. Simetrično
fazi kvazi ured̄enje je fazi ekivalencija. Za kvazi-ured̄enje ϕ na A i element
a ∈A, ϕ-afterset od a je fazi skup aϕ ∈ LA definisan sa aϕ(b)=ϕ(a,b), iϕ-foreset
od a je fazi skup ϕa ∈ LA definisan sa ϕa(b) = ϕ(b,a), za sve b ∈ A. Ako je ϕ
fazi ekvivalencija, tada se ϕ-afterset od a poklapa sa ϕ-foresetom od a, i naziva
se fazi klasa ekvivalencije od a.

2. Fazi automati

U daljem tekstu, L će biti kompletna reziduirana mreža i X će biti (kon-
ačan) alfabet.
Fazi automat nad L i X (fazi automat), je ured̄ena četvorka A = (A,δ,σ,τ), gde:

- A je neprazan skup, skup stanja;
- δ : A×X×A→ L je fazi poskup od A×X×A, zvan fazi tranziciona funkcija;
- σ : A→ L je fazi podskup od A, zvan fazi skup inicijalnih stanja;
- τ : A→ L je fazi podskup od A, zvan fazi skup završnih stanja.

130 B Bisimulacije za fazi automate

Simbol δ(a,x,b) možemo interpretirati kao stepen prelaza iz stanja a ∈ A u
stanje b ∈A pod uticajem ulaznog slova x ∈X, dok oznake σ(a) i τ(a) možemo
interpretirati kao stepen pripadnosti stanja a skupu inicijalnih odnosno za-
vršnih stanja. Iz metodoloških razloga ćemo dozvoliti da skup stanja A bude
beskonačan. Fazi automat čiji je skup stanja konačan naziva se konačan fazi
automat.

Reverzni fazi automat automata A = (A,δ,σ,τ) je definisan kao fazi automat
¯A = (A, δ̄, σ̄, τ̄) čija je fazi funkcija prelaza data sa:

δ̄(a1,x,a2) = δ(a2,x,a1) za sve a1,a2 ∈ A, x ∈ X,

dok su fazi inicijalna i završna stanja zamenila svoja mesta σ̄ = τ i τ̄ = σ.
Fazi automat A = (A,δA,σA,τA) i A ′ = (A′,δA′ ,σA′ ,τA′) su izomorfni ako

postoji bijekcija φ : A→ A′ takva da δA
x (a,b) = δA′

x (φ(a),φ(b)), za sve a,b ∈ A i
x ∈ X, i takod̄e, σA(a) = σA′(φ(a)) i τA(a) = τA′ (φ(a)), za svaki a ∈ A.

Fazi jezik u X∗ nad L , ili samo fazi jezik, je svaki podskup skupa X∗, tj.
svaka funkcija iz X∗ u L. A fazi jezik raspoznat fazi automatom A = (A,δ,σ,τ), u
oznaci [[A]], je fazi jezik F (X∗) definisan sa

[[A]](e) = σA ◦τA,

[[A]](u) = σA ◦δA
x1
◦δA

x2
◦ · · · ◦δA

xn
◦τA,

(B.8)

za sve u = x1x2 . . .xn ∈ X+, gde je x1,x2, . . . ,xn ∈ X.
Fazi automati A i B su jezički ekvivalentni, ili samo ekvivalentni, ako [[A]]=

[[B]].
Za dati fazi jezikϕ : X∗→ L i v ∈X∗, definišemo v−1ϕ : X∗→L iϕv−1 : X∗→ L

sa v−1ϕ(u) = ϕ(vu) i ϕv−1(u) = ϕ(uv) za u ∈ X∗. Fazi jezik v−1ϕ naziva se levi
izvod, a fazi jezik ϕv−1 desni izvod od ϕ u odnosu na v.

Kardinalnost fazi automata A = (A,δA,σA,τA), u oznaci |A |, se definiše
kao kardinalnost skupa stanja automata A . Fazi automat A je minimalni fazi
automat jezika f ∈F (X∗) ako raspoznaje jezik f i |A |< |A ′|, za svaki automat
A ′ koji raspoznaje f . Minimalni fazi automat koji raspoznaje dati fazi jezik
f ne mora obavezno biti jedinstven do na izomorfizam. Ovo takod̄e važi i u
slučaju nedeterminističkih automata.

Neka je A = (A,δ,σ,τ) fazi automat nad X i L . Fazi tranziciona funkcija
δ je krisp-deterministička ako za svaki x ∈ X i svaki a ∈ A postoje a′ ∈ A takvi
da δx(a,a′) = 1, i δx(a,b) = 0, za svaki b ∈ A\ {a′}. Fazi skup inicijalnih stanja σ
zove se krisp deterministički ako postoji a0 ∈ A takvo da σ(a0) = 1 i σ(a) = 0 za
svaki a ∈A\ {a0}. Ako su i inicijalno stanje σ i δ krisp-deterministički, tada se
A naziva konačan krisp-deterministički automat (kraće: kkda).

Nerodov automat fazi automata A = (A,δ,σ,τ) je krisp-determinističi fazi
automat AN = (AN,δN,σA

e ,τN), takav da AN = {σA
u |u∈X∗} gde je σA

u = σ
A◦δA

u ,za
svaki u ∈ X∗ i δN : AN ×X −→AN i τN ∈F (AN) su definisani sa

δN(σA
u ,x) = σA

ux, τN(σA
u) = σA

u ◦τ
A,

B Bisimulacije za fazi automate 131

za svaki u ∈ X∗ i x ∈ X. Automat AN je jezički ekvivalentan automatu A .
Neka je A = (A,δA,σA,τA) fazi automat i neka je E fazi ekvivalencija

na A. Faktor fazi automat od A u odnosu na E je fazi automat A /E =
(A/E,δA/E,σA/E,τA/E), gde je: skup stanja A/E = {Ea| a ∈ A}, fazi tranziciona
relacija δA/E : A/E×X×A/E→ L definisana sa:

δA/E(Ea,x,Eb) =
∨

a′ ,b′∈A

E(a,a′)⊗ δA(a′,x,b′)⊗E(b′,b) = Ea ◦δ
A
x ◦Eb,

za svaki Ea,Eb ∈ A/E, i x ∈ X, fazi skup σA/E ∈ F (A) inicijalnih stanja se
definiše sa:

σA/E(Ea) = σA ◦Ea, za svaki Ea ∈ A/E,

i fazi skup τA/E ∈F (A) finalnih stanja sa:

τA/E(Ea) = Ea ◦τ
A, za svaki Ea ∈ A/E.

Ukoliko u gornjoj definciji umseto ekvivalencije E posmatramo kvazi-
ured̄enje dobijamo definiciju afterset automata.

Fazi jezik [[A /E [[raspoznat faktor fazi automatom A /E je dat sa

[[A /E]](e) = σA ◦E◦τA, (B.9)

[[A /E]](u) = σ◦E◦δx1 ◦E◦δx2 ◦E · · · ◦E◦δxn ◦E◦τ, (B.10)

za u = x1x2 . . .xn ∈ X+, gde je x1,x2, . . . ,xn ∈ X.
Neka su A = (A,δA,σA,τA) i B = (B,δB,σB,τB) fazi automati, i neka je

γ ∈ R(A,B) neprazna fazi relacija. Relacija γ zove se forward simulacija ako
zadovoljava

σA
6 σB ◦γ−1, (f s-1)

γ−1 ◦δA
x 6 δ

B
x ◦γ

−1, za svaki x ∈ X, (f s-2)

γ−1 ◦τA
6 τB, (f s-3)

i backward simulacija ako

τA
6 γ◦τB, (bs-1)

δA
x ◦γ 6 γ◦δ

B
x , za svaki x ∈ X, (bs-2)

σA ◦γ 6 σB. (bs-3)

Dalje, relaciju γ nazivamo forward bisimulacija ako su obe relacije γ i γ−1

forward simulacije, tj. ako γ zadovoljava

132 B Bisimulacije za fazi automate

σA
6 σB ◦γ−1, σB

6 σA ◦γ,
(f b-1)

γ−1 ◦δA
x 6 δ

B
x ◦γ

−1, γ◦δB
x 6 δ

A
x ◦γ, za svaki x ∈ X, (f b-2)

γ−1 ◦τA
6 τB, γ◦τB

6 τA, (f b-3)

i backward bisimulacija, ako su obe relacije γ i γ−1 backward simulacije, tj. ako
γ zadovoljava

τA
6 γ◦τB, τB

6 γ−1 ◦τA,
(bb-1)

δA
x ◦γ 6 γ◦δ

B
x , δB

x ◦γ
−1
6 γ−1 ◦δA

x , za svaki x ∈ X, (bb-2)

σA ◦γ 6 σB, σB ◦γ−1
6 σA. (bb-3)

Takod̄e, ako je γ forward simulacija i γ−1 je backward simulacija, tj. ako γ
zadovoljava

σA
6 σB ◦γ−1, τB

6 γ−1 ◦τA, (f bb-1)

γ−1 ◦δA
x = δ

B
x ◦γ

−1, za svaki x ∈ X,
(f bb-2)

σB ◦γ−1
6 σA, γ−1 ◦τA

6 τB, (f bb-3)

tada se γ naziva forward-backward bisimulacija, i ako je γ backward simulacija
i γ−1 forward simulacija, tj. ako

σB
6 σA ◦γ, τA

6 γ◦τB, (b f b-1)

δA
x ◦γ = γ◦δ

B
x , za svaki x ∈ X,

(b f b-2)

σA ◦γ 6 σB γ◦τB
6 τA. (b f b-3)

tada se γ naziva backward-forward bisimulacija.

3. Računanje najvećih simulacija i bisimulacija izmad̄u fazi
automata

Kao što smo naveli u uvodu, problem odlučivanja da li postoji simulacija
odnosno bisimulacija odred̄enog tipa izmed̄u datih fazi automata, kao i
problem izračunavanja najveće simulacije odnosno bisimulacije tog tipa,
svodi se na problem računanja najveće post-fiksne tačke, sadržane u datoj
fazi relaciji odgovarajuće izotone funkcije na mreži fazi relacija. U tu svrhu
uvodimo sledeće oznake kao i fazi relacije i funkcije na mreži fazi relacija.

Za neprazne skupove A i B i fazi podskupove η ∈F (A) i ξ ∈F (B), fazi
relacije η\ξ ∈R(A,B) i η/ξ ∈R(A,B) su definisane na sledeći način:

B Bisimulacije za fazi automate 133

(η\ξ)(a,b) = (η(a) → ξ(b)), (B.11)

(η/ξ)(a,b) = (ξ(b) → η(a)), (B.12)

za proizvoljne a ∈ A i b ∈ B. Uvedimo oznaku η/ξ = (ξ\η)−1.

Lemma B.1. Neka su A i B neprazni skupovi i neka su η ∈F (A) i ξ ∈F (B).

(a)Skup svih rešenja nejednačine η◦χ 6 ξ, gde je χ nepoznata fazi relacija izmed̄u
A i B, je glavni ideal mreže R(A,B) generisan fazi relacijom η\ξ.

(b)Skup svih rešenja nejednačine χ◦ξ 6 η, gde je χ nepoznata fazi relacija izmed̄u
A i B, je glavni ideal mreže R(A,B) generisan fazi relacijom η/ξ.

Primetimo da je (η\ξ)∧ (η/ξ) = η|ξ, gde je η|ξ fazi relacija izmed̄u A i B
definisana sa

(η|ξ)(a,b) = (η(a) ↔ ξ(b)), (B.13)

za proizvoljne a ∈ A i b ∈ B.
Dalje, neka su A i B neprazni skupovi i neka α ∈ R(A), β ∈ R(B) i γ ∈

R(A,B). Desni rezidual od γ sa α je fazi relacija α\γ ∈R(A,B) definisana sa

(α\γ)(a,b) =
∧

a′∈A

(α(a′,a)→ γ(a′,b)), (B.14)

za sve a ∈ A i b ∈ B, i levi rezidual od γ sa β je fazi relacija γ/β ∈ R(A,B)
definisana sa

(γ/β)(a,b) =
∧

b′∈B

(β(b,b′)→ γ(a,b′)), (B.15)

za sve a ∈ A i b ∈ B.

Lema 2.1. Neka su A i B neprazni skupovi i neka α ∈R(A), β ∈R(B) i γ ∈R(A,B).

(a)Skup svih rešenja nejednačine α◦χ 6 γ, gde je χ nepoznata fazi relacija izmed̄u
A i B, je glavni ideal mreže R(A,B) generisan desnim rezidualom α\γ od γ sa α.

(b)Skup svih rešenja nejednačine χ◦β 6 γ, gde je χ nepoznata fazi relacija izmed̄u
A i B, je glavni ideal mreže R(A,B) generisan levim rezidualom γ/β od γ sa β.

Neka su A = (A,δA,σA,τA) i B = (B,δB,σB,τB) fazi automati. Definišemo
fazi relaciju πw ∈R(A,B), za w ∈ { f s,bs, f b,bb, f bb,b f b}, na sledeći način:

π f s = τA\τB, (B.16)

πbs = σA\σB, (B.17)

π f b = (τA\τB)∧ (τA/τB) = τA|τB, (B.18)

πbb = (σA\σB)∧ (σA/σB) = σA|σB, (B.19)

π f bb = (τA\τB)∧ (σA/σB), (B.20)

πb f b = (σA\σB)∧ (τA/τB). (B.21)

134 B Bisimulacije za fazi automate

Takod̄e, definišemo funkcijeφw : R(A,B)→R(A,B), za w ∈ { f s,bs, f b,bb, f bb,b f b},
na sledeći način:

φ f s(γ) =
∧

x∈X

[(δB
x ◦γ

−1)/δA
x]−1, (B.22)

φbs(γ) =
∧

x∈X

δA
x \(γ◦δ

B
x), (B.23)

φ f b(γ) =
∧

x∈X

[(δB
x ◦γ

−1)/δA
x]−1∧ [(δA

x ◦γ)/δB
x] = φ f s(γ)∧ [φ f s(γ−1)]−1, (B.24)

φbb(γ) =
∧

x∈X

[δA
x \(γ◦δ

B
x)]∧ [δB

x\(γ
−1 ◦δA

x)]−1 = φbs(γ)∧ [φbs(γ)]−1, (B.25)

φ f bb(γ) =
∧

x∈X

[(δB
x ◦γ

−1)/δA
x]−1∧ [δB

x\(γ
−1 ◦δA

x)]−1 = φ f s(γ)∧ [φbs(γ−1)]−1,

(B.26)

φb f b(γ) =
∧

x∈X

[δA
x \(γ◦δ

B
x)]∧ [(δA

x ◦γ)/δB
x] = φbs(γ)∧ [φ f s(γ−1)]−1, (B.27)

za svaki γ ∈R(A,B).
Naredna teorema daje ekvivalentne forme za drugi i treći uslov u definiciji

simulacija i bisimulacija.

Teorema 2.1. Neka su A = (A,δA,σA,τA) i B = (B,δB,σB,τB) fazi automati i neka
je w ∈ { f s,bs, f b,bb, f bb,b f b}. Fazi relacija γ ∈R(A,B) zadovoljava uslove (w-2) i
(w-3) ako i samo ako važi:

γ 6 φw(γ), γ 6 πw. (B.28)

U nastavku predstavljamo metod za računanje najvećih simulacija i bisimu-
lacija izmed̄u fazi automata.

Neka su A i B neprazni skupovi i neka je φ : R(A,B)→ R(A,B) izo-
tona funkcija, tj. neka α 6 β povlači φ(α) 6 φ(β), za sve α,β ∈ R(A,B). Fazi
relacija α ∈R(A,B) zove se post-fiksna tačka od φ ako α6φ(α). Dobro poznata
Knaster-Tarski theorema o fiksnoj tački (data i dokazana u opštijem obliku,
za kompletne mreže) tvrdi da skup svih post-fiksnih tačaka od φ formira
kompletnu mrežu (cf. [104]). Pored toga, za svaku fazi relaciju π ∈ R(A,B)
imamo da je skup svi post-fiksnih tačaka od φ koje su sadržane u π takod̄e
kompletna mreža. Prema Theoremi B.28, naš glavni zadatak je da nad̄emo
efektivnu proceduru za računanje najveće post-fiksne tačke funkcije φw koja
je sadržana u fazi relaciji πw, za svaki w ∈ { f s,bs, f b,bb, f b f ,b f b}.

Treba naglasiti da je skup svih post-fiksnih tačaka izotone funkcije na ko-
mpletnoj mreži uvek neprazan, jer sadrži barem najmanji element kompletne
mreže. Med̄utim, ovaj skup može sadržati samo jedan element. U našem
slučaju, kada se radi sa mrežom fazi relacija, prazna relacija može biti jedina
post-fiksna tačka, dok sa druge strane simulacija i bisimulacija po definiciji
moraju biti neprazne relacije. Ovaj zahtev je neophodan, jer prazna relacija

B Bisimulacije za fazi automate 135

ne može da zadovolji uslov (w-1), osim ako fazi skup inicijanih stanja ili fazi
skup završnih stanja nije prazan. Stoga je naš zadatak zapravo da nad̄emo
efektivnu proceduru za odred̄ivanje da li postoji neprazna post-fiksna tačka
od φw sadržana u πw, i ukoliko postoji, da se nad̄e najveća.

Neka je φ : R(A,B)→R(A,B) izotona funkcija π ∈R(A,B). Definišemo niz
{γk}k∈N fazi relacija na R(A,B) sa

γ1 = π, γk+1 = γk∧φ(γk), for each k ∈N. (B.29)

Sekvenca {γk}k∈N je očigledno opadajuća. Ako mi označimo sa γ̂ najveću
post-fiksnu tačku φ sadržanu u π, lako možemo pokazati da važi:

γ̂ 6
∧

k∈N

γk. (B.30)

Sada dolazimo do dva veoma važna pitanja. Prvo, pod kojim uslovima važi
jednakost u (B.30)? Drugo, pod kojim uslovima je niz {γk}k∈N konačan? Ako
je ovaj niz konačan, nije teško pokazati da postoji k ∈N takvo da γk = γm,
za svaki m > k, tj. postoji k ∈N takvo da se niz stabilizuje u γk. Niz će se
stabilizovati (zaustaviti) kada nad̄emo najmanji k ∈N takav da γk = γk+1.
U tom slučaju γ̂ = γk, i imamo algoritam koji računa γ̂ u konačnom broju
koraka.

Zapazimo da je niz {γk}k∈N fazi relacija iz R(A,B) konačan ako i samo ako
je image-konačan, što zapravo znači da je skup

⋃
k∈N Im(γk). Dalje, funkcija

φ : R(A,B)→ R(A,B) se zove image-lokalizovana ako postoji konačan K ⊆ L
takav da za svaku fazi relaciju γ ∈R(A,B) imamo

Im(φ(γ)) ⊆ 〈K∪ Im(γ)〉, (B.31)

gde 〈K∪ Im(γ)〉 označava podalgebru od L generisanu sa K∪ Im(γ). Takvo
K će se zvati lokalizovan skup funkcije φ.

Teorema 2.2. Neka je φ image-lokalizovana funkcija, skup K lokalizovan skup,
π ∈R(A,B), i neka je {γk}k∈N niz relacija u R(A,B) definisan sa (B.29). Tada

⋃

k∈N

Im(γk) ⊆ 〈K∪ Im(π)〉. (B.32)

Ako je pored toga 〈K∪Im(π)〉 konačna podalgebra od L , tada je niz {γk}k∈N konačan.

Vratimo se sada na φw, za w ∈ { f s,bs, f b,bb, f bb,b f b}, i predtavimo sledeći
rezultat.

Teorema 2.3. Neka su A = (A,δA,σA,τA) i B = (B,δB,σB,τB) proizvoljni fazi
automati.

Za proizvoljno w ∈ { f s,bs, f b,bb, f bb,b f b} funkcijaφw je izotona i slika-konačna.

136 B Bisimulacije za fazi automate

U nastavku sledi glavni rezultat ovog odeljka, koji obezbed̄uje algoritam
za odred̄ivanje da li postoji simulacija ili bisimulacija odred̄enog tipa izmed̄u
fazi automata i za računanje najveće simulacije i bisimulacije kada takva
postoji.

Teorema 2.4. Neka su A = (A,δA,σA,τA) i B = (B,δB,σB,τB) fazi automati, neka
je w ∈ { f s,bs, f b,bb, f bb,b f b}, i neka je sekvenca {γk}k∈N fazi relacija iz R(A,B)
definisana sa

γ1 = π
w, γk+1 = γk∧φ

w(γk), za svaki k ∈N. (B.33)

Ako 〈Im(πw)∪
⋃

x∈X(Im(δA
x)∪ Im(δB

x))〉 je konačna podalgebra od L , tada važi
sledeće:

(a) niz {γk}k∈N je konačan i opadajući, i postoji bar jedan prirodan broj k takav da
γk = γk+1;

(b) γk je najveća fazi relacija R(A,B) koja zadovoljava (w-2) i (w-3);
(c) ako γk zadovoljava (w-1), tada je γk najveća fazi relacija R(A,B) koja zadovoljava

(w-1), (w-2) i (w-3);
(d) ako γk ne zadovoljava (w-1), tada ne postoji ni jedna fazi relacija u R(A,B) koja

zadovoljava (w-1), (w-2) i (w-3).

4. Slabe bisimulacije na fazi automatima

Neka je A = (A,δA,σA,τA) fazi automat. Za svaki u ∈ X∗, definišemo fazi
skupove σA

u ,τ
A
u ∈F (A) na sledeći način:

σA
u = σ

A ◦δA
u , τA

u = δ
A
u ◦τ

A.

Treba naglasiti da σA
u (u ∈ X∗) igra važnu ulogu u determinizaciji fazi au-

tomata A (cf. [53, 56]), i samim tim, fazi skupovi τA
u (u ∈ X∗) koriste se u

determinizaciji reverznih fazi automata A .
Osim toga, za svaki a ∈ A levi fazi jezik stanja a i desni fazi jezik stanja a su

fazi jezici σa,τa : X∗→ L definisani sa:

σA
a (u) =

∨

b∈A

σA(b)◦δA
u (b,a), τa(u) =

∨

b∈A

δA
u (a,b)⊗τ(b) u ∈ X∗.

Lako je pokazati da, za svaki u ∈ X∗ i a ∈ A važi:

σa(u) = σu(a), τa(u) = τu(a). (B.34)

Dalje, neka su A = (A,δA,σA,τA) i B = (B,δB,σB,τB) fazi automati. Fazi
relacija ϕ ∈R(A,B) koja je rešenje sistema fazi relacijskih jednačina:

σA
6 σB ◦ϕ−1 (B.35)

ϕ−1 ◦τA
u 6 τ

B
u u ∈ X∗ (B.36)

B Bisimulacije za fazi automate 137

se naziva slaba forward simulacija, i ako je ϕ rešenje sistema:

τA
6 ϕ◦τB (B.37)

σA
u ◦ϕ 6 σ

B
u u ∈ X∗ (B.38)

naziva se slaba backward simulacija.
Ako su obe relacije ϕ i ϕ−1 slabe forward simulacije, tj. ako ϕ zadovoljava
(B.35), (B.36) i

σB
6 σA ◦ϕ (B.39)

ϕ◦τB
u 6 τ

A
u u ∈ X∗ (B.40)

tada je ϕ slaba forward bisimulacija, i ako ϕ zadovoljava (B.38), (B.37) i

τB
6 ϕ−1 ◦τA (B.41)

σB
u ◦ϕ

−1
6 σA

u u ∈ X∗ (B.42)

tj. ako su obe relacije ϕ i ϕ−1 slabe backward simulacije, tada se ϕ naziva
slaba backward bisimulacija.

Ovi koncepti uopštavaju pojam simulacija i bisimulacija za fazi automate.
Jednostavnosti radi, relacijuϕ zvaćemo samo slaba simulacija ako jeϕ slaba

forward ili slaba backward simulacija, i samo slaba bisimulacija ako je ϕ slaba
forward ili slaba backward bisimulacija.

Lema 2.2. Neka su A = (A,σA,δA,τA) i B = (B,σB,δB,τB) fazi automati i neka je
ϕ ∈R(A,B) fazi relacija, tada:

(a) Ako je ϕ forward (resp. backward) simulacija, tada je ϕ slaba forward (resp. ba-
ckward) simulacija;

(b) Ako jeϕ forward (resp. backward) bisimulacija, tada jeϕ slaba forward (resp. ba-
ckward) bisimulacija.

Lema 2.3. Neka su A = (A,δA,σA,τA) i B = (B,δB,σB,τB) fazi automati i neka je
ϕ ∈R(A,B) fazi relacija, tada:

(a) Ako je ϕ slaba simulacija, tada je L(A) 6 L(B);
(b) Ako je ϕ slaba bisimulacija, tada je L(A) = L(B).

Sledeća teorema može se lako dokazati korišćenjem definicija slabe fo-
rward i backward simulacije i reverznog fazi automata.

Lema 2.4. Neka su A = (A,δA,σA,τA) i B = (B,δB,σB,τB) fazi automati. Fazi
relacija ϕ ∈ R(A,B) je slaba backward simulacija izmed̄u automata A i B ako i
samo ako je ϕ slaba forward simulacija izmed̄u reverznih fazi automata ¯A i B̄.

Iz ove leme, zaključujemo da za svako tvrd̄enje koje važi za slabe forward
simulacije (resp. bisimulacije) za sve automate, postoji dogovarajuće tvrd̄enje

138 B Bisimulacije za fazi automate

za slabe backward simulacije (resp. bisimulacije). Stoga ćemo obratiti pažnju
samo na slabe forward simulacije (resp. bisimulacije).

Prva teorema daje metod za odred̄ivanje da li postoji slaba forward si-
mulacija izmed̄u dva automata i predstavlja metod za konstrukciju najveće,
kad god postoji, dok druga teorema daje istu proceduru za slabe forward
bisimulacije.

Teorema 2.5. Neka su A = (A,δA,σA,τA) i B = (B,δB,σB,τB) fazi automati i neka
je ϕ ∈R(A,B) fazi relacija definisana sa:

ϕ(a,b) =
∧

u∈X∗

τA
u (a)→ τB

u(b)

za svaki a ∈ A,b ∈ B. Ako ϕ zadovoljava (B.35), tada je ϕ najveća slaba forward
simulacija iz A u B. Ako ϕ ne zadovoljava (B.35), tada ne postoji nijedna slaba
forward simulacija iz A u B.

Teorema 2.6. Neka su A = (A,δA,σA,τA) i B = (B,δB,σB,τB) fazi automati i neka
je ϕ ∈R(A,B) fazi relacija definisana sa:

ϕ(a,b) =
∧

u∈X∗

τA
u (a)↔ τB

u(b), (B.43)

za sve a ∈A,b ∈B. Akoϕ zadovoljava (B.35) i (B.39), tada jeϕ najveća slaba forward
simulacija iz A u B, i ϕ je parcijalna fazi funkcija, inače, ne postoji nijedna slaba
forward bisimulacija iz A u B.

Slabe bisimulacije automata A u sam taj automat, koje su pored toga
i relacije ekvivalencije, zvaćemo slabe bisimulacione ekvivalencije na A .
Primetimo, na osnovu predhodne teoreme, da je najveća slaba bisimulacija
na datom automatu zapravo najveća slaba bisimulaciona ekvivalencija na
tom automatu.

U nastavku ćemo razmatrati slabe simulacije i bisimulacije koje su uni-
formne fazi relacije.

Neka su A = (A,δA,σA,τA) i B = (B,δB,σB,τB) fazi automati. Bijekcija φ iz
A u B se naziva slabi forward izomorfizam fazi automata A i B ako

σA(a) = σB(φ(a)), a ∈ A, (B.44)

τA
u (a) = τB

u(φ(a)), a ∈ A,u ∈ X∗, (B.45)

i slabi backward izomorfizam fazi automata A i B ako

σA
u (a) = σB

u(φ(a)), a ∈ A,u ∈ X∗, (B.46)

τA(a) = τB(φ(a)), a ∈ A. (B.47)

B Bisimulacije za fazi automate 139

Teorema 2.7. Neka su A = (A,δA,σA,τA) i B = (B,δB,σB,τB) fazi automati, i
ϕ ∈R(A,B) uniformna fazi relacija. Tada je ϕ slaba forward bisimulacija ako i samo
ako važi sledeće:

(1) E
ϕ
A

je slaba forward bisimulaciona equivalencija na fazi automatu A ;

(2) E
ϕ
B

je slaba forward bisimulaciona equivalencija na fazi automatu B;

(3) ϕ̃ je slabi forward izomorfizam faktor fazi automata A /E
ϕ
A

i B/E
ϕ
B

.

Teorema 2.8. Neka su A = (A,σA,X,δA,τA) i B = (B,σB,X,δB,τB) fazi automati,
i neka je E slaba forward bisimulaciona ekvivalencija na A i F slaba forward bisim-
ulaciona ekvivalencija na B.
Tada postoji uniformna slaba forward bisimulacija ϕ ∈R(A,B) takva da

E
ϕ
A
= E i E

ϕ
B
= F, (B.48)

ako i samo ako postoji slabi forward izomorfizam φ : A /E→B/F takav da za svaki
a1,a2 ∈ A važi

Ẽ(Ea1 ,Ea2) = F̃(φ(Ea1),φ(Ea1)). (B.49)

Naredna teorema daje karakterizaciju uniformnih slabih forward bisimu-
lacija u terminima reverznih Nerodovih automata. Na sličan način možemo
dati karakterizaciju uniformnih slabih backward bisimulacija u terminima
Nerodovih automata.

Teorema 2.9. Neka su A = (A,δA,σA,τA) i B = (B,δB,σB,τB) fazi automati, i
neka je ϕ ∈R(A,B) uniformna fazi relacija. Tada je ϕ slaba forward bisimulacija iz
A u B ako i samo ako zadovoljava (B.35) i (B.39), i funkcije

τA
u 7→ ϕ−1 ◦τA

u , τB
u 7→ ϕ◦τB

u , u ∈ X∗,

su med̄usobno inverzni izomorfizmi izmed̄u reverznih Nerodovih automata ¯AN i
B̄N .

5. Algoritmi Paige-Tarjanovog tipa

Neka je A = (A,σ,δ,τ) fazi automat nad X i L . Fazi kvazi-ured̄enje R ∈
R(A) naziva se desno stabilno ili samo d-stabilno ako zadovoljava sledeći
sistem fazi relacijskih nejednačina:

R◦δx ◦R 6 δx ◦R, x ∈ X. (B.50)

Slično, fazi kvazi-ured̄enje R ∈R(A) zove se levo stabilno(kraće l-stabilno) ako
zadovoljava sledeći sistem fazi relacijskih nejednačina:

R◦δx ◦R 6 R◦δx, x ∈ X. (B.51)

Dalje, fazi kvazi-ured̄enje R ∈R(A) naziva se desno-invarijantno na A ako je
d-stabilno i zadovoljava sledeću nejednakost:

140 B Bisimulacije za fazi automate

R◦τ 6 τ. (B.52)

Analogno, R je levo-invarijantno na A ako je l-stabilno i zadovoljava sledeću
nejednakost:

σ◦R 6 σ. (B.53)

Na osnovu činjenice da je fazi kvazi-ured̄enje R rešenje nejednačine (B.52)
ako i samo ako:

R 6 τ\τ = π f s,

zaključujemo da je d-stabilno fazi kvazi-ured̄enje na datom fazi automatu A

desno-invarijantno kvazi-ured̄enje na A ako i samo ako je sadržano u π f s.
Slično, kako je fazi kvazi-ured̄enje R rešenje nejednačine (B.53) ako i samo
ako:

R 6 σ\σ = πbs,

dobijamo da je R l-stabilno fazi kvazi-ured̄enje na datom fazi automatu A

levo-invarijantno kvazi-ured̄enje na A ako i samo ako je sadržano u πbs.
Važno je pomenuti da se pojam d-stabilnosti i l-stabilnosti kvazi-ured̄enja

na fazi automatu A = (A,X,δ,σ,τ), koja je ovde uvedena, poklapa sa poj-
mom desno-inverijantnosti odnosno levo-invarijantnosti kvazi-ured̄enja na
datom fazi tranzicionom sistemu A = (A,X,δ). Stoga se problem nalaženja
najvećeg desno-invarijantnog fazi kvazi-ured̄enja na odgovarajućem fazi au-
tomatu svodi na problem nalaženja najvećeg desno-invarijantnog fazi kvazi-
ured̄enja na odgovarajućem tranzicionom sistemu sadržanom u datom fazi
kvazi-ured̄enju.

Neka je A = (A,X,δA) fazi tranzicioni sistem, i neka je R fazi kvazi-ured̄enje
na A .

Sa L (A ,R) označićemo podalgebru od L generisanu sa δA(A×X×A)∪
R(A×A).

Sledeća teorema daje metod za računanje najvećeg desno-invarijantnog
kvazi-ured̄enja na datom fazi automatu:

Teorema 2.10. Neka je A = (A,σ,δ,τ) fazi automat nad X i U ∈R(A) univerzalna
relacija na A.

Definišemo nizove {Qk}k∈N i {Rk}k∈N fazi kvazi-ured̄enja na A na sledeći način:
Inicijalno za k = 1

R1 =U,

Q1 = π
f s∧

(∧

x∈X

(δx ◦Ra
1)/(δx ◦Ra

1)
)
, (B.54)

gde je a ∈ A proizvoljni element.
Dalje, za svako k > 2 ponavljamo sledeći postupak: Nalazimo a ∈ A, tako da je

Ra
k
,Qa

k
i stavljamo

B Bisimulacije za fazi automate 141

Rk+1 = Rk∧ (Qa
k/Q

a
k), (B.55)

Qk+1 =Qk∧
(∧

x∈X

(∧

b∈Sa
k

(δx ◦Rb
k+1)/(δx ◦Rb

k+1)
))
, (B.56)

(Sa
k
= {b ∈ A |Qa

k
(b) , 0}), dok ne postane Rk =Qk. Tada:

(a) Nizovi {Qk}k∈N i {Rk}k∈N su opadajući;
(b) Qk 6 Rk za svaki k ∈N;
(c) Za svaki k ∈N, i sve c ∈ A važi :

Qk 6

∧

x∈X

δx ◦Rc
k/δx ◦Rc

k; (B.57)

(d) Qk i Rk su fazi kvazi-ured̄enja za svaki k ∈N;
(e) Ako Rk = Qk, za neko k ∈ N, tada je Qk najveće desno-inarijantno fazi kvazi-

ured̄enje na A ;
(f) Ako je A konačan i L (A ,R) zadovoljava UOL, tada su nizovi {Qk}k∈N i {Rk}k∈N

konačni, tj. postoji k ∈N tako da je Rk =Qk.

Kompleksnost algoritma baziranog na predhodnoj teoremi je O(n5m), gde
je n broj stanja automata A a m veličina alfabeta.

Naredna teorema daje postupak za računanje najveće desno-invarijantne
fazi eqvivalencije na datom fazi automatu.

Teorema 2.11. Neka je A = (A,σ,δ,τ) fazi automat nad X, i U ∈R(A) univerzalna
relacija na A.

Definišemo niz {Ek}k∈N i {Xk}k∈N ekvivalencija na A na sledeći način: Inicijalno
za k = 1

X1 =U,

E1 = π f b∧
(
(δ◦Xa

1)|(δ◦Xa
1)
)
, for some a ∈ A. (B.58)

U nastavku, za svaki k ∈N ponavljamo sledeći korak: Nalazimo a ∈ A, tako da je
Xa

k
, Ea

k
i stavljamo

Xk+1 = Xk∧ (Ea
k|E

a
k),

Ek+1 = Ek∧
(
(δ◦Ea

k)|(δ◦Ea
k)
)
∧

(∧

b∈Ta
k

(δ◦Xb
k+1)|(δ◦Xb

k+1)
)
, (B.59)

(Ta
k
= {b ∈ A |Ea

k
(b) , 1}), dok ne postane Xk = Ek. Tada važi:

(a)Nizovi {Ek}k∈N i {Xk}k∈N su opadajući;
(b)Za svaki k ∈N, Ek 6 Xk;
(c)Za svaki k ∈N, i sve c ∈ A važi sledeće:

Ek 6

∧

x∈X

(δx ◦Xc
k)|(δx ◦Xc

k); (B.60)

142 B Bisimulacije za fazi automate

(d)Za svaki k ∈N, Xk i Ek su fazi ekvivalencije;
(e) Ako je Xk = Ek, za neko k ∈N, tada je Ek najveća desno invarijantna fazi ekviva-

lencija na A ;
(f) Ako je A konačan i L (A ,R) zadovoljava UOL, tada su nizovi {Ek}k∈N i {Xk}k∈N

konačni, tj. postoji k ∈N tako da Xk = Ek.

Sledeća teorema, predstavlja specijalan slučaj predhodne teoreme, naime
daje postupak za računanje najveće desno-invarijantne ekvivalencije na
nedeterminističkom automatu.

Teorema 2.12. Neka je A = (A,σ,δ,τ) nedeterministički automata i U = A×A
univerzalna relacija na A.

Definišimo nizove {Ek}k∈N i {Rk}k∈N ekvivalencija na A na sledeći način: Inicijalno
za k = 1

R1 =U, E1 = π
f b∩

⋂

x∈X

(
(δx ◦Ua)|(δx ◦Ua)

)
,

gde je a proizvoljni element iz A.
Dalje, za svaki k ∈N ponavljamo sledeći korak: Nalazimo a ∈A, tako da je Ra

k
, Ea

k
i stavljamo

Rk+1 = Rk∩ (Ea
k|E

a
k), (B.61)

Ek+1 = Ek∩
(⋂

x∈X

(
(δx ◦ (Ra

k−Ea
k))|(δx ◦ (Ra

k−Ea
k))

)
∩ ((δx ◦Ea

k)|(δx ◦Ea
k))

)
, (B.62)

dok ne bude Rk = Ek. Tada važi:

(a)Nizovi {Ek}k∈N i {Rk}k∈N su opadajući;
(b)Za svaki k ∈N, Ek ⊆ Rk;
(c)Za svaki k ∈N, i sve c ∈ A važi:

Ek ⊆
⋂

x∈X

(δx ◦Rc
k)|(δx ◦Rc

k); (B.63)

(d)Za svaki k ∈N, Rk i Ek su relacije ekvivalencije;
(e) Procedura je konačna i završava se nakon |A|−1 koraka i ukoliko se završi nakon

n koraka tada je En najveća desno invarijantna ekvivalencija na A .

Primetimo da ova modifikacija ima znatno manju kompleksnost, odnosno
kompleksnost ovog algoritma iznosi O(n3m).

Appendix C

Biography of Author

BIOGRAPHICAL INFORMATION

Ivana Micić was born in July 13th,1984. in Niš, where she finished the
Primary School "Branko Miljković" with excellent marks. She got the diploma
"Vuk Karadzić" and she was declared as the best pupil in the generation. She
finished high school "Bora Stanković" in Niš with all excellent marks. She
started her studies on the department of mathematics and informatics, on the
Faculty of Sciences and Mathematics, University of Niš, in the school year
2003/2004.and graduated in 2008., with the average grade 9,50. She defended
her graduate thesis "Fuzzy equivalence relations and their application " and
got excellent mark 10.

During the period from 2006. to 2008. she was receiving the city scholar-
ship for talented students and in July, 2007. she won a scholarship "Travel
the Europe" for best students of finial year of studies in the Republic of
Serbia. She started her PhD studies in 2008. on the Faculty of Sciences and
Mathematics, Department of Computer Science. From that period she started
working as the researcher assistant on the same faculty.

From the February 2009. she is a junior researcher on project "Algebraic
structures and methods for information processing" (144011). From 2011.
she is working as a member of the project "Development of methods for
calculation and information processing: theory and application" (174013).
In the September 2010. she participated in the project "Natural language
processing and automata" on the Technical University Dresden, Germany.

In the January, 2011. she was involved in the teaching process and now
she is preforming exercises for the following exams: Basis of informatics,
Methodology of e-learning and Theory of automata, algorithms and lan-
guages.

143

144 C Biography of Author

LIST OF SCIENTIFIC PAPERS

Papers published in international journals on the SCI list

1. M. Ćirić, J.Ignjatović, M. Bašić, I.Jančić, Nondeterministic automata:
equivalence, bisimulations, and uniform relations, Information Sciences
261 (2014) 185-218

2. I.Jančić, Weak bisimulation for fuzzy automata, Fuzzy Sets and Systems
(2013) http://dx.doi.org/10.1016/j.fss.2013.10.006.

3. M. Ćirić, J.Ignjatović, I.Jančić, N. Damljanović, Computation of the great-
est simulations and bisimulations between fuzzy automata, Fuzzy Sets
and Systems 208 (2012) 22-42

4. J. Ignjatović, M. Ćirić, N. Damljanović, I. Jančić, Weakly linear systems
of fuzzy relation inequalities: The heterogeneous case, Fuzzy Sets and
Systems 199 (2012) 64-91.

Participation in international conferences with published
list of abstracts

5. I.Jančić, Z.Jančić, J. Ignjatović, M. Ćirić, Fuzzy automata: Determiniza-
tion using simulations International Workshop on Weighted Automata:
Theory and Applications, WATA 2012, Dresden, Germany, May 29-June
2, 2012.

6. I.Jančić, J. Ignjatović, M. Ćirić, Fuzzy automata: weak bisimulations, In-
ternational Workshop on Weighted Automata: Theory and Applications,
WATA 2010, Leipzig, Germany, May 3-7, 2010.

7. I.Jančić, J. Ignjatović, M. Ćirić, Fuzzy network analysis:Regular equiv-
alences and bisimulation The 3rd Novi Sad Algebraic Conference, Novi
Sad, Serbia, August 17-21, 2009.

References

1. L. Aceto, A. Ingolfsdottir, K. G. Larsen, J. Srba, Reactive Systems: Modelling, Specifi-
cation and Verification, Cambridge University Press, Cambridge, 2007.

2. N. C. Basak, A. Gupta, On quotient machines of a fuzzy automaton and the minimal
machine, Fuzzy Sets and Systems 125 (2002) 223–229.

3. R. Bělohlávek, Determinism and fuzzy automata, Information Sciences 143 (2002)
205–209.

4. R. Bělohlávek, Fuzzy Relational Systems: Foundations and Principles, Kluwer, New
York, 2002.

5. T.S.Blyth, Lattices and Ordered Algebraic Structures, Springer, 2006.
6. G.Birkhoff, Lattice theory, American mathematical Society,1964.
7. M. P. Béal, S. Lombardy, J. Sakarovitch, On the equivalence of Z-automata, In: L.

Caires et al. (eds.), ICALP 2005, Springer, Heidelberg, Lecture Notes in Computer
Science 3580 (2005) 397–409.

8. M. P. Béal, S. Lombardy, J. Sakarovitch, Conjugacy and equivalence of weighted
automata and functional transducers. In: D. Grigoriev, J. Harrison, and E. A. Hirsch
(eds.), CSR 2006, Springer, Heidelberg, Lecture Notes in Computer Science 3967 (2006)
58–69.

9. M. P. Béal, D. Perrin, On the generating sequences of regular languages on k symbols,
Journal of the ACM 50 (2003) 955–980.

10. R. Bělohlávek, V. Vychodil, Fuzzy Equational Logic, Springer, Berlin/Heidelberg, 2005.
11. S. L. Bloom, Z. Ésik, Iteration Theories: The Equational Logic of Iterative Processes,

EATCS Monographs on Theoretical Computer Science, Springer, Berlin-Heilderberg,
1993.

12. T. Brihaye, Words and bisimulations of dynamical systems, Discrete Mathematics and
Theoretical Computer Science 9 (2) (2007) 11–32.

13. P. Buchholz, Bisimulation relations for weighted automata, Theoretical Computer
Science 393 (2008) 109–123.

14. J.-M. Champarnaud, F. Coulon, Theoretical study and implementation of the canonical
automaton, Technical Report AIA 2003.03, LIFAR, Université de Rouen, 2003.

15. J.-M. Champarnaud, F. Coulon, NFA reduction algorithms by means of regular in-
equalities, in: Z. Ésik, and Z. Fülöp (eds.), DLT 2003, Lecture Notes in Computer
Science 2710 (2003) 194–205.

16. J.-M. Champarnaud, F. Coulon, NFA reduction algorithms by means of regular in-
equalities, Theoretical Computer Science 327 (2004) 241–253 (erratum: Theoretical
Computer Science 347 (2005) 437–40).

145

146 References

17. C. S. Calude, E. Calude, B. Khoussainov, Finite nondeterministic automata: Simulation
and minimality, Theoretical Computer Science 242 (2000) 219–235.

18. Y. Cao, G. Chen, E. Kerre, Bisimulations for fuzzy transition systems, IEEE Transac-
tions on Fuzzy Systems 19 (2011) 540-552.

19. M. Ćirić, M. Droste, J. Ignjatović, H. Vogler, Determinization of weighted finite au-
tomata over strong bimonoids, Information Sciences 180 (2010) 3497–3520.

20. M. Ćirić, J. Ignjatović, S. Bogdanović, Uniform fuzzy relations and fuzzy functions,
Fuzzy Sets and Systems 160 (2009) 1054–1081.

21. M. Ćirić, J. Ignjatovic, M. Bašić, I. Jančić, Nondeterministic automata: Simulation,
bisimulation and structural equivalence, Information Science 261 (2014) 185-218

22. M. Ćirić, J. Ignjatović, N. Damljanović, M. Bašić, Bisimulations for fuzzy automata,
Fuzzy Sets and Systems 186(2012) 100-139

23. M. Ćirić, J. Ignjatović, I. Jančić, N. Damljanović, Computation of the greatest simula-
tions and bisimulations between fuzzy automata, Fuzzy Sets and Systems 208 (2012)
22-42.

24. C. G. Cassandras, S. Lafortune, Introduction to Discrete Event Systems, Springer, 2008.
25. W. Cheng, Z. Mo, Minimization algorithm of fuzzy finite automata, Fuzzy Sets and

Systems 141 (2004) 439-448.
26. M. Ćirić, A. Stamenković, J. Ignjatović, T. Petković, Factorization of fuzzy automata,

In: Csuhaj-Varju, E., Ésik, Z. (eds.), FCT 2007, Springer, Heidelberg, Lecture Notes in
Computer Science 4639 (2007) 213-225.

27. M. Ćirić, A. Stamenković, J. Ignjatović, T. Petković, Fuzzy relation equations and
reduction of fuzzy automata, Journal of Computer and System Sciences 76 (2010)
609-633.

28. C. Câmpeanu, N. Sântean, S. Yu, Mergible states in large NFA, Theoretical Computer
Science 330 (2005) 23-34.

29. Y. Z. Cao, M. S. Ying, Supervisory control of fuzzy discrete event systems, IEEE
Transactions on Systems, Man, and Cybernetics - Part B 35 (2005) 366-371.

30. Y. Z. Cao, M. S. Ying, Observability and decentralized control of fuzzy discrete-event
systems, IEEE Transactions Fuzzy Systems 14 (2006) 202-216.

31. Y. Z. Cao, M. S. Ying, G. Q. Chen, State-based control of fuzzy discrete-event systems,
IEEE Transactions on Systems, Man, and Cybernetics - Part B 37(2007) 410-424.

32. J.-M. Champarnaud, D. Ziadi, New finite automaton constructions based on canonical
derivatives, in: S. Yu, A. Paun (eds.), CIAA 2000, Springer, Berlin, Lecture Notes in
Computer Science 2088 (2001) 94-104.

33. J.-M. Champarnaud, D. Ziadi, Computing the equation automaton of a regular ex-
pression in O(s2) space and time, in: A. Amir, G. Landau (eds.), CPM 2001, Springer,
Berlin, Lecture Notes in Computer Science 2089 (2001) 157-168.

34. M. Demirci, Fuzzy functions and their applications, Journal of Mathematical Analysis
and Applications 252 (2000) 495-517.

35. M. Demirci, Foundations of fuzzy functions and vague algebra based on many-valued
equivalence relations, Part I: Fuzzy functions and their applications, International
Journal of general Systems 32 (2) (2003) 123-155.

36. M. Demirci, A theory of vague lattices based on many-valued equivalence relations -
I: general representation results, Fuzzy Sets and Systems 151 (2005) 437-472.

37. M. Droste, T. Stüber, H. Vogler, Weighted finite automata over strong bimonoids,
Information Sciences 180 (2010) 156-166.

38. D. Dubois, H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic
Press, New York, 1980.

39. D. Dubois, H. Prade (eds.), Fundamentals of Fuzzy Sets, The Handbooks of Fuzzy
Sets Series, Vol. 1, Kluwer Academic Publishers, 2000.

40. A. Dovier, C. Piazza, A. Policriti, An efficient algorithm for computing bisimulation
equivalence, Theoretical Computer Science 311 (2004) 221-256.

References 147

41. Z. Ésik, W. Kuich, A generalization of Kozen’s axiomatization of the equational theory
of the regular sets, in: Words, semigroups, and transductions, World Scientific, River
Edge, NJ, 2001, pp. 99-114.

42. Z. Ésik, A. Maletti, Simulation vs. Equivalence, CoRR abs/1004.2426 (2010).
43. M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness, Freeman, San Francisco,1979.
44. R. Gentilini, C. Piazza, A. Policriti, From bisimulation to simulation: coarsest partition

problems, Journal of Automated Reasoning 31 (2003) 73-103.
45. M. M. Gupta, G. N. Saridis, B. R. Gaines, Fuzzy Automata and Decision Processes,

North-Holland, New York, 1977.
46. P. Hájek, Mathematics of fuzzy logic, Kluwer, Dordrecht, 1998.
47. T. A. Henzinger, P. W. Kopke, A. Puri, P. Varaiya, What’s decidable about hybrid

automata? Journal of Computer and System Sciences 57 (1998) 94-124.
48. J. Högberg, A. Maletti, J. May, Backward and forward bisimulation minimisation of

tree automata, in: J. Holub, J. Ždárek (eds.), IAA07, Springer, Heidelberg, Lecture
Notes in Computer Science 4783 (2007) 109-121.

49. J. Högberg, A. Maletti, J. May, Backward and forward bisimulation minimisation of
tree automata, Theoretical Computer Science 410 (2009) 3539-3552.

50. U. Höhle, Commutative, residuated ℓ-monoids, in: U. Höhle and E. P. Klement (Eds.),
Non-Classical Logics and Their Applications to Fuzzy Subsets, Kluwer Academic
Publishers, Boston, Dordrecht, 1995, pp. 53-106.

51. B. Hrúz, M. C. Zhou, Modeling and control of discrete-event dynamical systems: with
Petri nets and other tools, Springer, 2007.

52. J. Ignjatović, M. Ćirić, Formal power series and regular operations on fuzzy languages,
Information Sciences 180 (2010) 1104-1120.

53. J. Ignjatović, M. Ćirić, S. Bogdanović, Determinization of fuzzy automata with mem-
bership values in complete residuated lattices, Information Sciences 178 (2008) 164-
180.

54. J. Ignjatović, M. Ćirić, S. Bogdanović, Fuzzy homomorphisms of algebras, Fuzzy Sets
and Systems 160 (2009), 2345-2365.

55. J. Ignjatović, M. Ćirić, S. Bogdanović, On the greatest solutions to weakly linear
systems of fuzzy relation inequalities and equations, Fuzzy Sets and Systems 161
(2010) 3081-3113.

56. J. Ignjatović, M. Ćirić, S. Bogdanović, T. Petković, Myhill-Nerode type theory for fuzzy
languages and automata, Fuzzy Sets and Systems 161 (2010) 1288-1324.

57. J. Ignjatović, M. Ćirić, N. Damljanović, I. Jančić, Weak linear system of fuzzy relation
inequalities: The heterogenous case, Fuzzy Sets and Systems 199 (2012) 64-91.

58. L. Ilie, S. Yu, Constructing NFAs by optimal use of positions in regular expressions,
in: A. Apostolico, M. Takeda (eds.), CPM 2002, Springer, Berlin, Lecture Notes in
Computer Science 2373 (2002) 279-288.

59. L. Ilie, S. Yu, Algorithms for computing small NFAs, in: K. Diks et al. (eds): MFCS
2002, Lecture Notes in Computer Science 2420 (2002) 328-340.

60. L. Ilie, S. Yu, Reducing NFAs by invariant equivalences, Theoretical Computer Science
306 (2003) 373-390.

61. L. Ilie, S. Yu, Follow automata, Information and Computation 186 (2003) 140-Ű162
62. L. Ilie, G. Navarro, S. Yu, On NFA reductions, in: J. Karhumäki et al. (eds): Theory is

Forever, Lecture Notes in Computer Science 3113 (2004) 112-124.
63. L. Ilie, R. Solis-Oba, S. Yu, Reducing the size of NFAs by using equivalences and

preorders, in: A. Apostolico, M. Crochemore, and K. Park (eds): CPM 2005, Lecture
Notes in Computer Science 3537 (2005) 310-321.

64. I. Jančić, Weak bisimulation for fuzzy automata, Fuzzy Sets and Systems (2013)
http://dx.doi.org/10.1016/j.fss.2013.10.006

65. Z. Jančić, J. Ignjatović, M. Ćirić, An improved algorithm for determinization of
weighted and fuzzy automata, Information Sciences 181 (2011) 1358-1368.

148 References

66. T. Jiang, B. Ravikumar, Minimal NFA problems are hard, SIAM J. Comput. 22 (6)
(1993) 1117-1141.

67. P. C. Kannellakis, S. A. Smolka, CCS expressions, finite state processes, and three
problems of equivalence, Information and Computation 86 (1990) 43-68.

68. E. Kilic, Diagnosability of fuzzy discrete event systems, Information Sciences 178
(2008) 858-870.

69. G. J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic, Theory and Application, Prentice-Hall,
Englevood Cliffs, NJ, 1995.

70. D. C. Kozen, Automata and Computability, Springer, 1997.
71. T. Kameda, P. Weiner, On the state minimization of nondeterministic finite automata,

IEEE Trans. Computers C-19(7) (1970) 617-627.
72. F. Lin, H. Ying, R. D. MacArthur, J. A. Cohn, D. Barth-Jones, L. R. Crane, Decision

making in fuzzy discrete event systems, Information Sciences 177 (2007) 3749-3763.
73. E. T. Lee, L. A. Zadeh, Note on fuzzy languages, Information Sciences 1 (1969) 421-434.
74. H. Lei, Y. M. Li, Minimization of states in automata theory based on finite lattice-

ordered monoids, Information Sciences 177 (2007) 1413-1421.
75. J. P. Liu, Y. M. Li, The relationship of controllability between classical and fuzzy

discrete-event systems, Information Sciences 178 (2008) 4142-4151.
76. Y. M. Li, W. Pedrycz, Fuzzy finite automata and fuzzy regular expressions with mem-

bership values in lattice ordered monoids, Fuzzy Sets and Systems 156 (2005) 68-92.
77. N. Lynch, F. Vaandrager, Forward and backward simulations: Part I. Untimed systems,

Information and Computation 121 (1995), 214-233.
78. F. Lin, H. Ying, Fuzzy discrete event systems and their observability, in: Proceedings

of the 2001 IFSA/NAFIP Conference, 2001, pp. 1271-1276.
79. F. Lin, H. Ying, Modeling and control of fuzzy discrete event systems, IEEE Transac-

tions on Man, Systems and Cybernetics - Part B 32 (2002) 408-415.
80. E. T. Lee, L. A. Zadeh, Note on fuzzy languages, Information Sciences 1 (1969) 421-434.
81. R. Milner, A calculus of communicating systems, in G. Goos and J. Hartmanis (eds.),

Lecture Notes in Computer Science, vol. 92, Springer, 1980.
82. R. Milner, Communication and Concurrency, Prentice-Hall International, 1989.
83. R. Milner, Communicating and Mobile Systems: the π-Calculus, Cambridge Univer-

sity Press, Cambridge, 1999.
84. J. N. Mordeson, D. S. Malik, Fuzzy Automata and Languages: Theory and Applica-

tions, Chapman & Hall/CRC, Boca Raton, London, 2002.
85. D. S. Malik, J. N. Mordeson, M. K. Sen, Minimization of fuzzy finite automata, Infor-

mation Sciences 113 (1999) 323-330.
86. B. F. Melnikov, A new algorithm of the state-minimization for the nondeterministic

finite automata, Korean J. Comput. Appl. Math. 6(2) (1999) 277-290.
87. B. F. Melnikov, Once more about the state-minimization of the nondeterministic finite

automata, Korean J. Comput. Appl. Math. 7(3) (2000) 655-662.
88. R. Paige, R. E. Tarjan, Three partition refinement algorithms, SIAM Journal of Com-

puting 16 (1987) 973-989.
89. D. Park, Concurrency and automata on infinite sequences, in: P. Deussen (ed.), Proc.

5th GI Conf., Karlsruhe, Germany, Lecture Notes in Computer Science 104 (1981),
Springer-Verlag, pp. 167-183.

90. K. Peeva, Finite L-fuzzy acceptors, regular L-fuzzy grammars and syntactic pattern
recognition, International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 12 (2004) 89-104.

91. K. Peeva, Finite L-fuzzy machines, Fuzzy Sets and Systems 141 (2004) 415-437.
92. K. Peeva, Y. Kyosev, Fuzzy Relational Calculus: Theory, Applications, and Software

(with CD-ROM), in Series “Advances in Fuzzy Systems - Applications and Theory”,
Vol 22, World Scientific, 2004.

93. K. Peeva, Z. Zahariev, Computing behavior of finite fuzzy machines - Algorithm
and its application to reduction and minimization, Information Sciences 178 (2008)
4152-4165.

References 149

94. T. Petkovic, Congruences and homomorphisms of fuzzy automata, Fuzzy Sets and
Systems 157 (2006) 444-458.

95. Ketty Peeva, Finite L-fuzzy machines, Fuzzy Sets and Systems 141 (2004) 415-437
96. D. W. Qiu, Automata theory based on completed residuated lattice-valued logic (I),

Science in China, Ser. F, 44 (6) (2001) 419-429.
97. D. W. Qiu, Automata theory based on completed residuated lattice-valued logic (II),

Science in China, Ser. F, 45 (6) (2002) 442-452.
98. D. W. Qiu, Characterizations of fuzzy finite automata, Fuzzy Sets and Systems 141

(2004) 391-414.
99. D. Qiu, Supervisory control of fuzzy discrete event systems: a formal approach, IEEE

Transactions on Systems, Man and Cybernetics - Part B 35 (2005) 72-88.
100. D. W. Qiu, Pumping lemma in automata theory based on complete residuated lattice-

valued logic: A note, Fuzzy Sets and Systems 157 (2006) 2128-2138.
101. D. W. Qiu, F. C. Liu, Fuzzy discrete-event systems under fuzzy observability and a

test algorithm, IEEE Transactions on Fuzzy Systems 17 (3) (2009), 578-589.
102. F. Ranzato, F. Tapparo, Generalizing the Paige-Tarjan algorithm by abstract interpre-

tation, Information and Computation 206 (2008) 620-651.
103. M. Roggenbach, M. Majster-Cederbaum, Towards a unified view of bisimulation: a

comparative study, Theoretical Computer Science 238 (2000) 81-130.
104. S. Roman, Lattices and Ordered Sets, Springer, New York, 2008.
105. D. Saha, An incremental bisimulation algorithm, In: V. Arvind, S. Prasad (eds.),

FSTTCS 2007, Springer, Heidelberg, Lecture Notes in Computer Science 4855 (2007),
204-215.

106. E. Sanchez, Resolution of composite fuzzy relation equations, Information and Con-
trol 30 (1976) 38-48.

107. E. Sanchez, Solutions in composite fuzzy relation equations: application to medical
diagnosis in Brouwerian logic, in: M. M. Gupta, G. N. Saridis, B. R. Gaines (Eds.), Fuzzy
Automata and Decision Processes, North-Holland, Amsterdam, 1977, pp. 221-234.

108. E. Sanchez, Resolution of eigen fuzzy sets equations, Fuzzy Sets and Systems 1 (1978)
69-74.

109. D. Sangiorgi, On the origins of bisimulation and coinduction, ACM Transactions on
Programming Languages and Systems 31 (4) (2009) 111-151.

110. E. S. Santos, Maximin automata, Information and Control 12 (1968) 367-377.
111. E. S. Santos, On reduction of maxŰmin machines, Journal of Mathematical Analysis

and Applications 37 (1972) 677-686.
112. E. Santos, Max-product machines, J. Math. Anal. Appl. 37 (1972) 677-686.
113. E. S. Santos, Fuzzy automata and languages, Information Sciences 10 (1976) 193-197.
114. H. Sengoku, Minimization of nondeterministic finite automata, Master thesis, Kyoto

University, 1992.
115. S. S. Skiena, The Algorithm Design Manual, Springer, London, 2008.
116. A. Stamenković, M. Ćirić, Construction of fuzzy automata from fuzzy regular ex-

pressions, Fuzzy Sets and Systems 199 (2012) 1-27
117. A. Stamenković, M. Ćirić, J. Ignjatović, Reduction of fuzzy automata by means of

fuzzy quasi-orders, Information Sciences, http://dx.doi.org/10.1016/j.ins.2014.02.028
118. D. D. Sun, Y. M. Li, W. W. Yang, Bisimulation relations for fuzzy finite automata,

Fuzzy Systems and Mathematics 23 (2009) 92-100 (in Chinese).
119. S. S. Skiena, The Algorithm Design Manual, Springer, London, 2008.
120. S. Yu, Regular languages, in: Handbook of Formal Languages (G. Rozenberg, A.

Salomaa, eds.), Vol 1, Springer-Verlag, Berlin - Heidelberg, 1997, pp. 41-110.
121. W. Wechler, The Concept of Fuzziness in Automata and Language Theory, Akademie-

Verlag, Berlin, 1978.
122. W. G. Wee, On generalizations of adaptive algorithm and application of the fuzzy

sets concept to pattern classification, Ph.D. Thesis, Purdue University, June 1967.

150 References

123. W. G. Wee, K. S. Fu, A formulation of fuzzy automata and its application as a model
of learning systems, IEEE Transactions on Systems, Man and Cybernetics 5 (1969)
215-223.

124. L. H. Wu, D. W. Qiu, Automata theory based on complete residuated lattice-valued
logic: Reduction and minimization, Fuzzy Sets and Systems 161 (2010) 1635-1656.

125. H. Xing, D. W. Qiu, Pumping lemma in context-free grammar theory based on
complete residuated lattice-valued logic, Fuzzy Sets and Systems 160 (2009) 1141-
1151.

126. H. Xing, D. W. Qiu, Automata theory based on complete residuated lattice-valued
logic: A categorical approach, Fuzzy Sets and Systems 160 (2009) 2416-2428.

127. H. Xing, D. W. Qiu, F. C. Liu, Automata theory based on complete residuated lattice-
valued logic: Pushdown automata, Fuzzy Sets and Systems 160 (2009) 1125-1140.

128. H. Xing, D. W. Qiu, F. C. Liu, Z. J. Fan, Equivalence in automata theory based on
complete residuated lattice-valued logic, Fuzzy Sets and Systems 158 (2007) 1407-1422.

ИЗЈАВА О АУТОРСТВУ

Изјављујем да је докторска дисертација, под насловом

 БИСИМУЛАЦИЈЕ ЗА ФАЗИ АУТОМАТЕ

• резултат сопственог истраживачког рада,
• да предложена дисертација, ни у целини, ни у делови ма,

није била предложена за добијање било које дипломе,
према студијским програмима других високошколских
установа,

• да су резултати коректно наведени и
• да нисам кршио/ла ауторска права, нити злоупотребио/ла

интелектуалну својину других лица.

У Нишу,

Аутор дисертације: Ивана Мицић

Потпис докторанда:

ИЗЈАВА О ИСТОВЕТНОСТИ ШТАМПАНЕ И ЕЛЕКТРОНСКЕ
ВЕРЗИЈЕ ДОКТОРСКЕ ДИСЕРТАЦИЈЕ

Име и презиме аутора: Ивана Мицић
Студијски програм: Информатика
Наслов рада: Бисимулације за фази аутомате
Ментор: Јелена Игњатовић

Изјављујем да је штампана верзија моје докторске

дисертације истоветна електронској верзији, коју сам предао/ла
за уношење у Дигитални репозиторијум Универзитета у
Нишу.

Дозвољавам да се објаве моји лични подаци, који су у
вези са добијањем академског звања доктора наука, као што су
име и презиме, година и место рођења и датум одбране рада, и
то у каталогу Библиотеке, Дигиталном репозиторијуму Уни
верзитета у Нишу, као и у публикацијама Универзитета у Нишу.

У Нишу,

 Аутор дисертације:

 Потпис докторанда:

ИЗЈАВА О КОРИШЋЕЊУ

Овлашћујем Универзитетску библиотеку „Никола Тесла“ да,
у Дигитални репозиторијум Универзитета у Нишу, унесе моју
докторску дисертацију, под насловом:

БИСИМУЛАЦИЈЕ ЗА ФАЗИ АУТОМАТЕ
која је моје ауторско дело.

Дисертацију са свим прилозима предао/ла сам у
електронском формату, погодном за трајно архивирање.

Моју докторску дисертацију, унету у Дигитални
репозиторијум Универзитета у Нишу, могу користити сви који
поштују одредбе садржане у одабр аном типу лиценце Креативне
заједнице (Creative Commons), за коју сам се одлучио/ла.

1. Ауторство
2. Ауторство – некомерцијално
3. Ауторство – некомерцијално – без прераде
4. Ауторство – некомерцијално – делити под истим
условима
5. Ауторство – без прераде
6. Ауторство – делити под истим условима

(Молимо да подвучете само једну од шест понуђених лиценци;
кратак опис лиценци је у наставку текста).

У Нишу,

Аутор дисертације:Ивана Мицић

Потпис докторанда

Прилог 4/1

ПРИРОДНО - МАТЕМАТИЧКИ ФАКУЛТЕТ
НИШ

КЉУЧНА ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА

Редни број, РБР:

Идентификациони број, ИБР:
Тип документације, ТД: монографска

Тип записа, ТЗ: текстуални / графички

Врста рада, ВР: докторска дисертација

Аутор, АУ: Ивана З. Мицић

Ментор, МН: Јелена Игњатовић

Наслов рада, НР:
Бисимулације за фази аутомате

Језик публикације, ЈП: енглески

Језик извода, ЈИ: српски

Земља публиковања, ЗП: Србија

Уже географско подручје, УГП: Србија

Година, ГО: 2014.

Издавач, ИЗ: ауторски репринт

Место и адреса, МА: Ниш, Вишеградска 33.

Физички опис рада, ФО:
(поглавља/страна/цитата/табела/слика/гр
афика/прилога)

154 стр., граф. прикази

Научна област, НО: рачунарске науке

Научна дисциплина, НД: теорија израчунавања
Предметна одредница / Кључне речи, ПО: фази аутомати и језици, фази бисимулације

УДК 519.71, 519.713, 519.76

Чува се, ЧУ: библиотека

Важна напомена, ВН:

Извод, ИЗ: У докторској дисертацији представљене су бисимулације за фази аутомате.
Новине које су предложене јесу испитивање егзистенције и представљанје
ефективних потупака за рачунање највећих бисимулација одговарајућих
система, као и уопштење појма бисимулације са циљем да се добију релације
које боље апроксимирају језичку еквиваленцију или дају бољу редукцију
фази аутомата, такозване слабе форвард и беквард бисимулације. Поред тога
разматрана је редукција фази помоћу десно и лево инваријантних
еквиваленција и предложени су алгоритми за рачунање највећих
еквиваленција овог типа.

Датум прихватања теме, ДП: 14.11.2012.

Датум одбране, ДО:

Чланови комисије, КО: Председник:

 Члан:

 Члан,
ментор:

Образац Q4.09.13 - Издање 1

Прилог 4/2

ПРИРОДНО - МАТЕМАТИЧКИ ФАКУЛТЕТ
НИШ

KEY WORDS DOCUMENTATION

Accession number, ANO:

Identification number, INO:
Document type, DT: monograph
Type of record, TR: textual / graphic
Contents code, CC: doctoral dissertation

Author, AU: Ivana Z. Micić

Mentor, MN: Jelena Ignjatović
Title, TI: BISIMULATIONS FOR FUZZY AUTOMATA

Language of text, LT: English

Language of abstract, LA: Serbian
Country of publication, CP: Serbia

Locality of publication, LP: Serbia

Publication year, PY: 2014
Publisher, PB: author’s reprint

Publication place, PP: Niš, Višegradska 33.

Physical description, PD:
(chapters/pages/ref./tables/pictures/graphs/
appendixes)

154 p. ; graphic representations

Scientific field, SF: Computer Science
Scientific discipline, SD: Theory of computing

Subject/Key words, S/KW: fuzzy automata and languages, fuzzy bisimulations

UC 519.71, 519.713, 519.76

Holding data, HD: library

Note, N:

Abstract, AB: In the doctoral dissertation bisimulations for fuzzy automata are presented. New
results that have been proposed here are algorithms for chacking weather there
exists simulation/bisimulation between the given fuzzy automata and compute the
greatest one, whenever it exists. Also, more general types of bisimulations, which
provide better approximations of the language-equivalence and better results in the
state reduction, called weak forward and backward bisimulations, are introduced.
Moreover, right and left invariant equivalences are discussed.

Accepted by the Scientific Board on, ASB: 14.11.2012.

Defended on, DE:

Defended Board, DB: President:

 Member:

 Member, Mentor:

Образац Q4.09.13 - Издање 1

	Fundamental concepts
	Ordered sets and lattices
	Complete residuated lattices
	Fuzzy sets and fuzzy relations
	Uniform fuzzy relations

	Fundamentals of fuzzy automata
	Fuzzy automata
	Crisp-deterministic fuzzy automata
	Factor and afterset fuzzy automata
	Simulations and bisimulations between fuzzy automata

	Computation of the greatest bisimulations
	The residuals
	Computation of the greatest bisimulations
	Computational examples

	Weak bisimulation for fuzzy automata
	Weak simulation for fuzzy automata
	Weak bisimulation for fuzzy automata
	Uniform weak bisimulations
	Weak forward bisimulation equivalent automata

	Paige-Tarjan type algorithms
	Right and left invariant fuzzy quasi-orders
	Computing the right invariant equivalences on non-deterministic automata

	C codes
	Bisimulacije za fazi automate
	Biography of Author
	References

